
June 2010
Per Gunnar Kjeldsberg, IET

Master of Science in Electronics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Embedded Demonstrator for Video
Presentation and Manipulation

Cato Marwell Jonassen

Problem Description
In many situations, like school visits at NTNU,
Forskningstorget and Elektronikk-& telekommunikasjonsdagen,
it is desirable for Department of Electronics and Telecommunication to demonstrate
good examples of electronic systems.
Embedded systems are well suited as demonstrators since the combination of hardware
and software gives both flexibility and wide possibilities for optimization.

In this task, the student will implement a specified system for demonstration of
topics related to courses provided by the department.
In order to make a good demonstration, necessary presentation material is also to be made,
together with a plan on how to demonstrate the embedded system.

Assignment given: 15. January 2010
Supervisor: Per Gunnar Kjeldsberg, IET

Abstract

In this master thesis there has been implemented an embedded demonstrator for video
presentation and manipulation, based on the specification presented in the project thesis
written last semester. The demonstrator was created with the intention of being used by
Department of Electronics and Telecommunication in situations where the department
needed good examples of electronic systems. These systems can be used to motivate,
educate and possibly recruit new students.

By combining the use of video as a motivational medium with a practical approach to
the theory, the demonstrator is designed to emphasize the importance of hardware/soft-
ware codesign in electronic systems. The demonstrator is designed with a combination
of dedicated hardware modules and the Nios II/f embedded soft processor from Altera.
Video is processed in both hardware and software to demonstrate the difference in ob-
tainable video quality. A measured frame rate of 25 fps in hardware and less than 1 fps in
software is considered to be a good demonstration of the difference in processing power.
An additional color processing demonstration is also created to visually demonstrate
the performance differences when processing colors using software versus using custom
floating-point instructions. It is concluded that an average performance increase of 300%
is archived when using custom instructions, which is concidered to be noticeable visu-
ally. A poster with the necessary theory, usage guidelines and results has been created
to support the demonstration together with a plan of how the demonstration should be
performed based on the age and educational background of the observer.

The embedded demonstrator was implemented using the Altera DE2 platform in combi-
nation with the TRDB D5M camera and hardware description from Terasic.

i

Preface

One of the most important reasons for choosing this task for my master thesis was that it
gave me the possibility to use the theory and knowledge I have gained over the years here
at NTNU to make something useful and practical. I also believed that the design task
would be a good preparation for the challenges I will meet when I start working. I have
always been fascinated by electronics and the wide area of application this technology
presents. Since my interests include both computers and different forms of visual media,
this project became a great opportunity to combine my interest and education. This
combination is in my opinion the most effective and motivating way to learn new things.

The task of implementing and creating an embedded demonstrator system has been both
challenging and rewarding. It is always frustrating when not even the simplest things
work as they are supposed to, but it is an even bigger reward when one finally solves the
problem. One of the biggest challenges this past semester has been time. It is not easy to
predict how much time it will take to get things to work the way they are are supposed
to. This has been a very intense semester, especially the last couple of months. But now,
when I am finished, I look back and see it all as a very exciting time from which I have
learned a lot, and even got to create a new system. I have learned a lot about embedded
systems, hardware/software codesign, cameras and video and much more. The Altera
DE2 platform was a very good platform to work with and it gave room much creativity.
I have created the embedded demonstrator by using Terasic’s existing camera hardware
platform, and I have also used much of the theory from the project in this master thesis.

This project would not have been possible without all the help and support I have
received. I would like to thank my supervisor, Professor Per Gunnar Kjeldsberg for all
the support, help and fresh perspectives I have gotten. I would also like to thank my
two best friends Jarle Larsen and Kai Andre Venjum, for sticking with me, through thick
and thin. Thanks for all the constructive discussions, shared knowledge and all the fun
we have had together when creating our systems. Finally, I would also like to give my
thanks to my better half, Tia. Without your great support, optimism and interest, this
would not have been possible.

Cato Marwell Jonassen
NTNU, Trondheim

June 2010

ii

Contents

1 Introduction 1
1.1 Preliminary Work . 2
1.2 Description . 3
1.3 Main Contributions . 3

2 Embedded Processors 4
2.1 About the Embedded Processor . 5
2.2 Nios II . 7
2.3 Interrupt . 10
2.4 Performance . 12

3 Hardware/Software Codesign 15
3.1 Embedded Systems and HW/SW Codesign 16
3.2 Hardware Acceleration and Custom Instructions 17

3.2.1 Custom Instructions . 17
3.2.2 Hardware Acceleration . 18

4 Video and Images 20
4.1 Resolution, frame rate and compression 20
4.2 Color Spaces, Transformation and Properties 21

4.2.1 Inverting colors . 23
4.2.2 Grayscale . 24
4.2.3 Brightness and Contrast . 24

4.3 The Processing of Raw Image Data . 25
4.3.1 Bayer Color Pattern . 25
4.3.2 Interpolation and Demosaic Algorithms 26

4.4 Frame Buffer . 28

5 Tools and Software 29
5.1 Quartus II . 29

5.1.1 SOPC builder . 30
5.1.2 MegaFunctions . 30

5.2 ModelSim . 30

iii

5.3 Nios II Embedded Design Suite . 31

6 Development Platforms and Hardware 34
6.1 Available platforms . 34
6.2 DE2 and Components . 34

6.2.1 The FPGA - Cyclone II EP2C35 35
6.2.2 The VGA DAC - ADV7123 . 37
6.2.3 The I/0 . 38
6.2.4 The SDRAM - S29AL032D . 40
6.2.5 The FPGA-OnChip Memory . 40
6.2.6 Megafunction - Shift Register . 40
6.2.7 Nios II Floating-Point Unit . 41

6.3 The Camera - Terasic TRDB D5M . 43

7 Communication 46
7.1 Altera Avalon PIO . 46
7.2 I2C . 48

8 Pedagogics 50
8.1 Embedded Systems in Education . 50
8.2 Pedagogic in Teaching and Learning . 51

9 Implementation and Discussion 53
9.1 System Overview . 55

9.1.1 Hardware Video Signal Flow . 59
9.1.2 Software Video Signal Flow . 59
9.1.3 System and Platform Discussion 60
9.1.4 Programs and Tools . 62

9.2 Implementation of Nios II . 63
9.2.1 Hardware Peripheral Selection . 67
9.2.2 PIO and Interrupt . 68
9.2.3 Custom Instructions . 69
9.2.4 Software Implementation . 69

9.3 Camera Configuration and Operation . 69
9.3.1 Configuration . 70
9.3.2 Operation Modes . 71

9.4 Hardware/Software Selection Process . 73
9.5 Video Processing . 73

9.5.1 Hardware and Software Operation and Quality 75
9.5.2 Resolutions . 77

9.6 Color Processing . 78

10 Demonstration 81
10.1 The Presentation . 82

iv

10.2 The Interaction . 83
10.3 The Discussion . 85
10.4 Target Group . 85

11 Conclusions 87
11.1 Future Work . 88

A Software Code 94

B Hardware Code 97

v

List of Figures

2.1 NIOS II processor core - from [19] . 7
2.2 Relationship between ienable, ipending, PIE and Hardware Interrupts -

from [19] . 11

3.1 Target architecture for hardware/software partitioning - from [60] 15
3.2 Custom Instructions with Nios II soft processor - from [19] 17
3.3 Example of a CRC Hardware Accelerator with Nios II - from [19] 18
3.4 Example of a Hardware Accelerator - from [19] 19

4.1 An inverted color representation of an image 23
4.2 A YCbCr color image and its channels . 24
4.3 The process of transforming raw image data to viewable RGB image data 25
4.4 Pixel color readout pattern (Bayer) - from [56] 26
4.5 Color interpolation by using neighboring pixels to determine one full range

RGB pixel - combined with figure from [56] 27
4.6 2X binning on Terasic D5M - from [56] . 28

5.1 HAL BSP After Generating Files - from [20] 32
5.2 The layers of a HAL-Based System - from [20] 33

6.1 Altera DE2 development board - from [12] 35
6.2 Logic Element in Cyclone II - from [13] . 36
6.3 Functional Block diagram of the VGA DAC - from [26] 37
6.4 Megafunction shift register (ALTSHIFT_TAPS) - from [14] 41
6.5 The Terasic Digital Camera with the Altera DE2 - from [57] 43
6.6 Shows how the camera’s PLL is implemented - from [56] 44

7.1 NIOS II sample system with multiple PIO cores - from [21] 46
7.2 PIO core - from [21] . 47
7.3 I2C bus system - from [30] . 48
7.4 I2C ”start condition” - from [30] . 48
7.5 I2C ”stop condition” - from [30] . 49
7.6 Single I2C packet with receiver acknowledge - from [30] 49
7.7 Complete I2C packet, slave address, direction and data - from [30] 49

vi

9.1 A block diagram of the Terasic camera system - from [55] 54
9.2 A block diagram of the system and the communication flow 55
9.3 The Nios II/f-module created for this system 63
9.4 Nios II’s peripherals with memory map and interrupt 67
9.5 The I2C configuration module . 70
9.6 The HW/SW MUX module, used for switching between video sources . . 73
9.7 A group of four pixels in mirror readout pattern 74
9.8 The Line-buffer used by both hardware and software for color interpolation 74
9.9 Comparison of quality of Matlab demosaic and RAW2RGB demosaic . . . 76

10.1 An overview of the demonstrator and its I/O 83

vii

List of Tables

2.1 NIOS II core implementations comparison part 1 - from [19] 8
2.2 NIOS II core implementations comparison part 2 - from [19] 9
2.3 Embedded Processor Performances Using Dhrystone Version 2.1 - from

[43, 18, 19, 2, 35] . 14

6.1 VGA vertical timing specification - from [12] 39
6.2 VGA horizontal timing specification - from [12] 39
6.3 Storage Layout of IEEE floating point numbers - values from [36] 41
6.4 Sample Floating-Point Custom Instruction Acceleration Factors - values

from [24] . 42

9.1 Overview of the hardware modules on the FPGA and their origin part 1
of 2 . 57

9.2 Overview of the hardware modules on the FPGA and their origin part 2
of 2 . 58

9.3 Programs and tools used to implement the system 62
9.4 Nios II processor’s inputs and outputs, their purpose, and to which mod-

ules they are connected to, part 1 of 2 . 65
9.5 Nios II processor’s inputs and outputs, their purpose, and to which mod-

ules they are connected to, part 2 of 2 . 66
9.6 Camera control registers and description 72
9.7 The performance of calculating the transition between color spaces with

and without the use of custom floating-point instructions 79

10.1 Switches and their purpose. Each switch needs to be ”toggled” in order to
do its function, except KEY[0] . 84

10.2 Demonstration modes, their purpose and active switches 84
10.3 The conclusion of the different demonstration modes 85
10.4 Target Groups . 86

viii

Definitions

ASIC : Application-Specific Integrated Circuit - a hardware circuit of the appli-
cation in silicone

BSP : Board Support Packages - A NiosII BSP project is a specialized library
containing system-specific support code

CCD : Charge-Coupled Device - a device for movement of electric charge. When
combined with a image sensor and a Bayer filter it serves a great purpose
for digital imaging

CFA : Color Filter Array - a mosaic of tiny color filters placed over the pixel
sensors of an image sensor to capture color information

FIFO : First-In First-Out - refers to a way of queuing and organizing data by
giving highest priority to the data arriving first (First-Come First-Served
- principle). A FIFO buffer is a buffer organized in this way

FPGA : Field-Programmable Gate Array - a programmable device for realizing
hardware

FPS : Frames Per Second - the rate or frequency of which unique pictures or
frames is produced

HAL : Hardware Abstraction Layer - an abstraction layer, implemented in soft-
ware, between the physical hardware of a computer and the software
that runs on it

HDD : Hard Disk Drive - a none volatile storage device for digital data

HDL : Hardware Descriptive Language - a language for describing hardware

ix

IP : Intellectual Property - a term referring to a number of distinct types of
creations of the mind for which property rights are recognized and owned

IRE : Institute of Radio Engineers - is a unit used in the measurement for
composite video signals. It is a relative measurement (procent). 100
IRE was originally designed to be the range from black to white video
signal

LE : Logic Element - a basic element used in FPGAs. The number of LEs is
often used as one of the paramters for an indicator of total area

MMU : Memory Management Unit - a unit that is responsible for handeling all
communication between CPU and memory

MPU : Memory Protection Unit - a unit that protects the memory. Sectors that
are critical would be secured against unauthorized alterations

PLL : Phase-Locked Loop - a unit that is used to create a new signal with equal
or different phase and frequency by using a reference signal

RISC : Reduced Instruction-Set Computing - a processor architecture which uses
a reduced number of different instructions

SDRAM : Synchronous Dynamic Random Access Memory - a type of volatile mem-
ory which needs to be periodically refreshed

SRAM : Static Random Access Memory - a type of volatile memory that does
not need to be refreshed, but still needs power to hold data

VGA : Video Graphics Array - can refere to both the analog computer display
standard for the d-sub connector or the 640x480 resolution

x

Chapter 1

Introduction

Today, in our modern society, people are surrounded by many different forms of multi-
media every day. Video, images and sound have become an important part of how people
communicate and gain knowledge, as well as an important medium for entertainment and
a part of culture. Thanks to great improvements in the field of technology and electronics
many things that were deemed impossible has become possible. People can talk and see
each other in real-time across continents with use of video conference tools in a quality
that give the sense of talking to a person right next to you. The mobile phones today are
filled with sophisticated electronics that let people watch TV, listen to music streamed
from the Internet, take photos and share them with friends, surf the Web, talk to people
with or without video and one can even watch movies. The possibilities are endless, but
in order to make enhancements in the field of technology and electronics there is a need
for engineers that possess the knowledge and interest to make those things come true.
Universities, like NTNU, are always searching for new students and to recruit them. In
order to promote the field of electronics, Department of Electronics and Telecommuni-
cation desires to demonstrate good examples of electronic systems that can be used on
occasions like school visits at NTNU, Forskningstorget and Elektronikk- & Telekommu-
nikasjonsdagen. Hopefully, this could result in an increased number of applicants for this
field of study and as a consequence get clever students who have the ability to take part
in making the next generation of electronic systems.

Most part of the electronic systems people surround themselves with have some form of
computational properties. These systems are ”small” computers, dedicated to perform
the task they where designed to do. Such systems are often referred to as embedded
systems. Embedded systems consist of a combination of hardware and software which
gives both great flexibility and wide possibilities for optimization. Systems with such
properties are great platforms for making demonstrators and let the designer be creative.

Most forms of multimedia processing are very complex and puts a high demand on avail-
able computational power. Many devices that do this form of computation is running on
battery, and battery lifetime is important. Not being able to watch a whole movie on a de-

1

CHAPTER 1. INTRODUCTION 2

vice before it runs out of battery would be unacceptable to most people. As performance
costs power, the designer needs to be smart when creating the device. Hardware/Soft-
ware codesign is about meeting system objectives by exploiting the synergism between
hardware and software trough their concurrent design [48]. Performing the calculations
where it’s most efficient, both in relation to performance and power, would be a HW/SW
codesign choice. Such choices are an important part of the designers job and could mean
the difference between meeting system objectives or not.

FPGA or Field-Programmable Gate Array is a programmable device that allows the
designer to create almost any form of hardware from a description made in a hardware
language. It is also possible to create software processors on the device and run them
side by side with custom designed hardware. In other words, it is a great platform for
hardware/software codesign.

1.1 Preliminary Work

Prior to this thesis there has been done some research. This research was a study on dif-
ferent educational challenges related to demonstration of electronic systems. In addition
there was considered many different types of applications in relation to demonstration
before one final system was specified.

From research and discussions in the project report it was concluded that the application
of the demonstration should focus on a specific topic in order to keep the focus on what
the demonstrator should demonstrate. In addition there was also concluded that the
demonstrator should demonstrate something the observer could relate to in order to
motivate him or her. It was also considered that a visual demonstration on a technical
topic would help bring interest and also be effective when trying to get the observer to
learn something from the demonstration. Also, by letting the observer take an active
part in the demonstration it would support the observer in coming to his or her own
conclusion about the demonstration. This is considered as a good pedagogical approach.

Many different systems were considered, but two prevailed themselves as the most promis-
ing candidates. One of the ideas was an embedded demonstrator for visual demonstration
of audio properties. The other idea was an embedded demonstrator for video presenta-
tion and manipulation. Both candidates had the ability to become good demonstrators,
but idea number one presented some additional challenges. The challenges were related
to creating a visual interface in the available timeframe. Idea number two was selected
and a specification of a possible implementation was suggested.

CHAPTER 1. INTRODUCTION 3

1.2 Description

In this master thesis an embedded system for presenting and manipulating video will
be described and implemented. In addition, the necessary presentation material will be
made. The system’s purpose is to emphasize the importance of hardware/software code-
sign when designing an electronic system. Without the unique combination of hardware
and software it might not be possible to achieve system objectives and specification. The
demonstrator is going to demonstrate this importance by processing video from a camera
through hardware or software. The observer is then able to select between the two and
evaluate the difference in obtainable video quality. In addition the observer will be able
to select between normal color representation and inverted color representation. The
system is also going to visually present the time difference by doing color manipulation
in software or by using dedicated hardware by means of custom instructions.

This system presents many design challenges. One of the main challenges this project
brings to surface is the available performance of the embedded software processor and the
uncertainty of its ability to present some form of viewable video. The final solution offers
a demonstration of video processing and manipulation. The ability to observe camera-
video, processed in either software or hardware in real-time is considered to be a good
concept for a demonstration. In addition, the platform shows great promise for further
development and can easily be adapted to be used in other educational situations.

This report is divided into ten main chapters. The first seven chapters (Chapter 2 -
Chapter 8) present theory about different topics related to the demonstrator. Chapter 9
presents the implementation of the complete system and a discussion of the challenges,
different solutions and other topics related to the design process. Chapter 10 presents
a walk through of a hypothetical demonstration of the system. Presented in the final
chapter (Chapter 11) is a conclusion and suggestions for future work.

1.3 Main Contributions

The main contributions of this master thesis will be:

• A fully functional embedded demonstrator that processes recorded video in both
hardware and software

• A hardware video processing performance of up to 25 frames per second

• A system that demonstrates the benefits of using custom floating-point instructions
to accelerate color processing, with up to 300% increase in performance compared
to software processing

• A poster with necessary material to give a full demonstration of the embedded
demonstrator

Chapter 2

Embedded Processors

First, a little introduction as to what an embedded system actually is. Most people are
familiar with the desktop computer. The desktop computer is a very versatile comput-
ing machine which can be used for numerous applications, like playing games, checking
mail and much more. An embedded system can also be defined as a computer system,
but which is designed to perform a specific task [30]. This as opposed to the desktop
computer which is designed with the purpose to be much more generic. As a result the
embedded system can be constructed to perform the individual tasks in a much more
effective manner, both in relation to size, power consummation and performance. Em-
bedded systems are actually much more common than the desktop computer, although
they are not always as easy to spot. About 99% of all the microprocessors being made
is used in embedded systems [29]. You can find embedded systems in almost any kind
of electronic consumer products, like cars, washing machines, coffee makers, toys, TVs,
Blu-Ray players and the like. Embedded systems are also very common and important
in industry and are often used to control mechanical systems many of which have hard
demands in relation to responsiveness and speed. These systems are often referred to as
a real-time system [29]. Many of these systems have hard demands which would not have
been possible to achieve with a conventional desktop computer. Possible reasons could be
insufficient processing power or to slow response time. Embedded systems usually consist
of a combination of hardware (e.g. I/O, memory, peripherals, accelerators, co-processors)
and software (some kind of program to tell the system what to do). This combination
gives flexibility and wide possibilities for optimization and customization. For an em-
bedded system to be able to run software a microprocessor for executing instructions is
needed.

4

CHAPTER 2. EMBEDDED PROCESSORS 5

2.1 About the Embedded Processor

The main function of a processor is to manipulate data in a way specified by a sequence
of instructions [30]. The series of instructions is what constitutes a software program,
written in some kind of language (e.g. C and C++). The software is stored in a memory
(e.g. Flash, SRAM, SDRAM, HDD) and the processor fetches the instructions sequen-
tially by use of extra logic for translating the instructions into control signals and a
program counter to point to the next instruction. A microcontroller is a processor which
incorporates all necessary hardware in order to function as a computing unit. Consisting
of a CPU (Central Processing Unit) and different kinds of peripherals including mem-
ory. The peripherals could be user-designed or generic (standardized). Some examples of
generic peripherals are: SPI (Serial Peripheral Interface Bus), UART (Universal Asyn-
chronous receiver/transmitter), JTAG(Joint Test Action Group - for debugging and test),
OnChipMemory (Flash, SRAM or something similar) and I2C (Inter-Integrated Circuit
- serial bus system). The peripherals are used to give the processor purpose. A processor
with no means of communication to the analog world would not be very useful.

There are two main types of embedded processors: Soft processors and hard processors,
as stated in [34]. The soft processor is typically made out of logical elements found in
FPGAs and described in a Hardware Descriptive Language (HDL), like VHDL or Verilog.
The hard processor is, on the other hand, not possible to alter once it has been created
in silicone. This is because the processor does not consist of reconfigurable elements like
the soft processor does. Hard processors can appear in both ASIC (Application-Specific
Integrated Circuit) and as a part of a FPGA. One example of a FPGA which includes a
hard processor is the Xilinx FPGA Vertex-V FXT family [4]. It includes the PowerPC
440 embedded processor architecture from IBM.

There are both advantages and disadvantages in using a soft or a hard embedded pro-
cessor [51, 63, 34]. In [34] there is described four advantages by using the soft processor:
Customization, increased lifespan, component and cost reduction and hardware acceler-
ation. The hard processor’s main advantage is its high performance and low unit cost.

The soft processor is very customizable and can easily be altered to fit the current need.
This gives the designer the possibility to be flexible when selecting a combination of
peripherals and controllers. The designer can even invent unique peripherals that can
be connected directly to the processor’s bus, as opposed to the hard processor where the
designer must choose between the off-the-shelf embedded processors that are currently
available, many of which are too large or too small for the task the designer wants to
solve. If the hard processor is combined with a FPGA, like the Xilinx Vertex-V FXT,
one can benefit from both and gain some customization, but the processor core itself can
not be altered.

Peripherals can be constructed by the designer or bought from a vendor. The available
cores are often distributed with an IP (Intellectual Property) which means that someone
owns the source code for the block [9]. The use of IP cores can greatly reduce the overall

CHAPTER 2. EMBEDDED PROCESSORS 6

design time and reduce the time-to-market. The FPGA vendor Altera offers a wide range
of IP cores from Altera and other third-parties [9]. For implementing these cores Altera
users can use Quartus and SOPC builder, which is described in more detail in Section
5.1. Hardware cores are also available as a free and open source solution under the free
Lesser General Public License (LGPL) at www.OpenCores.org [50].

Since the hardware is described in a HDL like language, the lifespan of the product is
much longer. It can be re-implemented on future FPGA platforms and can easily be
altered to become an even better product. Another advantage in using a soft processor
is component and cost reduction. The versatility of the FPGA enables the designer to
use only one FPGA to replace a system that required multiple components. By reduc-
ing the number of components, the company can also reduce board size and inventory
management, both of which will save design time and money.

Hardware acceleration is one of the most compelling reasons to choose an FPGA em-
bedded processor [61]. This gives the designer the unique ability to combine and make
trade-offs between hardware and software to maximize performance [48]. More theory
about this subject is presented in Section 3.

There are a lot of advantages in choosing a soft processor architecture, but there are still
cases when a hard processor might be a better choice. While the hard processor can
be bought in a completely ready-to-use state, the soft processor has to be constructed
and the designer has to be able to both construct hardware as well as software. Luckily,
tools like SOPC builder (Section 5.1) makes this job much easier and it requires less
knowledge about hardware contruction. Another disadvantage is that the soft processor
needs more complex tools and the design methodology needs more attention. Another
aspect to consider is device cost. If the designer is about to solve a ”simple” problem
that does not require much processing power or unique features, an off-the-shelf processor
could be a much cheaper and better choice. If there already is an FPGA present in the
system, the designer might want to consider moving much of the external hardware into
the reconfigurable chip and also include a soft processor.

CHAPTER 2. EMBEDDED PROCESSORS 7

2.2 Nios II

Nios II, as stated in [19], is a 32-bit soft embedded processor architecture designed for
the Altera family of FPGAs. The older Nios was introduced in 2001 [10] and was the
industry’s first viable commercial processor created specifically for embedded system
design in FPGAs. Nios II displayed several enhancements over the older Nios, thus
making it more suitable for a wider range of embedded computing applications [19].
Since Nios first was introduced, tens of thousands of FPGA users have adopted Nios
or Nios II processors from Altera. Xilinx’s MicroBlaze is an example of a very similar
product [3]. This is also a 32-bit soft embedded processor. The processor is designed to
be used on Xilinx’s family of FPGAs.

Figure 2.1: NIOS II processor core - from [19]

The processor core of the Nios II is displayed in Figure 2.1. It provides a full 32-bit
instruction set, data path and address space. This makes it possible to access up to 4
GB of external memory. In addition the core has 32 general-purpose registers which can
be used to store and alter time critical data. The core also supports 32 external interrupt
sources which can be used by external components to get the processor’s attention. More
information about interrupt can be found in Section 2.3. The core can also execute com-
plex instructions like 32x32 multiplication or division, and instruction barrel shifter. For

CHAPTER 2. EMBEDDED PROCESSORS 8

debugging the core supports JTAG, which is a standard for hardware-assisted debugging.
This enables possibilities like start, stop, step and trace execution in run-time. The soft-
ware development environment is based on GNU C/C++ tool chain and Eclipse IDE.
Code creation, simulation, execution and debugging can be done in this environment.
More information about this embedded design suite can be found in Section 5.3.

Processor core implementations

Table 2.1: NIOS II core implementations comparison part 1 - from [19]

The Nios II core is available as three different types. All cores support the Nios II
instruction set architecture and the implementation differs in some of the feature they
support and their main objective. The implementations are Nios II/e, Nios II/s and Nios
II/f. Their objectives are minimal core size, small core size and fast execution speed.
Table 2.1 gives an overview of some of the differences between the three. Some of these
differences are related to: Maximum obtainable clock frequency, maximum DMIPS/MHz
(performance, se more in Section 2.4) and the amount of area the core consumes. The
Nios II/s uses approximately 1400 LEs (Logic Elements) as opposed to the Nios II/f which
uses around 1800 LEs (without MMU or MPU). The difference in area consumation is
about 20%, but the increase in performance if chosing Nios II/f would be about 40%.
Nios II/e uses about half the size of the Nios II/s, but is still able to support the whole
Nios II instruction set. Depending on the designer’s need it should be a simple choice to
select the right core for the job. All values presented in Table 2.1 are based on choosing
the fastest options and using Altera’s fastest FPGAs. If the designer uses an FPGA with
a lower speedgrade, this will result in some speed reduction.

CHAPTER 2. EMBEDDED PROCESSORS 9

Table 2.2: NIOS II core implementations comparison part 2 - from [19]

CHAPTER 2. EMBEDDED PROCESSORS 10

Nios II/f

As mentioned before, the Nios II/f focuses on fast execution speed. Compared to the
Nios II/e which uses a minimum of 6 cycles per instruction, the Nios II/f uses an average
of 1 cycle per ALU instruction [19]. The performance of the Nios II/f is achieved by
maximizing the max frequency of the processor core and a high instructions-per-cycle
execution efficiency. This core employs a 6-stage pipeline to achieve a high DMIPS/MHz
as seen in Table 2.1. A pipeline is often used to increase data-throughput in a computing
system [40]. This is done by inserting a chain of data-processing stages. Nios II/f also
has separate cache (fast memory) for data and instructions. The size of these two can be
adjusted to fit the designer’s need. The data and instruction bus can be seen in Figure
2.1. A possible memory for this job could be the fast on-chip memory on the FPGA,
described in more detail in Section 6.2.5. In addition the Nios II/f provides an optional
MMU and MPU to support operating systems that require this. If an MMU is selected,
the processor can access up to 4GB of external memory. Another important property of
the Nios II/f is the support for custom instructions, described in more detail in Section
3.2.1. Custom instructions can seriously increase the overall performance. Table 2.2
shows more of the options and properties of the available core implementations of Nios
II.

2.3 Interrupt

Interrupts are a technique of diverting the processor from the execution of a current
program so that it may deal with some event that has occurred [30]. The events could be
many things. It could be an error from a device or simply an I/O device that has finished
a result. Interrupts can be divided into two groups: Hardware interrupts and software
interrupts. Hardware interrupts are interrupts from hardware like an I/O device. There
are two ways of generating this interrupt. One is by using the processor itself to do the
checking of the I/O device, to check if there are any new data. This is called polling.
Another way to do it is to let the device itself generate an interrupt signal which ”pulls”
the processor away from its current job and into an Interrupt Service Routine (ISR).
When such an interrupt occurs, the processor saves its state and loads the interrupt
vector for the specific interrupt. The interrupt vector is an address to where the ISR can
be found. The processor then executes the routine with its series of instructions before it
resumes its previous state. Solution number one would demand very much processor time
just for checking and waiting on the I/O device. This isn’t very efficient use of processing
power. The other solution would therefor be a much more efficient solution. Software
interrupt is the other type of interrupt and is usually generated by an instruction, or it
could be an exception occurring in a program.

When operating with interrupts there is a chance that multiple interrupts can occur,
maybe two at the same time or one being followed by an other. In such cases the system

CHAPTER 2. EMBEDDED PROCESSORS 11

must be able to handle this. One way of handling it is to give the different interrupts
priorities. This is how it is solved by the Nios II embedded processor. It supports up to
32 separate interrupts and each interrupt is given a specific number, between 0 - 31 [19].
The lower the number the higher the priority. In this way, if two interrupts with different
priority occurs the processor will first finish the one with the highest priority and then
do the second. It is also possible to deactivate interrupts on the processor. This could be
done inside an important ISR. This would result in a rejection of all interrupts while it is
turned off. These are considerations which must be done by the designer of the system.

Nios II and Interrupt

Figure 2.2: Relationship between ienable, ipending, PIE and Hardware Interrupts - from [19]

There are three conditions that have to be true in order for a hardware interrupt to be
generated on the Nios II [19].

• The PIE bit of the status control register is one

• An interrupt-request input, irqn, is asserted

• The corresponding bit n of the ienable control register is one

CHAPTER 2. EMBEDDED PROCESSORS 12

Figure 2.2 shows how this relationship is constructed. A software exception routine de-
termines which of the pending interrupts that has the highest priority and then transfers
the control to the appropriate ISR. The ISR disables the interrupt before it is re-enabled
after finishing the ISR. The interrupt can be re-enabled in the ISR by writing one to the
PIE bit. This allows the current ISR to be interrupted and the designer must take this
into account when designing the system.

Interrupt Vector Custom Instruction

The Nios II processor offers an interrupt vector custom instruction which reduces average
and worst case interrupt latency. The interrupt vector custom instruction improves both
average and worst case interrupt latency by up to 20% [19].

2.4 Performance

There has been suggested many different metrics and benchmarks for measuring perfor-
mance over the years [42]. Some of them give better measurement of ”true” performance
than others. In many advertisements for computer systems, the most prominent factor
is often the frequency of the processor core. This could lead to the assumption that
a processor running at 250MHz has a greater performance than a system running at
200MHz. This is not always the case. Performance depends on many factors. The clock
rate says something about how fast the processor runs, but it does not say anything
about how much computation that is done per clock cycle. Even though clock rate is
not a very good metric for performance, an increase in clock rate on a specific processor
would result in an increase in performance on the same processor.

MIPS is one simple form of metric of performance. It is a measure of throughput or
execution-rate and it defines the computer system’s unit of ”distance” as the execution
of an instruction. MIPS, or Millions of Instructions executed Per Second, is defined in
Equation 2.1.

MIPS =
n

te × 106
(2.1)

te is the time required to execute n total instructions. One of the problems with MIPS
as a performance metric is that the amount of computation per instruction is not equal
on all processors. Some of the instructions are far more complex than other.

MFLOPS =
f

te × 106
(2.2)

MFLOPS is a performance metric that tries to correct some of the shortcomings of
MIPS. MFLOPS, or Millions of Floating-point Operations executed Per Second, defines

CHAPTER 2. EMBEDDED PROCESSORS 13

an arithmetic operation on to floating-point quantities to be the basic unit of ”distance”,
see Equation 2.2. The main problem with this metric is when used on a system that
executes a program with no floating-point calculations. This would give the result zero.

Very often with embedded computers the system is going to be used to execute a specific
program. In this case the ultimate performance metric would be to measure the time the
processor uses to execute this program. The result, however, would just be accurate for
that specific program, but it could be used to compare execution time on other processors
executing the same program. To be able to measure time one would need very precise
type of measurement, like the number of clock cycles.

Nios II can use the Performance Counter Core [21] to measure performance. The core
can be included with SOPC builder, discussed in Section 5.1.1. Performance Counter
Core returns the number of clock cycles the specified piece of code needed to execute.

Dhrystone

DMIPS (Version 1.1) also called Dhrystone MIPS (Million Instructions Per Second) is
a synthetic computing benchmark program developed in 1984 by Reinhold P. Weicker
[58]. Dhrystone is a benchmark completely based on integer operations and does not
support floating point operations. At this time the integer performance predominated,
with little or no floating-point calculations. The Dhrystone model was viewed as a
”typical” application mix of mathematical and other operations. In 1988 Dr. Weicker
created Dhrystone Version 2.1 which remains in the original format today. This version
was improved over the earlier version to give a more accurate measurement.

Some of the strengths with Dhrystone are: Easy to report score - single figure of merit,
easy to implement and run on most platforms and architectures, and since it’s ”integer-
only-code” it is potentially very useful for simple 8- and 16-bit embedded processors.
Dhrystone does have a lot of weaknesses too. Some of these are: Cannon hope to mimic
the breadth of applications encountered on a processor based system, it is based on only
one set of functions, does not measure multiply-accumulate, floating-point,SIMD or any
other type of operations and there is a possibility that the designer can cheat to get good
benchmarks. Dhrystone represents a more meaningful performance representation than
MIPS, but it does not give an accurate and true performance measurement. It is more
usable as an indication of performance.

In Table 2.3 there are listed some DMIPS/MHz results. It shows a comparison between
the soft embedded processor Nios II, the hard embedded processor PowerPC 440 from
IBM and a common dedicated hard CPU (Intel Core 2 Duo) from Intel, located in
many of today’s desktop computers. The IBM PowerPC 440 embedded core is a 32-bit
RISC CPU providing a performance of about 2.0 DMIPS/MHz [2, 35] and about 1000
DMIPS at the max clock rate of 555MHz on nominal silicone. In comparison with the
performance of a PC based CPU it is listed that an Intel Core 2 Duo at 2,4 GHz with 32
bit integers can perform at 8094 DMIPS, which gives a 2.28 DMIPS/MHz. The Nios II/f

CHAPTER 2. EMBEDDED PROCESSORS 14

Name Type DMIPS/MHz fmax

Nios II /e Soft 0.15 200MHz
Nios II /s Soft 0.74 165MHZ
Nios II /f Soft 1.16 185MHz

PowerPC 440 Hard 2.0 555MHz
Intel Core 2 Duo 32bit Hard 2.28 2.4GHz

Table 2.3: Embedded Processor Performances Using Dhrystone Version 2.1 - from [43, 18, 19,
2, 35]

is said to be able to achieve up to 250 DMIPS with use of the fastest FPGA and highest
possible clock rate. The performance gap between the hard and soft embedded processor
is quite large, but as research on FPGAs and on different types of optimizing is made,
this gap is becoming smaller and smaller. The research made in [45] suggest a speedup
using a partitioning algorithm to move ”heavy” computations from software to hardware
and combine them by using custom instruction. They demonstrate that the soft-core
based processor achieves average speedups by a factor of 5.8 and energy reductions of
57% compared to the soft core alone. More on custom instructions can be seen in Section
3.2.1.

Chapter 3

Hardware/Software Codesign

Figure 3.1: Target architecture for hardware/software partitioning - from [60]

Hardware/Software codesign is a term that first emerged in the 1990’s to describe a
confluence of problems in IC design [60]. At the time the processor-based, or software
executable, systems were mostly on board-level, but it was foreseen that in the near fu-
ture technology would give room to combine a microprocessor together with an ASIC, like
Figure 3.1 shows. Now, 20 years later, hardware/software codesign has gone from being
an idea to becoming a very important mainstream science design methodology. Giovanni
and Rajesh [48] say that: ”hardware software co-design means meeting system-level ob-
jectives by exploiting the synergism of hardware and software through their concurrent
design”. In other words, HW/SW codesign is a design methodology used to meet the
increasing demands to performance, cost and design-time with use of a combination of
hardware and software. HW/SW codesign focuses on utilizing more of the available tran-
sistors by benefiting from reuse of HW and SW macro blocks [48]. This results in better
cost/quality, flexibility, better performance and shorter development time. Creating an
embedded computer that meet such goals is typically a codesign problem [59]. The design
of HW and SW components influence each other and the codesign methodology requires
intimate knowledge of the interactions between the hardware and software components.
At present, there is a much deeper understanding of the HW and SW disciplines sepa-
rately than about codesign. As ICs become more and more complex, the challenges with
codesign will also increase, making HW/SW codesign a vibrant field for a long time [60].

15

CHAPTER 3. HARDWARE/SOFTWARE CODESIGN 16

3.1 Embedded Systems and HW/SW Codesign

The goal when making an embedded system is to find the right combination of HW/SW
resulting in the most efficient product within the specifications [46]. Basing the embed-
ded system on an existing platform, like the Nios II core from Altera [19], will greatly
reduce the time-to-market when designing complex systems. Following is a list of design
activities that should be used when designing an embedded system by use of the HW/SW
codesign methodology.

Design activities:

1. Task level concurrency management

2. High level transformations

3. Hardware/software partitioning

4. Compilation

5. Scheduling

6. Design space exploration

1.: At the task level the designer should regroup the task from the specification to
maximize the implementation efficiency. This is often done by either merging or splitting
tasks. When merging the overhead can be reduced by combining tasks for fewer context
switches. While splitting task has the purpose of maximize the use of resources.

2.: The goal with the high level transformations is to improve efficiency of embedded
software. One example of this is to use fixed point instead of floating point, which gives
a dramatic increase in performance. This could reduce the accuracy, but in most cases
it is not noticeable. Other possibilities is to do transformations of loops generated by
software so that the access to memory is adjacent. If not, this would result in very
few data being in the cache and give bad performance. Loop-tiling-and-blocking exploits
memory hierarchy efficiently, and focuses on keeping the relevant data in cache to increase
performance.

3.: In the HW/SW partitioning stage the designer should try out different partitioning
of HW/SW. To find the best partitioning of which task to solve in HW and which to
solve in SW to get the best result.

4.: Using an optimized compiler may reduce energy consumption, increase speed and
reduce software size. The compiler exploits knowledge about the underlying processor
and there are often special hardware-aware compilers

CHAPTER 3. HARDWARE/SOFTWARE CODESIGN 17

5.: Scheduling is about mapping of operations to start time.

6.: In most cases there are several designs that meet the specifications. Design space
exploration is the process of analyzing the set of possible designs, among those that meet
the specifications, and choose one of them.

3.2 Hardware Acceleration and Custom Instructions

In [16, 48, 28, 19] hardware acceleration and instruction set extension are presented as
two ways to accelerate processes or tasks in hardware.

3.2.1 Custom Instructions

Figure 3.2: Custom Instructions with Nios II soft processor - from [19]

Instruction set extension is a inclusion of additional functional units to speed up common
operations [28]. The unit is connected to the CPUs register file. One of the challenges is
to decide which operations goes into hardware and which is performed in software. One
way of choosing is to test all possible combinations of HW and SW partitions, which is a
lot of work. ISEGEN is a suggested deterministic algorithm that tries to mimic a human
designer to come up with the best partitioning solution. When partitioning, a common
rule is to perform tasks that are very repeatable in HW.

CHAPTER 3. HARDWARE/SOFTWARE CODESIGN 18

All the Altera Nios II processors support instruction set extension [19]. Similar to native
Nios II instructions, custom instruction logic can take values from a source register and
optionally write back the result to a destination register. The custom instruction logic
block can be seen in Figure 2.1 and Figure 3.2. If the designer demands more flexibility
of the dedicated hardware, a separate hardware accelerator could be a better choice.

3.2.2 Hardware Acceleration

Figure 3.3: Example of a CRC Hardware Accelerator with Nios II - from [19]

A hardware accelerator is a piece of hardware designed to accelerate the execution of a
specific task [61]. It does not execute instructions and is more functionally equivalent to
an I/O-device. The goal of the hardware accelerator is to increase the performance/cost
by performing specific functions that are more efficient here. The accelerator could
be implemented as an ASIC, by use of a standard component, an FPGA or designed
hardware with use of PEs on an FPGA. A typical target for acceleration would be an
application with repeated computations and low latency I/O functions, operations not fit
to CPUs, highly responsive I/O or streaming data, like video. In order for an accelerator
to be beneficial, the payoff should be considerably more than the cost of implementing
it. Therefore the designer should perform an analysis of the cost of performing the task
in software or hardware before deciding to use an accelerator. The hardware accelerator
is often attached to CPU/memory buses or via shared memory, like in Figure 3.3.

Figure 3.4 illustrates an example of a hardware accelerator, which could be connected
to a processor, like Nios II. Nios II can use the hardware accelerator by activating it to

CHAPTER 3. HARDWARE/SOFTWARE CODESIGN 19

Figure 3.4: Example of a Hardware Accelerator - from [19]

work on data in memory. The processor can then concurrently process other tasks as
the accelerator does its job. An advantage of creating an accelerator on an FPGA is
that the accelerator itself is easily scalable [16]. Figure 3.3 shows an example of using an
accelerator together with a Nios II soft processor. The hardware accelerator is performing
a Cyclic Redundancy Check (CRC) in memory, which is much more effective in HW than
in SW. To summarize: The hardware accelerator can provide better performance, is less
expensive, provide real-time performance and it can fit larger applications that cannot
fit on a single chip processor. The cost of implementing it could be a considerable effort
and the developer may need a different skill set.

Chapter 4

Video and Images

Video is a medium for displaying pictures in motion and it consists of a series of pictures
or frames. These frames are usually displayed in a high enough rate so that the human
eye perceives it as fluid motion [39]. The video signals are either analog or digital and can
be represented in many different ways. One of the most common ways is by using RGB
color representation in combination with some form of compression scheme. Pictures or
frames on a TV screen is typically refreshed at a rate of 50-60 times per second and
70-90 times per second on a computer display. For timing control, information called
vertical sync is used to indicate when the new frame is beginning. Each of the image-
frames consists of scan lines which are lines of data that occur in vertical sequence on
the screen. Additional information called horizontal sync is used to indicate when a new
scan line is starting. This information can be transferred in different ways. The three
most common are:

1. Separate horizontal and vertical sync signals

2. Composite sync signal embedded within the video signal

3. Separate composite sync signal not embedded within the video signal

The composite signal is a combination of both vertical and horizontal sync. Each image
from the D5M Terasic camera is surrounded with both vertical and horizontal blanking
data around the valid image [56]. This data is used to generate the separte FVAL and
LVAL signals used to indicate when the pixel data is available.

4.1 Resolution, frame rate and compression

Based on [39, 31] image resolution is defined as the product between the number of
pixels of the picture’s height times its width. This product is the total number of pixels
available. A standard VGA video at 640 x 480 pixels gives 307 200 separate pixels.

20

CHAPTER 4. VIDEO AND IMAGES 21

This is equal to a 0,3 megapixel image. Video resolution is often measured in ” lines of
resolution”. In essence this is how many distinct black and white vertical lines that can
be seen on the display. This number is normalized by dividing the number of lines with
the aspect ratio of the display, examples of aspect ratios are 4:3 and 16:9.

Some of the most common video resolutions are:

• Standard VGA: 640x480 = 307 200 = 0,3 Mpixel

• Standard Definition: 720x480i = 345 600 = 0,34 Mpixel or 720x576i = 414 720 =
0,41 Mpixel

• 720p HD: 1280x720 = 921 600 = 1 Mpixel

• 1080p HD: 1920x1080 = 2 073 600 = 2 Mpixel

The resolution is often defined as 720p, 576i or 1080p. This indicates only the number
of vertical lines. The ”i” and ”p” defines how the different picture frames are ”painted”
on the screen; interlaced or progressive. Progressive means that each frame is completely
”painted” on the screen in each refresh. Interlaced video reduces the amount of informa-
tion sent by half because only half the lines are sent per frame. The complete frame is
”painted” by first doing the odd-numbered lines and secondly the even-numbered lines
which are then merged together. This can result in a degrading of the quality observed
as flickering around sharp edges.

To give an indication of the amount of data a video signal contains, some bit rates based
on information from [31] is presented:

• Image (low resolution): 512 x 512 pixel color image x 24bits/pixel(3 x 8 bit per
color channel) = 6,3 Mbits/Image

• Video (standard VGA): 640 x 480 pixel color image x 24 bits/pixel x 30 images/sec-
ond = 221 Mbps

• HDTV (720p): 1280 x 720 pixel color image x 24 bits/pixel x 60 images/second =
1,3 Gbps

Which means that a single layered DVD could only hold about 3 minutes of uncompressed
video. This is a motivation for considering using some kind of compression scheme to be
able to save even more video of similar quality. Also, if transferring large amount of data
on a limited bandwidth channel, compression might be the only way to make it possible.

4.2 Color Spaces, Transformation and Properties

In [39] a color space is defined as a mathematical representation of a set of colors. Some
of the most popular color models are RGB and YUV or YCbCr. RGB is an additive
color space in which a combination of red, green and blue are put together to create

CHAPTER 4. VIDEO AND IMAGES 22

different colors. Most of the the different types of image output devices today (e.g. TVs,
computer displays etc.) uses RGB when presenting color. The RGB color space is not
very good when dealing with ”real world” images though. To alter the intensity of one
color component, all three colors have to be read before calculation and modification.
On a computer system this would cost access time and computation time. YCbCr is
a color space that consist of the luma component Y, Cb and Cr. Cb and Cr are the
blue-difference and red-difference chroma components. This color space is much used in
digital image or video representation, e.g. MPEG and JPEG. YCbCr makes it easy to
alter the light intensity of the image. This is done by increasing or decreasing the Y
channel. Typically, a black and white system would only use the Y, luma information.

Based on the RGB information all the other color spaces can be derived. The basic
equations to convert between RGB and YCbCr are:

 Y
Cb
Cr

 =

 16
128
128

 +

 0.257 0.504 0.098
−0.148 −0.291 0.439

0.439 −0.368 −0.071

 ·
 R

G
B

 (4.1)

Equation 4.1 is for transforming between the RGB and YCbCr color domains (as defined
in ITU-R BT.601 and [39]). When 8 bits are used to represent each channel, the range
is 16− 235 for the Y channel and 16− 240 for the chroma channels.

 R
G
B

 =

 1.164 0.000 1.596
1.164 −0.392 −0.813
1.164 2.017 0.000

 ·
 (Y − 16)

(Cb− 128)
(Cr − 128)

 (4.2)

Equation 4.2 is for transforming between the YCbCr and RGB color domains (as defined
in ITU-R BT.601 and [39]). When 8 bits are used to represent each channel, the range
is 0− 255 for each RGB color channel.

CHAPTER 4. VIDEO AND IMAGES 23

4.2.1 Inverting colors

Figure 4.1: An inverted color representation of an image

A common digital resolution of the color components are 8 bits per channel [39, 32]. An
RGB picture consists of three color channels, Red, Green and Blue. If the resolution is
8 bits, then the total number of values for each color channel is 28 = 256. By taking 255
and subtracting the current color channel value, we get the inverted color value. Do this
for each channel and the color of the picture becomes inverted. Another way of doing
this operation would be to invert all 8 bits per channel in hardware. This would result in
the same color transformation of the picture. Figure 4.1 shows what a typical inverted
RGB image looks like.

CHAPTER 4. VIDEO AND IMAGES 24

4.2.2 Grayscale

Figure 4.2: A YCbCr color image and its channels

To get a grayscale based video stream one has to do a grayscale conversion. One approach
is to use just one of the color components and transmit only one color channel to the
VGA DAC as mentioned in [26]. Another approach could be to transform the video from
the RGB color space to the YCbCr color space and just transmit the luma (Y) channel.
The second approach is much more complex and would increase processing time in a
software implementation. In order to be able to display grayscale on the display, the
VGADAC has to either alter its hardware configuration, which is not possible in our
case, or the luma (Y) value could be transmitted on all RGB channels. This would result
in a grayscale RGB representation as seen in Figure 4.2.

4.2.3 Brightness and Contrast

In [39] it is said that working in the YUV or YCbCr color space simplifies the imple-
mentation of brightness and contrast control. The contrast in the picture is altered by

CHAPTER 4. VIDEO AND IMAGES 25

multiplying the YCbCr data by a constant. If Cb and Cr are not adjusted, a color shift
will result when adjusting the contrast. Brightness control is implemented by adding or
subtracting a constant to the luma (Y) component. Brightness adjustments are done
before contrast adjustments to avoid introducing a varying DC offset.

4.3 The Processing of Raw Image Data

Figure 4.3: The process of transforming raw image data to viewable RGB image data

Figure 4.3 shows the process of transforming raw image data into viewable RGB data.
Many cameras today use a CCD image sensor in combination with a color filter array
(CFA), which results in a data structure as seen in the figure in [49]. In order to get a full
range color image, each pixel needs all three color values. These values are interpolated
by use of some form of algorithm. This results in a final image viewable on a display.

4.3.1 Bayer Color Pattern

As introduced in [41, 49] most digital camera sensors use Color Filter Arrays (CFA) to
gather the necessary color information. The human eye needs more than light intensity
to obtain a full-color image. This would result in an image sensor that needed to carry at
least three pieces of information such that the intensity of three independent colors (e.g.
Red, Green and Blue) can be deduced. Therefore, to reduce cost, CFA was introduced.
Although the resulting image is not full-color, the CFA can be arranged in such a way
that the missing color information can be obtained with a reasonable degree of accuracy.
This process is known as color interpolation or demosaic. An alternative would be to use
three separate sensors to obtain a full RGB range without the need to interpolate, but
this would be expensive.

CHAPTER 4. VIDEO AND IMAGES 26

Figure 4.4: Pixel color readout pattern (Bayer) - from [56]

In [56] it is said how the pixel data from the camera is outputted in a Bayer pattern
format consisting of four ”colors” - Green1, Green2, Red, and Blue (G1,G2,R,B), thus
representing three filter colors. When no mirror modes are enabled, the first row output
alternates between G1 and R pixels, and the second row output alternates between B
and G2 pixels. The pattern can be seen in Figure 4.4.

4.3.2 Interpolation and Demosaic Algorithms

To display an image from the sensor data, a demosaic algorithm has to be run to gather
all three color components for each pixel [49, 32, 52]. There are many types of demosaic
algorithms. At the low end there are the so called fill-in-the-missing-data algorithms,
in the middle there are linear interpolation algorithms and at the high end there are
algorithms that choose an interpolation rule based on image contents (adaptive). The
simplest interpolation algorithm, nearest-neighbor, copies the information on a pixel of
same color. Another simple interpolation algorithm, bilinear, uses two or four similar
colored pixel to calculate an average sum for the unknown pixel. The first and simplest
interpolation algorithm is not usable when quality matters, but the second one is better.

CHAPTER 4. VIDEO AND IMAGES 27

Figure 4.5: Color interpolation by using neighboring pixels to determine one full range RGB
pixel - combined with figure from [56]

These algorithms can be implemented in either hardware or in software. The video
or image quality depends on how good the algorithm is, which often depends on the
avilable processing power. The result is a conversion from a RAW Bayer image pattern
to a displayable RGB image. Figure 4.5 shows how pixels are read from the sensor on
the camera and color interpolation is done to get a full range RGB pixel.

h(x) =

{
1 0 ≤ x ≤ 0.5
0 0.5 < x

(4.3)

Equation 4.3 describes one of the simplest interpolation methods; Nearest Neighbor. It
assigns each interpolated output pixel the value of the nearest pixel in the input image
[52].

h(x) =

{
1− x 0 ≤ x ≤ 1
0 1 < x

(4.4)

Equation 4.4 describes the bilinear interpolation algorithm. It is similar to the ”Nearest
Neighbor” algorithm, but in addition this one takes an average sum of the surrounding
pixels. This reduces potential for aliasing and image distortion [52].

The Terasic D5M camera supports a function called binning, described in Section 6.3.
This function reduces the resolution of the image by averaging pixels together. Figure 4.6
shows how this is done when the camera is set to 2X binning. This also reduces aliasing
and gives the possibility to use a less complex interpolation algorithm to get sufficient

CHAPTER 4. VIDEO AND IMAGES 28

Figure 4.6: 2X binning on Terasic D5M - from [56]

results. Using binning in combination with nearest neighbor would give similar results
as with the bilinear algorithm. In [52] it is concluded that the bilinear interpolation
algorithm was best when comparing the highest picture quality with best performance.

4.4 Frame Buffer

The memory has many areas of application, one example is as a buffer for temporary
storage of data. A frame buffer is a buffer that holds all the information about a picture
frame [53]. It is mainly used in a picture or video based system. The picture frame is
always available in the buffer, which is read, possibly transformed, and transferred to a
display. If the buffer always holds the next frame, and possibly even future frames, this
would help against stuttering and picture errors.

Chapter 5

Tools and Software

Thanks to corporations like Altera, Xilinx and Atmel it is now much easier to develop
embedded systems. In the past, when the tools and software weren’t available, this
could have been a much more complex and time consuming job. Tools and software
like Quartus II, SOPC Builder and MegaFunctions have been made with the purpose
of reducing the design time for the developers. This results in a much shorter time-to-
market, which makes using FPGAs, Microcontrollers and the like for development much
more attractive. Good tools gives the possibility to greatly improve profit.

5.1 Quartus II

Quartus II is a design software from Altera that provides a complete, multi platform
design environment for FPGAs [17]. A typical design flow is: Design Entry, Synthesis,
Place and Route, Timing Analysis, Simulation and Programming and Configuration. The
Quartus II software includes solutions for all these design phases and a graphical user
interface. In the Design Entry process the hardware can either be described completely
by using a hardware descriptive language like VHDL, see Section ??, or in combination
with a ”drawing” environment, where the designer can place and connect different blocks
by using the PC mouse. This tool is very useful and makes interconnection between the
modules easy. Synthesis and place and route can be done with either Altera’s own tools
or the designer can select a different tool like Synplify [8] from Synopsys. Such dedicated
tools can provide additional improvements of the design. For simulation, Altera provides
a build-in environment. In addition Altera also support the possibility to use other
simulation tools inside Quartus II. ModelSim, see Section 5.2, is one of these.

29

CHAPTER 5. TOOLS AND SOFTWARE 30

5.1.1 SOPC builder

The SOPC builder is a part of the Quartus II design environment and it lets the designer
define and generate a complete system in much less time than usual by including available
IP (Intellectual Property) modules in the design[22]. The tool offers both the possibility
to include the IP cores in the design as well as the ability to configure them to fit
the designer’s needs. The IP cores that are available can be found in [9]. In addition to
configuring the cores, the SOPC builder also supports a connection function which allows
the designer to simply click on how the cores should be connected to each other. SOPC
builder then automatically generates a top-level HDL file that connects the different
modules together. Altera Nios II soft processor core is implemented by using this tool.

5.1.2 MegaFunctions

MegaFunctions are functional blocks of common off-the-shelf digital design functions that
are ready-made and pre-tested [11, 14]. They can easily be included in a digital design,
done in Quartus II. The objective of these IP cores is to help the designer save time and
energy by not redesigning common functions, but rather let him focus on improving and
differentiating his system-level product. There is a variety of different types of cores, e.g.
shift-registers, filters, video scalers and others. All cores can be simulated alone or as a
part of a bigger system by using e.g. ModelSim (see Section 5.2). Another strength with
the MegaFunctions cores is that they are easy to change. Once they have been created
by the tool inside Quartus II, the designer can edit the implemented core and change its
properties at any time.

5.2 ModelSim

ModelSim is a unified debug environment for hardware descriptive languages (HDL) from
Mentor Graphics [7, 47]. The tool uses single kernel simulator (SKS) technology which
is said to give it good performance. In the verification process of a design the designer
can use ModelSim to simulate and verify the behavior of a hardware description. This
is an important step in order to get rid of potential errors and a great way to ensure
that the system behave as intended. ModelSim also runs any testbench code written in a
HDL. The simulation is displayed as a digital timing diagram like the one in Figure 6.4.
Altera delivers a version of ModelSim called ModelSim-Altera Edition that comes with
a pre-built library many of the megafunctions available through Altera’s MegaFunctions
5.1.2. The ModelSim-Altera comes in three different solutions: Web edition, starter
edition and Altera edition. It is the two latter versions that currently are under future
development. The main differences are simulation performance, design size limitations
and price. Two of the main advantages of using ModelSim over Quartus II simulation
tool is its performance, especially in large designs, and its ability to run testbench code.

CHAPTER 5. TOOLS AND SOFTWARE 31

5.3 Nios II Embedded Design Suite

The Nios II EDS is a fully integrated development environment for developing software
to Altera’s Nios II embedded processor [20]. The environment is based on the industry’s
Eclipse IDE. The Nios II specific functionality is included as plug-ins. Following is a list
of these plug-ins:

• Nios II Project Manager

• Nios II Software Templates

• Nios II Flash Programmer

• Nios II BSP Editor

• Quartus II Programmer

• Nios II Command Shell

The Nios II EDS provides two distinct development flows and includes many proprietary
and open-source tools for creating Nios II programs. Among these tools are the GNU
C/C++ tool chain for compiling the C or C++ software language. The Nios II EDS also
automates the creation of BSP, see Section 5.3, and functions as an editor for altering
this configuration. There are also provided different software templates for examples on
how to use the Nios II. The Nios II command shell is used to display messages and it
also functions as a terminal when running code on a Nios II processor. The terminal
will display any message printed using C library functions like printf(). Quartus II
programmer makes it possible to program and run code on an implemented processor on
an Altera FPGA.

CHAPTER 5. TOOLS AND SOFTWARE 32

BSP and HAL

Figure 5.1: HAL BSP After Generating Files - from [20]

BSP or Board Support Packages is a specialized libary that contain system-specific sup-
port code for a Nios II project [20]. The BSP isolates the application from the system-
specific details. In Nios EDS, se Section 5.3, the BSP editor can be used to look at these
specifics and possibly change the system configurations. Inside the BSP editor it is also
possible to see the memory map and a list of the peripheral devices connected to the
Nios II processor. Figure 5.1 shows file hierarchy inside a generated BSP project and
how they are structured. If a design uses more than one Nios II processor, then each
processor would generate its own BSP project. A BSP contains the following elements:

• Hardware Abstraction Layer

• Newlib C Standard Library

• Device Drivers

• Optional Software Packages

• Optional Real-Time Operating System

As mentioned, a element of the BSP library is HAL. HAL is a lightweight runtime envi-

CHAPTER 5. TOOLS AND SOFTWARE 33

Figure 5.2: The layers of a HAL-Based System - from [20]

ronment that provides a simple driver interface for programs to connect to the underlying
hardware. Figure 5.2 shows how this software communication layer is implemented be-
tween the application program and the Nios II processor hardware. The HAL API is
integrated with the standard C library which allows the use of familiar C library func-
tions like printf(), fopen(), fwrite(), etc. to access devices and files in the underlying
hardware. The tight integration between SOPC builder and the Nios II software devel-
opment tools provides an automatic construction of HAL instances for the hardware
generated by SOPC. This makes it very easy for the developer to alter a hardware con-
figuration and then be able to run the same application on the new hardware by just
updating the Nios II BSP project (which also will update HAL).

Chapter 6

Development Platforms and
Hardware

There are several corporations that provide programmable circuitry like microcontrollers
and FPGAs. Altera, Xilinx and Atmel are examples of this [25, 62, 1]. All of these
corporations also provide development tools and platforms for their customers. The tools
and platforms have many purposes. One of these purposes is to demonstrate potential
area of application, another important purpose is making development easy.

6.1 Available platforms

Both Altera and Xilinx provide a range of different development kits [5] and [6]. The
kits differ in complexity, hardware components and area of application. Many of the
development kits provided are created by third party companies like Terasic [57]. Terasic
is the developer of the Altera DE2 platform and many other boards with Altera FPGAs.
In addition to the main boards they also supply a range of daughter boards with specific
areas of application. Examples of such boards could be cameras, touch screens, network
cards and much more. A similar platform to the Altera DE2 from Xilinx would be the
Spartan-6 LX150T FPGA Development Board. It includes many of the same hardware
components and it is well suited for video purposes. Avnet Spartan-6 FPGA Industrial
Video Processing Kit includes both the LX150T FPGA development board, image sensor
and more.

6.2 DE2 and Components

The Altera DE2 is a platform intended for development and education. It provides many
different kinds of features as shown in Figure 6.1, which makes it a versatile board with

34

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 35

Figure 6.1: Altera DE2 development board - from [12]

many possibilities [12]. The heart of the board consists of an Altera Cyclone II 2C35
FPGA which is one of Altera’s low-cost FPGAs [13]. The FPGAs output pins are all
connected to the important components on the board allowing the designer full control.
For simple communication with the environment or for user-interaction there are several
LEDs and switches. There are two types of switches: Push buttons and stationary toggle
buttons. To display characters and numbers there are a 16x2 character display and eight
7-segment displays. For experiments that need some kind of digital communication there
are several communication interfaces RS-232, PS/2, USB 2.0, 10/100 Ethernet and an
infrared (IrDA) port. For making systems that use sound or video the DE2 board also
have connections for microphone, line-in, line-out (24-bit audio CODEC), video-in (TV
Decoder) and VGA (10-bit DAC) for connecting to displays. It also has an SD memory
card connector and separate SRAM, SDRAM and Flash memory chips for storage. In
addition there are expansion slots for connection of other user defined boards.

6.2.1 The FPGA - Cyclone II EP2C35

In the Altera product catalog [15] three different types of FPGAs are described. The
Stratix series, Arria series and the Cyclone series. The Cyclone series focuses on low-
cost and low-power and is therefore well suited for high-volume applications. In [13]

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 36

Figure 6.2: Logic Element in Cyclone II - from [13]

the Cyclone II series is described in detail. From this data sheet it is gathered that the
Cyclone II EP2C35, located on the DE2 board, has 33 216 Logic Elements (LEs). These
elements, as shown in Figure 6.2, are the fundamental logic building blocks of the FPGA.
The logic elements include a 4-input look-up table (LUT), programmable register, and a
carry chain connection. The LUT can implement any type of combinatoric logic and the
programmable register can be used to hold information and implement different kind of
flip-flops. The carry chain connection can be used when implementing an adder which
needs to send carry out. The Logic Elements are distributed on the FPGA into Logic
Array Blocks (LAB). Each block consists of 16 LEs. The LABs are placed in a two
dimensional row and column based grid and interconnected with different connections
which support different speeds. In addition to the LAB there are also embedded memory
blocks and embedded multipliers present. The EP2C35 has a total of 105 M4K on-chip
RAM blocks and 483 840 total RAM bits, and 35 embedded multipliers. The multipliers
are 18 x 18 bit each configurable as two independent 9 x 9 bit multipliers with up to 250
MHz clock performance. The device also supports four Phase Locked Loops (PLLs). The
PLLs provide clock multiplication and division, phase shifting, programmable duty cycle
and external clock outputs, allowing system-level clock management and skew control.
For connection, the 2C35 has 475 user I/O pins and are made in a 672-pin FineLine BGA
package.

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 37

6.2.2 The VGA DAC - ADV7123

Figure 6.3: Functional Block diagram of the VGA DAC - from [26]

The ADV7123 device features high speed conversion of triple 10-bit digital video [26].
As input, see Figure 6.3, it takes three color components Red, Green and Blue (RGB,
see Section 4.2 for more details), each with a digital resolution of 10-bit. This data is
converted to the analog domain by three DACs and sent to a 15-pin high-density D-sub
connector. This connector can be connected to a common LCD or CRT screen with a
standard VGA cable. To synchronize the analog output the chip uses logic in combination
with the inputs BLANK and SY NC. Every time the CLOCK has a rising edge the
chip latches the RGB data inputs, SY NC, BLANK and control inputs to registers. The
screen resolution is based on the frequency of this CLOCK signal. This chip supports a
wide range of resolutions, all the way up to 1600 x 1200 at a 100Hz refresh rate.

In [26] all the functions of the VGA DAC is described. The most important ones like
BLANK, SY NC, PSAV E and CLOCK will be described in more detail. Inputs like
Vref and connection of external passive components to the chip is taken care of on the
DE2 board.

BLANK and blanking level

The blanking level is the level separating the sync portion from the video portion of
the signal. If the input on BLANK is equal to logical zero, the RGB inputs will be

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 38

disregarded and result in an ignorance of the RGB inputs and the analog output will be
driven to the blanking level. If this level is 0 IRE the result will be the darkest possible
picture.

SY NC and sync signal

The sync signal is the position of the composite video signal that synchronizes the scan-
ning process. A logical zero on the SY NC input switches off a 40 IRE current source.
This is internally connected to the IOG analog output. The SY NC signal does not over-
ride any of the other control signals, so it should only be asserted during the blanking
interval. The sync level is defined as the peak of the SY NC signal.

PSAV E

This is the power save pin and can save power when activated.

CLOCK

The rising edge of this clock signal latches the color and control inputs. It is typically
the pixel clock rate of the video system. To calculate the required clock for a defined
resolution one has to use Equation 6.1.

Dotrate = (HorizRes)× (V ertRes)× (RefreshRate)/(RetraceFactor) (6.1)

In Table 6.1 and Table 6.2 there are listed some of the possible resolutions and their
horizontal and vertical timing specifications. These are gathered from [12].

6.2.3 The I/0

The Altera DE2 board has a total of 18 toggle switches which, for instance, can be used
to activate functionality or as user inputs [12]. When a switch causes logic 0 it is stated
in the DOWN position, which is closest to the edge of the board. The logic 1 state is
when the switch is in the UP position. In addition there are four push-buttons. All
buttons are debounced by a Schmitt trigger circuit, transferring a clean logic 0 or 1 to
the input of the FPGA. The button is normally high and takes an active low state when
pushed. The buttons can be seen in Figure 6.1.

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 39

Table 6.1: VGA vertical timing specification - from [12]

Table 6.2: VGA horizontal timing specification - from [12]

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 40

6.2.4 The SDRAM - S29AL032D

There are different types of memory located on the DE2 card, as stated in [12]. This
memory is a chip named S29AL032D and it consists of 4 banks with 1 Mega x 16 bits
(equal to 2 Mega bytes) which gives a total of 8 MB storage capacity. The memory type
is called SDRAM (Synchronous Dynamic RAM) and it is accessible as memory for the
Nios II processor.

6.2.5 The FPGA-OnChip Memory

All Cyclone devices features embedded memory blocks which can be configured to be used
as ”OnChip” memory [13]. In Section 6.2.1 it was stated that the EP2C35 has a total of
105 M4K on-chip RAM blocks and 483 840 total RAM bits. The M4K memory blocks are
very fast and flexible and can be used to support a wide range of system requirements.
The memory blocks can be used in many different modes, including single-port, dual-
port, shift-register, as ROM (Read Only Memory) and as FIFO. On-chip memory can
be used to save and run Nios II software instructions.

6.2.6 Megafunction - Shift Register

Shift registers are a cascade chain of flip-flops that are connected to each other together
with a common clock signal [40, 14]. When the shift register is activated it will shift the
data from the input through the chain of flip-flops. The data will be shifted in the rate of
the clock signal. The first data of the output will be delayed equal to the number of flip-
flops in the chain. Shift registers can have both parallel and serial inputs and outputs.
They are often configured in either SISO (Serial-In Serial-Out), SIPO (Serial-In Parallel-
Out) or PISO (Parallel-In Serial-Out). Shift registers can serve many purposes. They
be used to convert between serial and parallel interfaces, as memory or delay element,
multiplicator or divider (by shifting data right or left the data would be multiplied or
divided by two).

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 41

Figure 6.4: Megafunction shift register (ALTSHIFT_TAPS) - from [14]

Figure 6.4 shows a timing simulation of the RAM based shift register from Altera (Mega-
function ALTSHIFT_TAPS). The shift register is implemented by using dual-port M4K
memory elements in shift register configuration (see Section 6.2.5). The configuration
of the shif register depends on the TAP_DISTANCE, NUMBER_OF_TAPS and WIDTH param-
eters. All parameters can be selected inside the Megafunction Wizard in Quartus II.
Figure 6.4 is configured with TAP_DISTANCE=3, NUMBER_OF_TAPS=4 and WIDTH=8 bits.
The data is shiftet in serial with a bit width of 8 bits, on input shiftin in the rate
equal to the clock signal. When clken is logic ”1” the input is read and the shift-
ing begins. The signals taps0x to taps3x outputs data with a distance equal to the
TAP_DISTANCE. Since all taps are internally connected in cascade taps3x will result in a
delay of TAP_DISTANCE× tap− number. In this case the delay is 9 clock cycles.

6.2.7 Nios II Floating-Point Unit

significant digits× baseexponent (6.2)

Many numbers are too large or too small to be represented by integers. One solution is
to use a system called floating point [40, 36, 24]. Every floating point can be described
as a combination of the variables in Equation 6.2. The term floating point refers to the
fact that the radix point or decimal point is floating. The point is set based on the value
of the exponent. In order to be able to describe decimal numbers with integers it is very
common to use a form of fixed point representation. This means that the radix point
is predetermined and fixed. This would allow integers to represent a range of decimal
numbers, but the range is fixed by the radix point.

Sign Exponent Fraction Bias
Single Precision 1[31] 8[30-23] 23[22-00] 127
Double Precision 1[63] 11[62-52] 52[51-00] 1023

Table 6.3: Storage Layout of IEEE floating point numbers - values from [36]

Table 6.3 displays how the storage layout of floting point number is based on IEEE [36].
The sign bit indicates the sign of the number. Logig ”0” is a positive number and logic ”1”

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 42

is a negative one. The exponent field represent both negative and positive exponets. To
represent this the actuall exponent is a combination of the bias and the stored value. If
the stored value is 200 the actual exponent is equal to (200−127) 73 for single precission.
In genereal this gives that the ”real” exponent is value − bias. Double precision uses a
total of 64 bits and single precision uses 32 bits. The composition of the fraction bits
and an implicit leading bit is called mantissa or significand and represents the precisions
bits of the number.

Target FPGA Device Addition Subtraction Multiplication Division
EP3C120 20 times 18 times 17 times 12 times
EP3SL150 18 times 19 times 12 times 13 times

Table 6.4: Sample Floating-Point Custom Instruction Acceleration Factors - values from [24]

The Nios II embedded processors, presented in Section 2.2, supports floating-point op-
erations [24]. The floating-point operations can either be emulated in software by the
GNU C/C++ compiler or processed as a custom instruction acceleration (see Section
3.2.1). The architecture supports single precision floating-point instructions as specified
by the IEEE Std 754-1985 [36]. The floating-point custom instructions can be added
to the Nios II processor inside SOPC builder (see Section 5.1.1) and gives support to
floating-point addition, subtraction, and multiplication. Floating-point division is also
available, but as an extension to the basic instruction set. It can also be added inside
SOPC. If double precision floating-point is used this would be emulated in software and
would give reduction in performance. Table 6.4 shows some sample performance increase
factors when using the custom instructions instead of only software emulation.

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 43

6.3 The Camera - Terasic TRDB D5M

Figure 6.5: The Terasic Digital Camera with the Altera DE2 - from [57]

This device, as shown in Figure 6.5, is made by Terasic for use in combination with
Altera’s DE3/ DE2_70/ DE2/ DE1 and Cyclone II starter boards. General information
about this camera can be found in [55], and a more detailed description about hardware
is found in [56]. Only main features are going to be described in this section. More de-
tails will be presented in Section 4, which describes how the raw image data is presented.
Together with the D5M camera Terasic has given a totally functional hardware descrip-
tion in Verilog that demonstrates how the camera can be used together with the DE2
board to show captured image data. The demonstration also supports a VGA screen
to show the pictures taken while the camera is running in the default mode called ERS
Continuous. In this mode picture frames are produced continuously at the frame rate
defined by the parameter tFRAME. Electronic Rolling Shutter (ERS) is used, and the
exposure time is electronically controlled to be tEXP .

W = 2× ceil((Column_Size + 1)/(2× (Column_Skip + 1)))
H = 2× ceil((Row_Size + 1)/(2× (Row_Skip + 1))) (6.3)

Following is a summary of some of the important features of the camera:

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 44

• The ability to run many different resolutions and frame rates in ”video” mode

• Supports widescreen resolutions, 720p60 and 1080p30, as well as resolutions up to
2592x1944 at 15 fps

• Very configurable and flexible

• Programmable controls: Gain, frame rate, frame size and exposure.

• Uses a two-wire serial interface (I2C) for configuration

• Connects directly to the DE2 board in the expansion slot.

• Both hard and soft reset. Soft reset enables quickly reset of most registers

• Integrated PLL for clock frequency multiplication and division, see Section 6.3.

• Support for different readout modes: Skipping and Binning.

– Skipping - reduces the output resolution without affecting the field-of-view. It
does this by not sampling entire rows and columns of pixels. A skip 2X mode
skips one Bayer pair of pixels for every pair of output. See Equation 6.3 for
the resulting width (W) and height (H) after skipping

– Binning - Can reduce the effect of aliasing introduced by use of the skip
modes by averaging of 2 or 3 adjacent rows and columns (adjacent - same-
color-pixels). More about this can be found in Section 4.3.2

Pixel clock and PLL

Figure 6.6: Shows how the camera’s PLL is implemented - from [56]

PIXCLK =
(XCLKIN ×M)

(N × P1)
(6.4)

The PLL (Phase-Locked Loop) in [56] is used to generate a pixel clock signal which
corresponds to the rate of the readout of pixel data. To alter this frequency the values

CHAPTER 6. DEVELOPMENT PLATFORMS AND HARDWARE 45

of the correspondence data registers are changed. This is described in further detail in
Section 9.3. Equation 6.4 describes what the final pixel frequency will be based on the
values of the adjustable parameters.

Chapter 7

Communication

The Oxford Dictionary of English defines communication as: ”the imparting or exchang-
ing of information by speaking, writing, or using some other medium”. For an embedded
system, communication is a very important part of the system. Without the possibility
to talk to the world ”outside” or to communicate with different peripherals inside, the
system would not serve any purpose.

7.1 Altera Avalon PIO

Figure 7.1: NIOS II sample system with multiple PIO cores - from [21]

The Altera Avalon Parallel Input/Output (PIO) core is an interface that easily can be
connected to the Nios II embedded processor [21]. This is done by using SOPC builder as
described in Section 5.1.1. The core itself provides one to 32 I/O ports. Figure 7.1 shows
an example of how the PIO core connects the system interconnection fabric together
with the other logic. The PIO core can be used to connect to peripheral logic inside
the FPGA (on-chip) or to connect to other devices outside the FPGA (through external

46

CHAPTER 7. COMMUNICATION 47

pins). The PIO core is connected to the Nios II processor by memory mapping the PIO
core in its address space. This means that Nios II does not make any distinction between
memory devices and I/O devices. Accessing the I/O device is done by accessing the
specific address that the I/O device occupies [30]. When an access is made with Nios II
the communication is done through the system interconnection fabric. The PIO core can
be used in many ways, e.g. controlling LEDs, acquiring data from switches, configuring
and communicating with off-chip devices and more.

Figure 7.2: PIO core - from [21]

SOPC builder, described in Section 5.1.1, can be used to add a PIO core to a Nios II
system. When adding the core it is possible to choose between different options on how
the core should operate. Figure 7.2 displays a core for input or output operation. It is
also possible to select a core for bidirectional operation (in-out). The core in Figure 7.2
displays a dataregister that can be used to read or write data to the ports. In addition
there is also a separate part of the core to support Interrupt (see Section 2.3). Interrupt
can be either ”level-sensitive” or ”edge-sensitive”. When it’s ”level-sensitive” it means
that it will generate an interrupt whenever a ”high” level is registered. If its set to ”edge-
sensitive” the core can generate an interrupt on either rising edge, falling edge or either
edge. The interruptmask register is used to select which of the ports should trigger
an interrupt. The bits in the register that are logic ”1” will activate sensitivity on the
corresponding port.

CHAPTER 7. COMMUNICATION 48

7.2 I2C

From [30] I2C is described as a very cheap yet effective bus-network used for intercom-
munication between peripheral devices in small-scaled embedded systems. It has been
used for more than 20 years and there are many devices supporting this bus-network.
The camera, described in Section 6.3, uses I2C to configure the camera by altering values
in the data registers.

Figure 7.3: I2C bus system - from [30]

The I2C is based on a two-wire system, one wire for synchronization SCL (Serial Clock)
and the other wire for data SDA (Serial Data). Both lines are pulled up by two resis-
tors to Vcc (the supply voltage) which gives them the default digital value of logic ”1”.
The different devices are connected as shown in Figure 7.3. One of the advantages in
comparison with other serial communication interfaces is that a device can be connected
and disconnected without interfering with the other devices that are communicating.
This property gives the system flexibility. The devices that are connected can either be
a master (I2C supports multiple masters), which can initiate a transmission, or a slave
which can only receive data.

Figure 7.4: I2C ”start condition” - from [30]

The idle state for the system is when both SDA and SCL is high. This means that none
of the devices are pulling the lines towards ground. An I2C connection is initiated by
the master by first making SDA low followed by SCL. This is called ”start of packet”.

CHAPTER 7. COMMUNICATION 49

Figure 7.5: I2C ”stop condition” - from [30]

To stop an I2C transmission the steps are simply reversed. SCL are let high followed by
SDA. This is called the ”stop condition”. The two conditions are shown in Figure 7.4 and
Figure 7.5.

Figure 7.6: Single I2C packet with receiver acknowledge - from [30]

Figure 7.7: Complete I2C packet, slave address, direction and data - from [30]

A typical I2C packet consists of the above mentioned ”start of packet”, a unique slave
address, a direction bit, receiver ACK, the data, a new receiver ACK and last a ”stop
condition”. Figure 7.6 shows a single I2C packet with a receiver acknowledge. Figure 7.7
shows a typical complete packet. This includes the ”start of packet”, the address of the
slave, direction bit - read or write, receiver ACK, data bits, receiver ACK and finally the
”stop condition”. If the address is chosen as 0x00 this means that the message can be
received by all devices. This is called a ”general call address”. This could be used by a
master to find out which slaves are available. More information can be found in [30].

Chapter 8

Pedagogics

In any kind of teaching and learning environment the main objective should be to present
knowledge in a way that has the best learning effect on the one receiving it. The theory
around this field is called pedagogic [38] and it is an important tool in this environment.
By changing the way knowledge is presented and taught it is possible to get very different
results in relation to what the observer has learned. When demonstrating electronic
systems, the use of these tools combined with the experience of others can greatly improve
the success of the demonstration.

8.1 Embedded Systems in Education

There are several people researching the field of how to teach about embedded systems
and microprocessors [33, 44, 27]. One of their common goals is to find an efficient way
to provide students with sufficient knowledge of the topic.

In [33] it is suggested to change a curriculum in order to make it possible for computer
engineers to embrace the field of embedded systems. Pedagogically, the courses about
embedded systems allow the students to explore the trade-offs between different design
modalities (i.e., hardware versus software, digital versus analog circuitry, dedicated versus
reconfigurable hardware, etc.) and investigate optimal solutions given a set of constraints
placed on the system. It is also said that in order for the students to develop their skills
in the embedded systems discipline it is not sufficient with single courses, but a more
extensive program-level curriculum is needed to adequately educate students in embedded
systems design. This emphasizes that the field of embedded system is very extensive.

The two courses described in [44] uses both soft and discrete microprocessors to support
their teaching in their introductory course to microprocessors and embedded systems.
The soft processor in combination with the reconfigurable nature of the FPGA provides
great flexibility to demonstrate many different aspects to the field of embedded systems.

50

CHAPTER 8. PEDAGOGICS 51

The courses use projects and a practical approach to get the students to learn.

Presented in [27] are experiences about important teaching skills and concepts for em-
bedded system design. These experiences have been gathered from courses provided in
the field of embedded systems. The courses have been given great feedback from students
that followed them. What they have experienced is that a theoretical approach is not suf-
ficient. The hands-on sessions are indispensable to get the student to really understand
the theory. Although the course focuses on complex system design, the practical exam-
ples are kept small and simple enough to be able to explain the basic concepts without
losing focus because of the complexity of the problem. The focus is always held on one
small design aspect at the time with additional explanation of how the small parts can be
used in a more complex manner. Key factors to obtain this good learning environment
are enthusiasm and motivation from the teacher, interactivity and real world examples.

8.2 Pedagogic in Teaching and Learning

In [38] and [37] knowledge of pedagogic and psychology in the field of teaching are
presented. [38] focuses on how the teacher should perform the educating to get the
best results, and [37] focuses more on the psychology of the pupils. This information is
important to consider in any form of educating environment.

One part of [38] presents some general guidelines and principles to consider when teach-
ing. It is important that the teacher motivates the pupils before teaching. A form of
motivation could be to give the pupils some examples of how the theory could be used in
everyday life. This might give the pupil a meaning as to why it is important and thereby
motivate him or her. Another important thing to be aware of when teaching, is that the
pupils learn best when they can be an active part of the education and not just passive
listeners, for instance by doing exercises, which gives a practical approach to the theory.
The importance of teaching and learning with use of an active and practical approach
is supported by [54]. In order to maximize the student’s achievement the instructors
should not allow them to remain passive while they are learning. One way to get them
more actively involved is to structure a cooperative interaction. It is also important to
present the theory in a concrete and clear fashion to avoid mix-ups [38]. In addition it is
also important to follow the principal of focus. This is done by emphasizing the central
parts of the subject. The focus is defined as what binds the part we understand with
the new theory. Hence, it is important to individualize the teaching - making it suitable
for the individual subject to keep the focus. It is also important to remember that the
pupils have different background and basis for understanding the theory, and take this
into consideration when teaching.

In [37] it is presented pedagogical psychology based on the pupils’ perspective. One
important theory from this book is about differentiating. Differentiating is about dividing
the pupils into groups based on their age before adapting the teaching. This emphasizes

CHAPTER 8. PEDAGOGICS 52

the importance of age and that it should be an important factor to consider when choosing
how and what kind of theory to present.

Chapter 9

Implementation and Discussion

In the pre-study described in the project thesis there was made a specification of an
embedded demonstrator on the Altera DE2 platform. It was decided that the chosen
demonstrator should present and manipulate recorded video, both in hardware and in
software. The demonstrator’s purpose is to educate about the importance of hardware/-
software codesign in addition to presenting an example of an electronic system. The
demonstrator that was chosen was based on the study of many different alternatives.
The two most promising candidates were the video demonstrator and a demonstrator for
visual demonstration of audio properties. Both demonstrators used a visual concept to
educate and were supposed to be able to interact with the participants. The reason for
choosing a visual and interactive demonstrator was based on pedagogical aspects. These
aspects are presented in Section 8. From the field of pedagogics it is said that a practical
approach to education is much more effective than theory alone. In addition, by letting
the observer take an active part of the demonstration and visually see the results it is
easier for the participant to come to his or her own conclusion. It was also suggested
that the practical examples demonstrated should be kept small and simple enough to be
able to explain the basic concepts without losing focus because of the complexity of the
problem. The embedded video demonstrator uses video as a medium for demonstration,
which makes it easier for the participant to relate the demonstrator to real world exam-
ples. The embedded video demonstrator presented a better solution altogether, it had
more available documentation and a functional hardware description which would help
finalize it in the available timeframe.

53

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 54

Figure 9.1: A block diagram of the Terasic camera system - from [55]

The chosen demonstrator presents two demonstrations. One is to demonstrate the differ-
ence in obtainable video ”quality” by processing it in both hardware and in software. The
other is to demonstrate how video can be manipulated by doing modifications to the color
information and demonstrate the difference between doing this in hardware or in soft-
ware. The specification of the embedded video demonstrator was based on a combination
of reusing existing hardware modules and possibly modify these or designing new ones.
An existing system was designed by Terasic [57] and came with the camera (see Section
6.3) and consists of several useful modules. The system is displayed in Figure 9.1 and
was used as a base for putting together the final specification of the system. In order for
the Terasic system to serve the wanted demonstrational purpose, it had to become much
more flexible and dynamic. This flexibility was achieved by introducing a soft embedded
processor used for control, configuration and video processing and manipulation.

In this chapter, the process that took place when designing the implementation of the
specified embedded demonstrator is going to be presented and discussed. The system
consists of several different modules, both in hardware and in software. These were
described in the C software programming language and in the hardware descriptive lan-
guage Verilog. Some of the software code is available in Appendix A and some of the
hardware modules code can be found in Appendix B. The complete system with all
software and hardware code is delivered in a .zip-file together with this thesis.

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 55

9.1 System Overview

Figure 9.2: A block diagram of the system and the communication flow

Figure 9.2 gives an overview of the finalized system implemented on the FPGA and the
main communication flow between the different modules. A similar block diagram was
made in the specification in the project thesis. The differences are the location of the
HW/SW MUX, which was originally placed above the hardware video processor, and the
introduction of an extra module called SPG. The system utilizes many different hardware
and software components. It uses the FPGA’s on-chip memory to make shift-registers,
to store software and to create FIFO buffers. The dedicated SDRAM is used as a frame
buffer that holds a single frame of video at the time. The SDRAM is controlled and
accessed by using the four-port controller hardware from Terasic, implemented on the
FPGA, which can be used to read or write to the SDRAM through its four FIFO buffers.
The external LCD screen receives analog RGB data thorough its VGA cabel. The VGA

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 56

DAC transmits this analog data by conversion of the digital data it receives from the VGA
controller on the FPGA. The fastest soft Nios II processor is used at a high operating
frequency of 150MHz and it is combined with different types of peripherals and custom
instructions (PIO (with and without interrupt), performance counter, custom floating-
point instructions, JTAG, character LCD driver and an interval timer). The I/O buttons
(e.g. SW0-SW7) are used for system reset, switching between demonstration modes
and for activating/deactivating other functionality. More information about how the
demonstrator can be operated will be presented in Section 10 and in the poster. In the
following tables, Table 9.1 and Table 9.2, the different modules in the finalized system
are given a short description of their functions and origins. The tables also describes
which of the modules have been modified in order to meet the spcifications. The most
essential modules will be described and discussed further in the following sections.

The top module of the design, the file which describes how the different modules are
connected to each other, is made by using the same top Verilog file that Terasic used for
their system. An alternative would be to make a schematic top file, which can be created
inside Quartus II. In the beginning of the design phase a schematic top file was used to
implement only single modules, like Nios II. A schematic description of the whole system
was abandoned because it would require to much time and work. It was much easier
to use the existing top file and simply modify it to fit the new design. In addition, by
using a code based top file it was considered much easier to add parameters and make
simple changes to the system. Simple changes would be adding registers, counters or
other functions in the top file itself. It was also considerably easier to keep an overview
of the complete system, especially on a small screen, but this is most likely a personal
preference. A part of this top file is available in Appendix B.1 and shows how the different
modules are connected to each other.

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 57

Module Name Description Origin
CMOS Sensor
Data Capture
or ”CCD
Capture”

A module for starting or stopping the capturing of im-
age data from the camera. It creates a DVAL signal to
indicate when pixel data is valid and it creates X and
Y signals that correspond to the coordinate of the valid
pixel data. The pixels arrive at the rate of the pixel
clock, generated from the camera. In addition, this
module counts the current number of captured frames
and displays it on the seven segment displays on DE2.
The module was modified to be started and stopped
by Nios II

Terasic

HW Video
Processor or
”RAW2RGB”

This module demosaics the RAW image data to view-
able RGB. The module was modified to support con-
trol by Nios II and additional functionality. An impor-
tant part of this module is the sub-module called ”Line
Buffer”. This module is a MegaFunction shift-register.
The shift-register functions as a line buffer so that it is
possible to read from two image data lines simultane-
ously. This is essential for the demosaic interpolation
process

Terasic

HW/SW MUX This module was created to serve the purpose of
switching between sourcing video data from hardware
or software to the SDRAM frame buffer (Multiport
SDRAM Controller). The MUX is controlled by the
Nios II processor and sources the hardware video data
as its default operation

Self

SPG or Single
Pulse
Generator

This module was created as a solution to a timing
problem. The module takes in two signals, a clock sig-
nal and an input signal. When the input signal goes
high, the SPG generates a logical high pulse on the
output with a width of one clock period.

Self

SDRAM
Multiport
Controller or
”Sdram
Control 4Port”

This module is a generic 4 port SDRAM controller.
It uses two FIFO buffers for inputs (writing) and two
FIFO buffers for outputs. The FIFO buffers are made
using Altera MegaFunctions and are 16 bit wide and
can hold up to 512 words of this size. In this system the
SDRAM controller is used as a frame buffer to hold a
single picture frame. The SDRAM controller manages
all writing, reading, sorting and synchronization.

Terasic

Table 9.1: Overview of the hardware modules on the FPGA and their origin part 1 of 2

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 58

Module Name Description Origin
SDRAM PLL This is a MegaFunction from Altera and it is used

to generate several clock signals based on a reference
clock (50MHz). It is used to create a clock signal to the
SDRAM controller and to create a similar clock to the
external SDRAM. The external signal is phase shifted
with −3ns from the controller clock. Both clocks are
running at 125MHz. The PLL have been modified by
using MegaFunction tool to add an extra clock signal
for the Nios II/f (150MHz) (see Section 9.1.4 and Sec-
tion 9.2)

Altera

VGA
Controller

This controller generates the necessary synchroniza-
tion and blanking signals based on an input refer-
ence clock and a set of parameters. The parameters
use the values presented in Section 6.2.2 in Table 6.1
and Table 6.2. The default parameters and reference
clock puts the screen connected to the VGA DAC in
640x480x60HZ. To alter this a different reference clock
must be provided and the parameters must be changed

Terasic

I2C Controller
or ”I2C CCD
Config”

This module is used to configure the operation of the
camera. It consists of two modules: The configura-
tion module and a sub-module for transmitting data
following the I2C standard as specified in Section 7.2.
The module was modified to support receiving a con-
figuration from the Nios II/f.

Terasic

Reset Delay This module is not in Figure 9.2, but it is used to
reset the system. When a user pushes Key[0] this will
trigger a reset in this module. The module will then
reset all hardware modules and wake them up, one by
one with a little delay in between. This is done to
make sure that the essential modules are ready before
others that rely on them. The reset delay module has
been modified so that Nios II can reset all hardware
without being reset itself

Terasic

SEG7 LUT This is a module for translating binary values into
seven segment control signals. It is used by the CCD
Capture module to display current frames

Terasic

Nios II/f
embedded
processor

Composed and customized by using Altera SOPC
builder tool. This module will be further described
and discussed in Section 9.2

Altera

Table 9.2: Overview of the hardware modules on the FPGA and their origin part 2 of 2

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 59

9.1.1 Hardware Video Signal Flow

This mode is accessed either by resetting the whole system (Key[0]) or by user selec-
tion (SW2). When this selection occurs the Nios II processor ”switches” the MUX into
hardware mode and it feeds the appropriate configuration to the I2C controller. The
I2C controller requests this data by triggering an interrupt in the Nios II processor when
changing its configuration data index. This configuration is described in further detail
in Section 9.3. The camera is now ready and is operating as configured. Before any
processing begins, the CCD Capture device has to be started. The user can start or stop
this module by using SW0 or SW1. When the capture device is started, it waits for the
beginning of a new image frame from the camera before it starts to count the pixels and
deliver the data together with a data valid signal (DVAL) in addition to the X and Y
coordinates. This data is received by the RAW2RGB module which uses a shift-register
to buffer up two rows of image data. This shift-register delivers two taps of data so that
the data on two separate rows can be read simultaneously and the necessary interpola-
tion/demosaic is done to create the RGB data. This data together with a new data valid
signal is then transferred through the MUX and into the two input FIFO buffers of the
SDRAM multiport controller. The FIFO buffers read the input data when they get a
write request. This write request is connected to the data valid signal from the video
processor. The image data is then stored in the frame buffer. The VGA controller is
already configured by static parameters to operate at 640x480x60Hz. This means that
the controller tries to get a new frame 60 times per second. This is done by making a
read request in the two output FIFO buffers and the data is read at the rate of the VGA
control clock (25MHz). The digital RGB data is then converted into analog RGB signals
which then can be presented on the LCD display.

9.1.2 Software Video Signal Flow

The main difference between this mode and the hardware mode is that the data is read
through the Nios II processor, processed here and then delivered to the frame buffer.
The software mode is accessed by user selection (SW3) which triggers an interrupt in
the processor. The control signals controlling the HW/SW MUX is then changed and
the data connected to the SDRAM controller is now connected to Nios II. Next, the
I2C controller receives the new configuration from the processor and transmits it to the
camera. The camera now operates at a much lower frame rate, taking into consideration
Nios II’s limitations. As a result, when activating software mode, the processor also
activates interrupt on the input called ”PIX_VALCLK”. This signal is gathered from the
hardware video processing module (RAW2RGB) which has been modified to deliver a
clock signal which only ticks as long as the data valid signal is logic ”high”. This means
that each time the clock signal changes value to logic ”1”, it means that there are new
image data ready to be accessed. This transaction to logic high (rising edge) triggers
an interrupt that reads data from the shift-register inside the hardware module, and
interpolates it to RGB data. This data is then transmitted to the RGB outputs on Nios

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 60

II, including a write signal. It is essential that this write signal just gives a single pulse
of the same length as one clock period of the Nios II clock (150MHz). The reason for
this is that the FIFO input buffers also use this clock, because of software mode. Since
Nios II might use more then one clock cycle to pull this signal low-high-low, the SPG
(Single Pulse Generator) was created. This module eliminates the possibility that the
FIFO buffers should read the same pixel data more than once, which would result in
corrupted pixel data. Finally the data is displayed on the screen. A successful processing
of video in software.

9.1.3 System and Platform Discussion

The platform used for this system is the Altera DE2. This platform is versatile and
can be used to implement a wide variety of systems to fit many different applications.
Based on the embedded video system implemented here, the DE2 has all the necessary
components to successfully create the application. The heart of the DE2 board is the
Altera Cyclone II FPGA which has sufficient capacity and hardware performance. Since
the whole idea of the FPGA is to be customizable and reconfigurable, this leaves the
designer with the big task of utilizing its power by partitioning hardware and software in
the most effective manner. One way to increase hardware processing performance is to
use more area and do more calculations in parallel. One could argue that why not use a
simple microcontroller to do the same job? As presented in [52] a microcontroller would
possess the properties to do pixel color interpolation, but it would result in a bad frame
rate for video purposes. In addition, with a microcontroller alone it would be difficult to
demonstrate the potential of using dedicated hardware to accelerate some calculations.
The microcontroller would also not be as adaptable and customizable as the FPGA is.
In the design process of this system, it has been very important to be able to adapt
hardware to fit a very specific need and also the possibility to create new hardware. This
would not have been possible with a microcontroller.

Two of the biggest producers of FPGAs are Altera and Xilinx. Both of them have a wide
range of different products, many of which are suited for different areas. Low power,
large capacity and high performance are some of their properties. These producers also
offer different development platforms, like the Altera DE2 or the Xilinx equivalent, the
Spartan-6 LX150T development board. Both also offer a large variation of daughter
boards that can be connected to the platforms, like cameras and the like. One of the
main reasons for choosing Altera over Xilinx to implement the current system was the
availability of the board. NTNU already had a large supply of DE2 and Altera/Terasic
also supplied a sufficient camera with a functional hardware platform that was designed
to fit the DE2. Xilinx also delivers a kit with a camera, FPGA development board and
other components which also could prove to be a good platform for this system.

Another discussion to be had is about the use of either hard or soft processor. A presen-
tation of these processors was given in Section 2.1. The combination of an FPGA and a
hard processor, like the one Xilinx provides (Xilinx FPGA Vertex-V FXT), could provide

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 61

the system with the necessary processing power to be able to do color manipulations on
the ”live” video stream. This was not the case when using Nios II/f as will be discussed
in Section 9.6. The hard PowerPC 440 processor could have delivered almost the double
of DMIPS compared to the Nios II/f, as shown in Table 2.3, 2.0 DMIPS/MHz versus 1.16
DMIPS/MHz. In addition would the hard processor support a much higher clock speed
than the Nios II/f processor. This would also have provided additional performance.
The PowerPC 440 does not implement a hardware floating-point unit, but it is possible
to add such functionality by using the APU (Auxiliary Processing Unit) interface. This
interface enables a direct processor connection to high-speed FPGA logic for a wide va-
riety of coprocessing options. This could be an alternative to the custom floating-point
instructions used in the implemented system. However, using this hardware could have
provided additional design challenges as opposed to the easy way of implementing it
using the custom instructions and the tools from Altera. The benefits of using a soft em-
bedded processor also gave the designer wide customization possibilities which would not
have been possible with the hard processor core. The Nios II/f was fitted with the exact
needed peripherals and was also possible to alter to try out other solutions. This flexibil-
ity was very important in the design of the embedded demonstrator and was considered
to outweigh the performance increase by using a hard processor. Further discussions of
the software performance of the soft core Nios II/f will be presented in the following
sections.

The specification from the project’s report was based on using the Terasic hardware
description. One could argue that there might be other and more efficient ways of doing
the implementation, but since the designer was not experienced in implementing such
platforms, it was believed that using an existing platform as a basis would be a smart way
to go. It was also believed that this would increase the chances of success in implementing
the demonstrator in the available time frame.

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 62

9.1.4 Programs and Tools

Programs and tools Usage
Quartus II 9.1 SP1 Web Edition This program and its features was used to do the

hardware implementation of the system
SOPC builder tool (In Quartus II) This tool was used for implementation of the

Nios II processor, its peripherals and the custom
instructions

MegaFunction tool (In Quartus II) This tool was used for modification of the PLL
and shift-register MegaFunctions

Nios II EDS 9.1 This program and its features was used to create,
debug and program the software running on the
Nios II processor core

ModelSim-Altera 6.5b This simulation and debug program was used to
simulate and verify hardware behavior

Matlab R2008a This program was used to make a software simu-
lation and verification of the color manipulation
functions and the implementation of different de-
mosaic interpolation algorithms

Table 9.3: Programs and tools used to implement the system

Table 9.3 gives an overview of the different programs used to implement this system. The
main design program was Quartus II 9.1 SP1 which also gave access to the SOPC builder
tool and the MegaFunction tool. All the hardware, including the Nios II/f processor was
implemented using a combination of these tools. SOPC was used to implement and edit
the Nios II/f processor and its peripherals. A description of these peripherals and Nios
II is given in Section 9.2. SOPC was also used to add custom instructions, connect
the peripherals together and defining interrupt priorities (IRQ). The MegaFunction tool
was used to edit existing MegaFunctions like the ”Line-buffer” (shift-register) which was
used as an important part of the interpolation process, and also to edit the PLL to
support additional clock signals. A clock signal could be created by using a combination
of multiplier and divider options based on the reference clock signal. It was also possible
to change the phase between the new clock signal and the reference clock.

Nios II EDS was used to create, debug and program the software on the Nios II/f pro-
cessor. The environment lets the designer create standard C code with its library and
compile the code to be executable with Nios II’s instructions set. Nios II EDS struc-
tures the hardware and software into BSP projects, which includes a specialized library
containing system-specific support code. It also consists of the HAL software communi-
cation layer for easy access to the underlying hardware and linking between standard C
functions, like the link between printf() and JTAG with a console inside Nios II EDS.
When the designer does alterations on the Nios II hardware, a new BSP can be gener-
ated with a simple click. And the designer can compile his code with the new hardware

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 63

configuration. One of the important discoveries made when using Nios EDS and the BSP
projects was the ability to modify the BSP and HAL driver library inside the BSP editor
to reduce the size of the library. This modification was essential when trying to fit the
whole program into the on-chip memory (32kB memory).

9.2 Implementation of Nios II

Figure 9.3: The Nios II/f-module created for this system

Nios II comes in three different core implementations, as described in Section 2.2, and was
implemented using SOPC builder in Quartus II. Since video processing is a demanding
task it was necessary that the fastest implementation was chosen; Nios II/f. The slowest
implementation, Nios II/e, uses six clock cycles and more to execute a single instruction,
but Nios II/f can execute a single instruction in one clock cycle. Table 2.3 shows a list
of the difference in DMIPS performance between the core implementations. If the pixel
clock was 25MHz (the default value from Terasic) and the Nios II/f was operating at a
clock rate of 150MHz, this would give six clock cycles to do the potential work between
each arriving pixel. In other words, not a lot of time to do calculations. This is also
the reason for lowering the pixel clock significantly when processing video in software.
See Section 9.3.2 and Section 9.5 for more information. In order to get the maximum
performance, Nios II/f was set to run at the maximum operating frequency. This was
about 150 MHz on the current FPGA (Cyclone II). An even higher clock rate could be
possible by using an FPGA with a higher speed grade.

Figure 9.3 gives an overview of the implemented processor and all its inputs and outputs.
Most of them are results of PIO peripheral cores (I/O) for communication with the other

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 64

hardware modules on the FPGA. Table 9.4 and Table 9.5 gives overview of the inputs
and outputs and specifies where they are connected and their purpose.

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 65

Name Usage Module
clk, reset Nios II clock and reset signal SDRAM PLL 150MHz,

KEY[0]
CCD XY Pixel coordinates, use just the LSB

to indicate odd or even columns and
rows

CCD Capture

mDATA_0,
mDATAd_0,
mDATA_1,
mDATAd_1

In total, all these data signals give a
group of 4 pixels (2x2). Taken from
the shift register and two additional
delay registers

Line Buffer inside
RAW2RGB

LUT DATA The signal is used to give 24 bits of
configuration data to the I2C con-
troller

I2C controller

LUT
INDEX

Is an interrupt driven input, on
any edge. When the index value
changes, this means that the I2C
configuration module needs new
configuration data from the camera.
This configuration data is immedi-
ately put on LUT DATA

I2C CCD Config

DVAL A write/valid signal to the input
FIFO buffer on the SDRAM con-
troller. This signal is meant to be
a single pulse so that the FIFO just
reads the current pixel once. This is
done by running the signal through
the SPG module

SPG->HW/SW MUX-
>SDRAM controller in-
put

PIX
VALCLK

This is a signal that combines the
data valid signal from CCD Capture
(DVAL) and the pixel clock (PIX-
CLK). Whenever DVAL is high, the
signal will follow PIXCLK (DVAL
AND PIXCLK)

RAW2RGB

Table 9.4: Nios II processor’s inputs and outputs, their purpose, and to which modules they
are connected to, part 1 of 2

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 66

Name Usage Module
SWint,
SWint2

Both are 8 bits interrupt driven
inputs. SWint are connected to
SW0-SW7, SWint2 are connected to
SW8-SW15. They trigger an inter-
rupt on rising edge. In other words
the switch has to be toggled

Switches (SW)

RED,
GREEN,
BLUE

The 12 bits RGB color components
used to transmit processed pixel
data to the frame buffer when in
software video mode

SDRAM controller
through HW/SW MUX

LCD E,
LCD RS,
LCD RW,
LCD DATA

Signals connected to the onboard
16x2 character LCD from the LCD
peripheral driver. The driver en-
ables easy access to the different reg-
isters on the LCD panel. It is used
for giving information about the cur-
rent demonstration mode

16x2 LCD panel

LEDS The two LSBs of this signal is used
to start and stop the CCD capture
device. The 6 MSBs are connected
to the LEDR2-LED7

CCD Capture, LEDR

RAW2RGB
CONTROL

These signals are used to control the
RAW2RGB module. Now their only
purpose is to activate or deactivate
inverting the color data, but they
can also be used to activate further
hardware color processing (if imple-
mented)

RAW2RGB

RESET This signal is used to activate the
reset of all modules except Nios II.
Each time the system is reset, the
I2C controller wants new data. In
other words this is the way to change
the camera’s behavior

RESET DELAY

Table 9.5: Nios II processor’s inputs and outputs, their purpose, and to which modules they
are connected to, part 2 of 2

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 67

9.2.1 Hardware Peripheral Selection

Figure 9.4: Nios II’s peripherals with memory map and interrupt

Figure 9.4 shows the final Nios II peripheral configuration. It includes several different
cores. In the beginning of the design phase the Nios II was first implemented with
only one simple interrupt based PIO. This was done to make it possible to test out the
functionality and to learn how to get interrupt up and running. After managing the PIO
core other peripherals were added and tested in the same way. It took some time to
find out how to use the different peripherals and how to access them in software, but
it worked out after gaining more knowledge on how to use the available commands in
HAL for accessing registers and similar. The file named ”system.h” in the BSP project
contains a list of all the devices currently added to the Nios II core, and it was found
that instead of using the physical base address when accessing peripherals, one should
rather use the name from this file. E.g., the address for LUT_INDEX would be called
LUT_INDEX_BASE equal to 0x110BO (see Figure 9.4). This makes sure that the
correct device is accessed even if the memory address changes, since this would change
in the file as well.

At the top of Figure 9.4 one can see the Nios II core together with the on-chip memory.
This memory is 32kB and provides both instructions and data storage. The JTAG

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 68

UART core gives the necessary functions to debug the software and the ability to pause
the execution and step one instruction at the time. In addition, it also connects the
Nios II to the console inside Nios II EDS, which can be used to send messages from
Nios II to the PC. Next is the timer core. This core was added with the purpose of
being used for synchronization or to perform some kind of periodical function, but since
the reading of pixel data is based on interrupt, it was not necessary to use it. It could
have been removed, but it was decided to keep it in case the functionality was needed.
Another important core is the performance counter. This is used to count the number
of cycles a specific section of code takes to execute. It was used to gather data about
how much time different sections of code took and to get a number of the performance
increase by using custom floating-point instructions versus floating-point in software.
The results are discussed in Section 9.6. The character LCD peripheral makes accessing
and controlling the LCD panel much easier and is used to write messages about the
demonstration mode and other useful information to the user. The sysid core is used to
name the Nios II system with an ID. And last thre are the PIO cores. They are used
for internal communication in the FPGA between the different modules, as described in
Table 9.4 and 9.5. Those of the cores that are interrupt based are each given an IRQ
number. This number indicates their priority. The lower the value, the higher is the
priority. It was decided that the most crucial and important interrupt was the interrupt
that received new pixel data when running in video mode. The second most important
was decided to be the configuration of the camera, which only occurs when the hardware
has just recently been restarted (not in video mode). The interrupt on the X and Y
coordinates are not used, but was thought of as an alternative to the PIX_VALCLK
signal to indicate new pixel data. The rest of the IRQ values are evenly distributed.

9.2.2 PIO and Interrupt

When trying to get the PIO core to function with Nios II/f, an important discovery was
made. Usually, to read or write from the PIO core, one could simply make a volatile
pointer to the same address as the PIO core occupies and read or write to this pointer.
This was the way it was done in several of Altera’s tutorials on the two other processors,
Nios II/e and Nios II/s, but it did not work on Nios II/f. One of the differences between
the implementations of Nios II/e and Nios II/s, and Nios II/f was the use of cache; A
small, but very fast local memory, used to hold some of the recent used data. When a
pointer was made to the address of the PIO core, the processor simply returned the cache
value and not the current value of the core. In order to update the value in cache one
had to access the PIO core’s data register directly by using an I/O read command from
the HAL library. It was also discovered that Nios II/f could support volatile pointers,
but this would mean adding compile parameters. Since the system ultimately should use
interrupt it was not necessary to use volatile pointers.

Each of the PIO cores support up to 32 bit width, this would allow one core to receive
several signals which could then be separated in software and reduced the necessary

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 69

number of PIO cores. Instead many of the signals were decided to be separated into
individual PIO cores with the exact bit width. This was also the case for the received
pixel data when running in video mode. The reason for this choice was that the splitting
of one 32 bit signal would need to use some kind of shifting mechanism, which would need
extra processing time. Since the video processing was very time-critical, it was decided
to use separate cores for these signals because this was found to use less time.

How interrupt works is presented in Section 2.3. Each of the PIO cores that use interrupt
were given an ISR (piece of code to run when the interrupt occurs). In order for interrupt
to be activated, an IRQ mask was written to the PIO core to select the bit which should
trigger an interrupt. By changing this mask it was possible to disable and enable the
interrupt. In the default configuration, interrupts are implemented using software to
handle the requests. This process takes time and it creates a delay before the interrupt
can be handled. A possible improvement to this is to add support for an interrupt vector
custom instruction. This is said to possibly improve latency up to 20%, but there was
not enough time to try this out. If implemented, it might improve the software video
processing performance.

9.2.3 Custom Instructions

The custom instructions were implemented using the SOPC builder inside Quartus II. In
the option window of the Nios II core it was possible to select between several existing
custom instruction extensions or one could be created from a hardware description. One
of the existing custom instructions was the floating-point instructions. This was added to
serve the demonstrational purpose of comparing the time it took to process floating-point
color calculation with or without the use of these instructions.

9.2.4 Software Implementation

The complete software implementation of this system is available in the .zip-file delivered
together with this thesis, and the name of the BSP project is ”video_demonstrator”.
Source files: camera.c, colorManipulation.c, colorManipulation_HW.c, colorManipula-
tion_SW.c, LCD.c, main.c, raw2rgb.c, switches.c and timer.c.
Header files: camera.h, colorManipulation.h, LCD.h, raw2rgb.h, switches.h and timer.h.
The timer-files are not used by the current implementation.

9.3 Camera Configuration and Operation

The camera from Terasic is described in Section 6.3 and can be configured to operate in
many different modes. The default mode is the ERS (Electronic Rolling Shutter) mode
which continuously takes pictures. This is the mode used in this demonstrator to show

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 70

video. In order for the camera to be able to work in both software and hardware, it was
necessary to alter some of the configurations, like the frame rate of the video.

9.3.1 Configuration

Figure 9.5: The I2C configuration module

Figure 9.5 shows what the I2C CCD Config module looks like. In Terasic’s default config-
uration this module was connected to three switches: One for activating zoom, showing
just some of the pixels from the sensor, and two for exposure adjustment. These switches
are no longer used in this way. Instead, the Nios II processor is reading the switches and
is also the one delivering the configurations to this module. When this module is reset,
the first operation would be to transfer a configuration to the camera. Before the modifi-
cation, this was done by counting an index through an array of configuration data stored
in a static register, and sending them, one by one, using the I2C controller’s sub-module.
This sub-module takes the I2C slave address, the register address and the register data as
input. Each of these packages are transferred according to the I2C standard as described
in Section 7.2. After the modification this module is no longer reading the configuration
from its internal register, instead it delivers its index to the Nios II, which then triggers
and interrupt, and the processor puts the corresponding data on the LUT DATA output
so that the I2C controller can read it. Because of the big difference in clock speed, there
is no need for further synchronization since Nios II has the data ready before the I2C
transmission is complete.

If there had been more time, it would have been better if the processor could trigger a
transmission request without resetting all the other hardware modules. One possibility
would be to work directly with the internal sub-module (I2C controller) and use it to
directly transmit the data sent to it. This would be a much more elegant solution. Instead
of transmitting all configurations it would be possible to just alter one register. When
deciding to use this module there was also the possibility of designing one from scratch,
but it was decided that the time would be better spent on other modules. Another
solution could be to use another existing IP core together with the Nios II. In the Altera
SOPC builder IP library there was an SPI core available, but no I2C core was found here.

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 71

9.3.2 Operation Modes

In Table 9.6 a description of all the transferred configuration data, in default operation
mode, are listed. Each of the registers have their own purpose and can change how the
camera operates. Some of the most essential registers for this system are the ones that
influences video image size, frame rate and exposure/shutter-width.

Size

The registers setting column and row start, column and row size and column and row
mode can alter the size of the image. The start addresses are set to be where the
active image is. By using Equation 6.3 in combination with the default values it is
calculated that the effective image height and width is 1280x960. The demosaic algorithm
implemented in hardware and software takes groups of four pixels and combines them
into one full range color pixel. This gives that the effective output resolution to be
640x480 (VGA). This is the same resolution used in both hardware and software.

Frame Rate

There are several ways to adjust the frame rate, some of them are:

• Adjusting the pixel clock

• Change the shutter width (SW)

• By enabling or disabling binning (disabling could increase the frame rate, but
decrease picture quality)

• Adjusting image size

In the standard configurations written by Terasic the pixel clock was set to operate at
25MHz. The pixel clock can be can be calculated by using Equation 6.4. To achieve an
even higher frame rate, the pixel clock was changed to 75MHz in hardware mode. In
software mode it was not possible to achieve a synchronized and clean picture at this
rate. By trying to lower the pixel clock significantly, down to 150kHZ a valid picture was
displayed. The pixel clock was thereby increased until the picture got corrupted again.
This happened around 300kHz. At this rate the Nios II would have 500 clock cycles per
received data.

Exposure

The exposure can be adjusted by altering the shutter-width. The shutter-width defines
how long the image sensor is exposed and would have to be altered depending on the
amount of light available.

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 72

Register name Address(8MSB) and
Value(16LSB)

Description

Read Mode 24’h20c000 Mirror rows and columns
Shutter Width Lower 24’h09(exposure-value) Set the exposure time
Horizontal Blank 24’h050000 Extra time added to the end of each

row, a higher value will decrease
frame rate and increase exposure

Vertical Blank 24’h060019 Extra time added to the end of each
frame, a higher value will decrease
frame rate, but not alter exposure
(can minumum be 8, but is 25)

Pixel Clock Control 24’h0A8000 Set to capture LVAL, FVAL and
DATA on rising edge

Green1 Gain 24’h2B000b Green1 analog gain is set to 11×8 =
88 (analog)

Blue Gain 24’h2C000f Blue analog gain is set to 15 × 8 =
120 (analog)

Red Gain 24’h2D000f Red analog gain is set to 15×8 = 120
(analog)

Green2 Gain 24’h2E000b Green2 analog gain is set to 11×8 =
88 (analog)

PLL Control 24’h100051 Powering up the PLL
PLL Config 1 24’h111801 PLLmFactor (8’h18=24) and PLL-

nDivider (8’h01=1)
PLL Config 2 24’h120003 PLLp1Divider (8’h03=3)
PLL Control 24’h100053 After setting up the PLL this op-

tion switches from the input clock to
begin using the PLL as the system
clock

Test Pattern Control 24’hA00000 Test pattern not enabled
Test Pattern Green 24’hA10000 Value used for green pixels of dark

rows and columns in test pattern
Test Pattern Red 24’hA20FFF Value used for red pixels of dark

rows and columns in test pattern
Row Start 24’h010036 Sets the start row (8’h36=54, first

active image row)
Column Start 24’h020010 Sets the start column (8’h10=16,

first active image column)
Row Size 24’h03077F Sets the row size (12’h77F=1919)
Column Size 24’h0409FF Sets the column size

(12’h9FF=2559)
Row Address Mode 24’h220011 Sets the row mode: bin=2x and

skip=2x
Column Address Mode 24’h230011 Sets the column mode: bin=2x and

skip=2x
Row Black Target 24’h4901A8 The target black level for the row

BLC alg.

Table 9.6: Camera control registers and description

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 73

9.4 Hardware/Software Selection Process

Figure 9.6: The HW/SW MUX module, used for switching between video sources

Figure 9.6 shows a block diagram of the implementation of the HW/SW MUX. This
module is used to change between video processed in software and video processed in
hardware. The MUX is created to function as a traditional MUX. It is connected to all
the necessary signals from both the hardware module and the Nios II processor. Each
of the inputs uses separate clock signals to transmit the pixel data. In hardware this is
done by using the pixel clock and in software the Nios II clock is used. The input called
SEL is used to switch between the two sources and is controlled by Nios II. Logic ”0”,
which is default, means to source from HW input and logic ”1” means to source from SW
input.

Other solutions were also considered. One of the solutions was to use the hardware
RAW2RGB module to receive and transmit the software processed video. This would
probably just move the location of a MUX to inside the module instead of outside.
Another solution was to add extra FIFO buffers on the input of the SDRAM controller.
This solution would need the possibility to start or stop the RAW2RGB module, so that
video was not transmitted simultaneously from both locations. In the end it was believed
that using the separate MUX to select between the sources to use the frame buffer would
be the best solution. This solution is easy to control and it is believed that it gives an
easier understanding of how the selection process works.

9.5 Video Processing

How this video processing works is described in detail in Section 4.3. Terasic’s imple-
mentation of this module (RAW2RGB) is still used in its original form, with just some
minor modifications. These modifications are added functionality for inverting colors and

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 74

extra outputs used to transfer RAW image data to the Nios II processor. The hardware
description can be found in Appendix B.2.

Figure 9.7: A group of four pixels in mirror readout pattern

In order to understand how this module works a form of reverse engineering was done.
It started out with trying to understand how the image data was read from the camera.
Since mirroring rows and columns was activated this would mean that the pixel data
were arranged like in Figure 9.7.

Figure 9.8: The Line-buffer used by both hardware and software for color interpolation

An important sub-module called ”Line-Buffer” was implemented inside the RAW2RGB
module. This is a shift-register made with Altera’s MegaFunction tools, as seen in Figure
9.8. This shift-register has two taps from the input signal with a tap distance of 1280.
Since the size of the rows, read from the camera, also was 1280, the two taps would
make it possible to read from two image rows at the same time. Also, two additional
delay registers were used to read a group of four pixels (2x2), like the group shown in
Figure 9.7. The final approach to understand the module’s behavior was a ModelSim
simulation of the whole module with 16 pixels (4x4) of image data. Each color had its own
hex value. Combined with this simulation was also a Matlab software implementation of
the hardware description. This gave the ability to simulate the behavior and to see how
a processed image would look like. Both simulations verified the assumed behavior of the
hardware module. An image from the simulation can be found in the .zip-file attached
to this thesis.

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 75

9.5.1 Hardware and Software Operation and Quality

The behavior of the hardware module can be described as follows: The module samples
a group of four pixels each clock cycle. Whenever the sampled group hads X and Y
coordinates that correspond with both values being even, the data will be processed and
transmitted as a valid pixel with a full color range (RGB). Since this is only one of four
combinations of the X and Y values, the resulting resolution becomes 640x480 (VGA) and
not 1280x960. The software implementation uses the same line-buffer together with the
same delay registers to get the data. Without using this hardware the processor would
have to buffer all this data itself. This would require much memory and would be harder
to implement. It was decided that using the hardware to read data would not compromise
the demonstration of video performance because the difference in performance still was
significant. The software implementation of the algorithm can be seen in Appendix A.1.

Figure 9.9, on the next page, shows a comparison of a raw picture that has been inter-
polated in Matlab using Matlab’s own demosaic (gradient-corrected linear interpolation)
and the one demosaic implemented in hardware (closest neighbor algorithm). One ob-
vious difference is the resolution, since the original image was 640x480 the interpolated
result became 320x240 with the hardware based algorithm, but the linear Matlab algo-
rithm did not leave behind any pixels. In addition, it is possible to see that, especially
around sharp edges like the letters, some of the pixels have a rougher transition between
the pixels when using the hardware interpolation, these transitions are less visible with
the linear interpolation because it averages the closest pixel values and uses bigger groups
of pixels.

When the binning mode on the camera is activated pixels are combined by taking the
average of some of the surrounding pixels to represent the combined pixels. This works
to the hardware interpolation’s advantage and the real quality result would be similar
to the one represented by using Matlab’s linear interpolation. The camera can be con-
figured to activate or deactivate binning mode, which was used to observe the quality
difference. This observation showed a very small difference between the two. It might
be easier to see the difference when comparing images instead of video. It also might be
more obvious if the video resolution was higher and the camera was filming a surround-
ing containing many edges. This might provoke aliasing effects when using the nearest
neighbor algorithm, as mentioned in Section 4.3 and in [52]. It might also be possi-
ble that the difference in quality would be more obvious when using higher resolutions,
but this was not tested (see Section 9.5.2). Based on the observation of video quality
it was concluded that the obtained image quality, when using binning, would suffice in
the demonstration. The work of implementing an even more sophisticated interpolation
algorithm might not be worth the effort. It was instead decided to focus more on other
parts of the demonstrator.

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 76

Figure 9.9: Comparison of quality of Matlab demosaic and RAW2RGB demosaic

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 77

When both the software and hardware implementation of video processing were done the
main difference was the obtainable frame rate. Even though frame rate does not have
anything to do with picture quality it does have an influence on the video experience.
Based on this observation it was concluded that the frame rate difference would provide
a better demonstration of hardware/software difference than less obvious differences in
picture quality. The current system uses a pixel clock rate of 75MHz when running
in hardware processing mode. At this clock rate one gets approximately 15 - 25 fps,
depending on the exposure time (set by the shutter width). In contrast, when the system
is running in software mode the achievable frame rate is less than 1 fps. This demonstrates
a huge difference in video experience.

In order to get the video processing running in software, the simplest form of interpolation
was used. It was also tried to structure the software ISR in different ways in order to
get the maximum performance. One of the main reasons for not being able to achieve
a better frame rate was the latency from interrupt to execution. It was later discovered
an alternative solution for improving interrupt latency, custom vector interrupt. This
is a way of using hardware to manage interrupts instead of software. It is said to give
a 20% reduction in latency, which could increase the performance. In the process of
maximizing the performance in software it was also discovered a huge difference when
using optimization flags in the software compiler. This could mean the difference between
being able to process video in time and not.

9.5.2 Resolutions

When the system first was specified, in the project thesis, it was proposed that the
system also should be able to produce different video resolutions. In the beginning
of the design phase of this system it was discovered several challenges in obtaining this
system property. One of the main difficulties was the need for changing many of Terasic’s
hardware modules, especially the VGA controller. This module is set at a fixed resolution
and both the reference clock and its static parameters would have to be made dynamic.
In addition it would also require changes in both the Line-Buffer (tap distance) and the
CCD Capture module (static parameters for setting the row width to create the X and
Y signals). Based on the available timeframe it was decided to leave this and focus more
on getting the system up and running on the default resolution. It was discovered that
Altera had available IP cores for the Nios II for creating video sync signals which could
be used in this context, but was not studied further. Another possibility would be to
run lower resolution video inside a higher resolution window. This would mean that one
a part of the screen would keep the low resolution video and the whole screen would be
used when running high quality video. This option would need additional hardware and
some modifications to the existing modules.

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 78

9.6 Color Processing

The processing and demonstration of different aspects of color was implemented by using
a combination of software and custom instructions on the Nios II/f processor. In Section
4.2 it is presented much theory about color spaces, and different possibilities these spaces
present regarding color manipulation. The initial purpose of the color processing was to
transform video color data, both in software and in hardware, into YCbCr color space
and do alterations to this data, before transforming them back to RGB and presenting
them on the screen. In the finalized system only the color inversion function is applied
to the video in both hardware and software. Color inversion is done by inverting the
values of each of the color components. In hardware, this is done by inverting each
component when the control signal (RAW2RGB CONTROL) from Nios II is active. In
software, this function is applied by subtracting the maximum value of the 12 bits color
data (212−1 = 4096−1 = 4095) with the current color value. The color inversion fuction
does not need to convert the data between the color spaces (RGB and YCbCr) in order
to do the manipulation.

After getting the software video processing up and running, it was evident that the
obtainable performance did not leave room for much processing between each arriving
pixel. When trying to do a color space transformation this resulted in corrupted video.
Based on this observation it was decided to look at other ways to demonstrate color
processing. Since much of the color transformation already had been implemented in
software, it was decided that the system could do the processing on a test image, which
was created for this purpose. The test image is a color palette of three horizontal bars with
the three RGB colors. This test image was exposed to different kinds of color processing
using the software processor. In order to present a demonstration of color processing in
both hardware and software, it was decided to use the custom floating-point instructions
available in SOPC builder to the Nios II core. Since the color space coefficients are
based on decimal values, floating-point was one option that would provide the necessary
demonstration. As a result it is now possible to do the color processing in both hardware
and software and to visually observe the performance increase when using the custom
instructions. An alternative to processing the colors using floating-point would be to use
fixed point. This would increase the performance significantly. However, this would not
benefit the intended demonstration, but it could have been implemented in order to try
to speed up the process enough so that it would be possible to process color data from
video. Another good thing about using custom instructions in the demonstrator is the
possibility to demonstrate this type of hardware/software codesign - accelerating tasks
by use of custom instructions.

An alternative to the test image for color processing could be to take a still picture using
the camera and process this instead. This solution would have to change the read mode
of the camera to snapshot-mode and trigger a picture to be taken. Since a picture taken
at 640x480 has 3 data per pixel times 8 bits (at least) each, this would mean a total of
7,372800Mbit or 921,6 kByte. This is much more than the available on-chip memory,

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 79

which means that the data would have to be put on either SDRAM or on FLASH.
This was not possible to do in the available time, but could be worth further research.
Grayscale color mode, as discussed in Section 4.2, was not implemented, but it would not
require much work to add it to the existing color functions. This would not hve improved
the demonstration of HW/SW processing, but it would be an extra functionality.

In order to implement some kind of color space transformation of video in hardware,
it would be necessary to research how to implement decimal numbers using fixed point
integer values. Based on the available time and the fact that color transformation of
video in software did not work, it was decided to focus more on the custom floating-point
instruction solution. Towards the end of the design phase it was discovered an impor-
tant resource of information and tools from Altera which could have made this process
much easier: Video and Image Processing Suite using MegaFunctions [23]. Among these
resources it was found a color space converter module. This module would be possible
to implement as an addition to the current system.

Performance

Transition Instruction Type Clock Cycles
RGB → YCbCr SW 6129
YCbCr → RGB SW 6772

RGB → YCbCr → RGB SW 12646
RGB → YCbCr HW 2954
YCbCr → RGB HW 2233

RGB → YCbCr → RGB HW 4786

Table 9.7: The performance of calculating the transition between color spaces with and without
the use of custom floating-point instructions

Table 9.7 shows the number of clock cycles that was needed to perform the floating-
point calculation for each color space transition and the total cycles from RGB back to
RGB. The results indicate a factor of two to three in performance gain if using the custom
floating-point instructions. Each of the transitions where measured using the performance
counter peripheral in Nios II, and were run ten times each to get an average clock cycle
usage. The functions that where used in this measurement were the same as the ones
that are being used in the demonstration. By using the performance counter it was found
a huge performance difference between using and not using compiler optimizations. The
results in Table 9.7 are based on not using compiler optimization. This was done with
the purpose of being sure that all the tests were measured equally. When measuring, it
was also learned the importance of not using commands like printf() which rely on I/O
and UART transmissions. This will give irrational results since they relay on devices
that are slow and can vary much in consumed time.

The transition from RGB to YCbCr needs nine floating-point multiplications and nine

CHAPTER 9. IMPLEMENTATION AND DISCUSSION 80

plus three floating-point additions (see Appendix A.2), while the transition from YCbCr
to RGB needs, nine floating-point multiplications and additions, plus three floating-point
subtractions, (see Appendix A.2). In addition, this transition might need an additional
three integer additions for rounding up if values are below zero, so that the color values
do not receive negative numbers.

When testing a single floating-point multiplication, this gave 308 cycles in SW and 34 cy-
cles in HW, which is about nine times faster. This is a much higher performance increase
and is more similar to the ones that Altera achieve with their custom floating-point test
as presented in Table 6.4. Here they have about 12 - 17 times performance increase on
custom floating-point multiplication. The reasons for not being able to achieve the same
result can be many. One reason is that the FPGAs Altera use are newer and possibly
faster than the Cyclone II used in this system. Compared to the results from Table 9.7
it might be possible to achieve even better results if the algorithm is further optimized.
The custom floating-point instructions used support only single precision in hardware.
To achieve single precision, an ”f” was added to the color space coefficients, but it might
be that this has to be further specified inside the algorithm.

Chapter 10

Demonstration

The embedded video demonstrator implemented in this master thesis is most likely to
be used on occasions when Department of Electronics and Telecommunication is mak-
ing an appearance to show people what they do. Such occasions could be for example
when schools visit NTNU, Forskningstorget and Elektronikk- & telekommunikasjonsda-
gen. The people that appear on these days are most likely to have different age and
background. From the pedagogical perspective presented in Section 8.2 it would be ad-
vantageous if the demonstration is performed with regard to this. The main objectives
of this demonstrator can be summarized in three words:

• Motivate

• Demonstrate

• Educate

At first glance, the embedded video demonstrator seems like a simple system that ”just”
displays video recorded from a connected camera, but after a presentation of the sys-
tem, see Section 10.1, the observer gets a better understanding of what the demonstrator
actually represents: A system to learn about the importance of hardware/software code-
sign. The embedded video demonstrator’s motivating factor is its medium, video. Video
is common and much used, and is often related to entertainment and communication.
In order to demonstrate the importance of HW/SW codesign, a combination of visual
demonstration and theoretical education is used. This practical approach is recommended
by pedagogical theory and experiences from others that teach about this field, see Section
8.

The next sections will describe a possible demonstration of the system. The demonstra-
tion is divided into three different stages. First, there will be performed a presentation
of the system giving the observer knowledge of its purpose. In addition some necessary
theory will be described. Second, the interaction part of the demonstration. Here the
observer is allowed to ”play” with the system and go through the different modes. The

81

CHAPTER 10. DEMONSTRATION 82

third and final stage is a discussion of the results.

10.1 The Presentation

This is the first stage of the demonstration and it begins when a possible candidate
appears. This person could be interested in knowing more about what the department
does or it might be that he or she is interested to learn more about the demonstrator.
Either way it should be given a quick presentation of the department and some examples
of all the exciting things that are possible with electronics. This should then be followed
by a presentation of this system. To benefit from the pedagogical theory presented in
Section 8, the presentation should include the following:

• What the purpose of this demonstrator is and emphasizing the important part
(HW/SW codesign)

• Motivation by using examples of systems that would not been possible without the
combination of hardware and software (e.g. PCs, mobile phones etc.)

• A suitable presentation of the demonstrator based on the age and background of
the observer. If the observer is very young he or she would not benefit from a very
theoretical approach. In this case the demonstrator could perform as an exciting
and playful demonstration of video. This would require the one demonstrating to
take an even bigger part in the interaction stage.

• Enough theory to understand how the system works and be able to understand the
results, but keep it as simple as possible

• Using the poster as a tool to illustrate some of the theory presented

Presentation Material - Poster

A poster has been made as a supplement to the demonstration. The poster is divided
into theory, demonstration and conclusion. Each part can be used to support all the
demonstration stages. The theory gives illustrations and the necessary information to
understand the main features of the demonstrator. This includes theory about what
an embedded system is, the transaction from RAW image data to RBG, color planes,
floating point data and the difference between dedicated hardware and software. The
demonstration section of the poster gives an overview of the system and it describes
how to access the different operation modes. The information should be sufficient to let
the observer go through all modes by following the instructions given by the poster. At
the end, when the interaction is finished, the conclusion of the poster can be used while
discussing the results.

CHAPTER 10. DEMONSTRATION 83

10.2 The Interaction

Figure 10.1: An overview of the demonstrator and its I/O

In this part of the demonstration it is time for the observer to interact with the demon-
strator system. The one demonstrating should observe and give any needed assistance
and possibly elaborate if anything is unclear. Figure 10.1 shows an overview of all the
different components used by the system. This figure is also included in the poster and
shows how the different switches can be used. The overview in the poster is followed by
a step-by-step instruction of how to operate the demonstrator and how to access all the
different modes. It should be possible to operate the system without the need for any
help. In addition, the system uses the LEDs and the LCD to tell the observer which
mode it is in and which of the buttons that are available in the current mode. From the
run-through the participant should be able to come to a conclusion about the importance
of a combination of hardware and software.

CHAPTER 10. DEMONSTRATION 84

Switch Purpose
Key[0] To reset all modules
SW0 To start capturing video data from the camera
SW1 To stop capturing video data from the camera
SW2 Selecting hardware video processing (default)
SW3 Selecting software video processing
SW4 Selecting color demonstration mode
SW5 Inverting colors on/off by toggling
SW6 Increase exposure
SW7 Decrease exposure

Table 10.1: Switches and their purpose. Each switch needs to be ”toggled” in order to do its
function, except KEY[0]

Mode Purpose Active Switches
Video processing in hardware To transform video data

from RAW to RGB and
interpolate missing data

SW0,SW1,SW5,SW6,SW7

Video processing in software To transform video data
from RAW to RGB and
interpolate missing data

SW0,SW1,SW5,SW6,SW7

Color demonstration Shows a color image and
performs color transfor-
mations in both HW
and SW

SW4

Table 10.2: Demonstration modes, their purpose and active switches

Table 10.1 lists all the available switches and what they do, and Table 10.2 gives an
overview of the purpose of the different modes and the switches that are available for use
in the selected mode.

CHAPTER 10. DEMONSTRATION 85

10.3 The Discussion

Mode Conclusion
Video processing in hardware The resulting video is very viewable with a rela-

tive high frame rate
Video processing in software The resulting video is not very viewable with a

frame rate of less than 1 fps
Color demonstration Transformation between the color spaces by us-

ing floating point requires much calculation. By
using a hardware floating point multiplication
this process is much faster than in software

Table 10.3: The conclusion of the different demonstration modes

This is the final stage of the demonstration and the participant should now be able to
come to a conclusion about the purpose of the system, as presented in the first stage. It
is important that the one in charge of the demonstration takes part in this discussion and
possibly clear up any misunderstandings, and hopefully come to a common conclusion.
A common conclusion would be similar to the one described in Table 10.3 and the main
outcome should be to understand that hardware/software codesign is imperative in the
designer’s job to accomplish a system that performs within specifications.

10.4 Target Group

The embedded video demonstrator can be used for demonstration on many different
occasions. On these occasions there are visitors with very different age and background.
The pedagogical theory presented in Section 8 says that the education has to be fitted
based on factors like age. This would suggest that it is not possible to presume that
children from primary school would have the same benefit of the demonstration as high
school pupils or students. With this in mind it is presented in the following table (Table
10.4) a suggestion of what the different participants can learn from the demonstration
and how to present this by using the demonstrator.

CHAPTER 10. DEMONSTRATION 86

Age
Group

Knowledge gained
from demonstration

How to perform demonstration

Primary
school or
elementary
school (age
6-12)

It should be possible to
learn that electronics is
fun and that it can be
used to show recorded
video, andto change the
colors of the video

The one demonstrating should put the demon-
strator in hardware video processing mode and
let the children play in front of the camera. In
addition it might be fun to let the children see
themselves with the colors inverted. Another
possibility is to run the system in software pro-
cessing mode and let the children move in front
of the camera. This will result in a slow video
showing a fun, deformed version of themselves
because of the movement

Junior high
school (age
13-16)

It should be possible to
learn the difference be-
tween a software pro-
cessor (PC) and dedi-
cated hardware (graph-
ics card), and that ded-
icated hardware can be
used to get much bet-
ter performance (bet-
ter looking games and
video)

The one demonstrating should present the sys-
tem in a way so that the participant can relate to
the difference between hardware and a software
processor. With this in mind it should be possi-
ble for the observer to switch between hardware
and software processing of video and come to a
conclusion about the difference. Inverting of col-
ors or adjusting exposure could also be done to
show some possibilities of electronics

High school
or students
(age 16+)

It should be possible
to learn about the dif-
ference between a soft-
ware processor and ded-
icated hardware. It
should also be possible
to learn about how a
camera works and how
colors can be presented
and processed. The par-
ticipant should also be
able to learn what an
FPGA is and that it can
be used to run both soft-
ware and hardware.

This age group is this demonstrator’s main tar-
get. It should be possible to perform the whole
demonstration using the poster. The one demon-
strating should start off by giving a quick in-
troduction about the system using the poster
to show some of the theory. Next, it should
be possible to let the participant operate the
system, following the instructions on the poster
combined with assistance if needed. The one
demonstrating should also elaborate the differ-
ent demonstration modes. Finally, the partici-
pants should be able to come to a conclusion,
which should be discussed with the one demon-
strating for best educational effect

Table 10.4: Target Groups

Chapter 11

Conclusions

In this master thesis there has been implemented an embedded demonstrator for video
presentation and manipulation. The system was first specified as part of the project thesis
written last semester and was chosen for its motivational and educational properties. It
has also been created a poster that can be used as a supplement to the demonstration
together with a plan of how the system should be demonstrated based on factors like age
and background of the observers.

The specified demonstrator is based on a functional hardware description that came
with the Terasic camera. This hardware was used as a base in the design and is still
an important part of the final system. In order to give the Terasic hardware system
its demonstrational properties, a Nios II/f embedded soft processor from Altera was
implemented. This processor’s purpose is to serve as an additional processing element
and to control the behavior of the demonstrator. The processor uses additional custom
floating-point instructions to provide demonstrational properties when processing image
color data.

In the designer’s opinion, the final implementation of the embedded video demonstrator
was a success. The final demonstrator is capable of processing video recorded from the
camera in both hardware and software. The two processing alternatives give a perfor-
mance difference of 25 fps (maximum) in hardware versus less than 1 fps in software.
The image quality of the video in hardware and software is equal, but it is concluded
that the difference in frame rate gives a greater demonstrational effect than the marginal
difference in image quality does. In addition, there has been implemented the possibility
to invert colors in both hardware and software processing mode. It is concluded that
this effect on the colors can be used to give additional meaning to the demonstration,
especially for observers from primary school/elementary school. The final implemen-
tation also gives a demonstration of the deference between processing color data using
either software emulation of floating-point or by using dedicated custom floating-point
instructions. The result shows an obtainable performance increase of a factor of three, if
using custom floating-point instructions. Based on observations of this difference visually

87

CHAPTER 11. CONCLUSIONS 88

on a screen, it is concluded that it is possible to observe the difference in performance
between these two processing modes. It is also concluded that the created poster should
be sufficient as a supplement to the demonstration together with the plan of how the
demonstration should be performed.

11.1 Future Work

One way of improving the demonstrator further could be to implement the possibility
to run a higher resolution when processing video in hardware. This might increase the
effect of the demonstration. Implementation of custom instruction interrupt vectors could
increase the performance of the software video processing. Since the frame rate is as low
as one frame per second or less, it could be advantageous to improve the performance a
little.

To improve the color demonstration it might be possible to increase the performance dif-
ference by doing further optimizations on the color space converting algorithms. Option-
ally it could also be possible to use real images captured by the camera when processing
the colors.

It would also be recommended to perform several demonstrations for people with different
age and background to get feedback on how the demonstrator is received. This would be
the ultimate test to determine whether the demonstrator was a success or not.

Bibliography

[1] Atmel Homepage. http://www.atmel.com/.

[2] A Resource for Documentation About The PowerPC 440. https://www-01.ibm.
com/chips/techlib/techlib.nsf/products/PowerPC_440_Embedded_Core.

[3] A Resource for Documentation About The Xilinx MicroBlaze Soft Embedded Pro-
cessor. http://www.xilinx.com/tools/microblaze.htm.

[4] A Resource for Documentation About The Xilinx Vertex 5 FXT. http://www.
xilinx.com/products/virtex5/fxt.htm.

[5] A Resource for Information About Development Kits from Altera. http://model.
com/.

[6] A Resource for Information About Development Kits from Xilinx. http://www.
xilinx.com/products/boards_kits/index.htm.

[7] A Resource for Information About Modelsim. http://model.com/.

[8] A Resource for Information About Synopsys and Synplify Pro. http://www.
synopsys.com/Tools/Implementation/FPGAImplementation/FPGASynthesis/
Pages/SynplifyPro.aspx.

[9] A resource for IP cores optimized for Altera devices, from Altera and third-parties.
http://www.altera.com/products/ip/ipm-index.html.

[10] Altera Corporation. Nios Embedded Processor. http://www.altera.com/
products/ip/processors/nios/nio-index.html Downloaded December 3. 2009.

[11] Altera Corporation. Introduction to Megafunction, January 1998.

[12] Altera Corporation. DE2 Development and Education Board User Manual,
Version 1.4, 2006.

[13] Altera Corporation. Cyclone II Device Handbook, Volume 1, February 2007.
http://www.altera.com/literature/hb/cyc2/cyc2_cii5v1.pdf.

[14] Altera Corporation. Shift Register (RAM-Based) Megafunction User Guide,
July 2008.

89

BIBLIOGRAPHY 90

[15] Altera Corporation. Altera Product Catalog, 7.1 ed., 2009. http://www.
altera.com/literature/sg/product-catalog.pdf.

[16] Altera Corporation. Embedded Design Handbook, July 2009. http://www.
altera.com/literature/hb/nios2/edh_ed_handbook.pdf.

[17] Altera Corporation. Introduction to the Quartus II Software, Version 9.1, 2009.
www.altera.com.

[18] Altera Corporation. Nios II Performance Benchmarks, June 2009. http://
www.altera.com/literature/ds/ds_nios2_perf.pdf.

[19] Altera Corporation. Nios II Processor Reference Handbook, March 2009. http:
//www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf.

[20] Altera Corporation. Nios II Software Developer Handbook, March 2009. http:
//www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf.

[21] Altera Corporation. Quartus II Handbook Version 9.0 Volume 5: Embedded
Peripherals, March 2009. www.altera.com.

[22] Altera Corporation. Quartus II Handbook Version 9.1 Volume 4: SOPC
Builder, November 2009. www.altera.com.

[23] Altera Corporation. Video and Image Processing Suite: User Guide, November
2009. www.altera.com.

[24] Altera Corporation. Using Nios II Floating-Point Custom Instructions Tuto-
rial, February 2010. www.altera.com.

[25] Altera Homepage. http://www.altera.com/.

[26] Analog Devices Inc. CMOS, 240MHz Triple 10-bit High Speed Video DAC -
ADV7123, rev. A ed. www.analog.com Downloaded September 2009.

[27] Bertels, P., D’Haene, M., Degryse, T., and Stroobandt, D. Teaching
skills and concepts for embedded systems design. In ACM SIGBED Review Volum
6 Issue 1 Article No.:4 (New York, USA, January 2009).

[28] Biswas, P., Banerjee, S., Dutt, N. D., Pozzi, L., and Ienne, P. ISEGEN: An
Iterative Improvement-Based ISE Generation Technique for Fast Customization of
Processors. In IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
Vol. 14, No. 7 (July 2006).

[29] Burns, A., and Wellings, A. Real-Time Systems and Programming Languages,
third ed. Pearson, York, England, 2001. ISBN: 978-0-201-72988-7.

[30] Catsoulis, J. Designing Embedded Hardware, second ed. O’Reilly Media, Inc.,
Sebastopol, USA, 2005.

BIBLIOGRAPHY 91

[31] Cibson, J. D., Berger, T., Lookabaugh, T., Lindbergh, D., and Baker,
R. L. Digital Compression for Multimedia: Principles and Standards. Elsevier, San
Francisco, 1998. ISBN: 1-55860-369-7.

[32] Gonzalez, R. C., and Woods, R. E. Digital Image Processing, third ed. Pearson,
New Jersey, USA, 2008. ISBN: 0-13-168728-x.

[33] Hall, T. S., Bruckner, J., and Halterman, R. L. A Novel Approach to
an Embedded Systems Curriculum. In 36th ASEE/IEEE Frontiers in Education
Conference (San Diego, USA, October 28-31 2006).

[34] H.Fletcher, B. FPGA Embedded Processor Revealing True System Performance.
In Embedded Training Program Embedded Systems Conference (San Francisco, USA,
2005), Memec.

[35] IBM. The PowerPC 440 Core, September 2009. https://www-01.ibm.com/chips/
techlib/techlib.nsf/techdocs/852569B20050FF77852569970063431C/$file/
440_wp.pdf.

[36] IEEE Computer Society. IEEE Standard for Binary Floating-Point Arithmetic,
IEEE Std 754, 1985.

[37] Imsen, G. Elevenes Verden - Innføring i Pedagogisk Psykologi, fourth ed. Univer-
sitetsforlaget, Oslo, NO, 2005. ISBN-10: 82-15-00737-6.

[38] Imsen, G. Lærerens Verden - Innføring i Generell Didaktikk, third ed. Universitets-
forlaget, Oslo, NO, 2006. ISBN: 978-82-15-00874-5.

[39] Jack, K. Video Demystified: A Handbook for the Digital Engineer. Elsevier,
Burlington, USA, 2005. ISBN: 0-7506-7822-4.

[40] Kjeldsberg, P. G., Hartmann, M., Gajski, D. D., Mano, M. M., and Kime,
C. R. Digital Design and Computer Fundamentals. Pearson Custom Publ., 2005.
ISBN: 1846582822.

[41] Lam, S.-H., and Kok, C.-W. Demosaic : Color Filter Array Interpolation for
Digital Cameras. In Second IEEE Pacific-Rim Conference on Multimedia (IEEE-
PCM) (Beijing, KINA, October 2001), pp. 1084–1089.

[42] Lilja, D. J. Measureing Computer Performance : A Practitioners guide, first ed.
Cambridge University Press, Cambridge, USA, 2000. ISBN: 0-521-64105-5.

[43] Longbottom, R. Dhrystone Benchmark Results on PCs, November 2009. http:
//www.roylongbottom.org.uk/dhrystone%20results.htm Downloaded December
3. 2009.

[44] Loo, S. M., and Planting, C. A. Use of Discrete and Soft Processors in In-
troductory Microprocessors and Embedded Systems Curriculum. In ACM SIGBED
Review Volum 6 Issue 1 Article No.:5 (New York, USA, January 2009).

BIBLIOGRAPHY 92

[45] Lysecky, R., and Vahid, F. A Study of the Speedups and Competitiveness of
FPGA Soft Processor Cores using Dynamic Hardware/Software Partitioning. In De-
sign Automation and Testin Europe (DATE) Volume01 (Munich, Germany, 2005),
pp. 18–23.

[46] Marwedel, P. Embedded System Design. Springer, Dordrecht, The Netherlands,
2006. ISBN: 9780387300870.

[47] Mentor Graphics. ModelSim Tutorial, May 2008.

[48] Micheli, G. D., and Gupta, R. K. Hardware/Software Co-Design. In Proceedings
of the IEEE, Vol. 85, NO.3 (March 1997).

[49] Nakamura, J. Image Sensors and Signal Processing for Digital Still Cameras,
first ed. CRC Press, Boca Raton, USA, 2006. ISBN: 0-8493-3545-0.

[50] Opencores.org - a resource for development and publications of free (LGPL) hard-
ware core designs. http://www.opencores.org.

[51] Rose, J. Hard vs. Soft: The Central Question of Pre-Fabricated Silicon. In Pro-
ceedings of the 34th International Symposium on Multiple-Valued Logic(ISMVL04)
(Toronto, USA, 2004), ISMVL.

[52] Sakamoto, T., Nakanishi, C., and Hase, T. Software Pixel Interpolation for
Digital Still Cameras Suitable for a 32-bit MCU. In IEEE Transactions on Consumer
Electronics, Vol. 44, No.4 (November 1998).

[53] Shoup, R. Superpaint: An Early Frame Buffer Graphics System. In IEEE Annals
of the History of Computing (April-June 2001).

[54] Smith, K. A., Sheppard, S. D., Johnson, D. W., and Johnson, R. T. Pedago-
gies of engagement: Classroom-based practices. In Journal of Engineering Education
(January 2005), pp. 87–101.

[55] Terasic. TRDB_D5M 5 Mega Pixel Digital Camera Development Kit, version
1.0 ed., March 2008. http://www.terasic.com.tw.

[56] Terasic. TRDB-D5M Hardware Specification, version 0.2 ed., June 2009. http:
//www.terasic.com.tw.

[57] Terasic Homepage. http://www.terasic.com.tw/en/.

[58] Weiss, A. R. Dhrystone Benchmark: History, Analysis, "Scores" and Recom-
mendations, November 2002. http://www.johnloomis.org/NiosII/dhrystone/
ECLDhrystoneWhitePaper.pdf Downloaded December 3. 2009.

[59] Wolf, W. H. Hardware-Software Co-Design of Embedded Systems. In Proceedings
of the IEEE, Vol. 82, No.7 (July 1994), pp. 967–989.

[60] Wolf, W. H. A Decade of HW/SW Codesign. In IEEE Computer, Vol. 36, No.4
(April 2003), pp. 38–43.

BIBLIOGRAPHY 93

[61] Wolf, W. H. Computers as Components : Principles of Embedded Computing
System Design, Chapter 7 Hardware Accelerators. Elsevier, San Francisco, USA,
2005. ISBN: 0-12-369459-0.

[62] Xilinx Homepage. http://www.xilinx.com/.

[63] Yiannacouras, P., Steffan, J. G., and Rose, J. Application-Specific
Customization of Soft Processor Microarchitecture. In Proceedings of the 2006
ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays
(New York, USA, 2006), ACM.

Appendix A

Software Code

1 // This i s from "raw2rgb . c" and i s the demosaic
2 // i n t e r p o l a t i o n a lgor i thm used so f tware
3
4 //This demosaic a l g . does j u s t use the ne ighbor ing p i x e l s
5 // to c a l c u l a t e the miss ing c o l o r s .
6 void demosaic (unsigned i n t mDATA_0, unsigned i n t mDATAd_0,
7 unsigned i n t mDATA_1, unsigned i n t mDATAd_1, char xy)
8 {
9
10 // I f the coord ina te i s (0 , 0) then c a l c u l a t e the
11 // other c o l o r data f o r the p i x e l .
12 i f (xy == 0x0) // x = 0 , y = 0
13 {
14 data .R = mDATA_1;
15 data .G = mDATAd_1;
16 data .B = mDATAd_0;
17 i f (i nve r t_ f l ag) transmit_RGB(colorInversion_HW (data)) ;
18 e l s e transmit_RGB(data) ;
19 }
20
21 }

Listing A.1: Raw to RGB demosaic software algorithm

94

APPENDIX A. SOFTWARE CODE 95

1 // This f i l e i s a part o f the co lorManipu lat ion − f i l e s
2 // in c l ud ing the two func t i on s f o r t ra s f o rming from
3 // RGB to YCbCr and YCbCr to RGB
4
5
6 YCBCR RGBtoYCbCr_HW(RGB data)
7 {
8 YCBCR r e s u l t ;
9 f l o a t tmp_result [3] ;
10 unsigned i n t RGB[3] = {(data .R) , (data .G) , (data .B) } ;
11 i n t n = 0 ;
12 i n t m = 0 ;
13
14 //Matrix mu l t i p l i c a t i o n
15 f o r (; n<3;n++)
16 {
17 tmp_result [n] = 0 ;
18 m = 0 ;
19 f o r (;m<3;m++)
20 {
21 tmp_result [n] += rbgTOycbcr_factors [n] [m] ∗ RGB[m] ;
22 }
23 }
24
25 r e s u l t .Y = 16 + tmp_result [0] ;
26 r e s u l t .CB = 128 + tmp_result [1] ;
27 r e s u l t .CR = 128 + tmp_result [2] ;
28
29 re turn r e s u l t ;
30
31 }
32
33 RGB YCbCrtoRGB_HW(YCBCR data)
34 {
35 f l o a t tmp_result [3] ;
36 RGB r e s u l t ;
37 i n t n = 0 ;
38 i n t m = 0 ;
39 f l o a t YCBCR[3] = {data .Y − 16 , data .CB − 128 , data .CR − 128} ;
40
41 //Matrix mu l t i p l i c a t i o n
42 f o r (; n<3;n++)
43 {

APPENDIX A. SOFTWARE CODE 96

44 tmp_result [n] = 0 ;
45 m = 0 ;
46 f o r (;m<3;m++)
47 {
48 tmp_result [n] += ycbcrTOrgb_factors [n] [m] ∗ YCBCR[m] ;
49 }
50 }
51
52 //Rounds up i f the value i s l e s s than 0
53 i f (tmp_result [0] <0) r e s u l t .R = 0 ;
54 e l s e r e s u l t .R = (i n t) tmp_result [0]+1 ;
55
56 i f (tmp_result [1] <0) r e s u l t .G = 0 ;
57 e l s e r e s u l t .G = (i n t) tmp_result [1]+1 ;
58
59 i f (tmp_result [2] <0) r e s u l t .B = 0 ;
60 e l s e r e s u l t .B = (i n t) tmp_result [2]+1 ;
61
62 return r e s u l t ;
63
64 }

Listing A.2: Color Functions

Appendix B

Hardware Code

1
2 // This f i l e i s a part o f the top f i l e o f the system ’"DE2_D5m. v"
3
4 // //
5 //==
6 // REG/WIRE de c l a r a t i o n s
7 //==
8
9 // CCD
10 wire [1 1 : 0] CCD_DATA;
11 wire CCD_SDAT;
12 wire CCD_SCLK;
13 wire CCD_FLASH;
14 wire CCD_FVAL;
15 wire CCD_LVAL;
16 wire CCD_PIXCLK;
17 wire CCD_MCLK; //CCD Master Clock
18
19 wire [1 5 : 0] Read_DATA1;
20 wire [1 5 : 0] Read_DATA2;
21 wire VGA_CTRL_CLK;
22 wire [1 1 : 0] mCCD_DATA;
23 wire mCCD_DVAL;
24 wire mCCD_DVAL_d;
25 wire [1 5 : 0] X_Cont ;
26 wire [1 5 : 0] Y_Cont ;
27 wire [9 : 0] X_ADDR;
28 wire [3 1 : 0] Frame_Cont ;
29 wire DLY_RST_0;

97

APPENDIX B. HARDWARE CODE 98

30 wire DLY_RST_1;
31 wire DLY_RST_2;
32 wire Read ;
33 reg [1 1 : 0] rCCD_DATA;
34 reg rCCD_LVAL;
35 reg rCCD_FVAL;
36 wire [1 1 : 0] sCCD_R;
37 wire [1 1 : 0] sCCD_G;
38 wire [1 1 : 0] sCCD_B;
39 wire sCCD_DVAL;
40
41 wire [9 : 0] VGA_R; //VGA Red [9 : 0]
42 wire [9 : 0] VGA_G; //VGA Green [9 : 0]
43 wire [9 : 0] VGA_B; //VGA Blue [9 : 0]
44 reg [1 : 0] rClk ;
45 wire sdram_ctrl_clk ;
46
47
48 // NIOS wi re s
49 wire [5 : 0] NIOS_LUT_INDEX;
50 wire [2 3 : 0] NIOS_LUT_DATA;
51
52 wire out_nios_start_cam ;
53 wire out_nios_stop_cam ;
54 wire out_nios_reset_camsystem ;
55 wire p l l_n io s ;
56 wire NiosRST ;
57 wire out_nios_RST ;
58 wire [1 1 : 0] mDATA_0_wire ;
59 wire [1 1 : 0] mDATAd_0_wire ;
60 wire [1 1 : 0] mDATA_1_wire ;
61 wire [1 1 : 0] mDATAd_1_wire ;
62
63 wire PIX_VALCLK_wire ;
64 wire [2 : 0] out_nios_HW_function ;
65 wire out_nios_HW_SW_SEL;
66
67 wire [1 1 : 0] HWsCCD_R;
68 wire [1 1 : 0] HWsCCD_G;
69 wire [1 1 : 0] HWsCCD_B;
70 wire HWsCCD_DVAL;
71
72

APPENDIX B. HARDWARE CODE 99

73 wire [1 1 : 0] SWsCCD_R;
74 wire [1 1 : 0] SWsCCD_G;
75 wire [1 1 : 0] SWsCCD_B;
76 wire SWsCCD_DVAL;
77 wire SWsPULSE_DVAL;
78 wire MUX_out_CLK;
79
80 //==
81 // S t ru c tu r a l coding
82 //==
83 a s s i gn CCD_DATA[0] = GPIO_1 [1 3] ;
84 a s s i gn CCD_DATA[1] = GPIO_1 [1 2] ;
85 a s s i gn CCD_DATA[2] = GPIO_1 [1 1] ;
86 a s s i gn CCD_DATA[3] = GPIO_1 [1 0] ;
87 a s s i gn CCD_DATA[4] = GPIO_1 [9] ;
88 a s s i gn CCD_DATA[5] = GPIO_1 [8] ;
89 a s s i gn CCD_DATA[6] = GPIO_1 [7] ;
90 a s s i gn CCD_DATA[7] = GPIO_1 [6] ;
91 a s s i gn CCD_DATA[8] = GPIO_1 [5] ;
92 a s s i gn CCD_DATA[9] = GPIO_1 [4] ;
93 a s s i gn CCD_DATA[10]= GPIO_1 [3] ;
94 a s s i gn CCD_DATA[11]= GPIO_1 [1] ;
95
96 //CCD_MCLK (master c l o ck on CCD) i s 25MHz − clock_50 /2 rClk [0]
97 a s s i gn GPIO_1[1 6] = CCD_MCLK;
98 a s s i gn CCD_FVAL = GPIO_1 [2 2] ;
99 a s s i gn CCD_LVAL = GPIO_1 [2 1] ;
100 a s s i gn CCD_PIXCLK = GPIO_1 [0] ;
101 a s s i gn GPIO_1[1 9] = 1 ’ b1 ; // tRIGGER
102 a s s i gn GPIO_1[1 7] = DLY_RST_1;
103
104 // a s s i gn LEDR = SW;
105 a s s i gn LEDG = Y_Cont ;
106
107 a s s i gn VGA_CTRL_CLK= rClk [0] ; //25MHz
108 a s s i gn VGA_CLK = ~rClk [0] ;
109
110 a s s i gn LEDR[0] = out_nios_start_cam ;
111 a s s i gn LEDR[1] = out_nios_stop_cam ;
112
113 //PLL r e g i s t e r func t i on rClk [0] g i v e s 25MHz to VGA and CLK−in to camera
114 always@ (posedge CLOCK_50) rClk <= rClk+1;
115

APPENDIX B. HARDWARE CODE 100

116
117 always@ (posedge CCD_PIXCLK)
118 begin
119 rCCD_DATA <= CCD_DATA;
120 rCCD_LVAL <= CCD_LVAL;
121 rCCD_FVAL <= CCD_FVAL;
122 end
123
124
125 VGA_Controller u1 (// Host Side
126 . oRequest (Read) ,
127 . iRed (Read_DATA2 [9 : 0]) ,
128 . iGreen ({Read_DATA1[1 4 : 1 0] ,Read_DATA2[1 4 : 1 0] }) ,
129 . iB lue (Read_DATA1 [9 : 0]) ,
130
131 // VGA Side
132 .oVGA_R(VGA_R) ,
133 .oVGA_G(VGA_G) ,
134 .oVGA_B(VGA_B) ,
135 .oVGA_H_SYNC(VGA_HS) ,
136 .oVGA_V_SYNC(VGA_VS) ,
137 .oVGA_SYNC(VGA_SYNC) ,
138 .oVGA_BLANK(VGA_BLANK) ,
139 // Control S i gna l
140 . iCLK(VGA_CTRL_CLK) ,
141 . iRST_N(DLY_RST_2)
142) ;
143
144
145 Reset_Delay u2 (
146 . iCLK(CLOCK_50) ,
147 . iRST(KEY[0]) ,
148 . iNiosRST (out_nios_RST) ,
149 . oRST_0(DLY_RST_0) ,
150 . oRST_1(DLY_RST_1) ,
151 . oRST_2(DLY_RST_2)
152) ;
153
154 CCD_Capture u3 (
155 .oDATA(mCCD_DATA) ,
156 .oDVAL(mCCD_DVAL) ,
157 . oX_Cont(X_Cont) ,
158 . oY_Cont(Y_Cont) ,

APPENDIX B. HARDWARE CODE 101

159 . oFrame_Cont (Frame_Cont) ,
160 . iDATA(rCCD_DATA) ,
161 . iFVAL(rCCD_FVAL) ,
162 . iLVAL(rCCD_LVAL) ,
163 . iSTART(out_nios_start_cam) ,
164 . iEND(out_nios_stop_cam) ,
165 . iCLK(CCD_PIXCLK) ,
166 . iRST(DLY_RST_2)
167) ;
168
169 RAW2RGB u4 (
170 . iCLK(CCD_PIXCLK) ,
171 . iRST(DLY_RST_1) ,
172 . iDATA(mCCD_DATA) ,
173 . iDVAL(mCCD_DVAL) ,
174 . oRed(HWsCCD_R) ,
175 . oGreen (HWsCCD_G) ,
176 . oBlue (HWsCCD_B) ,
177 .oDVAL(HWsCCD_DVAL) ,
178 .omDATA_0(mDATA_0_wire) ,
179 .omDATAd_0(mDATAd_0_wire) ,
180 .omDATA_1(mDATA_1_wire) ,
181 .omDATAd_1(mDATAd_1_wire) ,
182 .oPIX_VALCLK(PIX_VALCLK_wire) ,
183 . iX_Cont (X_Cont) ,
184 . iY_Cont (Y_Cont) ,
185 . iFUNC(out_nios_HW_function)
186) ;
187
188 SEG7_LUT_8 u5 (
189 . oSEG0(HEX0) , . oSEG1(HEX1) ,
190 . oSEG2(HEX2) , . oSEG3(HEX3) ,
191 . oSEG4(HEX4) , . oSEG5(HEX5) ,
192 . oSEG6(HEX6) , . oSEG7(HEX7) ,
193 . iDIG(Frame_Cont [3 1 : 0])
194) ;
195
196 sdram_pll u6 (
197 . i n c l k 0 (CLOCK_50) ,
198 // co g i v e s out a c l o ck ra t e o f 125MHz
199 . c0 (sdram_ctrl_clk) ,
200 // c1 g i v e s out a c l o ck ra t e o f 125MHz with phase s h i f t −3ns
201 . c1 (DRAM_CLK) ,

APPENDIX B. HARDWARE CODE 102

202 // c2 g i v e s out a c lok ra t e o f 150MHz
203 . c2 (p l l_n io s)
204) ;
205 //Uses a r e g i s t e r to d iv id e the CCD_MCLK by two , g i v e s 50MHZ/2=25MHz
206 a s s i gn CCD_MCLK = rClk [0] ;
207
208 Sdram_Control_4Port u7 (
209 //HOST Side
210 .REF_CLK(CLOCK_50) ,
211 .RESET_N(1 ’ b1) ,
212 .CLK(sdram_ctrl_clk) ,
213
214 //FIFO Write Side 1
215 .WR1_DATA({1 ’ b0 ,sCCD_G[1 1 : 7] ,sCCD_B[1 1 : 2] }) ,
216 .WR1(sCCD_DVAL) ,
217 .WR1_ADDR(0) ,
218 .WR1_MAX_ADDR(640∗480) ,
219 .WR1_LENGTH(9 ’ h100) ,
220 .WR1_LOAD(!DLY_RST_0) ,
221 .WR1_CLK(~MUX_out_CLK) ,
222
223 //FIFO Write Side 2
224 .WR2_DATA({1 ’ b0 ,sCCD_G[6 : 2] , sCCD_R[1 1 : 2] }) ,
225 .WR2(sCCD_DVAL) ,
226 .WR2_ADDR(22 ’ h100000) ,
227 .WR2_MAX_ADDR(22 ’ h100000+640∗480) ,
228 .WR2_LENGTH(9 ’ h100) ,
229 .WR2_LOAD(!DLY_RST_0) ,
230 .WR2_CLK(~MUX_out_CLK) ,
231
232
233 //FIFO Read Side 1
234 .RD1_DATA(Read_DATA1) ,
235 .RD1(Read) ,
236 .RD1_ADDR(0) ,
237 .RD1_MAX_ADDR(640∗480) ,
238 .RD1_LENGTH(9 ’ h100) ,
239 .RD1_LOAD(!DLY_RST_0) ,
240 .RD1_CLK(~VGA_CTRL_CLK) ,
241
242 //FIFO Read Side 2
243 .RD2_DATA(Read_DATA2) ,
244 .RD2(Read) ,

APPENDIX B. HARDWARE CODE 103

245 .RD2_ADDR(22 ’ h100000) ,
246 .RD2_MAX_ADDR(22 ’ h100000+640∗480) ,
247 .RD2_LENGTH(9 ’ h100) ,
248 .RD2_LOAD(!DLY_RST_0) ,
249 .RD2_CLK(~VGA_CTRL_CLK) ,
250
251 //SDRAM Side
252 .SA(DRAM_ADDR) ,
253 .BA({DRAM_BA_1,DRAM_BA_0}) ,
254 .CS_N(DRAM_CS_N) ,
255 .CKE(DRAM_CKE) ,
256 .RAS_N(DRAM_RAS_N) ,
257 .CAS_N(DRAM_CAS_N) ,
258 .WE_N(DRAM_WE_N) ,
259 .DQ(DRAM_DQ) ,
260 .DQM({DRAM_UDQM,DRAM_LDQM})
261) ;
262
263
264 a s s i gn UART_TXD = UART_RXD;
265
266 I2C_CCD_Config u8 (
267 //Host Side
268 . iCLK(CLOCK_50) ,
269 . iRST_N(DLY_RST_2) ,
270 .iZOOM_MODE_SW(SW[1 6]) ,
271 .iEXPOSURE_ADJ(KEY[1]) ,
272 .iEXPOSURE_DEC_p(SW[0]) ,
273 //Nios connect ion to read lut_index
274 //and g ive the cor re spond ing c on f i gu r a t i on data
275 .iNIOS_LUT_DATA(NIOS_LUT_DATA) ,
276 .oNIOS_LUT_INDEX(NIOS_LUT_INDEX) ,
277 // I2C Side
278 . I2C_SCLK(GPIO_1 [2 4]) ,
279 . I2C_SDAT(GPIO_1 [2 3])
280) ;
281
282 a s s i gn LCD_ON = 1 ’ b1 ; // LCD Power ON/OFF
283 a s s i gn LCD_BLON = 1 ’ b1 ; // LCD Back Light ON/OFF
284
285 n i o s i i u9 (
286
287 //INPUTS

APPENDIX B. HARDWARE CODE 104

288
289 . c l k (p l l_n io s) ,
290 . reset_n (KEY[0]) ,
291 // [7 . . 0] 8 b i t input , INTERRUPT r i s i n g edge
292 . in_port_to_the_SWint (SW[7 : 0]) ,
293 // [7 . . 0] 8 b i t input , INTERRUPT r i s i n g edge
294 . in_port_to_the_SWint2 (SW[1 5 : 8]) ,
295
296 // Input from the I2C_CCD_CONFIG module with the index o f which o f
297 // the con f i gu ra t i on−data to t r a n s f e r . I n t e r rup t −any−edge
298 . in_port_to_the_LUT_INDEX(NIOS_LUT_INDEX) ,
299
300 // [1 . . 0] X(11 b i t) [0] and Y(11 b i t) [0] − DATA
301 . in_port_to_the_CCD_XY({Y_Cont [0] , X_Cont [0] }) ,
302 //mDATA_0[1 1 . . 0]
303 . in_port_to_the_IN_mDATA_0(mDATA_0_wire) ,
304 //mDATAd_0[1 1 . . 0]
305 . in_port_to_the_IN_mDATAd_0(mDATAd_0_wire) ,
306 //mDATA_1[1 1 . . 0]
307 . in_port_to_the_IN_mDATA_1(mDATA_1_wire) ,
308 //mDATAd_1[1 1 . . 0]
309 . in_port_to_the_IN_mDATAd_1(mDATAd_1_wire) ,
310 //PIXCLK & DVALID −> 1 b i t PIX−VALCLK
311 . in_port_to_the_PIX_VALCLK(PIX_VALCLK_wire) ,
312
313 //OUTPUTS
314
315 //To r e s e t the HW
316 . out_port_from_the_RESET_OUT(out_nios_RST) ,
317 // [7 . . 0]
318 . out_port_from_the_LEDs (
319 {LEDR[7 : 2] , out_nios_stop_cam , out_nios_start_cam }) ,
320 // [2 3 . . 0]
321 . out_port_from_the_LUT_DATA(NIOS_LUT_DATA) ,
322 //Red data (12 b i t)
323 . out_port_from_the_RED(SWsCCD_R) ,
324 //Green data (12 b i t)
325 . out_port_from_the_GREEN(SWsCCD_G) ,
326 //Blue data (12 b i t)
327 . out_port_from_the_BLUE(SWsCCD_B) ,
328 //Data va l i d (1 b i t)
329 . out_port_from_the_DVAL(SWsCCD_DVAL) ,
330 // [3 . . 0] Control s i g n a l s to RAW2RGB

APPENDIX B. HARDWARE CODE 105

331 .out_port_from_the_RAW2RGB_CONTROL_OUT(
332 {out_nios_HW_SW_SEL, out_nios_HW_function }) ,
333
334 //LCD symbol d i sp l ay SIGNALS
335 .LCD_E_from_the_LCD_0(LCD_EN) , //1 b i t out
336 .LCD_RS_from_the_LCD_0(LCD_RS) , //1 b i t out
337 .LCD_RW_from_the_LCD_0(LCD_RW) , //1 b i t out
338 . LCD_data_to_and_from_the_LCD_0(LCD_DATA) // [7 . . 0] inout
339
340) ;
341
342 HW_SW_MUX u10 (//HW inputs
343 .iHW_R(HWsCCD_R) ,
344 .iHW_G(HWsCCD_G) ,
345 .iHW_B(HWsCCD_B) ,
346 .iHW_V(HWsCCD_DVAL) ,
347 .iHW_CLK(CCD_PIXCLK) ,
348 //SW inputs
349 .iSW_R(SWsCCD_R) ,
350 .iSW_G(SWsCCD_G) ,
351 . iSW_B(SWsCCD_B) ,
352 .iSW_V(SWsPULSE_DVAL) ,
353 .iSW_CLK(p l l_n io s) ,
354 // Input SEL , SB from RAW2RGB_CONTROL_OUT
355 // de f au l t = ’0 ’ −> HW proc e s s i ng
356 . iSEL (out_nios_HW_SW_SEL) ,
357 //MUX outputs
358 . oR(sCCD_R) ,
359 . oG(sCCD_G) ,
360 . oB(sCCD_B) ,
361 . oV(sCCD_DVAL) ,
362 .oCLK(MUX_out_CLK)
363
364) ;
365
366 SINGLEPULSEGEN u11 (// Inputs
367 . iCLK(p l l_n io s) ,
368 . iSIG (SWsCCD_DVAL) ,
369 //Outputs
370 . oPULSE(SWsPULSE_DVAL)
371
372) ;
373

APPENDIX B. HARDWARE CODE 106

374 endmodule
Listing B.1: A part of the Top file ”DE2_D5M”

1 //This i s a part o f the RAW2RGB Ver i l og module made by Teras i c
2
3 module RAW2RGB(
4 //Outputs
5 oRed ,
6 oGreen ,
7 oBlue ,
8 oDVAL,
9 omDATA_0,
10 omDATAd_0,
11 omDATA_1,
12 omDATAd_1,
13 oPIX_VALCLK,
14 // Inputs
15 iX_Cont ,
16 iY_Cont ,
17 iFUNC,
18 iDATA,
19 iDVAL,
20 iCLK ,
21 iRST
22) ;
23
24 input [1 0 : 0] iX_Cont ;
25 input [1 0 : 0] iY_Cont ;
26 input [1 1 : 0] iDATA;
27 input iDVAL;
28 input iCLK ;
29 input iRST ;
30 input [2 : 0] iFUNC;
31 output [1 1 : 0] oRed ;
32 output [1 1 : 0] oGreen ;
33 output [1 1 : 0] oBlue ;
34 output oDVAL;
35 output [1 1 : 0] omDATA_0;
36 output [1 1 : 0] omDATAd_0;
37 output [1 1 : 0] omDATA_1;
38 output [1 1 : 0] omDATAd_1;
39 output oPIX_VALCLK;
40 wire [1 1 : 0] mDATA_0;

APPENDIX B. HARDWARE CODE 107

41 wire [1 1 : 0] mDATA_1;
42 wire INV_COLOR;
43 reg [1 1 : 0] mDATAd_0;
44 reg [1 1 : 0] mDATAd_1;
45 reg [1 1 : 0] mCCD_R;
46 reg [1 2 : 0] mCCD_G;
47 reg [1 1 : 0] mCCD_B;
48 reg mDVAL;
49
50 //−−−−−−−−−−−−−− Added f u n c t i o n a l i t y
51 // I f INV_COLOR == ’1 ’ then i nv e r t the data e l s e normal c o l o r mode
52 a s s i gn oRed = INV_COLOR ? ~mCCD_R[1 1 : 0] : mCCD_R[1 1 : 0] ;
53 //Div ides by two because o f the add i t i on o f the green in the demosaic
54 a s s i gn oGreen = INV_COLOR ? ~mCCD_G[1 2 : 1] : mCCD_G[1 2 : 1] ;
55 a s s i gn oBlue = INV_COLOR ? ~mCCD_B[1 1 : 0] : mCCD_B[1 1 : 0] ;
56
57 a s s i gn oDVAL = mDVAL;
58 a s s i gn omDATA_0 = mDATA_0[1 1 : 0] ;
59 a s s i gn omDATAd_0 = mDATAd_0[1 1 : 0] ;
60 a s s i gn omDATA_1 = mDATA_1[1 1 : 0] ;
61 a s s i gn omDATAd_1 = mDATAd_1[1 1 : 0] ;
62 a s s i gn oPIX_VALCLK = iDVAL&iCLK ;
63 a s s i gn INV_COLOR = iFUNC [0 : 0] ;
64
65 //−−−−−−−−−−−−
66
67 //The Line_Buffer i s a 2 tap s h i f t r e g i s t e r with a 1280
68 // c l o ck width between the taps
69 // (1280 i s the same as the column s i z e from the camera)
70 //Because o f t h i s width the two taps p r e s en t s two l i n e s
71 // s imu l tan ious which i s used to be ab le to read 2x2 p i x e l
72 // b locks f o r the demosiac a lgor i thm .
73 Line_Buffer u0 (
74 . c lken (iDVAL) ,
75 . c l o ck (iCLK) ,
76 . s h i f t i n (iDATA) ,
77 . taps0x (mDATA_1) ,
78 . taps1x (mDATA_0)
79) ;
80
81 always@ (posedge iCLK or negedge iRST)
82 begin
83 i f (! iRST)

APPENDIX B. HARDWARE CODE 108

84 begin
85 mCCD_R <= 0 ;
86 mCCD_G <= 0 ;
87 mCCD_B <= 0 ;
88 mDATAd_0 <= 0 ;
89 mDATAd_1 <= 0 ;
90 mDVAL <= 0 ;
91 end
92 e l s e
93 begin
94 mDATAd_0 <= mDATA_0;
95 mDATAd_1 <= mDATA_1;
96
97 //This j u s t g i v e s the frame bu f f e r va l i d data 1/4 th o f the time
98 mDVAL <={iY_Cont [0] | iX_Cont [0] } ? 1 ’ b0 : iDVAL;
99
100 i f ({ iY_Cont [0] , iX_Cont [0]}==2 ’ b10) //Y=odd and X=even => Red data
101 begin
102 mCCD_R <= mDATA_0;
103 mCCD_G <= mDATAd_0+mDATA_1;
104 mCCD_B <= mDATAd_1;
105 end
106
107 e l s e i f ({ iY_Cont [0] , iX_Cont [0]}==2 ’ b11) //Y=odd and X=odd => Green1 data
108 begin
109 mCCD_R <= mDATAd_0;
110 mCCD_G <= mDATA_0+mDATAd_1;
111 mCCD_B <= mDATA_1;
112 end
113
114 //This , when x [0] and y [0] both are equal 00 i s the only
115 //one that g i v e s data va l i d out .
116 //The reason f o r not us ing a l l the four combinat ions
117 // i s to reduce the output r e s o l u t i o n
118 // to 640x480 by i n t e r p o l a t i o n 1 o f 4 p i x e l s .
119 //This equa l s a s tep o f two ho r i z o n t a l l y and a step
120 // o f two v e r t i c a l l y
121 e l s e i f ({ iY_Cont [0] , iX_Cont [0]}==2 ’ b00) //Y=even and X=even => Green2 data
122 begin
123 mCCD_R <= mDATA_1;
124 mCCD_G <= mDATA_0+mDATAd_1;
125 mCCD_B <= mDATAd_0;
126 end

APPENDIX B. HARDWARE CODE 109

127
128 e l s e i f ({ iY_Cont [0] , iX_Cont [0]}==2 ’ b01) //Y=even and X=odd => Blue data
129 begin
130 mCCD_R <= mDATAd_1;
131 mCCD_G <= mDATAd_0+mDATA_1;
132 mCCD_B <= mDATA_0;
133 end
134 end
135 end
136
137 endmodule

Listing B.2: The RAW2RGB hardware video processor

	Title Page
	Problem Description
	masteroppgave.pdf

