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Summary 

In this thesis hardware-software intercommunication in a reconfigurable system has been investigated 

based on a framework for run time reconfiguration. The goal has been to develop a fast and flexible link 

between applications running on an embedded processor and reconfigurable accelerator hardware in 

form of a Xilinx Virtex device.   

As a start the link was broken down into hardware and software components based on constraints from 

earlier work and a general literature search. A register architecture for reconfigurable modules, a 

reconfigurable interface and a backend bridge linking reconfigurable hardware with the system bus 

were identified as the main hardware components whereas device drivers and a hardware operating 

system were identified as software components. These components were developed in a bottom-up 

approach, then deployed, tested and evaluated. 

Synthesis and simulation results from this thesis suggest that a hybrid register architecture, a mix of shift 

based and addressable register architecture might be a good solution for a reconfigurable module. Such 

an architecture enables a reconfigurable interface with full duplex capability with an initially small area 

overhead compared to a full scale RAM implementation. Although the hybrid architecture might not be 

very suitable for all types of reconfigurable modules it can be a nice compromise when attempting to 

achieve a uniform reconfigurable interface. 

Backend bridge solutions were developed assuming the above hybrid reconfigurable interface. Three 

main types were researched: a software register backend, a data cache backend and an instruction and 

data cache backend. Performance evaluation shows that the instruction and data cache outperforms the 

other two with an average acceleration ratio of roughly 5-10. Surprisingly the data cache backend 

performs worst of all due to latency ratios and design choices. Aside from the BRAM component 

required for the cache backends, resource consumption was shown to be only marginally larger than a 

traditional software register solution. Caching using a controller in the backend-bridge can thus provide 

good speedup for little cost as far as BRAM resources are not scarce.  

 A software-to-hardware interface has been created has been created through Linux character device 

driver and a hardware operating system daemon.  While the device drivers provide a middleware layer 

for hardware access the HWOS separates applications from system management through a message 

queue interface. Performance testing shows a large increase in delay when involving the Linux device 

drivers and the HWOS as compared to calls directly from the kernel. Although this is natural, the 

software components are very important when providing a high performance platform.  

As additional work specialized cell handling for reconfigurable modules has been addressed in the 

context of a MPEG-4 decoder. Some light has also been shed on design of reconfigurable modules in 

Xilinx ISE which can radically improve development time and decrease complexity compared to a Xilinx 

Platform Studio flow. In the process of demonstrating run time reconfigurations it was discovered that a 

clock signal will resist being piped through bus macros. Also broken functionality has been shown when 

applying run time reconfiguration to synchronous designs using the framework for self reconfiguration.  
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1: Introduction 

1.1: Reconfigurable hardware  

The hardware and software domains are two different domains in many ways. One of the most 

important distinctions is performance versus flexibility. Traditionally ASICs have been used in high 

performance applications where processors cannot provide the required processing power. Graphic 

accelerators are examples of products from the mainstream ASIC market where high performance 

hardware is utilized to cope with high processing requirements. On the other hand a processor is very 

flexible compared to an ASIC solution as its behavior is to execute one or more programs that can be 

modified any number of times. The generality of most processors’ instruction set will also allow 

programs to perform virtually any kind of processing though the performance suffers from the very 

same generality.     

 Another important field that comes into play when comparing the hardware and software domain is 

economics. As processors are general purpose they are relatively cheap since production cost can be 

amortized over a large product volume. ASICs are application specific which generally leads to higher 

price since an average ASIC product volume is less than for a general purpose processor. Another 

difficulty is the reduction of transistor sizes which causes an increase in complexity. The increase in 

complexity manifests itself as extra costs in the hardware production process. This reaction is commonly 

presented as the productivity gap illustrated in figure 1.1.1  

Figure 1.1.1: The productivity gap 

The productivity gap states that the available chip transistor complexity grows faster than the ability to 

utilize it. To compensate for the increasing complexity a longer design process is required which adds to 

the total costs. Because technology trends it thus becomes more and more important to be able to 
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amortize a product over a large volume in order to achieve a reasonable prices while running a 

profitable business. 

Many approaches try to address and solve the previously mentioned problems; reconfigurable hardware 

is one of them. Reconfigurable hardware is as the word suggests hardware that can be modified as 

opposed to hard silicon implementations. In these terms reconfigurable hardware is thus general 

purpose hardware and is mostly associated with FPGAs. While reconfigurable hardware provides 

flexibility through its reconfiguration property, a major drawback is that it will be outperformed by hard 

silicon. On the other hand reconfigurable hardware can provide high performance compared to a 

processor.  

 
Figure 1.1.2: Suzaku-V, deploying reconfigurable hardware 

 

Traditionally FPGAs have been used for prototyping of hard silicon designs but has become more and 

more accepted as a product technology covering the increasing gap between ASICs and processors [1]. 

One field of reconfigurable hardware that is in particular focus in this report is run time reconfiguration.     

1.2: Run time reconfiguration  

Run time reconfiguration in this context is the concept of reconfiguring hardware while active 

components are executing on it. Traditionally programming and executing hardware on a FPGA have 

been considered as two separate processes, but as suggested in [1] and [2] run time reconfiguration can 

increase both flexibility and performance of systems implemented on FPGA. Reconfiguration time is a 

critical factor when applying run time reconfiguration as it will lock parts of the target hardware and 

possibly occupy other system resources. The base line is that the reconfiguration process will incur 

overhead.    

For many systems it is not possible to perform a full run time reconfiguration because the 

reconfiguration process or the system itself might requires components implemented in the 

reconfigurable hardware.  By performing a partial reconfiguration, such critical components can be left 

untouched while only safe regions are modified.  An immediate advantage with partial reconfiguration is 

that it is efficient as reconfiguration can be applied only to the regions requiring it. 
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1.3: AHEAD 

This thesis is a contribution to the AHEAD project at NTNU Norway. AHEAD specifies the use of 

reconfigurable hardware in elements called tags which purpose is to act as co-processing units for 

mobile clients. An illustration is given in figure 1.3.1 

 
Figure 1.3.1: AHEAD system sketch 

The main goal is to create a flexible platform with high performance using reconfigurable hardware. 

Distributing the platform through tags in a mobile device environment can thus provide powerful 

applications in a flexible way.   

1.4: Contributions 

In more specific details this thesis has contributed to software and hardware intercommunication based 

on the work on run time reconfiguration in [3]. Different register architectures for reconfigurable 

modules, reconfigurable hardware entities, have been explored together with firm backend solutions as 

a bridge between the system bus and application hardware. Supporting context switching of 

reconfigurable hardware has been emphasized. As embedded Linux has been an assumption in this 

thesis, Linux device drivers has been developed for providing user space access to hardware. A hardware 

operating system, HWOS, as suggested in [3] has been developed as a top level control mechanism with 

focus on acting as an application interface, separating applications from system management. Different 

solutions and parts have been tested during the design process to evaluate goodness, which together 

form a communication link from hardware to software for intentional use in reconfigurable systems.  

As an additional contribution, specialized cell requirements for reconfigurable modules have been 

addressed through the concept of cell migration. Design of reconfigurable modules in Xilinx ISE has also 

been addressed to improve on the Xilinx Platform Studio flow which suffers from both long build time 

and manual rerouting complexity. Finally, reconfiguration of synchronous modules using the framework 

for self reconfiguration has been applied revealing some challenges ahead.   
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2: Theory 

2.1: Suzaku-V 

All implementation and testing of concepts in this thesis has been done on a platform called Suzaku 

developed by Atmark Techno. More specifically a Suzaku-sz410 platform has been used which is a part 

of the Suzaku-V family. An illustration of the Suzaku-V architecture is shown in figure 2.2.1. 

 

 
Figure 2.2.1: Suzaku-V architecture 

 

The Suzaku-V platform consist a set of firm hardware components along with an embedded Xilinx Virtex 

FPGA which serves as reconfigurable hardware. The firm hardware part consists of a PowerPC processor, 

different I/O modules, memory, bus connections and pins. Flash memory serves as non-volatile memory 

which amongst other things used to store a Linux image and FPGA configuration data. Serial port, JTAG 

and Ethernet controllers constitutes basic user interface for programming and accessing the platform.  

 

As mentioned the Xilinx Virtex FPGA on the FPGA provides reconfigurable hardware. It should be noted 

that the Suzaku-V family offers both a Virtex-II pro and a Virtex-IV FPGA through the models sz310 and 

sz410 respectively.  Figure 2.2.1 assumes a sz310 board but the overall family architecture is very similar 
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In the bottom of figure 2.2.1 the FPGA is shown, containing a set of components. The FPGA contains two 

buses, OPB and PLB, and a set of modules. OPB and PLB are abbreviations for On-Chip Peripheral Bus 

and Processor Local Bus respectively. All system modules are connected to at least one of the two buses, 

and is due to this relation called a peripheral. The OPB and PLB buses in figure 2.2.1 connect the 

PowerPC processor with the firm hardware on the board through controller modules, marked as gray 

shaded entities.  This configuration of the FPGA is required for running Linux on the Suzaku-V and is also 

referred to by Atmark as a basic or minimal configuration.  

 

Building a custom system that takes advantage of the Linux is done by extending the minimal 

configuration. Custom hardware modules can be added to the FPGA configuration and if required 

connected to the PowerPC processor by encapsulating them in peripherals.  

 

2.2: uCLinux atmark-distribution 
 

Atmark has developed a custom Linux distribution for the Suzaku-V platform which is based on uClinux. 

While the Linux kernel manages hardware resources the distribution provides applications that are very 

useful for development and verification.  Amongst other things, busybox provides a Linux command line 

which can be linked with a development computer through serial port. NFS, network file system, allows 

fast and flexible file transfers through network mounted file systems. 

 

Another powerful tool is the GCC framework. As the uCLinux atmark-distribution does not include any 

compilers, cCompilation of programs for the Suzaku’s embedded processor is instead done on a 

development computer (i.e. cross compilation). Although it is possible to do onboard compilation one 

should keep in mind that resources are limited on embedded platforms such as Suzaku.   

 

2.3: Linux kernel  

In Linux hardware is managed by the kernel and user space applications rely on accessing hardware 

through it.  Access of hardware on the Suzaku platform is based on a global address map defined by the 

user in system configuration tools. A PowerPC core is included as default CPU in the Suzaku-V series 

which uses MMU. Hardware access is therefore not straight forward though as the Linux kernel deploys 

a real to linear address map and addressing must therefore done explicitly through the kernel API. 

Source 2.3.1 shows a sufficient but not necessary selection of API functions for this purpose.   

/*Map address space*/ 

void *ioremap(unsigned long offset, unsigned long size); 

/*Unmap address space*/ 

void iounmap(void * addr); 

/*Write data*/ 

int writel(void * addr,int data); 

/*Read data*/ 

int readl(void * addr); 

Source 2.3.1 
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2.4: Development tools 

 

Systems development for the Suzaku platform can be divided into two main parts, hardware 

development and software development. For designing and deploying hardware, Xilinx tools are 

required. Xilinx Design Studio 10.1 is the tool set used in this thesis. 

 

Though Xilinx provide a SDK for software development an equally good option for the Suzaku platform is 

to develop software outside the SDK. Compilation can be done through GCC using cross compile tools 

found at [4]. [5] contains a good description of how to develop a basic system for the Suzaku platform. 

 

Deploying both hardware and software can be done by transferring files from development computer to 

a Suzaku board through hermit.  A less time consuming alternative for deploying software is by utilizing 

the NFS feature as shown in [3] and [6].  

 

When it comes to debugging Minicom links the Suzaku’s Busybox shell to a console on a dev-computer. 

Software debugging using print statements is thus a validation mechanism that can be applied to 

hardware as well through kernel modules. Files can also be created in the Linux file system for testing, 

reconfiguration and other purposes.  

 

2.5: Hardware acceleration 

 

AHEAD’s purpose is to use dynamic reconfiguration for co-processing. One of the subsequent goals is to 

achieve speedup by doing processing in hardware, where a reconfigurable module is the equivalent of 

an accelerator. [7] discuss the process of accelerator design where the first step is speedup evaluation in 

form of equations (1) and (2). 

 ������ �  ��	 
  �� 
 ��� 

 

(1) 

� �  �� ���� � ������� 

 

(2) 

Equation (1) describes the total time taken running a task on an accelerator incorporating transferring 

input and output data. Equation (2) describes the total speedup of running � tasks on the accelerator 

compared to running � tasks on a CPU. This paper focuses on infrastructure for a dynamic 

reconfigurable system so the execution time �� in (1) is not of particular interest as it is related to 

accelerator implementation. Data transfer time will, however, have a significant impact on the speedup. 

The data transfer time may depend on a number of factors like architecture topology, bit-widths, clock 

frequency, buffering and exploitation of parallelism and so on. A system infrastructure will partially 

determine some of the characteristics and thus also have an impact on accelerator performance which 

should be considered during the design process.   

 

In addition to the conventional transmission of input and output data for a processing element, 

transmission of state data is also considered in the proceeding equations. This attempts to describe 

performance for interruptible processing elements. Consider two versions of a hardware task, a 

persistent version which can be resumed after it has been interrupted and a volatile version which has 
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to restart prior to an interrupt.  Factoring out all the common contributions to their run time, equations 

(3) and (4) describe their relative run time. ����������� �  2������ 
  ����� � 

 

(3) 

�!"#���#� � �$�## 

 

(4) 

In order for the persistent versions to complete before the volatile version, equation (5) has to be met.  

 ����� � % �$�## �  2������  

 

(5) 

Assuming that the data transfer bus and the processing core operate on the same clock frequency and 

disregarding any extra time penalty or overhead involved in state data transfer, satisfying (5) with 

respect to ������   involves two important factors: the encoding of the task state and the bit width of the 

bus used to transfer the data to persistent storage. 

 

Consider first a state automata in figure 2.5.1 consisting of N states. 

 

 

 
Figure 2.5.1: Finite state automata 

 

 

Its state can be encoded compact by &'()*�+�, bits. Assuming a compact encoding and with the above 

clock assumptions, equation (5) can be expressed as equation (6). C denotes clock cycles, N denotes the 

number of states and B denotes the bit width of the bus used for data transfer. 

 

-���� � % + � 2 ./'()2�+�0
1 2 

(6) 

 

Using a hot-one encoding will, however, produce equation (7) from equation (5) 
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-���� � % + �  2 .+
12 

(7) 

In any case the persistent version will not always be faster than the volatile version, but the persistent 

version might be statistically superior if (8) is satisfied.  

 3����45�5��	� % �!�������� > 0.5 
 

(8) 

For the above example this is equivalent to (9), assuming a uniform probability for interruption within 

each state. 

 

-���� � % +
2 

 

(9) 

As N becomes large, equation (6) yields a large statistical gain even with a serial link for data transfer, B 

= 1. Equation (7) however depends entirely on the bit width of the data link. A bit width larger than 4 is 

required to make the persistent version statistically faster.  

 

Achieving a speed gain through interrupt support for hardware thus requires taking both expensiveness 

of state encoding and the speed of data transfer into account. From a designer’s point of view, the 

composition of a hardware module will place constraints on the data transfer mechanism in order to 

make a persistent version profitable in terms of speedup. If the composition of a hardware core allows 

it, storing parts of the entire state space might be feasible. Using the latter approach will result in some 

loss of progress as a tradeoff for less complex persistent state management.  The above equations are 

based on a basic example circuit and do not consider extra delays which may be inflicted by other 

system components. In any case all this seems to point out that some sort of analysis should be done in 

order to decide to what extent a hardware module should be made persistent. Even though an analysis 

might be strongly simplified it could suggest the feasibility of a fully persistent, partially persistent or 

completely volatile hardware implementation.   
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3: Previous work, thesis basis and goals 
 

3.1:  A Framework for run time reconfiguration 

 

In [3] Sverre Hamre describes a framework for self reconfiguration that he has developed. The 

framework is a collection of programs written in C for Xilinx Virtex bitstream manipulation. The physical 

hardware manipulation is performed by a program using a Linux device driver that interacts with the 

Virtex ICAP interface. In terms from section 2, the framework is a partial run time reconfiguration 

mechanism. Due to the ICAP dependency the framework is intended for use on Xilinx Virtex devices but 

has only been proved correct for the Virtex-IV architecture. Work in [6] has added some documentation 

on the practical use of the framework and confirmed that it is working correctly on a Virtex-IV. 

 

In order to do develop a dynamically reconfigurable system number many problems must be solved and 

decisions have to be made. Figure 3.1.1 illustrates some of the architectural assumptions the framework 

for dynamic reconfiguration makes. 

 

 
Figure 3.1.1: Framework for self reconfiguration architecture 
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[3] divides the reconfigurable system into three different categories. The static category contains parts 

of the system that will never be reconfigured. Communication infrastructure and essential components 

that cannot be altered without corrupting the system falls into this category.  The system is also 

assumed to contain one or more backend modules which in turn are connected to reconfigurable 

modules. As illustrated these modules provide a communication link between reconfigurable modules 

and the static part of the system.  Backend modules are not to be reconfigured so they are in this sense 

part of the static system. As indicated by figure 3.1.1 reconfigurable modules are connected to a 

backend module through components called bus macros.  

 

In order to achieve functionally correct run time reconfiguration of a module it is essential that all wiring 

in and out of the physical region being altered is identical before and after reconfiguration, but because 

physical mapping and routing of a hardware design to a platform is performed by a CAD tool there is no 

guarantee for this equivalence.. To solve this problem reconfigurable modules are therefore connected 

to the rest of the system through a fixed number of wires with fixed placement also known as bus 

macros. The connection between a reconfigurable module and the rest of the system is also known as a 

reconfigurable interface in reference literature.    
 

3.2: HWOS 

 

In order to manage a dynamically reconfigurable system run time, the concept of a HWOS was formed in 

[3]. Figure 3.2.1 shows the original illustration of the HWOS concept.  

 

 
Figure 3.2.1: HWOS 

 

A more detailed description of the HWOS idea can be found in [3] but the basic principle is to use a 

software application for managing the dynamically reconfigurable system run time.  As shown in figure 

3.2.1 the HWOS acts as the interface for external applications wanting execution time on reconfigurable 

hardware on the platform. In addition it consists of parts for managing run time execution and 

reconfiguration.  
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3.3: Thesis goals 

 

In [6] the framework for dynamic reconfiguration was explored and some of the work Sverre Hamre left 

was pursued.  One of the recommendations for further work in [3] was to have a look at the possibility 

for transferring data between a reconfigurable module and CPU prior to reconfiguration. Implementing 

saving and loading of state data in reconfigurable modules will allow hardware modules to be used like 

processes in multitask-systems which is an interesting concept. This problem is generalized a bit more in 

this paper to comprise the overall communication between CPU and reconfigurable modules. Results 

from [6] support the hypothesis in [3] that loading and storing state data using a CPU program that 

operates on ICAP will be quite slow.  

 

This thesis aims to explore different architectures and solutions to create a fast link between 

reconfigurable modules and a CPU as the dynamically reconfigurable system’s centralized control unit. 

In addition to normal data flow the link should support context switching to enable interruption and 

resumption of reconfigurable modules. As a pure software solution seems to be slow there will be a 

need for developing hardware components for this purpose. Parts of the solution will thus be hardware 

oriented while other parts will be software oriented. As part of software exploration it is natural to link 

development to the HWOS concept.   

 

4: Problem decomposition 
 

Before commencing design, an overview of the system and the components that were to be researched 

and developed was made. Figure 4.1 illustrates the system composition with hardware components in 

the lower parts, the Linux kernel as a middleware layer and a HWOS as a top level interface to the 

platform. 
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Figure 4.1 System decomposition 

 

Reconfigurable modules need an identical interface towards the backend in order to be run time 

interchangeable.  Creating a general and flexible reconfigurable interface was therefore considered an 

important task to provide a good foundation for run time reconfiguration. One dependency which had 

to be determined was choosing the register-architectures that were to be used in the reconfigurable  

modules for data transfers. 

  

Transporting data between a backend and a reconfigurable module requires buffers and controllers, 

which is also the case for the transportation of data between the backend and external memory. With 

these above hardware components there would be a need for working with the Linux kernel for user 

space access to the hardware. For managing the dynamically reconfigurable system run time, the HWOS 

was listed as the top controlling entity.  

 

With respect to the system decomposition in figure 4.1, components for the dynamically reconfigurable 

system were developed and assembled in a in a bottom-up approach. 
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5: Design 

 

5.1 Register architectures 
 

When researching register architectures for the reconfigurable module in the context of dynamic 

reconfiguration, not many references could be found. Disregarding the dynamic reconfiguration topic 

and looking into normal register architectures, it was decided to develop generic models of a fully 

addressable RAM architecture, a shift based architecture and a hybrid of these two. Mapping these 

architectures onto FPGA and analyzing synthesis data combined with simulations could give some 

pointers to strengths and weaknesses.  

 

5.1.1: Register building blocks 

 
To create a basis for different register architectures, different register building blocks were created in 

VHDL. The basic idea was that a high usage of structural description would ease the design process 

through reuse and a clean component hierarchy. Three different main types of register blocks for were 

developed which are now shortly presented. 

 

Figure 5.1.1.1 shows the composition of the basic shift block. It has a serial input and output, shift_i and 

shift_o, for data transfer with the back end along with parallel input and output, par_i and par_o, for 

internal data operations. Two control signals write and shift manage select between the write and shift 

data operations respectively. 

 

 
Figure 5.1.1.1: Serial shift block 

 

The behavior of the parallel shift component in figure 5.1.1.2 is identical to the serial shift block apart 

from extended bit-width on the shift input and output channels. Chaining of smaller regular registers in 

addition to some control logic produces the multiple-bit shift register block. The smaller registers are of 

uniform size where the size of each register represents the shift width and the sum of their bit widths 

represents the total bit width of the register macro they constitute. 
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Figure 5.1.1.2: Parallel shift block 

 

The basic addressable block is a normal register realized as a set of DFFs with a write control signal for 

managing writing. In addition there is multiplex logic to be able to select from two possible sources, 

namely backend data or internal data.  

 

 
Figure 5.1.1.3: Addressable block  



15 

 

Synthesis in Xilinx ISE confirmed that the different building blocks required the same amount of 

resources in terms of LUTS and slices. The number of I/O pins, summarized analytically in table 10.1.1, 

will vary however.  

 

In proper use the register IO pins are linked to signals and is thus an indicator of resource consumption. 

The overall architecture must however be factored in before making a more complete profile. In 

addition to the above blocks, some different variants were developed with different generics, inputs and 

outputs, barrel shift capability and so forth. The VHDL open statement was acknowledged to minimize 

the need for too many variants of the register building blocks.  
 

 5.1.2: Reconfigurable interface  
 

Based on the proposed register architectures and building blocks different interfaces between the back-

end and the reconfigurable module were researched. Instead of using standardized transfer protocols 

like SPI, USB or PCI, proprietary protocols linked more directly to the reconfigurable module’s register 

architecture were researched. The PowerPC PLB bus works as a standardized data transfer mechanism 

all the way to the backend anyway and in this thesis it was emphasized to evaluate general interfaces 

instead of attempting to determine the goodness of existing standards.  

 

Furthermore emphasis was put on creating interfaces of modest size both for simplicity and in order not 

to lock too many FPGA resources.. Handling reconfiguration requirements from [3] is likely to become 

more complex as the reconfigurable interface grows. In this context is should be noted that a single 

instance of Xilinx bus macros obtained as attachments to [3] has a default bit width of 8 bits, so in order 

to fully utilize the capability the number of wires in each interface should be dividable by 8. Bus macros 

in the form of LUT macros are unidirectional though so a full utilization might be hard to achieve.  

 

As the different register architectures are based on different principles, the corresponding interfaces 

became different but shared some common signals. The interfaces that were composed are illustrated 

in figure 5.1.2.1 and are now shortly presented and discussed. 
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Figure 5.1.2.1 Reconfigurable Interfaces 

 

 

Common: 

 

As all signals connecting a reconfigurable module with the rest of the system must be propagated 

through the reconfigurable interface, the clock signal clk is part of the common interface to support 

synchronous reconfigurable modules. Reset allows to put the reconfigurable module in a safe state. 

Reset will in turn control the mode of operation. The idea is that by toggling the value of run the 

reconfigurable module can be started, frozen and resumed, ensuring that the reconfigurable module’s 

internal operations of does not interfere with back-end data transfer. Finally the hw_complete signal 

servers as a notification to the back-end that processing has been completed and a new job can be 

accepted. 

  

Shift: 

 

The serial shift interface extends the common interface with three signals: shift_g,shift_i and shift_o. , 

Shift_g signals a shift along one and only shift chain used in regular shift architecture.  The 

reconfigurable module is responsible for propagating data through the shift chain where shift_i  is the 
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shift input and shift_o is the output. As with the building blocks the parallel shift interface is identical to 

the serial shift interface apart from the bit widths of shift_i and shift_o.  

 

 

Addressable: 

 

The addressable interface allows random access of registers in the reconfigurable module. In order to 

specify a source for a read or write operation the signal addr was added to the interface. Write specifies 

whether the selected is to be read or written. Data_i and data_o serve as data input and output 

respectively.  

 

Hybrid (Addressable shift): 

 

Last, the hybrid interface extends the parallel shift interface and the signal addr is added for selecting 

between different shift chains. It thus combines elements of both the addressable architecture and shift 

architecture.   

 

5.1.3: Generic register architectures 
 

In order to see the technology mapping of the different architectures and how they scale, generic 

models were created in VHDL descriptions and synthesized. None of the architectures were created with 

any local behavioral description, so in order to prevent the synthesis tool from reducing passive 

branches unused signals were looped. .   

 

A small script system was created in order to automate synthesis of a register architectures for different 

generic values.  First a Java program was developed that reads an input VHDL file and alters one or more 

generic fields determined by hard Java code. Since the four different architecture models contain 

different generics, four slightly different versions of the program were created.   

 

Automated synthesis was performed through TCL scripts, one for each architecture model, which 

interacted with Xilinx ISE. All TCL scripts specified the target FPGA as a Xilinx Virtex 4 xc2vp4fx which is 

the FPGA available in the Suzaku-sz410 platform.  Both a BAT script for MS Windows and a BASH script 

for UNIX/Linux were developed as the top control unit for automated synthesis. These scripts iterated 

the execution of the Java program in order to create VHDL files with correct generic parameters and the 

subsequent execution of the TCL script performing synthesis. Execution would provide a set of 

synthesized projects organized in a file structure.  By inspecting the project files for a single ISE project it 

was found that a synthesis results were contained in a file top_module_name.syr. Another Java program 

was created to read the relevant data from the synthesis result files and write them into an M-file as 

arrays.     

 

Automated synthesis was then performed with respect to I/O constraints. Data bit-widths for all 

architectures were set to 8 bit with exception of the serial architecture where the I/O bit-width is 1 by 

definition. Synthesis results can be found in section 10.1. 
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5.1.4: Sequential multiplier 
 

As a case for a simple reconfigurable module, a sequential multiplier was developed. In addition to 

testing register architectures this provided a real exploration of persistent state hardware. In 

accordance with section 2.5 a multiplier might not be a very feasible module for interrupt support. A 

multiplier is nor a representative for the wide variety of different IPs that exists. It was chosen as a 

simple example that might demonstrate some important properties.    

   

First a normal sequential multiplier was implemented as a VHDL description according to the 

architecture described in [8]. After adjustments and verifying that the behavior was correct, this worked 

as a template for implementing the different register architectures.  

 

Interrupt implementation was done by replacing all memory in the original behavioral template, both 

explicit and implied, with different register building blocks. Due to the architecture of the multiplier 

some new modules were created instead of using only the original register blocks. he reason being that 

it was easier and possibly more efficient than bruteforcing a pure structural use of the original building 

blocks. As the implied memory was replaced with structural components it was necessary to use 

manually coded states and counters.  Some of the register architectures do have similarities, which was 

utilized by reuse after implementation the multiplier in some architecture.  

 

After implementing the different register architectures, the simulations were conducted through 

testbenches.  To test the interrupt property, the multiplier was first run from scratch and stopped at an 

arbitrary point of time where DFF contents constituting the multipliers state was extracted.  Table 

5.1.4.1 shows a partial state for the computation of 0781-9:;12*. 

 

Parameter Value 

Cstate SHIFTING(0x2) 

Count 0x9 

Operand_a 0x00ABCDEF 

Operand_b 0xABCDEF12 

Partial_result 0x5BF134F0A2000000 

Table 5.1.4.1: Multiplier state 

 

Another stimuli process was then created in the same testbench writing this state to the multiplier and 

resuming it.  Some minor fixes were needed but eventually it could be verified that the multiplier 

produced the same result when started from a sub-state as from start for all the implementations.   

 

In order to demonstrate a performance enhancing effect on the shift chain structure the signal zerofill 

was added to the addressable shift implementation of the multiplier.  The basic idea was that when the 

multiplier is used for multiple jobs and no reconfiguration is performed, it would be profitable to reset 

the answer while scanning it out and scanning in new operands.  Zerofill will simply incur a small change 

to the scan chain structure to achieve this. Increased performance can be achieved for the other 

architectures as well but the zerofill primitive is very simplistic.  

 

Synthesis was performed for operands of 32 bit only. It was decided not to perform any further 

synthesis exploration as it was considered to require much work for results of potentially little 

importance.  
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5.2: Backend bridge 
 

A quick literature search was performed when exploring possible backend solutions Articles like [7] and 

[9] refer to use of software accessible registers combined with a hardware controller, mentioning 

buffering as a way to achieve performance gain.   

Based on simulations and the results from generic architecture exploration in section 10.1, the hybrid 

solution was considered to be the most promising one and served as the assumed register architecture 

for further development. Based on this decision the very general backend architecture illustrated in 

figure 5.2.1 was composed.   

 
Figure 5.2.1: Backend template 

 

The basic idea was that a controller would be responsible for transferring data between a reconfigurable 

module and some backend buffer mechanisms through two shift registers DR1 and DR2. DR1 would be 

linked as the first shift register in the shift-chain selected by the controller and DR2 would be the last 

register in the same chain. A buffer mechanism would in turn be connected to CPU through the system 

bus. Based on this backend model some different solutions were contemplated.  
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The simplest backend, illustrated in figure 5.2.2, consists of three software registers, IR DR1 and DR2. 

The CPU can thus invoke instructions by altering the content of IR, and the data involved in such 

operations is determined by the contents of DR1 and DR2.  

 

 

Figure 5.2.2: Software register backend 

 

The second backend attempts to exploit the principle of locality by introducing a data cache in the 

backend. Distributed RAM blocks called BRAM are available on Xilinx devices for such purposes. Writing 

instructions to IR will in turn result in flow of data between a BRAM cell and the reconfigurable module. 

As suggested in the figure the BRAM cell is directly accessible from CPU.  

 



21 

 

 
Figure 5.2.3: BRAM data-cache backend 

 

The instruction and data cache backend, illustrated in figure 5.2.4, solely uses the BRAM as buffer 

mechanism between CPU and the backend. Hence both instructions and data are written to BRAM 

whereas a controller is in charge of fetching and executing instructions that in turn will move data 

between the reconfigurable module and the BRAM cell. A configuration register was added to the 

instruction and data cache backend at a later stage as described in section 5.2.6 with the purpose of 

providing run time tuning options for this backend type.  

 
Figure 5.2.4: Shared instruction and data cache backend 
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5.2.1: Software register backend 

The software register backend was developed first as the simplest solution. As part of the structural 

approach a shift controller was designed. Because of the principle of shifting data in and out of a 

reconfigurable module, shift primitives could be reused in the other backend solutions as well. 

 

A common decision for all backend controllers was that their instruction sets should be simple. Although 

the backend solutions presented above are not general computers architectures, some of the reasoning 

for the simple instruction decision was taken based on RISC versus CISC properties. Providing an 

adequate instructions basis would allow more complex instructions to be decomposed into sets of 

simpler instructions. Instruction set extension is something that can be applied later on if analyses 

suggest so. With the respect to the constraint of a bit-width of 32 for DR1, DR2 and IR, the instruction 

format in table 5.2.1.1 was defined for the software backend controller. 

 

Field Opcode Sync flag Interrupt flag Zerofill flag Chain Address Shift Count 

Bits 7 6 5 4 3:2 1:0 

Table 5.2.1.1: Software backend instruction format 

 

Operation Opcode 

Shift 0 

Execute 1 

Table 5.2.1.2: Software backend opcode table 

 

The backend controller was specified to do two operations, shift data and signal execution to the 

reconfigurable module.  As a program running on CPU would supervise backend operations the sync flag 

bit was allocated for signaling completion of an instruction. The Interrupt flag bit allows interrupting 

execution of a reconfigurable module from processor.  The Zerofill field was included as used in section 

5.1.4. Chain address was allocated for selecting among the reconfigurable modules scan chains and shift 

count was allocated for specifying the number of shifts to perform.  

 

The controller was developed with respect to the addressable shift interface from section 5.1.2 and the 

previous instruction and opcode definitions. After design completion, simulations were performed 

where the output of DR1 and input of DR2 were shortened to provide a simple test case emphasizing 

verification of the backend components only. After some minor corrections and satisfying simulations, 

work on a BRAM implementation was started.   
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5.2.2: Single port BRAM implementation 

 

Developing the two remaining backend solutions required implementing a BRAM component as 

distributed memory. By creating a new peripheral in Platform Studio and specifying user memory space 

as interface, a default BRAM template with PLB bus connection was created.   

 

It was decided to investigate the BRAM software interface at an early stage to check for dependencies 

or problems. Searching the web pointed towards a basic C-API consisting of the two functions in source 

5.2.2.1. Closer investigation revealed that these functions were part of a Xilinx SDK C-library. 

/*Read data*/ 

int XIo_In32(void * addr); 

/*Write*/ 

int XIo_Out32(void * addr, int data); 

Source 5.2.2.1 

In [6], program development for PowerPC processor on the Suzaku has only used the Linux kernel API in 

source 2.3.1 to access hardware. By inspecting some of the dependencies of source 5.2.2.1 it became 

apparent that a decent amount of work was required to isolate the API functionality for use outside the 

SDK.  It was instead decided to see if 2.3.1 would work. Applying the Linux kernel API for BRAM 

operations as described in section 6.1 worked flawlessly and it was decided to disregard the SDK API. 

 

As the BRAM template created by Platform Studio described a straight forward single port RAM there 

were needs for modifications. Development of backend solutions that utilize distributed memory 

required BRAM components that could be accessed from both the PLB bus and local hardware. In an 

attempt to solve this problem the single port BRAM component was left untouched and a multiplex 

system was created to provide mutual exclusive BRAM access for two separate sources through a shared 

single port set. The BRAM template was first isolated and the behavior was deduced by applying stimuli 

through a test bench. After simulations and adding of multiplex logic the design was exported to the 

Suzaku board for verification.  

 

Surprisingly target testing of this system could not be performed as the Suzaku board malfunctioned 

after bitfile upload. More thorough simulations were conducted but did not reveal any obvious reasons 

for the malfunction. Attempts were made to remove parts of the design and then uploading it to the 

Suzaku board. After a while a hypothesis was formed stating that the custom multiplex logic created 

illegal values for the PLB bus interface causing a system lock and preventing boot. As simulations could 

not reveal any further details of the problem it was decided to implement a true dual port BRAM. 
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5.2.3: Dual port BRAM implementation  

 

After finding a couple of good references on the topic, [10] and [11], the EDK BRAM template was 

modified to a dual port implementation. Creating a dual port BRAM cell for a Xilinx device is based on a 

shared variable in VHDL, however due to the nature of the original EDK template quite a lot of 

modifications were necessary. The main problems were related to structure and timing. 

In the original EDK BRAM template generate statements were used to create four parallel BRAM cells 

with 8 bit data input and output together forming 32 bit word, byte accessible RAM. When using a 

shared variable within the generate statement resulted in the error message in trace 5.2.3.1 under 

synthesis in Xilinx ISE  

ERROR:Xst:2070 - If you are attempting to describe a dual-port block RAM with two separate write ports 

for signal <ram1>, please use a shared variable 

Trace 5.2.3.1 

 

Another attempt was made by creating a global array of shared variables, on shared variable for each 

iteration in the generate statement. This resulted in the error message in trace 5.2.3.2 after synthesis.  

The problem was pursued by searching ISE help libraries and using the Internet. As no immediate 

solution for this problem was found and it was decided to omit the byte addressable solution and go for 

a simpler word addressable solution.  

 

ERROR:Xst - You are apparently trying to describe a RAM with several write ports for signal 

<Mram_ramy<3>>. This RAM cannot be implemented using distributed resources. 

Trace 5.2.3.2 

 

After further work on the EDK BRAM template one noticed that there were some signal inconsistencies 

compared to [10]. In the original EDK template the address signal for read and write were split into two 

separate signals where the read address was buffered through DFFs. [10] clearly use one common 

address source for each port however. After making the corresponding changes to the VHDL code the 

error message in 5.2.3.2 disappeared which suggested that the use of multiple address signals was the 

root of the synthesis problems. Source 5.2.3.1 shows such an invalid statement for one of two ports of 

the BRAM where separate address signals are used depending on whether a read or write is performed.   

 

If clk’event and clk=’1’ then 

 if ( write_enable = '1' ) then 

   ram(CONV_INTEGER(read_address)) :=  Bus2IP_Data; 

 end if; 

 mem_data_out(0) <= ram(CONV_INTEGER(mem_address)); 

end if; 

Source 5.2.3.1 

 

Instead of creating multiplexed addressing with the original timing, the read address buffering was 

removed. In the case of the port that was to be connected to custom made hardware this would not 
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cause any problem as changes could be made to fit timing requirements. Signal timing from the PLB bus 

is however dependent on other system components. Modifying any external system components was of 

course out of the question, but under the assumption that the read address signal was persistent on the 

PLB buss during a read operation this was regarded as an opportunity for a nice simplification.  

 

The implementation was packed as a VHDL entity for reuse. Finally a Planahead project was created to 

see how the BRAM component mapped physically to FPGA.  Figure 5.2.3.1 shows the placement of the 

BRAM cell in the top right corner of a Virtex-IV and figure 5.3.2.2 shows the corresponding resource 

estimates.  

 

 
Figure 5.2.3.1: Device layout 

 

 
Figure 5.2.3.2: Resource estimates 
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5.2.4: Combining BRAM and software registers 

Another technical dependency to consider was the data cache backend’s requirement of combined 

usage of a BRAM cell and software accessible registers.  

To investigate this, a backend module was created using both the BRAM implementation from 5.2.3 and 

two software registers. The question to be answered was how to distinguish addressing of the three 

components. Another simplistic test case was created involving software accessible registers in BRAM 

read and write operations. After verifying the system through simulation it was implemented as a 

peripheral in Platform Studio project. The backend was assigned a 2K address space as the BRAM 

consumed 1K and two SWREGS consumed 2 addresses.   

When exporting the design to the Suzaku board it locked up again. Different approaches to finding the 

error were taken. It turned out that by removing either the software registers or the BRAM the system 

did not lock up. By closer inspection of the system assembly window in Platform Studio it became 

apparent that two separate address entries for BRAM and software registers were created in the global 

address map. Both entries were filled out this time, as shown in figure 5.2.4.1. 

 
Figure 5.2.4.1: System assembly address window 

 

Exporting this solution to the Suzaku board worked fine. The system did not lock up and the case testing, 

described in section 6.1 worked as anticipated.  

 

5.2.5: Data cache backend 

 

With all necessary components available the data cache backend was developed. Prior to coding the 

instruction format in table 5.2.1.1 was defined.  As the BRAM implementation in section 5.2.3 was a 1kB 

word addressable memory an operand of 11 bits was allocated, covering address space and including 3 

excess bits.    
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Field Opcode Sync flag Interrupt flag Operand  

Bits 15:14 13 12 11:0 

Table 5.2.5.1: Data cache instruction 

 

Instruction Opcode 

Read 00 

Write 01 

Shift 10 

Execute 11 

Table 5.2.5.2: Data cache opcode 

 

Table 5.2.5.2 shows the different operations of the controller. The controller will allow data to be 

scanned in and out and execution of a reconfigurable module as in section 5.2.1. In addition the read 

and write operations will allow transferring data between DR1 and DR2, and the BRAM. Read will read 

data from BRAM into DR1 while write will write data from DR2 into BRAM where operands will control 

addressing.  

 

The backend solution was developed according to the previous definitions and the addressable shift 

interface from section 5.1.2. For simulations the output of DR1 and the input of DR2 were shortened as 

before. After approved simulations results, focus was turned towards the last backend implementation.   

 

5.2.6: Instruction and data cache backend 

 

As the instruction and data cache backend has many similarities with the data cache backend, the 

instruction format in 5.2.5.1 and the opcode legend in 5.2.5.2 were reused. It was decided to use a 

single common BRAM cell as shared instruction and data cache as opposed to separate BRAM cells. 

Although separate caches could have higher performance based for a given total size, a shared 

implementation was considered more compact and simplistic. The major difference between the data 

cache and the shared instruction and data cache solution was that instructions now had to be fetched 

from BRAM for execution. An instruction fetcher entity was created for this purpose whereas many 

parts from the data cache backend could be reused.  Simulations were conducted with the earlier 

mentioned shortening of DR1 output and DR2 input.  

 

5.2.7: Synthesis  

To confirm the correctness of the different backend bridges, verification was performed on the Suzaku 

platform through Linux kernel modules as described in section 6.1. In order to do comparison of the 

different backend modules’ resource requirements, synthesis was performed in Xilinx ISE. All synthesis 

was performed without any reconfigurable modules connected in the backend to focus on controller 

complexity.  Synthesis results are found in section 10.2. 
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5.3: Device driver encapsulation 

During initial backend validation described in section 6.2, hardware access had been performed solely 

through kernel modules performing hardware access operations on entry and removal through insmod 

and rmmod calls. Although this works for simple verification it is by no means an acceptable run time 

solution. 

In order to provide user space backend access, Linux character device driver were created for the 

different backends, using [12] and [13] as reference literature. Both the shared instruction and data 

cache backend and the data cache backend use at least one BRAM and at least one software accessible 

register. As Platform Studio splits the address spaces for the two component types into two disjoint 

subspaces, the device drivers for the both these backends were implemented with two separate address 

pointers thus removing the requirement of a contiguous physical address space for software registers 

and BRAM. As discovered in section 6.3 the PowerPC uses an endian format. Run time translation 

between the endian format and a linear format was implemented as part of the device driver’s run time  

functionality.  

The key character device driver functions read() and write() specify a char buffer as function parameter 

which is used to transfer data between user space and kernel space. Due to backend solutions 

composition the main interest was transferring integers however. The two functions in source 5.3.1 

were created for the purpose of easy translation between character arrays and integers.  

/*Write int to charbuffer at given position*/ 

static void intToChar(char* buf, int value, int pos){ 

 int i,mask; 

 mask = 0x000000FF;  

 for(i=0; i< 4; i++){ 

  buf[pos+i] = (value & mask)>> 8*i; 

  if(i==3){ 

    buf[pos+i] = buf[i+pos] & 0x000000FF; 

   return; 

  } 

  mask = mask <<8; 

 } 

} 

/*Read int from char buffer from given position*/ 

static int charToInt(char *buf, int pos){ 

 int i,mask,res; 

 res =0; 

 mask = 0x000000FF; 

 for(i=0; i< 4; i++){ 

  res = res+ ( (buf[pos+i]<< 8*i) & mask); 

  mask = mask << 8; 

 } 

 return res;} 

Source 5.3.1 



29 

 

 

Verification of the character device drivers was done according to section 6.3 using the same hardware 

versions as in section 6.2. With different backend solutions developed along with corresponding 

character device drivers, performance testing was conducted as described in section 7.   

 

5.4: Software components 

5.4.1: Dynamic memory allocation  

Based on results of performance testing of the developed backends as described in section 7, it was 

decided to continue work using the instruction and data cache backend. One obvious problem was that 

some kind of memory allocation mechanism was needed to allow multiple processes to share a BRAM 

cache. A quick literature search was done and two different approaches for dynamic memory allocation, 

memory pools and buddy memory allocation, were found at [14] and [15] respectively. With the present 

conditions a BRAM cache is likely to be of modest size and the memory pool approach was selected 

because of its simplicity and applicability for small memories. It was decided that memory allocation 

should only apply to the data part of the id-cache as the instruction segment probably might benefit 

from special treatment.  

An executable C prototype of the memory pool algorithm was first developed and tested on the dev-

computer.  The skeleton is a linked list of descriptors, showed in source 5.4.1.1, which as a whole 

describes a set of memory pools. In the descriptor the id field describes a unique identifier for a process 

owning the pool and the size field describes the size of the pool. Although the memory pool approach 

originally specifies a uniform pool size, the size field was added for future flexibility.  

struct pool_descriptor{ 

  struct pool_descriptor *next; 

 struct pool_descriptor *prev; 

 int id; 

 int size; 

} 

Source 5.4.1.1 

 

Two API functions mem_allocate() and mem_free() were written and included in the allocator’s header 

file constituting the assignment interface.  The mem_allocate() function was designed to find the first 

continuous space of memory in fractions of pools, large enough to for the requested allocation size. 

Although there are no hardware requirements for continuous memory it was considered to produce less 

overhead in descriptors and less overhead in HWOS read and write operations.  A mutex from the 

<pthread.h> library was used to ensure mutual exclusion of mem_allocate() and mem_free(). After some 

testing on the dev-computer, the C source was copied and a version was cross-compiled for the Suzaku 

board. Building feedback showed that no there were no problems with libraries or primitives.   
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5.4.2: HWOS – the application interface 

After completing the design of the memory allocator the application-to-hardware interface was now 

considered. Based on the HWOS concept as described in [3] it was decided to create a master process as 

a server for software applications requiring access to hardware. As much of this work does not directly 

involve too many of the originally proposed HWOS components, it was prioritized to create a template 

which focused on the application interface part, implementing functionality developed in this thesis.  

Looking into the technical details of the implementation it was found that it is not possible to run 

ordinary programs in the background on the Suzaku board. Furthermore in a Linux based system, a 

background process should be spawned as a DAEMON. [16] provided a DAEMON skeleton in C.  Figure 

5.4.2.1 shows the target structure.  

 
Figure 5.4.2.1 Application interface UML 

Extending the DEAMON skeleton was simply done by collecting the existing sources and making some 

modifications to the infinite executive loop in the DEAMON. To provide communication between the 

HWOS and applications a message queues from <sys/msg.h> was used. One master queue was created 

in the HWOS for requests from applications. Instead of having a shared queue for all client applications 

it was decided to create separate receive queues for each application. Limitations and consequences of 

this choice were not investigated further, but separation of message queues does indeed provide 

cleaner code. In order to manage separate queues for client applications, a registration procedure was 

implemented in the HWOS. This is now discussed as part of the request and response messages.  

A common request message type was composed as shown in source 5.4.2.1. 
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typedef struct req_msg{ 

 long  type; 

 char  command;  

 int         addr; 

 int  bytes;   

 char  data[BUF_SIZE]; 

 int  sender_id;   

} req_msg_t; 

Source 5.4.2.1 

The type field is required by the message queue primitives. All request messages was decided to have 

the same type for now however, as different message types seems to require separate polling calls. A 

command field was included in the message type for signaling what service was requested. The address 

and byte field were added considering hardware read and write operations. A compile time 

parameterized buffer was added for data transfer. It should be noted that pointers were not and cannot 

be used, generally, in message types. Pointers which are passed from one process to another become 

invalid because of separate memory spaces.  Last the sender_id holds a key that is to be used for 

creating a process’ receive message queue.  This identifier has to be unique for the idea to work which is 

not handled properly in the current version.   

 

typedef struct resp_msg{ 

 long  type;  

 int retval; 

 char  data[BUF_SIZE]; 

} resp_msg_t; 

Source 5.4.2.2 

 

Source 5.4.2.2 shows the response message. It is pretty straight forward containing two separate fields 

for return value and return data.  
 

Verification was performed for the HWOS as described in section 6.4 along with performance evaluation 

as described in section 7.  
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6: Verification 

 

In addition to simulations developed components were deployed and verified on the Suzaku board. 

Most verification was done simultaneous with development as a precaution to ease further verification 

of the composite system. The verification process as a whole is now presented.   

6.1 Backend 

In order to do simplistic verification of the backend solutions developed in section 5.2, the approach of 

shortening DR1 and DR2 was used as in simulations. Already when starting testing of the software 

register backend problems occurred. None of the values obtained through kernel module testing made 

any sense. By creating a write-from-hardware read-from-software test it was discovered that bits 

appeared to be shuffled seen from the software side. Some searching on the internet revealed that 

PowerPC uses an endian byte system, which explained the feedback. Figure 6.1.1 illustrates the 

PowerPC format versus a linear word format. MSB is zero indexed, “()” encloses hex values and “{}” 

encloses bytes.  

 
Figure: 6.1.1: Endian versus linear bit string 

 

In order to work with PowerPC’s endian format the algorithm in source 6.1.1 was created. It translates 

the PowerPC endian format into the linear format and vice versa. The function is thus its own inverse. 

 

int transform(int word){ 

 int mask,part,res,i,n; 

 int shifts[] = {3,1,-1,-3}; 

 mask =0x000000FF; 

 res =0; 

 for(i=0; i<4; i++){ 

  if(shifts[i]>0) part = (word &mask ) << (shifts[i]*byte); 

  else part = (word &mask ) >> (-shifts[i]*byte); 

  if(i==3) part = part &  0x000000FF;  

  res = res | part;   

  mask = (mask << byte); 

 } 

 return res; 

} 

Source 6.1.1 
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As a backend dependency the BRAM software API was researched by creating a Platform Studio project 

with a peripheral implementing a 1kB byte accessible single port BRAM component. The peripheral’s 

base address was set to 0x81000000 and the project was synthesized, placed and routed and eventually 

exported to bitfile.  The resulting bitfile was loaded onto the Suzaku through hermit followed by a 

reboot to update the FPGA configuration. A Linux kernel module was developed, reading and writing 

hard values to the peripheral and performing debug printing along the way. The test worked as planned 

and it was concluded that there was no need for the SDK API to access BRAM as it could be achieved 

through the Linux kernel API with respect to the global memory map in Platform Studio.  

 

To verify the dual port BRAM component developed in section 5.2.3 a simplistic copy test was created. A 

hardware module was placed in the backend which behavior was to copy the contents of BRAM[0] to 

BRAM[1]. A kernel module was developed that wrote data to BRAM[0] and subsequently the data at 

BRAM[1]. Execution verified that the dual port component worked as intended providing access to a 

single BRAM component for both PLB bus and local hardware. Further backend testing proved the 

correctness of the dual port BRAM, also in combination with software registers. 

 

After verifying the functionality of the dual port BRAM testing was performed for all backends through 

Linux kernel modules. Based on the different controller instruction sets, small assembly programs were 

created to verify functionality. An example program for the instruction and data cache backend is shown 

in table 6.1.1 along with the resulting operations.  

 

Instruction-word Instruction 1 Instruction  0 

0x8003000f Shift  4x reg0 <= BRAM[f] 

0x000b4009 reg0 <= BRAM[b]                              BRAM[9] <= reg1 

0x400a8003   BRAM[a] <= reg1                                         Shift  4x 

0x8003000c  Shift  4x reg0 <=BRAM[c]   

0xffffffff  HALT  HALT 

0x000d400e    reg0 <= BRAM[d] BRAM[e] <= reg1 

Table 6.1.1: Example micro-program 

 

6.2 Sequential multiplier  

After verifying the different backends with shortening of DR1 and DR2, the sequential multiplier from 

section 5.1.4 was inserted as reconfigurable module. Three separate Linux kernel modules, one for each 

backend type, were developed to test the multiplier in combination with the backend. Multiply 

operations both from scratch and from an interrupted state were tested. A trace from testing the 

sequential multiplier combined with the instruction and data cache backend is shown in section 10.2.  
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6.3 Device drivers 

For testing the device driver implementations the sequential multiplier was used as reconfigurable 

module. Device files were created in the /var directory on the Suzaku’s filesystem. Normally device files 

are placed in the /dev folder, but by default this path is read only on the Suzaku’s file system. Instead of 

going to any extra efforts to change this, the writable folder /var was used. Trace 6.3.1.shows the 

creation of a device file for the instruction and data cache backend followed by insertion of a kernel 

module describing the char device driver through a NFS shared mapped to /var/tmp.  

pwd  

/var 

mknod  id_backend c 128 0 

cd tmp/device_drivers/id_backend 

insmod id_backend.ko 

Trace 6.3.1 

An initial error was found when attempting to reinsert a device driver that had already been removed. 

Appending the unregister call in source 6.3.1 with the correct parameters in the device driver’s unload 

function solved the problem.  

 

int unregister_chdev(int major_number,const char []  device_name); 

Source 6.3.1 

Testing of the functionality of each device driver was then performed by writing different C-applications 

for the developed backend variants, which accessed hardware through corresponding device drivers. 

Source 5.3.2 shows the syntax accessing a device driver through a related device file.  

#define BACKEND_PATH “/var/id_backend” 

… 

Fopen(BACKEND_PATH); 

Source 5.3.2 

The first debugging showed a mix of correctness and failureAs the device drivers were operating on 

hardware identical to the one used under earlier kernel module testing it was deduced that the errors 

were probably located in the device drivers themselves. y doing a mixed execution of the previously 

developed kernel modules and the new device drivers a strange behavior was found. The read and write 

functions in a char device driver specify  a pointer f_pos which holds a value that is used to control read 

and write offset with respect to a base address. Debug prints of the value showed that it always had the 

anticipated value but it turned out that using byte offsets in the read and write functions resulted in 

reading and writing only every fourth line. This is in contrast to kernel module testing where byte 

addressing was required as opposed to word addressing. After modifying offset fields in device driver 

sources according to source 6.3.3 all functionality turned out as expected.  

 

readl(base_pointer + (offset)/4) 

writel(base_pointer + (offset)/4) 

Source 6.3.3 
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6.4 HWOS 

Initially a dev-pc version of the HWOS DAEMON was developed to ensure that the framework was 

working correctly.  After testing on the dev-pc was considered sufficient the HWOS DAEMON was built 

for the Suzaku board and tested. Trace 6.4.1 shows the execution trace of the HWOS on the Suzaku 

platform. 
 

# ./hwos                                                                       

# ps | grep hwos                                                               

  172 root        256 S   ./hwos_d    //HWOS process 

# kill 172 

# ps | grep hwos                                                               

# 

Trace 6.4.1 

 

After execution the daemon can be found in the process list and killing the DAEMON removes it 

correctly. It was first confirmed that the message queue interface worked as expected on the Suzaku 

platform. The instruction and data cache device driver was then integrated with the HWOS as no real 

hardware access was performed in the dev-pc version. Only the instruction and data cache backend was 

integrated with the HWOS, acknowledging synthesis and speed results from section 10.2 and 10.3. An 

execution trace of an external application accessing hardware through the HWOS is shown in section 

10.4. 
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7: Performance evaluation 

 Instrumentation: 

To compare performance of hardware access operations it was decided to count clock cycles through a 

software register in the backend rather than using processor timer libraries. Using a hardware defined 

counter would probably provide more accurate timing. One extra software register was first appended 

to each backend. As each backend already contained at least one software register with some free bits, 

fields in existing register were used for control signals to start, stop and reset the timer. After simulation 

and some minor corrections were applied and the new hardware was exported to bitfiles prepared for 

testing on the Suzaku board. 

Testing: 

Testing was divided into three different subtests, one directly from kernel space and two from user 

space. The user space testing comprised hardware access directly from applications through device 

drivers and hardware access through the HWOS. Performance of the cache backend modules was 

expected to vary depending on whether a cache hit or cache miss occurred. To narrow down the testing 

a full cache hit and a full cache miss were tested as counterparts for both the instruction and data cache 

backend and the data cache backend. 

As the test results were expected to have high correlation with the testing software, some measures 

were taken to ensure that the different backend tests ran under fair. First all excess code between timer 

start and timer stop were removed.  It was also ensured that reading and writing was performed 

following the same pattern. The initial test scenario was the transfer of the multiplier state in table 

5.1.4.1. Afterwards the correlation between performance and amount of data in a transfer was explored 

by running separate tests where the amount of data transferred was varied in multiples of 20 bytes. 

Multiples of 1,2,3 and 4 were used, distinguishing user space versus kernel space and cache hit versus 

cache miss as before. Results are found in section 10.3. 

8 Case: MPEG transcoder 

As part of this thesis use of components from a MPEG transcoder as reconfigurable modules was 

researched. Creating a truly reconfigurable implementation for the framework for dynamic 

reconfiguration in [3] might be quite time consuming so it was prioritized to relate such an 

implementation to the work in this report.  
 

8.1 Source analysis 

VHDL source for a MPEG transcoder was obtained from [17]. As only the project report was available at 

first hand a small Java program was written to parse the VHDL source code as it contained line numbers, 

page numbers and invalid characters. After parsing the source to text files and compiling them in AHDL 

trace 8.1.1 appeared.  

 

Library "XilinxCoreLib" not found. 
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Trace 8.1.1 

 

Searching the file hierarchy of the installed Xilinx tools revealed that all sources for this library could be 

found in the path given in trace 8.1.2. Considering platform independency the Xilinx path is emphasized 

in bold casing.   

 

F:\Xilinx\ISE\vhdl\src 

Trace 8.1.2 

 

The sources were copied to a safe location, compiled as a library in AHDL and included in the project 

providing a clean compile with exception of a few warnings.  As an MPEG transcoder is a complex entity 

which requires a large number of resources the approach was to consider a piped execution where only 

parts of the complete entity is executing in hardware at any given time. Evaluating the composition of 

the different parts of the MPEG transcoder it was found that the decoder contains much explicit 

memory which also might make it suitable for investigating performance enhancing interrupt and 

resume functionality as presented in section 2.5. More specificly the Inverse-Scan module was chosen 

for research as because of appliance to these properties.   

 

To clarify how all the Inverse-Scan module mapped to Virtex-IV’s resources, synthesis was performed in 

ISE. Two separate syntheses was performed, one for a single register file and one for the entire inverse 

scan module. Resource consumption for a single register file is shown in trace 8.1.3.  

 

Device utilization summary: 

--------------------------- 

Selected Device : 4vfx12sf363-10  

 

 Number of Slices:                      636  out of   5472    11%   

 Number of Slice Flip Flops:            768  out of  10944     7%   

 Number of 4 input LUTs:                468  out of  10944     4%   

 Number of IOs:                          39 

 Number of bonded IOBs:                  39  out of    240    16%   

 Number of GCLKs:                         1  out of     32     3%   

--------------------------- 

Trace 8.1.3 

 

A screenshot from Planahead is showed figure 8.1.1, roughly illustrating the area requirements. The 

rectangle consisting of several brownish sub-rectangles is the register file. Adjacent BRAM cells, 

RAMB16, are highlighted in white.  
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Figure 8.1.1: Registerfile mapped to FPGA 

 

After finding an address space of 6 bits and a bit width of 12 for each field of the register file the storage 

capacity was calculated according to (10).   

 

2�= > 9? � 2@ > 12 �  768 DE�F   
 

(10) 

The ISE synthesis results for the entire inverse scan module, consisting of four register files, is shown in 

trace 8.1.4. In a comparison, a single RAMB16 component can store 10.66 register. 

 

Device utilization summary: 

--------------------------- 

 

Selected Device : 4vfx12sf363-10  

 

 Number of Slices:                        2734  out of   5472    49%   

 Number of Slice Flip Flops:           3155  out of  10944    28%   

 Number of 4 input LUTs:               5041  out of  10944    46%   

 Number of IOs:                            36 

 Number of bonded IOBs:              36      out of    240    15%   

 Number of GCLKs:                          1        out of     32     3%   

Trace 8.1.4  
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8.2 Specialized cells 

 

Because of the extensive resource requirements of the register file component and the inverse scan 

module as a whole it was concluded that LUT buffering needs to be reduced before any attempts to use 

the inverse scan module in the reconfigurable system under the current conditions.  Another interesting 

property of the MPEG decoder is that it requires a RAM cell. The problem of how a reconfigurable 

module should interact with specialized cells like DSP, FIFO and BRAM, has not been addressed in this 

paper yet.  

 

One possibility for handling cell dependencies is to rely on the physical placement of a reconfigurable 

module to provide necessary cell components. As an alternative specialized cells can be migrated across 

the reconfigurable interface where a pair of controllers is in charge of performing operations. It was 

decided to go for the latter solution, illustrated in figure 8.2.1. 

 

 
Figure 8.2.1: Special cell migration through controller pair 

 

Advantages and disadvantages of this approach are mentioned later in discussion. As an example of cell 

migration it was decided to move the RAM component from the MPEG decoder across the 

reconfigurable interface.  

 

8.3 MPEG decoder RAM migration 
 

By investigating the MPEG decoder RAM implementation it was found that it uses a BRAM with a default 

Xilinx architecture. It indicated that reads and writes are performed from separate sources through 

signal names and separate address and clock signals. The RAM implementation is thus of dual port type. 

Simulation confirmed that it contained 256 words where 12 bits of each word were used in accordance 

with the register file bit-depth. Simulations also clarified control signal functionality. 
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An assumption was made before starting the design process that processing and traditional input/ 

output and state operations are mutually exclusive.  Under this assumption the data channels in the 

reconfigurable interface is either used for transferring input, output and state, or used for 

communication with specialized cells.  This might be a false assumption if a reconfigurable module 

buffers future input values and readout of results are performed during execution. These are classic 

speedup techniques as mentioned in [7], but the simplifications were made to ease the cell migration 

problem due to time limitations. 
 

Instead of compressing control signals under this hypothesis, the main emphasize was to reuse the 

existing data channels in the reconfigurable interface for cell operations.  Since the address space of the 

BRAM in question is 8 bits, it was decided to pipe addressing through data channels as well to keep the 

maintain a reconfigurable interface of a modest size. An operation control signal was added to the 

reconfigurable interface whereas clocks were assumed to be synchronized with respect to the backend 

master clock. The operation signal covered no-operation, read, write and reset instructions to address 

the migrated RAM.  

A fresh workspace was created for designing and validating communication between a RAM-master and 

RAM-slave through the reconfigurable interface and the operations on the MPEG decoder RAM module. 

To exploit existing functionality a shift register macro was created in the master controller and using 

existing shift primitives for data transfer. The operation signal for cell operations thus served as request 

signals resulting in a data transfer using the global shift primitive and existing data channels. In order to 

perform read and write operations, the target address would be shifted in to the slave first followed by 

the operation and finally the shifting of data. Validation of the design was conducted through 

simulations but no deployment was performed due to time limitations.    

9: Run time reconfiguration 

 
With the components for hardware-software intercommunication designed, some light was shed on the 

actual process of run time reconfiguration at the end of the thesis work.  

 
In earlier work, reconfigurable modules has been created by building an entire FPGA system for the 

Suzaku platform and then extracting one or more reconfigurable modules from the resulting bitfile. This 

is very inefficient as building the entire system is a hard processing task that may take 30-40 minutes or 

so. A much easier solution is to do creation of reconfigurable modules in Xilinx ISE as one can build only 

the reconfigurable module along with bus macro connections standalone.  

 

As there was too little time to do proper MPEG transcoder research simple test modules were used for 

reconfiguration. First the entire Suzaku system was implemented with the sequential multiplier as a true 

reconfigurable module according to [18].  This now provided the system base and reconfigurable 

module design in Xilinx ISE was explored by creating a sequential comparator and transforming it into a 

true reconfigurable module. 

 

As with the Platform Studio flow, Planahead was used to create placement constraints after synthesis in 

form of a UCF file which was added as a project source in ISE. Two important results was derived when 

inspecting the routed design. The clock signal refused to be piped through bus macros and IOBs at the 

top right of the FPGA was used for top entity’s input and output signals. By reference search on internet 
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[19] was found which states that piping of clock signals through bus macros is discouraged and 

depreciated by implementation tools. The general solution would be to ensure that the same clock 

branches are used in and out of a reconfigurable module. To address the IOB problem, the UCF code for 

banning use of IOBs showed in source 9.1.1 was applied to BANK6. 

 

CONFIG PROHIBIT= [Location]; 

Source 9.1.1 

 

Figure 9.1.1 and 9.1.2 shows screenshots from FPGA-editor of the resulting systems. The reconfigurable 

region is contained in a blue rectangle, bus macros are showed in red in the left top whereas the global 

clock is the red wire bellow distributed to slices in the multiplier. It can be seen that both bus macros 

and the global clock have the same location in both designs.  

 

 
Figure 9.1.1: System and sequential multiplier (Xilinx Platform Studio) 
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Figure 9.1.2: Sequential comparator (Xilinx ISE) 

 

 A referral to [20] is left for further technical details on design of reconfigurable modules in Xilinx ISE. 

After exporting the two designs to bitfile using bitgen, the system file was processed through bitinit and 

uploaded to the Suzaku board. The partial bistream describing the comparator in figure 9.1.2 was 

extracted using modifiedCLBread according to source 9.1.2 and icap_write was modified according to 

source 9.1.3. As can be seen it was modified to start writing at column 20, which is the absolute column 

address of CLB column 18. An execution trace of the reconfiguration and testing procedure is found in 

section 10.5.  

 
# ./test –i comparator.bit –o comparator_part.bit –fmR –sc 18 –ec 23 

Source 9.1.2 

 
if(write_header(handlemem, 1, 20, 0, frames) < 0){ 

Source 9.1.3 

 

As the above synchronous reconfiguration failed, an asynchronous adder was developed in ISE in the 

same manner as the comparator. The trace in section 10.5 includes the response to inserting and testing 

the asynchronous adder.  

 

10 Results 
 

10.1 Register architectures 
 

Figures 10.1.1 – 10.1.4 shows the results of synthesizing generic architectures for different register 

types. LUT usage is compared with the sum of bits stored by the register collection.  
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Figure 10.1.1 

 

 
Figure 10.1.2 
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Figure 10.1.3 

 

 
Figure 10.1.4 
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Table 10.1.1 summarizes the number of IO pins for the different register building blocks from section 

5.1.1 analytically. N denotes DFF memory in bits and S denotes the bit width of the shift terminals for 

the parallel shift block.  

 

Register type IO-Pins 

Serial shift block 2N+5 

Parallel shift block 2(N+S)+3 

Addressable block  3N+2 

Table 10.1.1: Pins for different register building blocks 

 

Table 10.1.2 shows the maximum clock frequencies for the different register architectures, which are 

invariant of the total number of bits stored 

 

Architecture CLK[MHz] 

Serial shift 848 

Parallel shift 848 

Addressable  895 

Addressable shift chain 848 

Table 10.1.2: Clock frequencies 
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10.2 Backend bridge 
 

Trace 10.2.1 shows a trace from executing two multiplications with the instruction and data cache 

backend.  

 

# insmod id_cache.ko                                                                 

Module loaded                                                                    

Remapping address space…                                                          

writing program ...                                                              

bram[0]: f000f000  // synchronization halt for start                                                             

bram[1]: 8003000c                                                                

bram[2]: 8003000d                                                                

bram[3]: 8003000e                                                                

bram[4]: 8004000f                                                                

bram[5]: 10c000                                                                  

bram[6]: 40128013                                                                

bram[7]: 80130011                                                                

bram[8]: f0004013  //halt operation                                                               

bram[9]: 40148013                                                                

bram[10]: 40158013                                                               

bram[11]: a2000000                                                               

bram[12]: 5bf134f0                                                               

bram[13]: abcdef12                                                               

bram[14]: abcdef                                                                 

bram[15]: 4c                                                                     

bram[16]: 12345678                                                               

bram[17]: 12345678                                                               

executing ...                                                                    

bram[18]: ce169d44                                                               

bram[19]: 734cc30a   

# rmmod bram.ko                                            

# insmod bram.ko                                                                 

Module loaded                                                                    

Remapping address space                                                          

writing sync ...                                                                 

writing program ...                                                                                                                                 

reg: a000001         

bram[18]: ce169d44                                                               

bram[19]: 734cc30a                                                               

bram[20]: 1df4d840                                                               

bram[21]: 14b66dc   

Trace: 10.2.1 

First 0781-9:;12*. is computed from an interrupted state. This is followed by the computation of 0712345678*, which demonstrates that resuming computation from a halt instructions works. Traces 

10.2.2 – 10.2.4 shows ISE synthesis results for the different backends.  
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Device utilization summary: 

--------------------------- 

Selected Device : 4vfx12sf363-10  

 

 Number of Slices:                        91  out of   5472     1%   

 Number of Slice Flip Flops:             130  out of  10944     1%   

 Number of 4 input LUTs:                162  out of  10944     1%   

 Number of IOs:                           109 

 Number of bonded IOBs:                84  out of    240    35%   

 Number of FIFO16/RAMB16s:                 1  out of     36     2%   

 Number used as RAMB16s:                1 

 Number of GCLKs:                          1  out of     32     3%   

 

Timing Summary: 

--------------- 

Speed Grade: -10 

 

   Minimum period: 4.125ns (Maximum Frequency: 242.427MHz) 

   Minimum input arrival time before clock: 4.331ns 

   Maximum output required time after clock: 7.197ns 

   Maximum combinational path delay: 7.958ns 

Trace 10.2.2 Instruction and data cache 

 

Device utilization summary: 

--------------------------- 

Selected Device : 4vfx12sf363-10  

 

 Number of Slices:                       76  out of   5472     1%   

 Number of Slice Flip Flops:             92  out of  10944     0%   

 Number of 4 input LUTs:                143  out of  10944     1%   

 Number of IOs:                          79 

 Number of bonded IOBs:                  77  out of    240    32%   

 Number of GCLKs:                         1  out of     32     3%   

 

Timing Summary: 

--------------- 

Speed Grade: -10 

 

 Minimum period: 4.427ns (Maximum Frequency: 225.866MHz) 

 Minimum input arrival time before clock: 2.909ns 

 Maximum output required time after clock: 5.951ns 

 Maximum combinational path delay: 7.900ns 

Trace 10.2.3: Data cache  
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Device utilization summary: 

--------------------------- 

Selected Device : 4vfx12sf363-10  

 

 Number of Slices:                       58  out of   5472     1%   

 Number of Slice Flip Flops:             91  out of  10944     0%   

 Number of 4 input LUTs:                100  out of  10944     0%   

 Number of IOs:                         109 

 Number of bonded IOBs:                  83  out of    240    34%   

 Number of FIFO16/RAMB16s:                1  out of     36     2%   

    Number used as RAMB16s:               1 

 Number of GCLKs:                         1  out of     32     3%   

 

Timing Summary: 

--------------- 

Speed Grade: -10 

 

   Minimum period: 3.586ns (Maximum Frequency: 278.858MHz) 

   Minimum input arrival time before clock: 4.305ns 

   Maximum output required time after clock: 7.353ns 

   Maximum combinational path delay: 7.648ns 

 

Trace 10.2.4: Software register backend 

10.3 Performance Evaluation 

 

The following tables list clock cycles consumed for data transfers of varying size. As earlier mentioned 

evaluation is performed for kernel calls, device driver calls and application calls through the HWOS.  

 

10.3.1 Kernel Space 

 

Sample Type Hit Cycles 

1 ID Yes 92 

2 ID Yes 92 

3 ID Yes 92 

4 ID Yes 95 

5 ID No 618 

6 ID No 619 

7 ID No 616 

8 ID No 616 

9 D Yes 1173 

10 D Yes 1186 

11 D Yes 1173 

12 D Yes 1173 

13 D No 1442 

14 D No 1513 

15 D No 1512 
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16 D No 1513 

17 SW # 828 

18 SW # 822 

19 SW # 822 

20 SW # 826 

Table 10.3.1.1: Multiplier state loading, 17 bytes 

 

 

Sample Multiple Hit Cycles 

1 1x Yes 183 

2 1x Yes 183 

3 1x Yes 183 

4 1x Yes 183 

5 2x Yes 255 

6 2x Yes 255 

7 2x Yes 255 

8 2x Yes 255 

9 3x Yes 295 

10 3x Yes 295 

11 3x Yes 295 

12 3x Yes 295 

13 4x Yes 344 

14 4x No 344 

15 4x No 344 

16 4x No 344 

17 1x No 382 

18 1x No 382 

19 1x No 390 

20 1x No 390 

21 2x No 659 

22 2x No 659 

23 2x No 659 

24 2x No 659 

25 3x No 906 

26 3x No 906 

27 3x No 906 

28 3x No 911 

29 4x No 1112 

30 4x No 1112 

31 4x No 1112 

32 4x No 1112 

Table 10.3.1.2: Instruction and data cache, multiples of 20 bytes 
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Sample Multiple Cycles 

1 1x 822 

2 1x 827 

3 1x 822 

4 1x 827 

5 2x 1567 

6 2x 1567 

7 2x 1567 

8 2x 1567 

9 3x 2317 

10 3x 2317 

11 3x 2309 

12 3x 2309 

13 4x 3077 

14 4x 3075 

15 4x 3087 

16 4x 3069 

Table 10.3.1.3: Software register backend, transfer of multiples of 20 bytes 

10.3.2 User space 

 

Sample Type Hit Cycles 

1 ID Yes 1944 

2 ID Yes 1900 

3 ID Yes 1938 

4 ID Yes 1943 

5 ID No 2687 

6 ID No 2527 

7 ID No 2528 

8 ID No 2500 

9 D Yes 16108 

10 D Yes 13874 

11 D Yes 14145 

12 D Yes 13699 

13 D No 14949 

14 D No 14635 

15 D No 14805 

16 D No 14531 

17 SW # 9647 

18 SW # 9511 

19 SW # 9295 

20 SW # 9594 

Table 10.3.2.1: Multiplier state loading, 17 bytes device driver 
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Sample Multiple Hit Cycles 

1 1x Yes 1776 

2 1x Yes 1767 

3 1x Yes 1807 

4 1x Yes 1766 

5 2x Yes 1776 

6 2x Yes 1767 

7 2x Yes 1807 

8 2x Yes 1766 

9 3x Yes 1819 

10 3x Yes 1791 

11 3x Yes 1803 

12 3x Yes 1821 

13 4x Yes 1864 

14 4x No 1803 

15 4x No 1785 

16 4x No 1791 

17 1x No 1820 

18 1x No 1787 

19 1x No 1862 

20 1x No 1820 

21 2x No 2734 

22 2x No 2428 

23 2x No 2444 

24 2x No 2442 

25 3x No 2835 

26 3x No 2785 

27 3x No 2835 

28 3x No 2835 

29 4x No 3059 

30 4x No 3029 

31 4x No 3059 

32 4x No 3299 

Table 10.3.2.2: Instruction and data cache, multiples of 20 bytes by device driver 

 

 

Sample Multiple Cycles 

1 1x 9252 

2 1x 9613 

3 1x 9284 

4 1x 9300 

5 2x 15976 

6 2x 15821 

7 2x 15712 

8 2x 15623 

9 3x 20079 
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10 3x 20178 

11 3x 20239 

12 3x 20238 

13 4x 23720 

14 4x 23956 

15 4x 23800 

16 4x 23948 

Table 10.3.2.3: Software register backend, multiples of 20 bytes by device driver 

 

Sample Multiple Hit Cycles 

1 1x Yes 20811 

2 1x Yes 16977 

3 1x Yes 17300 

4 1x Yes 17173 

5 2x Yes 17193 

6 2x Yes 17245 

7 2x Yes 17306 

8 2x Yes 17037 

9 3x Yes 17203 

10 3x Yes 17311 

11 3x Yes 17292 

12 3x Yes 17124 

13 1x No 22965 

14 1x No 22964 

15 1x No 23003 

16 1x No 22965 

17 2x No 23307 

18 2x No 23112 

19 2x No 23193 

20 2x No 23173 

21 3x No 26084 

22 3x No 23380 

23 3x No 23712 

24 3x No 23539 

Table 10.3.2.4: Instruction and data cache backend, multiples of 20 bytes through HWOS 

 

10.4 HWOS 

 

Trace 10.4.1 shows the execution of the HWOS followed by the execution of an application accessing a 

hardware defined sequential multiplier. Its instructions to the multiplier is the computation of   

0781-9:;12* followed by the computation of 0712345678*. Printing the return values shows the 

correctness of the execution.  
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# ./hwos                                                                       

# ps | grep hwos                                                               

  172 root        256 S   ./hwos_d    //HWOS process 

# cd ../multiplier 

# ./app       

 Connected to master message queue...                                                                    

 Creating receive message queue...                                              

 writing data to BRAM ... 

 executing ... 

 RES00 = ce169d44                                                                

 RES01 = 734cc30a                                                                

 RES10 = 1df4d840                                                               

 RES11 = 14b66dc   

 

Trace 10.4.1 

10.5 Run time reconfiguration 

 

# insmod mult.ko                                                                 

Module loaded                                                                    

Remapping address space                                                          

writing sync ...                                                                 

writing program ...                                                              

resetting timer...timer 0                                                        

executing ...                                                                    

bram[18]: ce169d44                                                               

bram[19]: 734cc30a                                                               

bram[20]: 1df4d840                                                               

bram[21]: 14b66dc   

# cd /var;                                                                        

# ls                                                                             

run  tmp                                                                         

# mknod icap c 250 0 //Create device file            

# ls                                                                             

icap  run   tmp  //Device file created                                                

# cd tmp/dyn_reconf/xilinx_hwicap/                                               

# insmod xilinx_hwicap.ko  // Insert Xilinx ICAP device driver 

Xilinx ICAP driver init                                                          

Xilinx ICAP driver platform_driver_register                                      

Xilinx ICAP driver probe                                                         

Xilinx ICAP driver setup                                                         

# cd ../icap_write 

#./icap_write -i comp_part.bit -f 176 //Reconfigure 8 columns 

... 

... 

# cd ../comparator/module 

# insmod comp.ko 

bram[18]: ffffffff                                                               
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bram[19]: ffffffff                                                               

# rmmod comp.ko 

#cd ../../icap_write 

#./icap_write –i add_part.bit -f 176 //Reconfigure 8 columns 

… 

… 

#cd ../adder/module 

# insmod add.ko 

bram[18]: dddddddd                                                               

bram[19]: dddddddd    

# rmmod add 

# insmod add.ko 

bram[18]: dddddd29                                                               

bram[19]: dddddd29 

Trace 10.5.1 

 

Trace 10.5.1 shows the execution of the sequential multiplier realized as a true reconfigurable module. 

It can be seen that it works correctly which in turn proves that the piping of signals through bus macros 

works. After the execution of the multiplier module a device file is created for the ICAP linux device 

driver. Reconfiguration is performed, replacing the multiplier with a comparator. Insertion of a test 

module shows that all outputs are corrupted, pulled high, after reconfiguration. Output value was 

invariant of any applied inputs. Finally the comparator is replaced with an asynchronous adder adding 

0xDB to the input value. With an input of 0 the resulting in the faulty answer is DD. Applying 0xEF as 

stimulus yields 0x29.   
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11: Discussion 
 

Section 4 specifies the basis and goals for this thesis.  Creating components for hardware-software 

intercommunication in a dynamically reconfigurable system has involved a lot of details. Some of the 

most important aspects and findings of the work will now be discussed.  
 

When considering what register architecture might be suitable for a reconfigurable module many 

factors comes into play. One important result from synthesis in section 10.1 is that when implementing 

a shift-architecture there is no extra cost of expanding the shift bit width. A single shift register and a 

multiple shift register are mapped to identical FPGA components; the only difference is the routing of 

resources. Bandwidth can thus be increased by increasing the shift factor. There are some side effects of 

this proposal though, as embedding other modules and developing controllers might prove to be harder.  

Creating chains of multiple-shift registers is likely to include DFF’s that are not used but are necessary 

for scan chain consistency. The number of unused DFF’s is likely to increase with the shift size. Another 

potential problem arises if the reconfigurable module uses single bit shift register in processing 

algorithms. Implementing both single and multiple bit shift for a register will produce a noticeable LUT 

consumption increase. A large reconfigurable interface might also be a practical problem.  

Comparing the generic register architecture synthesis results one can see that the shift based solutions 

require less resources than the addressable architecture.  The random access property thus comes with 

a cost. It is also important to question whether a random-access architecture is necessary in the context 

of reconfigurable modules and run time reconfiguration. Considering the multiplier implementation in 

this paper the addressable architecture could not provide any immediate advantages compared to the 

shift based architecture. On the contrary the shift based architecture is able to operate in full duplex 

mode and simulations show that the addressable RAM architecture actually performs worse. Creating a 

full duplex random architecture would increase performance but require even more resources. 

 The hybrid architecture uses shifting for data transfer but implementing an address space for shift-chain 

addressing which seems to be a good compromise.  It allows utilizing the full duplex property while 

providing more manipulation flexibility through multiple shift chains. For large bit strings it is an obvious 

simplification to be able to shift content as opposed to accessing it through multiple addressed calls. 

Resource requirements of the hybrid architecture will depend on how extensive addressing the 

architecture provides. In section 10.1 one can see that an address space of 2 has virtually no cost when 

comparing figure 10.1.2 with figure 10.1.4. 

All backend implementations have been verified and work properly. Backend performance testing 

surprisingly reveals that the data cache solution has a very poor performance. The fact that it is slower 

than a regular software register solution can be explained by latency ratios and controller structure. As 

the data caching is done through a BRAM cell, extra cycles are involved in data transfers compared to 

the software register backend. With a software accessible instruction register, data caching cannot be 

exploited as execution is too slow. Expressed in another way the data cache bakend is a poorly balanced 

system. System latencies are simply not large enough to make data caching profitable. Speedup would 

require a faster flow of instructions or alternatively instructions could be more complex. Effectively 

making the data cache backend more independent of CPU control could yield better performance, but 

this is exactly what the instruction and data cache backend does.  
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The instruction and data cache solution provides good performance relative to the other two.  When 

loading the 17 byte interrupt state the instruction and data cache backend provides a fear speedup for 

both cache hit and cache miss compared to the software register solution. When loading multiples of 20 

bytes an increased speedup ratio compared to the software register backend. The instruction and data 

cache backend is roughly 5-10 times faster than the software when comparing both device driver and 

kernel space results. No cache policies or such has been discussed in this thesis but with a reasonable hit 

ratio the instruction and data cache backend can indeed provide a pretty good speedup. Looking at 

timer values for hardware access through the instruction and data cache backend using the HWOS in 

table 10.3.2.4, it is also suggested that large statistical oscillations occur. As the large variance occurs 

solely for the HWOS testing this might suggest that system level testing requires a more statistical 

approach. Judging by the other performance results the simple performance test system has been 

adequate though. From section 10.3 it can also be seen that accessing hardware from user space 

produces a major increased in delay compared to doing it directly from kernel space.  An obvious reason 

is the extra software overhead incurred in device drivers and applications. This emphasizes the 

importance of fast software components in reconfigurable co-processing system. 

 

Synthesis of the backend modules for a fixed generics shows that the resource requirements are 

proportional to the complexity of the backends. Disregarding the BRAM, results reveals that the 

variance in resource requirements for the different backend modules is small. As the three different 

backed implementations in this thesis have roughly the same resource requirements if disregarding the 

BRAM, the instruction and data backend can provide good speedup for little resource overhead. If a 

system contains parts with large RAM requirements this might be a challenge though. 

 

When evaluating the absolute speed of the communication link that has been created, table 10.3.1.1 

shows a time of 90-100 cycles for loading a multiplier state with the instruction and data cache backend. 

Comparing this to simulations, which show an optimal time of some 60 cycles with no overhead 

involved, the link is indeed quite fast.  System synthesis show a PLB clock frequency of roughly 120 MHz 

which can be used to estimate performance in time from cycle performance in section 10.3.  

 

Work on the MPEG transcoder case has suffered from time limitations in this thesis. As the inverse scan 

module from section 9.1 depended on a set of large LUT based register files it was decided to have a 

look at how to handle requirements for special cells as part of a reconfigurable module. A correctly 

simulating controller pair solution has been designed to handle migration of the RAM module part of the 

MPEG-4 decoder. Although it is an obvious solution it provides flexibility for reconfigurable modules. A 

great risk is limitations due to the bandwidth of the reconfigurable interface however. Such elements 

should be considered when tuning the reconfigurable interface.  

 

Much of the work in this thesis is weakly related to earlier work done by Sverre Hamre in [4]. As a result 

it was not prioritized to extend the originally proposed HWOS but rather build a prototype including 

functionality developed in this thesis. It is emphasized that that the HWOS in only a template as there 

are many dependencies and factors to consider when developing a full feature version. Dynamic 

memory allocation can provide a flexible API to external applications when using a cache based backend 

bridge. Considering HWOS performance, shown in table 10.3.2.4, it can be seen that delays are quite 

large compared to device driver and kernel module calls in 10.3.2.2 and 10.3.1.1 respectively. Memory 

protection and other features might further reduce system throughput. It is implied that a compromise 

of security, functionality and performance must be made.  

Use of Xilinx ISE to create reconfigurable modules has been applied in this thesis. Results show that it 

can radically improve design time compared to building a full system for the purpose of extracting 



57 

 

reconfigurable modules. No formal time comparisons have been done but the example comparator 

from section 9 took roughly 5 minutes to build in ISE whereas a Platform Studio flow would likely require 

30-40 minutes. Consistency must be verified thoroughly when separating reconfigurable module design 

from the system itself though. 

 

Performing run time reconfiguration with a synchronous basis using the framework for self 

reconfiguration fails however. This was also the assumption when testing as the framework deals solely 

with LUTs. In the theory section of [3] it is described how there are separate frames in the bitstream for 

routing of clock signals. As noted in section 9 the clock signal does indeed behave in a different way than 

ordinary signals as it will not be routed through bus though it might be possible to hack such a mapping. 

Replacing the multiplier with the comparator with run time reconfiguration seems to fail completely as 

all outputs take the static value 1. Inserting the asynchronous adder seems to produce less corruption 

however. Although reconfigurable module design in Xilinx ISE should be demonstrated with a working 

example this was not done. [6] has showed correct reconfiguration with an asynchronous basis and the 

NCD files created with Xilinx ISE in this thesis suggest that there is nothing wrong with the ISE design 

flow. Reconfiguration of synchronous designs seems to fail because the clock signal is distinguished from 

normal signals, which is not handled by the framework for self reconfiguration.    

 

12: Conclusion 

By analyzing requirements and decomposing it into components, a fast link for hardware-software 

communication for intentional use in a reconfigurable system has been created. Most alternatives have 

been evaluated through implementation. Though the implementation process is time consuming it has 

provided accurate metrics for deciding which branches to follow. This thesis claims that a mixed shift 

and addressable register architecture is the best choice for reading and writing data to a reconfigurable 

module. Furthermore it has been shown that a cache-controller backend can provide good speedup for 

hardware-software intercommunication.  A software-to-hardware API for the developed hardware 

components has been provided through Linux device drivers and a HWOS template as a top level entity. 

A separation of applications from accelerator hardware and system mechanisms has also been 

accomplished through the HWOS.  

 

Implementation on a Suzaku-sz410 board has confirmed that the system and its parts are working. That 

said some components of the communication framework have been designed without a very thorough 

pre-analysis. Primarily this is the case for the HWOS where there might be much to gain by proper 

analysis and design.  

 

Design of reconfigurable modules using Xilinx ISE has been demonstrated. Run time reconfiguration of 

synchronous reconfigurable modules has been shown to fail. As the clock signal is distinguished from 

regular signals, support for reconfiguration of clock networks must be added to the framework for self 

reconfiguration to enable synchronous reconfigurable modules. 
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13 Further work 

Sverre Hamre’s framework for dynamic reconfiguration should be merged with the functionality of the 

HWOS developed in this paper. As mentioned in [3] the framework should be used carefully as it 

potentially can destroy FPGA chips. It is also fronted that some more work should be done as some 

functionality is not implemented or incomplete like reconfiguration of clock networks. The HWOS 

template developed in this thesis is as mentioned incomplete and unpolished. Its primary objective is to 

act as an application interface and lacks parts for managing run time configuration. In many aspects it is 

not thoroughly designed which opens for improvements and modifications.  

  

Another branch of work is combining the hands on dynamic reconfiguration with AHEAD’s NOC project. 

As of now the hardware-software communication infrastructure assumes a direct system bus 

connection between the backend and the processor. In order to be able to use the developed backend 

architecture with a NOC framework, a translation layer is needed to replace system bus connections. 

Although the concept might be straight forward this will probably require a fair amount of work.  
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