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Problem Description
Based on previous work, this project will continue the work on a low-cost floating-point unit,
suitable for inclusion in an Atmel AVR 8-bit microcontroller.

The design aims to implement the minimum requirements of the IEEE-754 1985 standard for
floating-point arithmetic, using simple algorithms with similar functional requirements.
An important goal for the project is to provide a design that may offer the convenience of floating-
point computations to the microcontroller domain, without a huge impact on hardware
consumption or the slow execution speed of a software implementation.

Implementation and specification is prioritized, but verification through simulation should be
performed, in order to demonstrate the correctness of the final implementation.
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Abstract

This report aims to provide a complete speci�cation of an IEEE-754 1985 compliant
design, as well as a working, synthesizable implementation in Verilog HDL. The
report is based on a preliminary project, which analyzed the IEEE-754 standard
and suggested a set of algorithms suitable for a compact realization.

Through traditional methods of both algorithmic analysis and data�ow analysis,
requirements of functional units are derived, and operations are scheduled.

A set of functional simulations assert the correctness of the design, while area
and performance analysis provides information on the speedup gained, versus the
hardware cost.

Finally, the results obtained are compared to existing implementations, in both
hardware and software.
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Chapter 1

Introduction

1.1 Motivation

As microcontrollers are assigned more and more complex tasks, the requirement of
low-end, yet e�cient �oating-point computations becomes relevant. Even though
most computations involving fractions can be performed using traditional �xed-
point math, �oating-point math is convenient for programmers, especially as the
size of software projects increases.

Most implementations of the IEEE-754 1985 standard for binary �oating-point
arithmetic (or simply the standard) focus on high performance, targeting complex
scienti�c calculations, or heavy multimedia processing. Low-end platforms with
�oating-point support mostly relies on pure software-implementations, which typ-
ically provide rather poor performance.

In an attempt to bridge this gap, this project aims to derive a compact hardware
implementation of the standard, that achieves a large enough speedup over a soft-
ware implementation to justify the additional hardware cost. The target domain
is 8-bit microcontrollers, more speci�cally the Atmel AVR 8-bit architecture [3].

This project is based on a preliminary project [5].

1.2 What was Covered in the Preliminary Project

The preliminary project aimed to extract the requirements of a compliant imple-
mentation from the IEEE-754 1985 standard for binary �oating-point arithmetic.
This involved identifying the representation format, along with the required opera-
tions and exceptional cases covered in the standard. Then, a variety of algorithms

1



2 CHAPTER 1. INTRODUCTION

capable of performing these operations were discussed and compared. Finally, a set
of algorithms was chosen, based on their functional equivalence and the absence of
complex internal operations. The motivation behind this was to allow maximum
sharing of resources, as well as keeping the functional units as simple as possible.
Based on these algorithms, an architecture was suggested, along with some rough
timing estimates.

1.3 What will be Covered in this Report

This project builds upon the preliminary project, aiming to provide a complete
implementation of the architecture suggested in the previous report, along with
area and execution time estimates. This task includes detailed speci�cation, along
with solving some problems not covered by the previous work. A few notable
examples is the performing of rounding in accordance with the standard, as well
as detecting and dealing with exceptions.

As the time-frame for the project is limited, some tasks must be prioritized. As the
goal of the project is to acquire data on area consumption and execution time of an
IEEE-754 1985 implementation, the features that contribute to area consumption
and execution time will be dealt with �rst. This involves any operation that will
require dedicated functionality, or additional control steps. Operations such as
over�ow detection are less likely to introduce any signi�cant hardware consumption,
thus they are assigned a lower priority.

1.4 What will not be Covered in this Report

This report assumes that the reader is familiar with IEEE single-precision �oating-
point numbers, as well as the basic mathematics behind the associated operations.
For more information on this, please refer to the preliminary project report [5], the
standard itself [4] or other resources [11], [6].

As the purpose of this project is to create a minimal, low-cost implementation, only
features that are required by the standard are considered. Thus, additional features
such as conversion from character strings to �oating-point values, and comparison
instructions will not be discussed.

In addition, certain features are omitted due to their complex nature. Especially
support for denormal numbers is fairly complex to implement, thus it is not fea-
tured in this report even though it is required by the standard. As the method
for handling denormal numbers is very much dependent on the surrounding archi-
tecture, no choices have been made for this. One possible method is to �ush all
denormal inputs and outputs to zero.

No mechanism for software traps are discussed, as this is beyond the scope of this
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project. However, this may be used to handle denormal numbers in software, thus
any subsequent work may want to consider supporting traps. The �oating-point
remainder operation is not featured here either.

Finally, the treatment of Not-a-Number values (NaNs) is very brief in this report.
For instance, quiet NaNs and signaling NaNs are not treated individually in any
way.

1.5 Structure of this Report

Chapter 2 will give a brief overview of some of the theory that was left out in the
preceding report, or simply wasn't discussed in su�cient detail. Note that this is
not a comprehensive walk-through of all the theory behind this project, please refer
to [5] for more details.

Following the theory chapter, the design and speci�cation of the various modules
will be discussed in Ch.3. This chapter is the bulk of this report, covering both
algorithmic as well as architectural design considerations. The various functional
units that will form the building blocks of the complete design is discussed sepa-
rately, before they are assembled to form the �nal architecture. In order to make
this chapter tidy and comprehensible, the design of each operation is discussed
separately. Finally, they are merged together into the �nal design.

Chapter 4 on simulation and veri�cation will discuss some means to verify the
behavior of the design, as well as illustrate some important concepts through sim-
ulation.

Then, Ch. 5 will present the synthesis results, as well as the resulting clock cycle
usage of the various operations.

Finally, the results from the preceding sections will be discussed in Ch.6, and the
report will be concluded. Suggestions for future work is included here as well.
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Chapter 2

Theory

This chapter will introduce some theory that was insu�ciently covered in the pre-
liminary project, or not covered at all.

2.1 IEEE Floating-Point Numbers

This report deals with �oating-point numbers, that correspond to the representa-
tion presented in the IEEE-754 1986 Standard for Binary Floating-Point Arith-
metics [4]. To limit this report, only single precision, normalized numbers are
discussed.

As mentioned, this report assumes that the reader has some knowledge of the
standard as well as the various �oating-point operations. Several resources that
provide information on this was listed in the introduction.

This report will refer to the various components of a �oating-point value as sign
bit (s), exponent (E) and signi�cand, fraction or mantissa (F ).

2.2 Count Leading Zeros

The count leading zeros operation is included as a CPU instruction in several
architectures. It takes a binary number, and returns the number of leading zeros,
counting from the MSB towards the LSB. If the input value consists of N bits, the
answer can be represented in log 2(N) bits, given that N is a power of two.

For instance, CLZ(00001010) returns the value 100two = 4ten.

This section describes a way to implement the CLZ operation, for input values with

5



6 CHAPTER 2. THEORY

a power-of-two bit width.

First, extract the upper half of the input word, and compare it to zero. If this
comparison is true, it means that the leading one is located in the lower half of the
input word. Thus, the number of leading zeros is at least half of the input word
length. The upper half of the input word is discarded, and the same procedure is
applied to the lower half. The upper bit of the result word is set to one.

If the comparison was false, the leading one must be located in the upper half of
the input word. This means that the number of leading zeros must be less than
half the word length of the input word. The upper bit in the result is set to zero,
and the procedure is applied to the upper half of the input word.

This subdivision will generate a binary tree with a depth of log2(N), generating
one result bit per subdivision starting from the MSB. It should be noted that the
case of an all-zero input value requires special care. This can be implemented as
a relatively simple comparison of the result generated, which introduces very little
extra logic.

This algorithm is represented as a �owchart in Fig.2.1.

2.3 Rounding

This section will elaborate the theory behind the various forms of rounding included
in the IEEE-754 1985. The di�erent rounding modes will be reviewed shortly, and
methods for performing the actual rounding will be discussed. Note that this
section does not discuss the actual implementation of the rounding schemes; this
is done in ch.3.9.

For more details on the mathematics behind rounding, see [11].

2.3.1 Prerequisites for rounding

As concluded in [5], some additional information is required in order to round a
fraction in accordance with the speci�cation. More speci�cally, this is two addi-
tional bits of precision � guard and round � in the internal representation, as
well as a sticky bit. The former bits are fairly easy to implement, as long as the
datapath is wide enough to support it.

The sticky bit represents what could be in the bits to the right of the least signi�-
cand bits, had they not been discarded. If a one is ever shifted into the sticky bit,
it "sticks" to one, and remains high for the rest of the operation. The generation
of the sticky bit will require some additional logic, this is discussed in Ch.3.9.
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sub = upper half(value)

sub = 0?

value = lower half(value)

result(log2(N)-1-i)=1

value = upper half(value)

result(log2(N)-1-i)=0

i ≥ log2(N)

i++

i=0

no

yes

no yes

result =log2(N)-1

&& 
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Figure 2.1: Flowchart Representation of the Count-Leading-Zeros Algorithm

Mathematically speaking, the rounding can be described as

fracrounded = round(frac, s)

where frac is on the form

1. XXXXXXXXXXXXXXXXXXXXXXX︸ ︷︷ ︸
23 bit

g r

and the resulting fracrounded is on the form

1. XXXXXXXXXXXXXXXXXXXXXXX︸ ︷︷ ︸
23 bit

The 23 fractional bits denoted X in the latter expression are the bits that will be
kept in the �nal representation of the result, leading one excluded.
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2.3.2 Round Towards Zero (Truncate)

This rounding mode is by far the simplest to implement, as it only requires a
truncation of the signi�cand. An implementation that only supported this rounding
mode could be made more compact and have a shorter execution time of operations
that require rounding. Example:

round(1.11000000000000000000000 1 1 0) = 1.11000000000000000000000

2.3.3 Round Towards +∞

In this mode, the value of the fraction will be rounded towards +∞, regardless of its
value. In the case of negative numbers, this is identical to the round-towards-zero
mode; just truncate the number. Example:

round(−1.11000000000000000000000 1 1 0) = 1.11000000000000000000000

In the case of a positive signi�cand, the value must be increased if any of the
additional bits are set. This can be solved by performing a logical OR between
the guard, round and sticky bits. The resulting bit can be used to determine the
rounding: if it is 1, one LSB must be added to the signi�cand. If it is 0, the fraction
can be truncated.

Examples:

round(1.11000000000000000000000 1 0 0) = 1.11000000000000000000001

round(1.11000000000000000000000 0 1 0) = 1.11000000000000000000001

round(1.11000000000000000000000 0 0 1) = 1.11000000000000000000001

round(1.11000000000000000000000 0 0 0) = 1.11000000000000000000000

2.3.4 Round Towards −∞

The round-towards-minus-in�nity rounding mode will, as the name implies, round
the fraction towards minus∞. This is fairly similar to the previous rounding mode,
except that we switch the treatment of the positive and negative fractions: if the
fraction is positive, it is truncated. If it is negative, the extra bits will determine
its value. Example:

round(1.11000000000000000000000 1 1 0) = 1.11000000000000000000000

Again, if any of the extra bits are set, a LSB must be added to the absolute value
of the fraction. Note that the sign bit is kept out of the addition itself; the purpose
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of this addition is to bring the absolute fraction value away from zero. Examples:

round(1.11000000000000000000000 1 0 0) = 1.11000000000000000000001

round(1.11000000000000000000000 0 1 0) = 1.11000000000000000000001

round(1.11000000000000000000000 0 0 1) = 1.11000000000000000000001

round(1.11000000000000000000000 0 0 0) = 1.11000000000000000000000

2.3.5 Round To Nearest Even

This rounding mode is by far the most complicated to implement, however it is
also the one speci�ed as default by the standard. The principle is to round the
fraction to the value that is closest to the unrounded value. For instance,

round(10.11) = 11.00

, as the fraction is closer to 11 than it is to 10. The problem with the algorithm is the
treatment of the half-way case, where the numeric distance to the two alternatives
is equal. For instance, 10.10 is half-way between 10.00 and 11.00. In this case,
the standard requires the number to be rounded to the value that has a zero in its
LSB. In the previous example, the correct value after rounding would be 10.00.

Thus, the implementation of this rounding mode will require knowledge of the least
signi�cant bit of the signi�cand, namely the bit to the left of the guard and round
bits.

If we compute an intermediate sticky-bit s′ = g|s, the e�ective rounding operations
required for the round-to-nearest-even scheme can be summarized as in Tab.2.1
(adapted from [11]). ulp denotes unit in the last place, and is simply a high bit

Table 2.1: Round-to-Nearest-Even: Required Rounding Operations
LSB r s' Operation

0 0 0 +0
0 0 1 +0
0 1 0 +0
0 1 1 +0.5ulp
1 0 0 +0
1 0 1 +0
1 1 0 +0.5ulp
1 1 1 +0.5ulp

with the same weight as the least signi�cant bit in the operand. For instance,
1.0 + 0.5ulp is performed as:

1.00000000000000000000000 g r

+0.00000000000000000000000 1 0
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2.3.6 Floating-Point Exceptions

This section will give a brief review of the various exceptions included in the stan-
dard, as well as highlighting some important implementation aspects. Note that
the implementation of the exception handling is discussed in Ch.3.10, in context of
the actual design organization.

Exceptions Present in the IEEE 754-1985 Standard

The standard de�nes the following exceptions:

1. Invalid operation

2. Division by Zero

3. Inexact

4. Over�ow

5. Under�ow

The exceptions were de�ned in the preliminary report, along with examples of cases
that will trigger them. The important thing to note here, is that these exceptions
can be divided into two classes: The �rst is exceptions that can be detected and
dealt with upon the very beginning of an operation, the second is the kind of
exceptions that occur at some point during the execution of the operation.

The former class of exceptions will be referred to as init-time exceptions in this
report, the latter will be referred to as run-time exceptions.

This di�erence a�ects how exceptions will be detected and dealt with in the imple-
mentation, thus it is necessary to identify which exceptions belong to which group.
This is listed in Tab.2.2.

Table 2.2: IEEE 754-1985 Exceptions

Exception Detectable at init-time?
Invalid operation Yes
Division by Zero Yes
Inexact No
Over�ow No
Under�ow No

In accordance with this classi�cation, the implementation will treat invalid opera-
tion and division by zero at init-time, while the other exceptions will be detected
within the arithmetic stages ("run-time"). The causes for these exceptions will be
derived per operation in the later chapters, before they are summarized in Ch.3.10.



Chapter 3

Design and Speci�cation

This chapter will deal with the design and speci�cation of various parts of the
system. The chapter is divided into separate sections for the various operations, as
well as separate sections for rounding and exception handling. The reason behind
this organization is to manage complexity, as well as making it easier to extract a
single operation from the design, and implement it by itself. The design is loosely
based on design principles found in [13] and [13].

3.1 General Considerations

The general design was derived in the preliminary project, an abstract overview of
the architecture is given in Fig.3.1.

The architecture can be summarized as two distinct scalar pipelines, sharing a
common control unit. In addition to this, an external multiplier is connected to
the signi�cand pipeline. Certain operations require some transfer of data between
the two pipelines, hence they are interconnected by a few data wires.

The design will implement the �oating-point operations required by the IEEE-754
1985, by a careful selection of algorithms. As the design is similar to a general-
purpose CPU pipeline, it is obvious that the chosen algorithms will share charac-
teristics with existing software implementations if the IEEE-754. The speedup over
a software implementation is mainly achieved through a more suitable data width,
as well as utilizing two pipelines along with some hardwired routing of data.

11
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Figure 3.1: Abstract View of the System Architecture

3.1.1 System-level interface

Most of the operations speci�ed in the standard take two inputs and produce one
output. The rest are unary, thus consuming one operand and produce one result.
The system-level interface of the FPU includes two input data ports, and one output
data port. Additional input signals are the instruction opcode, as well as the active
rounding mode. All input operands are assumed to be 32-bit �oating-point values,
with the exception of the integer-to-�oating-point conversion operands. These will
be interpreted as 32 bit integer values, either unsigned or signed two's compliment,
depending on the instruction. Integer values smaller than 32 bit are often used in
microcontrollers, but they can simply be sign extended in order to correspond with
the format assumed by the FPU.

The output ports consist of a 32-bit data result, several status �ags and a �ag that
indicated that the current instruction is completed. The interface signals of the
FPU is listed in Tab.3.1.

The system-level interface of the FPU is illustrated in �g.3.2.

3.2 Functional Units

This section will describe the functional units that form the basic blocks of the
FPU architecture. The requirements and speci�cations of the various units are
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Table 3.1: Floating-Point Unit - Interface Signals
Signal Name

Operand A Input A
Operand B Input B

OpCode Speci�es the active operation
RoundingMode Decides the active rounding mode

Result The FPU result output
ResultReady Indicates that a result is ready, and the

unit is ready for a new instruction
Invalid operation Indicates that an invalid operation was

performed
Division by zero Indicates that a division by zero oc-

cured
Ove�ow Indicates that an over�ow occured

Under�ow Indicates that an under�ow occured
Inexact Indicates that precision was lost during

the operation
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Figure 3.2: The System-Level Interface of the FPU

governed by the choice of algorithms and architecture in general. Thus, several
aspects of the functional units presented here will be elaborated in the subsequent
sections, which deal with each �oating-point operation separately.

3.2.1 Storage Elements

This section will describe the internal storage elements of the �oating-point unit.
The organization of the internal registers is determined by the amount of storage
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required by the chosen algorithms, as well as critical path considerations.

At minimum, the design needs three registers per pipeline. More speci�cally, each
ALU needs two registers to provide the input values, and a result register. Note that
the result in many cases can be stored by overwriting one of the input operands.
In other words, a dedicated result register is only needed in a few operations.

However, the result registers can be utilized to reduce the critical path of the design,
as well as serve as output bu�ers. Thus, we chose to implement them separately
instead of incorporating them in a register �le along with the input registers.

In addition to the general-purpose registers (GPRs), a set of constant-valued regis-
ters is also required. Examples of such are a register to hold the bias value speci�ed
by the standard, as well as constants used in normalization of results. In order to
keep the design tidy, the constant registers are contained in a register �le, along
with two general-purpose registers. Note that the constant registers are not user-
writable, as opposed to the GPRs. As the constants used in the design usually
consist of mostly zeros, the constant values can be generated by relatively simple
combinatorial logic.

Signi�cand-Related Registers

Figure 3.3 shows the interface of the register �le that is connected to the signi�cand
ALU. The two write ports are connected to GPR R0 and R1, the read select signals
choose which internal register value to forward to the corresponding output port.
The shift enable signal enables left-shifting of register R0, by one digit.

As the various algorithms featured in this design require a selection of speci�c
constants, a set of constant registers have been included in the register �les. Table
3.2 lists the constants featured in the signi�cand result register.

Table 3.2: Signi�cand Register File - Constants
Name Value Description

Zero 32'd0 All zeros
One 32'd1 1
Two 32'd2 2
ULP Round 32'd128 ULP used during rounding
Bias 32'd127 Exponent bias value
Five 32'd5 5
Six 32'd6 6
NaN Sig. 32'h20000000 Signi�cand corresponding to a NaN result
Ones 32'hFFFFFFFF All ones
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Figure 3.3: Signi�cand Register File Interface

Exponent-Related Registers

The interface of the exponent pipeline register �le is given in �g.3.4. Note that it
is slightly simpler than its signi�cand counterpart, as the shift-capabilities are not
required here.

Again, a set of constant values are required in the various algorithms. The constant
register values included in the exponent register �le is given in tab.3.3.

Table 3.3: Exponent Register File - Constants
Name Value Description

Zero 0 All zeros
One 9'd1 1
RPP 9'd31 Signi�cand radix point position
I2FP 9'd158 Used in int->�oat conversion
Bias 9'd127 Exponent bias
Ones 9'd511 All ones

3.2.2 Detection of Special Representation Values

The standard [4] de�nes several special representation values for �oating-point
numbers, which have a great impact on the implementation. Detecting and iden-
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Figure 3.4: Exponent Register File Interface

tifying these values are an important part of �oating-point exception handling. In
addition it is possible to increase performance by treating certain special cases,
such as multiplication between zero and a number.

The circuitry needed for detecting special representation values were derived in the
preliminary project, and repeated here for convenience. Implementation-wise, the
operation will consist of two combinatorial gate-networks connected to the input
ports of the FPU itself. The logic will assert a set of status �ags, depending on the
value of the inputs. These status �ags will be forwarded to the control unit, and
used to determine the subsequent control �ow.

Figure 3.5 shows the interface of the detection logic, Tab.3.4 speci�es the interface
signals. For more information on the internals of this unit, please refer to the
preliminary project and the actual implementation source code.

3.2.3 Interface to the External Multiplier

As the �oating-point unit will require multiplication of larger bit-widths than the
existing hardware multiplier supports, it is necessary to split the multiplication into
several smaller multiplication, and accumulate them. This section will describe the
logic required to feed the multiplier with data, invoke a multiplication and �nally
align the partial product, in order to prepare it for the accumulation step.
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Figure 3.5: SVD Unit Interface

Table 3.4: Special Value Detection Unit - Interface
Signal Bit Width Description

value in 32 Single precision �oating-point value
sign 1 The sign of the input
isZero 1 input equal to ±0?
isInf 1 input equal to ±∞?
isNan 1 input is Not-a-Number?
isDenorm 1 Input is a denormal value?
value out 33 Input with leading signi�cand digit appended

Slicing the Input

The mask and shift unit takes two 24-bit operands, and returns two 16-bit operands
which can be sent to the multiplier input ports. Exactly how the slicing is done is
determined by an opcode.

Note that extracting the higher bits of a word, and outputting them on the lower
bits of the output ports, the numeric value of the operands are changed. This must
be compensated for, after the multiplication is performed. This task is handled by
the shift and extend unit.

The di�erent operations of the unit is summarized in Tab.3.5

The External Multiplier

The external multiplier is not a part of this project, however a behavioral model is
included for simulation purposes. It is simply a pipelined multiplier that consumes
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Table 3.5: Shift-and-Mask Unit

Operation OpCode Description
A8C8 00 Extracts the upper 8 bits from both

operands
A8D16 01 Extracts the upper 8 bits from the �rst

operand and the 16 lower bits from the
second operand

B16C8 10 Extracts the 16 lower bits of the �rst
operand and the 8 lower bits from the
second operand

B16D16 11 Extracts the lower 16 bits from both
operands

External 

16x16

Multiplier

clock

reset

enable

A B

Product

Figure 3.6: External Multiplier Interface

two cycles computing a 32-bit product from two 16-bit inputs. Consecutive multi-
plications can be started in consecutive cycles, allowing the multiplier to calculate
N multiplications in N + 1 cycles.

The interface of the external multiplier is illustrated in Fig.3.6.

Note that the area contribution of the external multiplier should be subtracted
from the synthesis results, as it is not a part of this design.

Extracting, Shifting and Extending the Partial Products

The shift and extend unit is responsible for converting a partial product from the
external multiplier into a representation suitable for accumulation. This involves
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shifting the partial product into the right position, and zero-extending the value.
The shift amount depends on the operation of the mask and shift unit. Note that
since the multiplier consumes two cycles per product, the operation of this unit
must lag one cycle behind the one of the mask and shift unit.

For instance, if the former unit extracts the upper half of the 24-bit signi�cands,
and right-shifts the resulting bits by 12, the partial product needs to be left-shifted
by 24 in order to obtain the correct numeric value. However, as we discard the
lower 16 bits of the signi�cand product, the actual operation of the shift and extend
unit needs to be a 8-bit left-shift. See Ch.3.3 for more details on this.

The di�erent operations of the unit is summarized in tab.3.6

Table 3.6: Shift-and-Extend Unit

Operation OpCode Description
SHIFT_16_BIT_AND_EXTEND 00 Shifts the input 16 bits to the left
SHIFT_0_BIT_AND_EXTEND 01 Shifts the input 8 bits to the left,

and zero extends the result
SHIFT_TRUNC_AND_EXTEND 11 Truncates the lower 16 bits of the

input, and zero extends the re-
sult

3.2.4 Arithmetic-Logic Units

The arithmetic-logic units are responsible for the bulk of the operations performed
on data within the �oating-point unit. Thus they need to be �exible and generic,
while maintaining a low level of complexity in order to keep the area consumption
as low as possible. As mentioned previously, the design revolves around two ALUs;
one for the signi�cand calculations and one for the exponent calculations.

The motivation behind this choice is that several of the micro-operations in the
chosen algorithms can be performed independent on the signi�cand and the expo-
nent. Thus it is possible to exploit a certain amount of parallelism with very little
e�ort. All the operations this design will implement could have been performed by
a single ALU, indeed this is how it is done in most software implementations of the
standard. Still, the addition of a second pipeline will provide a signi�cant speedup
at a low cost.

Signi�cand ALU

This is the largest of the two ALUs, and also the one with the largest amount of
operations. Hence, it will be a major factor in determining the total system cost.
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Figure 3.7: Signi�cand ALU Interface

The interface of the signi�cand ALU is shown in Fig.3.7, the interface signals are
speci�ed in Tab.3.7.

Table 3.7: Signi�cand ALU Interface Signals

Signal name Bit Width Description
Operand A 32 ALU Input A
Operand B 32 ALU Input B
ALU Result 32 The result of the current operation
ALU OP 4 The current operation
Zero 1 1 if the result was zero, 0 otherwise
Negative 1 1 if the result was negative, 0 otherwise

The operations that are included in the signi�cand ALU are summarized in Tab.3.8.

Exponent ALU

The interface of the exponent ALU is shown in Fig.3.8, the interface signals are
speci�ed in Tab.3.9.

The operations that are included in the exponent ALU are summarized in Tab.3.10.
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Table 3.8: Signi�cand ALU Operations

Operation OpCode Operation Comment
SIG_ALU_OP_NOP 0000 Result ← 0 No operation
SIG_ALU_OP_MOVA 0001 Result ← A Moves A through the ALU
SIG_ALU_OP_NEGB 0010 Result ← -B Negates B
SIG_ALU_OP_ADD 0011 Result ← A + B Adds A and B
SIG_ALU_OP_SUB 0100 Result ← A - B Subtracts B from A
SIG_ALU_OP_SHRA 0101 Result ← A �> B Arithmetic right-shift of A

by B bits
SIG_ALU_OP_SHRL 0101 Result ← A � B Logical right-shift of A by

B bits
SIG_ALU_OP_SHLL 0110 Result ← A � B Logical left-shift of A by B

bits
SIG_ALU_OP_CLZ 1000 CLZ(A) Returns the number of

leading zeroes in A, in the
range [0,32]

expALU

Operand A Operand B

ALU Result

ALU OP
Zero

Negative

Figure 3.8: Exponent ALU Interface

Table 3.9: Exponent ALU Interface Signals

Signal name Bit Width Description
Operand A 32 ALU Input A
Operand B 32 ALU Input B
ALU Result 32 The result of the current operation
ALU OP 3 The current operation
Zero 1 1 if the result was zero, 0 otherwise
Negative 1 1 if the result was negative, 0 otherwise
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Table 3.10: Exponent ALU Operations

Operation OpCode Operation Comment
EXP_ALU_OP_NOP 000 Result ← 0 No operation
EXP_ALU_OP_MOVA 001 Result ← A Moves A through the ALU
EXP_ALU_OP_NEGB 010 Result ← (-B) Negates B
EXP_ALU_OP_ADD 011 Result ← A + B Adds A and B
EXP_ALU_OP_SUB 100 Result ← A - B Subtracts B from A
EXP_ALU_OP_SHL 101 Result ← A � B Logical left-shift of A by B

bits
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3.3 Floating-Point Multiplication

Multiplication di�ers from the other operations, as it is the only operation that is
based on existing hardware; namely a 16x16bit integer multiplier. Thus it is the
least �exible operation in terms of design space exploration and will be discussed
before the others.

3.3.1 Algorithm and Design Considerations

The basic algorithm for �oating-point multiplication was described in [5]. The
algorithm can be summarized with the following steps:

1. Add the exponents

2. Subtract bias in order to obtain the correct exponent

3. Perform signed multiplication of the input signi�cands

4. Normalize and round the result. This is easy, because of the constrained
range of the multiplication result

5. Calculate the output sign bit as the logical XOR operation between the input
exponent bits

The only complex operation in this algorithm is the signi�cand multiplication,
which will be performed by the existing 16x16-bit multiplicator, along with an
accumulator.

As the input signi�cands consist of 24-bit �xed-point numbers with a 1:23 bit
distribution (integer:fraction), the complete multiplication of these values will yield
a 48-bit result, with a 2:46 bit distribution. Thus the minimum required size of the
accumulator and result register is 48 bit. This will result in a signi�cant increase
in bit width of several units, which will have a negative impact on the total area
consumption. It is highly desirable to reduce this requirement, in order to �nd a
compact solution.

As the IEEE-754 only requires a certain amount of precision, it is possible to discard
the least signi�cant bits of the product. By careful scheduling of the partial product
multiplications, the required bit width of the accumulator and result register can
be reduced to 32 bit. This is a 50% reduction compared the direct computation.

The required word slicing is illustrated in eq.3.1

AA︸︷︷︸
Ahigh

BBCC︸ ︷︷ ︸
Alow

× DD︸︷︷︸
Bhigh

EEFF︸ ︷︷ ︸
Blow

(3.1)
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Eq.3.2 shows the order of operations.

AABBCC × DDEEFF
AADD

+ AAEEFF
+ DDBBCC
+ BBCCEEFF
= PP PPPPPPPPPP

(3.2)

Note that the bits that will be discarded from the �nal partial product can not
be completely ignored; they may a�ect the rounding of the �nal result. Hence it
is necessary to determine if any of the discarded bits were set high; in this case
the sticky bit must be asserted. More details on this can be found in chapter 3.9,
which deals with the implementation of rounding.

Multiplication result = PPPPPPPP︸ ︷︷ ︸
32 MSB of product

PPPP︸ ︷︷ ︸
Sticky bit data

3.3.2 Organization

Figure 3.9 shows a suggested schedule for performing �oating-point multiplication
at a minimal hardware cost. Note that this architecture is a�ected by the al-
gorithms chosen for all the �oating-point operations, in the preliminary project.
Thus, it is most likely not ideal if you consider the multiplication operation by
itself.

Blue wires represent control signals, black wires represent data. The gray blocks are
storage elements, the white rectangles represent functional units and combinatorial
units. The registers were discussed in detail in ch.3.2.1. The two units labeled
sigALU and expALU are the arithmetic-logic units that deals with signi�cand and
exponent computations, respectively. The blue control lines are unconnected in the
�gure; the control unit was left out of the �gure to keep it more readable.

The exponent pipeline simply accepts two input exponents, add them together
and subtract bias in order to obtain the correct numerical result. The signi�cand
ALU accepts partial products from the multiplier chain shown in the left part of
the diagram. The signi�cand ALU works together with the corresponding register
�le, functioning as an accumulator. This enables the signi�cand multiplication, in
accordance with the method presented in the previous section.
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Figure 3.9: Floating-Point Multiplication Architecture

3.3.3 Scheduling and Control

Data�ow

The algorithm can be represented in a data�ow diagram (DFG) as shown in Fig.3.10

Functional Unit Binding

The functional unit binding is relatively simple: the multiplication is shared among
the external multiplier and the signi�cand ALU, while the exponent calculations
are performed by the exponent ALU.
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Figure 3.10: Floating-Point Multiplication DFG

Scheduling

Table 3.11 shows the schedule of the �oating-point multiplication, using the given
architecture. Note how the calculations of the exponent and the signi�cand can be
performed independently. The sign bit calculation is not shown in this table, as it
is included in the control unit itself.

Table 3.11: Floating-Point Multiplication - Schedule

Cycle Multiplier Signi�cand ALU Exponent ALU
1 P0 EA + EB

2 P1/P0 (EA + EB)− bias
3 P2/P1 0 + P0
4 P3/P2 P0 + P1
5 P3 (P0 + P1) + P2
6 (P0 + P1 + P2) + P3

Register Allocation

Table 3.12 presents an alternative view of the schedule, namely the register values
after each cycle. This is included in order to illustrate the internal data �ow. Note
how the �nal signi�cand and exponent are placed in their respective R0s. This is
common to all operations, as the normalize and round operations expect the value
they act upon to be present in these registers.

Control

Table 3.13 lists all the control signals present in the �oating-point multiplication
design. Please refer to �g.3.9 for details on how the signals are connected to the
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Table 3.12: Floating-Point Multiplication - Internal Register Values

Cycle sig.R0 sig.R1 sig.
result

exp.R0 exp.R1 exp.
result

0 0 0 0 EA EB 0
1 0 0 0 EA + EB EB 0
2 0 0 0 (EA + EB)− bias EB 0
3 P0 0 0 (EA + EB)− bias EB 0
4 P0 + P1 0 0 (EA + EB)− bias EB 0
5 (P0 + P1) + P2 0 0 (EA + EB)− bias EB 0
6 (P0 + P1 + P2) + P3 0 0 (EA + EB)− bias EB 0

Pre-Process

Post-Process

M0 M1

M2 M3

M4 M5

Figure 3.11: Floating-Point Multiplication - Control Flow/State Chart

various functional units.

The control �ow of this operation is fairly simple, as it contains no branches, and
consumes the same amount of clock cycles every time. The control �ow/state
chart for the �oating-point multiplication is shown in Fig.3.11. Note that this
state chart assumes that all input operands are placed in the appropriate registers
upon start. This is referred to as pre-process, which also deals with detection of
invalid operations and inputs.

In addition, the control steps for the normalization, rounding and �nal exception
checking is not included. These steps are referred to as post-process. Normalization
is discussed in Ch.3.8, rounding is discussed in Ch.2.3 and 3.9.

Finally, the sequence of control signals that generate the mentioned behavior must
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Table 3.13: Floating-Point Multiplication - Control Signals

Name Bit Width Default Description
maskAndShiftOp 2 00
mulEnable 1 0 Enable multiplier?
shiftAndExtendOp 2 00 Chooses how to shift and zero-extend

the multiplier output
srfWriteSelectR0 1 0 Muxes between the ALU result and the

input port
srfWriteSelectR1 1 0 Muxes between the ALU result and the

input port
srfWriteEnableR0 1 0 Enable write to s.R0?
srfWriteEnableR1 1 0 Enable write to s.R1?
srfReadSelectA 3 000 Chooses which register to output on

port A
srfReadSelectB 3 001 Chooses which register to output on

port B
sigAluRegOrMul 1 0 Muxes between an extended partial

product and register �le, port A
sigAluOp 4 0000 Signi�cand ALU OpCode
srrWriteEnable 1 0 Enable write to the signi�cand result

register?
erfWriteSelectR0 1 0 Muxes between the ALU result and the

input port
erfWriteSelectR1 1 0 Muxes between the ALU result and the

input port
erfWriteEnableR0 1 0 Enable write to e.R0?
erfWriteEnableR1 1 0 Enable write to e.R1?
erfReadSelectA 3 000 Chooses which register to output on

port A
erfReadSelectB 3 001 Chooses which register to output on

port B
expAluOp 3 000 Exponent ALU OpCode
errWriteEnable 1 0 Enable write to the exponent result reg-

ister?

be speci�ed. Table 3.14 lists all states relevant to this operation, and speci�es the
control signals in each state. To make the table more readable, only values that
di�er from their default values are listed. Thus, this table should be compared
with tab.3.13 for a complete understanding of which control signals are set to what
value, in a given state.

3.3.4 Exceptions

The �oating-point multiplication can trigger several exceptions, a notable example
is the multiplication between zero and in�nity.
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Table 3.14: Floating-Point Multiplication - State Speci�cation

Signal Value
State: M1

maskAndShiftOp MASK_AND_SHIFT_A8C8
mulEnable 1
erfWriteEnableR0 1
expAluOp ADD

State: M2
maskAndShiftOp MASK_AND_SHIFT_A8D16
mulEnable 1
sigAluRegOrMul 1
erfWriteEnableR0 1
erfReadSelectB 110
expAluOp SUB

State: M3
maskAndShiftOp MASK_AND_SHIFT_B16C8
mulEnable 1
srfWriteEnableR0 1
sigAluRegOrMul 1
sigAluOp MOVA

State: M4
maskAndShiftOp MASK_AND_SHIFT_B16D16
mulEnable 1
shiftAndExtendOp SHIFT_0_BIT_AND_EXTEND
srfWriteEnableR0 1
srfReadSelectB 000
sigAluRegOrMul 1
sigAluOp ADD

State: M5
mulEnable 1
shiftAndExtendOp SHIFT_0_BIT_AND_EXTEND
srfWriteEnableR0 1
srfReadSelectB 000
sigAluRegOrMul 1
sigAluOp ADD

State: M6
mulEnable 1
shiftAndExtendOp SHIFT_TRUNC_AND_EXTEND
srfWriteEnableR0 1
srfReadSelectB 000
sigAluRegOrMul 1
sigAluOp ADD
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Table 3.15 lists all the exceptions that may be caused by this operation. Note that
some exceptional cases �such as operations on a NaN �are shared among all
�oating-point operations. These cases were discussed in Ch.2.3.6. Please refer to
Ch.3.10 for more details on the actual implementation of the exception handling.

Table 3.15: Floating-Point Multiplication - Exceptions

Exception Cause "Init-Time"?
Invalid operation ±0×∞ or ∞×±0 Yes

Inexact Fraction before rounding di�ers from
fraction after rounding

No

Over�ow Result too large to be represented No
Under�ow Result too small to be represented No
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EA > EB?

EL = EA

ES = EB

FL = FA

FS = FB

EL = EB

ES = EA

FL = FB

FS = FA

Yes No

diff = EL – ES

FS >>diff

FO = FL ± FS

EO = EL

Pre-Process

Post-Process

Figure 3.12: Floating-Point Addition/Subtraction Algorithm

3.4 Floating-Point Addition and Subtraction

The �oating-point addition and subtraction are two closely related operations,
at least in the case of signed operands. Hence, they will be both discussed and
implemented together even though they are assigned unique op-codes in the FPU
design.

3.4.1 Algorithm and Design Considerations

The addition and subtraction operations are far more complex than the multipli-
cation operation, at least in terms of control. This is mainly due to the necessary
adjustment of the input exponents, as well as several conditional operations present
in the control path.

Figure 3.12 shows the algorithm for �oating-point addition and subtraction. The
�gure is adapted from [5].

The algorithm can be summarized in the following steps:
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Table 3.16: E�ective Addition or E�ective Subtraction
Operation Sign(A) Sign(B) E�ective Operation
Add + + A+B
Add + - A-B
Add - + -A+B
Add - - -A-B
Sub + + A-B
Sub + - A+B
Sub - + -A-B
Sub - - -A+B

1. Subtract the input exponents, in order to compare them

2. Right-shift the signi�cand that belongs to the smallest exponent, by the ab-
solute exponent di�erence

3. Add or subtract the two operands

4. Negate the sum generated in the previous step, if it yielded a negative result

5. Keep the largest exponent as the result exponent

6. Normalize and round the result. This is more complex than in the multipli-
cation case, as the number of leading zeros in the result is harder to predict

Please refer to [11] and [5] for more details on the algorithm.

An important implementation consideration is the concept of e�ective addition
and e�ective subtraction. As we are dealing with signed operands, it is necessary
to determine which operation is actually going to be performed. This is further
complicated by the fact that the standard requires both input and output values
to be represented as sign-magnitude instead of two's compliment notation.

Table 3.16 shows the possible combinations of operations and operand signs, and
the corresponding e�ective operation. The determination of the e�ective operation
can be performed according to Fig.3.13. These �gures show that a negation of
at least one operand is required, in order to perform all possible combinations of
operations. This introduces a problem � namely the concept of negative numbers
� which was not present in the �oating-point multiplication operation.

One possible way of dealing with e�ective subtraction is to sort the operands, and
always subtract the smaller operand from the larger one. This will always yield a
positive result, and the sign can be kept track of in the control unit. One problem
with this approach is that the magnitude of the signi�cands will be a�ected by
the exponents, due to the pre-adjustment mentioned previously. This means that
the comparison of the signi�cands must be delayed until this adjustment has been
performed, thus prolonging the execution time of the entire operation.
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Add?

A ≥ 0 A ≥ 0

B ≥ 0 B ≥ 0 B ≥ 0B ≥ 0

A+B A-B -A+B -A-B A-B A+B -A-B -A+B

yes

noyes

yes no yes no yes no

no

noyes

yes no

Figure 3.13: Determination of the E�ective Operation

Another approach is to negate one of more of the operands, by converting it into
a negative number in two's compliment notation. The addition or subtraction can
then be performed directly, yielding a result in two's compliment notation. The
result must then be converted back into sign-magnitude representation, if it is to
conform with the IEEE-754 representation format.

From Fig.3.13, it it clear that all possible combinations can be performed by negat-
ing at most one operand. For instance, −A−B can be performed by negating A,
then subtracting B from the result. As the signi�cand operations are dependent
on the exponent operations, there are several free time slots available for negating
one of the operands, without using more cycles in total. Hence, this approach will
be chosen: signi�cand FA will be negated if necessary, while the eventual negation
of FB will be handled by the subtraction operation in the signi�cand ALU.

3.4.2 Organization

Figure 3.14 shows the proposed architecture for the two operations. It is very sim-
ilar to the proposed architecture for performing �oating-point multiplication that
was given in Fig.3.9, page 25. Notable di�erences are the absence of the external
multiplier interface, as well as the newly introduced connections between the two
ALU result registers and the ALUs themselves. The new data connections need
some explanation: as the algorithm requires one of the signi�cands to be shifted
by the absolute di�erence between the input exponents, the exponent subtraction
result must be relayed to the signi�cand ALU in order to use it as a shift amount.
In a similar fashion, the output of the signi�cand ALU's count leading zeros op-
eration must be available to the exponent ALU, in order to perform a generic
normalization. See ch.3.8 and Ch.2.2 for details on this.

All of the storage elements are identical to the ones introduced in the previous sec-
tion. The ALUs, however, are slightly more complicated. Unlike the multiplication
case, the ALUs now need to incorporate generic shift operations. This is required
for both adjustment of input as well as normalization of the result. In order to
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Figure 3.14: Floating-point Addition/Subtraction - Architecture

function correctly, the right-shift used to adjust one of the signi�cands must be
an arithmetic shift, due to the fact that we may negate the signi�cand before it is
shifted.

Another new feature of the ALUs is the negation operation. This operation per-
forms a two's compliment negation (inverting all the bits and adding one) on one
of the operands. The operation is used both to �nd the absolute value of the dif-
ference between the input exponents, as well as negating certain operands in the
case of signed addition or subtraction. This was elaborated in the previous section.
Negating a number is functionally similar to a subtraction, which is performed by
adding a negated operand. To save hardware resources, the negation operation can
only be performed on ALU operand B. This allows sharing of resources between
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the subtraction and the negation operation.

3.4.3 Scheduling and Control

Data�ow

The abstract �owchart given in Fig.3.12 can be �tted to the given architecture,
the result is shown in Fig.3.15. Only the arithmetic stage of the operation is
presented, pre-processing and post-processing is discussed separately. Note how

Diff = EA - EB

Diff < 0?

Diff = -Diff

FA >> Diff

...

FB >> Diff

FO = EA ± EB

FO < 0?

SO = -
FO = -FO

SO = +

Pre-Process

Post-Process

Figure 3.15: Floating-point Addition/Subtraction Algorithm - Fitted to the Pro-
posed Architecture

the comparison of the two exponents is performed as a subtraction, followed by a
sign test. The swapping of operands is omitted, by splitting the control �ow into
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two separate paths, this is more �exible than moving data around in a register-
constrained environment.

Based on the architecture-�tted representation of the algorithm, we can derive the
data�ow graph for the operation. To keep the DFGs unconditional, two versions
are given in Fig.3.16; one shows the case where EA ≥ EB , the other shows the case
where EA < EB .

-

>>

±

abs(...)

EA EB

FB

FA

-

>>

±

abs(...)

EA EB

FA

FB

×

-1

EA ≥ EB EA < EB

Figure 3.16: Floating-Point Addition/Subtraction - Unconditional DFGs

Functional Unit Binding

The functional unit binding is fairly simple: operations on the signi�cand will
be performed in the signi�cand ALU, while operations on the exponent will be
performed by the exponent ALU. Up to three negation operations are required
during the execution: one negation of FA, one negation of EA−EB and �nally the
negation of FA ± FB . These negations are conditional, and will be controlled by
the control unit. In order to keep the data�ow consistent between di�erent control
paths, empty nodes or NOPs have been inserted in the cases where no negation is
needed. This might slow the operation down a cycle or two in a some cases. Thus,
it is a good place to start of optimization of the architecture is required.
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Scheduling

Table 3.17 and 3.18 shows which operation is performed by which functional unit
in a given cycle. Note that a few cycles are being wasted, especially cycle 2 in the
case where EA ≥ EB .

Table 3.17: Floating-Point Addition/Subtraction - Schedule (EA ≥ EB)
Cycle Signi�cand ALU Exponent ALU

1 neg(FA)? EA − EB

2
3 FB >> (EA − EB)
4 FA ± FB

5 neg(FA ± FB)? (EA − EB) + 1

Table 3.18: Floating-Point Addition/Subtraction - Schedule (EA < EB)
Cycle Signi�cand ALU Exponent ALU

1 neg(FA)? EA − EB

2 neg(EA − EB)
3 FA >> (EA − EB)
4 FA ± FB

5 neg(FA ± FB)? (EA − EB) + 1

Register Allocation

Just as for multiplication, the register allocation is quite simple. Most of the
operations read two operands from the corresponding register �le, and overwrites
one of there registers with the new result. A notable exception is the case of results
that must be transmitted to the signi�cand pipeline from the exponent pipeline,
and vice versa. Due to the way these two pipelines are interconnected, the result
must be written to the corresponding result register, in order for it to be accessible
from the other pipeline. See Fig.3.14 for an illustration of this interconnection.

As the pre-adjustment of the input operands requires di�erent updates of data, the
registers transfers will be di�erent as well. The di�erence is illustrated in Tab.3.19
and Tab.3.20, which show the register contents after a given cycle. diff denotes
the expression EA − EB , while sum denotes the summation between the shifted
and the unshifted signi�cand.

Control

Based on the scheduling of the operation, along with the register allocation, the
control path of the addition and subtraction operations can be implemented ac-
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Table 3.19: Floating-Point Add/Sub - Internal Register Values (EA ≥ EB)

Cycle sig.R0 sig.R1 sig.
result

exp.R0 exp.R1 exp.
result

0 FA FB 0 EA EB 0
1 ±FA - - - diff 0
2 - - - - - diff
3 - FB >> diff - - - -
4 ±FA ± (FB >> diff) - - - - -
5 - - ±sum - - EA

Table 3.20: Floating-Point Add/Sub - Internal Register Values (EA < EB)

Cycle sig.R0 sig.R1 sig.
result

exp.R0 exp.R1 exp.
result

0 FA FB 0 EA EB 0
1 ±FA - - diff - 0
2 - - - - - diff
3 FA >> diff - - - - -
4 (±(FA >> diff)± FB - - - - -
5 - - ±sum - - EB

cording to Fig.3.17. The state chart includes two conditional transitions, the �rst
is governed the sign bit of the exponent di�erence, the latter is determined by the
sign of the e�ective addition or subtraction. As mentioned, some combinations of
operation and input signs will require FA to be negated, into a two's compliment
representation. This is determined by the sign of the inputs, and the actual opcode.
Thus, this operation will not require a separate state, but rather be performed in
EXP_SUB.

The conversion of a negative addition or subtraction, however, requires a branch
in the state machine, as the actual operation is determined by the sign bit in
the previous state, which is not preserved across clock boundaries. This is the
motivation behind the states SUM_NEG and SUM_POS. In these two states, the
control unit will set the sign of the �nal result, which is stored inside of the control
unit itself.

Table 3.21 lists all the relevant control signals that are present in the �oating-point
addition/subtraction architecture.

Table 3.22 lists all states included in the arithmetic stage of the �oating-point
addition or subtraction. Again, only control signal values that di�er from their
default value are speci�ed.
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Pre-Process

Post-Process

Figure 3.17: Floating-Point Addition/Subtraction Control Flow/State Chart

3.4.4 Exceptions

Like the other operations, addition and subtraction may lead to several exceptional
cases. These are highlighted in tab.3.23.
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Table 3.21: Floating-Point Add/Sub - Control Signals
Signal Bit Width Default Description

srfWriteSelectR0 1 0 Muxes between new input and the sig-
ni�cand ALU result

srfWriteSelectR1 1 0 Muxes between new input and the sig-
ni�cand ALU result

srfWriteEnableR0 1 0 Update signi�cand register R0?
srfWriteEnableR1 1 0 Update signi�cand register R1?
srfReadSelectA 4 0000 Chooses which value to output on sig-

ni�cand register �le read port A
srfReadSelectB 4 0001 Chooses which value to output on srf

read port B
sigAluRegOrExpResult 1 0 Forward SRF read port B, or the ERR

value to the signi�cand ALU?
sigAluOp 4 0000 Signi�cand ALU OpCode
srrWriteEnable 1 0 Update the signi�cand result register

(SRR)?
erfWriteSelectR0 1 0 Muxes between new input and the ex-

ponent ALU result
erfWriteSelectR1 1 0 Muxes between new input and the ex-

ponent ALU result
erfWriteEnableR0 1 0 Update exponent register R0?
erfWriteEnableR1 1 0 Update exponent register R1?
erfReadSelectA 3 000 Chooses which value to output on ex-

ponent register �le read port A
erfReadSelectB 3 001 Chooses which value to output on ex-

ponent register �le read port B
expAluRegOrSigResult 1 0 Forward SRF read port B, or the SRR

value to the signi�cand ALU?
expAluOp 3 000 Exponent ALU OpCode
errWriteEnable 1 0 Update the exponent result register

(ERR)?
resultReady 1 0 Flag that a result is ready, and the unit

is ready for a new operation
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Table 3.22: Floating-Point Add/Sub - State Speci�cation
Signal Value

EXP_SUB
erfWriteEnableR0 (EA − EB) > 0
srfReadSelectB 0
sigAluOp NOP/NEGB
srfWriteEnableR0 1 / 0
srfWriteEnableR1 0 / 1

DIFF_NEG
erfReadSelectB 0000
expAluOp NEGB
errWriteEnable 1

DIFF_POS
erfReadSelectA 0001
expAluOp MOVA
errWriteEnable 1

SHIFT_FRAC_A
erfReadSelectA 001
expAluOp MOVA
erfWriteEnableR0 1
srfReadSelectA 0000
sigAluRegOrExpResult 1
sigAluOp SHRA
srfWriteEnableR0 1

SHIFT_FRAC_B
srfReadSelectA 0001
sigAluRegOrExpResult 1
sigAluOp SHRA
srfWriteEnableR0 1

ADDSUB_FRACS
sigAluOp ADD/SUB
srfWriteEnableR0 1

SUM_POS
- -

SUM_NEG
srfReadSelectB 0000
sigAluOp NEGB
srfWriteEnableR0 1
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Table 3.23: Floating-Point Addition/Subtraction - Exceptions

Exception Cause "Init-Time"?
Invalid operation +∞ + −∞, −∞ + +∞,

+∞−+∞ or −∞−−∞
Yes

Inexact Fraction before rounding
di�ers from fraction after
rounding

No

Over�ow Result too large to be rep-
resented

No

Under�ow Result too small to be rep-
resented

No
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3.5 Floating-Point Division

The division operation is, along with the square root operation, slightly di�erent
from the other operations. The main reason for this is that is relies on a sequential,
bit-serial algorithm to produce the �nal result. This will have some impacts on the
organization of the design.

3.5.1 Algorithm and Design Considerations

The basic algorithm behind �oating-point division is fairly simple:

1. The inputs are read into their respective registers

2. bias is added to EA

3. EB is subtracted from EA + bias, in order to produce the �nal exponent

4. The signifcand division is performed by a suitable algorithm

5. The result is normalized and rounded

The challenge is to perform the signi�cand division itself, the treatment of the
exponent is trivial.

A variety of division algorithms were discussed in the preliminary project [5]. The
project concluded that a sequential, bit-serial algorithm is most suited for this
design. Such an approach will result in a low hardware-cost, at the expense of
execution speed. Two such algorithms were presented, namely the restoring division
algorithm and the non-restoring division algorithm [11].

Both of these algorithms generate n bits of precision in n iterations. The former is
very straight-forward, and generated a usable answer immediately. However, the
algorithm has some conditional execution issues, which may cause it to consume
two cycles per iteration This issue can be solved by implementing the non-restoring
division scheme instead, however the answer produced must be corrected and a few
special cases must be dealt with. See [5] for details.

To avoid the disadvantages of these two algorithms, a compromise is proposed:
the division is performed according to the restoring division scheme. However, the
partial remainder is NOT updated when a trial-subtraction results in a negative
value, thus eliminating the need for a separate correction step. It is important to
note that the left-shifting of the partial remainder still must take place, in order to
produce the correct result. This suggests that the left-shift of the partial remainder
must be performed inside the register itself, not as a part of the datapath between
the registers output and input.
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This approach has two potential pitfalls: First, it introduces a slightly more com-
plicated control unit. However, the control unit of this design is already quite
complex, so the di�erence should be negligible. Secondly, the area usage of a reg-
ister that allows in-place left-shifting may be larger than a corresponding left-shift
performed by suitable wiring between the register and the ALU.

To conclude, this hybrid approach gives a execution time lower than the non-
restoring division, as well as being easier to implement and debug. The potential
pitfall is that the area consumption may be higher. If this is indeed the case, a
non-restoring implementation is to be preferred, as concluded in [5].

In general, a sequential division algorithm requires three storage elements: the
temporary remainder, the divisor and the partial quotient. This corresponds well
with the existing architecture, as the current design indeed features two input
registers and a result register. A typical division architecture is given in [13], upon
which the solution in the preceding report was based.

As mentioned, this operation introduces the need for shift registers in the design.
Since the algorithm itself requires that the numerator is left-shifted relative to the
denominator, we must be able to left-shift this value. This could be performed
by utilizing the existing shift-capabilities of the signi�cand ALU, however this will
result in a structural hazard, forcing the execution time to be twice as long; the
ALU is already assigned a subtraction operation per iteration. Thus, this must be
solved by adding shift capabilities to one of the registers in the signi�cand register
�le, namely R0.

A similar problem arises when we look at the way the answer is generated. A
new result bit is determined each clock cycle, namely the digit to the right of
the one generated in the previous cycle. Again, this suggests adding shift-register
capabilities to the signi�cand result register, which allows a new result bit to be
shifted into its LSB.

The �nal issue with the implementation is the normalization and rounding of the
signi�cand. The former operation is rather simple to perform by utilizing the
shift-capabilities of the result register, however the rounding operation requires
the result to pass through the ALU (see Ch.3.9 for details on this). Thus, it is
necessary to introduce a feedback from the signi�cand result register output, back
to the signi�cand ALU input.

3.5.2 Organization

The resulting architecture for performing �oating-point division is shown in �g.3.18.
The organization is mostly similar to the one presented in the previous sections,
with a few notable exceptions: most important is the introduction of a bus from
the signi�cand result register, back to one of the inputs of the signi�cand ALU. As
mentioned, this is done to accommodate rounding and normalization in accordance
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Figure 3.18: Floating-Point Division Architecture

with the other operations.

Note the introduction of shift capabilities of both the signi�cand result register
and signi�cand register R0. These will perform necessary updates of the various
operands, during the execution of the sequential algorithm. Thus, this functionality
can also be utilized for other algorithms with functional similarities, such as square
root extraction.

Similar to the multiplication operation, there is no exchange of data between the
signi�cand pipeline and the exponent pipeline. The only communication between
them is through the shared control unit.
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Figure 3.19: Floating-Point Division DFG

3.5.3 Scheduling and Control

Data�ow

The data�ow of the �oating-point division operation is relatively simple. The
exponent treatment is more or less identical to the one for multiplication, except
that the input exponents are subtracted instead of added together. This also
introduces a slight change in the biasing of the result.

As the signi�cand calculation consists of iterating a certain operation many times,
this is fairly simple to control as well.

Figure 3.19 shows the top-level DFG of the division operation. Again, pre-processing
and post-processing are dealt with in a separate section.

Functional Unit Binding

The majority of this algorithm is based on an iterative approach, hence the func-
tional unit binding is relatively simple. The treatment of the exponent is very
similar to the multiplication case, while the signi�cand is centered around the sig-
ni�cand ALU and the attached registers.

Scheduling

Table 3.24 shows the scheduling of the operations. Note how most of the steps
are spent dealing with the signi�cand division. The left-shift of the numerator is
performed inside its register, hence it is not included in this table of functional unit
operations.



3.5. FLOATING-POINT DIVISION 47

Table 3.24: Floating-Point Division - Schedule

Cycle Signi�cand ALU Exponent ALU
1 srf.R0− srf.R1 EA + bias
2 srf.R0− srf.R1 (EA + bias)− EB

3→26 srf.R0− srf.R1 -

Register Allocation

Just like the functional unit binding, the register allocation is simple and fairly
regular. Table 3.25 shows the details.

Table 3.25: Floating-Point Division - Internal Register Values

Cycle sig.R0 sig.R1 sig.result exp.R0 exp.R1 exp.result
0 Tmp.Rem. Denom. Tmp.Quotient EA EB 0
1 Tmp.Rem. Denom. Tmp.Quotient EA + bias EB 0
2 Tmp.Rem. Denom. Tmp.Quotient (EA + bias)− EB EB 0

3→26 Tmp.Rem. Denom. Tmp.Quotient (EA + bias)− EB EB 0

Control

The control path of the division operation is the simplest yet: the �rst two steps
will require some operations on the exponents, but most of the control steps will
only issue subtraction operations to the signi�cand ALU, and determine the update
of the temporary remainder based on the corresponding sign �ag. The control �ow
will be governed by an iteration counter, causing the normalization stage to be
invoked after the correct number of iterations. Note that the division algorithm
requires a slightly di�erent approach to normalization, as the result bits are located
all the way to the right in the register, unlike the previous operations. More details
on this can be found in Ch.3.8.

Table 3.26 lists all control signals that are relevant to this operation. Again, this is
fairly similar to the preceding operations, however the inclusion of shift capabilities
in some registers have caused some new control signals to be added.

Figure 3.20 shows the state chart that will control the division operation.

3.5.4 Relevant Exceptions

Table 3.28 lists the relevant exceptions for the �oating-point division operation.
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Table 3.26: Floating-Point Division - Control Signals
Signal Bit Width Default Description

srfWriteSelectR0 1 0 Muxes between new input and the sig-
ni�cand ALU result

srfWriteSelectR1 1 0 Muxes between new input and the sig-
ni�cand ALU result

srfWriteEnableR0 1 0 Update signi�cand register R0?
srfWriteEnableR1 1 0 Update signi�cand register R1?
srfShiftEnableR0 1 0 Shift signi�cand register one digit to the

left?
srfReadSelectA 4 0000 Chooses which value to output on sig-

ni�cand register �le read port A
srfReadSelectB 4 0001 Chooses which value to output on srf

read port B
sigAluRegOrMul 1 0 Forward srf read port A, or the multi-

plier output to the ALU?
sigAluSrr 1 0 Forward the result of the decision on

the line above, or the SRR value to the
signi�cand ALU?

sigAluOp 4 0000 Signi�cand ALU OpCode
srrWriteEnable 1 0 Update the signi�cand result register

(SRR)?
srrShiftEnable 1 0 Shift the signi�cand result register one

digit to the left?
erfWriteSelectR0 1 0 Muxes between new input and the ex-

ponent ALU result
erfWriteSelectR1 1 0 Muxes between new input and the ex-

ponent ALU result
erfWriteEnableR0 1 0 Update exponent register R0?
erfWriteEnableR1 1 0 Update exponent register R1?
erfReadSelectA 3 000 Chooses which value to output on ex-

ponent register �le read port A
erfReadSelectB 3 001 Chooses which value to output on ex-

ponent register �le read port B
expAluOp 3 000 Exponent ALU OpCode
errWriteEnable 1 0 Update the exponent result register

(ERR)?
resultReady 1 0 Flag that a result is ready, and the unit

is ready for a new operation
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Figure 3.20: Floating-Point Division Control Flow/State Chart

Table 3.27: Floating-Point Division - State Speci�cation
Signal Value

State: ADD_BIAS
erfReadSelectB ERF_REG_BIAS

expAluOp ADD
erfWriteEnableR0 1
srfShiftEnableR0 1

sigAluOp SUB
srfWriteEnableR0 1

srrShiftEnable 1
State: SUB_EXP

expAluOp SUB
erfWriteEnableR0 1
srfShiftEnableR0 1

sigAluOp SUB
srfWriteEnableR0 1

srrShiftEnable 1
State: DIV_ITER

srfShiftEnableR0 1
sigAluOp SUB

srfWriteEnableR0 1
srrShiftEnable 1
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Table 3.28: Floating-Point Division - Exceptions

Exception Cause "Init-Time"?
Invalid operation ±∞/±∞ Yes
Invalid operation ±0/± 0 Yes
Division by Zero Any value other than ±∞

divided by ±0
Yes

Inexact Fraction before rounding
di�ers from fraction after
rounding

No

Over�ow Result too large to be rep-
resented

No

Under�ow Result too small to be rep-
resented

No
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3.6 Square Root

Due to insu�cient time, the square root operation has not been implemented into
this design. Hence, this chapter will not be able to provide a detailed overview of
the implementation and speci�cation of �oating-point square root. However, some
pointers and ideas on how to include this functionality into the existing architecture
will be presented.

3.6.1 Algorithm and Design Considerations

This section assumes that the reader is familiar with digital square root extraction.
For more information on this topic, please refer to [5] and [11]. As concluded in
the preliminary report, the square root operation features an exponent treatment
that is somewhat similar to the addition/subtraction case, as well as a signi�cand
calculation that resembles the one found in the division operation.

Mathematically speaking, the exponent calculation involves dividing the input ex-
ponent by two. In a digital system this can be achieved by right-shifting the input
exponent. This is only valid in the case where the input exponent is an even num-
ber, thus it might be necessary to adjust the exponent/signi�cand pair prior to
this operation; by right-shifting the signi�cand by one digit while incrementing the
exponent, the input is in the proper format.

The signi�cand calculation is more complicated. According to [11], digital division
can be regarded as division with a variable denominator. Thus, the challenge is to
perform the necessary operations on the expression that will act as the denominator.

If we assume a restoring division scheme, the expression to subtract from the partial
remainder simply consists of the partial quotient, with the digits 01 appended at
the right end. In addition to this, the concatenation of quotient and 01 must be
properly shifted according to the temporary remainder. This does not �t well
with the way the quotient is currently being generated (see Ch.3.5 for details on
this), as the quotient-constant pair will require a variable left-shift before they are
subtracted from the temporary remainder.

A possible solution, that will introduce very little hardware resources, is to feed
the temporary quotient back from the signi�cand result register, feed it through
the signi�cand ALU, and perform a shift-operation. Then, the shifted expression
is written to signi�cand register R1. In the next cycle, the temporary remainder �
which is assumed to reside in signi�cand register R0 � is forwarded to the ALU,
and the previously generated expression is subtracted from it. Then, the updated
temporary quotient is fed back, 01 is appended and the expression is left-shifted.
The sequence of operations is iterated, generating a quotient bit every other cycle.

Figure 3.21 illustrates the data �ow during the signi�cand square root extraction.
Alternating cycles is spent updating the subtrahend by appending and shifting



52 CHAPTER 3. DESIGN AND SPECIFICATION

sigALU

sigResultReg

R0 R1

Append 

01

downcounter

sigALU

sigResultReg

Shift left subtract

Even iterations Odd iterations

R0 R1

Figure 3.21: Floating-Point Square Root Extraction: Proposed Architecture (Ab-
stract)

the temporary quotient (even cycles), and reducing the temporary remainder by
subtraction (odd cycles). As for division, a negative subtraction result yields a 0
in the quotient, while a positive subtraction result yields a 1 in the quotient.

To summarize, this approach allows the current architecture to be left almost un-
modi�ed, while still being able to perform the square root extraction. The dis-
advantage of the method is that is consumes twice the amount of clock cycles,
compared to a more specialized architecture. If square root performance is impor-
tant, there are a few alternatives: one is to add generic shift logic into the datapath,
between the temporary quotient and the signi�cand ALU. This will most likely in-
crease the critical path, as well as increase the hardware consumption of the entire
design. Another possibility is to create a more specialized architecture, a good
starting point is the design presented in [14].

3.6.2 Relevant Exceptions

Table 3.29 lists exceptions that are relevant to the �oating-point square root oper-
ation.
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Table 3.29: Floating-Point Square Root - Exceptions

Exception Cause "Init-Time"?
Invalid operation Input is less than −0 Yes

Inexact Fraction before rounding di�ers from
fraction after rounding

No
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3.7 Conversion Operations

A �oating-point unit in an embedded system context would be pretty much useless
without the means to convert between integer and �oating-point formats; after all
most data acquisition is performed as integer values read from an ADC, coe�cients
may arrive in the form of �xed-point numbers and so on. Hence, it is crucial to be
able to convert these numbers to a �oating-point representation before the relevant
calculations are performed, and back again afterwards.

As stated in [5], the standard requires the implementation to be able to convert
between all supported integer formats, and all supported �oating-point formats.
This project only aims to implement single-precision numbers, however the list
of supported integer formats is harder to de�ne. In general, a microcontroller
has a narrow data width, but is able to operate on larger operands by splitting
calculations into multiple passes. Thus, a microcontroller that is programmed
using C may easily support integers of widths such as 64 and 128 bits.

However, as the size of both input and output ports of the �oating-point unit is
speci�ed as 32 bits, we will focus on integers of 32 bit word size. This is enough
to convert the output of most data converters, which typically produce a result of
10 to 14 bits [2]. Any integer smaller than 32 bit can be sign extended in order
to make it conform to the format expected by the FPU. Thus, any microcontroller
with a native data with less than or equal to 32 will be compatible with this choice.

The conversion operations will be discussed in a single section of this report. The
motivation behind this is as follows: the operations share many common aspects (in
fact they can be viewed as inverse operations), and they can be performed by the
same functional units. In addition, no additional architectural features is required,
in addition to those already presented. Thus, only control logic needs to be added
in order to support the various conversion operations.

3.7.1 Overview

Floating-Point to Integer

Converting a �oating-point number into an integer involves several obstacles. First,
the value of the number must be rounded to an integer-valued number. Next, the
range of the number must be taken into consideration: �oating-point numbers may
have a numeric value that is far greater than what can be represented by the use
of an integer representation, even though their word lengths are equal.

To further complicate things, several �oating-point values have no logical repre-
sentation as integers, namely the in�nity and NaN representations. These cases
should trigger the invalid operation exception. The sign of 0 will be ignored when
converting to integer.
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To summarize, there are three cases:

1. Convertible values

2. Non-convertible values, due to range

3. Non-convertible values, due to special representation values

Let's discuss the general case �rst: If we interpret the a �oating-point value as the n-
bit signi�cand sequence 20+2−1+2−2+. . .+2−n×2E where E is the true, unbiased
exponent, the actual value of the signi�cand is 2N−0 +2N−1 +2N−2 + . . .+2N−n.
The purpose of the conversion is to remove any digits that correspond to a weight
of less than 0, in other words chop o� any digits where N − i is less than zero (i
denotes the position of a given digit in the sequence).

Assuming normalized fractions, we know that the weight of the �rst digit is always
20 = 1. By placing the input signi�cand to the left in a general-purpose register,
we can remove bits with weights less than 20 by right-shifting the operand. The
number of shifts depends on the true exponent of the input, as well as the size of
the result register. The important thing is to shift the digit with a weight of 20

down in the LSB of the result register.

If the true exponent is too large, it is impossible to convert the value to an integer.
This would cause the result to be too wide for the result register, rendering the
operation impossible. This corresponds to case 2 in the list above, and should
trigger an exception.

A problem with the method described above is that it does not support rounding.
By simply chopping o� bits, we e�ectively truncate the value, causing the �oating-
point number 1.9 to be converted to 1, even when the round towards +∞ mode is
active. This can be solved in the following way:

1. Find the true exponent by un-biasing the input exponent

2. Calculate the true position of the radix point

3. Left-shift the fraction, so that the digits with weights 2−1 and 2−2 is located
in the guard and round locations in the register

4. Perform normal rounding, according to the current rounding-mode. See
Ch.2.3 and Ch.3.9 for details on this

5. After rounding, right-shift the operand, in order to move the LSB of the
integer part into the LSB of the result register

The di�erence from the �rst approach is that we split the right-shift into two parts,
allowing the already present rounding logic to be utilized.
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This might seem a bit confusing, so an example is appropriate: Assume a 8-bit
register con�guration, with the guard and round located in the two lowest bits.
Assume the number 10.75ten = 1010.11two is represented as 1.0101100two × 23tenten .
This exponent is unbiased, so we can skip the �rst step of the algorithm.

The next step is to calculate the true position of the radix point, which can be
calculated as

(radix point position)− (true exponent)

In this case, the expression yields 7−3 = 4. Thus, the actual value is 1010.1100two.

The next part is to right-shift the number, in order to place the proper bits in the
guard and round positions. This corresponds to moving the true radix point to
position two, as the g and r bits are assumed to be located in bit 1 and 0 before
the rounding takes place. Hence, the shift amount is

(true RPP )− (RPP assumed before rounding) = 4ten − 2ten = 2ten

where RPP denotes the radix point position Thus, the register content before
rounding is 001010.11two. This corresponds to a fractional part of .75ten, which
will cause the integer part to be rounded to 1011two in the default rounding mode.

Finally, the properly rounded integer answer can be generated, by right-shifting
the rounded value all the way to the right in the register, in this case two digits.
The �nal answer is 00001011two = 11ten.

It should be noted that since the size of the fraction is restricted to 24 bits, the
lower 8 bits of the input value will always be zero. This allows the rounding part
to be skipped, in cases where the guard and round bits would be zero anyway.

The problem with too large �oating-point values can be detected in the following
manner: If the true exponent is larger than 31, the fraction would have to be left-
shifted in order to represent the true radix point. This is not possible, and implies
that any true exponent value larger than 31 should trigger an exception.

Luckily, the �nal case can be detected already at the input-stage. Special represen-
tation values can be detected in the �rst cycle of the operation, and the appropriate
exception can be triggered without invoking the arithmetic core of this operation.
This is a pure control-unit problem, which will be dealt with along with the other
exception handling.

Integer to Floating-Point

Converting an integer into a �oating-point number is easier than the opposite. A
32 bit integer can not over�ow a single-precision �oating-point value, and no cases
such as in�nity or NaN can arise. It should be noted that due to the limited
size of the signi�cand, integer values which exceeds 24 bits can not be represented
accurately, and the conversion will result in a loss of precision.
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This operation takes a 32 bit integer number, either signed or unsigned, and con-
verts it to a �oating-point number. For example, i2fp(64ten) will yield 64.0ten =
1.0two × 26ten.

It is necessary to distinguish between signed and unsigned operands. The former
will be assumed to have a two's compliment representation. As the �oating-point
result generated by the operation will have a separate sign-bit, the �rst step of
the algorithm is to convert any signed integers to sign-magnitude. The next step
is to �nd the weight of the most signi�cand bit of the operand. For instance,
the integer value 1010two will have a MSB-weight of 23ten = 8ten. The goal is to
reduce this weight to one, by multiplying it with a suitable exponent and adjust
the value accordingly. For example, the integer value 1010two = 10ten can be
represented as 1.010two × 23ten. Note how the latter representation corresponds
with the representation of �oating-point values.

To summarize, a given integer can be converted to a �oating-point value by ex-
tracting the 24 most signi�cant bits of the integer, and calculating the corre-
sponding exponent. This exponent value was derived as (integer word length) −
(number of leadingzeros in operand)+(bias−1) in [5]. A more accurate way of de-
scribing this relation is (radix point position)−(number of leading zeroes in operand)+
bias.

In the example above, the correct exponent would be 31 − 28 + 127 = 130,
which corresponds to an exponent value of 3. The resulting signi�cand would
be 1.00000000000000000000000, leading one included.

Thus, the �nal algorithm is:

1. Convert signed operand to sign-magnitude

2. Count leading zeros of the operand

3. Calculate the corresponding exponent according to the expression above

4. Extract the 24 most signi�cant bits of the input operand, and place them in
the signi�cand

Floating-Point to an Integer-Valued Floating-Point Value

This operation is quite similar to the �oating-point to integer operation, with one
notable exception: instead of right-shifting the rounded intermediate value, it will
be left-shifted back to yield a normalized fraction.

3.7.2 Organization

As mentioned previously, no additional hardware is required for these operations.
Thus, the suggested organization is identical to the one presented in the previous
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section (see �g.3.14 for details).

Important architectural features are:

• The ability to count leading zeros in a signi�cand

• The ability to perform generic left- and right-shifts of a signi�cand

• The ability to increase and decrease the exponent, according to values gen-
erated by the signi�cand ALU

All of these operations were covered in the previous sections, as the conversion oper-
ations share characteristics with the input-adjustment and normalization operation
performed during addition and subtraction.

3.7.3 Control

As the conversion operations introduce no extra functional units, they don't require
any additional control signals either. Thus, the control signal speci�cation given
in the preceding chapters cover the conversion operations as well.

Floating-Point to Integer

In this implementation - due to a lack of time - only the truncate rounding mode
was implemented. Hence, the right-shift of the input signi�cand is performed in
one step, instead of two.

The resulting operations are:

1. Read the input values into the proper registers

2. Calculate the true exponent by subtracting bias, left-align the input signi�-
cand

3. Calculate the necessary shift-amount, by subtracting the true exponent from
the true radix point position (31)

4. Negate the shifted signi�cand if the input sign is high

This behavior can be created with the state sequence illustrated in �g.3.22. The
states are speci�ed in tab.3.30.
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Table 3.30: Integer ↔ Floating-Point Conversion - State Speci�cation
Integer to Floating-Point Floating-Point to Signed Integer

Signal Value Signal Value
TEST_SIGN UNBIAS
sigAluOp MOVA erfReadSelectB 110
NEGATE expAluOp SUB
srfReadSelectB 0000 erfWriteEnableR0 1
sigAluOp NEGB srfReadSelectB 0100
srfWriteEnableR0 1 sigAluOp SHLL
CLZ srfWriteEnableR0 1
sigAluOp CLZ CALC_ADJ
srfWriteEnableR1 1 erfReadSelectA 100
srrWriteEnable 1 erfReadSelectB 001
ADJ1 expAluOp SUB
erfReadSelectA 101 errWriteEnable 1
expAluRegOrSigResult 1 PREROUND_RSH
expAluOp SUB sigAluRegOrExpResult 1
erfWriteEnableR0 1 sigAluOp SHRL
sigAluOp SHLL srfWriteEnableR0 1
srfWriteEnableR0 1 NEGATE
ADJ2 srfReadSelectA 0000
expAluOp MOVA srfReadSelectB 0000
erfWriteEnableR0 1 sigAluOp MOVA/NEGB
srfReadSelectB 0011 srrWriteEnable 1
sigAluOp SHRL
srfWriteEnableR0 1

Integer to Floating-Point

The control steps can be shared among both signed and unsigned integer conver-
sions. The only di�erence is that signed integers must be negated if their numerical
value is negative. This step is unnecessary if we assume the integer to be unsigned,
thus this operation can skip directly to the conversion itself.

The sign-test can be performed by moving the input integer through the signi�cand
ALU, and test the negative status �ag.

Floating-Point to Integer-Valued Floating-Point

This operations has not been implemented, again due to insu�cient time. However,
it shares many characteristics with the �oating-point to integer conversion. Thus,
it can be added to the design with only a small increase in hardware consumption.
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3.7.4 Exceptions

Floating-Point to Integer

The relevant exceptions for conversions between �oating-point values and integers
are listed in Tab.3.31.

Table 3.31: Floating-Point to Integer Conversion - Exceptions

Exception Cause "Init-Time"?
Invalid operation Attempting to convert

any special representation
value to integer

Yes

Inexact Fraction before rounding
di�ers from fraction after
rounding

No

Over�ow Input too large to repre-
sent as integer

No

3.7.5 Integer to Floating-Point

The exceptional cases that may arise when converting an integer to a �oating-point
number is summarized in Tab.3.32.

Table 3.32: Integer to Floating-Point Conversion - Exceptions

Exception Cause "Init-Time"?
Inexact Loss of precision due to �-

nite signi�cand size (input
integer larger than 24 bits)

No
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3.8 Normalization

Normalization of a �oating-point number consists of placing the leading one of the
signi�cand in a given position in the result register, and adjusting the exponent
accordingly.

In general, there are two things that decide how the normalization will act:

1. The radix point position in the actual register

2. The value range of the result to be normalized

After the normalization, the most signi�cant bit of the signi�cand must be located
in a given position. This is required, as the subsequent rounding operation assumes
a speci�ed location.

In this implementation the leading one is assumed to be located in bit 30, counting
from 0. This leaves one bit to the left of the leading one, which is required for
rounding without the risk of losing information through over�ow. See Ch.2.3 for
more information about this. It should be noted that this emphpost-rounding
normalization step is not implemented in the design.

3.8.1 Normalization of Multiplication

The normalization of a multiplication result is easy, as the value to be normalized is
in the range [1.0, 4.0). As stated in Ch.3.3, the radix point position after the accu-
mulation of the partial products is located to the right of the two most signi�cand
bits.

Hence, the register contents will be on the form 2 : 30 (integer:fraction), where the
two most signi�cand bits will be either 01, 10 or 11. To conform with the speci�ed
register content layout, as well as preserving the numerical value of the result, there
are two possible normalization operations:

1. If the signi�cand product is in the range [1.0, 2.0), there is no need for any
normalization

2. If the signi�cand is in the range [2.0, 4.0), the signi�cand must be shifted one
digit to the right, and the exponent increased by one

3.8.2 Normalization of Addition and Subtraction: Generic
Normalization

The normalization of addition and subtraction results are more complex than in
the previous case. The reason for this is that the result can have any number of



3.8. NORMALIZATION 63

leading zeros, and the shift-amount required for normalization must be calculated.
This can be performed in the following manner:

1. The number of leading zeros in the signi�cand result must be counted, while
the exponent value must be incremented by one

2. The required shift-amount must be calculated. With the speci�ed register
content layout, (number of leading zeros)− 1 yields the correct value

3. The signi�cand must be left-shifted by this amount, while the exponent is
decreased by the same amount

This will consume three cycles in the current architecture.

3.8.3 Normalization of Division

Similar to multiplication, the normalization of division can be simpli�ed due to the
constrained range of the result quotient. In this case, the result is in the range
(0.5, 1.99). Thus, the two most signi�cant digits of the quotient result is either 01
or 10.

In contrast to the previous operations, the result of the signi�cand division opera-
tion is right-aligned in the result register. The shift-amount required for normal-
ization depends on the number of digits in the result, 26 in this implementation.

To summarize, there are two possible normalization operations:

1. If the signi�cand product is in the range (0.5, 1.0), the signi�cand result must
be left-shifted by 6 digits, while the exponent is increased by one

2. If the signi�cand product is in the range [1.0, 2.0), the signi�cand result must
be left-shifted by 5 digits, while the exponent is left untouched

It should be noted that this approach can be utilized in the case of �oating-point
square root normalization.

3.8.4 Normalization of Integer-to-Floating-Point

As this operations is based on shifting of the signi�cand, the normalization is in-
cluded in the normal operation. Hence, there is no need for a separate normalization
step here.
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3.9 Rounding

The mathematical theory behind the various rounding operations were described
in Ch.2.3. This section will discuss how to actually implement this behavior.

3.9.1 Overview

The current rounding mode will be chosen by a separate input signal, which requires
the rounding mode to be speci�ed for each individual operation. An alternative
approach is to keep the active rounding mode in a user-writable register, which is
preserved between operations. The latter is probably preferred, as it makes each
�oating-point instruction more compact. This is however a minor implementation
detail.

As the rounding operation takes place after the normalization, it can assume that
the normalized signi�cand is located in the same location for every operation.
Thus, this stage can be shared among all the operations that require rounding of
the result. Just like normalization, the input to this operation will be assumed to
be located in general-purpose register R0, in the corresponding register �le.

As seen in Ch.2.3, the operation required for rounding is either an addition by
0.5ulp, an addition by ulp or no modi�cation of the signi�cand at all. Hence, the
rounding can be implemented as a function in the control unit which decides the
required operation. A problem with rounding is that it may over�ow the input
signi�cand, thus de-normalizing the value. This is a rare case, yet it must be
accounted for. Because of this, it might be necessary to perform a post-rounding
normalization step. This will simply consist of shifting the signi�cand one place to
the right, and increasing the exponent by one.

To make this possible, it is necessary to have an extra bit to the left of the leading
one in the signi�cand register, to allow the value to over�ow without losing any
data. In addition, this allows the need for a post-rounding normalization to be
determined by testing the MSB of the signi�cand register, after rounding.

Thus, the signi�cand register contents before rounding is assumed to be:

01. xxxxxxxxxxxxxxxxxxxxxxx︸ ︷︷ ︸
23bits

g r xxxxx︸ ︷︷ ︸
extra bits

This format must match the output of the preceding normalization operation, see
ch.3.8 for details on this. Note that the last �ve bits will be used for a sticky bit
calculation.
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3.9.2 Generating the Data Required for Rounding

Guard and Round

The Guard and Round bits were de�ned in ch.2.3. They are simply additional bits
of precision, that can be generated in a very simple manner: as the signi�cand reg-
ister size is large enough to contain extra precision, both addition, subtraction and
multiplication operations get this information for free. The bit-serial algorithms of
the division and square root operations simply require two additional iterations, in
order to get the required level of precision.

The Sticky Bit

The sticky bit was also de�ned in Ch.2.3, however it is slightly more complicated
to implement. In general, we must test any bits located to the right of the guard
and round bits, that are discarded during any operation, and see if any of them
are high. If so, the sticky bit is set high, and kept high for the remainder of the
active operation.

There are three places where data is discarded in the suggested architecture:

1. Inside the signi�cand ALU, each time a right-shift is performed

2. In the multiplication chain, in the shift-and-extend unit

3. During the rounding operation itself, as no bits to the right of guard and
round are being considered here

Thus, some comparison logic must be appended to these three places. Luckily, the
comparison itself is fairly simple: we only need to perform a logical or between the
discarded bits.

The �rst case is the most complicated: we need to take the logical or between
the n lowest bits, in the case of an n-bit right-shift. The bits that were shifted
out is or-reduced, and the resulting bit is transmitted to the control unit. This is
currently not implemented in the design, due to insu�cient time.

The two next cases are easier to implement: we only need to extract a �xed amount
of bits from the multiplier output and the signi�cand ALU output, respectively,
and or-reduce them. Note that these sticky bit calculations are only valid in certain
states, hence the update of the sticky-bit register inside the control unit must be
state-dependent. Currently, only the last of these two operations is implemented
in the actual design, again due to a lack of time.
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3.9.3 How to Determine the Rounding Operation

Based on Ch.2.3 and [11], the e�ective rounding operation can be determined
through simple combinatorial operations. The determination of the rounding op-
eration depends on the active rounding mode:

Round-to-zero (truncate)

No rounding operation is required, only truncate the signi�cand to the required
word length.

Round-to-plus-in�nity

If the number is negative, it can just be truncated. This will e�ectively round a
negative value towards +∞. If the number is positive, we add ulp if g, r or s are
high, otherwise we truncate.

Round-to-minus-in�nity

Similar to the previous rounding-mode, apart from the sign. If the number is
positive, we truncate it. If the number is negative, we add ulp in the cases where
g, r or s are high, otherwise we truncate.

Round-to-nearest-even

The e�ective operation is determined according to tab.2.1 on page 9. In most cases
we just truncate the answer, in the remaining cases we add 0.5ulp to the signi�cand
before we truncate to the required word length. Note that this rounding-mode is
not implemented in this design, due to insu�cient time. According to [11], the
addition of 0.5ulp is to be performed if the boolean expression r · (s′+LSB) equals
1.

3.10 Exception Handling

Due to the many special cases that may arise during �oating-point computation
� both numerical and logic � it is important to deal with exceptions. Thank-
fully, most exceptional cases are easy both to detect and treat, given a thorough
speci�cation with respect to the standard.

It should be noted that the �oating-point exception handling was not prioritized
in this project; due to a limited amount of time, the features that contribute to
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hardware consumption and clock cycle usage were prioritized. Since the exception
handling mostly relies on simple tests in the control unit, the arithmetic operations
was given more attention. Thus, not all exceptional cases are handled in the current
implementation, yet it should require little e�ort to extend the design into doing
so.

3.10.1 Summary of Exceptional Cases

Based on Ch.2.3.6 and the preceding design chapters, this section will summarize
the possible exceptional cases.

"Init-Time" Exceptions

These exceptions only rely on the inputs to the FPU, thus they are easy to de-
tect at the init stage. The detection and treatment of these exceptions has been
implemented in the current design.

Invalid Operation Table 3.33 shows the combinations of operation and input
that will trigger an invalid operation exception.

Table 3.33: Invalid Operations

Operation Operand A Operand B
Mul 0 ±∞
Mul ±∞ 0
Add ±∞ ∓∞
Sub ±∞ ±∞
Div 0 0
Div ±∞ ±∞
Sqrt input < −0 -
fp2int NaN -
fp2int ±∞ -

Division by Zero This exception only occurs when the user tries to divide any
number other than zero, by zero.

In�nity Arithmetic Not really an exception, but the treatment of this case is
very similar to exception handling. In the standard, in�nity arithmetic is assumed
to be precise. For instance, +∞+ 3.0 = +∞, with no exceptions triggered. If this
was processed as normal in the arithmetic stage, an over�ow exception would have
occurred. Thus, it is necessary to detect and treat these cases.
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"Run-Time" Exceptions

These exceptions depend on conditions that occur within the arithmetic stage of a
given operation. Hence, it is necessary to include additional logic in order to detect
these, as well as memory elements in order to keep track of which exceptions were
triggered during the execution of the operation. The assertion of status �ags, as
well as generating the correct output, is then performed after the operation itself.

These operations require more careful speci�cation and planning than the "init-
time" exceptions, and have not been implemented in the current design. As men-
tioned, it should be easy to extend the design based on the subsequent section, as
well as information in the standard itself [4].

Inexact This exception is triggered when there is a di�erence between the rounded
and the unrounded result, indicating that there was a loss of precision due to the
�nite length of the representation format. This exception is triggered fairly often,
and is usually ignored. The exception is easy to detect: any time the signi�cand
is modi�ed during the rounding step, this exception shall be triggered. Thus it is
unnecessary to perform any actual signi�cand comparisons, the exception can be
asserted in the corresponding states.

Over�ow This exception is triggered whenever a result is produced that is too
large to represent. For instance, addition of very large numbers may trigger this
exception. It can be detected when a number is impossible to normalize, without
over�owing the exponent. The output from an over�owing operation is a signed
in�nity.

Under�ow Similar to the previous one, except that this occurs whenever a result
is too small to represent. An important aspect here is the treatment of denormal
values; if denormal values are supported (in accordance with the standard), the
under�ow exception is not triggered until the denormal representation range is
exhausted as well. In implementations that does not deal with denormal numbers,
a possible solution is to �ush the result to a signed zero, and trigger the exception.
It might be convenient to include a separate output �ag, that signals that the result
would normally end up in the denormal range.

3.10.2 Implementation Considerations

In general, the implementation must provide two things when it comes to excep-
tions:

1. Signal the Corresponding Status Flags
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Figure 3.24: Output Nodes: Dealing With Output in Exceptional Cases

2. Generate the Correct Output

The �rst task is fairly easy, just forward the results generated by the exception
detection logic within the control unit. The latter, however, is more complicated.
There are several possible outputs from an operation:

• The result generated by the operation

• ±0

• ±∞

• NaN

Any of these possible output values may be produced together with one or more
exception �ags. The actual implementation will generate the correct output, by
reading the required data from constant registers. For instance, an output of +∞
can be generated by reading 11111111 from the exponent register �le and 0 from
the signi�cand register �le.

This will be organized by separating the di�erent output possibilities into separate
nodes in the control graph. Most operations will �nish their execution in the
"normal result" state, while exceptions may cause the control �ow to end up in a
di�erent node, such as "output in�nity". Exceptions that are detected at init-time
will bypass the arithmetic stage, and go directly to the corresponding output node.
The concept is illustrated in Fig.3.24.
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3.11 The Final Design

This section will present the �nal architecture, which is a combination of the dif-
ferent architectures presented in the previous chapters. An overview of what is
included in the design will be given, along with a list of requirements that is not
yet ful�lled.

3.11.1 Organization

The organization is pretty much the union between all the previous architectures,
and included all the functionality required for performing the speci�ed operations.
Figure 3.25 shows a block diagram of the architecture.

The �nal architecture looks less clean than the individual ones, mainly due to the
various multiplexers that are needed to route di�erent pieces data during di�erent
operations.

3.11.2 Control

The control unit is implemented as a simple state machine, with a few internal
registers. The state machine will encapsulate the arithmetic stage control paths
that were described in the previous chapters. Figure 3.26 shows the state diagram
of the �nal control unit. The double-lined nodes symbolize a encapsulated control
path: the node corresponds to a small sub-graph. Please refer to the chapters on
individual operation design for details on the encapsulated states.

The exception handling is controlled according to Ch.3.10.

Table 3.34 shows the speci�cation of all the inter-module control signals present
in the �nal architecture. These values are generated by the control unit, and
forwarded to the respective units. Refer to Fig.3.25 for details on how these signals
are interconnected.
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Table 3.34: Floating-Point Unit - Control Signal Speci�cation
Signal Width Default Description

readFPInput 1 1 Interpret the input as �oating-point or
integer?

maskAndShiftOp 2 00 Determines how to slice and shift the
multiplier input

mulEnable 1 0 Enable multiplier?
shiftAndExtendOp 2 00 Determines how to shift and extend the

multiplier output
srfWriteSelectR0 1 0 Muxes between new input and the sig-

ni�cand ALU result
srfWriteSelectR1 1 0 Muxes between new input and the sig-

ni�cand ALU result
srfWriteEnableR0 1 0 Update signi�cand register R0?
srfWriteEnableR1 1 0 Update signi�cand register R1?
srfShiftEnableR0 1 0 Shift signi�cand register one digit to the

left?
srfReadSelectA 4 0000 Chooses which value to output on sig-

ni�cand register �le read port A
srfReadSelectB 4 0001 Chooses which value to output on srf

read port B
sigAluRegOrMul 1 0 Forward srf read port A, or the multi-

plier output to the ALU?
sigAluSrr 1 0 Forward the result of the decision on

the line above, or the SRR value to the
signi�cand ALU?

sigAluRegOrExpResult 1 0 Forward SRF read port B, or the ERR
value to the signi�cand ALU?

sigAluOp 4 0000 Signi�cand ALU OpCode
srrWriteEnable 1 0 Update the signi�cand result register

(SRR)?
srrShiftEnable 1 0 Shift the signi�cand result register one

digit to the left?
erfWriteSelectR0 1 0 Muxes between new input and the ex-

ponent ALU result
erfWriteSelectR1 1 0 Muxes between new input and the ex-

ponent ALU result
erfWriteEnableR0 1 0 Update exponent register R0?
erfWriteEnableR1 1 0 Update exponent register R1?
erfReadSelectA 3 000 Chooses which value to output on ex-

ponent register �le read port A
erfReadSelectB 3 001 Chooses which value to output on ex-

ponent register �le read port B
expAluRegOrSigResult 1 0 Forward SRF read port B, or the SRR

value to the signi�cand ALU?
expAluOp 3 000 Exponent ALU OpCode
errWriteEnable 1 0 Update the exponent result register

(ERR)?
outputFPResult 1 1 Generate a �oating-point result, or for-

ward the entire signi�cand result regis-
ter as output?

resultReady 1 0 Flag that a result is ready, and the unit
is ready for a new operation
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Chapter 4

Simulation and Veri�cation

This chapter will feature both functional simulations of the design, as well as some
notes on how the implementation has been veri�ed.

4.1 Simulation

This section will provide several functional simulations of the design. The purpose
of this section is to underline some important aspects of the theory and algorithms
presented in the previous chapters, as well as demonstrating that the implementa-
tion is in accordance with the speci�cation.

4.1.1 Simulation of Functional Units

The functional units that are utilized in the architecture is relatively standard;
arithmetic-logic units and register �les are pretty much "textbook designs"[13].
Still, a few simulations are included, both to demonstrate a few quirks such as the
shifting of signi�cand register R0, and for the sake of completeness.

Register Files

As the register �les utilized in the design share many aspects, only a simulation of
the signi�cand register �le is shown here (Fig.4.1).

1. The input values are written to internal register R0 and R1

2. Register R0 is shifted one digit to the left

75
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Figure 4.1: Signi�cand Register File

3. The read select signals choose constant register zero and one, which are
transmitted to the output ports

Arithmetic-Logic Units

The arithmetic-logic units featured in the design are mostly similar to each other,
the only major di�erence is the native word size, and the fact that some operations
has been left out of the exponent ALU. Due to the similarities, only a simulation
run of the signi�cand ALU is given here (Fig.4.2).

Figure 4.2: Signi�cand ALU

1. Addition

2. Subtraction
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3. Right-shifts: arithmetic and logic

4. Left-shift

5. Count-leading zeros

4.1.2 Simulation of Individual Operations

This section will show several simulations of individual operations. The purpose of
this is to illustrate the manner of operation for the included instructions, as well
as demonstrate that the design is indeed implemented according to the given algo-
rithms. Hence, this chapter should be studied along with the design considerations
presented in Ch.3.

To maintain readability, the simulation runs are split into several di�erent �gures.
In general, the exponent and signi�cand calculations will be shown separately, as
they are mostly independent from each other.

Floating-Point Multiplication

Exponent Calculation Figure 4.3 shows how the input exponents are added,
and the summation result properly biased.

1. The new exponents are read from the input port, and placed in the exponent
register �le

2. The exponents are added together, and the addition result is placed in expo-
nent register R0

3. bias is subtracted from the exponent sum, in order to obtain the correct
exponent. The result is again stored in exponent register R0

Partial Product Calculation Figure 4.4 shows how the input signi�cands are
sliced, multiplied and shifted in order to create a single, partial product.

1. The input fractions are sliced and extended, according to maskAndShiftOp

2. The sliced input is fed to the multiplier, which emits a partial product two
cycles later

3. The partial product is shifted and zero-padded, according to shiftAndExten-
dOp
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Figure 4.3: Floating-Point Multiplication: Exponent Calculation

Partial Product Accumulation The accumulation of in total four partial prod-
ucts is illustrated in �g.4.5.

1. ALU input A is fed data from the multiplier chain

2. The �rst partial product is moved through the ALU, the three last partial
products are accumulated

3. The ALU results are stored in signi�cand register R0
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Figure 4.4: Floating-Point Multiplication: Partial Product Calculation

Figure 4.5: Floating-Point Multiplication: Partial Product Accumulation
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Floating-Point Addition and Subtraction: EA ≥ EB, e�ective addition

Exponent Calculation Figure 4.6 shows how the exponents are compared, and
the exponent di�erence is relayed to the signi�cand pipeline. In this case EA is
larger than EB , and EA is kept as the result exponent.

Figure 4.6: Floating-Point Addition: Exponent Calculation

1. The input exponents are read into the exponent register �le

2. EB is subtracted from EA, the di�erence is stored in exponent register R1

3. The exponent di�erence is moved to the exponent result register, thus made
available to the signi�cand ALU

Signi�cand Calculation Figure 4.7 illustrates how the input is read into the
corresponding registers, and how FB is adjusted in order to prepare the signi�-
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cands for the subsequent addition. The values are then added and prepared for
normalization.

Figure 4.7: Floating-Point Addition: Signi�cand Calculation

1. The input signi�cands are read into the signi�cand register �le

2. Input value B has the smallest exponent, thus it is right-shifted by the abso-
lute exponent di�erence

3. The adjusted signi�cand is written back into its corresponding register

4. The adjusted signi�cands are added, the result is stored in signi�cand register
R0

5. As the addition yielded a positive result, no negation operation is required
here
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Floating-Point Addition and Subtraction: EA < EB, e�ective subtraction

Exponent Calculation In this case, EB is larger than EA. This requires the
exponent comparison to include a negation. Again, the absolute di�erence between
the input exponents is transmitted to the signi�cand ALU. (Fig.4.8)

Figure 4.8: Floating-Point Subtraction: Exponent Calculation

1. The input exponents are read into the exponent register �le
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2. EB is subtracted from EA, the di�erence is stored in exponent register R0

3. As the previous subtraction yielded a negative result, the contents of exponent
register R0 is negated

4. The absolute di�erence between the exponents are stored in the exponent
result register, thus made available to the signi�cand ALU

5. The �nal exponent value is moved to exponent register R0, in order to be
ready for the subsequent normalization operation

Signi�cand Calculation In Fig.4.9, the e�ective operation is subtraction. In
addition, the sign of the �rst operand requires it to be negated. Again, the signi�-
cand belonging to the smallest exponent is right-shifted by the absolute exponent
di�erence.

1. The input signi�cands are read into the signi�cand register �le

2. EA is negated, as it's sign bit is set to high and the e�ective operation is
−EA − EB

3. EA is right-shifted by the absolute exponent di�erence calculated by the
exponent ALU

4. EB is subtracted from EA

5. As the subtraction yielded a negative result, the value is negated in order to
convert it to a sign-magnitude representation

6. All adjustments of EA as well as the summation itself, is stored in signi�cand
register R0
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Figure 4.9: Floating-Point Subtraction: Signi�cand Calculation
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Floating-Point Division

Exponent Calculation The treatment of the exponents in the case of �oating-
point division � illustrated in Fig.4.10 � is very similar to the one featured in the
�oating-point multiplication operation.

Figure 4.10: Floating-Point Division: Exponent Calculation

1. The input exponents are read into the exponent register �le

2. bias added to EA

3. EB is subtracted from the previous sum

4. All calculations are written back to exponent register R0

Signi�cand Calculation The signi�cand division is performed by 26 subsequent
subtractions. A few of these iterations are shown in �g.4.11.

1. The iteration counter controls the number of iterations
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Figure 4.11: Floating-Point Division: Signi�cand Calculation

2. Both signi�cand register R0 and the signi�cand result register are shifted one
digit to the left each cycle

3. The signi�cand ALU is performing one subtraction per iteration. The result-
ing sign from this operation determines whether of not the partial remainder
is updated (4), as well as the next quotient digit (5)
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Floating-Point to Integer: Positive Input

Calculation of Shift Amount Figure 4.12 and Fig.4.13 shows the conversion
of a positive �oating-point value to an integer.

Figure 4.12: Positive Floating-Point to Signed Integer - Calculation of Shift
Amount

1. The input exponent is read into exponent register R0

2. bias is subtracted from the input exponent, the result is the true input ex-
ponent
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3. The true exponent value is subtracted from the radix point position (31),
yielding the required signi�cand shift amount

4. The signi�cand shift amount is stored in the exponent result register, thus
made available to the signi�cand ALU

Figure 4.13: Positive Floating-Point to Signed Integer - Signi�cand Adjustment

Adjustment of Signi�cand

1. The input signi�cand is stored in signi�cand register R0
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2. The input signi�cand is left-aligned in its register, by shifting it two places
to the left

3. The signi�cand shift amount is read from the exponent result register, and
the signi�cand is right-shifted

4. As the input was positive, there is no need for converting the integer result
into a negative two's compliment representation

5. The integer result is written to the signi�cand result register

Floating-Point to Integer: Negative Input

Figure 4.14 and Fig.4.15 shows how a negative �oating-point value is converted to
a signed integer.

Calculation of Shift Amount

1. The input exponent is read into exponent register R0

2. bias is subtracted from the input exponent, the result is the true input ex-
ponent

3. The true exponent value is subtracted from the radix point position (31),
yielding the required signi�cand shift amount

4. The signi�cand shift amount is stored in the exponent result register, thus
made available to the signi�cand ALU

Adjustment of Signi�cand

1. The input signi�cand is stored in signi�cand register R0

2. The input signi�cand is left-aligned in its register, by shifting it two places
to the left

3. The signi�cand shift amount is read from the exponent result register, and
the signi�cand is right-shifted

4. As the input was negative, the integer value is negated in order to convert it
into a negative two's compliment representation

5. The integer result is written to the signi�cand result register
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Figure 4.14: Negative Floating-Point to Signed Integer - Calculation of Shift
Amount

Unsigned Integer to Floating-Point

Calculation of Exponent Value Figure 4.16 and Fig.4.17 shows the conversion
from an unsigned integer to a �oating-point value.

1. The input integer is stored in signi�cand register R0

2. The number of leading zeros in the input integer is counted, the amount is
stored in signi�cand register R1
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Figure 4.15: Negative Floating-Point to Signed Integer - Signi�cand Adjustment

3. The number of leading zeros is stored in the signi�cand result register, in
order to make it available to the exponent ALU

4. The input integer is left-shifted, according to the number of leading zeros in
the value

5. The shifted integer is right-shifted one digit, in order to conform with the
register layout assumed by the subsequent rounding operation

6. The �nal signi�cand value is written to the signi�cand result register
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Figure 4.16: Unsigned Integer to Floating-Point: Calculation of Exponent Value

Adjustment of Signi�cand

1. The number of leading zeros in the input integer is read from the signi�cand
result register, and added to bias

2. The exponent value is written to exponent register R0

3. No adjustment of the exponent is performed during the rounding step, and
the value is written to the exponent result register
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Figure 4.17: Unsigned Integer to Floating-Point: Adjustment of Signi�cand
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4.1.3 System-Level Simulation

This section features a few top-level simulation runs, demonstrating only the signals
that are available to the user of the FPU itself.

System-Level Simulation of a Binary Operation

Figure 4.18 shows the system-level simulation of a multiplication instruction. Both
input values are normalized values, none of them belong to the class of special
representation values. Note how none of the exception �ags are asserted.

Figure 4.18: System-Level Simulation: Floating-Point Multiplication

System-Level Simulation of a Unary Operation

The conversion operations are unary, hence they take one input and produce one
output. In this simulation run (Fig.4.19), only operand A a�ects the result. None
of the assertion �ags are asserted, and the integer result is correctly transmitted
to the output port.

System-Level Simulation of an Invalid Operation

In this simulation (Fig.4.20), an invalid operation is performed. Note how the
invalid operation �ag is asserted, and a NaN output value is generated.
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Figure 4.19: System-Level Simulation: Floating-Point to Signed Integer Conversion

Figure 4.20: System-Level Simulation: Invalid Operation (0×∞)
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4.2 Veri�cation

This section will give an overview of how the design was veri�ed, along with some
suggestions on further veri�cation. It should be noted that the design is by no
means completely tested.

4.2.1 Automated test benches

This design has been tested by running a set of pseudo-random test vectors through
a simulation model of the entire module. A complete coverage of all input combina-
tions, operations and rounding modes is clearly impossible. however, the number
of test vectors used indicate that the implemented operations perform their tasks
in accordance with both the speci�cation and the standard itself.

The test vectors were generated using a set of C-programs, compiled with GCC.
These programs are rather simple, most generate two �oating-point numbers, per-
form an operation between them, and write both the operands and the result to a
text �le. The validity of these tests depend on whether or not the �oating-point
implementation used conforms to the IEEE-754 1985.

An example C-program for generating test vectors is listed in A.2.

4.2.2 Testing of Special Cases

As mentioned before, �oating-point operations have several special cases. Some
examples are exceptional cases, and in�nity arithmetic. In order to verify that an
implementation does indeed conform with the standard, it is necessary to test this
behavior.

As a complete veri�cation is beyond the scope of this project, only some simple
tests have been done. These simulation runs are based on Tab.3.33 on page 67,
and were inspected manually. The correct exception �ags were generated, and the
correct answer was produced. This indicates that the exception handling that is
implemented works as speci�ed. No �gures of these simulation runs are included
here, as they required too much space.

4.2.3 Suggestions for Future Testing and Veri�cation

First, the number of test-vectors used in the automatic test-benches should be
increased dramatically, in order to increase the coverage of the tests. A good tool
for extensive testing, as well as test vector generation, is SoftFloat [9] . If the
FPU is connected to a generic microprocessor capable of running C-programs, the
program TestFloat [10] may be utilized as well.
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As some functionality is missing from this implementation, several aspects of IEEE
conformance is yet untested. This includes both the square root operations, as
well as the di�erent rounding modes. The treatment of quiet NaNs and denormal
numbers is still not handled, thus the veri�cation of this behavior must be delayed
until the implementation is made more mature.

A complete veri�cation should also perform more testing of internal signals during
the various operations, not only checking input against output. For instance, all
control signals should be tested in each state featured in the control unit, and
checked against the speci�cation.

Finally, formal veri�cation may prove useful in the search for a thoroughly tested
design. Information on this is provided in [7] and [8].
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Chapter 5

Results

This chapter contains performance analysis results and area estimates in the form
of gate counts. The results are discussed in the subsequent chapter.

5.1 Area Consumption

5.1.1 FPGA Synthesis

Even though the design is targeted at an implementation in custom silicon, an
FPGA synthesis was performed. The motivation behind this was to obtain more
comparable data about the hardware consumption of the design. The synthesis
was performed using Altera Quartus II v.9.1 web edition. The target platform was
set to Altera Cyclone I - EP1C6Q240C6, with "optimize area" as a parameter to
the synthesis tool.

These settings were chosen to match the ones presented in [12] (available through
www.opencores.org [1]), as this report presents the design of an non-pipelined
FPU with FPGA synthesis results. The other design is a more traditional FPU
architecture, with separate arithmetic units for each operation. Thus, it is inter-
esting to see whether or not the architecture proposed in this project provides any
signi�cant savings in terms of hardware consumption.

Figure 5.1 shows the synthesis results for this implementation. Note that the logic
cells used by the external multiplier can be subtracted from the results, as this unit
is assumed to be present already.

In comparison, [12] gives the total logic cell count of the unit as 3468, not counting
the square-root pipeline. More details on the logic cell consumption of the solution
presented is given in Tab.5.1.
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Figure 5.1: FPGA Synthesis Results

Table 5.1: Logic Cell Usage - Other Implementation [12]
Unit Logic Cell Count

Addition Unit 684
Multiplication Unit 1530
Division Unit 928
Square-Root Unit 919
Top-level 326
Total 4387

5.1.2 Gate-Level Synthesis

The design was synthesized to a netlist, as the logic gate count of the design
was underlined as one of the most important �gures of merit for this project.
The synthesis tool used was Synopsis DesignCompiler v.2009.06-SP4, the speci�ed
process technology was an Atmel CMOS process.

The resulting gate counts are listed in tab.5.2. Note that the Signi�cand Result
Register as well as the Exponent Result Register were implemented directly in the
top module. Thus, the top-level gate count includes all submodules, two registers
and a lot of interconnects.

An important aspect of actual area consumption is the interconnects. This has
not been estimated in this project, thus the given area metrics should only be
interpreted as estimates.
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Table 5.2: Area Consumption by Module
Unit Gate Count

Top-level (total) 3271
Control unit 77
Exponent ALU 232
Exponent register �le 188
Mask-and-shift unit 53
Shift-and-extend unit 80
Signi�cand ALU 1283
Signi�cand register �le 580

5.2 Performance

A crucial aspect of any hardware solution is whether or not it provides a large
enough speedup over a software implementation to justify the increased hardware
cost. Thus, the performance analysis must be studied together with the area esti-
mates, in order to assess the quality of the design.

Table 5.3 lists the clock cycle consumption for all the implemented operations,
along with the estimates made in the preliminary project as well as the clock cycle
consumption of the existing software implementation.

The column labeled normal indicated the clock cycle consumption of a normal
operation: no special-case inputs and no need for post-rounding normalization.
The worst-case column indicated the worst possible clock-cycle consumption the
operation can have, this typically includes operations that require a post-rounding
normalization of the result.

The three columns labeled estimated, SW (GCC) and SW (IAR) are adapted from
the preliminary report [5] They indicate the estimated FPU clock cycle consump-
tion, as well as the clock cycle usage of the existing software implementations pro-
vided by the GCC and the IAR compiler, respectively. The �nal column presents
the clock cycle consumption of the solution presented in [12]. *Note that the
square root operation is not implemented in this design, thus no performance data
is available.

If we de�ne the speedup as in Eq.5.1, we can calculate the speedup over the existing
software solutions. The results are presented in Fig.5.2. The estimated speedup as
predicted in the preliminary report is included as well.

SpeedupHW,SW =
Cycle usage, SW

Cycle usage,HW
(5.1)
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Figure 5.2: Speedup of a Hardware Implementation vs. Software Implementations
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Table 5.3: Clock Cycle Usage by Operation
Operation Normal Worst-Case Estimated SW (GC) SW (IAR) [12]

Mul 10 11 9 132 178 12
Add 11 12 7 96 132 7
Sub 11 12 7 106 159 7
Div 30 31 29 435 778 35
Sqrt* - - 30 480 2612 35
UI2FP 5 5 4 71 360 -
I2FP 6 7 4 71 360 -
FP2SI 6 6 4 102 296 -
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Chapter 6

Discussion and Conclusion

6.1 Discussion of Results

This discussion is based on the results presented in the previous chapter, the fea-
tured simulations, and the design presented in the preceding sections.

All the speci�ed operations were implemented successfully, apart from the �oating-
point square root and the conversion from a �oating-point value to an integer-valued
�oating-point number. The implemented operations seem to function, which has
been veri�ed through simulations and test-benches. Some basic exception handling
is in place, though this part is yet a bit incomplete.

As for the results, the synthesis results gave some promising numbers. The area
usage of the FPGA synthesis shows that this implementation is roughly half the
size of an alternative implementation. This suggests that the architecture presented
here is capable of reducing the area consumption of a �oating-point unit by a
substantial amount, compared to a more traditional architecture.

The disadvantage of the solution presented, however, is the large amount of struc-
tural hazards in the design itself. Thus, it is very unsuitable for any kind of pipelin-
ing, which may limit the performance. Another potential issue is the maximum
clock frequency the design can achieve, this has not been derived in this project.

The performance analysis shows that the estimated performance of the design was
a little too optimistic: this is mainly due to the fact that normalization and round-
ing are performed as ALU operations, not as dedicated logic. This typically in-
creases the clock cycle usage of each operation by a few cycles, which explain the
di�erence in estimated results, and real results. The speedup over a pure software-
implementation is still quite good; a dedicated FPU can give a speedup of between
13x and 30x, depending on the compiler being used.
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6.2 Future Work

The most important feature that is missing from this implementation is the square
root operation. However, this can be added to the design at a relatively low cost
as outlined in Ch.3.6. In addition to this, exception handling is somewhat incom-
plete, especially when it comes to veri�cation. This will, however, not introduce
much of an increase in neither area consumption nor execution time of the various
operations.

Regarding synthesis, much work is left. This includes both detailed analysis of
synthesis results, as well as tailoring the implementation to the synthesis tool being
used. This may provide a more compact solution, in terms of gate count. The
amount of interconnects and the �nal size of the implementation should be derived,
and compared to other solutions.

6.3 Conclusion

This report has shown that a functional �oating-point unit can be realized in a
compact manner, by exploiting reuse of functional units, as well as simple and
functionally similar algorithms. Such a design can achieve a signi�cant speedup
over a pure software implementation of the IEEE-754 1985 standard, at a low
cost-penalty.
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Appendix A

Appendix

A.1 Verilog Implementation Code

This appendix containes all the Verilog source code of the synthesizable implemen-
tation.

The included �les are:

1. global.v: various constants used by most modules

2. sig_register_�le.v: the signi�cand register �le

3. exp_register_�le.v: the exponent register �le

4. SVD_unit.v: the special value detection unit

5. mask_and_shift.v: the unit that slices and extends the input to the external
multiplier

6. external_mul_16x16.v: behavioral model of the external 16-bit multiplier

7. shift_and_extend: the unit which shifts and zero-extends the multiplier out-
put

8. signi�cand_alu.v: the signi�cand ALU

9. exponent_alu.v: the exponent ALU

10. fpu_control_unit.v: the complete FPU control unit

11. fpu_top.v: the top-level module of the design. Instantiates the other mod-
ules, as well as the exponent and signi�cand result registers
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Listing A.1: global.v

1 //

2 // FORMAT SPECIFICATIONS

3 //

4 `define FORMAT_WORD_WIDTH 32

5 `define FORMAT_FRAC_WIDTH 23

6 `define FORMAT_EXP_WIDTH 8

7

8 //

9 // FPU INSTRUCTIONS

10 //

11 `define FPU_INSTR_NOP 4'b0000

12 `define FPU_INSTR_ADD 4'b0001

13 `define FPU_INSTR_SUB 4'b0010

14 `define FPU_INSTR_MUL 4'b0011

15 `define FPU_INSTR_DIV 4'b0100

16 `define FPU_INSTR_SQRT 4'b0101

17 `define FPU_INSTR_UI2FP 4'b0110

18 `define FPU_INSTR_SI2FP 4'b0111

19 `define FPU_INSTR_FP2SI 4'b1000

20

21 //

22 // FPU ROUNDING MODES

23 //

24 `define ROUNDING_MODE_NEAREST_EVEN 2'b00

25 `define ROUNDING_MODE_TRUNCATE 2'b01

26 `define ROUNDING_MODE_POS_INF 2'b10

27 `define ROUNDING_MODE_NEG_INF 2'b11

28

29 //

30 // Significand register file port names

31 //

32 `define SRF_REG_R0 4'b0000

33 `define SRF_REG_R1 4'b0001

34 `define SRF_REG_ZERO 4'b0010

35 `define SRF_REG_ONE 4'b0011

36 `define SRF_REG_TWO 4'b0100

37 `define SRF_REG_ULP_ROUND 4'b0101

38 `define SRF_REG_BIAS 4'b0110

39 `define SRF_REG_FIVE 4'b0111

40 `define SRF_REG_SIX 4'b1000

41 `define SRF_REG_NANSIG 4'b1001

42 `define SRF_REG_ONES 4'b1111

43

44 //

45 // Exponent register file port names

46 //

47 `define ERF_REG_R0 3'b000

48 `define ERF_REG_R1 3'b001

49 `define ERF_REG_ZERO 3'b010

50 `define ERF_REG_ONE 3'b011

51 `define ERF_REG_RPP 3'b100

52 `define ERF_REG_I2FP 3'b101

53 `define ERF_REG_BIAS 3'b110

54 `define ERF_REG_ONES 3'b111

55

56 //
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57 // Significand ALU opcodes

58 //

59 `define SIG_ALU_OP_NOP 4'b0000 //no operation

60 `define SIG_ALU_OP_MOVA 4'b0001 //move op.A

61 `define SIG_ALU_OP_NEGB 4'b0010 // negate op.B

62 `define SIG_ALU_OP_ADD 4'b0011 //add op.A and op.B

63 `define SIG_ALU_OP_SUB 4'b0100 // subtract op.B from op.A

64 `define SIG_ALU_OP_SHRA 4'b0101 // arithmetic right -shift of operand A,

by "op.B" digits

65 `define SIG_ALU_OP_SHRL 4'b0110 //logic right -shift of op.A, by "op.B"

digits

66 `define SIG_ALU_OP_SHLL 4'b0111 //logic left -shift of op.A, by "op.B"

digits

67 `define SIG_ALU_OP_CLZ 4'b1000 //count leading zeroes of op.A

68

69 //

70 // Exponent ALU opcodes

71 //

72 `define EXP_ALU_OP_NOP 3'b000

73 `define EXP_ALU_OP_MOVA 3'b001

74 `define EXP_ALU_OP_NEGB 3'b010

75 `define EXP_ALU_OP_ADD 3'b011

76 `define EXP_ALU_OP_SUB 3'b100

77 `define EXP_ALU_OP_SHL 3'b101

78

79

80 //

81 // Mask -And -Shift unit opcodes

82 //

83 `define MASK_AND_SHIFT_A8C8 2'b00

84 `define MASK_AND_SHIFT_A8D16 2'b01

85 `define MASK_AND_SHIFT_B16C8 2'b10

86 `define MASK_AND_SHIFT_B16D16 2'b11

87

88 //

89 // Shift -And_extend unit opcodes

90 //

91 `define SHIFT_16_BIT_AND_EXTEND 2'b00

92 `define SHIFT_0_BIT_AND_EXTEND 2'b01

93 `define SHIFT_TRUNC_AND_EXTEND 2'b10

Listing A.2: sig_register_�le.v

1 `timescale 1ns/1ps

2

3 `include "global.v"

4

5 module SigRegisterFile(clk_in , reset_in , writeEnableR0_in ,

writeEnableR1_in , writeValueR0_in , writeValueR1_in ,

6 shiftEnableR0_in ,

7 readSelectA_in , readSelectB_in ,

readResultA_out , readResultB_out);

8

9 // default register width

10 parameter REGISTER_WIDTH = 'd32;

11

12 // default constant register contents
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13 parameter CONST0_VALUE = 32'd0; //zero - required for exception

handling

14 parameter CONST1_VALUE = 32'd1; //one - required!

15 parameter CONST2_VALUE = 32'd2; //two - required!

16 parameter CONST3_VALUE = 32'd128;//ULP for rounding - required!

17 parameter CONST4_VALUE = 32'd127;//BIAS - required!

18 parameter CONST5_VALUE = 32'd5; //used for normalization of div/

sqrt

19 parameter CONST6_VALUE = 32'd6; //used for normalization of div/

sqrt

20 parameter CONST7_VALUE = 32' h20000000; // significand value

corresponding to a NaN result

21 parameter CONST8_VALUE = 32' hffffffff; //all ones

22

23 //PORTS

24 input clk_in , reset_in;

25 input writeEnableR0_in , writeEnableR1_in;

26 input [REGISTER_WIDTH -1:0] writeValueR0_in , writeValueR1_in;

27 input shiftEnableR0_in;

28 input [3:0] readSelectA_in , readSelectB_in;

29 output reg [REGISTER_WIDTH -1:0] readResultA_out , readResultB_out;

30

31 // INTERNAL REGISTERS

32 //GPR

33 reg [REGISTER_WIDTH -1:0] reg0 , reg1;

34

35 always @(readSelectA_in , readSelectB_in , reg0 , reg1) begin

36 case (readSelectA_in)

37 4'b0000: readResultA_out = reg0;

38 4'b0001: readResultA_out = reg1;

39 4'b0010: readResultA_out = CONST0_VALUE;

40 4'b0011: readResultA_out = CONST1_VALUE;

41 4'b0100: readResultA_out = CONST2_VALUE;

42 4'b0101: readResultA_out = CONST3_VALUE;

43 4'b0110: readResultA_out = CONST4_VALUE;

44 4'b0111: readResultA_out = CONST5_VALUE;

45 4'b1000: readResultA_out = CONST6_VALUE;

46 4'b1001: readResultA_out = CONST7_VALUE;

47 4'b1111: readResultA_out = CONST8_VALUE;

48 default: begin

49 readResultA_out = 0;

50 end

51 endcase

52

53 case (readSelectB_in)

54 4'b0000: readResultB_out = reg0;

55 4'b0001: readResultB_out = reg1;

56 4'b0010: readResultB_out = CONST0_VALUE;

57 4'b0011: readResultB_out = CONST1_VALUE;

58 4'b0100: readResultB_out = CONST2_VALUE;

59 4'b0101: readResultB_out = CONST3_VALUE;

60 4'b0110: readResultB_out = CONST4_VALUE;

61 4'b0111: readResultB_out = CONST5_VALUE;

62 4'b1000: readResultB_out = CONST6_VALUE;

63 4'b1001: readResultB_out = CONST7_VALUE;

64 4'b1111: readResultB_out = CONST8_VALUE;

65 default: begin
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66

67 readResultB_out = 0;

68 end

69 endcase

70 end

71

72

73 always @(posedge clk_in) begin

74 if (reset_in == 1'b1) begin // reset registers?

75 reg0 <= 0;

76 reg1 <= 0;

77 end else begin

78 // update reg0?

79 if (writeEnableR0_in) reg0 = writeValueR0_in;

80

81 if (shiftEnableR0_in) reg0 = reg0 << 1;

82

83 // update reg1?

84 if (writeEnableR1_in == 1'b1) reg1 <= writeValueR1_in;

85 end

86 end

87

88 endmodule

Listing A.3: exp_register_�le.v

1 `timescale 1ns/1ps

2

3 `include "global.v"

4

5 module ExpRegisterFile(clk_in , reset_in , writeEnableR0_in ,

writeEnableR1_in , writeValueR0_in , writeValueR1_in ,

6 readSelectA_in , readSelectB_in ,

readResultA_out , readResultB_out);

7

8 // default register width

9 parameter REGISTER_WIDTH = 'd9;

10

11 // default constant register contents

12 parameter CONST0_VALUE = 9'd0; //zero

13 parameter CONST1_VALUE = 9'd1; //one

14 parameter CONST2_VALUE = 9'd31; //radix point position

15 parameter CONST3_VALUE = 9'd158; // exponent const used by int2fp

16 parameter CONST4_VALUE = 9'd127; //BIAS

17 parameter CONST5_VALUE = 9'd511; //all ones

18

19 //PORTS

20 input clk_in , reset_in;

21 input writeEnableR0_in , writeEnableR1_in;

22 input [REGISTER_WIDTH -1:0] writeValueR0_in , writeValueR1_in;

23 input [2:0] readSelectA_in , readSelectB_in;

24 output reg [REGISTER_WIDTH -1:0] readResultA_out , readResultB_out;

25

26 // INTERNAL REGISTERS

27 //GPR

28 reg [REGISTER_WIDTH -1:0] reg0 , reg1;

29
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30 always @(readSelectA_in , readSelectB_in , reg0 , reg1) begin

31 case (readSelectA_in)

32 3'b000: readResultA_out = reg0;

33 3'b001: readResultA_out = reg1;

34 3'b010: readResultA_out = CONST0_VALUE;

35 3'b011: readResultA_out = CONST1_VALUE;

36 3'b100: readResultA_out = CONST2_VALUE;

37 3'b101: readResultA_out = CONST3_VALUE;

38 3'b110: readResultA_out = CONST4_VALUE;

39 3'b111: readResultA_out = CONST5_VALUE;

40 endcase

41

42 case (readSelectB_in)

43 3'b000: readResultB_out = reg0;

44 3'b001: readResultB_out = reg1;

45 3'b010: readResultB_out = CONST0_VALUE;

46 3'b011: readResultB_out = CONST1_VALUE;

47 3'b100: readResultB_out = CONST2_VALUE;

48 3'b101: readResultB_out = CONST3_VALUE;

49 3'b110: readResultB_out = CONST4_VALUE;

50 3'b111: readResultB_out = CONST5_VALUE;

51 endcase

52 end

53

54

55 always @(posedge clk_in) begin

56 if (reset_in) begin // reset registers?

57 reg0 <= 0;

58 reg1 <= 0;

59 end else begin

60 // update reg0?

61 if (writeEnableR0_in) reg0 <= writeValueR0_in;

62

63 // update reg1?

64 if (writeEnableR1_in) reg1 <= writeValueR1_in;

65 end

66 end

67 endmodule

Listing A.4: svd_unit.v

1 `timescale 1ns/1ps

2

3 `include "global.v"

4

5 module SVDUnit(operand_in , sign_out , isZero_out , isInf_out , isNan_out ,

isDenorm_out , operand_out);

6 // I/O PORTS

7 input [`FORMAT_WORD_WIDTH -1:0] operand_in;

8 output reg sign_out , isZero_out , isInf_out , isNan_out ,

isDenorm_out;

9 output reg [32:0] operand_out; // operand with leading significand

bit included

10

11 // INTERNAL REGISTERS

12 reg sign;

13 reg [`FORMAT_EXP_WIDTH -1:0] exp;
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14 reg [`FORMAT_FRAC_WIDTH -1:0] frac;

15

16 reg expIsMax , expIsNonZero , fracIsNonZero;

17

18 always @(operand_in) begin

19 // decompose input

20 sign = operand_in[`FORMAT_WORD_WIDTH -1]; //[31]

21 exp = operand_in [( `FORMAT_WORD_WIDTH -2):( `FORMAT_WORD_WIDTH -

`FORMAT_EXP_WIDTH -1)]; // [30:23]

22 frac = operand_in [( `FORMAT_FRAC_WIDTH -1) :0]; // [22:0]

23

24 // &-reduction / |-reduction

25 expIsMax = &(exp);

26 expIsNonZero = |(exp);

27 fracIsNonZero = |(frac);

28

29 // generate output

30 sign_out = sign;

31 isZero_out = ~expIsMax & ~expIsNonZero & ~fracIsNonZero;

32 isInf_out = expIsMax & (~ fracIsNonZero);

33 isNan_out = expIsMax & fracIsNonZero;

34 isDenorm_out = ~expIsMax & ~expIsNonZero & fracIsNonZero;

35 operand_out = (isDenorm_out) ? {sign , exp , 1'b0, frac} : {sign

, exp , 1'b1, frac};

36 end

37 endmodule

Listing A.5: mask_and_shift.v

1 `timescale 1ns/1ps

2

3 `include "global.v"

4

5 module MaskAndShift(maskAndShiftSelect_in , operandA_in , operandB_in ,

operandA_out , operandB_out);

6 input [1:0] maskAndShiftSelect_in;

7 input [`FORMAT_FRAC_WIDTH :0] operandA_in , operandB_in; //23:0

8 output reg [15:0] operandA_out , operandB_out; //15:0

9

10 always @(maskAndShiftSelect_in , operandA_in , operandB_in) begin

11 case (maskAndShiftSelect_in)

12 `MASK_AND_SHIFT_A8C8: begin

13 operandA_out <= {8'b0, operandA_in [23:16]};

14 operandB_out <= {8'b0, operandB_in [23:16]};

15 end

16

17 `MASK_AND_SHIFT_A8D16: begin

18 operandA_out <= {8'b0, operandA_in [23:16]};

19 operandB_out <= operandB_in [15:0];

20 end

21

22 `MASK_AND_SHIFT_B16C8: begin

23 operandA_out <= {operandA_in [15:0]};

24 operandB_out <= {8'b0, operandB_in [23:16]};

25 end

26

27 `MASK_AND_SHIFT_B16D16: begin
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28 operandA_out <= operandA_in [15:0];

29 operandB_out <= operandB_in [15:0];

30 end

31 endcase

32 end

33 endmodule

Listing A.6: external_mul_16x16.v

1 `timescale 1ns/1ps

2

3 // Behavioral model of a 16x16 integer multiplier , two -stage pipeline ,

32 bit result

4 module ExternalMul16x16(clk_in , reset_in , mulEnable , operandA_in ,

operandB_in , product_out);

5 input clk_in , reset_in , mulEnable;

6 input [15:0] operandA_in , operandB_in;

7 output [31:0] product_out;

8

9 reg [31:0] delay_reg , product_reg;

10

11 assign product_out = product_reg;

12

13 always @(posedge clk_in) begin

14 if (reset_in == 1'b1) begin

15 delay_reg <= 32'b0;

16 product_reg <= 32'b0;

17 end else begin

18 if (mulEnable) begin

19 delay_reg <= operandA_in * operandB_in;

20 product_reg <= delay_reg;

21 end else begin

22 delay_reg <= delay_reg;

23 product_reg <= product_reg;

24 end

25 end

26 end

27

28 endmodule

Listing A.7: shift_and_extend.v

1 `timescale 1ns/1ps

2

3 `include "global.v"

4

5 module ShiftAndExtend(shiftAndExtendSelect_in , operand_in , operand_out

, stickyBit_out);

6 input [1:0] shiftAndExtendSelect_in;

7 input [31:0] operand_in;

8 output reg [31:0] operand_out; //32 bits

9 output reg stickyBit_out;

10

11 always @(shiftAndExtendSelect_in , operand_in) begin

12 stickyBit_out = 1'b0;

13 case (shiftAndExtendSelect_in)
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14 `SHIFT_16_BIT_AND_EXTEND: operand_out <= {operand_in

[15:0] , 16'b0};

15 `SHIFT_0_BIT_AND_EXTEND: operand_out <= {8'b0,

operand_in [23:0]};

16 `SHIFT_TRUNC_AND_EXTEND: begin

17 operand_out <= {16'b0, operand_in [31:16]};

18 stickyBit_out <= |( operand_in [15:0]);

19 end

20 default: begin

21 operand_out <= 32'b0;

22 // $display (" Invalid Shift -And -Extend opcode !");

23 end

24 endcase

25 end

26 endmodule

Listing A.8: signi�cand_alu.v

1 `timescale 1ns/1ps

2

3 `include "global.v"

4

5 module SignificandALU(aluOpCode_in , aluOpA_in , aluOpB_in ,

aluNegFlag_out , aluZeroFlag_out , aluResult_out);

6 input [3:0] aluOpCode_in;

7 input [31:0] aluOpA_in , aluOpB_in; //32 bit

8 output reg aluNegFlag_out;

9 output aluZeroFlag_out;

10 output [31:0] aluResult_out; //32 bit

11

12 reg signed [31:0] aluResult; //32 bit

13

14 assign aluResult_out = aluResult;

15 assign aluZeroFlag_out = (aluResult == 32'b0) ? 1'b1 : 1'b0;

16

17 always @(aluOpCode_in , aluOpA_in , aluOpB_in) begin

18 // default outputs

19 aluResult = 32'b0;

20 aluNegFlag_out = aluOpA_in [31];

21

22 case (aluOpCode_in)

23 `SIG_ALU_OP_NOP: aluResult = 32'b0;

24 `SIG_ALU_OP_MOVA: aluResult = aluOpA_in;

25 `SIG_ALU_OP_NEGB: aluResult = -aluOpB_in;

26 `SIG_ALU_OP_ADD: {aluNegFlag_out , aluResult} = {

aluOpA_in [31], aluOpA_in} + {aluOpB_in [31], aluOpB_in

};

27 `SIG_ALU_OP_SUB: {aluNegFlag_out , aluResult} = {

aluOpA_in [31], aluOpA_in} - {aluOpB_in [31], aluOpB_in

};

28 `SIG_ALU_OP_SHRA: begin

29 aluResult = aluOpA_in;

30 if (aluOpB_in [0]) aluResult = aluResult >>> 1;

31 if (aluOpB_in [1]) aluResult = aluResult >>> 2;

32 if (aluOpB_in [2]) aluResult = aluResult >>> 4;

33 if (aluOpB_in [3]) aluResult = aluResult >>> 8;

34 if (aluOpB_in [4]) aluResult = aluResult >>> 16;



118 APPENDIX A. APPENDIX

35 end

36 `SIG_ALU_OP_SHRL: begin

37 aluResult = aluOpA_in;

38 if (aluOpB_in [0]) aluResult = aluResult >> 1;

39 if (aluOpB_in [1]) aluResult = aluResult >> 2;

40 if (aluOpB_in [2]) aluResult = aluResult >> 4;

41 if (aluOpB_in [3]) aluResult = aluResult >> 8;

42 if (aluOpB_in [4]) aluResult = aluResult >> 16;

43 end

44 `SIG_ALU_OP_SHLL: begin

45 aluResult = aluOpA_in;

46 if (aluOpB_in [0]) aluResult = aluResult << 1;

47 if (aluOpB_in [1]) aluResult = aluResult << 2;

48 if (aluOpB_in [2]) aluResult = aluResult << 4;

49 if (aluOpB_in [3]) aluResult = aluResult << 8;

50 if (aluOpB_in [4]) aluResult = aluResult << 16;

51 end

52

53 `SIG_ALU_OP_CLZ: aluResult = {26'b0, CLZ(aluOpA_in)};

54 default: begin

55 // $display (" Significand ALU: Undefined ALU OpCode !");

56 end

57 endcase

58 end

59

60

61 function [5:0] CLZ;

62 input [31:0] val32;

63 reg [15:0] val16;

64 reg [7:0] val8;

65 reg [3:0] val4;

66 reg [1:0] val2;

67 reg [4:0] result;

68 begin

69 result [4] = (val32 [31:16] == 16'b0);

70 val16 = (result [4]) ? val32 [15:0] : val32 [31:16];

71

72 result [3] = (val16 [15:8] == 8'b0);

73 val8 = (result [3]) ? val16 [7:0] : val16 [15:8];

74

75 result [2] = (val8 [7:4] == 4'b0);

76 val4 = (result [2]) ? val8 [3:0] : val8 [7:4];

77

78 result [1] = (val4 [3:2] == 2'b0);

79 val2 = (result [1]) ? val4 [1:0] : val4 [3:2];

80

81 result [0] = (val2 [1] == 1'b0);

82

83 // handle special case of input = 0

84 CLZ = (( result == 5'd31) && (val2 [0] == 1'b0)) ? 6'd32 :

{1'b0, result };

85 end

86 endfunction

87

88 endmodule
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Listing A.9: exponent_alu.v

1 `timescale 1ns/1ps

2

3 `include "global.v"

4

5 module ExponentALU(aluOpCode_in , aluOpA_in , aluOpB_in , aluNegFlag_out ,

aluZeroFlag_out , aluResult_out);

6 input [2:0] aluOpCode_in;

7 input [`FORMAT_EXP_WIDTH :0] aluOpA_in , aluOpB_in; // 9 bit

8 output aluNegFlag_out , aluZeroFlag_out;

9 output [`FORMAT_EXP_WIDTH :0] aluResult_out; // 9 bit

10

11 reg [`FORMAT_EXP_WIDTH :0] aluResult; //9 bit

12

13 assign aluResult_out = aluResult;

14 assign aluNegFlag_out = (aluResult[`FORMAT_EXP_WIDTH] == 1'b1 )

? 1'b1 : 1'b0;

15 assign aluZeroFlag_out = (aluResult == 9'b0) ? 1'b1 : 1'b0;

16

17

18 always @(aluOpCode_in , aluOpA_in , aluOpB_in) begin

19 // default outputs

20 aluResult = 9'bx;

21

22 case (aluOpCode_in)

23 `EXP_ALU_OP_NOP: aluResult = 9'b0;

24 `EXP_ALU_OP_MOVA: aluResult = aluOpA_in;

25 `EXP_ALU_OP_NEGB: aluResult = -aluOpB_in;

26 `EXP_ALU_OP_ADD: aluResult = aluOpA_in + aluOpB_in;

27 `EXP_ALU_OP_SUB: aluResult = aluOpA_in - aluOpB_in;

28 `EXP_ALU_OP_SHL: aluResult = aluOpA_in << aluOpB_in;

29 default: $display("Exponent ALU: Undefined ALU OpCode!");

30 endcase

31 end

32

33 endmodule

Listing A.10: fpu_control_unit.v

1 `timescale 1ns/1ps

2

3 `include "global.v"

4

5 module FpuControlUnit(clk_in , reset_in , fpuOpCode_in , roundingMode_in ,

6 signA_in , signB_in , isZeroA_in , isZeroB_in , isInfA_in , isInfB_in ,

isNanA_in ,

7 isNanB_in , isDenormA_in , isDenormB_in ,

8 expAluNegFlag_in , expAluZeroFlag_in ,

9 sigAluNegFlag_in , sigAluZeroFlag_in ,

10 guardBit_in , roundBit_in , stickyBitData_in ,

11 readFPInput_out ,

12 erfWriteSelectR0_out , erfWriteSelectR1_out , erfWriteEnableR0_out ,

erfWriteEnableR1_out ,

13 erfReadSelectA_out , erfReadSelectB_out ,

14 srfWriteSelectR0_out , srfWriteSelectR1_out , srfWriteEnableR0_out ,

srfWriteEnableR1_out ,

15 srfShiftEnableR0_out , srfReadSelectA_out , srfReadSelectB_out ,
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16 expAluRegOrSigResult_out ,

17 expAluOp_out ,

18 errWriteEnable_out ,

19 sigAluRegOrMul_out , sigAluSrr_out , sigAluRegOrExpResult_out ,

20 sigAluOp_out ,

21 srrWriteEnable_out ,

22 srrShiftEnable_out ,

23 srrShiftIn_out ,

24 maskAndShiftOp_out ,

25 mulEnable_out ,

26 shiftAndExtendOp_out ,

27 outputFPResult_out ,

28 resultSign_out ,

29 resultReady_out ,

30 invalidOperationDetected_out , divisionByZeroDetected_out ,

overflowDetected_out ,

31 underflowDetected_out , inexactDetected_out

32 );

33

34 //STATE DEFINITIONS

35 //Pre -process states

36 parameter STATE_IDLE = 0; //idle state , ready for

new input

37 parameter STATE_INIT = 1; //read inputs , determine

operation , detect exceptions

38

39 // Arithmetic states

40 //MUL states

41 parameter STATE_MUL_M1 = 2; //start first

multiplication , add exponents

42 parameter STATE_MUL_M2 = 3; //start second

multiplication , subtract bias from exponent sum

43 parameter STATE_MUL_M3 = 4; //start third

multiplication

44 parameter STATE_MUL_M4 = 5; //start fourth

multiplication , accumulate

45 parameter STATE_MUL_M5 = 6; // complete fourth

multiplication , accumulate

46 parameter STATE_MUL_M6 = 7; //final accumulate

47

48 // ADDSUB states

49 parameter STATE_ADDSUB_EXPSUB = 8; // compare input

exponents

50 parameter STATE_ADDSUB_DIFFNEG = 9; //find the absolute

value of the exp. difference

51 parameter STATE_ADDSUB_DIFFPOS = 10; // empty state - may be

removed

52 parameter STATE_ADDSUB_SHIFTFRACA = 11; // adjust input

significand A

53 parameter STATE_ADDSUB_SHIFTFRACB = 12; // adjust input

significand B

54 parameter STATE_ADDSUB_ADDSUBFRACS = 13; //add or subtract the

adjusted significands

55 parameter STATE_ADDSUB_NEGSUM = 14; // negate any negative

sum , set the output sign to negative

56 parameter STATE_ADDSUB_POSSUM = 15; //keep the sum , set the

output sign to positive
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57

58 //DIV states

59 parameter STATE_DIV_ADD_BIAS = 16;

60 parameter STATE_DIV_SUB_EXP = 17;

61 parameter STATE_DIV_ITER = 18;

62

63 // int2fp states

64 parameter STATE_I2FP_TEST_SIGN = 19;

65 parameter STATE_I2FP_NEGATE = 20;

66 parameter STATE_I2FP_CLZ = 21;

67 parameter STATE_I2FP_ADJ1 = 22;

68 parameter STATE_I2FP_ADJ2 = 23;

69

70 // fp2int states

71 parameter STATE_FP2SI_UNBIAS = 24;

72 parameter STATE_FP2SI_CALC_ADJ = 25;

73 parameter STATE_FP2SI_PREROUND_RSH = 26;

74 parameter STATE_FP2SI_ROUND = 27;

75 parameter STATE_FP2SI_POSTROUND_RSH = 28;

76 parameter STATE_FP2SI_NEGATE = 29;

77

78 //Post -process states

79 //addsub -normalization

80 parameter STATE_CLZ = 30; //count leading zeros in

a significand , needed for generic rounding

81 parameter STATE_NORMALIZE_CALC_ADJ = 31; // calculate the required

normalization adjustments

82 parameter STATE_NORMALIZE_GENERIC = 32; // perform the actual

normalization

83 //mul normalization

84 parameter STATE_MUL_NORM0 = 33; // multiplication

normalization , case 1

85 parameter STATE_MUL_NORM1 = 34; //empty state , may be

removed

86 //div/sqrt normalization

87 parameter STATE_NORM_DIV_SQRT = 35; // normalize division or

square root

88 // rounding

89 parameter STATE_ROUND = 36; //round the result: R0 =

round(R0)

90 parameter STATE_POST_ROUND_NORM = 37; // correct de-normalize

caused by rounding

91 // output states

92 parameter STATE_EMIT_RESULT = 38;

93 parameter STATE_EMIT_ZERO = 39;

94 parameter STATE_EMIT_INF = 40;

95 parameter STATE_EMIT_NAN = 41;

96

97

98 //PORTS

99 //input ports

100 input clk_in , reset_in;

101 input [3:0] fpuOpCode_in;

102 input [1:0] roundingMode_in;

103

104 //SVD values

105 input signA_in , signB_in , isZeroA_in , isZeroB_in , isInfA_in ,
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isInfB_in , isNanA_in ,

106 isNanB_in , isDenormA_in , isDenormB_in;

107

108 //ALU status flags

109 input expAluNegFlag_in , expAluZeroFlag_in;

110 input sigAluNegFlag_in , sigAluZeroFlag_in;

111

112 //bits 5 and 6 of the s.R0 register

113 input guardBit_in , roundBit_in;

114 //the logical OR between all discarded bits

115 input stickyBitData_in;

116

117 // input control

118 output reg readFPInput_out; // interpret input as floating -point

or integer?

119

120 // Register file control

121 // exponent register file

122 output reg erfWriteSelectR0_out , erfWriteSelectR1_out ,

erfWriteEnableR0_out , erfWriteEnableR1_out;

123 output reg [2:0] erfReadSelectA_out , erfReadSelectB_out;

124 // exponent result register

125 output reg errWriteEnable_out;

126 // significand register file

127 output reg srfWriteSelectR0_out , srfWriteSelectR1_out ,

srfWriteEnableR0_out , srfWriteEnableR1_out ,

srfShiftEnableR0_out;

128 output reg [3:0] srfReadSelectA_out , srfReadSelectB_out;

129 // significand result register

130 output reg srrWriteEnable_out , srrShiftEnable_out ,

srrShiftIn_out;

131

132

133 // Exponent ALU control

134 output reg expAluRegOrSigResult_out;

135 output reg [2:0] expAluOp_out;

136

137

138 // Significand ALU control

139 output reg sigAluRegOrMul_out , sigAluSrr_out;

140 output reg sigAluRegOrExpResult_out;

141 output reg [3:0] sigAluOp_out;

142

143

144 // multiplier chain

145 output reg [1:0] maskAndShiftOp_out;

146 output reg mulEnable_out;

147 output reg [1:0] shiftAndExtendOp_out;

148

149 // result related values

150 output reg outputFPResult_out;

151 output resultSign_out;

152 output reg resultReady_out;

153

154 // exception flags

155 output invalidOperationDetected_out , divisionByZeroDetected_out ,

156 overflowDetected_out , underflowDetected_out ,
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inexactDetected_out;

157

158

159 // INTERNAL REGISTERS

160 reg [5:0] currentState , nextState; //state registers

161 reg [3:0] fpuOpCode; // active operation

162 reg [1:0] roundingMode; // active rounding mode

163 reg signA , signB , isZeroA , isZeroB , isInfA , isInfB , isNanA , isNanB

, isDenormA , isDenormB;

164 reg stickyBit; // current sticky bit value

165 reg resultSign; // result sign of active

operation

166 reg [4:0] iterationCounter; // counter used by DIV and SQRT

167 reg firstIterSign; // holds the sign generated by

the first iteration , used for norm.

168 reg invalidOperationDetected , divisionByZeroDetected ,

overflowDetected , underflowDetected , inexactDetected;

169

170

171 // INTERNAL TEMPORARY VALUES

172 reg [3:0] fpuOpCode_val;

173 reg [1:0] roundingMode_val;

174 reg signA_val , signB_val , isZeroA_val , isZeroB_val , isInfA_val ,

isInfB_val , isNanA_val ,

175 isNanB_val , isDenormA_val , isDenormB_val;

176 reg stickyBit_val;

177 reg resultSign_val;

178 reg [4:0] iterationCounter_val;

179 reg firstIterSign_val;

180 reg invalidOperationDetected_val , divisionByZeroDetected_val ,

overflowDetected_val ,

181 underflowDetected_val , inexactDetected_val;

182

183 // ASSIGNMENTS

184 // output the sign of the active operation

185 assign resultSign_out = resultSign;

186 // output exception flags

187 assign invalidOperationDetected_out = invalidOperationDetected;

188 assign divisionByZeroDetected_out = divisionByZeroDetected;

189 assign overflowDetected_out = overflowDetected;

190 assign underflowDetected_out = underflowDetected;

191 assign inexactDetected_out = inexactDetected;

192

193

194 // asynchronous block

195 always @(*) begin

196 // DEFAULT VALUES

197 // preserve register values by default

198 fpuOpCode_val = fpuOpCode;

199 roundingMode_val = roundingMode;

200 signA_val = signA;

201 signB_val = signB;

202 isZeroA_val = isZeroA;

203 isZeroB_val = isZeroB;

204 isInfA_val = isInfA;

205 isInfB_val = isInfB;

206 isNanA_val = isNanA;



124 APPENDIX A. APPENDIX

207 isNanB_val = isNanB;

208 isDenormA_val = isDenormA;

209 isDenormB_val = isDenormB;

210 stickyBit_val = stickyBit;

211 resultSign_val = resultSign;

212 iterationCounter_val = iterationCounter;

213 firstIterSign_val = firstIterSign;

214 invalidOperationDetected_val= invalidOperationDetected;

215 divisionByZeroDetected_val = divisionByZeroDetected;

216 overflowDetected_val = overflowDetected;

217 underflowDetected_val = underflowDetected;

218 inexactDetected_val = inexactDetected;

219

220 //input control

221 readFPInput_out = 1'b1; // interpret input as FP by default

222

223 // exponent register file

224 erfWriteEnableR0_out = 1'b0;

225 erfWriteEnableR1_out = 1'b0;

226 erfWriteSelectR0_out = 1'b0;

227 erfWriteSelectR1_out = 1'b0;

228 erfReadSelectA_out = `ERF_REG_R0;

229 erfReadSelectB_out = `ERF_REG_R1;

230

231 // significand register file

232 srfWriteEnableR0_out = 1'b0;

233 srfWriteEnableR1_out = 1'b0;

234 srfWriteSelectR0_out = 1'b0;

235 srfWriteSelectR1_out = 1'b0;

236 srfShiftEnableR0_out = 1'b0;

237 srfReadSelectA_out = `SRF_REG_R0;

238 srfReadSelectB_out = `SRF_REG_R1;

239

240 // exponent ALU

241 expAluRegOrSigResult_out= 1'b0;

242 expAluOp_out = `EXP_ALU_OP_NOP;

243 errWriteEnable_out = 1'b0;

244

245 // significand ALU

246 sigAluRegOrMul_out = 1'b0; //read op.A from register

file or from multiplier?

247 sigAluSrr_out = 1'b0; //read op.A from Significand

Result Register , og register file/multiplier?

248 sigAluRegOrExpResult_out= 1'b0; //read op.B from register

file or exponent result register=

249 sigAluOp_out = `SIG_ALU_OP_NOP;

250 srrWriteEnable_out = 1'b0;

251 srrShiftEnable_out = 1'b0;

252 srrShiftIn_out = 1'b0;

253

254 // multiplier chain

255 maskAndShiftOp_out = `MASK_AND_SHIFT_A8C8;

256 mulEnable_out = 1'b0;

257 shiftAndExtendOp_out = `SHIFT_16_BIT_AND_EXTEND;

258

259 // output related

260 outputFPResult_out = 1'b1; // output floating -point result by
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default

261 resultReady_out = 1'b0;

262

263 //END: DEFAULT VALUES

264

265 //

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

266 case (currentState)

267 // --------PRE -PROCESS STATES BEGIN

268 STATE_IDLE: begin

269 nextState = STATE_INIT;

270

271 //keep previous result valid , until a new operation is

started

272 resultReady_out = 1'b1;

273 outputFPResult_out = ~( fpuOpCode == `FPU_INSTR_FP2SI);

274 end

275 STATE_INIT: begin

276 fpuOpCode_val = fpuOpCode_in; // update active

operation

277 roundingMode_val = roundingMode_in; // update active

rounding modes

278

279 //read SVD signals

280 signA_val = signA_in;

281 signB_val = signB_in;

282 isZeroA_val = isZeroA_in;

283 isZeroB_val = isZeroB_in;

284 isInfA_val = isInfA_in;

285 isInfB_val = isInfB_in;

286 isNanA_val = isNanA_in;

287 isNanB_val = isNanB_in;

288 isDenormA_val = isDenormA_in;

289 isDenormB_val = isDenormB_in;

290

291

292 // determine next state

293 case (fpuOpCode_in)

294 `FPU_INSTR_MUL: begin

295 nextState = STATE_MUL_M1; // default

nextState

296

297 // detect input -time exceptions

298 if (isZeroA_in)

299 if (isInfB_in) begin // 0*Inf

300 $display("Invalid operation: 0*Inf");

301 nextState = STATE_EMIT_NAN;

302 invalidOperationDetected_val = 1'b1;

303 end

304

305 if (isZeroB_in)

306 if (isInfA_in) begin //Inf*0

307 $display("Invalid operation: Inf*0");

308 nextState = STATE_EMIT_NAN;

309 invalidOperationDetected_val = 1'b1;

310 end
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311

312 //read new inputs exponents

313 erfWriteEnableR0_out = 1'b1;

314 erfWriteEnableR1_out = 1'b1;

315 erfWriteSelectR0_out = 1'b1;

316 erfWriteSelectR1_out = 1'b1;

317 end

318 `FPU_INSTR_ADD: begin

319 nextState = STATE_ADDSUB_EXPSUB; // default

next -state

320

321 // detect input -time exceptions

322 if (isInfA_in && isInfB_in) //both operands

Inf?

323 if (signA_in != signB_in) begin //

different signs?

324 $display("Invalid operation: (add) 

magnitude subtraction of 

infinities");

325 nextState = STATE_EMIT_NAN;

326 invalidOperationDetected_val = 1'b1;

327 end

328

329 //read new inputs exponents

330 erfWriteEnableR0_out = 1'b1;

331 erfWriteEnableR1_out = 1'b1;

332 erfWriteSelectR0_out = 1'b1;

333 erfWriteSelectR1_out = 1'b1;

334 //read new significands

335 srfWriteEnableR0_out = 1'b1;

336 srfWriteEnableR1_out = 1'b1;

337 srfWriteSelectR0_out = 1'b1;

338 srfWriteSelectR1_out = 1'b1;

339 end

340 `FPU_INSTR_SUB: begin

341 nextState = STATE_ADDSUB_EXPSUB;

342

343 // detect input -time exceptions

344 if (isInfA_in && isInfB_in) //both operands

Inf?

345 if (signA_in == signB_in) begin // equal

signs?

346 $display("Invalid operation: (sub) 

magnitude subtraction of 

infinities");

347 nextState = STATE_EMIT_NAN;

348 invalidOperationDetected_val = 1'b1;

349 end

350

351 //read new inputs exponents

352 erfWriteEnableR0_out = 1'b1;

353 erfWriteEnableR1_out = 1'b1;

354 erfWriteSelectR0_out = 1'b1;

355 erfWriteSelectR1_out = 1'b1;

356 //read new significands

357 srfWriteEnableR0_out = 1'b1;

358 srfWriteEnableR1_out = 1'b1;
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359 srfWriteSelectR0_out = 1'b1;

360 srfWriteSelectR1_out = 1'b1;

361 end

362 `FPU_INSTR_DIV: begin

363 nextState = STATE_DIV_ADD_BIAS; // default next

-state

364

365 // detect input -time exceptions

366 if (isInfA_in && isInfB_in) begin//both

operands Inf?

367 $display("Invalid operation: inf/inf")

;

368 nextState = STATE_EMIT_NAN;

369 invalidOperationDetected_val = 1'b1;

370 end

371 if (isZeroB_in)

372 if (isZeroA_in) begin // 0/0 division

373 $display("Invalid operation: 0/0");

374 nextState = STATE_EMIT_NAN;

375 end else begin //division -by-zero

376 $display("Invalid operation: division 

by zero");

377 resultSign_val = signA_in ^ signB_in;

378 nextState = STATE_EMIT_INF;

379 divisionByZeroDetected_val = 1'b1;

380 end

381

382 //read new inputs exponents

383 erfWriteEnableR0_out = 1'b1;

384 erfWriteEnableR1_out = 1'b1;

385 erfWriteSelectR0_out = 1'b1;

386 erfWriteSelectR1_out = 1'b1;

387 //read new significands

388 srfWriteEnableR0_out = 1'b1;

389 srfWriteEnableR1_out = 1'b1;

390 srfWriteSelectR0_out = 1'b1;

391 srfWriteSelectR1_out = 1'b1;

392 end

393 // `FPU_INSTR_SQRT: nextState = ;

394 `FPU_INSTR_UI2FP: begin

395 nextState = STATE_I2FP_CLZ;

396 //read integer into s.R0

397 readFPInput_out = 1'b0;

398 srfWriteEnableR0_out = 1'b1;

399 srfWriteSelectR0_out = 1'b1;

400 end

401 `FPU_INSTR_SI2FP: begin

402 nextState = STATE_I2FP_TEST_SIGN;

403 //read integer into s.R0

404 readFPInput_out = 1'b0;

405 srfWriteEnableR0_out = 1'b1;

406 srfWriteSelectR0_out = 1'b1;

407 end

408 `FPU_INSTR_FP2SI: begin

409 nextState = STATE_FP2SI_UNBIAS;

410

411 erfWriteEnableR0_out = 1'b1;
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412 erfWriteSelectR0_out = 1'b1;

413 srfWriteEnableR0_out = 1'b1;

414 srfWriteSelectR0_out = 1'b1;

415 end

416 default: begin

417 $display("Invalid instruction or not yet 

implemented");

418 nextState = STATE_IDLE;

419 end

420 endcase

421 end

422 // --------PRE -PROCESS STATES END

423

424 //

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

425

426 // --------MUL STATES BEGIN

427 STATE_MUL_M1: begin

428 nextState = STATE_MUL_M2;

429

430 erfWriteEnableR0_out = 1'b1; // store addition

result in R0

431 expAluOp_out = `EXP_ALU_OP_ADD; //add exponents

432

433 maskAndShiftOp_out = `MASK_AND_SHIFT_A8C8;

434 mulEnable_out = 1'b1;

435

436 resultSign_val = signA ^ signB;

437 end

438 STATE_MUL_M2: begin

439 nextState = STATE_MUL_M3;

440

441 erfWriteEnableR0_out = 1'b1; //write back exponent to

exp.R0

442 erfReadSelectB_out = `ERF_REG_BIAS; //'d127

443 expAluOp_out = `EXP_ALU_OP_SUB; // subtract bias

444

445 maskAndShiftOp_out = `MASK_AND_SHIFT_A8D16;

446 mulEnable_out = 1'b1;

447 sigAluRegOrMul_out = 1'b1;

448 end

449 STATE_MUL_M3: begin

450 nextState = STATE_MUL_M4;

451

452 srfWriteEnableR0_out = 1'b1;

453 sigAluRegOrMul_out = 1'b1; //read partial

product

454 sigAluOp_out = `SIG_ALU_OP_MOVA; // accumulate first

partial product

455

456 maskAndShiftOp_out = `MASK_AND_SHIFT_B16C8;

457 mulEnable_out = 1'b1;

458 end

459 STATE_MUL_M4: begin

460 nextState = STATE_MUL_M5;

461
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462 srfWriteEnableR0_out = 1'b1;

463 srfReadSelectB_out = 3'b000; //read B from R0

464 sigAluRegOrMul_out = 1'b1; //read partial product

465 sigAluOp_out = `SIG_ALU_OP_ADD; // accumulate second

partial product

466

467 maskAndShiftOp_out = `MASK_AND_SHIFT_B16D16;

468 mulEnable_out = 1'b1;

469 shiftAndExtendOp_out = `SHIFT_0_BIT_AND_EXTEND;

470 end

471 STATE_MUL_M5: begin

472 nextState = STATE_MUL_M6;

473

474 srfWriteEnableR0_out = 1'b1;

475 srfReadSelectB_out = `ERF_REG_R0; //read B from

R0

476 sigAluRegOrMul_out = 1'b1; //read partial product

477 sigAluOp_out = `SIG_ALU_OP_ADD; // accumulate third

partial product

478

479 mulEnable_out = 1'b1;

480 shiftAndExtendOp_out = `SHIFT_0_BIT_AND_EXTEND;

481 end

482 STATE_MUL_M6: begin

483 nextState = (sigAluNegFlag_in == 1'b1) ?

STATE_MUL_NORM0 : STATE_MUL_NORM1;

484

485 mulEnable_out = 1'b1;

486 shiftAndExtendOp_out = `SHIFT_TRUNC_AND_EXTEND;

487

488 stickyBit_val = stickyBitData_in;

489

490 srfWriteEnableR0_out = 1'b1; //write back final

product to R0

491 srfReadSelectB_out = `SRF_REG_R0; //read B from R0

492 sigAluRegOrMul_out = 1'b1; //read partial product

493 sigAluOp_out = `SIG_ALU_OP_ADD; // accumulate fourth

partial product

494 end

495 // --------MUL STATES END

496

497 //

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

498

499 // --------ADDSUB STATES BEGIN

500 STATE_ADDSUB_EXPSUB: begin

501 //do we need to negate fraction A?

502 if (signA == 1'b1) begin

503 srfReadSelectB_out = `SRF_REG_R0; //read fractionA

from s.R0

504 sigAluOp_out = `SIG_ALU_OP_NEGB;

505 srfWriteEnableR0_out = 1'b1; //store negated

fraction in s.R0

506 end

507

508 if (expAluNegFlag_in == 1'b1) begin
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509 nextState = STATE_ADDSUB_DIFFNEG;

510 erfWriteEnableR0_out = 1'b1; //write back

subtraction result to R0

511 end else begin

512 nextState = STATE_ADDSUB_DIFFPOS;

513 erfWriteEnableR1_out = 1'b1; //write back

subtraction result to R1

514 end

515

516 expAluOp_out = `EXP_ALU_OP_SUB; // perform E_A

- E_B

517 end

518 STATE_ADDSUB_DIFFNEG: begin

519 nextState = STATE_ADDSUB_SHIFTFRACA;

520

521 erfReadSelectB_out = `ERF_REG_R0; // output R0 on

port B

522 expAluOp_out = `EXP_ALU_OP_NEGB; // negate exponent

difference , to find it's absolute

523 errWriteEnable_out = 1'b1; //write the absolute

exp.diff to ERR

524 end

525 STATE_ADDSUB_DIFFPOS: begin

526 nextState = STATE_ADDSUB_SHIFTFRACB;

527

528 erfReadSelectA_out = `ERF_REG_R1; // output R1 on

port A

529 expAluOp_out = `EXP_ALU_OP_MOVA;// positive exponent

difference , move

530 errWriteEnable_out = 1'b1; //move the exp.diff to

ERR

531 end

532 STATE_ADDSUB_SHIFTFRACA: begin

533 nextState = STATE_ADDSUB_ADDSUBFRACS;

534

535 erfReadSelectA_out = `ERF_REG_R1; //read E_B

from e.R1

536 expAluOp_out = `EXP_ALU_OP_MOVA;//move E_B to e.R0

537 erfWriteEnableR0_out = 1'b1;

538

539 srfReadSelectA_out = `SRF_REG_R0; //read the

significand from R0

540 sigAluRegOrExpResult_out = 1'b1; //use the ERR value (

exp.diff) as operand B to the sigALU

541 sigAluOp_out = `SIG_ALU_OP_SHRA;

542 srfWriteEnableR0_out = 1'b1; //write back shifted

significand to R0

543 end

544 STATE_ADDSUB_SHIFTFRACB: begin

545 nextState = STATE_ADDSUB_ADDSUBFRACS;

546

547 srfReadSelectA_out = `SRF_REG_R1; //read S_B from s.R1

548 sigAluRegOrExpResult_out = 1'b1; //use the ERR value (

exp.diff) as operand B to the sigALU

549 sigAluOp_out = `SIG_ALU_OP_SHRA;

550 srfWriteEnableR1_out = 1'b1; //write back shifted

significand to s.R1
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551 end

552 STATE_ADDSUB_ADDSUBFRACS: begin

553 nextState = (sigAluNegFlag_in == 1'b1) ?

STATE_ADDSUB_NEGSUM : STATE_ADDSUB_POSSUM;

554

555 // determine the effective operation

556 if (fpuOpCode == `FPU_INSTR_ADD) begin

557 if (signB == 1'b1) sigAluOp_out = `SIG_ALU_OP_SUB;

558 else sigAluOp_out = `SIG_ALU_OP_ADD;

559 end else if (fpuOpCode == `FPU_INSTR_SUB) begin

560 if (((~ signA)&(~ signB)) | ((signA)&(~ signB)))

sigAluOp_out = `SIG_ALU_OP_SUB;

561 else sigAluOp_out = `SIG_ALU_OP_ADD;

562 end else

563 $display("Impossible case detected!");

564

565 srfWriteEnableR0_out = 1'b1; //write back addition/

subtraction result to s.R0

566 end

567 STATE_ADDSUB_NEGSUM: begin

568 nextState = STATE_CLZ;

569

570 srfReadSelectB_out = `SRF_REG_R0; //relay s.R0 to

port B

571 sigAluOp_out = `SIG_ALU_OP_NEGB;

572 srfWriteEnableR0_out = 1'b1; //write back negated sum

to s.R0

573

574 resultSign_val = 1'b1; //set the result sign bit

575 end

576 STATE_ADDSUB_POSSUM: begin

577 nextState = STATE_CLZ;

578

579 resultSign_val = 1'b0; //set the result sign bit

580 end

581 // --------ADDSUB STATES END

582

583 //

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

584

585 // --------DIV STATES BEGIN

586 STATE_DIV_ADD_BIAS: begin

587 nextState = STATE_DIV_SUB_EXP;

588

589 erfReadSelectB_out = `ERF_REG_BIAS; //read 'd127 (bias

) from e.C4

590 expAluOp_out = `EXP_ALU_OP_ADD; //add e.R0 to e.C4

591 erfWriteEnableR0_out = 1'b1; // store "unbiased"

exponent in e.R0

592

593 srfShiftEnableR0_out = 1'b1;

594 sigAluOp_out = `SIG_ALU_OP_SUB; // subtract the

denominator from the partial remainder

595 srfWriteEnableR0_out = ~sigAluNegFlag_in; //only

update the partial remainder if the

596 //
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subtraction

gave a

positive

result

597 srrShiftIn_out = ~sigAluNegFlag_in;

598 srrShiftEnable_out = 1'b1;

599

600 firstIterSign_val = sigAluNegFlag_in; //store the sign

from this iteration

601

602 iterationCounter_val = iterationCounter + 5'd1; //

increment the iteration counter

603 end

604

605 STATE_DIV_SUB_EXP: begin

606 nextState = STATE_DIV_ITER;

607

608 expAluOp_out = `EXP_ALU_OP_SUB; //(e.R0 - e.R1)

609 erfWriteEnableR0_out = 1'b1; // store the exponent

in e.R0

610

611 resultSign_val = signA ^ signB;

612

613 srfShiftEnableR0_out = 1'b1;

614 sigAluOp_out = `SIG_ALU_OP_SUB; // subtract the

denominator from the partial remainder

615 srfWriteEnableR0_out = ~sigAluNegFlag_in; //only

update the partial remainder if the

616 //

subtraction

gave a

positive

result

617 srrShiftEnable_out = 1'b1;

618 srrShiftIn_out = ~sigAluNegFlag_in;

619

620 iterationCounter_val = iterationCounter + 5'd1; //

increment the iteration counter

621 end

622

623 STATE_DIV_ITER: begin

624 // determine nextState

625 nextState = (iterationCounter >= 25) ?

STATE_NORM_DIV_SQRT : STATE_DIV_ITER;

626

627 srfShiftEnableR0_out = 1'b1;

628 sigAluOp_out = `SIG_ALU_OP_SUB; // subtract the

denominator from the partial remainder

629 srfWriteEnableR0_out = ~sigAluNegFlag_in; //only

update the partial remainder if the

630 //

subtraction

gave a

positive

result

631 srrShiftEnable_out = 1'b1;

632 srrShiftIn_out = ~sigAluNegFlag_in;
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633

634 iterationCounter_val = iterationCounter + 5'd1; //

increment the iteration counter

635 end

636 // --------DIV STATES END

637

638

639 // --------INT2FP STATES BEGIN

640 STATE_I2FP_TEST_SIGN: begin

641 nextState = (sigAluNegFlag_in) ? STATE_I2FP_NEGATE :

STATE_I2FP_CLZ ;

642

643 sigAluOp_out = `SIG_ALU_OP_MOVA; //move the integer

through the significand ALU ,

644 //in order to trigger

the neg.flag

645 end

646 STATE_I2FP_NEGATE: begin

647 nextState = STATE_I2FP_CLZ;

648

649 srfReadSelectB_out = `SRF_REG_R0; // output srf.R0 on

srf.portB

650 sigAluOp_out = `SIG_ALU_OP_NEGB; // negate the integer ,

in order to convert it to sign -magnitude

651 srfWriteEnableR0_out = 1'b1; //store the negated

integer in srf.R0

652 resultSign_val = 1'b1; // assert a negative

sign bit

653 end

654 STATE_I2FP_CLZ: begin

655 nextState = STATE_I2FP_ADJ1;

656 sigAluOp_out = `SIG_ALU_OP_CLZ; // perform CLZ on input

value

657 srfWriteEnableR1_out = 1'b1; // store #LZ in srf.R1

658 srrWriteEnable_out = 1'b1; // store #LZ in SRR in

order to make it available to expALU

659 end

660 STATE_I2FP_ADJ1: begin

661 nextState = STATE_I2FP_ADJ2;

662

663 erfReadSelectA_out = `ERF_REG_I2FP; //read (bias + 31)

from constant registers

664 expAluRegOrSigResult_out = 1'b1; //read #LZ from

SRR

665 expAluOp_out = `EXP_ALU_OP_SUB; //(bias + 31) - #

LZ

666 erfWriteEnableR0_out = 1'b1; //store exponent

result in e.R0

667

668 sigAluOp_out = `SIG_ALU_OP_SHLL; //s.R0 << s.R1

669 srfWriteEnableR0_out = 1'b1; // store shifted value

in s.R0

670 end

671 STATE_I2FP_ADJ2: begin

672 nextState = STATE_ROUND;

673

674 expAluOp_out = `EXP_ALU_OP_MOVA;
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675 erfWriteEnableR0_out = 1'b1;

676 // errWriteEnable_out = 1'b1;

677

678 srfReadSelectB_out = `SRF_REG_ONE; //read 'd1 from

the constant registers

679 sigAluOp_out = `SIG_ALU_OP_SHRL; //right -shift

the significand to the position assumed by the

round stage

680 srfWriteEnableR0_out = 1'b1; //store the

shifted value in s.R0

681 // srrWriteEnable_out = 1'b1;

682 end

683 // --------INT2FP STATES END

684

685 // --------FP2INT STATES BEGIN

686 STATE_FP2SI_UNBIAS: begin

687 nextState = STATE_FP2SI_CALC_ADJ;

688

689 erfReadSelectB_out = `ERF_REG_BIAS; // fetch the

exponent bias from the constant registers

690 expAluOp_out = `EXP_ALU_OP_SUB; // subtract the

bias from the input exponent

691 erfWriteEnableR0_out = 1'b1; //store the

unbiased exponent in erf.R0

692

693 //left -shift the input significand 2 digits , in order

to place it

694 //to the far left of the register

695 srfReadSelectB_out = `SRF_REG_TWO;

696 sigAluOp_out = `SIG_ALU_OP_SHLL;

697 srfWriteEnableR0_out = 1'b1; // store the shifted

significand in srf.R0

698 end

699 STATE_FP2SI_CALC_ADJ: begin

700 nextState = STATE_FP2SI_PREROUND_RSH;

701

702 // perform (31-true exponent)

703 erfReadSelectA_out = `ERF_REG_RPP;

704 erfReadSelectB_out = `ERF_REG_R0;

705 expAluOp_out = `EXP_ALU_OP_SUB;

706 errWriteEnable_out = 1'b1; // store the adjustment

amount in ERR

707

708 end

709 STATE_FP2SI_PREROUND_RSH: begin

710 //TODO: split this right -shift into two parts

711 //right -shift the significand

712 sigAluRegOrExpResult_out = 1'b1; // fetch the shift

amount from the ERR

713 sigAluOp_out = `SIG_ALU_OP_SHRL;

714 srfWriteEnableR0_out = 1'b1;

715

716 //TEMP!

717 nextState = STATE_FP2SI_NEGATE; //no rounding yet...

718

719 end

720 STATE_FP2SI_ROUND: begin
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721 //TODO: implement this

722 end

723 STATE_FP2SI_POSTROUND_RSH: begin

724 //TODO: implement this

725 end

726 STATE_FP2SI_NEGATE: begin

727 nextState = STATE_EMIT_RESULT;

728

729 srfReadSelectA_out = `SRF_REG_R0; //read the integer

from srf.R0

730 srfReadSelectB_out = `SRF_REG_R0; //read the integer

from srf.R0

731 sigAluOp_out = (signA) ? `SIG_ALU_OP_NEGB :

`SIG_ALU_OP_MOVA; // either move or negate the

integer

732 srrWriteEnable_out = 1'b1; // write the final integer

to SRR

733 end

734 // --------FP2INT STATES END

735

736 //

////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

737

738 // --------POST -PROCESS STATES BEGIN

739 STATE_CLZ: begin

740 nextState = STATE_NORMALIZE_CALC_ADJ;

741

742 //add one to the exponent , in order to maintain the

correct value

743 expAluOp_out = `EXP_ALU_OP_ADD;

744 erfReadSelectB_out = `ERF_REG_ONE; //read 'd1 from

ERF

745 erfWriteEnableR0_out = 1'b1;//write back addition

result to e.R0

746

747 sigAluOp_out = `SIG_ALU_OP_CLZ;

748 srfWriteEnableR1_out = 1'b1; //write back CLZ result

to s.R1

749 end

750 STATE_NORMALIZE_CALC_ADJ: begin

751 nextState = STATE_NORMALIZE_GENERIC;

752

753 // calculate the required significand shift amount

754 srfWriteEnableR1_out = 1'b1; //store #LZ -1 result in s

.R1

755 srfReadSelectA_out = `SRF_REG_R1; //read #LZ from s.R1

756 srfReadSelectB_out = `SRF_REG_ONE; //read 'd1 from

constant registers

757 sigAluOp_out = `SIG_ALU_OP_SUB;

758 srrWriteEnable_out = 1'b1; //store #LZ -1 result in

SRR

759 end

760 STATE_NORMALIZE_GENERIC: begin

761 nextState = STATE_ROUND;

762

763 expAluRegOrSigResult_out = 1'b1; //read #LZ -1 from SRR
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764 expAluOp_out = `EXP_ALU_OP_SUB; // subtract (#LZ -1)

from the current exponent

765 erfWriteEnableR0_out = 1'b1; // write back

normalized exponent to e.R0

766

767 sigAluOp_out = `SIG_ALU_OP_SHLL; //left -shift the

significand , in order to normalize it

768 srfWriteEnableR0_out = 1'b1; // write back

normalized significand to s.R0

769 end

770 STATE_MUL_NORM0: begin

771 nextState = STATE_ROUND;

772

773 //the significand is already normalized , but the

exponent must be incremented by one

774 erfWriteEnableR0_out = 1'b1; //write back normalized

exp to e.R0

775 erfReadSelectB_out = `ERF_REG_ONE; //read 'd1 from the

constant registers

776 expAluOp_out = `EXP_ALU_OP_ADD;

777

778 srfWriteEnableR0_out = 1'b1; //write back normalized

frac to s.R0

779 srfReadSelectB_out = `SRF_REG_ONE; //read 'd1 from the

constant registers

780 sigAluOp_out = `SIG_ALU_OP_SHRL;

781

782 end

783 STATE_MUL_NORM1: begin

784 nextState = STATE_ROUND;

785 //do nothing

786 end

787 STATE_NORM_DIV_SQRT: begin

788 if (firstIterSign) begin // answer is 0.5 xxxx ...

789 erfWriteEnableR0_out = 1'b1;

790 erfReadSelectB_out = `ERF_REG_ONE; //read 'd1 from

constant register

791 expAluOp_out = `EXP_ALU_OP_SUB;

792

793 srfReadSelectB_out = `SRF_REG_SIX; //read 'd2 from

the constant registers

794 sigAluSrr_out = 1'b1; //feed SRR back to the

sigALU

795 sigAluOp_out = `SIG_ALU_OP_SHLL; //shift the

leading one to the place expected by the round

unit

796 srfWriteEnableR0_out = 1'b1; //store the

normalized fraction in s.R0

797 end else begin

798 expAluOp_out = `EXP_ALU_OP_MOVA; //keep the

current exponent , no need to adjust

799

800 srfReadSelectB_out = `SRF_REG_FIVE; //read 'd1

from the constant registers

801 sigAluSrr_out = 1'b1; //feed SRR back to the

sigALU

802 sigAluOp_out = `SIG_ALU_OP_SHLL; //shift the
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leading one to the place expected by the round

unit

803 srfWriteEnableR0_out = 1'b1; //store the

normalized fraction in s.R0

804 end

805

806 nextState = STATE_ROUND;

807 end

808 STATE_ROUND: begin

809 nextState = STATE_EMIT_RESULT; // default next state ,

might be different ...

810

811 //no rounding

812 /* expAluOp_out = `EXP_ALU_OP_MOVA;

813 sigAluOp_out = `SIG_ALU_OP_MOVA;

814 errWriteEnable_out = 1'b1;

815 srrWriteEnable_out = 1'b1;*/

816

817

818 case (roundingMode)

819 `ROUNDING_MODE_NEAREST_EVEN: begin

820 $display("Round towards nearest even: not yet 

implemented");

821 end

822 `ROUNDING_MODE_POS_INF: begin

823 // $display ("(g,r,s): (%b,%b,%b)", guardBit_in ,

roundBit_in , stickyBit);

824 if ((~ resultSign) & (guardBit_in | roundBit_in

| stickyBit)) begin

825 // $display ("->+Inf:Adding ULP");

826 expAluOp_out = `EXP_ALU_OP_MOVA;

827 srfReadSelectB_out = `SRF_REG_ULP_ROUND;

//read ULP ('d128) from constant

registers

828 sigAluOp_out = `SIG_ALU_OP_ADD;

829 end else begin

830 //No rounding needed , just forward

831 expAluOp_out = `EXP_ALU_OP_MOVA;

832 sigAluOp_out = `SIG_ALU_OP_MOVA;

833 end

834 end

835 `ROUNDING_MODE_NEG_INF: begin

836 if (( resultSign) & (guardBit_in | roundBit_in

| stickyBit)) begin

837 // rounding needed , add ULP

838 expAluOp_out = `EXP_ALU_OP_MOVA;

839 srfReadSelectB_out = `SRF_REG_ULP_ROUND;

//read ULP ('d128) from constant

registers

840 sigAluOp_out = `SIG_ALU_OP_ADD;

841 end else begin

842 //No rounding needed , just forward

843 expAluOp_out = `EXP_ALU_OP_MOVA;

844 sigAluOp_out = `SIG_ALU_OP_MOVA;

845 end

846 end

847 `ROUNDING_MODE_TRUNCATE: begin
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848 expAluOp_out = `EXP_ALU_OP_MOVA;

849 sigAluOp_out = `SIG_ALU_OP_MOVA;

850 end

851 endcase

852

853 // generate next state , based on the MSB of the

significand calculation

854 if (sigAluNegFlag_in == 1'b1) begin

855 nextState = STATE_POST_ROUND_NORM;

856 srfWriteEnableR0_out = 1'b1; //write rounded

significand back to s.R0

857 end else begin

858 nextState = STATE_EMIT_RESULT;

859 errWriteEnable_out = 1'b1;

860 srrWriteEnable_out = 1'b1;

861 end

862 end

863 STATE_POST_ROUND_NORM: begin

864 nextState = STATE_EMIT_RESULT;

865

866 //TODO

867 expAluOp_out = `EXP_ALU_OP_MOVA;

868 errWriteEnable_out = 1'b1;

869 sigAluOp_out = `SIG_ALU_OP_MOVA;

870 srrWriteEnable_out = 1'b1;

871 end

872 // output states

873 STATE_EMIT_RESULT: begin

874 // operation finished , flag result ready

875 resultReady_out = 1'b1;

876 nextState = STATE_IDLE;

877

878 outputFPResult_out = ~( fpuOpCode == `FPU_INSTR_FP2SI);

879 end

880 STATE_EMIT_ZERO: begin

881 erfReadSelectA_out = `ERF_REG_ZERO; //move 'd0 through

the ALU

882 expAluOp_out = `EXP_ALU_OP_MOVA;

883 errWriteEnable_out = 1'b1; // update the result

register

884

885 srfReadSelectA_out = `SRF_REG_ZERO; //move 'd0 through

the ALU

886 sigAluOp_out = `SIG_ALU_OP_MOVA;

887 srrWriteEnable_out = 1'b1; // update the result

register

888

889 nextState = STATE_IDLE;

890 end

891 STATE_EMIT_INF: begin

892 // $display (" Emitting Inf");

893 erfReadSelectA_out = `ERF_REG_ONES; //move 'b11111111

through the ALU

894 expAluOp_out = `EXP_ALU_OP_MOVA;

895 errWriteEnable_out = 1'b1; // update the result

register

896
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897 srfReadSelectA_out = `SRF_REG_ZERO; //move 'd

898 sigAluOp_out = `SIG_ALU_OP_MOVA;

899 srrWriteEnable_out = 1'b1; // update the result

register

900

901 nextState = STATE_IDLE;

902 end

903 STATE_EMIT_NAN: begin

904 // $display (" Emitting NaN");

905 erfReadSelectA_out = `ERF_REG_ONES; //move 'b11111111

through the ALU

906 expAluOp_out = `EXP_ALU_OP_MOVA;

907 errWriteEnable_out = 1'b1; // update the result

register

908

909 srfReadSelectA_out = `SRF_REG_NANSIG; //move 'd

910 sigAluOp_out = `SIG_ALU_OP_MOVA;

911 srrWriteEnable_out = 1'b1; // update the result

register

912

913 nextState = STATE_IDLE;

914 end

915

916

917 // --------POST PROCESS STATES END

918

919 default: begin

920 // $display (" Control Unit: illegal state reached !");

921 nextState = STATE_IDLE;

922 end

923 endcase

924 end

925

926

927

928 // synchronous block

929 always @(posedge clk_in) begin

930 if (reset_in == 1'b1) begin // synchronous reset

931 //reset state register

932 currentState = STATE_IDLE;

933

934 //reset registers

935 fpuOpCode = 4'bx;

936 roundingMode= 2'bx;

937 signA = 1'bx;

938 signB = 1'bx;

939 isZeroA = 1'bx;

940 isZeroB = 1'bx;

941 isInfA = 1'bx;

942 isInfB = 1'bx;

943 isNanA = 1'bx;

944 isNanB = 1'bx;

945 isDenormA = 1'bx;

946 isDenormB = 1'bx;

947 stickyBit = 1'b0;

948 resultSign = 1'b0;

949 iterationCounter = 5'd0;
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950 firstIterSign = 1'b0;

951 invalidOperationDetected= 1'b0;

952 divisionByZeroDetected = 1'b0;

953 overflowDetected = 1'b0;

954 underflowDetected = 1'b0;

955 inexactDetected = 1'b0;

956

957 end else begin

958 // update state register

959 currentState = nextState;

960

961 // update internal registers

962 fpuOpCode = fpuOpCode_val;

963 roundingMode= roundingMode_val;

964 signA = signA_val;

965 signB = signB_val;

966 isZeroA = isZeroA_val;

967 isZeroB = isZeroB_val;

968 isInfA = isInfA_val;

969 isInfB = isInfB_val;

970 isNanA = isNanA_val;

971 isNanB = isNanB_val;

972 isDenormA = isDenormA_val;

973 isDenormB = isDenormB_val;

974 stickyBit = stickyBit_val;

975 resultSign = resultSign_val;

976 iterationCounter = iterationCounter_val;

977 firstIterSign = firstIterSign_val;

978 invalidOperationDetected= invalidOperationDetected_val;

979 divisionByZeroDetected = divisionByZeroDetected_val;

980 overflowDetected = overflowDetected_val;

981 underflowDetected = underflowDetected_val;

982 inexactDetected = inexactDetected_val;

983 end

984 end

985 endmodule

Listing A.11: fpu_top.v

1 `timescale 1ns/1ps

2

3 `include "global.v"

4

5 module FPU_top(clk_in , reset_in , fpuOpCode_in , roundingMode_in ,

operandA_in , operandB_in , resultReady_out , result_out ,

6 invalidOperation_out , divisionByZero_out , overflow_out ,

underflow_out , inexact_out);

7 // I/O PORTS

8 input clk_in , reset_in;

9 input [3:0] fpuOpCode_in;

10 input [1:0] roundingMode_in;

11 input [31:0] operandA_in , operandB_in;

12 output resultReady_out;

13 output [31:0] result_out;

14 // exception flags

15 output invalidOperation_out , divisionByZero_out , overflow_out ,

underflow_out , inexact_out;
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16

17 // INTERNAL REGISTERS

18 reg [8:0] expAluResultRegister; //9 bit

19 reg [31:0] sigAluResultRegister; //31 bit

20

21 //WIRES

22 //input control

23 wire readFPInput; //mux between integer and floating -point

input

24 wire [31:0] trueInputA;

25

26 //SVD output

27 //to control unit

28 wire signA , signB , isZeroA , isZeroB , isInfA , isInfB ,

isNanA , isNanB , isDenormA , isDenormB;

29 //data

30 wire [32:0] operandAExpanded , operandBExpanded;

31

32 //exp ALU register file

33 // control

34 wire erfWriteSelectR0 , erfWriteSelectR1;

35 wire erfWriteEnableR0 , erfWriteEnableR1;

36 wire [2:0] erfReadSelectA , erfReadSelectB;

37 //data

38 wire [8:0] erfWriteValueR0 , erfWriteValueR1; // 9 bit

39 wire [8:0] erfReadValueA , erfReadValueB; // 9 bit

40

41 //exp ALU connections

42 // control

43 wire expAluRegOrSigResult;

44 wire [2:0] expAluOpCode;

45 wire errWriteEnable;

46 //data

47 wire expAluNegFlag , expAluZeroFlag;

48 wire [8:0] expAluOpA , expAluOpB;

49 wire [8:0] expAluResult;

50

51 //large ALU register file

52 // control

53 wire srfWriteSelectR0 , srfWriteSelectR1;

54 wire srfWriteEnableR0 , srfWriteEnableR1;

55 wire srfShiftEnableR0;

56 wire [3:0] srfReadSelectA , srfReadSelectB;

57 //data

58 wire [31:0] srfWriteValueR0 , srfWriteValueR1; // 32 bit

59 wire [31:0] srfReadValueA , srfReadValueB; // 32 bit

60

61 // significand ALU connections

62 // control

63 wire sigAluRegOrMul , sigAluSrr , sigAluRegOrExpResult;

64 wire [3:0] sigAluOpCode;

65 wire srrWriteEnable , srrShiftEnable;

66 //data

67 wire [31:0] sigAluOpA , sigAluOpB , sigAluOpA_tmp;

68 wire sigAluNegFlag , sigAluZeroFlag;

69 wire [31:0] sigAluResult;

70 wire srrShiftIn;
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71

72 // multiplier chain

73 // control

74 wire [1:0] maskAndShiftOp;

75 wire mulEnable;

76 wire [1:0] shiftAndExtendOp;

77 //data

78 wire [15:0] mulInputMaskedShiftedA , mulInputMaskedShiftedB

;

79 wire [31:0] mulResult;

80 wire [31:0] mulResultShiftedExtended;

81 wire stickyBitData;

82

83

84 // output control

85 wire outputFPResult; //mux between outputting a FP-result

or an integer result

86 wire resultSign;

87

88 // ASSIGNMENTS

89 assign result_out [31:0] = (outputFPResult) ? {resultSign ,

expAluResultRegister [7:0], sigAluResultRegister [29:7]} :

90 sigAluResultRegister

[31:0];

91

92 //mux between input exponent and exp ALU result

93 assign erfWriteValueR0 = (erfWriteSelectR0 == 1'b0) ?

expAluResult : operandAExpanded [31:24];

94 //mux between input exponent and exp ALU result

95 assign erfWriteValueR1 = (erfWriteSelectR1 == 1'b0) ?

expAluResult : operandBExpanded [31:24];

96

97 // connect small register file with the small ALU

98 assign expAluOpA = erfReadValueA;

99 assign expAluOpB = (expAluRegOrSigResult == 1'b0) ?

erfReadValueB : sigAluResultRegister [8:0];

100

101 //mux between integer input and floating -point input

102 assign trueInputA = (readFPInput) ? {2'b0 , operandAExpanded

[23:0] , 6'b0} : operandA_in [31:0];

103

104 //mux between input A and large ALU result

105 assign srfWriteValueR0 = (srfWriteSelectR0 == 1'b0) ?

sigAluResult : trueInputA;

106 //mux between input B and large ALU result

107 assign srfWriteValueR1 = (srfWriteSelectR1 == 1'b0) ?

sigAluResult : {2'b0, operandBExpanded [23:0] , 6'b0};

108

109 // connect large register file with the large ALU

110 assign sigAluOpA_tmp = (sigAluRegOrMul) ?

mulResultShiftedExtended : srfReadValueA;

111 assign sigAluOpA = (sigAluSrr) ? sigAluResultRegister :

sigAluOpA_tmp;

112 assign sigAluOpB = (sigAluRegOrExpResult)?

expAluResultRegister : srfReadValueB;

113
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114

115 // INSTANTIATIONS

116 SVDUnit svdUnitA(operandA_in , signA , isZeroA , isInfA , isNanA ,

isDenormA , operandAExpanded);

117 SVDUnit svdUnitB(operandB_in , signB , isZeroB , isInfB , isNanB ,

isDenormB , operandBExpanded);

118

119 FpuControlUnit controlUnit (. clk_in(clk_in), .reset_in(reset_in

), .fpuOpCode_in(fpuOpCode_in),

120 .roundingMode_in(roundingMode_in),

121 .signA_in(signA), .signB_in(signB), .isZeroA_in(isZeroA),

.isZeroB_in(isZeroB),

122 .isInfA_in(isInfA), .isInfB_in(isInfB), .isNanA_in(

isNanA), .isNanB_in(isNanB),

123 .isDenormA_in(isDenormA), .isDenormB_in(isDenormB),

124 .readFPInput_out(readFPInput),

125 .expAluNegFlag_in(expAluNegFlag), .expAluZeroFlag_in(

expAluZeroFlag),

126 .sigAluNegFlag_in(sigAluNegFlag), .sigAluZeroFlag_in(

sigAluZeroFlag),

127 .guardBit_in(srfReadValueA [6]), .roundBit_in(srfReadValueA

[5]), .stickyBitData_in(stickyBitData),

128 .erfWriteSelectR0_out(erfWriteSelectR0), .

erfWriteSelectR1_out(erfWriteSelectR1),

129 .erfWriteEnableR0_out(erfWriteEnableR0), .

erfWriteEnableR1_out(erfWriteEnableR1),

130 .erfReadSelectA_out(erfReadSelectA), .

erfReadSelectB_out(erfReadSelectB),

131 .srfWriteSelectR0_out(srfWriteSelectR0), .

srfWriteSelectR1_out(srfWriteSelectR1),

132 .srfWriteEnableR0_out(srfWriteEnableR0), .

srfWriteEnableR1_out(srfWriteEnableR1),

133 .srfShiftEnableR0_out(srfShiftEnableR0), .

srfReadSelectA_out(srfReadSelectA),

134 .srfReadSelectB_out(srfReadSelectB),

135 .expAluRegOrSigResult_out(expAluRegOrSigResult),

136 .expAluOp_out(expAluOpCode),

137 .errWriteEnable_out(errWriteEnable),

138 .sigAluRegOrMul_out(sigAluRegOrMul), .sigAluSrr_out(

sigAluSrr), .sigAluRegOrExpResult_out(

sigAluRegOrExpResult),

139 .sigAluOp_out(sigAluOpCode),

140 .srrWriteEnable_out(srrWriteEnable),

141 .srrShiftEnable_out(srrShiftEnable),

142 .srrShiftIn_out(srrShiftIn),

143 .maskAndShiftOp_out(maskAndShiftOp),

144 .mulEnable_out(mulEnable),

145 .shiftAndExtendOp_out(shiftAndExtendOp),

146 .outputFPResult_out(outputFPResult),

147 .resultSign_out(resultSign),

148 .resultReady_out(resultReady_out),

149 .invalidOperationDetected_out(invalidOperation_out), .

divisionByZeroDetected_out(divisionByZero_out),

150 .overflowDetected_out(overflow_out), .

underflowDetected_out(underflow_out), .

inexactDetected_out(inexact_out)

151 );
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152

153 ExpRegisterFile expRegisterFile(clk_in , reset_in ,

erfWriteEnableR0 , erfWriteEnableR1 , erfWriteValueR0 ,

erfWriteValueR1 ,

154 erfReadSelectA , erfReadSelectB ,

erfReadValueA ,

erfReadValueB);

155

156 ExponentALU expALU(expAluOpCode , expAluOpA , expAluOpB ,

expAluNegFlag , expAluZeroFlag , expAluResult);

157

158 SigRegisterFile sigRegisterFile(clk_in , reset_in ,

srfWriteEnableR0 , srfWriteEnableR1 , srfWriteValueR0 ,

srfWriteValueR1 ,

159 srfShiftEnableR0 ,

srfReadSelectA ,

srfReadSelectB ,

srfReadValueA ,

srfReadValueB);

160

161 SignificandALU sigALU(sigAluOpCode , sigAluOpA , sigAluOpB ,

sigAluNegFlag , sigAluZeroFlag , sigAluResult);

162

163

164 // MULTIPLIER CHAIN

165 MaskAndShift maskAndShift(maskAndShiftOp , operandAExpanded

[23:0] , operandBExpanded [23:0] ,

166 mulInputMaskedShiftedA ,

mulInputMaskedShiftedB);

167 ExternalMul16x16 externalMul(clk_in , reset_in , mulEnable ,

mulInputMaskedShiftedA ,

168 mulInputMaskedShiftedB , mulResult

);

169 ShiftAndExtend shiftAndExtend(shiftAndExtendOp , mulResult ,

mulResultShiftedExtended , stickyBitData);

170

171

172 // SYNCHRONOUS BLOCK - <TODO: replace with register modules?>

173 always @(posedge clk_in) begin

174 if (reset_in) begin

175 expAluResultRegister = 0;

176 sigAluResultRegister = 0;

177 end else begin

178 // update exponent result register

179 if (errWriteEnable) expAluResultRegister =

expAluResult;

180

181 // update significand result register

182 if (srrShiftEnable)

183 sigAluResultRegister = {sigAluResultRegister

[30:0] , srrShiftIn }; //shift a bit into SRR

184 else begin

185 if (srrWriteEnable) sigAluResultRegister =

sigAluResult; //write ALU result into SRR

186 end

187 end

188 end
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189 endmodule

A.2 Example Testbench Generation

The following C-program outputs a set of text-�les with n lines, each line contains
two input values and the result of these operations. To make sure all combinations
of input signs and rounding modes are tested, the program will generate various
combinations of these. Similar programs have been written for the other �oating-
point operations as well.

Listing A.12: fpmul.cpp

1 #include <fenv.h>

2 #include <float.h>

3 #include <stdio.h>

4 #include <string.h>

5 #include <stdlib.h>

6

7 int main(int argc , char** argv)

8 {

9 FILE* file;

10 int testVectorCount = 1;

11 char *files [4] = {"mul -vectors -p-p.txt", "mul -vectors -p-n.txt", "mul

-vectors -n-p.txt", "mul -vectors -n-n.txt"};

12 char *folders [4] = {"nearest/", "pinf/", "ninf/", "trunc/"};

13 int roundingModes [4] = {FE_TONEAREST , FE_UPWARD , FE_DOWNWARD ,

FE_TOWARDZERO };

14

15 if (argc >1) testVectorCount = atoi(argv [1]);

16

17 float a, b, c;

18 char buf [80];

19

20 for (int r=0; r<4; r++)

21 {

22 fesetround(roundingModes[r]);

23

24 for (int s=0; s<4; s++)

25 {

26 strcpy(buf , folders[r]);

27 strcat(buf , files[s]);

28 file = fopen(buf , "w");

29 if (file == NULL)

30 {

31 printf("Unable to create/open output file: %s\n", files[s]);

32 return -1;

33 }

34

35 //base input

36 switch (s)

37 {

38 case (0)://p-p

39 a = 4.3f;
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40 b = 7.8f;

41 break;

42 case (1)://p-n

43 a = 4.3f;

44 b = -7.8f;

45 break;

46 case (2)://n-p

47 a = -4.3f;

48 b = 7.8f;

49 break;

50 case (3)://n-n

51 a = -4.3f;

52 b = -7.8f;

53 break;

54 }

55

56

57 for (int tv=0; tv<testVectorCount; tv++)

58 {

59 c = a * b;

60

61 fprintf(file , "%x\t", reinterpret_cast <int&>(a));

62 fprintf(file , "%x\t", reinterpret_cast <int&>(b));

63 fprintf(file , "%x\n", reinterpret_cast <int&>(c));

64

65 // update input

66 switch (s)

67 {

68 case (0)://p-p

69 a = 1.0073627f * a + 0.9812f;

70 b = 1.005434f * b + 0.542f;

71 break;

72 case (1)://p-n

73 a = 1.0073627f * a + 0.9812f;

74 b = 1.005434f * b - 0.542f;

75 break;

76 case (2)://n-p

77 a = 1.0073627f * a - 0.9812f;

78 b = 1.005434f * b + 0.542f;

79 break;

80 case (3)://n-n

81 a = 1.0073627f * a - 0.9812f;

82 b = 1.005434f * b - 0.542f;

83 break;

84 }

85 }

86 fclose(file);

87 }

88 }

89 return 0;

90 }

The resulting test-vector �les can be used to test the design, by utilizing an auto-
mated testbench. An example of such a testbench is given below.

Listing A.13: fpu_top_tb.v
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1 `timescale 1ns/1ps

2

3 `include "../ global.v"

4

5 module FPU_top_tb ();

6 reg clk , reset;

7 reg [3:0] opCode;

8 reg [1:0] roundingMode;

9 reg [31:0] A;

10 reg [31:0] B;

11 reg [31:0] ER; // expected result

12

13 wire resultReady;

14 wire [31:0] result;

15 wire invalidOperation , divisionByZero , overflow , underflow ,

inexact;

16

17 integer file;

18 integer mulVectorCount = 100;

19 integer addVectorCount = 100;

20 integer subVectorCount = 100;

21 integer divVectorCount = 200;

22

23 // instantiate DUT

24 FPU_top DUT(clk , reset , opCode , roundingMode , A, B, resultReady ,

result ,

25 invalidOperation , divisionByZero , overflow , underflow ,

inexact);

26

27

28 //clock

29 parameter HCP = 10;

30 initial forever begin

31 #HCP clk = ~clk;

32 end

33

34 initial begin

35 clk = 1'b0;

36 reset = 1'b1;

37

38 $display("---------------- Mul automated testbench 

----------------");

39 opCode = `FPU_INSTR_MUL;

40 $display("Round towards zero");

41 roundingMode = `ROUNDING_MODE_TRUNCATE;

42 file = $fopen("test/mul/trunc/mul -vectors -p-p.txt", "r");

runSingleFile(file , mulVectorCount);

43 file = $fopen("test/mul/trunc/mul -vectors -p-n.txt", "r");

runSingleFile(file , mulVectorCount);

44 file = $fopen("test/mul/trunc/mul -vectors -n-p.txt", "r");

runSingleFile(file , mulVectorCount);

45 file = $fopen("test/mul/trunc/mul -vectors -n-n.txt", "r");

runSingleFile(file , mulVectorCount);

46 $display("Round towards +Inf");

47 roundingMode = `ROUNDING_MODE_POS_INF;

48 file = $fopen("test/mul/pinf/mul -vectors -p-p.txt", "r");

runSingleFile(file , mulVectorCount);
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49 file = $fopen("test/mul/pinf/mul -vectors -p-n.txt", "r");

runSingleFile(file , mulVectorCount);

50 file = $fopen("test/mul/pinf/mul -vectors -n-p.txt", "r");

runSingleFile(file , mulVectorCount);

51 file = $fopen("test/mul/pinf/mul -vectors -n-n.txt", "r");

runSingleFile(file , mulVectorCount);

52 $display("Round towards -Inf");

53 roundingMode = `ROUNDING_MODE_NEG_INF;

54 file = $fopen("test/mul/ninf/mul -vectors -p-p.txt", "r");

runSingleFile(file , mulVectorCount);

55 file = $fopen("test/mul/ninf/mul -vectors -p-n.txt", "r");

runSingleFile(file , mulVectorCount);

56 file = $fopen("test/mul/ninf/mul -vectors -n-p.txt", "r");

runSingleFile(file , mulVectorCount);

57 file = $fopen("test/mul/ninf/mul -vectors -n-n.txt", "r");

runSingleFile(file , mulVectorCount);

58 /* $display ("Round towards nearest event ");

59 roundingMode = `ROUNDING_MODE_NEAREST_EVEN;

60 file = $fopen ("test/mul/nearest/mul -vectors -p-p.txt", "r")

; runSingleFile(file , mulVectorCount);

61 file = $fopen ("test/mul/nearest/mul -vectors -p-n.txt", "r")

; runSingleFile(file , mulVectorCount);

62 file = $fopen ("test/mul/nearest/mul -vectors -n-p.txt", "r")

; runSingleFile(file , mulVectorCount);

63 file = $fopen ("test/mul/nearest/mul -vectors -n-n.txt", "r")

; runSingleFile(file , mulVectorCount);*/

64

65

66

67 $display("---------------- Add/Sub automatic testbench 

----------------");

68 $display("Add:");

69 opCode = `FPU_INSTR_ADD;

70 $display("Round towards zero");

71 roundingMode = `ROUNDING_MODE_TRUNCATE;

72 file = $fopen("test/add/trunc/add -vectors -p-p.txt", "r

"); runSingleFile(file , addVectorCount);

73 file = $fopen("test/add/trunc/add -vectors -p-n.txt", "r

"); runSingleFile(file , addVectorCount);

74 file = $fopen("test/add/trunc/add -vectors -n-p.txt", "r

"); runSingleFile(file , addVectorCount);

75 file = $fopen("test/add/trunc/add -vectors -n-n.txt", "r

"); runSingleFile(file , addVectorCount);

76 $display("Round towards +Inf");

77 roundingMode = `ROUNDING_MODE_POS_INF;

78 file = $fopen("test/add/pinf/add -vectors -p-p.txt", "r"

); runSingleFile(file , addVectorCount);

79 file = $fopen("test/add/pinf/add -vectors -p-n.txt", "r"

); runSingleFile(file , addVectorCount);

80 file = $fopen("test/add/pinf/add -vectors -n-p.txt", "r"

); runSingleFile(file , addVectorCount);

81 file = $fopen("test/add/pinf/add -vectors -n-n.txt", "r"

); runSingleFile(file , addVectorCount);

82 $display("Round towards -Inf");

83 roundingMode = `ROUNDING_MODE_NEG_INF;

84 file = $fopen("test/add/ninf/add -vectors -p-p.txt", "r"

); runSingleFile(file , addVectorCount);
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85 file = $fopen("test/add/ninf/add -vectors -p-n.txt", "r"

); runSingleFile(file , addVectorCount);

86 file = $fopen("test/add/ninf/add -vectors -n-p.txt", "r"

); runSingleFile(file , addVectorCount);

87 file = $fopen("test/add/ninf/add -vectors -n-n.txt", "r"

); runSingleFile(file , addVectorCount);

88 /* $display ("Round towards nearest even");

89 roundingMode = `ROUNDING_MODE_NEAREST_EVEN;

90 file = $fopen ("test/add/nearest/add -vectors -p-p.txt",

"r"); runSingleFile(file , addVectorCount);

91 file = $fopen ("test/add/nearest/add -vectors -p-n.txt",

"r"); runSingleFile(file , addVectorCount);

92 file = $fopen ("test/add/nearest/add -vectors -n-p.txt",

"r"); runSingleFile(file , addVectorCount);

93 file = $fopen ("test/add/nearest/add -vectors -n-n.txt",

"r"); runSingleFile(file , addVectorCount);

94 */

95 $display("----------------");

96 $display("Sub:");

97 opCode = `FPU_INSTR_SUB;

98 $display("Round towards zero");

99 roundingMode = `ROUNDING_MODE_TRUNCATE;

100 file = $fopen("test/sub/trunc/sub -vectors -p-p.txt", "r

"); runSingleFile(file , subVectorCount);

101 file = $fopen("test/sub/trunc/sub -vectors -p-n.txt", "r

"); runSingleFile(file , subVectorCount);

102 file = $fopen("test/sub/trunc/sub -vectors -n-p.txt", "r

"); runSingleFile(file , subVectorCount);

103 file = $fopen("test/sub/trunc/sub -vectors -n-n.txt", "r

"); runSingleFile(file , subVectorCount);

104 $display("Round towards +Inf");

105 roundingMode = `ROUNDING_MODE_POS_INF;

106 file = $fopen("test/sub/pinf/sub -vectors -p-p.txt", "r"

); runSingleFile(file , subVectorCount);

107 file = $fopen("test/sub/pinf/sub -vectors -p-n.txt", "r"

); runSingleFile(file , subVectorCount);

108 file = $fopen("test/sub/pinf/sub -vectors -n-p.txt", "r"

); runSingleFile(file , subVectorCount);

109 file = $fopen("test/sub/pinf/sub -vectors -n-n.txt", "r"

); runSingleFile(file , subVectorCount);

110 $display("Round towards -Inf");

111 roundingMode = `ROUNDING_MODE_NEG_INF;

112 file = $fopen("test/sub/ninf/sub -vectors -p-p.txt", "r"

); runSingleFile(file , subVectorCount);

113 file = $fopen("test/sub/ninf/sub -vectors -p-n.txt", "r"

); runSingleFile(file , subVectorCount);

114 file = $fopen("test/sub/ninf/sub -vectors -n-p.txt", "r"

); runSingleFile(file , subVectorCount);

115 file = $fopen("test/sub/ninf/sub -vectors -n-n.txt", "r"

); runSingleFile(file , subVectorCount);

116 /* $display ("Round towards nearest event ");

117 roundingMode = `ROUNDING_MODE_NEAREST_EVEN;

118 file = $fopen ("test/sub/nearest/sub -vectors -p-p.txt",

"r"); runSingleFile(file , subVectorCount);

119 file = $fopen ("test/sub/nearest/sub -vectors -p-n.txt",

"r"); runSingleFile(file , subVectorCount);
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120 file = $fopen ("test/sub/nearest/sub -vectors -n-p.txt",

"r"); runSingleFile(file , subVectorCount);

121 file = $fopen ("test/sub/nearest/sub -vectors -n-n.txt",

"r"); runSingleFile(file , subVectorCount);

122 */

123

124 $display("---------------- DIV automatic testbench 

----------------");

125 opCode = `FPU_INSTR_DIV;

126 $display("Round towards zero");

127 roundingMode = `ROUNDING_MODE_TRUNCATE;

128 file = $fopen("test/div/trunc/div -vectors -p-p.txt", "r");

runSingleFile(file , 1);

129 file = $fopen("test/div/trunc/div -vectors -p-n.txt", "r");

runSingleFile(file , divVectorCount);

130 file = $fopen("test/div/trunc/div -vectors -n-p.txt", "r");

runSingleFile(file , divVectorCount);

131 file = $fopen("test/div/trunc/div -vectors -n-n.txt", "r");

runSingleFile(file , divVectorCount);

132 /* $display ("Round towards +Inf");

133 roundingMode = `ROUNDING_MODE_POS_INF;

134 file = $fopen ("test/div/pinf/div -vectors -p-p.txt", "r

"); runSingleFile(file , divVectorCount);

135 file = $fopen ("test/div/pinf/div -vectors -p-n.txt", "r

"); runSingleFile(file , divVectorCount);

136 file = $fopen ("test/div/pinf/div -vectors -n-p.txt", "r

"); runSingleFile(file , divVectorCount);

137 file = $fopen ("test/div/pinf/div -vectors -n-n.txt", "r

"); runSingleFile(file , divVectorCount);

138 $display ("Round towards -Inf");

139 roundingMode = `ROUNDING_MODE_NEG_INF;

140 file = $fopen ("test/div/ninf/div -vectors -p-p.txt", "r

"); runSingleFile(file , divVectorCount);

141 file = $fopen ("test/div/ninf/div -vectors -p-n.txt", "r

"); runSingleFile(file , divVectorCount);

142 file = $fopen ("test/div/ninf/div -vectors -n-p.txt", "r

"); runSingleFile(file , divVectorCount);

143 file = $fopen ("test/div/ninf/div -vectors -n-n.txt", "r

"); runSingleFile(file , divVectorCount); */

144 /* $display ("Round towards nearest event ");

145 roundingMode = `ROUNDING_MODE_NEAREST_EVEN;

146 file = $fopen ("test/div/nearest/div -vectors -p-p.txt",

"r"); runSingleFile(file , subVectorCount);

147 file = $fopen ("test/div/nearest/div -vectors -p-n.txt",

"r"); runSingleFile(file , subVectorCount);

148 file = $fopen ("test/div/nearest/div -vectors -n-p.txt",

"r"); runSingleFile(file , subVectorCount);

149 file = $fopen ("test/div/nearest/div -vectors -n-n.txt",

"r"); runSingleFile(file , subVectorCount);

150 */

151

152

153 $display("----------------");

154 #20

155 $finish;

156 end

157
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158

159 task runSingleFile;

160 input integer file;

161 input integer vectorCount;

162 integer status , cnt , errorCount;

163 begin

164 cnt = 0;

165 errorCount = 0;

166 while (cnt < vectorCount) begin

167 status = $fscanf(file , "%x\t%x\t%x\n", A[31:0] , B[31:0] ,

ER [31:0]);

168 #(2* HCP) reset = 1'b0;

169 @(posedge resultReady) #1;

170 if (ER !== result) begin

171 $display("Vector %d: Wrong result!", cnt);

172 $display("A:  %b\t%x\t%b\n", A[31], A[30:23] , A[22:0])

;

173 $display("B:  %b\t%x\t%b\n", B[31], B[30:23] , B[22:0])

;

174 $display("ER: %b\t%x\t%b\n", ER[31], ER[30:23] , ER

[22:0]);

175 $display("R:  %b\t%x\t%b\n", result [31], result

[30:23] , result [22:0]);

176 errorCount = errorCount + 1;

177 end else begin

178 /* $display (" Vector %d: Correct result", cnt);

179 $display ("A: %b\t%x\t%b\n", A[31], A[30:23] , A[22:0])

;

180 $display ("B: %b\t%x\t%b\n", B[31], B[30:23] , B[22:0])

;

181 $display ("ER: %b\t%x\t%b\n", ER[31], ER[30:23] , ER

[22:0]);

182 $display ("R: %b\t%x\t%b\n", result [31], result

[30:23] , result [22:0]);*/

183 end

184 reset = 1'b1;

185 cnt = cnt + 1;

186 end

187 $display("Finished , %d vectors simulated , %d error(s)", cnt ,

errorCount);

188 $fclose(file);

189 end

190 endtask

191 endmodule
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