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Problem Description
Cognitive radio is a promising field for efficient spectrum utilization. In order for a cognitive radio
to function, it needs information about whether a given band of the spectrum is vacant or occupied.
Hence a cornerstone component in cognitive radio technology is efficient and robust spectrum
sensing algorithms. To prevent hidden terminal problems and similar kinds of interference, it is
crucial that the spectrum sensing algorithms provide reliable and robust detection performance
also in very low signal to noise ratio conditions.

The thesis shall undertake investigation of distribution based spectrum detection methods under
low signal to noise ratio conditions. The underlying hypothesis being that poor performance can be
expected in low Signal to Noise Ratio (SNR) environments from conventional detectors such as the
energy- or autocorrelation based
ones. The study will focus on this, with the aim of investigating the problem with current
approaches, and exploit these in devising a new strategy to potentially solve the problem.

The spectral sensing problem is a binary detection problem, where the detector must decide
whether the spectrum is vacant or if there is a signal present. Thus the received signal will have
two different conditional probability density distributions, conditioned on the detection hypothesis.
This difference in distributions can be
exploited by methods utilizing model selection, information theoretic distance measures, or
approaches incorporating higher order statistics to distinguish the distributions. Model selection
approaches have already been explored, so it is recommended that higher order statistics or
information theoretic distance measures are the primary areas to search for potential solutions to
the problem at hand.

Assignment given: 15. January 2010
Supervisor: Tor Audun Ramstad, IET





Abstract

Blind spectrum sensing in cognitive radio is being addressed in this
thesis. Particular emphasis is put on performance in the low signal to
noise range. It is shown how methods relying on traditional sample
based estimation methods, such as the energy detector and autocorre-
lation based detectors, suffer at low SNRs. This problem is attempted
to be solved by investigating how higher order statistics and informa-
tion theoretic distance measures can be applied to do spectrum sensing.
Results from a thorough literature survey indicate that the information
theoretic distance Kullback-Leibler (KL) divergence is promising when
trying to devise a novel cognitive radio spectrum sensing scheme. Two
novel detection algorithms based on Kullback-Leibler divergence esti-
mation are proposed. However, unfortunately only one of them has a
fully proven theoretical foundation. The other has a partial theoretical
framework, supported by empirical results.

Detection performance of the two proposed detectors in comparison
with two reference detectors is assessed. The two reference detectors are
the energy detector, and an autocorrelation based detector. Through
simulations, it is shown that the proposed KL divergence based algo-
rithms perform worse than the energy detector for all the considered
scenarios, while one of them performs better than the autocorrelation
based detector for certain signals. The reason why the detectors per-
form worse than the energy detector, despite the good properties of
the estimators at low signal to noise ratios, is that the KL divergence
between signal and noise is small. The low divergence stems from the
fact that both signal and noise have very similar probability density
distributions.

Detection performance is also assessed by applying the detectors to
raw data of a downconverted UMTS signal. It is shown that the noise
distribution deviates from the standard assumption (circularly symmet-
ric complex white Gaussian). Due to this deviation, the autocorrelation
based reference detector and the two proposed Kullback-Leibler diver-
gence based detectors are challenged. These detectors rely heavily on
the aforementioned assumption, and fail to function properly when ap-
plied to signals with deviating characteristics.
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Chapter 1

Introduction

Modern communication relies heavily on wireless technology. As a multitude of
wireless technologies have been developed, and continuously increased capacity is
being demanded, a severe problem has emerged. The electromagnetic spectrum
is a fixed physical quantity, and only a certain part of it is suitable for radio
communication. Available electromagnetic spectrum for wireless transmission has
become a scarce and highly valuable resource.

The traditional way of governing this resource has been to administer licenses for
portions of the spectrum, usually by a national agency such as Post og Teletilsynet
(PT). Recent research published by the US Federal Communications Commission
(FCC), see for instance [13] or [14], shows that a large part of the spectrum is
not being effectively utilized. A typical reason being the fact that system demand
among licensed users varies significantly with time and location. Such research
has spurred the development of a next generation wireless technology commonly
referred to as cognitive radio. A device using cognitive radio technology will intel-
ligently determine whether a certain part of the frequency spectrum is idle, or if
it is being utilized. If the cognitive radio can successfully determine with a high
degree of certainty that a specific part of the spectrum is being idle, it can then
transmit on these frequencies without interfering with the licensed owner of the
spectrum, thus achieving better spectral resource efficiency. The requirement of
no interference is extremely rigid to avoid disturbing licensed users. It is thus key
for the development of cognitive radio to invent fast and highly robust ways of
determining whether a frequency band is available or being occupied. This is the
area of spectrum sensing for cognitive radio.

Spectrum sensing will be the backbone of any autonomous cognitive radio. In
order to avoid interference with primary users, robust spectrum sensing should be
available with adequate performance at very low signal to noise ratios. For instance,
the upcoming cognitive radio based standard IEEE 802.22, which is a high speed
wireless regional network standard, requires the detector to sense a primary user at
−116 dBm [50, 57]. Many current spectrum sensing algorithms do not meet this
requirement, hence there is a motivation to investigate why existing techniques do
not provide satisfactory performance, and to investigate new approaches to provide
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a solution to the problem. More detailed background information on cognitive radio
and spectrum sensing will be presented in chapter 3.

1.1 Research Approach
This section provides a summary of the approach chosen to attack the topic, and
how the research was structured. The problem at hand is very open as it is pre-
sented in the problem description. It is stated that current spectrum sensing tech-
niques suffer from challenges in the low signal to noise range, requires the reasons
for this to be analyzed and suggests that higher order statistics or information
theoretic criteria are possible areas to look for a solution to overcome the problem.
It is apparent that the problem at hand is wide and challenging. To meet the
outlined demands, it is important that the scope is limited to provide a tangible
base for a master’s thesis. Hence the first step in the research has been to analyze
the problem and decide on the correct approach.

The research was split in the following sections:

1. Analysis of the problem at hand to limit the scope.

2. Literature survey on background information and current techniques in spec-
trum sensing.

3. Analysis of a selection of the conventional approaches to identify problems in
the low signal to noise region.

4. Literature survey in the areas suggested in the problem outline related to
higher order statistics and information theoretic distance measures to decide
on a potential new approach.

5. Proposing a novel spectrum sensing scheme and providing insight through a
theoretical analysis and simulations.

It becomes obvious from the list above that the research is divided in two
main parts. The first part revolving around literature surveys and theoretical
analysis, and the second part being founded on computer aided simulation. All
simulations have been performed utilizing the software package MatLab® R2008a,
The Mathworks, Inc. As of this, the software will simply be referred to as MatLab®.

1.2 Thesis Objectives and Structure
The purpose of the thesis is to present an analysis of the problem along with a pro-
posed solution, while maintaining a limited scope to provide coherency and depth.
Emphasis has been put on providing an intuitive and chronological presentation.
This is reflected in the structure, which follows the enumerated list presented in
the previous section.

The thesis starts by briefly introducing a number of theoretical concepts of
importance to the following analysis. It is assumed that the reader is familiar with
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basic concepts from signal processing and communications, so the theory chapter
will be structured more as a review of essential fundamental topics and a brief
introduction to peripheral topics that the reader might not be familiar with. A
number of references providing further depth are provided.

Following the theory chapter is a presented overview of the problem context
and two current solutions that will act as references. The overview section starts
by introducing the historical background for the term cognitive radio, and pro-
gresses naturally into contemporary research problems and current solutions. The
following chapter contains the first real research part, which starts by analyzing
the reference approaches introduced in the background chapter. After the analysis,
results from an extensive literature survey on higher order statistics and informa-
tion theoretic distance measures are presented. Alongside the presentation of the
survey results, a simultaneous discussion of their relevance is given. A conclusion
is made on which results that were important enough to pursue further. Based
on the findings from the literature survey, two novel detectors are proposed and
analyzed.

In the last part of the thesis, the two proposed novel detectors are compared
with two reference detectors in terms of detection performance. Performance is
mainly assessed through simulations utilizing synthetic signals, but one chapter is
devoted to applying the detectors on an authentic captured UMTS signal in order
to provide perspective and strengthen the findings from the simulations.

This thesis has unfortunately become very long. This is because it is meant to
be self contained for readers that are not familiar with cognitive radio or spectrum
sensing. For readers with extensive knowledge related to the field and who are in a
hurry, the following is recommended: Read 4.1 and 5.6, have a look at the figures
6.2 and 6.3 before reading the discussion in the same chapter (A quick look at
the sections describing the reference algorithms in the background chapter might
be necessary to understand notation in the figures and discussion). Quickly skim
through the first sections of chapter 7 before reading the chapter discussion. Then
read the conclusion in chapter 9. This material would have been the backbone if a
condensed summary paper was to be written.
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Chapter 2

Theoretical Preliminaries

This section will introduce a number of theoretical concepts of importance. The
treatment of the theory will be brief, and thus only serves as an introduction to
establish a common starting point for readers of various backgrounds. It is assumed
that the reader has at least a basic understanding of elementary statistics and signal
processing. As most of the treatment is introductory, experienced readers can
most likely skip this entire section, with the possible exception of the sub-section
dealing with higher order statistics, a topic not commonly taught in general signal
processing courses. The most general advice is for the reader to consult the table
of contents to establish whether review of the theoretical preliminaries is necessary,
or whether the chapter can be skipped and rather used as reference when relevant
topics are encountered in the following chapters.

2.1 The Two Fundamental Theorems of Probabil-
ity

It is assumed that the reader is familiar with the fundamental theorems of prob-
ability. However, these two laws are frequently referred to in this thesis, so this
section will provide a brief review in addition to references [4].

2.1.1 The Law of Large Numbers
The law of large numbers is the first of the two fundamental theorems of probability.
The law has two definitions; the weak and the strong law of large numbers. Only the
weak law will be reviewed here. It states that the sample average of a sequence of
independent and identically distributed random variables converges in probability
to the true mean.

1
n

n∑
i=1

Xi = X̄n
p−→ µ when n →∞ (2.1)
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That is
lim

n→∞
Pr
(∣∣X̄n − µ

∣∣ < ε
)

(2.2)

Which has the interpretation that the difference between the sample average of
the independent and identically distributed (iid) sequence and the true mean can
always be made smaller than some arbitrarily small constant for large enough n.

2.1.2 The Central Limit Theorem
The central limit theorem states that the sum of a sequence of iid random variables
converges to a normal distribution.

n∑
i=1

Xi
p−→ N

(
nµX , nσ2

X

)
when n →∞ (2.3)

where µX is the true mean and σ2
X is the true variance of Xi. The central limit

theorem is an important fundamental concept, and is commonly encountered.

2.2 Statistical Properties of Random Processes
Most of the signals encountered in digital communications are not deterministic.
This section will in a very brief fashion introduce Wide Sense Stationarity (WSS)
and circular symmetry.

2.2.1 Wide Sense Stationarity
For a strictly stationary stochastic process, all statistical properties are time invari-
ant. A weaker requirement, which is often sufficient for signal analysis, is referred
to as wide sense stationarity. For a signal to be wide sense stationary [19] its mean
must be constant

µy[n] = µy, (2.4)

the variance must be finite
σ2

y[n] < ∞ (2.5)

and the autocorrelation of the signal ry[m, l] must only depend on the difference
k = m− l

ry[m, l] = ry[m− l] (2.6)

A wide sense stationary signal has a real and even autocorrelation function [19].

2.2.2 Circular Symmetry
An important statistical concept for complex random variables is circular symme-
try. Circular symmetry intuitively means that the joint probability density function
of the random variable, which will be a two-dimensional function in the complex
plane, will remain invariant with respect to any rotation. Hence if X is a circularly
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symmetric random variable, Y = exp (jθ)X has an identical joint probability den-
sity function as X. This implies that the mean value of the circularly symmetric
random variable X is 0, µX = 0 and the the real and imaginary components of the
random variable are independent [18].

2.3 Statistical Propagation Models
Wireless communication signals suffer from multipath propagation during transmis-
sion. The multipath effect is caused by reflection and scattering of the transmitted
electromagnetic waves by objects surrounding the transmitter or receiver. Con-
structive and destructive interference causes what is mainly referred to as fading
of the received signal. This section will give a brief review of the main concepts
of multipath propagation along with two important statistical multipath models.
The material in this section is mainly adopted from [18] and [37].

A single pulse transmitted over a multipath channel will appear as a pulsetrain
at the transmitter. The strength of the pulses varies, and depends on whether the
pulse is a direct line of sight component or a reflection. The time between the first
and the last pulse is called the delay spread of the channel, and is an important
property. If the delay spread is small compared to the inverse bandwidth of the
transmitted signal, the time spreading of the signal is small, but if the delay spread
is large the time spreading can lead to significant signal distortion.

It is often typical to have moving transmitters, receivers or both in wireless
communication systems. This will lead to a time varying channel response.

Recall the model of a transmitted wireless signal

s[t] = Re {u[t] exp (j2πfct)} (2.7)

where u[t] is the equivalent baseband signal of s[t] and fc is the carrier frequency.
Extending the model to include multipath yields

r[t] = Re


N(t)∑
n=0

αn[t]u[t− τn[t]] exp (j (2πfc (t− τn[t]) + φDn))

 (2.8)

where αn[t] is the time varying amplitude and τn[t] is the time varying time delay
of the multipath components. φDn is the Doppler phase shift of the channel.

φDn =
∫

t

2πfDn [t]dt (2.9)

where fDn
[t] is the time varying Doppler frequency shift caused by moving trans-

mitters or receivers.
Assuming that the delay spread is small compared to the inverse of the signal

bandwidth, the fading can be assumed to have a narrow bandwidth so u[t− τi] '
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u[t]. Hence (2.8) can be simplified to

r[t] = Re

u[t] exp (j2πfct)

N(t)∑
n=0

αn[t] exp (−jφDn)


= Re

{
u[t] exp (j2πfct)αN(t)

} (2.10)

It can be seen from (2.10) that the effect of the multipath reduces to the complex
scalefactor αN(t) when the delay spread is small compared to the inverse of the
signal bandwidth.

2.3.1 Rayleigh Multipath Fading Model
The complex amplitudes αn[t] and the time delays τn[t], corresponding to the dif-
ferent multipath components can be considered independent. Hence when N(t) is
large, one can invoke the central limit theorem on αN(t). If the scattering envi-
ronment is dense, with no line of sight components, the magnitude of αN(t) has a
Rayleigh distribution and the channel is said to be a Rayleigh fading channel.

A Rayleigh distributed random variable Y is defined as Y =
√

X2
1 + X2

2 , where
X1 ∼ N (0, σ2

r) and X2 ∼ N (0, σ2
r), with

fY (y) =
y

σ2
r

exp
(
− y2

2σ2
r

)
(2.11)

Note that X1 and X2 must be statistically independent.

2.3.2 Rician Multipath Fading Model
If the scattering environment contains fixed permanent scatterers or signal reflec-
tors, the random variable αN(t) no longer has zero mean, and its distribution
becomes Rician.

A Rice distributed random variable Y is defined as Y =
√

X2
1 + X2

2 , where
X1 ∼ N (ν cos θ, σ2

r) and X2 ∼ N (ν sin θ, σ2
r), where θ is any real number, with

fY (y) =
y

σ2
r

exp

(
−
(
y2 + ν2

)
2σ2

r

)
I0

(
yν

σ2
r

)
(2.12)

where I0 is the modified Bessel function of the first kind, with order 0. Note that
X1 and X2 must be statistically independent. It is common to define a Rician
fading channel through what is called the Krice factor. Krice is defined as

Krice =
ν

2σ2
r

, (2.13)

which is the ratio of the power in the line of sight component over the scattered
power.
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2.3.3 Shadow Fading
The statistical fading models introduced previously describe signal attenuation due
to multipath propagation. In addition to multipath, communication signals also
suffer from physical objects affecting the wave propagation directly. The fading
caused by such objects is referred to as shadow fading, or simply shadowing. Loca-
tion, size and reflective properties of the blocking objects are generally not known,
so the effect of shadowing must, as for the multipath fading, be modeled statisti-
cally.

The log-normal shadowing model, is one of the most common statistical shadow
fading models, and it is the one that will be applied in simulations in this thesis.
In log-normal shadowing, the ratio of received power to transmitted power φ = Pr

Pt

follows a log-normal distribution

fΦ(φ) =
10

φ ln (10)σφ dB

√
2π

exp

(
− (10 log10 φ− µ dB)2

2σ2
φ dB

)
(2.14)

2.4 Probability Distribution of a Communication
Signal

The probability distribution of communication signals is of vital importance to
the analysis in this thesis, as the research is aimed at finding distribution based
methods to perform spectrum sensing in cognitive radio. It is hard to completely
characterize such distributions due to the stochastic nature of many communication
signals, however there are some common properties. The main property that will
be addressed in this section is the fact that signals have zero mean.

Recall from (2.7) that a digitally modulated signal can be written as

s[t] = Re {u[t] exp (j2πfct)} (2.15)

where u[t] is the equivalent baseband signal (Typically a complex number repre-
senting a symbol, pulse shaped with a linear filter). It is not easy to explicitly
characterize the probability distribution of this signal in general, but it is easy to
say something about its mean. To avoid DC on the output, the constellation used
for the signal symbols is chosen such that it has mean 0. Hence s[t] has mean zero.
This turns out to be an important property in determining the efficiency of the two
novel spectrum sensing algorithms that are to be presented later.

Another important property when considering the distribution of the commu-
nication signal is the contribution from noise. The noise is generally assumed to
be additive with a zero-mean Gaussian distribution, independent of the signal. For
noise impact analysis of communication systems, this additive noise typically con-
sists mainly of thermal noise from the receiver input stage [20]. The mean of the
received signal y[t] is

E [y[t]] = E [s[t] + n[t]] = E [s[t]] + E [n[t]] = 0 (2.16)
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Thus the distribution of the received signal will have a zero mean. Do not confuse
this mean with the non-zero mean in the discussion about channel fading. The
mean value discussed in relation to the channel fading is the mean value of the
random variable αn[t] which is the complex scale factor associated with the fading.
αn[t] does not necessarily have zero mean in general. This does not contradict
the claim that a received communication signal has zero mean since the signal
and fading are independent, recall that E [XY ] = E [X]E [Y ] when X and Y are
independent random variables. This is also intuitively understood by recalling that
any band limited communication channel can be modeled as a linear filter [37]. A
linear filter only affects amplitude and phase of frequencies present, it can not
introduce new spectral content. Hence since a DC signal was not present, it can
not be introduced by the fading channel.

This section provided motivation as to why communication signals have zero-
mean distributions.

2.5 Kullback Leibler Divergence
Kullback-Leibler divergence, or relative entropy, is a measure of the distance be-
tween two probability distributions. This distance is however not symmetric in
general, so it is not a distance in the Euclidean sense. The Kullback-Leibler diver-
gence between the two continuous probability density functions f(x) and g(x) is
defined as

D(f ||g) = E
[
log

f(x)
g(x)

]
(2.17)

where the expectation is taken with respect to f . D(f ||g) is only finite if the
support set of f is contained in the support set of g [10]. Another important
property of the Kullback-Leibler divergence is that it is non negative,

D(f ||g) ≥ 0 (2.18)

and in general, non-symmetric

D(p||q) 6= D(q||p).

2.6 Higher Order Statistics
Everyone with experience from signal processing or time series analysis, is familiar
with the concepts of autocorrelation and power spectral density, and the relation-
ship between them. Over the past decades, these concepts have been generalized
to higher dimensions through cumulants and corresponding polyspectra. The fol-
lowing sections present an introduction to the theory of higher order statistics and
polyspectra, before ending the presentation with a quick introduction on cumulant
estimation. As these concepts are simply higher order equivalents of the already
mentioned autocorrelation and power spectral density, they should be easily acces-
sible to the reader.
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2.6.1 Cumulants
Recall that the moment generating function of a random variable is

mX(t) = E [exp (tX)] (2.19)

From the moment generating function, the raw moments E [Xn] of the random
variable X can easily be derived.

E [Xn] =
dn

dtn
mX(t)|t=0 (2.20)

The cumulant generating function is defined as the natural logarithm of the moment
generating function.

cX(t) = lnE [exp (tX)] (2.21)

where the raw cumulants are obtained as the coefficients of the Taylor series ex-
pansion of the cumulant generating function equivalent to the method of obtaining
moments defined previously in (2.20). The following simple example provides some
intuitive understanding of the relationship between cumulants and moments

σ2
X = m

′′

X(0)−m
′

X(0)2 = c
′′

X(0) (2.22)

The definition extends naturally to random vectors Xk = [X1, X2, ..., Xm]T :

ck,X(t) = lnE
[
exp (tT X)

]
(2.23)

where t = [t1, t2, ..., tm]T .
For zero-mean complex random variables from a discrete stochastic process x[n],

the first cumulants are given as

c2,x(k) = E [x[n]x∗[n + k]]
c3,x(k1, k2) = E [x∗[n]x[n + k1]x[n + k2]]

c4,x(k1, k2, k3) = E [x[n]x[n + k1]x∗[n + k2]x∗[n + k3]]
− c2,x(k1)c2,x(k2 − k3)
− c2,x(k2)c2,x(k3 − k1)
− c2,x(k3)c2,x(k1 − k2) (2.24)

For a non zero-mean process x[n], x[n] − E [x[n]] in the cumulant expressions is
simply substituted for x[n]. It must be noted that different definitions of com-
plex cumulants exist, depending on the choice of which signals to conjugate. The
definitions above are common.

Cumulants provide a measure of higher order correlation, and c2,x is easily
recognized as the well known autocorrelation, which measures the amount of linear
correlation of the signal. For a stochastic process with a Gaussian distribution,
all cumulants of higher order than 2 are zero. Hence cumulants also conveniently
provide a measure of the distance from a given stochastic process to a stochastic
process with a Gaussian distribution.
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2.6.2 Polyspectra
Polyspectra are the extension of the regular power spectrum to higher orders. The
familiar power spectrum is defined through the Wiener-Khinchin theorem as the
Fourier transform of the autocorrelation function.

Sxx[f ] =
∞∑

k=−∞

rxx[k] exp (−j2πkf) (2.25)

This definition can be generalized to higher order spectra

S(m)
xx [f ] =

∞∑
k1=−∞

· · ·
∞∑

km=−∞

cm−1,x exp (−j2πkT f) (2.26)

2.6.3 Estimating Cumulants
Cumulants can be estimated from a finite number of samples with sample averages if
the following conditions are met [31]: The underlying channel must be exponentially
stable, the process stationary and the first 2m cumulants are absolutely summable.
If these requirements hold, the sample average of the cumulant will converge in
probability to the true cumulant. What is meant by underlying channel is the
linear time invariant system that generates the process if it is represented as an
innovations process. Recall that every WSS stochastic process has a real, even and
periodic power spectrum, which implies that it can be spectrally factored, which
again implies that it can be represented as an innovations process. I. e. a process
generated by white noise driving a linear time invariant system [19].

A consistent sample average has a well known form, such as this example (Which
is a sample average estimate of the third cumulant)

ĉ3,x(k1, k2) = 1
N−k2

N−k2∑
n=1

x∗[n]x[n + k1]x[n + k2] k2 > k1 (2.27)

For an extensive treatment of Higher order spectra and related signal processing,
see [34].

2.7 Statistical Detection Theory
Statistical detection and estimation theory is an important topic in both research
and applied signal processing. Such a topic is too wide to address in this section,
but a few concepts important for later analysis sections are presented.

2.7.1 Binary Detection
The most basic detection problem is binary. That is deciding between two different
detection hypotheses. A problem typically encountered is detecting the presence
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of a signal in noise. For the cognitive radio spectrum sensing problem that is to be
presented later, the typical detection hypotheses are

H0: y[n] = w[n]
H1: y[n] = x[n] + w[n] (2.28)

where y[n] denotes the received signal, x[n] a transmitted signal and w[n] noise.
In order to perform detection, a test statistic Υr is computed from a block of the
received samples. The most basic test statistic can for instance be to estimate the
power the received signal block. This is the energy detector. The energy detector
will be presented later. The test statistic will have a conditional probability dis-
tribution fΥr|Hi

(y) conditioned on the detection hypothesis. Figure 2.1 shows an
arbitrary example aimed at illustrating the conditional distributions of a binary
detection problem including a detection threshold. The challenge encountered in

Figure 2.1: Figure shows conditional distributions of the test statistic Υ under
the two hypotheses H0 and H1 along with a detection threshold η to illustrate
probability of detection PD and probability of false detection PFD.

the detection problem is typically how to determine the detection threshold. From
figure 2.1, it is apparent that the choice of threshold is subject to a tradeoff between
deciding that the signal is present when it actually is present as often as possible,
while at the same time making as few decisions that the signal is present when it is
not. These two events are called detection and false detection respectively. More
formally

PD = Pr (Decide Signal Present|H1)
PFD = Pr (Decide Signal Present|H0)

(2.29)

Correspondingly, one can also implicitly define the probability of missed detection
PMD = 1− PD, and probability of true false detection PTF = 1− PFD.

A thorough treatment of detection and estimation theory can be found in [54].
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2.7.2 Constant False Alarm Rate Detector
Correctly determining an optimal threshold requires knowledge of the conditional
distributions of the test statistic. Often, it can be substantially easier to obtain
knowledge of fΥr|H0(y) than fΥr|H1(y). This has motivated the term constant false
alarm rate detector (CFAR). This detector has a detection threshold determined
from fΥr|H0(y) only. It has a controlled probability of false alarm. The threshold is
not necessarily optimal, but it is a common technique, since a controlled probability
of false detection is often a sufficient requirement for devising a useful detector in
practice. Another argument for not further optimizing the threshold is that while
the conditional distribution under H0 for many detectors can be stationary (For
instance if w occurs from thermal noise in the receiver), the distribution under
H1 is often time varying, for instance due to varying signal power, varying signal
distortion or varying signal attenuation.

2.8 Orthogonal Frequency Division Multiplexing
Orthogonal Frequency Division Multiplexing (OFDM) is a popular modulation
scheme, widely applied in various wireless standards. A wideband channel is parti-
tioned into a number of narrowband orthogonal sub channels. The sub channels are
typically picked to have much smaller bandwidth than the inverse of the channel
delay spread, hence the fading on each sub channel can be assumed to be approx-
imately flat and independent of the other sub channels. This diminishes the need
for complex equalization schemes, and is one of the main reasons for the popularity
of OFDM [18]. Another main reason for the widespread use of OFDM is that the
modulation can be performed in the digital domain through the use of the Fast
Fourier Transform (FFT) algorithm. An OFDM signal, using a cyclic prefix, can
be modeled as [60]

s[n] =
∞∑

l=−∞

N−1∑
k=0

dl,kg[n− lP ] exp
(
−j

2πk

N
(n− lP − L)

)
(2.30)

where dl,k is the databit on the k th sub-carrier during the l th OFDM symbol, g[n]
is the pulse shaping filter at the transmitter, N is the FFT length, P is the OFDM
symbol length and L is the cyclic prefix length. A cyclic prefix is a technique used
to prevent inter symbol interference on the sub-channels, for more information see
[18].

2.8.1 Distribution of an OFDM Signal
As long as the FFT length is large enough, and the data symbols used to modulate
the sub-carriers are independent, the central limit theorem can be invoked, yielding
a Gaussian distribution for the OFDM signal. This is a common assumption when
analyzing OFDM based communication schemes [6, 60].
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Chapter 3

Background

This chapter provides background material to understand the problem at hand
and the results to be presented in this thesis. The concept of cognitive radio
will be explained along with the principles of spectrum sensing. In addition, the
chapter will end by introducing two existing spectrum sensing algorithms. These
two algorithms will serve as references when evaluating the novel approaches that
resulted from the research.

3.1 Cognitive Radio
Radio communication has evolved around a rigid structure stringently defined by
the choice of modulation, encoding and the type of hardware to implement these
choices [11]. However, the revolution in processor technology in the 1980’s and
1990’s gradually allowed more flexibility in the design of radio systems as a larger
part of the necessary signal processing could be performed digitally. This flexibility
created a developing field, researching highly dynamic and adaptive radio systems.
These radio systems were defined in software but were implemented through re-
configurable hardware such as Field Programmable Gate Arrays (FPGAs). This
branch of wireless technology was named Software Defined Radio (SDR). Cognitive
radio, is an extension to SDR, where one allows the radio system to adapt to its
environment through learning or artificial intelligence with the aim of increasing
performance. An early paper introducing the concept of cognitive radio is [32].

The original definition of cognitive radio is wide, as it envisions the wireless
node as a device with cognitive capabilities utilizing all available environmental
parameters. According to [32], examples of parameters the cognitive radio can
exploit are knowledge such as time, user location, user preferences, knowledge of
its own hardware and limitations, knowledge of the network and knowledge of other
users in the network. This initial definition of cognitive radio is conceptual, and
deviates somewhat from the common contemporary working definition of cognitive
radio.

A sub set of cognitive radio that has received a substantial amount of focus is
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the Spectrum Sensing Cognitive Radio. This is a radio that dynamically monitors
activity in its available electromagnetic spectrum and adapts its transmission to
available spectral resources. The most common scenario being an unlicensed sec-
ondary user wishing to utilize idle parts of the spectrum when transmission from
the licensed primary user is absent. It has become standard practice to simply use
the wide term cognitive radio also when referring to limited sub definitions such
as Spectrum Sensing Cognitive Radio. This is for instance reflected in modern
redefinitions. A typical example is this definition of cognitive radio from the U.S.
National Telecommunications and Information Administration (NTIA) [42]:

Cognitive Radio: A radio or system that senses its operational electro-
magnetic environment and can dynamically and autonomously adjust
its radio operating parameters to modify system operation, such as
maximize throughput, mitigate interference, facilitate interoperability,
access secondary markets.

This definition is a slight misnomer, since it only refers to a more limited adaptive
radio, and not the complete cognitive device, utilizing all available parameters
from its environment, as presented by the pioneer Mitola in [32]. However, this re-
definition of cognitive radio appears to have been widely adopted, and to stick with
this practice, the NTIA definition of cognitive radio will be the working definition
in this thesis. However, the reader should still be aware of the fact that the original
concept of cognitive radio was coined around a concept where a complete set of
environmental parameters, and not only spectral parameters, were considered.

This section introduced the term cognitive radio by explaining its historical
origin, and further emphasized how development in recent years has focused largely
on Spectrum Sensing Cognitive Radio. With the context established, one can
quickly move on to the area of spectrum sensing, which is the target topic for this
thesis.

3.2 Spectrum Sensing and Two Reference Sensing
Algorithms

This section will introduce spectrum sensing in cognitive radio. The different ar-
eas of spectrum sensing will be addressed, especially focusing on blind spectrum
sensing, which is the area of concentration chosen for the research. In addition,
two common blind spectrum detection algorithm are presented. These two sensing
algorithms will provide a reference for the two novel approaches that have been
developed by the author during the research presented in this thesis.

In order for a cognitive radio to dynamically utilize available spectrum, it must
be able to quickly and robustly determine which parts of the relevant spectrum
that are available or not. All further processing and decision making performed
by the communicating device is based on the results from the initial sensing. It is
obvious that spectrum sensing is extremely important for a cognitive radio device
to perform satisfactorily. Hence spectrum sensing is a cornerstone of cognitive
radio.
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A large amount of research effort has been put into the area of spectrum sensing
over the past decade. The research can be divided in two main parts:

1. Blind Spectrum Sensing

2. Non-Blind Spectrum Sensing

As the names imply, blind spectrum sensing algorithms make sensing decisions
without any prior knowledge, whereas non-blind approaches utilize some form of a
priori knowledge about the underlying signals. Typical known signal features can
be modulation type, carrier frequency or pulse shape. Two main categories of non-
blind spectrum sensing techniques are based on waveform- [51] or cyclostationarity
detection [12]. A main category of blind spectrum sensing is based on energy
detection [53]. Another main category is based on signal autocorrelation, where
there are both blind [23, 33] and non-blind approaches [6]. In addition, there exists a
plethora of smaller separate categories, such as for instance subspace based sensing
[59] or model selection based sensing [56, 58]. The following tutorial papers provide
a thorough treatment of spectrum sensing approaches in addition to important
background information [57, 30, 21]. The papers also include an extensive amount
of additional references.

Non-blind spectrum sensing has received a lot of attention in spectrum sensing
research. This is not surprising as one can obtain optimal detection results with
the right signal knowledge. It is for instance elementary knowledge for anyone
involved with communications that the matched filter is the optimal receiver for a
known pulse shape in an AWGN channel [37]. However, non-blind spectrum sensing
narrows the opportunities and applicability due to the need for a priori information
of signal features. This to some extent contradicts the original idea of the cognitive
radio as an agile and flexible device able to adapt to its environment, since it
through utilizing non-blind spectrum sensing, tailored to specific signals, will be
limited in terms of operating spectrum bands. It is crucial to limit the scope of this
research, and due to the desire to maintain flexibility for the proposed approaches,
it has thus been chosen to only focus on blind spectrum sensing techniques.

This section presented the topic spectrum sensing for cognitive radio and ex-
plained how spectrum sensing algorithms can be divided in the two groups blind
and non-blind. In addition, the section ended by providing motivation for why only
blind spectrum sensing is being investigated in this research.

3.2.1 Challenges in Spectrum Sensing
It was previously argued that blind spectrum sensing techniques are the most
universal when designing dynamic cognitive radio systems, since the designer not
necessarily has knowledge of primary user’s signal features. The lack of a priori
signal knowledge obviously is an additional disadvantage for blind spectrum sensing
approaches as opposed to non-blind. However, the two additional challenges to be
presented are common to both.

Since the cognitive radio autonomously makes decisions to transmit, often in
licensed frequency bands, it is essential to prevent the cognitive radio from inter-

17



fering with other users. This is an important networking and resource allocation
challenge, and to solve this challenge, it is essential that accurate spectrum sensing
algorithms are utilized. This sort of resource allocation problem is very similar to
the one experienced in networks based on Carrier Sense Multiple Access (CSMA)
[24]. In these networks, a main problem is what is referred to as the hidden node
problem or hidden terminal problem [24]. It refers to the fact that while two nodes
A and B in a network can both hear node C, they can be hidden to each other.
Assume that A decides to transmit to C, it listens for activity, the channel is clear
and it starts to transmit. Then while A is transmitting, B also decides to transmit.
B listens, and perceives the bandwidth as available since it can not hear A. B starts
transmitting to C as well, and a collision occurs. The hidden node problem is pri-
marily caused by physical distance (I.e. Node A and B are placed far apart on each
side of node C) or by channel effects such as fading and shadowing. To prevent
the hidden node problem and similar interference related problems, the spectrum
sensing algorithms must be able to detect the presence/absence of signals at very
low signal to noise ratios.

The upcoming IEEE standard 802.22, a Wireless Regional Area Network (WRAN)
standard employing cognitive radio technology, is a good example of the stringent
requirements imposed on spectrum sensing algorithms. The 802.22 standard ex-
ploits white spaces in the spectrum licensed for TV transmission to provide long
range wireless broadband Internet. It is not fully developed, but the preliminary
standard requires the cognitive radio to sense TV transmissions at −116 dBm with
a probability of detection PD ≥ 0.9 and probability of false detection PFD ≤ 0.1
[50, 57]. Spectral detection at such a low signal to noise ratio is a very challenging
requirement.

The last challenge is computational complexity. A large number of emerging
wireless devices where cognitive radio can provide a potential future benefit are
hand held. Hand held devices usually operate on batteries and have limited com-
putational resources. Hence it is a challenge to develop fast and robust spectrum
sensing algorithms with low computational complexity.

Three main challenges for spectrum sensing have been presented. The lack of
a priori knowledge of the signal is limited to blind spectrum sensing, while robust
performance in low signal to noise ratios and maintaining a low computational
complexity are essential to both. The requirement for reliability and accuracy in
the low SNR region is emphasized in the research presented in this thesis.

3.3 Reference Detectors
An informative introduction to cognitive radio and spectrum sensing in general,
including historical context and contemporary research problems, has been pre-
sented. With this information as base, the thesis will progress and provide more
perspective by introducing two specific spectrum sensing algorithms that are widely
used. The energy detector is the first. This detector is very simple and has been
extensively researched and applied. The other detector relies on signal autocorre-
lation, which is also a very common approach. The following sections will provide
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insight in the principles underlining the two detectors and provide the most impor-
tant related mathematics. It should be noted that these two reference algorithms
have been chosen because they are widely applied and referred to in the literature,
and that they not necessarily represent state of the art. The alternative would have
been to apply more narrow state of the art solutions. However, state of the art
solutions tend to be be very specialized and non-blind. Hence choosing the energy
detector and an autocorrelation based detector provides a better fit with the aim
of the thesis.

3.3.1 Energy Detector
The energy detector is the simplest spectral detection algorithm. It has an advan-
tage in that it is easy and intuitive to comprehend, and has low computational
complexity. For these reasons, the energy detector is therefore a good reference
when evaluating new and more elaborate spectral sensing methods. The results
presented here for the energy detector are mainly taken from [25]. The test statis-
tic is given as

ΥED =
N∑

n=1

|y[n]|2 (3.1)

As seen from the test statistic above, the energy detector, as the name implies,
simply measures the energy of the received signal y[n]. The given test statistic
presented here is defined in the time domain, but by recalling Parseval’s theorem,
it is obvious that an equivalent test statistic can be defined in the frequency domain.

Under H0, the received signal is assumed to be circularly symmetric complex
white Gaussian noise. Hence the test statistic has a central χ2

2N distribution, where
2N denotes the number of degrees of freedom. A constant false alarm detector can
easily be derived. The threshold for the detector is given as

ηED =
σ2

n

2
F−1

χ2
2N

(1− PFD) (3.2)

where F−1
χ2

2N
denotes the inverse cumulative probability function of a central χ2

distribution with 2N degrees of freedom, PFD is the probability of false detection
and σ2

n the noise variance. By applying the threshold (3.2), the probability of
detection can be derived, yielding

PD = 1− Fχ2
2N

(
ηED

σ2
n + σ2

s

)
, (3.3)

where σ2
s denotes the signal variance.

Note that the analysis of the energy detector in parts of the literature invoke the
central limit theorem, when deriving the threshold. This is also a correct approach,
and the thresholds computed with the two different methods converge for large N .
A more in depth general treatment of the energy detector can be found in for
instance [53], and more spectral sensing specific treatment in for instance [30],
which is tutorial paper on spectral sensing.
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Noise Uncertainty

As previously mentioned, it is common to assume independent received samples and
invoke the central limit theorem when analyzing the energy detector. The previous
section only addressed the received signal under H0, but this is also common to
assume under H1. H0 and H1 are the binary detection hypotheses, where one under
H0 assumes the received signal to consist of only noise and under H1 a transmitted
signal plus noise. By making the assumption of independent samples, important
insight into the major problem of the energy detector is given. In theory, the energy
detector can perform reliable detection for any SNR if a sufficient number of samples
N is utilized for the estimation. Practical experiments in for instance [5] have shown
this result not to hold. The energy detector turns out to provide deteriorating
performance when the SNR is decreased. For sufficiently low SNR, robust detection
becomes impossible. These results stem from the fact that the theoretical analysis
for the energy detector assumes the noise variance to be known, and the underlying
noise to have a perfect stationary Gaussian distribution. This assumption does not
hold. In reality, the noise variance will usually not be completely stationary. The
assumption about the distribution of the noise is also known to be weak. Impulsive
noise, aliasing from imperfect filters, leakage from other spectral bands etc. all add
to the existing thermal noise, and in many cases create a distribution for the total
noise which deviates from Gaussian [50].

To model this noise uncertainty, [50] proposes to allow the actual noise dis-
tribution to be confined within a closed set around a nominal noise distribution.
The parameter defining the set is denoted ρ, and is called the noise uncertainty
parameter. Assume the nominal noise distribution is Gaussian, with variance σ2

n.
Then the noise uncertainty set will be given as

σ2
n ∈

[
1
ρσ2, ρσ2

]
, 1 < ρ (3.4)

The noise uncertainty model is used to prove the existence of what is called SNR
walls. An SNR wall is defined as a signal to noise ratio, for a given noise uncertainty,
where the number of samples N required for robust detection approaches infinity.
SNR walls, and the consequences of them have received significant attention in
[50, 47, 48, 49]. Reading these papers is highly recommended for in-depth study,
but a lot of the content goes beyond the scope of this thesis.

This section gave a very brief introduction to the concept of noise uncertainty.
The idea of assuming that the noise distribution can not be known completely, but
for analysis purposes can be confined to a set known as the noise uncertainty set,
will be used to assess the two novel detection algorithms that are to be presented
later i this thesis.

3.3.2 Autocorrelation detector
Assuming independence of the received samples is not necessarily true. For most
real world communication signals, there usually exists correlation between samples.
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Typical causes of correlation are for instance dependence of data caused by channel
coding, frequency dependent fading and oversampling analog to digital converters
on the receiver end [41]. At this point an important difference from statistics must
be stressed; correlation and statistical independence are not equivalent. While
statistical independence implies a correlation of 0, the converse is not generally
true. The reason being that a correlation coefficient measures linear dependence.
Higher order dependencies are ignored. Hence one exception to the rule stands
out. If samples are jointly normal, statistical independence is equivalent to zero
correlation.

A number of different detection schemes, exploiting the correlation of received
signals, have been devised for cognitive radio. The schemes can be divided in two
main groups, where only one will be addressed in this thesis. Group one is the
signal feature based autocorrelation detection algorithms. These typically require
knowledge of autocorrelation features of the underlying signal. A typical example of
such an approach is the cyclic prefix autocorrelation based algorithm for detecting
OFDM signals. It is introduced in [6]. Since this group of detection algorithms
require a priori knowledge about the received signal, they are not blind and are
therefore not directly relevant to the work presented in this thesis.

The other group of autocorrelation based detection algorithms is the group that
blindly exploits signal correlation. The underlying hypothesis assumes the signal
to be circularly symmetric complex white Gaussian noise under H0. Hence

ryy[k] = 0 ∀ k 6= 0 under H0 (3.5)

where ryy[k] denotes the autocorrelation function of the received signal y[n].
The detector used as reference in this thesis is presented and analyzed in [33]

and [23]. The algorithm will be referred to as the IM algorithm, after the last
names of the two authors. Its test statistic is

ΥIM =
K∑

k=1

wk
Re{r̂yy[k] exp (−jωk)}

r̂yy[0]
(3.6)

where

r̂yy[k] =


1

N−k

N−k∑
n=1

y[n]y∗[n + k] k ≥ 0

r̂∗yy[−k] k < 0

(3.7)

wk =
K + 1− |k|

K + 1
(3.8)

K is the number of lags of the autocorrelation function to be utilized in computing
the test statistic, r̂yy[k] is the maximum likelihood consistent and unbiased estimate
of the autocorrelation function of y[n] and wk is a weighting function for providing
varying weight to different lags. In [33], it is shown that the optimal weights
wk are proportional to the underlying autocorrelation function ryy[k]. Since the
autocorrelation function is generally unknown, an appropriate guess must be made
for the weights wk. The authors of [33] and [23] suggest a triangular function for wk,
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motivated by an assumption that the autocorrelation function for real world signal
is likely to be decaying. ω is a scanning frequency introduced to allow the baseband
frequency of y[n] to have a non zero center frequency. A non zero center frequency
can for instance occur as a residual artifact from non ideal downconversion.

It can be seen from (3.6) and (3.7) that evaluating the test statistic can be done
blindly. Hence the algorithm can be applied without a priori signal knowledge.
Optimality is not achieved for the blind algorithm, since the weights wk are non
optimal, but the authors argue that this has a non vital influence on detection
performance. However, there is one caveat to the algorithm, making it only pseudo
blind. The choice of K, which is the number of autocorrelation lags to add has
to be chosen during implementation. Recall from the theory chapter that a WSS
random process has a real and even autocorrelation function. It is further proven
in [23] that if the WSS random process is complex with independent real and
complex parts, it has a real and even autocorrelation function, which is greater
than zero for all lags k < |Nc|. Nc is some non zero cut-off integer. The major
problem here is of course that Nc is unknown in general when y[n] is an arbitrary
signal. Hence Nc must be guessed during implementation. Choosing Nc too small
simply gives reduced information embedded in the test statistic, but choosing Nc

too large can be devastating. If Nc is too large, one risks adding negative lags of
the autocorrelation function to the test statistic, and thus drastically reducing the
detection capability of the algorithm.

The IM algorithm is a constant false alarm rate (CFAR) detection algorithm
and the threshold can be computed as

ηIM = Q−1 (PFD)

√√√√ W (K)

2
(
N −Q−1 (PFD)2

) ; (3.9)

W (K) =
K∑

k=1

w2
k (3.10)

N is the number of samples, PFD is the probability of false detection and Q is the
standard cumulative Gaussian function

Q(x) =
1√
2π

∫ ∞

x

exp
(
−u2

2

)
du (3.11)

Two reference detectors, the energy detector and the IM autocorrelation detec-
tor have been presented. An intuitive explanation of the algorithms along with
the important mathematical results should provide the reader with a sound per-
spective of common blind spectrum sensing algorithms. This is important as the
following chapter will start by analyzing the problems with these algorithms in
the low signal to noise ratio region, before the subsequent chapter will present two
novel approaches in an attempt to mitigate these problems.
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Chapter 4

Analysis and Survey Results
on Higher Order Statistics
and Information Theoretic
Distance Measures

Previous chapters have introduced the spectrum sensing problem in Cognitive Ra-
dio, along with two reference detectors. This chapter begins with an analysis
demonstrating some of the major issues with established sensing algorithms in the
low signal to noise ratio region. The analysis starts by examining the estimation of
the autocorrelation function. This estimation is used directly in the IM autocorre-
lation based algorithm and implicitly in the energy detector (The energy detector
is in reality an autocorrelation based detector with k = 0), and in a number of
other algorithms not addressed in this thesis [57, 30, 21]. By making some realistic
assumptions on signal structure, it is shown how algorithms relying on conven-
tional sample based estimates of the autocorrelation function suffer at decreasing
signal to noise ratios because the estimation variance depends on signal- and noise
variance.

Based on analysis of the autocorrelation estimator, it is concluded that poten-
tial new sensing techniques should rely on estimators with an estimation variance
independent of noise- or signal variance in order to remain efficient for finite num-
ber of samples at low signal to noise ratios. This was a key factor when performing
a literature survey on higher order statistics and information theoretic distance
measures. Areas that were suggested to have potential solutions in the initial
problem statement. When assessing the results from the survey, it is judged that
information theoretic distance measures appear to be more promising than higher
order statistics to overcome the problem of increased estimation variance at low
SNR. Findings from the survey indicates that Kullback-Leibler divergence, the
most common information theoretic distance measure, can be estimated with a
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low estimation variance that is independent of underlying signal- or noise variance.
This becomes the foundation for further research. Two novel spectrum sensing al-
gorithms based on Kullback-Leibler divergence estimation are devised and analyzed
in the following chapter.

4.1 Challenges When Applying Autocorrelation Es-
timators in Low SNRs

To analyze autocorrelation based spectral sensing algorithms, the mean squared
error (MSE) for the estimation of the autocorrelation function of a general signal
will be derived. Let x[n] be an arbitrary, possibly complex signal, assumed to be
wide sense stationary over the analysis interval. The MSE of the estimator is

E
[
ε2r[k]

]
= E

[
|ryy[k]− r̂yy[k]|2

]
= E

[
|ryy(k)|2 − r∗yy[k]r̂yy[k]− ryy[k]r̂∗yy[k] + |r̂yy[k]|2

] (4.1)

Since ryy[k] is a deterministic function and the estimator r̂yy[k] is unbiased (E [r̂yy[k]] =
ryy[k]), the above simplifies to

E
[
ε2r[k]

]
= E

[
|r̂yy[k]|2

]
− |ryy[k]|2 (4.2)

(4.2) can be evaluated by considering the standard unbiased maximum likelihood
sample based estimator

r̂yy[k] =
1

N − k

N−k−1∑
l=0

y[n− l]y∗[n− l − k] (4.3)

which gives the following

E
[
ε2r[k]

]
= E

[
1

N − k

N−k−1∑
l=0

y[n− l]y∗[n− l − k]
1

N − k

N−k∑
m=0

y∗[n−m]y[n−m− k]

]
− |ryy[k]|2

=
1

(N − k)2

(
N−k−1∑

l=0

N−k−1∑
m=0

E [y[n− l]y∗[n− l − k]y∗[n−m]y[n−m− k]]

)
− |ryy[k]|2 (4.4)

If one assumes that y[n] is a WSS complex Gaussian stochastic process with zero
mean, the above simplifies to

E
[
ε2r[k]

]
=

1
(N − k)2

(
N−k−1∑

l=0

N−k−1∑
m=0

(
|ryy[k]|2 + ryy[m− l]ryy[l −m]

))
− |ryy[k]|2

=
1

(N − k)2

N−k−1∑
l=0

N−k−1∑
m=0

ryy[m− l]ryy[l −m]

(4.5)
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The above used the following identity [40], which holds for zero mean complex
Gaussian random variables

E [X∗
1X∗

2X3X4] = E [X∗
1X3]E [X∗

2X4] + E [X∗
2X3]E [X∗

1X4] (4.6)

For a wide sense stationary random process y[n], the autocorrelation function is
conjugate symmetric [19], that is

ryy[k] = r∗yy[−k] (4.7)

Hence

E
[
ε2r[k]

]
=

1
(N − k)2

N−k−1∑
l=0

N−k−1∑
m=0

ryy[m− l]ryy[l −m]

=
1

(N − k)2

N−k−1∑
l=0

N−k−1∑
m=0

ryy[m− l]r∗yy[m− l]

=
1

(N − k)2

N−k−1∑
l=0

N−k−1∑
m=0

|ryy[m− l]|2

(4.8)

The above can be used to derive a useful relationship between the estimation vari-
ance and signal to noise ratio. Let the received signal y[n] = x[n] + w[n] consist
of the arbitrary complex WSS signal x[n] with a zero-mean Gaussian distribution,
plus additive white complex Gaussian noise. It is assumed that signal and noise are
circularly symmetric, and mutually independent. These assumptions are realistic
for a range of signals, for instance for an OFDM signal [6, 60]. The autocorrelation
function of the received signal is ryy[k] = rxx[k] + σ2

wδ[k]. Substituting into (4.8)
yields

E
[
ε2r[k]

]
=

1
(N − k)2

N−k−1∑
l=0

N−k−1∑
m=0

|ryy[m− l]|2

=
1

(N − k)2

N−k−1∑
l=0

N−k−1∑
m=0

(
rxx[m− l] + σ2

wδ[m− l]
)
(r∗xx[m− l]

+ σ2
wδ[m− l]

)
=

1
(N − k)2

N−k−1∑
l=0

N−k−1∑
m=0

|rxx[m− l]|2 +
1

(N − k)2

N−k−1∑
l=0

(
rxx[0]σ2

w

+ r∗xx[0]σ2
w + σ4

w

)
(4.9)
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By remembering that ryy[0] = σ2
y, 4.9 can be reduced to

E
[
ε2r[k]

]
=

1
(N − k)2

N−k−1∑
l=0

N−k−1∑
m=0

|rxx[m− l]|2 +
2σ2

xσ2
w + σ4

w

N − k

=
σ4

x

N − k
+

 1
(N − k)2

N−k−1∑
l=0,m 6=l

N−k−1∑
m=0,m 6=l

|rxx[m− l]|2
+

2σ2
xσ2

w + σ4
w

N − k

≥ σ4
x

N − k
+

2σ2
xσ2

w + σ4
w

N − k

=

(
σ2

x + σ2
w

)2
N − k

(4.10)

The inequality in (4.10) reduces to the equality

E
[
ε2r[k]

]
=

σ4
w

N − k
, (4.11)

if the signal y[n] consists solely of white complex circularly symmetric Gaussian
noise. When assessing detection performance for decreasing signal to noise ratios,
it is equivalent whether the Signal to Noise Ratio (SNR) is reduced by fixing the
signal variance and increasing the noise variance or fixing the noise variance and
decreasing the signal variance. Using the former illustrates an important problem
with the sample based estimators. Notice how a linear increase of the noise vari-
ance when the signal variance is fixed requires a quadratic increase in the number
of signal samples used in the estimation in order to keep the lower bound on the
estimation variance fixed. There is obviously practical limitations on the number
of samples that can be utilized for estimation in the cognitive radio, these limita-
tions can for instance be hardware related or the signal can be assumed wide sense
stationary only over limited time intervals. Hence it becomes infeasible to achieve
reasonable lower bounds for the estimation variance when the SNR drops suffi-
ciently. Keeping a low estimation variance is crucial in order to perform reliable
detection.

Since (4.10) is a general inequality, it is not suitable for making specific illus-
trations of the number of samples required for a given MSE. However, in [8], which
is unpublished previous work by the author, the variance of the estimation error
when estimating the autocorrelation of an autoregressive process of order 1 (AR1)
with parameter % in white Gaussian noise has been derived. For more information
on autoregressive processes, see for instance [19] or [38]. The estimation variance
for estimating the autocorrelation function of a unit variance AR1 process in white
Gaussian noise is given as

E
[
ε2r[k]

]
=

1
N

(
%2 − %−2 + 4N−1

(
1− %2N

)
+ 2%2k

(
1− %−2

)
(1− %2) (1− %−2)

)
+

1
N

(
%2k
(
2σ2

n + 2k − 1
)

+ 4σ2
n + σ4

n(1 + δ[k])
)

(4.12)
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Where N is the number of samples used for the estimation, σ2
n is the variance of

the noise, k is the autocorrelation lag and % is the AR parameter. The derivation
can be found in appendix C. By assuming N >> 4, (4.12) can be approximated as

E
[
ε2r[k]

]
=

1
N

(
%2 − %−2 + 2%2k

(
1− %−2

)
(1− %2) (1− %−2)

)
+

1
N

(
%2k
(
2σ2

n + 2k − 1
)

+ 4σ2
n + σ4

n(1 + δ[k])
)

(4.13)

An AR process can be used as a good model of a correlated communication sig-
nal, see discussion in [8]. It is seen from the above equation, that when the SNR
decreases, it becomes infeasible to estimate the autocorrelation with sufficient ac-
curacy. For an illustration see figure 4.1. Figure 4.1 plots the required number

Figure 4.1: Required number of samples to estimate r̂xx[1] with a fixed estimation
variance for a unit variance AR1 process with parameter %AR1 = 0.4 in white
Gaussian noise.

of samples N versus SNR for estimation of the autocorrelation of an AR1 pro-
cess in white Gaussian noise using (4.13). Recall that E

[
ε2r[k]

]
= MSE and since

(4.13) applies to a unit variance AR1 process in white Gaussian noise with vari-
ance σ2

n, SNR= 1/σ2
n. It is easily seen that the number of required samples N

increases drastically when the SNR decreases below approximately −5 dB (Notice
the logarithmic scale on the Y axis).

This section showed how conventional sample based estimation of a signal’s
autocorrelation function suffers from an estimation variance that depends on the
underlying signal- and noise variance. It was further shown how the number of
samples needed for reliable estimation increased dramatically at decreasing signal
to noise ratios, hence rendering reliable estimation infeasible at sufficiently low
SNRs. Note however, that in order to make this general analysis, some funda-
mental assumptions on signal and noise structure had to be made. The analysis
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assumed both the signal and the noise to be WSS, to have circularly symmetric
Gaussian distributions and be statistically independent of each other. Recall from
the theory section how it was argued that communication signals have zero-mean,
and that the underlying noise is assumed to be circularly symmetric complex white
Gaussian noise. It is also fair to assume that the signal and noise are statistically
independent and WSS over sufficient time intervals to perform detection. Hence
the only questionable part of the argument is assuming the signal to have a cir-
cularly symmetric complex Gaussian distribution. This assumption is not true in
all cases, but the assumption is realistic for some signals, such as OFDM as long
as the number of sub-carriers is large enough [6, 60]. Although the assumptions
on signal structure do not always hold, it is fair to assume that there none the
less is some universality to the results derived above. For simplicity in the further
analysis in this thesis, the results above will be assumed to hold for general signals.
Remember however that the results have only been proved strictly for signals that
that have a WSS circularly symmetric Gaussian distribution.

4.2 Potential Solutions to Overcome the Low SNR
Detection Problem

The previous section analyzed the shortcomings of conventional block based sample
average estimates. Such estimators are applied in both the energy detector and the
IM autocorrelation detector. It was shown how detection at low signal to noise
ratios became infeasible because the estimators had estimation variances relying
on signal- and noise variance. A starting point when trying to devise new detection
algorithms, to overcome this problem, is to search for estimators where estimation
performance does not rely on signal- or noise variance. This has been the main
focus when performing a broad literature survey on higher order statistics and
information theoretic distance measures. The survey is the starting point before
proposing two novel spectrum sensing algorithms.

The two following sections will provide brief summaries of the important find-
ings from the literature survey, and the conclusions drawn by them. Following
the results from the survey is an extensive introduction and analysis of the two
proposed novel spectrum sensing algorithms.

4.2.1 Higher Order Statistics
Initially, higher order statistics was investigated for the purpose of spectrum de-
tection in cognitive radio. It is well known that including higher order statistics
brought improvements to many areas of signal processing [31, 34]. However, the
improvements seem to be mostly related to underlying signal structures that do
not apply to the cognitive radio detection problem. An area that especially has
benefited from higher order statistics is estimation in colored Gaussian noise, a fact
that is obvious when remembering from the theory chapter that higher order cu-
mulants of a Gaussian distribution are zero. Hence methods based on higher order
statistics will boost the signal to noise ratio for non-Gaussian signals in Gaussian
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noise [15]. For the cognitive radio problem on the other hand, this thesis uses the
standard system model assuming the underlying noise to be circularly symmetric
white Gaussian noise. If the communication signals also have distributions that
deviate little from Gaussian, higher order statistics do not necessarily provide any
benefits, and may even deteriorate the results. This section will provide the main
findings from a thorough literature survey aimed at investigating the potential of
higher order statistics for blind spectrum sensing in cognitive radio.

[52] presents results for general detection of arbitrary random signals. The al-
gorithms presented are relying on higher order statistics and a hybrid of higher
order statistics and conventional correlation based approaches. The results for dif-
ferent signal models span from a moderate performance increase of about 1 dB
to a more significant decrease of approximately 5 dB compared to the energy de-
tector. In total, the results presented in [52] are not very promising. Another
relevant paper [45], presents a similar analysis, although less complete than [52].
The results are more ambiguous, but in total also appear to be discouraging. The
research summarized in the paper shows cumulant spectra of a vestigal sideband
modulated TV signal, obtained through simulations. Results in the paper show
that information is present in the higher order spectra, but it appears that little
information is present when the SNR drops below −10 dB. This is not promising
as existing detection algorithm of substantially lower complexity already perform
satisfactorily at such SNRs. However, the paper indicates that cyclic frequencies
are present in the higher order spectra. Cyclic frequencies can be exploited when
performing non-blind spectrum sensing. The benefit of higher order spectra for
non-blind spectrum sensing is further documented in [29]. [29] reports increased
performance over the energy detector for a third order cyclic cumulant detector.
Although the results on higher order cyclic frequencies are positive, they are not
relevant for the research presented in this thesis since this research is aimed at
blind spectrum sensing.

After a thorough review of all discovered papers with a direct link between
higher order statistics and spectrum sensing in cognitive radio, the survey was ex-
panded to comprise other relevant areas involving higher order statistics that might
prove themselves useful to the problem at hand. Particularly useful for the prelim-
inary conclusion about the potential of higher order statistics were revealed after
studying a number of papers on modulation classification. Higher order statistics
have in a number of papers been shown to be helpful in performing modulation
classification of digitally modulated communication signals [46, 28, 27, 7]. This
itself is an interesting finding, but results presented, especially in [46] and [7] be-
came pivotal. The papers suggest that while higher order statistics are applicable
for modulation classification, robustness of the methods deteriorate drastically be-
low 10 dB. This implies what was already mentioned briefly before, that for many
modulation types, communication signals often have distributions that are very
close to Gaussian. Especially in lower signal to noise ratios. Hence higher order
statistics provide little information. Recall that the distribution of the received
signal is the convolution between a Gaussian noise distribution and a communi-
cation signal that is typically close to Gaussian. Hence after the convolution, the
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received signal has a distribution very close to Gaussian, and at signal to noise
ratios below 10 dB, it becomes increasingly hard to distinguish between the mod-
ulation types through conventional estimation. This leads to the most important
argument against the potential of higher order statistics for the cognitive radio
detection problem in the low signal to noise ratio range. The fact is that all the
higher order methods that were reviewed rely on conventional sample average based
estimation methods equivalent to the ones prevalent among energy and autocorre-
lation based detectors. For instance cumulants are estimated with the same sample
average based rectangular window as the one applied in the energy detector and the
IM autocorrelation algorithm reviewed in the background section. [46] derived the
estimation variance, through an asymptotic analysis, of the sample average based
estimator used for estimating the fourth order cumulant. The expression applies
to a signal in noise, and is rather involved. However, if the signal is assumed to be
zero, the variance expression reduces to

MSEC4 ≥
4σ8

w

N
, (4.14)

which shows a striking structural resemblance to a result seen previously in (4.11).

MSEC2 ≥
σ4

w

N − k
(4.15)

Note the similarity to (4.14). However, the result for the fourth order cumulant is
more severe since the noise variance is raised to the power of four, as opposed to
the power of two for the second order cumulant estimated in the energy detector
and the autocorrelation based algorithm. This supports the argument that the
sample based estimators used to estimate higher order cumulants suffer from the
same problems in low SNR as the autocorrelation estimator. It is also obvious
that the variance of the fourth order cumulant estimate is higher than the second
order cumulant estimate (I.e. the autocorrelation). This is an obvious fact, and it
is stated explicitly in for instance [31], how the variance of the cumulant estimate
increases with the cumulant order.

This section provided relevant points from a thorough literary survey aimed
at investigating the potential of higher order statistics in spectrum sensing at low
signal to noise ratios. Overall, after analyzing the findings of the survey related to
blind spectrum sensing based on higher order statistics in general, and in cognitive
radio in particular, it was judged that no apparent potential has been revealed. The
higher order methods reviewed were all structured around the same conventional
sample average based estimation as autocorrelation detectors, which means that
they suffer from the same problems at low signal to noise ratios. In addition, esti-
mating higher order cumulants require more computation and the estimates have
a higher variance than the second order cumulant estimates applied in the energy-
and autocorrelation detector. However, it should be emphasized that positive re-
sults were encountered for non-blind spectrum sensing, but non-blind spectrum
sensing is beyond the scope of this research. It must also be stressed that while
the conclusion after this survey is that no apparent potential has been discovered,
it must not be interpreted as a conclusion that possible potential does not exist.
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4.2.2 Information Theoretic Distance Measures
The findings when investigating blind spectrum sensing with higher order statistics
were discouraging, and only strengthened the idea of finding estimators of low com-
putational complexity that did have an estimation variance independent of signal
or noise variance. Conditional distributions of the received signal under the two
hypotheses H0 and H1 have already been discussed. To continue this approach, it
is appealing to investigate whether information theoretic distance measures can be
applied to distinguish between them. To limit the scope of the analysis, only the
most common information theoretic distance measure, the Kullback-Leibler diver-
gence, has been chosen to be addressed due to its widespread use in information
theory and communications [10].

The Kullback-Leibler divergence is a well known information theoretic measure
that provides a metric for the distance between two probability distributions [10]
(recall that this is not a distance in the Euclidean sense as D(f ||g) 6= D(g||f)
in general). Previous research indicates that KL divergence estimation can be
used for detection purposes [2, 3], which establishes motivation to investigate such
methods for the cognitive radio blind spectrum sensing problem at hand. Recall
from previous sections that the cognitive radio detection problem investigated in
this report assumes an underlying circularly symmetric complex Gaussian noise
model. Hence the KL divergence should be estimated from an empirical distribution
of the received samples f̂Y (y) to a theoretical noise distribution gN (y), D(f̂ ||g).

For the spectrum sensing detection problem, only one vector of input samples
is to be compared to the theoretical distribution under one of the different hy-
potheses; signal present (H1) and signal vacant (H0). H0 is used since H1 has a
non-stationary nature due to channel effects. Hence the KL divergence estimation
algorithm must take two vectors as inputs, where the first vector represents the re-
ceived signal samples and the second vector represents parameters of the theoretical
conditional distribution under H0. Kullback-Leibler divergence can be estimated
in a number of ways. The most straightforward is to first estimate the empirical
distribution of the received samples at hand using a normalized histogram, and
then approximate the KL divergence of the continuous true probability density
functions with the KL divergence between the the empirical distribution and a cor-
responding noise distribution derived from the relevant theoretical noise model (I.e.
theoretical conditional distribution under H0). This approach will be explored and
analyzed. In addition to the traditional histogram based method, it is desirable to
have one other more advanced estimation method as reference.

A literature survey resulted in the two papers [36] and [39] as good candidates
for more elaborate Kullback-Leibler divergence estimators. [39] suggests estimating
the characteristic function of a normalized version of the input signal, composing a
toeplitz matrix of the characteristic function, compute its eigenvalues and use these
eigenvalues to estimate the KL divergence. The estimation procedure is founded in
the relationship between the sum of the eigenvalues of an autocorrelation matrix,
and the integral of the spectrum given by Szego’s theorem (For intuition on this
relationship, see for instance [55]). In the algorithm proposed in [39], the character-
istic function serves as the autocorrelation sequence, while its Fourier transform (I.
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e. probability density function) serves as the spectrum. This idea is appealing, and
the original authors suggest good results obtained through simulations. However,
the method does not appear to be easily extended to handle one empirical and
one theoretical distribution. In addition, the paper does not present a satisfactory
analysis of robustness and bias so the method is deemed as inapplicable.

[36] presents a completely different approach. The algorithm given suggests
estimating the KL divergence between two distributions through estimating their
cumulative density functions. The analysis and ideas presented in the paper are
thorough and consistent and the author implies that the estimation variance of
the algorithm only scales with the number of input samples, but the estimator
is not directly applicable to the cognitive radio spectrum sensing problem. The
[36] method only estimates the KL divergence between two empirical distributions
represented by two vectors of signal samples. This calls for the development of a
method that can work with one theoretical and one empirical distribution. Inspired
by the method from [36], the author decided to develop a novel approach to perform
this estimation that handles one empirical and one theoretical distribution. This
method will be presented and analyzed later.

Summaries and conclusions from extensive literature surveys on higher or-
der statistics and information theoretic distance measures, represented by the
Kullback-Leibler divergence have been presented. The main conclusion for higher
order statistics based methods was that they relied on the same conventional sam-
ple average based estimators as the reference detectors, and thus suffered from the
same problems. The main conclusion for Kullback-Leibler divergence is that there
is potential for estimators only relying on the number of samples and not signal-
or noise variance, but that there is a need for developing novel estimation methods
as a reference to the standard histogram based estimators. With these results in
mind, two novel spectrum sensing detection algorithms based on Kullback-Leibler
estimation will be presented in the following sections, where one of them relies on
a new estimation method inspired by [36], but completely developed by the author
during the research presented in this thesis.
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Chapter 5

Kullback-Leibler Divergence
Based Spectrum Sensing
Detectors

The previous chapter discussed how Kullback-Leibler divergence was the most
promising area discovered in the literature survey on higher order statistics and
information theoretic distance measures. This chapter will present and analyze
two proposed detectors. One will be based on empirical probability density func-
tion estimation using conventional histograms, the other will be a novel approach
developed by the author utilizing the empirical cumulative density function. The
first part of the chapter is devoted to introducing the detectors. The second part of
the chapter provides a performance analysis. During the performance analysis, the
probability of detection for an OFDM signal in an AWGN channel is derived for the
proposed detectors. The chapter ends with a summary of the derived mathematical
results for the two proposed detectors.

5.1 A Note on Signal and Estimator Dimension
Communication signals are usually two dimensional due to the use of in-phase and
quadrature components. Hence the signals are represented in the complex do-
main, and a two dimensional probability density function is needed to completely
characterize the signal. Some initial attempts on utilizing Kullback-Leibler diver-
gence estimation for multivariate signals following the outlines given in [36] have
been performed. However, these algorithms relied on nearest neighbor searching,
which for the relatively large sample sets (Usually in the size of thousands) used
for the simulations to be presented later in this thesis posed a significant computa-
tional challenge. It was thus chosen to focus on univariate estimation for simplicity,
although univariate estimation is expected to provide worse performance than mul-
tivariate estimation. However, utilizing univariate estimation is to a certain extent
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supported by the assumption of circular symmetry. If a complex signal has a cir-
cularly symmetric distribution, its real and imaginary components are statistically
independent.

Possible distributions that can be utilized are for instance signal amplitude or
signal magnitude. More elaborate schemes such as utilizing the distribution of the
signal’s one sample autocorrelation function can also be used. Results from the
author’s previous work [8], suggests that schemes based on the autocorrelation dis-
tribution will have little effect when there is little correlation in the signal. Hence
it was chosen in this thesis to focus on the more straightforward schemes. The
final choice is to use the distribution of the signal magnitude. Since the signal
under H0 is assumed to be circularly symmetric white complex Gaussian noise, the
signal magnitude under H0 will have a Rayleigh distribution. The choice to use
signal magnitude was partly made in order to utilize both dimensions of the signal,
without necessarily having to assume circular symmetry, and partly due to the fact
that the Kullback-Leibler divergence between two different Rayleigh distributions
is twice as large as the Kullback-Leibler divergence between the Gaussian distribu-
tions used to generate them. Hence better detection capabilities can be achieved.
This will be documented and elaborated through a mathematical derivation later.
The following sub-sections will now introduce the univariate Kullback-Leibler di-
vergence based spectrum sensing detectors.

5.2 Two Proposed Detectors
This section will present the two detectors. The first sub-section introduces a detec-
tor based on estimating Kullback-Leibler divergence through the use of a histogram.
The theoretical analysis for this detector is unfortunately not complete, but is mo-
tivated through empirical results. Due to this, the sub-section becomes rather long.
The second sub-section introduces a detector based on estimating Kullback-Leibler
divergence by the aid of cumulative density functions. This detector has a fully
proven theoretical foundation, yielding a concise presentation.

5.2.1 Histogram Based Detector
Recall that the Kullback-Leibler divergence from the probability mass function
f(y) to g(y) is [10]

D(f ||g) = E
[
log

f(yi)
g(yi)

]
=
∑

i

f(yi) log
f(yi)
g(yi)

(5.1)

The above can used as an approximation to the KL divergence for continuous
distributions (2.17). A discrete probability mass function can be obtained through
quantizing a continuous probability density function. In practice, such quantization
can be approximated through histograms. The choice of histogram bin width ∆
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and the number of bins N∆ is of apparent importance to the accuracy of the
approximation. Too few bins will give a crude estimate, while too many bins will
give very noisy histograms. Another crucial aspect is that to obtain a finite KL
divergence, f(yi) 6= 0 and g(yi) 6= 0 ∀yi. Note that this implies the assumption
that the underlying true KL divergence is finite, hence that the support set of
the true underlying probability density function f(y) is contained in the support
set of g(y). To assure that the KL estimate remains finite, no histogram bin can
contain zero elements. To prevent this, a technique named preloading is applied
[26]. Preloading simply means that some non-zero constant is added to all bins of
the histogram.

After the histogram H∆ has been estimated and preloading applied, the his-
togram is normalized to a probability mass function

f̂(yi) = H∆(yi)/

(∑
i

H∆(yi)

)

For the spectrum sensing problem, only f(y) needs to be approximated as
explained above. g(y) is given by parameters according to the detection hypothesis
and the probability mass function is computed as

g(yi) =


∫ yi+

∆
2

yi−∆
2

gY |H0(y)dy i 6= 1, i 6= N∆∫ yi+
∆
2

−∞ gY |H0(y)dy i = 1∫∞
yi−∆

2
gY |H0(y)dy i = N∆

(5.2)

where gY |H0(y) is the true underlying continuous conditional probability density
function for the received signal under H0.

[2] and [3] provide a discussion on estimating KL divergence through histograms,
and insight into the accuracy of the probability density function approximation
when using histograms. In this thesis, an analysis aided by Monte-Carlo simulation
has been performed in order to pick good values for the number of bins used in
the histogram and the preloading constant. It is argued in [26] that 0.5 is an
appropriate choice for the preloading constant, so this value was used as the starting
point in the analysis. Intuitively, reducing the preloading constant reduces the bias
of the algorithm. A number of simulations were performed utilizing preloading
constants 0.5, 0.01 and 0.001 to determine the appropriate choice of parameters.
The results of the simulations can be seen in figure 5.1. The figure shows bias and
variance when estimating the Kullback Leibler divergence with a histogram between
empirical samples drawn from a Rayleigh distribution with parameter σ2 = 2 and
a theoretical Rayleigh distribution with σ2 varying to represent different signal
to noise ratios (This implicitly assumes that the signal will also have a circularly
symmetric Gaussian distribution, which is not necessarily true, but assumed for
simplicity). This represents a realistic scenario to the effect of bin width and
preloading. When interpreting the results, it is important to keep in mind that
the ideal situation is to pick a preloading constant and number of bins to get a
good tradeoff between low estimation variance, low bias and consistent bias for
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(a) Estimation Error, P = 0.5 (b) Estimation Variances, P = 0.5

(c) Estimation Errors, P = 0.01 (d) Estimation Variances, P = 0.01

(e) Estimation Errors, P = 0.001 (f) Estimation Variances, P = 0.001

Figure 5.1: Estimation errors and variances for the histogram based Kullback-
Leibler divergence estimator. The underlying theoretical distribution has variance
σ2 = 2. P denotes the pre-loading constant applied to avoid divide by zero issues
in the estimator.
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low signal to noise ratios (I.e. when the parameter of the input signal is close to
the parameter of the theoretical underlying distribution.) It can be seen from the
figures that the estimation variance remains almost constant (Although appears
to be slightly decreasing with decreased preloading constant), hence the important
evaluation criterion is to have the lowest possible bias, while at the same time
having consistent bias when the Rayleigh parameters are in a close range of the
theoretical parameter. The important range requiring consistency has been chosen
to be SNR∈ [−∞,−5] dB for the given simulation. This ensures that the algorithm
provides the same bias for a range of low signal to noise ratios. When the SNR is
high, consistent bias becomes less important because the KL divergence often will
be several orders of magnitude above the detection threshold. From the figures, it
can be seen that using a preloading constant of 0.01 and 18 bins in the histogram,
provides a satisfactory tradeoff for the previously mentioned criteria. Thus these
values are chosen permanently for all simulations provided in this report. Note
that the choice of parameters is affected by the number of samples used in the
estimation. 2048 samples have been utilized in these simulations as this is the
block length used for detection in the simulations that are to be presented later in
this report. Increasing the number of samples provides simulation results following
the same trend as seen in figure 5.1, but yielding a different choice of parameters.

The observant reader has probably also noted that the estimation variance is
strictly decreasing with reduced number of histogram bins. This may appear odd
at first, since one expects the performance to rely on the histogram accurately
approximating the underlying probability density function, but turns out to be
correct. Recall that for a constant false alarm rate detector, the distribution under
H0 must be considered (I.e. when the input samples come from the underlying
noise distribution only.) Thus the Kullback-Leibler divergence is supposed to be 0,
which requires f̂(yi)/f(yi) = 1 ∀i. Note that this result only requires the estimates
f̂(yi) to be as accurate as possible, and is independent of the number of estimates
(I.e. number of bins). Hence it becomes apparent that reducing the number of bins
will reduce the estimation variance since fewer bins give a lower variance of f̂(yi).
But as expected, the bias increases dramatically (I.e the estimation accuracy is re-
duced because the histogram does not give a good approximation to the underlying
distribution) when lowering the number of bins when the two distributions are not
identical (I.e. in these figures when SNR 6= −∞).

The author has not been able to provide a solid theoretical analysis of the
histogram based Kullback-Leibler divergence estimator, but a series of Monte Carlo
simulations has provided very good insight in its behavior. The estimator appears
to have bias and variance

µKLHIST = f1(N∆, P, N) (5.3)

σ2
KLHIST = f2(N∆, P, N) (5.4)

where f(N∆, P, N) here denotes a function of the number of bins N∆, the preload-
ing constant P and the number of samples N . Simulations have revealed a striking
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structure for these two functions. After extensive analysis of Monte Carlo simula-
tions, the bias and variance seemingly can be described as

µKLHIST = kθ (5.5)

σ2
KLHIST = kθ2 (5.6)

where k and θ are constants common for both the bias and variance. It appears
that k depends on the choice of preloading constant and number of bins in the
histogram (And possibly other unknown factors that have not been identified),
while θ = 1/N , recall that N is the number of received samples. For the parameters
chosen for the simulations in this thesis, N∆ = 18 and P = 0.01, k ' 8.51. A
fit between these heuristic theoretical parameters compared to simulated bias and
error variance is extremely accurate. This will be shown after the following section.
However as mentioned previously, these parameters are heuristic and the author has
unfortunately not been able to prove them nor derive equations to calculate them.
But the structure of these parameters will be further explored in the following
paragraph.

When looking at (5.5) and (5.6) one recognizes the parameters to be those of a
Gamma distribution. This corresponds well with empirical results. The left figure
seen in 5.2 shows a Quantile-Quantile plot of 1 · 104 Kullback-Leibler divergence
estimates versus the quantiles of a theoretical Gamma distribution with parameters
k = 8.51 and θ = 1/N = 1/2048. The Kullback-Leibler divergence estimated is the
one from a vector of 2048 samples drawn from a Rayleigh distribution with param-
eter σ2 = 2 to the corresponding theoretical Rayleigh distribution. It is seen that
a very good model for the bias, variance and distribution for the histogram based
Kullback-Leibler divergence estimator under H0 has been devised with the aid of
simulations. Hence it is straightforward to determine a detection threshold for a
constant false alarm detector. Deriving a detection threshold for a constant false
alarm detector for the histogram based Kullback-Leibler estimator is straightfor-
ward when assuming the Kullback-Leibler divergence estimates under H0 to have
a Gamma distributed error as presented above. The threshold is given by solving

PFD =
∫ ∞

ηKLHIST

fκ̂|H0(y)dy (5.7)

where fκ̂|H0(y) is the conditional distribution of the Kullback-Leibler divergence
estimate κ̂ under H0. When making the assumption that the Kullback-Leibler
divergence estimate κ̂ has a Gamma distribution with shape parameter k and scale
parameter θ = 1/N under H0, (5.7) can be easily evaluated and reduces to

ηKLHIST = F−1
γ(k,θ)(1− PFD) (5.8)

where F−1
γ(k,θ) is the inverse cumulative density function of a Gamma distribution

with parameters k and θ. For the simulations performed in this report, the block
length is N = 2048 and the shape parameter was evaluated to 8.51 through Monte
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(a) Empirical Data (Y) VS. Th. Gamma Distribu-
tion (X)

(b) Empirical KL Divergence Estimate Distribu-
tions

Figure 5.2: Left: Figure shows how well the gamma distribution fits the histogram
based KL divergence estimate when the input data comes from the theoretical
distribution. Right: Densities of histogram based KL divergence estimates.

Carlo simulations when the preloading constant is P = 0.01 and the number of
histogram bins N∆ = 18.

The Gamma distribution hypothesis should have been explored further, which
might have been the key to a rigorous theoretical analysis of the histogram based
Kullback-Leibler divergence estimator. Unfortunately, due to time constraints, it
is not possible to pursue this further. However, a brief discussion presenting a
possible idea for research is given in the future potential chapter, section 10.1.

This section presented a spectrum sensing algorithm based on estimating the
Kullback-Leibler divergence between the empirical distribution of the envelope of
the received signal and a theoretical Rayleigh distribution using a histogram. The
author has not been able to derive a complete theoretical analysis of the approach,
but through simulations, it has been shown how the distribution of the Kullback-
Leibler divergence estimate under H0 appears to follow a Gamma distribution, and
how a theoretical expression for the constant false alarm detection threshold can be
derived when assuming this to hold. The following section will present the other
sensing algorithm, which is based on estimating a Cumulative Density Function
(CDF) rather than a Probability Density Function (PDF).

5.2.2 CDF Based Detector

With the ideas presented in [36] as motivation, a novel approach to estimate KL
divergence, applicable to the problem at hand has been fully developed by the
author as part of this research. This approach is developed with a full rigorous
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theoretical foundation. The estimator requires N to be large. It is given as

D̂(f ||g) = −γ − 1
N

N∑
i=1

ln (N∆G(yi)) (5.9)

where γ ' 0.577215 is the Euler-Mascheroni constant, ∆G(yi) = G(yi) − G(yi−1)
and G denotes the cumulative density function such that g(y) = G

′
(y). Recall

that g is the conditional distribution under H0 (I.e. the noise distribution). If the
received samples y = [y1 · · · yN ] come from G (I.e. f = g), D̂ has an asymptotically
normal distribution and the bias and variance of the estimator is

lim
N→∞

µD̂ = 0 (5.10)

σ2
D̂

= 1
N

(
π2

6 − 1
)

for large N (5.11)

A proof can be found in appendix B.1.
With the above results it is straightforward to derive a threshold for a constant

false alarm detector. The derivation of the threshold is done by simply following
standard procedures for inverting the CDF of a Gaussian distribution with param-
eters found in (5.10) and (5.11). For intuition behind this consult basic literature
on detection theory, [54] in its entirety is recommended. The detection chapter in
[37] is also a good introduction, and approaches the problem of detection from a
more application specific viewpoint. The threshold is

ηKLCDF =

√
π2/6− 1

N
Q−1(PFD); (5.12)

Figure 5.3 shows simulation results demonstrating the estimation performance of
both the CDF and the histogram based Kullback-Leibler divergence estimators
under H0. The figure shows that while the CDF based algorithm is asymptotically
unbiased, it suffers from higher estimation variance than the histogram based one.
It can also be seen from figure 5.3 that the heuristic theoretical analysis of the
histogram based KL divergence estimator is consistent with the simulation results.
To a certain degree it is surprising that the intuitively simple histogram based
estimator has several orders of magnitude lower estimation variance than the CDF
based estimator. However, remember that the histogram based estimator suffers
from bias (Recall that a biased estimator can have variance lower than the Cramer-
Rao bound, which represents a lower bound on the mean squared error of an
unbiased estimator [10]).

5.3 Implementation and Complexity
The previous section introduced two proposed spectrum sensing detectors based
on Kullback-Leibler divergence estimation. This section will discuss the implemen-
tation of the actual algorithms by presenting pseudo code. It will also address
performance in terms of computational complexity.
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(a) Estimation Errors (b) Estimation Variances

Figure 5.3: Theoretical and simulated bias and variance for two different estima-
tors for estimating Kullback-Leibler divergence between the envelope of complex
Gaussian noise and a theoretical Rayleigh distribution. Both distributions have
Rayleigh parameter σ2 = 2.

5.3.1 Pseudo Code
This section will present pseudo code of the proposed spectrum sensing algorithms.

The algorithm based on utilizing the CDF is straightforward to understand by
considering (5.9). Pseudo code for an algorithm estimating the Kullback-Leibler
divergence based on this method is given as

KL-CDF(S, Fp)
1 // S is array of input samples, Fp is array containing parameters defining a
2 // theoretical cumulative density function F
3 S = Process(S) // pre-process the input samples.
4 // E.g. S[i] =

√
Re {S[i]}2 + Im {S[i]}2

5 S = Sort(S)
6 Remove(S) // Remove identical entries in S
7 N = S. length
8 κ̂ = 0
9 for i = 2 to N

10 κ̂− = ln (F (S[i])− F (S[i− 1])) // F is a cumulative density function
11 // defined by the parameters in Fp

12 κ̂ = κ̂/N − lnN − γ // γ is the Euler-Mascheroni constant,
13 // where γ ' 0.577215664901533
14 return κ̂

It can be seen from the pseudo code above that the algorithm is basically a direct
computation of (5.9). However, two implementation issue should be noted. In line
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6, a function named Remove is called. The purpose of this function is to remove
identical entries in the vector of input samples S. Identical entries must be re-
moved to prevent F (S[i])− F (S[i− 1]) = 0, which will yield κ̂ = −∞. Removing
the identical samples is just a security measure, as for a finite number of samples,
the probability of two samples being absolutely identical is small. In the MatLab®

simulations performed during this research, no samples are removed. When devis-
ing this algorithm, it was assumed that the input samples came from a continuous
distribution. In retrospect, it is obvious that this was an unfortunate assumption.
Implications of this will be discussed later in this report. The second issue is im-
plementation specific. The function Process depends on which distribution that
is being used for the KL divergence estimation. Possible choices are for example
signal amplitude (I.e. No processing function is needed), signal magnitude (The
example given in the pseudo code) or the distribution of some correlation estimate
(In which case the processing would be to estimate this correlation).

Estimating the Kullback-Leibler divergence utilizing histograms can be done in
a number of ways. This pseudo code describes the actual implementation used in
this research.

KL-HIST(S, Fp, N∆, p)
1 // S is array of input samples, Fp is array containing parameters defining a
2 // theoretical cumulative density function F , N∆ is the number of histogram
3 // bins, p is the preloading constant.
4 S = Process(S) // pre-process the input samples.
5 // E.g. S[i] =

√
Re {S[i]}2 + Im {S[i]}2

6 Smin = min(S)
7 Smax = max(S)
8 ∆ = (Smax − Smin)/(N∆ − 1)
9 Get histogram bin centers:

10 for i = 1 to N∆

11 x[i] = Smin + (i− 1) ·∆
12 H = Histogram(S, x) // Get histogram with bins centered at points in x

13 p̂1 = (S[1 . . S. length]+ = p) /
∑

(S[1 . . S. length]+ = p)
14 for m = 1 to N∆

15 if m == 1
16 p̂2[m] = F (x[m] + ∆/2)
17 elseif m == N∆

18 p̂2[m] = F (x[m]−∆/2)
19 else
20 p̂2[m] = F (x[m] + ∆/2)− F (x[m]−∆/2)
21 κ̂ = 0
22 for i = 1 to N∆

23 κ̂+ = p̂1[i] ln (p̂1[i]/p̂2[i])
24 return κ̂ // Estimate of D(p1||p2)

Note that the histogram based algorithm could have been implemented in a number
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of ways, depending on how to choose the bin width and number of bins.
For further insight, the actual MatLab® implementations of the algorithms can

be found in appendix A.1 and A.2.

5.3.2 Complexity Analysis
The previous section presented pseudo code for the two proposed algorithms. This
section will provide a brief discussion on compuational complexity. It will also
provide simulation results assessing the performance in terms of execution time for
the two proposed algorithms in comparison with the reference algorithms described
in the background chapter.

Complexity terminology will be the asymptotic O-notation, which is standard
when analyzing algorithms. For readers who are not familiar with this notation, it
will be briefly introduced. The notation is used to describe an asymptotic upper
bound, and is defined as

O(g(n)) = {f(n) : ∃ positive constants
c and n0 such that 0 ≤ f(n) ≤ cg(n) ∀ n ≥ n0}

(5.13)

This definition is taken from [9]. This book is an excellent reference on algorithms
and analysis of algorithms.

It is difficult to say anything exact about the computational complexity of the
proposed algorithms since this depends on the implementation of the sub functions.
However, when considering the pseudo code, some main points can be noted. Com-
plexity of the KL CDF algorithm is dominated by the sorting operation. Typical
high performance general sorting algorithms (E.g. Quicksort) run in O(N log2 N)
[9]. This is the dominating operation, as the other operations of KL CDF run in
O(N) time (The running time of Remove depends on the implementation, but can
in general be done in O(N) time since it only requires iterating the array once).

It is harder to pinpoint a dominating operation for KL HIST, but depending
on the implementation of the sub routines, KL HIST appears to be dominated by
O(N) terms. Hence one should normally expect KL HIST to perform better than
KL CDF when the number of input samples N grows. Also note that the actual
Kullback-Leibler computation is O(N) for KL CDF, while it is only O(N∆) for KL
HIST. Recall that typically N∆ << N . Since this computation is a significant part
of the algorithm, this also indicates faster running time for KL HIST.

To get an impression of the relative performance, the execution times have been
recorded for various input sizes. The input signal is circularly symmetric complex
Gaussian noise. Execution time has been measured by using the MatLab® stop-
watch function tic/toc. Simulations were performed on a laptop computer with a
single core 1.6 GHz CPU. Results from the simulations can be seen in figure 5.4.
The results seen in the figure support the discussion above, indicating that the run-
ning time of the KL CDF algorithm dominates when the number of input samples
increases. It is also seen that both KL based algorithms have execution times that
are of one to two orders of magnitude greater than the reference algorithms. This
is to be expected as the amount of computation to be performed for the energy
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(a) Execution Time

Figure 5.4: Complexity analysis of four spectrum sensing algorithms.

detector and the autocorrelation based detector is very limited (Approximately N
complex multiplications and N additions in total for each of the energy detector
and the IM autocorrelation detector respectively).

This section provided a discussion on the computational complexity of the pro-
posed algorithms. It was argued that the KL HIST algorithm asymptotically should
have a better running time than the KL CDF algorithm. This argument was fur-
ther strengthened by simulation results. The simulations also showed that the KL
algorithms have running times of approximately one to two order of magnitudes
above the two reference algorithms.

5.4 Detection Probability for Detector Based on
Kullback-Leibler Divergence for an OFDM Sig-
nal in AWGN Channel

Evaluating a theoretical probability of detection for an arbitrary signal is challeng-
ing. However, due to the approximate Gaussian distribution of an OFDM signal,
the calculation becomes tractable. Assuming the OFDM signal to have a Gaussian
distribution is a very common assumption often utilized in the literature, see for
instance [6] or [60]. The assumption arises from invoking the central limit theorem
on the resulting output from the inverse FFT.

For simplicity when calculating the probability of detection, only an Additive
White Gaussian Noise (AWGN) channel is assumed. The received signals under
the two detection hypotheses are

H0: y[n] = w[n]
H1: y[n] = x[n] + w[n] (5.14)

where x[n] is an OFDM signal and w[n] is circularly symmetric complex white
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Gaussian noise. The signal x[n] and noise w[n] are assumed to be statistically
independent, and the inverse FFT used in the OFDM modulation is assumed to
be large enough for the Gaussian assumption to hold. y[n] will have a zero-mean
Gaussian distribution with variance σ2

y = σ2
w under H0 and variance σ2

y = σ2
w + σ2

x

under H1. Thus the envelope of the signal under both H0 and H1 has a Rayleigh
distribution.

The Kullback-Leibler divergence between two Rayleigh distributions with pa-
rameters θ1 = σ2

y|H1
/2 and θ2 = σ2

y|H0
/2 is computed as

κR =
∫ ∞

0

y

θ1
exp

(
− y2

2θ1

)
ln

 y
θ1

exp
(
− y2

2θ1

)
y
θ2

exp
(
− y2

2θ2

)
dy

=
∫ ∞

0

y

θ1
exp

(
− y2

2θ1

)
ln
(

θ2

θ1

)
+

y3

2θ1
exp

(
− y2

2θ2

)(
1
θ2
− 1

θ1

)
dy

(5.15)

The integral is easily solved by first applying the substitution u = y2

2 and then
performing integration by parts on the second term, yielding

κR =
θ1

θ2
− 1− ln

(
θ1

θ2

)
(5.16)

This Kullback-Leibler divergence can be compared to the well known divergence
between two Gaussian distributions with mean values µ1 and µ2 and variance θ1

and θ2 given as [10]

κG =
(µ1 − µ2)2

2θ2
+

1
2

(
θ1

θ2
− 1− ln

(
θ1

θ2

))
(5.17)

By recalling that a communication signal has zero-mean, it is seen that the Kull-
back Leibler divergence between the magnitude of X

(1)
1 + jX

(2)
1 and X

(1)
2 + jX

(2)
2

(Assuming statistical independence between the real and imaginary components)
is twice than the divergence between X1 and X2. Where X1 and X2 are two in-
dependent Gaussian random variables. Hence, as discussed previously, there is
motivation to apply the magnitude of the signal rather than the amplitude in the
Kullback-Leibler divergence based spectrum sensing detectors.

By using (5.16), and the bias, variance and conditional distributions of the two
previously proposed estimation algorithms under H0 given for the CDF based al-
gorithm in (5.10) and (5.11) and the histogram based algorithm in (5.5) and (5.6)
respectively, one can compute a theoretical detection threshold and probability of
detection for the estimation algorithms. However, recall from the previous analysis
that while the bias, variance and distribution expression for the estimate κ̂ with
the CDF based estimator are analytically proven, the bias, variance and distribu-
tion expressions for κ̂ using the histogram based estimator are only motivated by
simulations.

By using the definition of signal to noise ratio,

SNR = 10 log
σ2

s

σ2
n

(5.18)

45



and
θ1 =

σ2
x + σ2

w

2

θ2 =
σ2

w

2
,

one can, after some basic algebraic manipulation, substitute into (5.16) and obtain
the following theoretical Kullback-Leibler divergence between the distributions un-
der H1 and H0 as a function of the SNR for an OFDM signal in AWGN

κR = 10SNR/10 − ln
(
10SNR/10 + 1

)
(5.19)

The theoretical detection probability of an OFDM signal in AWGN is computed
as

PD(SNR) =
∫ ∞

η

fκ̂|κR
(y) dy (5.20)

where κ is the true Kullback-Leibler divergence and κ̂ is the estimate. κ is a
constant, while κ̂ is a random variable.

By applying the threshold given in (5.12) and the theoretical KL divergence in
(5.19) one obtains the following probability of detection for the CDF detector

PD =
1√

2πσD̂

∫ ∞

ηKLCDF

exp

(
− (κ̂− κR)2

2σ2
D̂

)
dκ̂

= Q

(
Q−1(PFD)− κR

σD̂

) (5.21)

where σD̂ is given in (5.11) (Recall from the analysis of the CDF estimator that
its error has an asymptotic normal distribution with variance σD̂ and zero mean
under H0).

A similar approach applied to the histogram detector, utilizing (5.19) and the
heuristic approach assuming a Gamma distribution with parameters k and θ = 1/N
as discussed previously, yields

PD(SNR) =
1

θkΓ(k)

∫ ∞

ηKLHIST−κR

κ̂k−1 exp
(
−κ̂

θ

)
dκ̂

= 1− Fγ(k,θ) (ηKLHIST − κR)
(5.22)

where Fγ(k,θ) denotes the cumulative density function of a Gamma distribution
with shape parameter k and scale parameter θ, κR is a function of SNR and is
given by (5.19) and the detection threshold ηKLHIST is given by (5.8). This cal-
culation assumes that the distribution of the estimation error under H1 for an
OFDM signal in AWGN is the same as under H0. This can be seen from the right
hand plot in figure 5.2 to obviously not hold in general. However, it is assumed
to provide a good indication of theoretical performance as the right handed tail
behavior of the distributions, which is what is important for the PD calculation,
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behaves approximately similarly under H1 as under H0 for low signal to noise ra-
tios. For larger signal to noise ratios, making the assumption fκ̂|H0(y) = fκ̂|H1(y),
is obviously wrong, but it typically has little effect on the correctness of the calcu-
lations as the Kullback-Leibler divergence in this region is very high relative to the
estimation variance. With the above expressions for the probability of detection,

(a) Scenario 2: OFDM AWGN (b) Scenario 2: OFDM AWGN

Figure 5.5: Theoretical detection results for OFDM signal in AWGN channel. For
the Receiver Operating Characteristic (ROC) curves, SNR is −11 dB.

the expected detection performance can be evaluated. Figure 5.5a shows receiver
operating characteristics for the detection and figure 5.5b shows PD versus SNR
for an OFDM signal in AWGN. It can be seen that despite the independence of
signal or noise variance in the expression for the estimator variance, the Kullback-
Leibler divergence based detectors still appear to perform worse than the energy
detector. A number of simulations will be performed to confirm and further assess
these performance findings.

5.5 Kullback-Leibler Divergence Based Detectors
Under Noise Uncertainty

During theoretical design of communication systems, one often assumes the under-
lying noise to be stationary circularly symmetric complex with a white Gaussian
distribution. This assumption has been shown to be weak in reality, see for instance
[5]. In reality, the noise variance will usually not be completely stationary. The
assumption about the distribution of the noise is also known to be weak. Impul-
sive noise, aliasing from imperfect filters, leakage from other spectral bands etc.
all add to the existing thermal noise, and in many cases create a distribution for
the total noise which deviates from Gaussian. Recall how section 3.3.1 introduced
the concept of noise uncertainty to create an effective model to treat the problem.
Section 3.3.1 treated noise uncertainty for the energy detector. This section will
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provide a similar analysis in order to investigate the effect of noise uncertainty on
the Kullback-Leibler divergence based detectors.

There is a major difference in the nature of the energy and the KL based detec-
tors. The energy detector suffers under noise uncertainty because computing the
detection threshold requires knowledge of the underlying noise variance. The two
proposed KL detectors on the other hand only rely on a priori knowledge in order
to compute the threshold. However, the KL divergence estimators require exact
knowledge of the underlying theoretical noise distribution. Hence, uncertainty in
this knowledge will affect the Kullback-Leibler divergence estimate, and not the
detection threshold.

Recall from section 3.3.1 that noise uncertainty is modeled by letting the actual
noise variance be confined within a set given by a nominal noise variance and
an uncertainty parameter ρ such that σ2

n ∈
[

1
ρσ2, ρσ2

]
. To get ρ in dB, the

following definition is used ρdB = 10 log10 ρ. The effect of uncertainty on the
KL divergence based detectors can be understood by considering the equations
presented in section 5.4 and including distribution uncertainty. Recall that the
Kullback-Leibler divergence between an OFDM signal and circularly symmetric
complex white Gaussian noise can be written as

κR =
θ1

θ2
− 1− ln

(
θ1

θ2

)
(5.23)

where
θ1 =

(
σ2

x + σ2
w

)
/2

and
θ2 = ρσ2

w/2.

Notice that the uncertainty, represented by the parameter ρ is only present in the
expression for θ2 (I.e. the theoretical parameter used by the detector), since θ1

represents the true received signal. Denote the linear scale SNR

σ2
x/σ2

w = γlin.

By performing substitution and simple algebra, one can easily represent κR as a
function of γlin and ρ

κR =
1
ρ

(γlin + 1)− 1− ln (γlin + 1) + ln ρ (5.24)

Under no noise uncertainty (ρ = 1), (5.24) decays monotonically with decreasing
SNR. Differentiating (5.24) in terms of γlin, yields

∂κR

∂γlin
=

1
ρ
− 1

γlin + 1
(5.25)

Since by definition ρ ≥ 1 and γlin ≥ 0, (5.24) can when there is no uncertainty, by
considering (5.25), be seen to be monotonically decaying for reduced SNR (ρ = 1),
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while it decreases to a minimum before increasing again when there is uncertainty.
This can cause significant trouble for the detector. If the estimate increases suffi-
ciently when the SNR is decreased, it will cross the detection threshold and trigger
a false detection. This is expected to be expressed as a breakdown behavior char-
acterized by a probability of detection that is not monotonically decaying with
decreased SNR. This can clearly be seen in figure 5.6. The figure illustrates the
theoretical KL divergence between an OFDM signal and circularly symmetric com-
plex white Gaussian noise under no noise uncertainty versus the KL divergence
under an uncertainty of ρ = 2 dB. It is clearly seen how false detection will occur
when the SNR drops below approximately 6 dB. Detection performance under

Figure 5.6: Figure shows the effect on KL divergence based detection under 2 dB
noise uncertainty. Threshold is computed for the KL CDF algorithm with PFD =
0.05 utilizing 2000 samples.

noise uncertainty will be thoroughly investigated through simulations that are to
be presented in chapter 6. Note that this analysis applied the upper limit (ρ) of
the uncertainty interval to illustrate the problems occurring for the KL divergence
based estimators under noise uncertainty. Analysis could also have been performed
for the lower limit (1/ρ), or any other arbitrary value in the interval.

5.6 Summary of Proposed Algorithms
This section will briefly summarize the previous important findings for the two
proposed algorithms.

5.6.1 KL CDF
The proposed algorithm depending on estimating the Kullback-Leibler divergence
through the cumulative density function is given on closed form as

D̂(f ||g) = −γ − 1
N

N∑
i=1

ln (N∆G(yi)) (5.26)
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where γ ' 0.577215 is the Euler-Mascheroni constant, N is the number of input
samples, ∆G(yi) = G(yi)−G(yi−1) and G denotes the cumulative density function
such that g(y) = G

′
(y). Recall that g is the conditional distribution under H0 (I.e.

the noise distribution). The detection threshold for a constant false alarm detector
is given as

ηKLCDF =

√
π2/6− 1

N
Q−1(PFD); (5.27)

For an OFDM signal in AWGN channel, the probability of detection is given
as

PD = Q

(
Q−1(PFD)− κR

σD̂

)
(5.28)

with σD̂ given in (5.11). Q is the standard cumulative Gaussian which is defined
in (3.11).

Pseduocode for the actual algorithm was given in section 5.3.1 and the corre-
sponding MatLab® implementation can be found in appendix A.1.

5.6.2 KL HIST
The theoretical framework for the histogram based detector has not been fully
proven such as the framework for the CDF based detector. However, for the KL
HIST detector, the following results have been motivated empirically through sim-
ulations. A constant false alarm detection threshold is given as

ηKLHIST = F−1
γ(k,θ)(1− PFD) (5.29)

where F−1
γ(k,θ) is the inverse cumulative density function of a Gamma distribution

with parameters k and θ = 1/N . For the simulations performed in this report,
the block length N = 2048 and that the shape parameter k was evaluated to 8.51
through Monte Carlo simulations, when the preloading constant P = 0.01 and the
number of histogram bins N∆ = 18. Using the same parameters an approximate
probability of detection for an OFDM signal in AWGN is given as

PD(SNR) = 1− Fγ(k,θ) (ηKLHIST − κR) (5.30)

where Fγ(k,θ) denotes the cumulative density function of a Gamma distribution
with shape parameter k and scale parameter θ and κR is given by (5.19) and the
detection threshold ηKLHIST is given by (5.8).

Pseduocode for the actual algorithm is given in section 5.3.1 and the corre-
sponding MatLab® implementation can be found in appendix A.2.
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Chapter 6

Simulations

Previous chapters have introduced the problem of blind spectrum sensing in cogni-
tive radio, presented an analysis of problems with existing detectors utilizing sample
average based estimators and proposed two novel algorithms based on Kullback-
Leibler divergence. The proposed detectors were hoped to improve performance,
especially in the low signal to noise region. This chapter will provide a number of
simulations aimed at assessing the performance of the proposed detectors in com-
parison with the two reference detectors. The chapter is split in two main sections.
The first section will introduce three common simulation scenarios. All scenarios
have different properties in order to get a thorough impression of detector perfor-
mance. Section two presents the results for the simulations. The chapter ends with
a thorough discussion of the simulation results.

6.1 Simulation Scenarios
This section will introduce the common simulation scenarios used to test the de-
tection algorithms. Three different scenarios, with different properties have been
chosen to evaluate spectral detection performance. The reader is assumed to be
familiar with common digital modulation and communication principles. All sim-
ulation scenarios follow the Monte Carlo principle, where detection results are ob-
tained as the average of a number of simulations. For each iteration of the Monte
Carlo simulation, a test statistic is computed on the basis of the signal samples in
one block. A binary decision is made by comparing the test statistic to a predeter-
mined detection threshold. The threshold is computed for the detectors to have a
probability of false detection PFD = 0.05.

6.1.1 Scenario 1: Raised Cosine Pulse Shaped QAM Signal
in AWGN Channel

The first scenario is the simplest. A signal consisting of 512 16-QAM information
symbols is generated by mapping random integers from 0 to 15 to a Gray coded
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16-QAM constellation. After modulation, the signal containing the complex infor-
mation symbols is pulse shaped with a raised cosine filter. The filter has roll-off
parameter β = 0.5, and upsamples the signal by a factor of 4. Hence the total
length of one signal block is 4 · 512 = 2048 samples. Complex white Gaussian
noise is then added to the signal. A Welch power spectrum estimate of a one block
realization of the signal can be seen in figure 6.1.

(a) QAM Signal (b) OFDM Signal

Figure 6.1: Welch estimates of the power spectrum. Channel is AWGN with SNR=
8 dB for both signals.

6.1.2 Scenario 2: OFDM Signal in AWGN Channel
OFDM is the modulation of choice for the two last simulation scenarios to be used
as evaluation tools in this thesis. In OFDM, a wideband channel is divided into
a set of narrowband orthogonal subchannels. If the inverse bandwidth of each
subchannel is much larger than the delay spread of the channel, the subchannels
can be approximated as having independent flat fading. This prevents the need
for expensive and complex wideband equalization schemes. OFDM modulation
can also be efficiently implemented through digital signal processing due to the
FFT algorithm. These two reasons have made OFDM a very popular modulation
scheme in recent wireless standards [18].

While the QAM signal in scenario 1 was arbitrarily picked for illustrative pur-
poses, the OFDM signal used for scenario 2 and 3 follows an existing standard. The
specific standard is called DVB-T. DVB-T abbreviates Digital Television Broadcast
- Terrestrial, and as the name implies is a standard for wireless digital transmission
of TV signals. The standard is administered by the European Telecommunications
Standards Institute (ETSI). The official ETSI web page can be found at [35].

The actual implementation of the DVB-T OFDM signal is largely adapted
from an existing MatLab® implementation from Georgia Institute of Technology,
described and fully documented in [1]. The implementation includes upconversion,
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downconversion, lowpass filtering and sampling of the transmitted OFDM signal.
Figure 6.1 shows the Welch power spectrum estimate of one realization of a signal
block in AWGN with SNR = 8 dB. For the Monte Carlo simulation, each signal
block consists of one symbol, which in the 2k mode implemented here contains 2048
samples. 500 iterations are performed in the simulation.

6.1.3 Scenario 3: OFDM Signal in AWGN Channel Includ-
ing Rician Multipath Fading and Shadowing

The third simulation scenario utilizes the same DVB-T OFDM signal as scenario
2, but to make the simulations more realistic, the signal is subjected to Rician
multipath fading and shadowing following a log normal distribution. It is assumed
that the detection performance in AWGN (I.e. Scenario 1 and 2) will provide a
good impression of the performance, but it is necessary to extend the simulations
to include signal distortion due to multipath- and shadow fading.

The maximum Doppler shift of the channel is 100 Hz, the K-factor for the
Rician fading is 10 (Which represents a very strong line of sight component) and
the standard deviation for the log normal shadowing is 10 dB.

Since the fading causes the channel to be time variant, it is necessary to apply
longer averaging than in scenario 2 to obtain good simulation results. To reflect
this, the number of iterations in the Monte Carlo simulation is increased from 500
to 1000.

6.2 Simulation Results

Simulations are important in assessing the performance of the proposed spectrum
sensing algorithms. The previous section presented three different simulation sce-
narios, chosen to investigate spectrum sensing. The three scenarios provide differ-
ent attributes aimed at yielding a framework for diverse assessment of the detec-
tion algorithm. The simulations are split in two main parts. Part one is a regular
assessment of detection performance for the three proposed simulation scenarios,
assuming that the underlying noise variance is known to all algorithms. The results
from these simulations can be seen in the batch figure 6.2. Part two evaluates the
algorithms under noise uncertainty in scenario 1. It was judged sufficient to only
include scenario 1 for the noise uncertainty trial to limit the scope of the thesis.
However, it is fair to assume that behavior in the other simulation scenarios to a
large degree can be inferred from the results from scenario 1 under noise uncer-
tainty combined with the results under no noise uncertainty from scenario 2 and
3. The simulation results for scenario 1 under noise uncertainty can be seen in the
batch figure 6.3. It can be noted from figure 6.3, that the IM algorithm has been
excluded. This stems from the fact that the IM algorithm does not depend on
knowing the underlying noise variance, and therefore does not suffer under noise
uncertainty.
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(a) Scenario 1: QAM AWGN (b) Scenario 3: OFDM, Rician Fading and Shadow-
ing

(c) Scenario 2: OFDM AWGN (d) Scenario 2: OFDM AWGN

Figure 6.2: Monte Carlo simulation results assessing detection performance of a
number of spectral detection algorithms. See the section on simulation scenarios
for details regarding implementation.
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6.2.1 Detection, Scenario 1

This subsection will list the simulation results under scenario 1 as seen in figure
6.2a. All listed dB quantities when addressing relative performance are given as
approximate values as they have been obtained through manual inspection of the
figures.

The IM algorithm performs the best, with IM(3) at the top with IM(2) and
IM(1) following approximately 0.5 dB and 1.5 dB behind respectively. Recall that
the index of the IM algorithm denotes how many lags of the estimated autocorre-
lation function that are used to compute the test statistic. Subsequent to the IM
algorithm is the energy detector, with approximately 3 dB reduced performance
compared to IM(3). Following IM(3) is the histogram based Kullback-Leibler di-
vergence detector, approximately 5 dB behind IM(3). The worst performance is
displayed by the CDF based KL divergence algorithm, which shows a performance
reduction of approximately 11 dB compared to IM(3). The PD curves for all de-
tectors can be observed to have very similar slopes.

6.2.2 Detection, Scenario 2

This subsection will list the simulation results under scenario 2 as seen in figure
6.2c. The simulation results in this figure for the energy detector and the two KL
divergence based detectors are complemented with solid curves denoting theoretical
detection results. All listed dB quantities when addressing relative performance
are given as approximate values as they have been obtained through manual in-
spection of the figures.

It is slightly more difficult to comparatively assess the detectors in scenario 2
than scenario 1 in terms of a quantitative dB measure since the different detectors
display different slopes for the PD curves. The curves can be divided in three pairs,
where each pair displays a slope different from the two other pairs. The three pairs
are; energy detector and IM(1), the two Kullback-Leibler based algorithms and
IM(2) and IM(3).

The best performance is obtained from the energy detector. Subsequent is the
histogram based Kullback-Leibler divergence algorithm, which has a performance
in the range from approximately 2 dB to approximately 5 dB below the energy de-
tector. Following the KL histogram algorithm is IM(1), with a steady performance
loss of approximately 7 dB compared to energy detection. The worst performance
is displayed by IM(2), IM(3) and KL CDF. IM(2) and IM(3) have virtually iden-
tical curves, while KL CDF differs from the IM(2) and IM(3) curves with as much
as approximately 4 dB. The KL CDF algorithm is the best of the three when the
signal to noise ratio is SNR ≥ −7 dB, with the opposite result for SNR < −7 dB.
In total, IM(2), IM(3) and KL CDF can be seen to perform on average about 9 dB
worse than the best performance, which is obtained by the energy detector.
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6.2.3 Detection, Scenario 3
Relative detection results for scenario 3 are to a large extent aligned with the
previously presented results for scenario 2. This is expected as the underlying
signal used is the same. The main difference is in absolute performance, which
is caused by the addition of multipath- and shadow fading. It is obvious from
figure 6.2b how the absolute detection performance deteriorates when the signal
is subjected to channel fading. The PD slopes for all detectors start dropping at
higher SNR values than for the AWGN case. While the PD curves started dropping
off in the range from approximately −10 dB to about 1 dB for the four detectors
in the AWGN channel of scenario 2, all curves start dropping off before 5 dB under
the fading applied in scenario 3 (5 dB is the upper limit of the evaluated SNR for
all three scenarios).

In terms of relative performance, results are aligned with scenario 2. The energy
detector performs the best, with the KL HIST algorithm as number two, with a
performance in the range of approximately 1 dB to 4 dB below. Following is IM(1),
which has a steady performance approximately 5 dB below the energy detector.
As for scenario 2, the worst performance is obtained by IM(2), IM(3) and the KL
CDF algorithm. However, there is one difference when comparing to scenario 3.
In scenario 2, the PD curves of KL CDF and the two IM detectors crossed. This
does not happen within the SNR range visible in figure 6.2b. IM(2) and IM(3)
perform approximately 9 dB below the energy detector. The bottom performance
is obtained by the KL CDF algorithm at approximately 10 dB to 11 dB below the
energy detector.

The previous section has presented a summary of detection results for the three
simulation scenarios when the underlying noise variance is assumed to be known by
the detector. In the following section, simulation results under noise uncertainty
will be addressed.

6.2.4 Detection Under Noise Uncertainty, Scenario 1
A number of spectrum sensing algorithms assume knowledge of the underlying noise
variance. The noise distribution might be unknown or non-stationary, which will
degrade the performance of the sensing. [50] introduced the term noise uncertainty
set to try to understand and quantify this degradation. Recall that the main points
of this analysis are presented in the background chapter, section 3.3.1. This section
will assess the performance of the proposed detectors along with the energy detector
as reference under noise uncertainty. The IM algorithm does not depend on noise
variance knowledge, and is hence not affected by noise uncertainty. Results from
the simulations can be seen in the batch figure 6.3. There is one sub figure for
each detector, with the energy detector seen in figure 6.3c, the KL CDF algorithm
in figure 6.3b and the KL HIST algorithm in 6.3a. Each sub figure has a black
solid line as reference, denoting performance of the respective detectors without
noise uncertainty. Performance under noise uncertainty is assessed through giving
the detector the two worst case variance figures under a given uncertainty set.
Recall that under noise uncertainty, the actual noise distribution is confined within
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(a) Hist. Kullback-Leibler (b) CDF Kullback-Leibler

(c) Energy Detector

Figure 6.3: Scenario 1 Monte Carlo simulation assessing energy detector under noise
uncertainty. Colors denote upper and lower uncertainty level of the uncertainty
interval [ 1ρσ2, ρσ2], where ρ is given in the legend.
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a set given by a nominal noise variance and an uncertainty parameter ρ such that
σ2

n ∈
[

1
ρσ2, ρσ2

]
. To get ρ in dB, the following definition is used ρdB = 10 log10 ρ.

In the simulation, the noise uncertainty definition has been interpreted as σ2 being
the true noise variance, and σ2

n as being the estimate of the noise variance that is
used by the detector. The lower- and upper worst case noise variance estimates, 1ρσ2

and ρσ2 respectively, are used by the detector in the simulations, denoted in the
figures by ρdB L (Lower) and ρdB U (Upper).

Three different values of the uncertainty parameter ρ are used in the simulations.
They are given in table 6.1. The table also gives an approximate required number

ρ Required Block Length, P ' 0.99
dB Linear N
0.1 ' 1.0233 1.2 · 104

0.5 ' 1.1220 450
1 ' 1.2589 100

Table 6.1: Table gives noise uncertainty parameters used for the simulations in
figure 6.3 in dB and linear scale. It also gives an approximate required block
length for the number of samples needed to estimate the noise variance so it is
confined within the given uncertainty set with an approximate probability of 0.99.

of samples needed to estimate the noise variance such that the estimate is confined
within the uncertainty set with an approximate probability of 0.99. The number
of required samples N given in table 6.1 has been computed using the following
equation

P1/2 =
1√

2πσε

∫ ∞

ρσ2
exp

(
−1

2

(
x− σ2

)2
σ2

ε

)
dx

= Q
(
(ρ− 1)

√
N
) (6.1)

Here, σ2 denotes the true noise variance, N the number of samples needed for the
estimate, P1/2 the half sided probability for the estimate to be confined within the
noise uncertainty set and σ2

ε is the estimator variance. For circularly symmetric
complex white Gaussian noise σ2

ε = σ4/N (See section 4.1). Hence the required
number of samples to estimate the noise variance under a given noise uncertainty ρ,
if one requires the estimate to be confined within the set with probability 1−2P1/2,
is given as

N '

(
Q−1

(
P1/2

)
ρ− 1

)2

(6.2)

The use of ' stems from the fact that the noise uncertainty set is not symmetric(
1− 1

ρ 6= ρ
)

, but symmetry has been assumed for simplicity in the calculation
since only a rough estimate of N is needed to illustrate the impact of the noise
uncertainty.
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Figure 6.3 shows that the effect of noise uncertainty for the spectrum sensing
algorithms varies with the uncertainty parameter ρ. For the smallest value of
the parameter ρ = 0.1 dB, the energy detector has the worst performance, with
approximate deviation from the no uncertainty reference ranging from −4 dB to
7 dB. The KL CDF algorithm on the other hand, performs the best with a minor
deviation approximately ranging from −0.5 dB to 0.5 dB.

However, the relative performance in terms of sensitivity to noise uncertainty
changes somewhat when the value of ρ increases. It can be seen from the figures that
while the energy detector has a performance that consistently degrades through
widening the area between the upper and lower PD curves for increased ρ, the
Kullback-Leibler divergence based detectors suffer from a breakdown when the
uncertainty is large enough. The breakdown can be seen as an inconsistency where
the probability of detection suddenly starts to increase when the signal to noise
ratio decreases below a certain threshold. This behavior occurs for both KL based
algorithms, but can be seen from the figure to be more severe for the KL histogram
based detector.

The previous sections went through results from a number of simulations aimed
at assessing detection performance and detector robustness towards noise uncer-
tainty. The two proposed spectrum sensing algorithms are compared with the two
references. Reasons behind these results, along with potential implications, will be
thoroughly discussed in the following section.

6.3 Discussion of Simulation Results
A common simulation framework has been provided to evaluate the two proposed
spectrum sensing algorithms in comparison with the two reference detectors. The
following sections will discuss and explain the findings from these simulations.

6.3.1 Discussion of Simulation Results Under No Noise Un-
certainty

In terms of the reference detectors, the behavior is as expected. The two different
test signals, the OFDM DVB-T signal and the 16-QAM signal have different spec-
tra. Recall that Welch power spectrum density estimates of the two signals were
shown in figure 6.1. The detection performance of the two reference detectors can
to a large extent be inferred simply by considering the signal spectra. Both signals
have approximately flat spectra, but the OFDM signal displays a sharp roll-off
compared to the QAM signal. It can also be seen that due to the oversampling
in the raised cosine filter for the QAM signal, it has a normalized bandwidth of
approximately 0.2π rad/sample, which is much narrower than the OFDM signal,
which with no oversampling has a normalized signal bandwidth of approximately
0.8π rad/sample. Two things can be inferred from this. It is expected that the
autocorrelation detector will perform better for the QAM signal, since it due to the
lower signal bandwidth has an autocorrelation function with a slower decay than
the OFDM signal. It should also be expected that more lags of the autocorrelation
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function can be applied for detection. The other thing to infer from the signal
spectra is to expect that the energy detector is at the top end performance wise
for the OFDM signal, since the OFDM signal has a Gaussian distribution and is
nearly white. Recall that the energy detector is the optimal detector for detecting
a white Gaussian signal in white Gaussian noise. These expectations are confirmed
when considering the simulation results seen in figure 6.2. As expected, the auto-
correlation detector gives the best performance for the QAM signal (figure 6.2a),
and utilizing more lags improves the detection. However, remember that increased
performance for utilizing an increased number of lags only occurs until the first
zero crossing of the autocorrelation function. The opposite effect of adding more
lags to compute the test statistic occurs for the OFDM signal. Due to the large
signal bandwidth (I.e. the lack of oversampling in the receiver), the autocorrelation
function of the signal decays rapidly, and utilizing more than the first lag of the au-
tocorrelation function actually deteriorates the detection performance (figure 6.2c
and figure 6.2b). Further, the expectations of the energy detector for the OFDM
signal were also correct. In figures 6.2c and 6.2b, the energy detector can be seen
to provide the best performance of all the detectors.

As for the two proposed Kullback-Leibler detection algorithms, relative perfor-
mance compared to the energy detector was already established mathematically
in the theory section. However, when deriving the probability of detection, it was
assumed that the conditional distribution of the Kullback-Leibler divergence esti-
mates were the same under H1 as H0. This assumption is known not to be correct,
but it was argued that it should be sufficient to obtain good theoretical results for
the probability of detection. This assumption can be seen to hold to a large extent
when considering the performance for the OFDM signal in AWGN seen in figure
6.2c and 6.2d. For the CDF based algorithm, the simulated detection performance
matches the theoretical results with a high degree of accuracy. This is true for
both the PD versus PFD curves and the PD versus SNR curves. The curve from
the Monte-Carlo simulation can be seen to display slightly worse performance than
the theoretical curve in both figures. This deterioration in performance compared
to the theoretical results is expected, because when calculating the probability of
detection, it was assumed that the KL estimator is unbiased, while it in reality
is only asymptotically unbiased (See figure 5.3). However, the discrepancy is so
small that for all practical purposes, the theoretical detection performance can be
considered correct.

For the histogram based detector, the theoretical results are not as strong as
for the CDF based detector. Recall from section 5, addressing the Kullback-Leibler
estimators, that while the CDF based algorithm is presented with a complete and
rigorous theoretical framework, the results for the histogram based estimator have
not been proved theoretically. However, it can be seen from figure 6.2c how sim-
ulation results for the KL HIST algorithm are within approximately 0 to 1 dB
of the theoretical detection results. The reason for this discrepancy is most likely
resulting from assuming the conditional distribution for the estimation error to be
the same under H1 as H0, and hence shows that making this assumption is not
sufficient. This is strengthened when comparing deviation with the tail behavior of
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the estimate distributions seen in figure 5.2 (The large difference in tail behavior
for the conditional estimate distribution when the SNR> −8 dB has no effect since
the KL divergence here is so large that it does not matter whether the threshold
is exact or not). It is not until considering the receiver operating characteristic
in figure 6.2d, it becomes obvious that the current theoretical analysis is clearly
inadequate. At least when the probability of false detection PFD is greater than
' 0.05. Again, the most likely cause for this is the fact that the distribution of the
estimate under H1 differs from the distribution under H0 (As seen in figure 5.2).

When considering the simulation results for scenario 3, an obvious fact is ob-
served. It is clearly seen how introducing channel distortion in terms of multipath-
and shadow fading clearly deteriorates the detection performance. While the de-
tection performance under AWGN dropped rapidly from 1 to PFD over a range of
about 5 dB, the slope of the detection curve falls off considerably slower, extending
the SNR range of the drop to at least 25 dB (The rest is outside the range of the
figure, so there are no grounds to make conclusions on performance). Recall that
the Rice factor for the multipath fading in this scenario is Krice = 10, and that
this corresponds to a very strong line of sight component compared to the mul-
tipath components. Hence the Rician multipath fading is expected not to cause
significant performance degradation. The shadow fading on the other hand, has a
standard deviation of 10 dB, and can be expected to decrease performance over a
wide range of SNRs. This is clearly seen as the case in figure 6.2b.

6.3.2 Discussion of Simulation Results Under Noise Uncer-
tainty

It is already known that performance of the energy detector deteriorates under
noise uncertainty. It is important to assess this property, as the underlying noise
distribution is rarely known exactly for a detector. The simulation results under
noise uncertainty are shown in figure 6.3. Both KL divergence based detectors
are suffering less under noise uncertainty than the energy detector when the noise
uncertainty is around 0.1 dB. To determine noise variance to such an accuracy
requires about 1.2 · 104 samples (See table 6.1). This is not unreasonable, but
the problem is that one never knows whether only noise is present. The noise
distribution may also be time variant. Larger uncertainties might occur, which
is a great weakness of the KL divergence based detectors. This weakness under
uncertainty is essential when trying the understand the applicability of Kullback
Leibler divergence in spectrum sensing. Under moderate to high noise uncertain-
ties, the robustness of the KL based algorithms breaks down. This occurs under an
uncertainty of about 0.5 dB for the CDF algorithm and about 1 dB for the HIST
algorithm.

The breakdown behavior was described mathematically in section 5.5 and is a
result of the different nature of the Kullback-Leibler divergence estimators com-
pared to for instance the conventional energy detector. The energy detector suffers
from noise uncertainty because determining the detection threshold relies on know-
ing the noise variance. For both the KL divergence based detectors, determining
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the threshold only relies on parameters that are always known a priori. Hence
the threshold is always correct. The problem is that to estimate the divergence
from the empirical distribution of the received samples, one must have a reference
distribution. This creates the need for having complete knowledge of the under-
lying noise distribution. If the underlying distribution suffers from uncertainty,
the actual estimate will be wrong. Hence one is estimating the wrong divergence,
and thus making wrong decisions. Under large uncertainty, even if the received
samples are from the true underlying distribution, the estimated Kullback-Leibler
divergence, based on using the erroneous underlying theoretical distribution due to
uncertainty, will be large at low signal to noise ratios. Hence the detector falsely
starts detecting again when the signal to noise ratio drops. This is the breakdown
that is observed in figure 6.3.

The reason why the breakdown behavior is more severe for the KL HIST algo-
rithm is the same as why it performs better than the KL CDF algorithm, which
is that its estimation variance is significantly lower (O(1/N) vs. O(1/N2)). The
lower estimation variance gives a more accurate estimation and a lower detection
threshold. Thus the detector is more sensitive to the small deviations in the esti-
mated KL divergence due to uncertainty in the underlying theoretical conditional
distribution under H0.

Noise uncertainty, as addressed in this report, is equivalent to noise variance
uncertainty since the underlying noise is always assumed to be circularly symmetric
white complex with a Gaussian distribution. Recall that a Gaussian distribution
is fully described by its mean and variance, and that circular symmetry implies
that the mean is zero and the real and imaginary components are statistically
independent. Hence the variance fully describes circularly symmetric white Gaus-
sian noise. However, the KL divergence estimators are obviously also affected by
any other type of uncertainty, as one requires perfect knowledge of the underly-
ing theoretical conditional distribution under H0 to make a correct estimate of
the Kullback-Leibler divergence. The use of variance uncertainty here was simply
applied for simplicity.

This section discussed the impact of noise uncertainty on the spectrum sens-
ing detectors. It was argued why the KL based algorithms perform better than
the energy detector when the noise uncertainty is small, but that they suffer from
a breakdown under large uncertainty when the SNR decreases below a certain
threshold. This breakdown behavior was expected from the mathematical consid-
erations in section 5.5. The last part of the section stressed the point that even
though distribution uncertainty was only expressed through uncertainty in estimat-
ing variance in this thesis, any type of uncertainty in the conditional distribution
under H0 will reduce performance of the KL divergence based detectors.
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Chapter 7

Detection Results for an
Authentic Captured Signal

The previous chapter discussed detection performance of the proposed Kullback-
Leibler divergence based spectrum sensing algorithms through simulations using
synthetic signals. It is important to assess the new algorithms by using synthetic
signals as this provides complete control over the test environment, preventing
potential contamination of the signals by for instance interference or measurement
equipment. However, only assessing algorithms through computer simulations is
dangerous, particularly for two main reasons. The aforementioned interference
or measurement distortion might be unavoidable in a real world application and
should hence be included in the original analysis. The other reason being that
it is important to test underlying assumptions. Any theoretical analysis starts by
making assumptions to simplify the problem. For instance, in the spectrum sensing
problem, the main assumption is that the underlying signal under H0 consists
of circularly symmetric complex white Gaussian noise. By acquiring real world
signals, one can ensure that the original assumptions hold and that the algorithm
behaves as expected from computer simulations. This chapter will present detection
results for the four detectors addressed in this thesis on two frames of raw data
from a Universal Mobile Telecommunications System (UMTS) receiver. One frame
has a signal present and one contains noise, hence detection under H0 and H1

can be performed. The two frames have been extracted from a longer sequence of
captured raw data.

7.1 Description of the Signal and its Distribution
A sequence of raw captured data of a downconverted UMTS signal has been ac-
quired from a previous cognitive radio experiment performed at the EURECOM
research institute. The signal has a bandwidth of 60 MHz and is modulated with
OFDM. The center frequency before downconversion is 1950 MHz. The raw data
is represented as unsigned 16 bit integers. For details on the experiment, including
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signals and hardware used to capture them, see [17]. It can be discussed whether
experiments should have been carried out for this research specifically. However,
the trials were aimed at cognitive radio, and the documentation of the signals and
experiment is sufficient for the results to be illustrated in this thesis. The substan-
tial amount of planning and time required to perform controlled wireless hardware
experiments should also be taken into account.

When assessing the raw data, it can be observed that both the in-phase and the
quadrature components have mean values. It was shown in the theory chapter how
communication signals have zero mean, it is thus assumed that these mean values
are artifacts from the actual capturing circuit. The mean values are consistent for
both the noise and signal frames. In order to prepare the signal for further pro-
cessing, these mean values are subtracted. After this subtraction, the signals are
represented with the ordinary 64 bit floating point format which is the MatLab®

default. Figure 7.1 shows the in-phase and quadrature components of the signal
after the mean has been subtracted. There is a spike present around n = 0.7 · 104

for the imaginary signal component. This is assumed to be a distortion of unknown
origin, and is not considered further during the following analysis. The actual sig-
nal block can be seen around n = 1 · 104. A signal block containing 2501 samples
has been extracted. A corresponding noise block is acquired by retrieving the 2501
first samples. The signal to noise ratio between these two blocks is 2.9 dB. Note
however that there is a degree of uncertainty to this estimate do to the limited
number of samples. Spectral analysis of the signal and noise blocks reveals that

(a) Real Component (b) Imaginary Component

Figure 7.1: Figures show the time domain components of the captured signal.

there is powerful spectral content at a few distinct frequencies that appears to be
residual carrier frequency artifacts from the down conversion. Welch power spec-
tral density estimates of the signal, and estimates of the autocorrelation function
can be seen in figure 7.2. Note that the spectral estimate is not symmetric, this
is expected since the underlying signal is complex. From the spectral estimates,
especially for the noise block (figure 7.2c), three sinusoidal components are clearly
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present, seen as peaks around the normalized frequencies ω = 0.01π rad/sample,
ω = 1.4π rad/sample and ω = 1.8π rad/sample. Recall from Fourier analysis that
non-symmetric spikes in the frequency domain correspond to complex exponen-
tials in the time domain (See appendix B.2), a fact that enforces the suspicion
of the spikes as being artifacts from the modulation. It turns out that these un-
wanted frequency components create a problem for the basic assumption made in
the previous theoretical analysis that the signal under H0 is complex circularly
symmetric white Gaussian noise. Hence an additional noise block is generated by
bandpass filtering the original noise block. This bandpass filtering is done in the
frequency domain by replacing the spikes by complex Gaussian noise with the same
variance as adjacent samples. 6 samples were replaced for the component around
ω = 0.01π rad/sample, and 4 samples were replaced for the two other components
respectively. Hence a total of 14 samples out of 2501 samples were replaced with
circularly symmetric complex white Gaussian noise, thus it is assumed that this
manipulation, apart from removing the sinusoidal components, has negligible effect
on the nature of the resulting signal. A fact that can also be seen by comparing
the spectral estimates before and after filtering (figure 7.2c versus figure 7.2d).
Another result of the Fourier domain bandpass filtering is that the inverse Fourier
transform to retrieve a time domain signal interpolates the previously quantized
signal. From the spectra it is apparent that the noise is not white. A distinct roll-
off can be seen from ω = 0.5π rad/sample to ω = π rad/sample. The same roll off
can be identified both for the signal block and noise block, and is assumed to be
resulting from anti-aliasing or other bandpass filters in the receiver. It was already
established that assuming the noise to be white does not hold here. However, to
investigate the assumption of the underlying signal under H0 as being circularly
symmetric Gaussian, the distribution of the signal magnitude has been compared
to a theoretical Rayleigh distribution. The histogram of the magnitude of the
samples in the noise block before filtering can be seen in figure 7.3a. The effect
of signal quantization is apparent. Remember that it is the real and imaginary
signal components that are quantized, hence the quantization does not appear as
symmetric intervals for the magnitude. It is seen that the shape of the histogram
resembles a Rayleigh distribution in shape, but due to quantization it is impossible
to justify a conclusion (In addition, the distribution is distorted from Rayleigh due
to the residual frequency components). However, recall that besides from remov-
ing unwanted spectral components, a side effect of the bandpass filtering applied
was to interpolate the time domain samples. Figure 7.3b shows an estimate of
the probability density function of the bandpass filtered noise block compared to a
theoretical Rayleigh distribution. The Rayleigh distribution used a maximum like-
lihood estimate parameter σ2 estimated from the samples of the bandpass filtered
noise block. Correspondingly, figure 7.3c shows a Quantile-Quantile plot between
the quantiles of the envelope of the bandpass filtered noise block samples and an
identical number of samples drawn from a theoretical Rayleigh distribution given
by the maximum likelihood parameter estimated from the bandpass filtered noise
block. It is clearly seen from the two figures that the magnitude samples are well
described with a Rayleigh distribution. This strengthens the assumption that the

65



(a) Signal Block Welch PSD Estimate (b) Re{r̂yy [k]}

(c) Noise Block Welch PSD Estimate (d) Filtered Noise Block Welch PSD Estimate

Figure 7.2: Figures show the Welch method power spectral density estimates of
the signal block, noise block and the filtered noise block. In addition, one figure
shows the real value of the estimated autocorrelation function of the three blocks
respectively (Recall from the theory and background chapters that the imaginary
component is zero).
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signal under H0 consists of circularly symmetric complex Gaussian noise. Although
the contribution from the sinusoidal content believed to be residual artifacts from
the downconversion needs to be disregarded. This section described a captured

(a) Histogram, Unfiltered Noise Block (b) PDF Estimtate, Filtered Noise Block

(c) Quantile-Quantile plot, Filtered Noise Block

Figure 7.3: Figures show histogram and probability density function estimates and
Quantile-Quantile plot for the envelope of the captured noise block samples. The
theoretical Rayleigh distribution seen in the right figure has parameter σ2 = σ̂2

n/2,
where σ̂2

n is the estimated variance of the noise block.

sequence of raw UMTS data. It further presented an investigation of the signal to
check whether the assumption of the signal under H0 as being circularly symmet-
ric complex white Gaussian noise holds. It was concluded that this assumption in
its originality does not hold due to artifacts most likely to stem from the receiver.
However, when removing sinusoidal components, believed to be residual carrier fre-
quency artifacts, the assumption of the signal being circularly symmetric complex
Gaussian noise appears to be justified (Note that white has been omitted). The
following section will present detection results.

67



7.2 Detection Results

The previous section described the captured raw data UMTS signal, and the prepro-
cessing performed before applying the spectrum sensing. This section will present
the detection results for the two proposed Kullback-Leibler divergence based algo-
rithms and the two reference detectors. All detectors have, whenever applicable,
been applied to all three signal blocks. The first block contains the UMTS signal
frame plus noise and receiver (assumed) artifacts, the second contains noise plus
receiver (assumed) artifacts and the third is the noise frame after bandpass filtering
(and implicit interpolation).

Results from the detection are summarized in table 7.2 while the corresponding
computed test statistics and detection thresholds can found in table 7.1. The

Signal Block Noise Bl. η Filtered Noise B. η Filt.
ED 6.43 · 104 3.32 · 104 3.43 · 104 3.20 · 104 3.31 · 104

KL HIST 0.2744 0.0288 0.0055 0.0031 0.0055
KL CDF NA NA 0.0264 0.0237 0.0264

IM(1) 0.1870 0.1072 0.0116 0.0946 0.0116

Table 7.1: Table gives test statistics for the three detection algorithms applied to
the signal block, noise block and filtered noise block respectively. The appropriate
detection thresholds η are also given.

Signal Block Noise Block Filtered Noise Block
ED Correct Decision Correct Decision Correct Decision

KL HIST Correct Decision Wrong Decision Correct Decision
KL CDF NA NA Correct Decision

IM(1) Correct Decision Wrong Decision Wrong Decision

Table 7.2: Table states whether the binary detection decision is correct or wrong
based on the signal frame and the computed test statistic (Corresponding test
statistics and detection thresholds are given in table 7.1).

tables show that the energy detector chooses correctly for all three blocks, the KL
histogram algorithm chooses correctly for the signal block and the filtered noise
block while the IM autocorrelation detector only chooses correctly for the signal
block. The KL CDF algorithm is in a special position as it due to its structure
requires a signal with a continuous amplitude spectrum. It is thus only applicable
for the filtered signal block, where it makes a correct detection decision.
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7.3 Discussion of Detection Results for the Cap-
tured UMTS Signal

Detection results for the captured raw UMTS signal were presented in the previous
chapter. This section will address and discuss these findings.

As expected, the energy detector decides correctly for all signal blocks. The en-
ergy detector does not make any assumptions on the underlying signal distributions
or correlation properties, and hence is bound to be correct in this case where its
detection threshold is directly calibrated from the noise blocks. The other reference
detector on the other hand, the IM autocorrelation based detector, fails automati-
cally due to the inherent correlation of the signals. In figure 7.2b and figure 7.2c it
is clearly seen that the signal is correlated, and not white. Hence the IM detector
is not directly applicable. However, this shows that higher order statistics, a topic
previously disregarded in favor of KL divergence to limit the scope of this thesis,
could be more applicable to real world system. Real world systems depend on
realizable filters, which are bound to introduce correlation. Recall that cumulants
of Gaussian signals of order higher than two are always zero, regardless of whether
the second order cumulant is zero not (I.e. if the Gaussian signal is correlated or
white).

The Kullback-Leibler divergence based algorithms also perform as expected.
KL HIST decides correctly for the signal block and the filtered noise block, while
it makes the wrong decision for the unfiltered noise block. This is expected as its
underlying assumption of Gaussian noise does not hold for the unfiltered case due
to the residual sinusoidal content. However, this underlines an important point
for the KL algorithms. These algorithms can be tailored to have any distribution
as the underlying H0 default distribution. Hence if it was known that a certain
receiver had residual modulation artifacts, the detector could have been calibrated
to this. It should also be noted how efficient the KL HIST algorithm is, as just
a little spectral contribution believed to be an artifact from the downconversion
triggers a detection.

A more grave problem is however uncovered for the KL CDF algorithm, and
it clearly shows the dangers of disregarding the actual practical applications when
designing engineering solutions. A practical communication system has an Analog
to Digital Converter (ADC) with a limited resolution at the receiver, which will
quantize the received signal. Hence the CDF algorithm becomes directly inapplica-
ble since it requires a signal with a continuous amplitude distribution (The 64 bit
floating point default format of MatLab® is here for all practical purposes consid-
ered as being continuous). Of course an interpolation can be performed digitally
if the processor in the receiver supports it, but this is not a viable solution due to
the increased complexity.

The above results clearly show that some of the fundamental assumptions made
in the initial theoretical analysis do not hold for this particular receiver. The
receiver noise is not white, a fact that probably stems from anti aliasing or other
low pass filters in the receivers having a slow roll-off. It is also experienced that
the received signal appears to have artifacts from the hardware in terms of DC
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content and carrier residue. Hence these mentioned receiver characteristics cause
the received signal under H0 to deviate from the assumed pure circularly symmetric
white complex Gaussian noise. This causes problems for all the discussed detectors,
except the energy detector, since these detectors rely heavily on the aforementioned
assumption. However, it was also stressed that the KL divergence based algorithms
can be tailored to any underlying distribution if it is known a priori. It was also
seen that the KL HIST estimator is efficient as just a little spurious additional
spectral content in the noise block was enough to trigger a detection.
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Chapter 8

Summarizing Discussion

The previous two chapters presented detection results for synthetic signals and
captured frames of an authentic UMTS signal. Both chapters ended with thorough
individual discussions of the respective results. This chapter will present a summa-
rizing discussion based on the two previous chapters aimed at illustrating whether
the two proposed Kullback-Leibler divergence based detectors solved the problem
at hand. Recall that the purpose of the research was to investigate spectrum sens-
ing at low SNRs with the intention of proposing new solutions to overcome existing
problems.

8.1 Potential of Kullback-Leibler estimation in Spec-
trum Sensing

When initiating this cognitive radio spectrum sensing research, it was with the
purpose of devising a detection strategy that could improve performance over ex-
isting schemes in the low signal to noise range. An analysis was done, indicating
that a major problem for conventional sample average based estimates, used in
both the energy detector and the IM autocorrelation detector, was an estimation
variance depending on signal to noise ratio. This dependence made detection at
low signal to noise ratios infeasible. To maintain a fixed estimation variance, the
estimation block length had to be increased at a higher rate than the decrease in
SNR (Quadratic versus linear). It was thus concluded that if possible, a new de-
tection scheme should be based on estimators that were independent of signal and
noise variance. Such estimators were devised for estimating the Kullback-Leibler
divergence between an empirical distribution and a theoretical distribution. These
estimators have very good behavior in terms of estimation variance, and do not
depend on signal- or noise variance. Hence these estimators function equally well
for arbitrary signal to noise ratios. This has been proven for the CDF based estima-
tor, which has an estimation variance that only depends on the number of samples.
The theoretical analysis for the histogram based estimator is unfortunately not
complete. However, it has been motivated through simulations that the estima-
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tion variance of the histogram based algorithm depends on the number of samples,
number of bins used in the histogram and the choice of pre-loading constant.

A problem that has become the fundamental issue as to whether Kullback-
Leibler divergence can be used efficiently in spectrum sensing is the nature of the
conditional distributions under the detection hypotheses H0 and H1. All results
obtained in this thesis point towards the fact that communication signals have dis-
tributions that are very similar to the underlying Gaussian noise. A worst case
example is an OFDM signal, which is well approximated as having a Gaussian dis-
tribution as long as the number of subcarriers is large [6, 60]. Since both signal and
noise have zero mean, the only difference between the two conditional distributions
is variance. It is obvious that simply doing a maximum likelihood estimate of the
variance (I.e. applying the energy detector) should be sufficient.

Consider the following example to get an impression of the challenges with
applying Kullback-Leibler divergence for spectrum sensing in low signal to noise
ratios. For an OFDM signal in AWGN, the Kullback-Leibler divergence between
the signal envelope and the theoretical noise envelope is derived in (5.19). Eval-
uating (5.19) at an SNR of −22 dB renders a divergence of ≈ 1.98 · 10−5. This
is a small value for these estimators, and the only reason good performance is ob-
tained at reasonably low signal to noise ratios (Down to about −5 dB for the CDF
algorithm and −10 dB for the HIST algorithm) is because of the estimation vari-
ance of these estimators is low (O(1/N) for the KL CDF estimator and O(1/N2)
for the KL HIST estimator). It is thus obvious that Kullback-Leibler divergence
in spectrum sensing is significantly challenged by the similarity of the conditional
distributions under H0 and H1.

In addition to the similar nature of the conditional distributions under H0

and H1, another problem with the KL based detectors is that they are sensitive
to knowledge about the underlying theoretical distribution. Section 6.2.4 demon-
strated this sensitivity through applying noise uncertainty. It was shown mathe-
matically how a breakdown occurred at a sufficiently low SNR when uncertainty
was introduced. This is unfortunate, and severely limits the applicability of the
detectors for spectrum sensing. In a real world application, it is very hard to have
full knowledge of the conditional distribution under H0. The effect of uncertainty
in the theoretical distribution was further supported when analyzing the captured
UMTS signal. The captured signal showed several artifacts inconsistent with the
assumption of the distribution under H0 as being circularly symmetric complex
Gaussian. Hence the Kullback-Leibler divergence algorithms do not function as
intended as they estimate the wrong divergence. Even if there is no signal present,
the detector will estimate a divergence since it has erroneous information on the
underlying theoretical distribution under H0.

However, it is very attractive that the proposed Kullback-Leibler divergence es-
timators have estimation variances that do not depend on signal- or noise variance.
They are not disadvantaged at low signal to noise ratios, and in addition the esti-
mation variance is low (O(1/N2) for KL HIST). These properties should yield the
estimators applicable for other detection applications than cognitive radio, where
the underlying conditional distributions are more distinct. The sensitivity of the
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detectors was further illustrated in chapter 7, when detection was triggered for the
KL HIST algorithm due to spurious additional spectral content in the noise block.
To increase potential performance of the Kullback-Leibler divergence based detec-
tors, one needs to apply the estimators to conditional distributions with a larger
inherent difference.
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Chapter 9

Conclusion

This thesis set forth exploring undiscovered ground in spectrum sensing for cog-
nitive radio. Specifically, the aim of the research has been to investigate whether
higher order statistics or information theoretic distance measures could be used
to improve spectrum detection performance in the low signal to noise region.
Through a thorough research effort, two novel spectrum sensing algorithms based
on Kullback-Leibler divergence estimation were proposed and analyzed.

Based on the previous chapters, a number of conclusions can be made. Based
on the theoretical analysis, it was shown how detectors relying on conventional
sample average based estimation suffer when the signal to noise ratio decreases.
In order to maintain a fixed estimation variance, a linear decrease in signal to
noise ratio requires a quadratic increase in the number of samples used for the
estimation. Hence, accurate estimation becomes infeasible at low signal to noise
ratios. Note that the proof is only done for signals with a circularly symmetric
Gaussian distribution.

It can be concluded that Kullback-Leibler divergence based detection is hard
due to the similarity of signal and noise distributions. However, the KL HIST
algorithm is to some extent promising. It has a performance which is lower than the
energy detector, and a complexity which is higher, but it suffers less under moderate
noise uncertainty. This assumes that it is possible to keep the noise uncertainty at a
moderate level. The work on the KL HIST algorithm is unfortunately not complete.
A full theoretical analysis is needed in order to make an absolute conclusion on the
applicability for spectrum sensing.

The KL CDF algorithm on the other hand can be concluded not to perform
satisfactory for the spectrum sensing problem. A main reason is that it requires
the received signal to have a continuous amplitude distribution, a feature which is
difficult in an actual application due to quantization in the AD converter. Further,
the KL CDF algorithm yields the lowest detection performance and the highest
computational complexity of all the discussed detectors.

Experiments with real data revealed that the the very common assumption in
academia when doing spectrum sensing research, that the signal under H0 can be
modeled as circularly symmetric white Gaussian noise, can be dangerous. The
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actual raw data analyzed here showed to some extent considerable deviation from
this assumption. This implies that care should be taken when making assumptions
on the noise distribution.

Although, it was shown in this thesis that Kullback-Leibler divergence did not
appear as a very promising spectrum sensing approach, due to the inherent similar-
ity of the distributions of noise and communication signals, it is important to stress
the features of the developed estimators. The two estimators that were proposed
in this thesis will have very good detection properties for detection problems were
the conditional distributions of the hypotheses are less similar.
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Chapter 10

Future Work and potential

This thesis has explored a number of novel aspects of spectrum sensing for cogni-
tive radio. A number of interesting results have been revealed. However, several
areas are left only partially explored. This leaves numerous opportunities for fur-
ther research. In the following section, some of these opportunities will be briefly
discussed.

10.1 Complete the Theoretical Analysis of the KL
HIST Algorithm

The KL HIST algorithm introduced in this thesis showed partially promising be-
havior. However, the theoretical analysis of the algorithm was unfortunately not
completed. Very interesting results were previously discussed regarding the proba-
ble Gamma distribution under H0. It is known that a Gamma distribution occurs
when summing k independent exponentially distributed random variables, if k is
an integer. In this case, k was evaluated to approximately 8.51 when the preloading
constant is 0.01 and the number of bins in the histogram is 18. 18 random variables
are added together to generate the resulting, possibly Gamma distributed, random
variable representing the estimate of the Kullback-Leibler divergence. Hence, the
distribution is not generated by summing k independent exponentially distributed
random variables (since k ' 8.51 in this case). However, one idea that could have
been explored further is an idea presented in [41]. It is argued how a sum of n
correlated random variables can be represented as the sum of m independent ran-
dom variables, where m < n. This idea and others should be explored further
and explained. With a solid explanation for the Gamma assumption, it is believed
that the rest of the theoretical analysis of the histogram based Kullback-Leibler
divergence estimator will follow.
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10.2 Other Distributions and Multidimensional Es-
timators

Only one-dimensional estimators were considered in this thesis. It was argued
how preliminary trials with multidimensional estimators involved extensive search
operations, causing significant computational complexity. It was further argued
that if the assumption of circular symmetry holds for the communication signals,
the real and imaginary components are independent, and hence multidimensional
estimators should yield little or no improvement compared to one dimensional
estimators. However, this choice followed from simple reasoning, and no controlled
experiments were performed. It would thus be interesting to extend the research
presented in this thesis to multidimensional Kullback-Leibler estimators.

10.3 Other Areas to Apply the Kullback-Leibler
Divergence Estimators

Novel estimators for estimating Kullback-Leibler divergence between one empiri-
cal distribution and one theoretical distribution were derived during this research.
These estimators have very good specifications, comprising especially the low es-
timation variance which only depends on parameters such as number of samples,
which is known a priori. These estimators unfortunately turned out to not be as
efficient for the cognitive radio problem since there was not sufficient discrepancy
between the conditional probability distributions of the received signal under the
two hypotheses H0 and H1. It becomes apparent how it would be interesting to
search for other areas than cognitive radio comprising detection problems with
larger inherent discrepancy between the conditional distributions.

10.4 Distributed Interference Metric
Previous chapters have discussed how the proposed Kullback-Leibler divergence
based detectors compute the KL divergence between the distribution of the received
signal’s envelope and a reference distribution, typically chosen to be a Rayleigh
distribution. Especially in the chapter addressing the captured UMTS signal, it
becomes apparent that any additional interference present in the receiver will be
expressed through increased divergence. This can be exploited in itself. If one
assumes the distribution of the signal at the receiver can be calibrated when there
is no input at the receiver antenna. Then the KL divergence will be a metric of
the amount of interference at the receiver. This is itself an interesting property
that can be exploited in a distributed network. Instead of receivers making binary
detection decisions, the computed KL divergences can be transmitted to a fusion
center. If the fusion center knows the position of the receiver nodes, it will have a
map illustrating interference present at receivers. From this information, it might
be able to infer something about the position and nature of the interferers. The
information can also be used for resource allocation.
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10.5 More Trials on Real Signals
Chapter 7 became pivotal in making the final conclusions in this thesis. When ap-
plying the spectrum sensing algorithms on an authentic captured signal, a number
of weaknesses were revealed. The most severe weakness turned out to be assum-
ing that the signal under H0 is circularly symmetric complex white Gaussian noise.
However, the captured data only contained one sequence from one specific receiver.
It is obvious that it would be highly interesting to perform more thorough trials on
larger sets of data, comprising different signals captured with different hardware.

Real time operation should also be explored.

10.6 Investigating Fundamental Limits
The results obtained during this research further strengthen the assumption that
there might be fundamental physical limits to spectrum sensing in low signal to
noise ratios. This assumption is further strengthened by results in papers [22, 61].
These papers address a technique referred to as stochastic resonance. Stochastic
resonance has been known for decades in physics and has, especially over the past
decade, received significant attention in various fields of engineering [16]. The
reason for this attention is that stochastic resonance presents a theory describing
how, counter intuitively, adding a certain amount of noise to a system can actually
improve the signal to noise ratio. Such a technique might prove itself useful in order
to overcome what seems to be physical limitations and boost performance in low
signal to noise ratios. Exploring stochastic resonance specifically, or fundamental
limits in spectrum sensing in general, would be highly interesting topics for future
research.
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Appendix A

MatLab® Code

A.1 KL CDF Algorithm

function lambda = SD_KL_cdf(x_p,SDparam)

%Function estimates the Kullback Leibler divergence between the empirical
%distribution of the samples in x_p and the theoretical rayleigh
%distribution defined by the parameter nVar. (Where nVar is the variance of
%the complex Gaussian noise that has a rayleigh magnitude. I.e. The
%rayleigh sigma^2 parameter is nVar/2)

nVar = SDparam{4}; %Make sure there are no index conflicts in the current
%sendora implementation
x_p = sort(abs(x_p),'ascend'); %Sorting samples, to generate empirical cdf
nInit = length(x_p);

%Quick fix to remedy the problem of epsilon=0 which occurs when two
%identical entries exist in x_p
delList = [];
for i=2:length(x_p)

if x_p(i)==x_p(i−1)
delList(end+1)= i;

end
end

x_p(delList) = [];

n = length(x_p);
if length(delList)>round(0.1*nInit)

msg1 = 'More than 10% of the samples of the original input signal';
msg2 = ' have been discarded, algorithm might not be applicable to';
msg3 = ' the current problem. Quantization of the input signal is';
msg4 = ' a likely cause.';
error(strcat(msg1,msg2,msg3,msg4));

end
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delQxi_ray = exp(−(x_p(1:end−2).^2)/(nVar))−exp(−(x_p(2:end−1).^2)/(nVar));

lambda = −1/n*sum(log(n*delQxi_ray))−0.577215664901533;

A.2 KL HIST Algorithm

function KLest = SD_KL_hist(s1,SDparam)

%Function estimates the Kullback Leibler divergence between the empirical
%distribution of the samples in s1 and the theoretical Rayleigh
%distribution defined by the parameter nVar. (Where SDparam{4} is the
%variance of the circularly symmetric complex Gaussian noise that has a
%Rayleigh magnitude. I.e. The Rayleigh parameter is SDparam{4}/2)

nVar = SDparam{4}/2; %nVar is variance parameter of theoretical Rayleigh
%distribution
Nbins = SDparam{6}; %Number of bins to use in histogram.

s1 = abs(s1); %Compute envelope of signal

Lmin = min(s1);
Lmax = max(s1);
x = linspace(Lmin,Lmax,Nbins); %Centers of histogram bins that will be used

%Get histogram:
hS1 = hist(s1,x);

%Get the integral of the theoretical distribution over each bin given by x:
pS2 = getTheoreticalRayleighHist(x,nVar,Nbins);

p1Est = (hS1+0.01)/sum(hS1+0.01); %Compute estimate of pmf, using 0.01 as
%preloading constant

KLest = sum(p1Est.*log(p1Est./pS2)); %Compute KL divergence

function pEst = getTheoreticalRayleighHist(x,Var,Nbins)

%x gives center of histogram bins. Function returns theoretical weights for
%a quantized version of a rayleigh dist at the points indicated in x. I.e.
%the integral of the Rayleigh probability density function over the
%histogram bins.

%Rayleigh cdf: 1−exp(−x^2/(2*Var))

pEst = zeros(1,length(x));
∆ = x(2)−x(1);
for m = 1:Nbins

if m==1
pEst(m) = 1−exp( −(x(m)+∆/2)^2 /(2*Var) );

elseif m==Nbins
pEst(m) = exp( −(x(m)−∆/2)^2 /(2*Var) );

else
pEst(m) = exp( −(x(m)−∆/2)^2 /(2*Var) ) − ...
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exp( −(x(m)+∆/2)^2 /(2*Var) );
end

end
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Appendix B

Proofs

B.1 CDF Based Kullback-Leibler Divergence Es-
timator

Starting from the definition of the KL divergence for continuous distributions given
in (2.17), repeated here for convenience

D(f ||g) = E
[
ln

f(y)
g(y)

]
.

Assume that the number of input samples N is large, from the law of large numbers
(2.1) and (2.2)

D(f ||g) = lim
N→∞

1
N

N∑
i=1

ln
f(yi)
g(yi)

(B.1)

Without loss of generality, also assume the the received samples yi are sorted in
ascending order.

Recall from probability theory that the cumulative density function (CDF) of
a random variable is defined as

F (y) =
∫ y

−∞
f(t)dt,

where f denotes the probability density function and F denotes the cumulative
density function. Recall from the fundamental theorem of calculus that if F :
R → R is defined on a closed interval on R and f is continuous on this interval,
F

′
(y) = f(y) [44]. Further recall from calculus that if a function F : R → R is

differentiable at y and the limit exists [44]

F
′
(y) = lim

∆y→0

F (y + ∆y)− F (y)
∆y

.
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By recalling that the input samples yi are sorted in ascending order, applying the
above results to (B.1) yields

D(f ||g) = lim
N→∞

1
N

N∑
i=1

ln
f(yi)
g(yi)

= lim
N→∞

1
N

N∑
i=1

ln
F

′
(yi)

G′(yi)

= lim
N→∞

1
N

N∑
i=1

ln
(F (yi)− F (yi−1)) /∆yi

(G(yi)−G(yi−1)) /∆yi

= lim
N→∞

1
N

N∑
i=1

ln
∆F (yi)
∆G(yi)

= lim
N→∞

1
N

N∑
i=1

(
ln

∆F (yi)
∆G(yi)

+ ln
N

N

)

= lim
N→∞

1
N

N∑
i=1

(
ln (N∆F (yi))− ln (N∆G(yi))

)

(B.2)

The samples yi come from the distribution f by definition. Thus F (yi) will have
a uniform distribution [43, 36] (This is intuitive as the CDF is a mapping CDF :
S → [0, 1], where S is the support set of f .) Under this condition it can be shown
that

lim
N→∞

1
N

N∑
i=1

ln (N∆F (yi)) = −γ (B.3)

where γ is the Euler-Mascheroni constant. This stems from the fact that ∆F (yi)
represents the difference between Poisson distributed stopping times, so N∆F (yi)
has a unit exponential distribution [36]. Hence the mean value of lnN∆F (yi)is

E [lnN∆F (yi)] = lim
N→∞

1
N

N∑
i=1

lnN∆F (yi)

=
∫ ∞

0

exp (−y) ln ydy

≡ −γ

(B.4)

Thus by applying (B.3), (B.2) reduces to

D(f ||g) = −γ − lim
N→∞

1
N

N∑
i=1

ln (N∆G(yi)) (B.5)

If f = g, G(yi) will also be uniform and limN→∞D(f ||g) = −γ + γ = 0. D(f ||g)
will also be asymptotically normal and have a variance

σ2
D =

1
N

(
π2

6
− 1
)

(B.6)
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The results on variance and asymptotic normality are given by applying theorem
5.1 in [43]. This yields, for large N the approximate estimator given in (5.9).

B.2 Fourier Transform of a Complex Exponential

F [exp (j2πfct)] = F [cos (2πfct) + j sin (2πfct)]

=
1
2
(
δ[f + fc] + δ[f − fc] + j2(δ[f + fc]− δ[f − fc])

)
= δ[f − fc]

(B.7)
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Appendix C

Derivation of Error Variance
for Autocorrelation
Estimation of AR(1) process

This section presents a derivation of the error variance in estimating the autocor-
relation of a unit variance Autoregressive (AR) process of order one, in AWGN.
The first part derives the error variance for the no noise case, and the second part
extends the derivation to also include AWGN. Recall from [19], that the autocor-
relation of a unit variance AR(1) process y[n] with parameter % is ryy[k] = %k.

This subsection presents the same analysis as above only for a rectangular
window estimator

For a unit variance AR(1) process with parameter %, the estimation error in
estimating the autocorrelation function is

E
[
ε2r[k]

]
=

1
N2

N−1∑
l=0

N−1∑
m=0

(
r2
yy[m− l] + ryy[k + m− l]ryy[k − (m− l)]

)
=

1
N2

N−1∑
l=0

N−1∑
m=0

(
%2|m−l| + %|k+m−l|+|k−(m−l)|

)
=

1
N2

N−1∑
l=0

(
N−1∑
m=l

%2(m−l) +
l−1∑
m=0

%2(l−m)

)

+
1

N2

N−1∑
l=0

(
%−2l

N−1∑
m=l+k

%2m + %2k
l+k−1∑

m=l−k+1

+%2l
l−k∑
m=0

%−2m

)
(C.1)

Solving the geometric series yields

E
[
[ε2(n)]

]
=

1
N

(
%2 − %−2 + 4N−1

(
1− %2N

)
+ 2%2k

(
1− %−2

)
(1− %2) (1− %−2)

+ %2k(2k − 1)

)
(C.2)
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For an AR(1) process in AWGN, the estimation error can be derived as

E
[
ε2r[k]

]
=

=
1

N2

N−1∑
l=0

N−1∑
m=0

(
r2
yy[m− l] + ryy[k + m− l]ryy[k − (m− l)]

)
=

1
N2

N−1∑
l=0

N−1∑
m=0

(
%|m−l| + σ2

nδ[m− l]
)2

+
1

N2

N−1∑
l=0

N−1∑
m=0

(
%|k+m−l| + σ2

nδ[k + m− l]
)(

%|k−(m−l)| + σ2
nδ[k − (m− l)]

)
=

1
N2

N−1∑
l=0

N−1∑
m=0

(
%2|m−l| + %|k+m−l|+|k−(m−l)|

)
+

σ2
n

L2
2

L2−1∑
l=0

N−1∑
m=0

(
2%|m−l|δ[m− l] + σ2

nδ2[m− l]
)

+
σ2

n

N2

N−1∑
l=0

N−1∑
m=0

(
%|k+m−l|δ[k − (m− l)]

+ %|k−(m−l)|δ[k + m− l] + σ2
nδ[k + m− l]δ[k − (m− l)]

)
= Ψ +

σ2
n

(
2 + σ2

n(1 + δ[k])
)

N

+
σ2

n

N2

N−1∑
l=0

N−1∑
m=0

(
%|k+m−l|δ[k − (m− l)] + %|k−(m−l)|δ[k + m− l]

)
= Ψ +

σ2
n

N

(
2
(
2 + %2k

)
+ σ2

n(1 + δ[k])
)

(C.3)

where Ψ is the error variance for estimating the autocorrelation function of the
unit variance AR(1) process without noise, found in (C.2). Substituting in for Ψ
yields the final expression

E
[
ε2r[k]

]
=

1
N

(
%2 − %−2 + 4N−1

(
1− %2N

)
+ 2%2k

(
1− %−2

)
(1− %2) (1− %−2)

+ %2k(2k − 1)

)

+
σ2

n

N

(
2
(
2 + %2k

)
+ σ2

n(1 + δ[k])
)

=
1
N

(
%2 − %−2 + 4N−1

(
1− %2N

)
+ 2%2k

(
1− %−2

)
(1− %2) (1− %−2)

)
+

1
N

(
%2k
(
2σ2

n + 2k − 1
)

+ 4σ2
n + σ4

n(1 + δ[k])
)

(C.4)

The above yields the final expression for the estimation error when estimating
the autocorrelation function of a unit variance AR(1) process with parameter % in
AWGN with noise variance σ2

n with a rectangular window utilizing N samples.
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