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When recording several instruments in one room, there is often a problem
with loud instruments: The sound from these instruments is recorded not only
by "their" microphones, but also by one or more of the other instruments’
microphones. This is termed "acoustic crosstalk". The intention of this project
is to study whether adaptive filtering can be used to reduce such crosstalk.
Adaptive filtering may be used to to model the impulse response (of the room)
between the microphone of a loud instrument and the other microphones. The
unwanted signal from the loud instrument in these microphones may then
be reproduced, and by subtracting it from the other microphone signals, the
crosstalk may be cancelled. The student should study which parameters are
important for such a cancellation to be achieved, and whether it could be
practically possible to implement this in a sound mixer for use at concerts or
in a studio.
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Abstract

In this work, the main task has been to investigate whether adaptive filtering
techniques can be used for the cancellation of acoustic crosstalk between
channels in a sound mixer. Emphasis has been placed on applications for
musical instruments.

In a setting where one wants to record two or more instruments in the same
room, one usually places a microphone close to each instrument, hoping
that that instrument will dominate the sound field that is picked up by the
microphone. Never the less, there will inevitably be some "leakage" of sound
from the other instruments, which is also picked up by the microphone. This
is an example of acoustic crosstalk.

In this work, adaptive filtering is investigated as a way to cancel such crosstalk.
LMS-type algorithms are used to try to estimate the impulse response between
the microphone closest to an instrument (the "reference microphone") and
a microphone further away (the "room microphone"). This is nicknamed a
"mic-to-mic" impulse response. If this impulse response can be estimated, the
crosstalk in the room microphone can be estimated by filtering the signal from
the reference microphone with the impulse response estimate. The modelled
crosstalk can then be subtracted from the room microphone signal, thus
cancelling the crosstalk partly or completely, depending on the accuracy of
the estimate.

A theoretical study was done to determine whether a "mic-to-mic" impulse
response exists, and whether the corresponding filter would be stable and
causal. It was found that such a filter can be guaranteed if the impulse response
between sound source and reference microphone is minimum phase. In an
experiment, the impulse response between a loudspeaker and the reference
microphone in a small, heavily damped room was found not to be minimum
phase, even though the reverberation time was only 0,1 seconds and the
microphone was standing 30 cm from the speaker. This suggests that few
real rooms will fulfill the minimum phase criterion. Never the less, using the
method described above, substantial damping of the crosstalk was found to be
possible in many different cases.
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A block-based LMS (least-mean-squares) adaptive algorithm, implemented
in the frequency domain, was chosen as the adaptive algorithm for use in
experiments. This algorithm was called the Frequency Block LMS (FBLMS)
algorithm. The implementation in the frequency domain had two advantages:
The convolution and correlation operations needed in the update of the
adaptive filter could be computed very efficiently, and a frequency-dependent
step size could be utilized to decorrelate the input signals and speed up
convergence.

The method used in most of the work was termed "learn and freeze" – meaning
that the adaptive filter first goes through a learning sequence, after which the
filter coefficients are held constant. This method has the advantage of the
final filter being linear and time-invariant. It is also quite easy to evaluate
the performance of the adaptive algorithm when this method is used. An
experiment revealed that although a high degree of crosstalk cancellation is
possible using this method, even small changes in the actual impulse reponse
in the room will result in audible fluctuations of the residue crosstalk.

A second method, termed the "continuous update" method, was also looked
into. This method is based on continuously updating the filter coefficients of
the crosstalk cancellation filter – equivalent to letting the learning phase of
the learn and freeze method continue indefinitely. Several challenges of this
method were pointed out. A simulated experiment was also conducted, and
this revealed that so-called "doubletalk" (when other sound source are playing
in addition to the one producing crosstalk) may give rise to unwanted distortion
of the impulse response estimate and corresponding unwanted sound artifacts.
The method is still seen to have potential, if a suitable doubletalk detector can
be implemented to slow down or stop adaptation during doubletalk segments.

A loudspeaker playing white noise was used as a reference sound source,
representing an approximate "best case". In a small heavily damped room,
the maximum achieved damping of the crosstalk from this source was
approximately 35 dB. This was achieved in the 500-1000 Hz octave bands, while
damping was generally somewhat lower in bands above and below this. It was
suggested that low-frequency background noise is the cause of less damping
in the low-end of the frequency range, while time variance is the cause of less
damping in the higher frequencies. Similar experiments in a larger, "ensemble"
room resulted in maximal damping of approximately 27 dB, with less damping
in the high and low end also in this case. Theoretical calculations of the
maximally achievable damping were shown to be much more accurate for the
larger ensemble room than for the small, damped room.

Measurements of the achievable crosstalk was also done for several musical
instruments in the two rooms mentioned above. In general, in was found
that the achievable reduction of crosstalk was quite similar in both the small,
damped room and the larger ensemble room, as long as filter length and
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adaptation time was adjusted to account for the different reverberation time
of the rooms.

For many of the musical instruments, there was substantial crosstalk
cancellation only in a few octave bands. These were most often the bands in
which the instruments were able to radiate the most energy. It was suggested
that the increased signal-to-noise ratio in these bands made a higher degree
of crosstalk cancellation possible, and also that such high-energy bands are
"prioritized" by the adaptive algorithm, to minimize the overall error. Complex
directivities and a high degree of time variance are also suggested as reasons
for poor crosstalk reduction in some cases, especially in high frequency bands.
It was also pointed out that if there is crosstalk reduction only in a limited
frequency range, the spectrum of the remaining crosstalk will be changed,
making it sound "unnatural" in some cases. This problem was also illustrated
through sound examples.

In some of the experiments using musical instruments as sound sources,
measurements were done of both a "calm" and a "fast" musical playing style.
Crosstalk cancellation was generally somewhat better when the "fast" style
was used. It was suggested that this is due to the "fast" style resulting in an
input signal to the adaptive algorithm which is less self-correlated.

The results of the crosstalk cancellation method using adaptive filtering were
quite variable, with results depending strongly on what kind of sound source
was used. For many of musical instruments, crosstalk was only possible in a
few low-frequency octave bands, while substantial damping was possible across
most frequency bands for a loudspeaker playing white noise and an electrically
amplified guitar. This indicates that the methods investigated in this work
may not be usable for any sound source in a practical application (like a sound
mixer), but that much can be gained in some cases. The sound sources that
seem to be yield the best results are those that are completely stationary, like
a loudspeaker or a guitar amplifier.
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1
Introduction

Background and basic idea

The use of several microphones to record several musical instruments is
common in many situations - most notably in recording studios and on stage.
Often one aims to record only one instrument per channel, and to reject
"leakage" of sound from other instruments into the microphone - this gives the
sound engineer maximum flexibility for mixing all the instruments into a mono,
stereo or multichannel output. The leakage of sound "across the channels" is
called "acoustic crosstalk". In a recording studio, a very effective way to avoid
this is to separate each instrument physically – to put each musician in their
own booth, and using headphones to make them hear each other.

Unfortunately, this approach is usually not practically feasible on stage,
although screens of plexiglass are sometimes used around for example drums
[23]. Here, all the musicians are in the same room and relatively close to each
other, and the levels of acoustic crosstalk are naturally quite high. One way to
reduce crosstalk in this case is to use directional microphones [9]. By aiming a
directional microphone towards the sound source one wants to record, sounds
coming from other directions (like sound from other instruments or unwanted
reverberation) can be rejected to some degree.

In some cases, the use of directional microphones is not enough. It may not
be possible to aim the microphone away from the interfering sound source, or
the unwanted sound may be so strong that the microphone rejection off-axis
does not provide enough damping of the crosstalk. But are there other possible
ways to reduce unwanted crosstalk further?

What is described as an "interfering" sound source above is of course only
interfering as crosstalk – usually this sound source is also recorded with its own
microphone to become part of the overall mix. If we assume that we are able to
record this sound source without too much crosstalk from other instruments,
we actually have a separate recording of the sound that we want to remove. So
can’t we just subtract it from the recording with crosstalk? Unfortunately we
can’t, because the crosstalk is both scaled, delayed, and mixed with reflections
from walls and other objects (reverberation). In addition to this, different
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microphones and their positions may also introduce differences between the
recorded sound and the crosstalk. In order to remove the unwanted crosstalk,
we must filter the direct recording of the interfering sound source in a way
which makes it as similar as possible to the crosstalk. Since it is impossible
to make a standard filter which can be used for any stage and microphone
configuration, the filter has to be adjustable. When a model of the crosstalk
has been calculated, it can be subtracted from the signal containing crosstalk,
leaving only the wanted signal.

In this work, we will look into the possibility of using adaptive filtering
techniques to adjust such a filter to the situation and thereby reduce crosstalk.
The adaptation of the filter and the filtering operation itself can be performed
in software, built in as part of a digital mixer. In this way, crosstalk levels in
"live" sound recordings can be reduced in the sound mixer rather than in the
room.

Related work

In telecommunications, and especially concerning teleconferencing systems, the
problem of acoustic crosstalk has been an issue for several years. In a telephone
system, there is a microphone and a loudspeaker at each end. If the sound
from the loudspeaker, conveying a message from the far end, is recorded by
the microphone at the near end, the speaker at the far end will hear this
as an echo of himself. This is especially a problem in teleconferencing and
“speaker mode" in mobile phones. Using adaptive filtering, the loudspeaker
sound recorded by the microphone can be estimated and subtracted, so that
only the near-end speech is sent back. [8]

The problem of acoustic crosstalk cancellation is also one encountered when
trying to use binaural techniques using loudspeakers, and not headphones.
One possible use for this is in virtual reality applications. [12] In this case one
wants to control which signals arrive at each of the listener’s ears, completely
independently. To do this, the loudspeaker on one side must both convey the
signal intended for the ear on the same side, and also a cancellation signal to
cancel the sound from the other speaker. This problem is solved by pre-filtering
the loudspeaker signals with crosstalk cancellation (CTC) filters . [12]. For
use in a virtual reality environment, these filters must be dynamically updated
using both a database of head-related transfer functions (HRTFs) and a head-
tracker.

It has already been mentioned that in order to reduce or cancel crosstalk,
a filter has to be adjusted to model this crosstalk. One way to do this
is to estimate the impulse response of the system using the sound from a
musical instrument as the input signal. This may be desirable in other
applications as well; for example, if one wants to perform an impulse response
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measurement of a sound system immediately before or during a concert, a
standard measurement signal like an MLS signal or a sinusoidal sweep will be
annoying to the audience. Using a music signal, the measurement may be done
without the audience noticing. A modification to the software measurement
tool EASERA has been developed to do this. In this approach, the impulse
response is estimated directly by transforming input and output signals to
the frequency domain, performing elementwise division and transforming the
result back to the time domain. Experiments show that this method is able
to produce results comparable to those of MLS or sweep measurement signals
if the measurement signals are bandpass filtered to remove content below 100
Hz and above 3-9 kHz. Music signals do not seem to have sufficient energy at
the low and high end of the audible frequency range (approx. 20 Hz - 20000
Hz) to produce reliable results. So far, only recorded music has been used, but
the goal of the developers is to be able to use actual instruments for real-time
measurements. [1]

These examples illustrate that both adaptive filtering, acoustic crosstalk
cancellation and the use of music signals to estimate impulse responses are
all established as fields of study – but in this work, they will be combined in a
way which has not been studied before (to the best of the author’s knowledge).

Contents of the report

The remainder of this report starts with chapter 2 explaining the theoretical
background of adaptive filtering - by introducing the concepts of reference,
desired and error signals, the mean square error and its “performance surface",
and a gradient search of this surface. The basic LMS (least-mean-squares)
algorithm is then described, followed by descriptions of various modifications
to this algorithm. The theoretical section concludes with explaining a couple
of parameters used to measure the performance of an adaptive algorithm, and
also mentioning how reverberation time in rooms and mode distribution in
instruments may affect this performance.

Chapter 3 describes two different approaches to use of adaptive filtering for
crosstalk cancellation: To first estimate the impulse response between two
filters, and then keeping the filter coefficients constant (termed the “learn and
freeze" method) – or to continually update the filter coefficients. Both methods
have been investigated in this work, although most of the results are produced
using the learn and freeze method.

In chapter 4, most of the practical aspects of the measurements are described:
The measuring equipment and how it was used, and also what kind of rooms the
measurements were done in. General descriptions of the calculations needed
to produce the results are also included.
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The results of the measurements are presented in chapter 5. These are mainly
plots of the performance of the crosstalk cancellation for various instruments
(given as damping in octave bands), together with plots of the effect spectra
of the instruments. Measurements were done in two different rooms, and
the results from these are divided into two different sections, together with
measurements of the signal-to-noise ratios for these rooms. Several other
measurements concerning the crosstalk cancellation are also presented; A
comparison of two different adaptive algorithms, a study of the influence of
microphone directivity and type, perceptual effects of different filter lengths, a
test of the minimum phase criterion for a measured impulse response, and
the results of various simulated experiments. The chapter concludes with
descriptions of several sound examples which are presented together with the
report.

The results are discussed in chapter 6, and the conclusions are summed up in
chapter 7. Relevant MATLAB code has been put in appendix A.
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2
Theory

Adaptive filtering techniques have found their use in several areas. As was
mentioned in the introduction, they are often used to reduce crosstalk levels in
telephony, but they are also used in for example control systems (an example
of this is the Kalman filter).

In 1959, Bernard Widrow introduced the least-mean-square (LMS) algorithm.
This has become one of the most widely used and well known of the adaptive
algorithms, mostly because of its simplicity and robustness[14]. In time, several
modifications and additions were made to the original algorithm, yielding
algorithms which were more computationally effective or better suited to
certain needs. LMS-style algorithms are still the most common in applications
where adaptive filtering is used.

In this chapter, we will first introduce the signals and notation involved in a
simple use of adaptive filtering. Then, the concept of the mean square error,
its corresponding "error surface", and the gradient search of this surface is
described, before the basic LMS algorithm is introduced. Following this are
descriptions of a couple of modified LMS algorithms. Then, the concept of
system distance is explained, together with the "damping parameter" ERLE
(Echo Return Loss Enhancement). Both of these are parameters which
describe the adaptive filter’s performance. Finally, a note is included on how
the distribution of modes in a musical instrument may affect the adaptive
algorithm.

2.1 Signals: Reference, desired and error

2.1.1 Overview

In figure 2.1 we see a schematic of the signals involved in a simple use of
adaptive filtering. A sound source emits sound into the room, and the sound
is recorded by two microphones in different positions. One microphone is
placed quite close to the sound source, the other further away. The sound
that reaches the microphones is a sum of direct sound from the source and
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2 THEORY

various reflections from the walls. The signal from the close microphone,
x(n), is called the reference signal. This microphone will be referred to as
the reference microphone. x(n) is filtered with the filter w(n), which outputs
the signal d̂(n). This signal is an estimate of the "desired" signal d(n) coming
from the other microphone. This microphone is called the room microphone.
d̂(n) is subtracted (sample by sample) from d(n), resulting in the error signal
e(n). Both x(n) and e(n) are input to an adaptive algorithm which continually
updates the filter coefficients. The adaptive algorithm will try to make the
estimated signal d̂(n) as similar as possible to d(n) by adjusting the filter
weights to minimize the error e(n).

A/D A/D

w(n)

Adaptive 
algorithm

+
-

x(n) d(n)

e(n)

d̂(n)

Ref.
mic.

Room
mic.

(to mixer) (to mixer)

Figure 2.1: Overview of the signals involved in adaptive filtering
used for crosstalk cancellation.

2.1.2 Notation

The notation chosen in this report is as similar as possible to the notation
found in most of the literature on adaptive filtering:

6



2.2. Mean square error

x(n) is a column vector consisting of the N last input samples, with the most
recent sample as the first element:

x(n) = [x(n) x(n−1) . . . x(n− (N−1))]T (2.1)

We will assume that the filter is causal and FIR, meaning that the output is
a linear combination of current and past input samples. w(n) is a length N
column vector of the filter weights at sample time n, with the first element
being the weight for the most recent sample:

w(n) = [w0(n) w1(n) . . . wN−1(n)]T (2.2)

Thus, the output d̂(n) from the filter can be written both in the usual
"convolution"-style way,

d̂(n) =
N−1∑
l=0

wl(n) · x(n− l) (2.3)

or as a matrix product,

d̂(n) = xT (n)w(n) (2.4)

We will use the latter notation.

2.2 Mean square error

The error signal e(n) is given by

e(n) = d(n)− d̂(n) (2.5)

and the mean square error is defined as

ξ = E[e2(n)] (2.6)

In many applications, the adaptive filter is adjusted to minimize this mean
square error, which is the same as minimizing the average power of the error
signal [21, chapter 2]. By inserting equations 2.4 and 2.5 into 2.6 we get

ξ = E
[(
d(n)− xT (n)w(n)

)2] (2.7)
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2.2.1 Performance surface

We see that ξ is a quadratic function of the filter weights. Thus, ξ is a surface in
N-dimensional space with only one minimum, in the same way that a function
f(x) = ax2 + bx+ c also has only one minimum. This minimum is defined by
the optimal filter weights w0. If both x and d are stationary, these weights are
found to be (the Wiener-Hopf equation) [21]

w0 = R−1P (2.8)

where R is the autocorrelation matrix of the input signal,

R = E[x(n)xT (n)] (2.9)

and P is the correlation between the input vector x(n) and the current sample
of the desired signal, d(n).

P = E[d(n)x(n)] (2.10)

2.2.2 Gradient search

In order to find w0 from some arbitrary starting point, we need an algorithm
that will update the filter weights in the direction of w0, on average. One
method for doing so is the "method of steepest descent". As an analogy, we
can picture a landscape with a minimum - a valley - that we want to get
to. Unfortunately there is zero visibility because of fog. One way of finding
the bottom is to just start walking downhill, in the direction of the steepest
descent, one step at a time. This will not necessarily bring us to the bottom
along the shortest possible path, but we can be sure to get there eventually.

We usually do not know the performance surface of ξ, (it is "covered in fog", to
follow the analogy), so in the same way we try to update the filter weights in
the direction of steepest descent. We know from calculus [22] that the gradient
∇ξ at any given point on the surface is a vector which points in the direction
of the steepest ascent, so naturally we do the update in the direction of the
negative gradient, −∇ξ.

The gradient is defined as

∇ξ =
∂ξ

∂w
=
[
∂ξ

∂w0

∂ξ

∂w1
. . .

∂ξ

∂wN−1

]T

(2.11)

and for each update step, we update the filters with
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2.3. The LMS algorithm

w = w − µ̃ · ∇ξ(n) (2.12)

where µ̃ is the "step size".

2.2.3 Eigenvalue spread of the correlation matrix and its effect
on convergence rate

The nature and speed of the convergence of a gradient search is determined
by the specifics of the algorithm and the shape of the performance surface.
The latter is again determined by the correlation matrix R of the input signal
(mentioned in section 2.2.1). The rate of convergence is seen to be dependent
on the condition number or "eigenvalue spread" of this matrix [14, chapter
10.3].

The condition number X (R) of the matrix R is defined as the ratio of the
largest eigenvalue of the matrix to the smallest,

X (R) =
λmax,R

λmin,R
(2.13)

The condition number is a measure of the eigenvalue spread, that is, what kind
of magnitude range the eigenvalues span. It can be shown that the convergence
rate is approximately inversely proportional to the eigenvalue spread. This
means that the larger the eigenvalue spread is, the longer it will take for
a gradient search algorithm to converge. The individual convergence rates
of each filter weight wi are also inversely proportional to the corresponding
eigenvalue λi. Thus, the algorithm will find filter weights corresponding to
large eigenvalues relatively fast, and then use a long time to estimate the
weights corresponding to smaller eigenvalues [14, chapter 10.3].

Since each sample of white noise is uncorrelated, the corresponding correlation
matrix is diagonal, with each entry equal to the power of the signal. This makes
all the eigenvalues equal, and the eigenvalue spread is 1, the minimum value.
Thus, white noise is the ideal input signal for a steepest descent algorithm.
For other, more correlated inputs, the eigenvalue spread is larger, and the
convergence rate may be much slower, depending on the initial conditions [7].

2.3 The LMS algorithm

2.3.1 The basic algorithm

As we have seen, one way of finding the minimum squared error is to follow
the gradient down in steps into the "bottom of the bowl" of the error surface

9
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ξ = E[e2]. An expression for ξ is usually not available, and it has to be
estimated from the data at hand. The LMS (Least Mean Square) algorithm
simply sets the estimate of the mean square error equal to the instantaneous
error [21]

ξ̂(n) = e2(n) =
(
d(n)− x(n)T ŵ

)2 (2.14)

which gives the gradient estimate

∇̂(n) =
[
∂e2(n)
∂w0

∂e2(n)
∂w1

. . .
∂e2(n)
∂wN−1

]T

= 2 · e(n) ·
[
∂e(n)
∂w0

∂e(n)
∂w1

. . .
∂e(n)
∂wN−1

]T

= −2 · e(n) · x(n)

(2.15)

where in the last transition we have used that

∂e(n)
∂wk

=
∂

∂wk

(
d(n)−

N−1∑
l=0

wl(n) · x(n− l)

)
= −x(n− k) (2.16)

The gradient filter update equation becomes

ŵ(n+ 1) = ŵ(n)− µ̃ · ∇̂(n)
= ŵ(n) + µ · e(n) · x(n)

(2.17)

where the "step size" µ = 2µ̃ is a gain constant that regulates the speed of
adaptation. It should be noted that the estimate of ξ in equation 2.14 is not
very accurate, and the algorithm will suffer from substantial "gradient noise".
Still, the filter update equation has a low-pass effect on this noise (with cut-
off determined by µ) [21, page 100], and on average the filter weights are
updated towards the optimum value w0. The LMS algorithm is quite simple
to implement, and has had widespread use because of this.

2.3.2 Stability and the step size parameter µ

The filter update equation 2.17 represents a feedback loop with potential
instability problems. In [7, section 9.4] it is shown that the LMS algorithm is
"convergent in the mean square" (ξ → constant as n→∞) if
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2.3. The LMS algorithm

0 < µ <
2

λmax
(2.18)

where λmax is the largest eigenvalue of the correlation matrix R. Since R is
not available, the tap-input power ‖x‖2 is suggested as a conservative estimate
for λmax. Thus the algorithm is expected to converge if µ satisfies

0 < µ <
2
‖x‖2

(2.19)

2.3.3 Normalized LMS

We can see from the LMS filter update equation, equation 2.17, that the rate
of adaptation will vary with the strength of the input signal x(n). To assure
an approximately constant rate of adaptation, the gradient estimate can be
normalized with the tap-input power [7, section 9.12]. The update equation
becomes

ŵ(n+ 1) = ŵ(n) +
µ · e(n) · x(n)
‖x(n)‖2

(2.20)

This can be seen as a normalization of µ. Whereas µ in the LMS algorithm has
the dimensions of inverse power, the normalization makes µnorm dimensionless.

µnorm =
µ

‖x(n)‖2
(2.21)

The normalization makes it a lot easier to pick a step size for which the filter
is stable, since equation 2.19 becomes

0 < µnorm < 2 (2.22)

This refined algorithm is called the Normalized LMS algorithm (NLMS). The
normalization makes it more suitable than LMS for use where the input signal
power is unknown and/or time-varying.

2.3.4 Block LMS

The Block LMS algorithm ("BLMS") is similar to the LMS algorithm, but
operates on blocks of data of length L. Thus, L samples of the error signal e
is calculated with the filter weights held fixed. The gradient is then estimated
from an average over the L samples:
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∇̂ =
1
L

L−1∑
m=0

x(kL+m)e(kL+m) (2.23)

where k is the block index. Naturally, this averaging gives a gradient estimate
which is more accurate than the "one-sample" estimate used in the basic LMS
algorithm (equation 2.15). The update equation becomes

ŵ(k + 1) = ŵ(k)− µ̃ · ∇̂(n)

= ŵ(k) + µB ·

(
1
L

L−1∑
m=0

x(kL+m)e(kL+m)

)
(2.24)

where µB is the effective step size. It is shown in [5] that the limits for the
effective step size in the block version of LMS are equal to the limits for the
basic algorithm,

0 < µB <
2

λmax
(2.25)

Using the same approximation for λmax as we did before, and letting ‖̃x‖
2
be

the average tap-input power over the block, we get

0 < µB <
2

‖̃x‖
2 (2.26)

Even if the upper bound of the step size is equal for LMS and BLMS, BLMS
has the disadvantage of only being able to update the filter weights once per
L samples. This means that even though BLMS has the advantage of a less
noisy gradient estimate, LMS may converge faster. Since the BLMS algorithm
only updates the filter weights once for every block, it uses a slightly smaller
number of mathematical operations than LMS. The BLMS algorithm is also
easier to parallelize, thus making fast implementations on parallel processors
possible [5]. But as we shall see in the next section, the BLMS can also become
very computationally efficient with a transformation to the frequency domain.

In [5], Clark argues that the filter length N and the block length L should be
the same. This recommendation has been followed in this work.

2.3.5 FBLMS: BLMS in the frequency domain

In a very useful article [19], Shynk presents an overview of several ways to
implement the BLMS algorithm in the frequency domain. Such algorithms are
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2.3. The LMS algorithm

termed Frequency Block LMS algorithms (FBLMS). We will describe one of
these here - the "linear-convolution overlap-save method".

All frequency-domain vectors are denoted with large caps, and time-domain
vectors with small caps. k is the block index. Let X(k) be the Fourier
transform of the 2L last input samples (the current block and the most recent
block):

X(k) = FFT
[
x(n−L) . . . x(n−1) x(n) . . . x(n+(L−1))

]T (2.27)

Ŵ(k) is the zero-padded Fourier transform of the filter weights:

Ŵ(k) = FFT
[
ŵ(k)

0

]
(2.28)

where 0 is a column vector of length L, so that W (k) also has a length of 2L.
The filtering operation in performed in the frequency domain,

Dest(k) = X(k)⊗ Ŵ(k) (2.29)

where ⊗ denotes an elementwise multiplication in this case. The zero padding
of the filter weights is necessary to avoid aliasing in Dest. The L output samples
for the current block in the time domain are found as the last L elements of

d̂(k) = IFFT[Dest(k)] (2.30)

The error is then calculated in the time domain,

e(k) = d(k)− d̂(k) (2.31)

and transformed to the frequency domain

E(k) = FFT
[

0
e(k)

]
(2.32)

The gradient estimate for a block is equal to the correlation between the input
signal and the error signal, as we saw in equation 2.23. Correlation can be seen
as a "reversed" convolution, and is also possible to perform in the frequency
domain. The gradient estimate is found as

∇(k) = first L elements of IFFT[X∗(k)⊗E(k)] (2.33)

where ∗ denotes complex conjugate. The filter update equation is
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Ŵ(k + 1) = Ŵ(k) + µ · FFT
[
∇(k)

0

]
(2.34)

It should be noted that this implementation of FBLMS is completely equivalent
to BLMS - the same filter weight updates are done for each block, and the same
error signal is produced. The great advantage of FBLMS is that the filtering
operation, which is done with convolution in the time domain in BLMS, can be
performed as elementwise multiplication in the frequency domain. The same
is the case for the correlation between the input and the error signal. Even
though the Fourier transformations represent some overhead, the total number
of mathematical operations can be greatly reduced when the filter lengths are
relatively large. It is shown in [7, section 10.2] that for an adaptive filter withN
weights, the complexity ratio CR (ratio of real multiplications needed) between
the FBLMS algorithm and the (non-block, time domain) LMS algorithm is

CR =
5 · log2N + 13

N
(2.35)

As an example, let us say that the filter is operating at a sampling frequency
of 12 kHz and has to model at least 0.3 seconds of the room impulse response.
This gives a filter length of 3600, which we round up to 212 = 4096 (the FFT
algorithm is most efficient for vectors with length equal to a power of 2). The
CR in this case is about 0.018, meaning that FBLMS is approximately 56 times
faster than LMS. In practice, other factors like memory capacity etc. will also
affect the performance of the algorithm, but FBLMS is still generally faster
than LMS when the number of filter weights is high [19].

In the next section, a modification to the FBLMS algorithm is described, where
the step size is controlled independently for each frequency bin. Note that
when the abbreviation FBLMS is used in the remainder of this report, it is the
modified algorithm that is meant, not the one described in this section.

2.3.6 The RLS algorithm and its FBLMS approximation

When the input signal is non-white and non-stationary (as is often the case
with music signals), the convergence rate of LMS algorithms is generally not as
good as for white stationary signals. This is due to the signal being correlated,
resulting in a large eigenvalue spread of the correlation matrix (see section
2.2.3).

The RLS algorithm (Recursive Least-Squares) [8] is a modification to the LMS
algorithm, which solves this problem by decorrelating (or "whitening") the
input signal. The decorrelation is done by multiplying the input signal with
an estimate of the inverse of its own autocorrelation matrix;
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2.3. The LMS algorithm

ŵ(n+ 1) = ŵ(n) + µ · Ŝ−1
xx · x(n) · e(n) (2.36)

where Ŝxx is the estimate of the autocorrelation matrix. The estimation and
inversion of this matrix and the subsequent matrix multiplication in the update
equation makes this approach very computationally demanding. The algorithm
also has considerable stability problems. Nevertheless, its performance is
generally much better than that of the LMS algorithm for correlated input
signals [8].

In [18] it is argued that the pre-whitening performed by the RLS algorithm
is approximately equivalent to normalizing each frequency component of x(n)
with an estimate of its own power. Using this approximation, the FBLMS
algorithm can be modified:

∇(k) = first L elements of IFFT
[
X∗(k)⊗E(k)

P(k)

]
Ŵ(k + 1) = Ŵ(k) + µ · FFT

[
∇(k)

0

] (2.37)

Here, the frequency representations of the input and error signal are normalized
with an estimate of the power in each frequency bin, P(k). This operation is
an approximation to the RLS multiplication with the inverse of the estimated
autocorrelation matrix in equation 2.36. One can also see this as introducing
a frequency-dependent normalization of the step size [7, section 10.2];

µi =
µ

P̂i

(2.38)

where µi is the step size for frequency bin i, and Pi is an estimate of the power
in the same frequency bin. The power spectrum can be estimated in many
ways, but one suggested method [19] is a first-order recursion:

P̂(k + 1) = β · P̂(k) + (1− β) · ‖X(k)‖2 (2.39)

where β is called the "forgetting factor". It should have a value reasonably
close to 1 for the recursion to have a smoothing effect of the average power
spectrum. This modified FBLMS algorithm is what will be referred to as "the
FBLMS algorithm" for the remainder of this report.
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2.4 System distance

The mismatch between the actual impulse response w(n) and the impulse
response ŵ(n) estimated by an adaptive algorithm is termed the "mismatch
vector" ∆w(n) [8]:

∆w(n) = w(n)− ŵ(n) (2.40)

The "system distance" is defined as the squared norm of the mismatch vector,
‖∆w(n)‖ [8]

‖∆w(n)‖ = ∆wT (n)∆w(n) (2.41)

2.5 The damping parameter ERLE

In order to compare the performance of different algorithms and settings, we
use the so-called "Echo Return Loss Enhancement" (ERLE) [2] (the name
is mostly used in telecommunications, where cancellation of echoes from the
loudspeaker(s) is very important). If we use the same notation as in figure 2.1,
with d(n) the crosstalk signal and d̂(n) the estimated crosstalk signal, ERLE
is defined as

ERLE = 10 · log10

‖d(n)‖2

‖d(n)− d̂(n)‖2
(2.42)

We see that ERLE is a measure (in dB) of the difference in energy of the signal
before and after subtraction of the modelled crosstalk. The better the crosstalk
cancellation works, the higher ERLE will be. Note that this parameter can
only be used for performance evaluation when there is only one sound source.
If there are two sound sources (one per microphone, as there will be in the final
application), the signals from the microphones will be a mixture of crosstalk
and desired signals, and ERLE can not be used to determine how much of the
crosstalk is cancelled.

2.6 ERLE and reverberation time

In theory, the impulse response of a room is of infinite length (although it
will disappear in the noise floor after a finite time). Therefore, a FIR filter of
finite length N can not model the impulse response perfectly. But what is the
maximum ERLE for a certain filter length N? In [2], the authors show that if
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one assumes a white noise input and and a perfect match of the N first filter
weights,

ŵl = wl, l = 0,1, ... , N-1 (2.43)

the maximum ERLE can be expressed as

ERLEmax(N) = 10 log10

∑∞
l=0w

2
l∑N

l=0w
2
l

(2.44)

If one also assumes an exponential decay of the room impulse response,

E [|wl|] = e−al (2.45)

equation 2.44 simplifies to

ERLEmax(N) = 10 log10

(
e2aN

)
=

10
ln 10

· aN (2.46)

The reverberation time T60 is defined as the time it takes for the sound in
a room to decay by 60 dB. Still assuming that the impulse response decays
exponentially, the parameter a is related to T60 and the sampling frequency
Fs:

20 log10

(
e−a·T60·Fs

)
= −60dB (2.47)

which we rearrange to

a =
3 · ln 10
T60 · Fs

(2.48)

If we put this into equation 2.46, we get

ERLEmax(N) = 60 · N

T60 · Fs
(2.49)

Note that ERLEmax is a linear function of the filter length N. As an example,
we can assume that a room has a reverberation time T60 = 0. 5s, and that
we use a sampling frequency of 44.1 kHz, which is common for music signals.
With this sampling frequency, the entire audible range (up to approximately 20
kHz) is covered. With a filter length of 4096, the maximum achievable ERLE
is about 11 dB. This shows that for even with a moderate reverberation time,
a very high number of filter weights is needed for music signals.
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2.7 Random mode distribution

It is well known that in the steady state after an excitation, the displacement
of a membrane or plate will be dominated by "modes". These are the result of
standing waves. In a circular membrane, the distribution of these modes are
a function of both distance from the center, r, and angle, θ. The solutions for
the displacement of the (m,n) modes in a circular membrane with a fixed rim
are given as [10]

ymn(r,θ,t) = AmnJm(kmnr) cos(mθ + γmn)ejωmnt

kmna = jmn

(2.50)

where Jm is a Bessel function of the first kind, of order m. a is the radius of
the membrane, and jmn is the n’th zero of the Bessel function.

The angular dependence of certain modes poses a problem when trying to
describe for example a drum. The drum head is a circular membrane with
a fixed rim, so modes like those described above will dominate the sound
radiation. Using one reference microphone close to the drum, and one room
microphone further away, one might hope to estimate a "mic-to-mic" impulse
response to cancel the crosstalk to the room microphone. But unfortunately,
the angular distribution (given by γ) of the modes in the drum head is
dependent on the initial conditions – that is, how the drum is struck. This
dependence makes the directivity of the drum time-dependent, and thus there
is probably no single mic-to-mic impulse response which will work for all
cases. Figure 2.2 illustrates this for one possible mode of the drum head,
with two different values for γ. Considering this, one can not expect crosstalk
cancellation to work perfectly for instruments where the mode distribution
may change. But in the case of a drum, it should work well for those modes
that have a rotational symmetry (no angular dependence).

+
-

(a)

+-

(b)

Figure 2.2: Two possible distributions of the (1,1) mode in a drum
head. Only the node line has been drawn.
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3
Methods utilizing adaptive filters for
acoustic crosstalk cancellation

In this section, two different uses of adaptive filtering for crosstalk cancellation
are described. The first one is nicknamed "learn and freeze" (section 3.1), with
the name referring to an approach of first estimating a crosstalk cancellation
filter, and then keeping the filter coefficients constant. A theoretical analysis is
done regarding the validity of an impulse response between a reference and a
"room" microphone, and an explanation is given as to why an adaptive filtering
approach is preferred rather than direct estimation of the impulse response
through Fourier transformations. The second method which is described
(section 3.2) is based on using adaptive filtering to continually update the filter
coefficients. This method is more flexible than the learn and freeze method,
but it also faces several challenges that will need to be handled in a practical
implementation. Some of these are discussed here. These challenges are also
part of the reason why the continuous update method has been given less
attention than the learn and freeze method in this work.

3.1 Method: "Learn and freeze"

Figure 3.1 shows a simplified schematic of an asymmetric acoustic crosstalk
situation. One instrument ("instrument 1") is very loud, and therefore there
is a lot of crosstalk from this instrument into the microphone of another
instrument ("instrument 2"). The problem of crosstalk from instrument 2 into
the microphone of instrument 1 is negligible, making this an "asymmetric"
case.

The learning phase of the learn and freeze method is shown in figure 3.2(a).
Here, instrument 2 is silent while instrument 1 plays. The signal from
microphone 1, x(n), is filtered through an adaptive filter, and the output of
the filter, d̂(n), is subtracted from the signal from microphone 2, d(n). The
resulting error signal, e(n), is fed back to the adaptive filter, which tries to
minimize this error.
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ACOUSTIC CROSSTALK CANCELLATION

Instrument 1
Instrument 2

Mixer

Mic. 1 Mic. 2

Figure 3.1: Illustration of "asymmetric" crosstalk, where one
instrument is much louder than the other.

Although there is only one sound source, the signals coming from the two
microphones will be different. This is due to many factors:

• A difference in distance from the sound source to the microphones will
cause a difference in delay and amplitude of the direct sound

• Sound due to reflections from the walls in the room ("reverberation")
will be different. If the room is not very reverberant, and instrument 1
is standing fairly close to microphone 1, we may assume that the signal
from microphone 1 is dominated by the direct sound. The signal from
microphone 2 will contain a mix of direct sound and reverberation.

• The microphones may themselves be different (two different models, or
the same model with different settings), influencing how the sound field
around the microphones is transformed to an electric signal

If the whole system that influences the microphone signals can be viewed as a
linear, time-invariant system, it can be described through an impulse response
w(n) that accounts for all effects of the system. The signal d(n) is then seen
as a convolution between the input signal x(n) and this impulse response. In
this work, this is nicknamed an "mic-to-mic" impulse response, since both the
input and the output signal are produced by microphones in the room.

The adaptive filter is of a FIR design, so the filtering operation is equivalent to
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Instrument 1

Adaptive filter
- +

x(n) d(n)

e(n)

Mic-to-mic 
impulse 

response

dest(n)

Mic. 1 Mic. 2

Instrument 2

(a) "Learning" phase of the filter.

Instrument 1

Estimated 
mic-to-mic 

impulse response - +

Mic-to-mic 
impulse 

response

Mixer

Instrument 2

Mic. 1 Mic. 2

(b) Operation after learning, with constant filter coefficients.

Figure 3.2: Illustration of "Learn and freeze" method.
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ACOUSTIC CROSSTALK CANCELLATION

convolution between the input signal x(n) and the coefficients ŵ(n) of the filter.
Seeing this, it should be obvious that the filter coefficients should be as similar
as possible to the mic-to-mic impulse response to produce the smallest possible
error. The adaptive filtering is really a an approach to system identification,
since the filter weights that produce the minimum error are equal to the impulse
response that identifies the system.

If the adaptive algorithm is allowed to run until the estimate of the impulse
response is deemed good enough, and then "freeze" the filter coefficients, the
crosstalk from instrument 1 can be reduced using the setup shown in figure
3.2(b).

If the estimate of the mic-to-mic impulse response is close enough to the real
impulse response, and this does not change significantly with time, this method
is a simple and stable way to reduce crosstalk. The method will be referred to
as the "learn and freeze" method in the remainder of this report.

Causality and stability of a mic-to-mic impulse response

Figure 3.3 shows a schematic of a sound source and two microphones. The
impulse responses from this sound source are h1 and h2, denoted H1(ω) and
H2(ω) in the frequency domain. A third impulse response, describing the
transfer function between the signal from microphone 1 and microphone 2, is
also plotted. It is this kind of response that the learn and freeze method tries
to estimate.

In the frequency domain, this mic-to-mic transfer function H3(ω) can be
described in this way:

H2(ω) = H1(ω) ·H3(ω) =⇒ H3(ω) =
H2(ω)
H1(ω)

(3.1)

which in the time domain becomes

h3(t) = h2(t)⊗ h1,inv(t) (3.2)

where ⊗ denotes convolution and h1,inv is the inverse of the impulse response
h1. So, in order to calculate h3, one must first invert h1. In [16], it is stated
that the only case in which the inverse of a room impulse response can be
guaranteed to be causal and stable is where the original impulse response is
minimum phase1. This again means that one can only be sure that a stable

1A digital filter is said to be minimum phase if all its zeros are inside the unit circle.
Minimum phase systems have the useful property that the phase response of the system can
be uniquely determined from the magnitude response [16].
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3.1. Method: "Learn and freeze"

and causal h3 exists as long as h1 is minimum phase. In [16], several different
synthetic impulse responses are analyzed for the minimum phase property,
and it is found that for rooms with walls of sufficiently low reflectivity (about
30-40 % in their experiments with a room of 4.5 x 3.8 x 2.4 meters, and a
source-receiver distance of 1.8 meters), the impulse response is minimum phase.
Although the authors could not say exactly which conditions where necessary
for a room impulse response to be minimum phase, their results imply that
the level of the direct sound has to be sufficiently high compared to the room
reverberation.

H1

H2

H3

Sound source

Mic. 1 Mic. 2

x(n) d(n)

Figure 3.3: Schematic of a sound source with room impulse
responses H1 and H2 to two different microphones, plus a "mic-
to-mic" impulse response H3.

This suggests that a perfect cancellation of the crosstalk through a mic-to-mic
impulse response is only possible for rooms with short reverberation times
and/or a very short distance between the sound source and the reference
microphone. Although a perfect cancellation may not be possible for cases
where these conditions are not fulfilled, the learn and freeze method may still
be able to reduce the crosstalk to some degree.

Problems of direct impulse response estimation

Although the learn and freeze method provides one way to estimate the mic-
to-mic impulse response, a more direct approach is also possible – but as we
shall see, this approach has its limitations.

Still using the notation of figure 3.3, we assume that the room microphone
signal d is a result of the reference signal x having been filtered through a
system with an impulse response h3(t) and a corresponding frequency response
H3(ω)
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d(t) = x(t)⊗ h(t) =⇒ D(ω) = X(ω) ·H(ω) (3.3)

where⊗ denotes convolution. From this, the impulse response can be estimated
directly:

H3(ω) =
D(ω)
X(ω)

h3(t) = F−1

{
F{d(t)}
F{x(t)}

} (3.4)

where F denotes Fourier transformation. This approach is an effective way
to estimate the impulse response, as long as one has access to two suitable
signals x(t) and d(t). Such a direct estimation of the impulse response would
be a computationally effective alternative to adaptive filtering for use with
the learn and freeze method. However, a problem arises if the magnitude
response of x(t), |X(ω)|, is very small (or zero) for some frequencies. Inverting
the response will cause a magnitude response "blow-up" at these frequencies
which is unwanted [11]. Such a magnitude response may both pose problems
to other parts of the system (such as loudspeakers and amplifiers) and sound
very unnatural to the human ear. Noise in the frequency ranges what have a
low signal-to-noise ratio may also be greatly amplified.

The magnitude response |X(ω)| may have small values for certain frequencies
because the sound source is not able to radiate sound efficiently at these
frequencies. This will be a typical problem if a musical instrument is used
as the sound source - the magnitude spectrum of such an instrument often has
several peaks and dips, and does not cover the entire frequency range.

The problems described above are the reason why adaptive estimation of the
impulse response has been chosen for this work, rather that the direct approach
based on Fourier transformation. An adaptive algorithm will adjust the filter
coefficients to produce the smallest possible error, regardless of whether the
signal x(t) covers the entire frequency range. Even if both x(n) and d(n)
were sinusoids, the approach would still work, without problems occurring in
the zero-energy frequency bands. In this way, the problem of the magnitude
response "blow-up" can be circumvented.

3.2 Method: "Continuous update"

In a practical application, for example in a concert venue, the learn and freeze
method has some obvious drawbacks: After the impulse response has been
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estimated, the filter coefficients are held constant, and thus the filter can not
adapt to changes in the actual impulse response. Such changes may be caused
by several factors; people or objects moving in the room, temperature and
humidity changes, and moving the microphones. Although such changes may
not be fatal to the result, it may lessen the achieved damping of the crosstalk.

An alternative to the learn and freeze method is to continuously update the
filter coefficients, to let the filter continuously adapt to changes in the system.
This is equivalent to letting the "learning" phase of the learn and freeze method
(see figure 3.2(a)) continue indefinitely. In this way, the adaptive filters’ ability
to "track" the changes in a system is fully exploited. This is also closer to the
"usual" application of adaptive filters for crosstalk cancellation, in which the
adaptive filter is constantly updated [8].

A schematic of the continuous update approach is shown in figure 3.4. The
filter coefficients are constantly updated, to minimize the power of the error
signal. If the estimation of the impulse response is good enough, crosstalk from
instrument 1 will be cancelled, and this error signal will only contain the sound
of instrument 2. In addition to being fed back into the adaptive algorithm,
the error signal is also be sent to the mixer, representing instrument 2. A
"doubletalk detector" is also utilized – this is discussed below.

In a system like a concert venue, where the system is constantly changing,
the continuous update should be expected to be superior to the learn and
freeze method. However, a practical implementation involves a set of serious
challenges:

• The adaptive algorithm is based on the assumption that the signal x(n)
and d(n) are correlated - the signal x(n) is the "original" signal from the
sound source, and d(n) is assumed to be the same signal run through
a system which the algorithm tries to identify. This works fine as long
as only instrument 1 plays, but if instrument 2 also plays, the signal
d(n) will be a mixture of sound from both instruments. This is termed
"double-talk" in the literature [3], usually meaning a situation where
both parties having a telephone conversation are talking at the same
time. Double-talk will interfere with the adaptation process and possibly
cause it to diverge. To counteract this, the signals from microphones
can be fed to a "double-talk detector", which will slow down or stop
the adaptation process (by adjusting the step size parameter µ) when
doubletalk is detected [3]. This situation is shown in figure 3.4. The
design of a robust double-talk detector is not trivial. Also, while people
having a telephone conversation usually speak in turns, people playing
in a band more often than not play at the same time – double-talk is
the norm, rather than an exception. This poses an extra challenge in an
application for musical instruments.
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Instrument 1

Adaptive filter
- +

x(n) d(n)

e(n)

Mic-to-mic 
impulse response 
(time-variant)

dest(n)

Mic. 1 Mic. 2

Instrument 2

Double-talk 
detector

Mixer

Figure 3.4: Schematic of the "Continuous update" method. Note
the double-talk detector necessary to control the adaptation step
size.

• The adaptation should also be slowed down or stopped when none of the
instruments are playing, to avoid letting background noise misadjust the
filter.

• While a "frozen" filter is linear and time independent, a running adaptive
filter is both nonlinear and time dependent, since its characteristics
constantly change as a function of the input signal. This makes its
behavior a lot less predictable – it may, for example, create unwanted
sound artifacts as a result of its coefficients changing.

• If a block-based implementation of an adaptive algorithm was to be used
to reduce computational complexity (as described in sections 2.3.4 and
2.3.5), the signal from microphone 2 would be delayed for at least the
time it takes to record a block for filtering. For a room impulse response,
where a block length of several thousand coefficients (or some hundred
milliseconds) may be necessary, this delay is probably far too long for a
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real-time application like a live performance. The necessary delay may
be reduced by using filter banks and performing adaptation in separate
frequency bands, since it is possible to operate with a lower sampling
frequency and thus also a shorter block length within each frequency
band [8].

• When using the learn and freeze method, it is possible to first make a
recording of sound from the two microphones, and then do the adaptation
"off-line", before the actual performance. In this case, the algorithm may
use as much time as it needs to do an adequate adaptation. Thus, the
requirements for speed are not as great as for the continuous update
method, since the latter will have to do the adaptation in real-time.

In addition to these challenges concerning implementation, the performance
of the continuous update method is also not possible to measure using ERLE,
as mentioned in section 2.5. The reason for this is that the residue signal,
d(n) − d̂(n), contains both the residue crosstalk of instrument 1 and the
recorded sound of instrument 2. Because of the contribution from instrument
2, the difference in energy before and after crosstalk cancellation is not a
good measure of the actual reduction of crosstalk from instrument 1. This
presented a problem in this work, as results from experiments should be based
on quantifiable measures, and not only on subjective impressions. Because
of this, most experiments were done using only one sound source, which is
equivalent to using the learn and freeze method, rather than using the more
realistic case of two sound sources, which is equivalent to the continuous update
method. In this way, the ERLE values calculated for the experiments could be
used as an objective measure of the achieved reduction of crosstalk.
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4
Description of experiments and equipment

In this chapter, the practical aspects of experiments and measurements
will be described. Section 4.1 lists all hardware and software used in the
measurements. The choice of adaptive algorithm for most experiments is also
explained. Then, section 4.3 describes the small, damped room in which most
experiments were done, and how the experiments here were conducted. Section
4.4 contains similar descriptions for experiments conducted in a larger room at
the music conservatory in Tromsø. Finally, sections 4.5.8 and 4.6 describe the
specifics of how ERLE and power spectra for the different instruments were
calculated.

4.1 Sound recording and processing

Audio recording, signal processing, adaptive filtering, performance analysis
and more or less everything else was performed on an Apple Powerbook G4
computer, with a 1.33 GHz processor and 768 MB of memory. The operating
system used was OS X 10.5.2.

The microphones used for the measurements were manufactured by AKG,
model C 414 B-XLS. These microphones are frequently used for professional
sound recording, both on stage and in studio, and cost about 10000,- NOK.
They have a large diaphragm (1 inch diameter), an adjustable high-pass filter
and the possibility to change directivity. The high-pass filter was used on some
recordings, to avoid low frequency background noise. The cutoff frequency was
then set to 40 Hz.

A pair of Shure microphones were also used for comparison. These were SM
57 and SM 58 dynamic microphones. The SM 58 is the standard microphone
for recording singing or speech anywhere in the world, while the SM 57 is
usually used for recording instruments. Both are quite inexpensive, costing
about 1500,- NOK.

An Dynaudio Acoustics AIR 15 active loudspeaker was used as a sound source
in some experiments. Figure 4.1 shows the setup of both an AKG microphone
and the loudspeaker during measurement of a reference signal.
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4 DESCRIPTION OF EXPERIMENTS AND EQUIPMENT

Figure 4.1: AKG C 414 B-XLS microphone and Dynaudio
Acoustics AIR 15 loudspeaker.

Preamplification and A/D conversion of the microphone signals was done using
an Apogee Ensemble audio interface [25]. Digital audio was transferred to the
computer with a sampling frequency of 44.1 kHz and a bit depth of 24 bits.

All audio was recorded using the freeware program Audacity, version 1.3.3
[24]. From here, audio was exported in *.wav format for further processing.
All filtering and subsequent analysis was performed using MATLAB, version
7.2.0.283 (R2006a).

Filtering algorithms were implemented as MATLAB functions. The LMS
algorithm was implemented as described by Widrow [21], and the NLMS
and FBLMS algorithms was implemented as described by Haykin [7]. The
MATLAB code for the FBLMS algorithm can be found in appendix A.

Although all the above algorithms were implemented and tested, the FBLMS
algorithm was chosen as the main algorithm for use in experiments (see
description in sections A and 2.3.6). The reason was mainly that this algorithm
was found to be the only one computationally effective enough to produce
results within a reasonable time (say, one adaptation for a sound clip of 30
seconds within a couple of minutes). A forgetting factor β = 0. 9 was always
used with the FBLMS algorithm.
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4.2. Reference sound source: Loudspeaker playing white noise

4.2 Reference sound source: Loudspeaker playing
white noise

A loudspeaker playing white noise was chosen as a reference sound source for
several measurements in this work. There were several reasons for this:

• Repeatablity: The exact same sound could be reproduced at the exact
same level, for several different positions and measurements. This rules
out any variation between results due to a change in the sound source.

• Immobility: While a hand-held musical instrument is very hard to keep
immobile, the loudspeaker does not move at all during measurements. In
this way, results are not influenced by movement of the sound source.

• Ideal signal: White noise is an uncorrelated, stationary signal, giving its
correlation matrix a minimum eigenvalue spread (see section 2.2.3). This
makes it an ideal input signal to an LMS-type algorithm.

All these factors should make the loudspeaker playing white noise an ideal
(or close to ideal) sound source. The white noise used in measurements was
generated and played by the Audacity program. The gain of the loudspeaker’s
internal amplifier could be set digitally, and this was set to -10 dB for all
measurements. During measurements, the loudspeaker was put on a stand
which was approximately 120 cm tall.

4.3 Measurements in the acoustic booth

Most experiments were conducted in an "acoustic booth" – a small, heavily
damped room – assembled at the institute of physics at the University of
Tromsø. Two pictures of this booth are shown in figure 4.2. The acoustic
booth was of a modular design, the "Premium" model produced by the
German company Studiobox [26]. Figure 4.3 shows the reverberation time
measurements supplied by Studiobox for a room similar to the one used,
with inner dimensions 240 x 180 x 225 cm (length x width x height). The
reverberation time is about 0,1 seconds above 250 Hz, and a little higher for
the lowest frequencies. The inner dimensions of the acoustic booth that was
used were 290 x 230 x 218 cm – a slightly bigger room than the one the
measurements were done for. Due to the larger volume, the reverberation times
of this room may be slightly longer, but they are probably still comparable to
those supplied by the manufacturer.
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4 DESCRIPTION OF EXPERIMENTS AND EQUIPMENT

(a) Outside. The acoustic booth is a "room inside a room". All
measuring equipment is operated from here.

(b) Inside. The walls and ceiling are
made of sound absorbents covered with a
thin fabric. Each panel is slightly angled,
to break up and deflect incoming sound
waves. Additional sound absorbents were
placed in the room to dampen it further.

Figure 4.2: Pictures of the acoustic booth used in many of the
measurements. The pictures are only for illustration purposes - the
equipment depicted was not used in this work.
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Figure 4.3: Reverberation times for the acoustic booth used for
measurements ("Studiobox Premium").

4.3.1 Measurement setup

All measurements for experiments with adaptive filtering were done in the
following way: A reference microphone was placed close to the sound source,
and one or more room microphones were placed somewhere else in the room,
further away from the source. A recording of the signal from each microphone
was done while the sound source played. Adaptive filtering could then be
performed on these recordings in MATLAB.

Most measurements in the acoustic booth were done for six different
microphone positions. The sound source was placed in two different positions
in the room, and the room microphone was placed in three different positions
for each of these. The distance between the two microphones was held at
120 cm for each measurement. Because of the differences between the sound
sources, it was not practically possible to place the microphones in exactly the
same place for all measurements. The microphones were placed as similarly as
possible to produce comparable measurements.

Recordings were done for six different sound sources: A loudspeaker playing
white noise, an acoustic guitar, an electrically amplified guitar, a drum, a male
person singing, and a trombone. The different sound sources were chosen on
the basis of what was available, all the while trying to represent as different
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kinds of sound sources as possible.

2 minute recordings were done in each position, these were each divided into
six segments of 20 seconds, and adaptive filtering was performed on each
segment. After various preliminary tests, segments of 20 seconds was deemed
long enough for the error envelope of most signals to reach a constant value.
ERLE values (see definition in section 2.5) for each segment were calculated in
octave bands from 63 Hz to 8000 Hz. With six placements and six segments,
there were 36 ERLE values in total for each octave band. The mean value and
standard deviation were calculated for each band. The reason for using both
different placements and several segments for each placement was to account
for two different kinds of variation: The statistical variation of results for
one given source-microphone placement, and the variation of results caused
by different placements in the room. Hopefully, the mean values calculated
from this are representative of the typical performance for the sound source in
question.

The signal-to-noise ratio (SNR) at each position was also measured, by first
recording 10 seconds of the background noise, and then recording 10 seconds
the loudspeaker playing white noise. The two segments were filtered in octave
bands, and the signal-to-noise ratio in each band was found as the difference
in energy between the two segments. Finally, the mean value and standard
deviation of the SNR in each band was calculated.

Figure 4.4 shows the two sound source positions and the six microphone
positions in the acoustic booth in a "bird’s eye" view. Although it can not be
seen in the figures, the reference microphone and the room microphone were
placed at a slightly different height (a difference of about 30 cm). This was
done to avoid having both microphones in a plane parallel to the floor and the
ceiling.

4.3.2 Synthetic impulse response

In order to simulate experiments in the acoustic booth, a synthetic impulse
response, as similar as possible to a real mic-to-mic impulse response, was
generated. It consisted of one perfect pulse accounting for the direct sound,
and an exponentially decaying tail of random noise, representing reverberation.
A MATLAB function made by Peter Svensson, creexpir (appendix A.2), was
used to generate this. Figure 4.5 shows an example of this, with the synthetic
and the real response plotted together.
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Figure 4.4: Approximate measurement positions in acoustic
booth. The figure on the left shows the first sound source position
and microphone positions 1-3, and the figure on the right shows
the second source position and microphone positions 4-6.
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Figure 4.5: Synthetic impulse response, plotted together with an
example of an estimated impulse response.
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4.4 Recording at the Music Conservatory

A series of recordings of different instruments were done in a medium-sized
ensemble room at the Music Conservatory at Tromsø University College.
Several students at the conservatory volunteered to be recorded playing their
instrument in this room. The room measured 8 x 6.5 meters. The height was
not measured, but was estimated to about 6 meters, yielding a total internal
volume of about 310 m3. One of the walls was partly covered with an absorbent,
which may explain a reverberation time which was perceived as fairly short for
the room’s volume.

Four microphones were set up in the room, as seen in figure 4.6. The center
microphone was used as the reference microphone, assigned to record the
direct sound of the instrument. The exact placement of this microphone
had to be adjusted to each player. Three other microphones, used as room
microphones, were placed around the room, each at a distance of 2 meters
from the reference microphone. These were all set 1.5 meters above the floor.
A cardioid directivity was used on all microphones. No high-pass filter was
used.

2 m

2 m

2,5 m

3,3 m

Instrument

8 m

6,5 m

2 m
Pos. 1

Pos. 2

Pos. 3

Figure 4.6: Schematic of instrument and microphone placements
used for recordings at the conservatory.

Figure 4.7 shows a picture of the room with all four microphones set up. Figure
4.8 shows one of the musicians standing by the reference microphone, playing
the clarinet.

The musicians were all asked to play two segments, each two minutes long. The
first one should be "calm", with long tones. The second one should be faster,
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Figure 4.7: Picture of the microphone set-up in the ensemble
room at the conservatory.

Figure 4.8: Student playing clarinet.
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with shorter, more staccato tones. The reason for making two such different
recordings was to study whether the playing style would affect the adaptive
algorithm’s performance. Some of the musicians had prepared two different
pieces of music, while others improvised or played scales. The instruments
that were recorded were: "Classical" (nylon string) guitar, double bass, violin,
clarinet and bassoon.

In addition to musical instruments, recordings were also done of the reference
sound source, the loudspeaker playing white noise. These recordings were done
in the same way as for the musical instruments, with one exception: Recordings
were done for two different distances between the reference microphone and
the room microphones; 1.2 meters and 2 meters. This was done to make the
measurements comparable to both those done in the acoustic booth (where the
distance was 1.2 meters), and the other measurements done in the ensemble
room (for which the distance was 2 meters, as already mentioned).

An approximate measurement of the reverberation time in the ensemble room
was also done, using the measurements of the loudspeaker playing white
noise. Using the original signal sent to the loudspeaker, together with the
3 recordings from the room microphones, the impulse responses between the
loudspeaker and these microphones were estimated. This was done by Fourier
transformation of the input and output signals, elementwise division, and
inverse Fourier transformation (the "direct" method mentioned in section 3.1).
The Schröder curve (backwards integration of energy) for each of these impulse
responses was calculated, and by a fitting a straight line to these curves, the
reverberation time1 of the room could be estimated, as described in [4].

Because of the longer reverberation time in this room, it was found that both
a longer filter and a longer adaptation time was needed for impulse response
estimation, compared to the acoustic booth. Because of this, each two minute
recording was divided into four 30-second segments. The learn and freeze
method was used on each of these, yielding a total of 12 results for all three
room microphones. Mean and standard deviation values was calculated based
on these 12 segments. The filter length used was 16384 (corresponding to
0.37 seconds at a sampling frequency of 44.1 kHz) for each segment. Some
preliminary tests were done before all segments were analyzed, to see which
value of µ seemed to give the best results. It was found that µ = 0. 1 was a
suitable value for the clarinet and the double bass, while µ = 0. 3 was suitable
for the guitar, violin and bassoon.

In the same way as for the acoustic booth, signal-to-noise ratios also were
calculated for the ensemble room, using a loudspeaker playing white noise as

1The reverberation time is defined as the time it takes for the envelope of a sound in the
room to decay with 60 dB.
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the sound source (see section 4.3.1).

4.5 Additional experiments

In addition to the experiments conducted to study the crosstalk cancellation
of various sound sources in the two different rooms, a few other, smaller
experiments were also conducted. These are described in the following sections.

4.5.1 Comparison of the LMS and FBLMS algorithms

In order to compare the NLMS and FBLMS algorithms (described in sections
2.3.3, 2.3.5 and 2.3.6), a simulated experiment was conducted, using a synthetic
impulse response. The impulse response is shown in figure 4.9.
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Figure 4.9: Synthetic impulse response used for comparison of
NLMS and FBLMS algorithms.

The algorithms were tested for two different input signals; gaussian white noise
and a recording of a guitar. The signals were first filtered with the synthetic
impulse response to create a room microphone signal, and then both the
original signal, x(n), and the filtered signal, d(n), were fed to the algorithms.
The length of the adaptive filter was set to 512 coefficients, equal to the length
of the synthetic impulse response. The sampling frequency used was 11025
Hz, and the step size (µnorm for NLMS, µ for FBLMS) was set to 0. 3 for both
algorithms. For a sound clip of 14 seconds, the calculations took about 10
seconds for NLMS and 0.5 seconds for FBLMS.
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4.5.2 Simulation of learn and freeze method in practical use

In most experiments in this work, the sound source was set up in the room
with a reference and microphone and a room microphone, a mic-to-mic impulse
response was calculated, and the resulting ERLE values calculated. This is
what is called the "learning phase" of the learn and freeze method (see section
3.1). These values should indicate to what degree crosstalk from the first sound
source could be reduced if an additional, second sound source was playing into
the room microphone. In most experiments, a second sound source was not
used, since the achieved crosstalk cancellation is not possible to measure in this
case (as mentioned in section 2.5). However, to illustrate the practical use of
the learn and freeze method, a few experiments were done to using two sound
sources, to illustrate how the learn and freeze method would work in practice.
Sound examples from these experiments were made, making it possible to at
least have a subjective impression of the actual achieved crosstalk.

The first of the experiments was set up using a loudspeaker playing white noise
as the first, crosstalk-producing sound source. The loudspeaker was set up in
the acoustic booth, with one microphone 30 cm from the loudspeaker and the
other 1 meter further away. Both microphones were AKG, with directivity
set to omnidirectional. First, a 30 second "learning" recording was made with
only the loudspeaker playing (white noise) and a person standing (but not
singing) close to the second microphone. The algorithm used was FBLMS,
with µ = 0. 2, β = 0. 9 sampling frequency of 44.1 kHz and a filter length of
8192. Second, a recording was made with the person singing in his microphone
simultaneously with the loudspeaker playing white noise. Afterwards, the
learning recording was used to estimate the impulse response between the
two microphones, and this estimate was subsequently used to reduce the white
noise crosstalk in the second recording.

A similar experiment was conducted at the conservatory, but with a double
bass as the crosstalk-producing sound source, and a violin as the second sound
source. This case is even closer to a "real application" than the experiment with
white noise and a person singing, since both sources are musical instruments.
The double bass player was placed at the reference microphone, and the violin
player was placed at the "Position 1" microphone (see plot of positions at the
conservatory in figure 4.6). First a "learning" recording was done, with only
the bass playing, and afterwards a recording was done with both instruments
playing together. The learning recording was used to estimate the mic-to-mic
impulse response, and this was then used to reduce the double bass crosstalk
in the second recording.
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4.5.3 Perceptual effects of different filter lengths

In section 2.6, it was found that for an exponentially decaying impulse response,
the theoretically maximum achievable ERLE was a direct function of the length
of the impulse response estimate. This suggests that a longer estimate will
always be better. A small experiment was conducted to study the effect of a
long estimate length for two different sound sources: A loudspeaker playing
white noise, and a drum. Recordings were done of both sound sources in
the acoustic booth, with equal distances to reference and room microphones
(equivalent to "position 1", plotted in figure 4.4). Example sound files were
also made for the drum, illustrating the result of the crosstalk cancellation.

4.5.4 Effects of microphone directivity and type

A small experiment was conducted in the acoustic booth to study the effect of
microphone directivity on the achievable crosstalk cancellation. A loudspeaker
playing white noise was used as the sound source, and recordings were made
with omnidirectional and cardioid microphone directivities. Since it was
possible to change the directivity of the AKG microphones that were used
for the experiment, measurements could be made of two different directivities
(omnidirectional and cardioid) without changing the measurement setup. In
this way, any observed changes could be guaranteed to be effect of the changed
directivity.

Measurements were made for three different cases: Both reference and room
microphone having a omnidirectional directivity, both microphones having a
cardioid directivity and facing the loudspeaker, and both microphones having
a cardioid directivity, with the reference microphone facing the loudspeaker
and the room microphone turned 90° to the side.

A recording of 1 minute was made of each setting, and the recording was
divided into six segments of 10 seconds each. ERLE values were calculated for
each segment, and then mean values and standard deviations for these were
calculated.

4.5.5 Simulated experiment with the continuous update
method

Although no "real-life" experiment were conducted with the learn and freeze
method, a simulated experiment was conducted, using a synthetic impulse
response. The experiment was set up as follows: White noise was used as the
signal generating crosstalk. The "raw" noise was used as the reference signal
x(n), while a room microphone signal d(n) was made by filtering the noise with
a synthetic impulse response. A double-talk signal (see description in section
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3.2) was also made, consisting of short segments of a recording of an electric
guitar, with periods of silence in between. This double-talk signal was added
to the room microphone signal before it was fed to the adaptive algorithm,
simulating that a guitar was playing into the room microphone.

The FBLMS algorithm was used for the adaptive filtering, with the step
size µ set to 0.5. Since the impulse response was known, it was possible to
calculate how the system distance of the filter (see section 2.4) varied during
the adaptation, that is, how large a difference there was between the correct
impulse response and the estimate of this response.

4.5.6 Testing the minimum phase property of the reference
microphone impulse response

As mentioned in section 3.1, the impulse response from the sound source to
the reference microphone should be minimum phase in order for the mic-to-
mic impulse response to be stable and causal. An experiment was done to
see whether an impulse response estimate obtained for "best-case" conditions
would fulfill this requirement.

A loudspeaker and a microphone were set up in the acoustic booth, with the
microphone facing the loudspeaker and standing approximately 30 cm from it.
This is similar to how the loudspeaker and reference microphone were set up
during all other experiments with the loudspeaker and white noise. A 10 second
recording was made of the loudspeaker playing white noise, and an estimate of
the impulse response from loudspeaker to microphone was calculated. This
was done by Fourier transformation of 10 seconds of the microphone and
loudspeaker signals, elementwise division, and inverse transformation back to
the time domain (described as the "direct method" in section 3.1).

Using MATLAB, a Nyquist plot was made of the resulting impulse response.
Such a plot is a polar plot of the frequency response, with the radius given by
the magnitude response and the angle given by the phase response. A Nyquist
plot can be used to indicate whether an impulse response in minimum phase
or not (see the description of the results in section 5.7 for further explanation).

4.5.7 Comparing noise input signals and their convergence
rates for adaptive algorithms

A simulated experiment was conducted to investigate the performance of the
FBLMS algorithm and the learn and freeze method when different kinds of
noise were used as input signals. Three noise signals were used; white and pink
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noise2, and white noise played by a loudspeaker and recorded in the acoustic
booth. The last signal was included to study the infulence of the loudspeaker,
the room and the microphone on the white noise, and what effects this would
have on its convergence rate.

Each of the signals were filtered with a synthetic impulse response to create
a room microphone signal, and then the FBLMS algorithm was used, with
identical parameters, on each signal pair. The synthetic impulse response was
similar to a real mic-to-mic impulse response in the acoustic booth (see section
4.3.2). The synthetic impulse response was also longer than the adaptive filter,
in order to simulate the "infinite length" of a real impulse response.

Three different length sequences were used for adaptation, one of 10 seconds,
one of 30 seconds and one of 60 seconds. With the 10 second sequence, the
adaptation process was aborted before it had reached a steady state - the error
signal envelope had not become constant for any of the signals. The 60 second
sequence was enough for the process to reach such a steady state for all of the
signals. The 30 second sequence is somewhere in between – a steady state was
reached for the "raw" noise signals, but not for the recorded one. Plots were
made of the resulting ERLE values for all the segment lengths.

4.5.8 Calculation of ERLE

For all measurements done using learn and freeze method, ERLE was
calculated as described in section 2.5. This means that first, the segment was
used to estimate the impulse response, and then the signal d̂(n) was produced
by filtering the x(n) signal through this estimate. The d(n) and d̂(n) signals
were then each filtered in octave bands, using Chebyshev type 2 bandpass
filters with 1 dB passband ripple and 80 dB stopband ripple. The width of
the transition bands was set to a tenth of the bandwidths of the corresponding
octave bands. ERLE was calculated as the difference in energy of these two
signals.

One may argue that using the same segment for doing both the estimate
and the calculation of ERLE might give an false impression of how well the
method works in general - the estimate might work well for one particular
segment, but not necessarily as well for other segments. A small experiment
was conducted to investigate this, without any clear conclusion – it seemed
that this method overestimated ERLE values somewhat in some cases, while
they were underestimated in others. Seeing this, the method of using the same
clip was still used, for practical purposes. See section 5.9 for details.

2Pink noise is noise with an energy density spectrum which is inversely proportional to
the frequency, resulting in a -3 dB decay per octave. The amount of energy in each octave
band is equal.
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4 DESCRIPTION OF EXPERIMENTS AND EQUIPMENT

4.6 Estimation of power spectra

The power spectra of the musical instruments were estimated for all the
measurements, both in the acoustic booth and in the ensemble room. The
estimations were done using Welch’s method [17], as it is implemented
in the MATLAB function pwelch(). Welch’s method splits the sequence
to be analyzed into smaller segments, uses a windowing function on each
segment, and calculates the power spectrum of each of these (the "modified
periodogram"). These periodograms are then averaged, producing an estimate
of the power spectrum with less variance than the individual periodograms. In
all calculations, a Hamming window was used as the windowing function, and
a 50% overlap was used between each segment. These are the default settings
of the MATLAB function.
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5
Results

In this chapter, the results of various experiments are presented. The first
sections describe several experiments that were conducted to test the possibility
of crosstalk cancellation in "real life". Later sections contain results from
experiments that are in some ways more basic in nature, but which have been
placed after the main results. This was done partly because the main results
are easier to understand to begin with, and partly because they illustrate some
of the reasons why the more basic experiments were done.

The first section (section 5.1) describes a small experiment where the
performance of the NLMS and the FBLMS algorithms is compared. The results
of this experiment contributed to the FBLMS algorithm being chosen as the
main algorithm for the rest of the experiments. Sections 5.2 and 5.3 present the
results of the main body of experimental work: A comparison of the crosstalk
cancellation performance for several different sound sources, both in a small,
damped room and in a large ensemble room. During these experiments, it was
found that the filter length of the adaptive filter could have various perceptual
effects. In section 5.4, an example of such effects is investigated further. An
experiment was also conducted to study the effect of different microphones and
their directivities. The results are presented in section 5.5. Following these
sections, which are all based on the learn and freeze method, is section 5.6,
which describes the results of a few simulated experiments with the continuous
update method. The minimum phase property, which was mentioned in section
3.1, has been tested for the impulse response of a loudspeaker and a microphone
in a small, heavily damped room. The results are presented in section 5.7. In
order to further investigate results that were obtained with white noise as the
input signal, a simulated experiment was done, comparing the performance
for different noise types. ERLE values both during adaptation and after
convergence were compared, and the results are shown in section 5.8. An
evaluation was also done of the method used for calculating the ERLE values
– this is presented in section 5.9.

For some of the experiments, sound examples were made to illustrate the
perceptual effects of the results. The sound files for these examples are supplied
together with this report. Note that these examples are best heard on a stereo
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5 RESULTS

or a pair of headphones of good quality – effects may not be as easily detectable
if the examples are played on, for example, laptop speakers.

5.1 Comparison of NLMS and FBLMS

As mentioned in section 4.5.1, a small experiment was conducted to compare
the performance of the NLMS and FBLMS algorithms. The experiment was a
simulated one, using a synthetic impulse response, and both white noise and a
recording of a guitar were used as input signals. Plots were made of the system
distance (see definition in section 2.4) of the filters during adaptation.

Figure 5.1(a) shows the system distance ‖∆w(n)‖ when the input signal is
gaussian white noise. It is clear that for this signal, the system distance grows
smaller linearly (in dB) for both algorithms. The NLMS algorithm converges
faster then the FBLMS algorithm. Both algorithms reach a "steady-state"
system distance of about −300 dB (which is extremely small), and it is assumed
that this is due to limited numerical accuracy.

Figure 5.1(b) shows the corresponding results when a recording of a guitar is
used as input. It is clear that with a more "realistic" input signal like this, the
convergence rate is much slower for both algorithms. The NLMS algorithm
converges faster than FBLMS, but reaches an almost constant system distance
of about 8.5 dB. In the start-up phase, the FBLMS algorithm has an almost
constant system distance, but after some time it drops below that of the NLMS
algorithm and reaches a value about 3 dB under the NLMS system distance.
Contrary to the white noise signal, the guitar signal probably has a large degree
of self-correlation, and as was mentioned in section 2.2.3, this leads to a slower
convergence rate. It may be that the smaller system distance achieved by
the FBLMS algorithm is due to its "decorrelation" of the input signal, which
is performed by normalizing the input signal with an estimate of the power
spectrum (see section 2.3.6).

This small experiment shows that for a fixed impulse response, the performance
of both the NLMS and FBLMS algorithms is strongly dependent on the input
signal.
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5.1. Comparison of NLMS and FBLMS
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Figure 5.1: System distance resulting from two different input
signals in a simulated experiment comparing the NLMS and
FBLMS algorithms. The line labeled ‘LMS’ actually represents
the NLMS results.

47
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5.2 Crosstalk cancellation performance for various
sources in a small, damped room using the learn
and freeze method

As described in section 4.3, several experiments were done in the "acoustic
booth", which is a small, heavily damped room. Although it is not an
anechoic room, the level of reverberant sound is relatively low compared to
the direct sound, and the reverberation time is very short. The resulting room
impulse responses should be both quite short and quite simple, and thus these
conditions should be very good for estimation of mic-to-mic impulse responses
and therefore also crosstalk cancellation.

Measurements were done of six different sound sources: A loudspeaker playing
white noise, an acoustic guitar, an electrically amplified guitar, a drum, a
male person singing, and a trombone. The resulting ERLE values of these
are presented in sections 5.2.1 to 5.2.6. A plot of the measured signal-to-noise
ratios in octave bands is included in section 5.2.7.

5.2.1 Loudspeaker playing white noise

As was described in section 4.2, a loudspeaker playing white noise was chosen as
the reference sound source. Because of its favorable qualities, the experiments
conducted with this sound source were assumed to be "best case".

Figure 5.2(a) shows the ERLE mean and standard deviation values resulting
from the experiments done with the white noise sound source. It is evident
that the 500 and 1000 Hz octave bands have the highest mean values, with
ERLE about 35 dB. Values in frequency bands below and above these are
slightly lower, with the 63 Hz and 8 kHz bands having the lowest mean ERLE
values, about 20-25 dB. Note that the standard deviations are also largest for
the lowest mean values.

Although the spectrum plotted in figure 5.2(b) is reasonably flat, it clearly has
some peaks and dips. Since the input signal to the loudspeaker is perfectly flat,
these peaks and dips must be caused by the collective effect of the loudspeaker,
the room and the microphone. This indicates that although a perfectly white
signal is assumed, in practice this assumption is only approximately fulfilled.

5.2.2 Acoustic guitar

An experiment was also conducted using an acoustic guitar as the sound source.
The guitar had steel strings, and only chords were played. For adaptation, a
filter length L = 4096 and step size µ = 0. 1 was found to be suitable values.
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5.2. Crosstalk cancellation performance for various sources in a
small, damped room using the learn and freeze method

Figure 5.2(c) shows the ERLE mean and standard deviation values resulting
from this experiment.

We see that the mean values of ERLE are positive only in the octave bands
from 63 Hz to 1000 Hz. Above these the mean ERLE is negative, indicating
a slight increase in crosstalk noise. It is evident that for guitar, the method
only works for relatively low frequencies. The ERLE is highest in the 250 Hz
octave band, with a mean ERLE of about 15 dB. The standard deviations for
the 63 and 125 Hz octave bands are quite large, indicating variable results in
these bands.

The magnitude spectrum of the guitar signal is plotted in figure 5.2(d). The
guitar signal clearly has most energy in the lowest frequencies, with two peaks
at about 100 and 200 Hz. Above this, the spectrum decays almost linearly with
frequency (on a log-log plot), with the magnitude being about 60 dB lower at
10000 Hz than at 100 Hz.

In [6, chapter 9], it is claimed that most guitars have three strong resonances
in the 100-200 Hz range, due to the coupling between the Helmholtz resonance
(resonance caused by spring effect of air cavity and mass of moving air in sound
hole) and the (1,1) modes1 of the top and bottom plate. Measurements made
of a Martin D-28 folk guitar, not unlike the one used in these experiments,
showed that the resonance frequencies of these modes were 102, 193 and 204
Hz. The radiated sound pressure levels was also high at these frequencies. This
is in good agreement with what was found in the magnitude spectrum for the
guitar used for this experiment. Measurements of radiation patterns showed
that the Martin D-28 guitar was approximately omnidirectional at the same
frequencies.

5.2.3 Electrically amplified guitar

In addition to using an acoustic guitar, an experiment was also made with an
electrically amplified guitar. Naturally, in this case the speaker of the amplifier
was treated as the sound source, not the guitar itself. The preamplifier
was adjusted to give a slightly distorted, "crunchy" sound. Such distortion
introduces additional high-frequency components to the original guitar sound.
For the adaptive process, a filter length of L = 4096 and a step size µ = 0. 1
were found to be suitable.

Figure 5.2(e) shows the mean and standard deviation values of the ERLE
resulting from this experiment. The highest mean value is found in the 250
Hz band (approx. 23 dB), with gradually lower levels for both lower and
higher frequencies. The 250 - 1000 Hz bands also have surprisingly high

1In this case, the (1,1) mode refers to the case where the whole plate is vibrating in phase.
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standard deviation values. Although the ERLE values are not as high as in
the white noise experiment, a crosstalk reduction of 10-20 dB in most bands
is substantial.

The magnitude spectrum of the electric guitar signal is plotted in figure 5.2(f).
We can see that between about 100 Hz and 3000-4000 Hz, the spectrum is
actually very flat. Compared with the acoustic guitar, the spectrum has more
high-frequency energy, probably because of the distortion mentioned above.
The cut-off at about 3000-4000 Hz is probably due to limitations of the speaker
and/or a low-pass filter in the amplifier. This cut-off is probably also the main
reason for the mean ERLE being so low in the 8000 Hz octave band.
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small, damped room using the learn and freeze method
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Figure 5.2: ERLE values, with mean and standard deviation,
for a loudspeaker playing white noise, an acoustic guitar, and
an electrically ampified guitar. The corresponding magnitude
spectrums are also plotted.
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5.2.4 Drum

A snare drum without the snares on was also used as a sound source in
experiments. The snares were not used because they make the drum a much
more complex sound source. Keeping the snares off also makes the drum
more similar to other drums which do not have snares, perhaps also making
the results more similar to those that could be obtained with other kinds of
drums. For the adaptation, it was found that filter length L = 8192 and step
size µ = 0. 5 were suitable.

Figure 5.3(a) shows the mean and standard deviation values of the ERLE
resulting from the experiments using the drum as the sound source. Only the
125 octave band has considerable damping of the crosstalk, with a mean ERLE
of about 15 dB. The other bands also have some damping, but only a few dB.

The magnitude spectrum of the drum signal is shown in figure 5.3(b). The
spectrum has a dominant peak at about 150-200 Hz, and several smaller
peaks at higher frequencies. The spectrum seems to decay linearly with higher
frequencies (in a log-log plot).

According to [6], a drum similar to the one used in this measurement has two
resonances caused by the coupling of the (0,1) modes 2 of the drum heads. The
lowest of these, where both the drum heads are moving in the same direction,
has a resonance frequency of 182 Hz. The drum is more like a monopole
than a dipole in this case, due to the large difference in thickness (and thus
weight) of the two heads. The (0,1) modes also radiate sound energy quite
effectively, yielding high sound levels. This is in quite good agreement with
what was found in the magnitude spectrum - a clear peak at about 150-200 Hz.
Comparing with the ERLE plot, one can see that the ERLE has its highest
value in approximately the same frequency range - the 125 Hz band.

5.2.5 Male voice

The voice of a male person (the author) singing was used as a sound source in
this experiment. The same song was repeated for all measurements. For the
adaptive process, a filter length of L = 2048 and a step size µ = 0. 1 was found
suitable.

Figure 5.3(c) shows the mean and standard deviation values of the ERLE
resulting from the experiment with this sound source. There is substantial
damping in several octave bands, with the bands between 125 Hz and 1000 Hz
all having mean ERLE higher than 10 dB.

2For a circular membrane like a drum head, the (0,1) mode refers to the case where the
entire head is vibrating in phase.
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In figure 5.3(d), the magnitude spectrum of the male voice is plotted. The plot
shows that much of the energy is in the 100-500 Hz frequency range, but there
is substantial energy up to about 3-4 kHz, where there is a kind of cut-off.

After studying the error signal of some segments, it was found that a so-called
"pop noise", resulting from sudden outlets of air from the singer, results in a
very large error. This is to be expected, as this noise is only audible in the
microphone close to the singer, and not in the rest of the room (and therefore
not in the other microphone). Since this is mainly a low frequency noise, it
is suspected that pop noise may be the reason for the low mean ERLE values
in the 63 Hz band. Pop noise may be avoided by using a "pop filter" - an
acoustically transparent membrane placed in front of the microphone. This
was unfortunately not used during measurements.

5.2.6 Trombone

A person playing the trombone was the last sound source tested in the acoustic
booth. The trombone was played moderately hard, with long tones. For
adaptation, a filter length of L = 4096 and a step size µ = 0. 05 were found to
be suitable.

Figure 5.3(e) shows the ERLE mean and standard deviation values resulting
from the experiment with the trombone. The mean ERLE value is about 7-9
dB in octave bands between 125 and 1000 Hz , and lower in other bands. These
values are surprisingly low, but as we shall see in the next section, the calm
playing style may have affected the result.

The magnitude spectrum of the trombone, which is plotted in figure 5.3(f),
shows that most energy from a this instrument is contained in a relatively
narrow frequency range - from about 150 Hz to 2 kHz.
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Figure 5.3: ERLE values, with mean and standard deviation, for a
drum, an male voice, and trombone. The corresponding magnitude
spectrums are also plotted.
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5.2.7 SNR values in the acoustic booth

A measurement was made of the signal-to-noise ratio for the loudspeaker
playing white noise in the acoustic booth. Measurements were done for the six
microphone positions in the room (plotted in figure 4.4), and figure 5.4 shows
the mean and standard deviation of the SNR values produced. It is evident
that the SNR levels are quite a lot lower for low frequencies than for high,
indicating that the background noise is mainly a problem in the low frequency
range.

Signal-to-noise ratios were not calculated for each instrument, but by
comparing the magnitude spectrum of the instruments and the SNR plot for
the white noise, one can get a general impression of the signal-to-noise ratios
of each instrument, since the white noise has an approximately flat spectrum.
Most of the instruments have quite a lot of energy in approximately the 100-
1000 Hz frequency range, and less energy above and below this range. Since
the background noise levels seem to be strongest in the low frequency range,
a low signal-to-noise level is mainly a problem for the musical instruments in
the 63 and 125 Hz octave bands. This may also explain, in part, why ERLE
values in these bands are also generally quite low. This is subject to discussion
in chapter 6.
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(a) ERLE values in octave bands

Figure 5.4: SNR values in octave bands for a loudspeaker playing
white noise in the acoustic booth
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5.2.8 Sound examples

In this section, a few sound examples from experiments in the acoustic booth
are described. The sound files for the examples have been supplied together
with the report.

Acoustic and electric guitar

Both of these examples are based on measurements made with only one sound
source, done in the exact same way as the experiments which have just been
described in the preceding sections (see also section 4.3.1). The mic-to-mic
impulse response was estimated based on one recorded segment, and then
crosstalk cancellation was done on the same segment, by subtracting the
modeled room microphone signal signal d̂(n) from the actual room microphone
signal d(n). The "before" sound files contain the signal d(n), before crosstalk
cancellation, while the "after" sound files contain the crosstalk-reduced signal
d(n)− d̂(n). A speech segment has been artificially added to the sound clips,
to simulate how the guitar signals act as crosstalk.

The files named elguitar_before and elguitar_after are from the example
using an electric guitar as the sound source. The ERLE values for the clip
used in this example are plotted in figure 5.5(a). As we can see from the plot,
the achieved crosstalk cancellation in this case is quite similar to the mean
performance for the electric guitar (plotted in figure 5.2(e)), with substantial
damping across most frequency bands. Comparing the "before" and "after"
sound examples, one can clearly also hear how the guitar crosstalk becomes
much lower after crosstalk cancellation, making it much easier to hear the
speech which has been added. One can perhaps also hear that there is some
fluctuation in the residue of the crosstalk in the "after" signal. This is probably
because of the physical impulse response was changing somewhat during the
recording, while the impulse response estimate used to reduce crosstalk is kept
constant throughout.

The files guitar_before and guitar_after illustrate an example of the learn
and freeze method providing damping in a more narrow frequency range. As
we can see in figure 5.5(b), the ERLE values in this case are relativly high in
the in the 250 Hz band, but not very high outside this band. Comparing the
sound examples, one can hear that the overall sound is perceived as somewhat
lower after crosstalk cancellation, but also that it has lost more low frequency
than high frequency content.
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Figure 5.5: ERLE values for example clips crosstalk cancellation
of acoustic and electric guitar.

Simulation of learn and freeze method in practical use, using white
noise and male voice

As described in section 4.5.2, an experiment was also conducted using two
sound sources, to illustrate the use of the learn and freeze method in "real life".
In the acoustic booth, one microphone was set up close to a loudspeaker playing
white noise, and 1 meter further away, a microphone was set up for a person to
sing into. First, a learning recording was done, with the person standing by his
microphone as he would when he was singing. Then a recording was made of
both the loudspeaker playing and the person singing into the microphone. The
impulse response estimated from the first recording was then used to reduce
the white noise crosstalk of the second recording.

The files wnoise+song_before and wnoise+song_after contain outtakes of
this second recording, before and after crosstalk cancellation. In the "before"
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file, we hear the person singing an outtake of the song "I Hung My Head"
by Sting, with quite a lot of white noise crosstalk in the background. In the
"after" file, we hear that much of the noise has been removed, while the singing
is essentially the same. This illustrates that the learn and freeze method may
work quite well in practice.

Note that high-frequency noise is damped less than low-frequency noise.
Looking back at the mean ERLE values for a loudspeaker playing white noise
(figure 5.2(a)), this seems reasonable – the crosstalk cancellation at the highest
frequencies becomes gradually lower with increasing frequency. Crosstalk
cancellation at the lowest frequencies is also seen to be quite low, but the
effect is heard more clearly for the highest frequencies, since the high-frequency
octave bands contain more energy than the low-frequency octave bands (due
to their wider bandwidth)

Note also that there is a certain fluctuation in the residue of the white noise
crosstalk. It seems that also this effect is most easily heard for the higher
frequencies. A possible reason for the effect may be that the actual ("physical")
impulse response in the room is changing due to movement of the singer, while
the impulse response estimate used for crosstalk cancellation is kept constant.
This is discussed further in section 6.6.2
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5.3 Crosstalk cancellation performance for various
sources in a medium-sized ensemble room using
the learn and freeze method

The measurements in the small, heavily damped room were useful to study
the performance of the adaptive algorithms in a very controlled, best-case
environment – but since the final area of application is a room in which
several musicians are playing together, measurements were also done in an
"ensemble" room, intended for musical performance. As described in section
4.4, this ensemble room was part of the music conservatory in Tromsø, and
recordings were done of several different musical instruments: Double bass,
violin, clarinet, bassoon, and classical guitar. Again, the musical instruments
were chosen based on what was available (volunteering students), but an effort
was also made to find different kinds of instruments, to test the method for a
wide range of sound sources. In addition to the musical instruments, recordings
were also made of the reference sound source; a loudspeaker playing white noise.

Each instrument was recorded by three microphones in different positions in
the room, and each musician played both a "calm" and a "fast" piece of music,
each two minutes long. As described in section 4.4, each recording was divided
into 30 second segments, and the learn and freeze method with the FBLMS
algorithm was used on each of these. ERLE mean and standard deviation
values were calculated from results from all microphone positions and segments
– 12 results from both the "calm" and the "fast" recording. These results are
presented in the following sections.

5.3.1 Loudspeaker playing white noise

As described in section 4.2, a recording of the loudspeaker playing white
noise was done in the ensemble room. Recordings were done for two different
distances between the reference microphone and the room microphones: 1.2
meters, which was the same distance that was used in the acoustic booth, and
2 meters, which was the distance used for recordings of all other instruments
in the ensemble room.

Figure 5.6 shows the ERLE values for both distances between reference
microphone and room microphones. The values for both cases are somewhat
lower than for the experiment in the acoustic booth. In the 1.2 meter case,
the distribution of the ERLE values is quite similar to the one found for the
acoustic booth, with the values being highest in the 250, 500 and 1000 Hz
octave bands.

For the 2 meter case, there seems to be a slight shift downward in frequency
– the values in the 63 - 250 Hz bands are slightly higher than in the 1.2 meter
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case, while the values above this are slightly lower.

Using the recording of the white noise sound source, an estimate of the
reverberation time in the ensemble room could be calculated, as described
in section 4.4. The reverberation time was estimated to approximately 0.7
seconds. This is probably quite representative of the reverberation time of a
small concert venue.
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Figure 5.6: ERLE in octave bands, with mean and standard
deviation, for recordings of a loudspeaker playing white noise at
the music conservatory. Results for room microphones standing
1.2 and 2 meter from the reference microphone are plotted.

5.3.2 Double bass

Figure 5.7(a) shows the ERLE values for the double bass. Clearly, the only
octave bands which have any substantial damping are the 63 and 125 Hz bands.
It is also evident that the "fast" playing style gives somewhat better results in
these bands, while the results are very much the same in the other bands.

In figure 5.7(b), the magnitude response of the double bass is plotted. There
is a lot of energy in the low end of the spectrum, around 50-200 Hz, and for
the "fast" playing style there seems to be a peak at about 60-70 Hz. There
is little difference in the spectra of the calm and the fast playing style, but
the fast style seems to have somewhat more energy around the low-frequency
resonances, and a slightly less steep decay for the higher frequencies.

According to [6], the two main low-frequency resonances of a double bass are
at about 60 Hz ("A0" - air cavity resonance) and 100 Hz ("T1" - entire bottom
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plate vibration in phase, while the top plate has a slightly more complex mode
pattern). The 60 Hz resonance is probably what was was found as a peak in
the magnitude spectrum.

5.3.3 Violin

Figure 5.7(c) shows the ERLE values for the violin recordings. Here, the 250
and 500 Hz bands have the highest ERLE values. The "fast" playing style
yield better mean values, and also has lower standard deviation values in these
bands then the "calm" playing style.

The magnitude spectrum of the violin is plotted in figure 5.7(d). The spectrum
has a clear high-pass effect, with an cutoff frequency at about 200 Hz.

In [6], the two main low-frequency resonances of a violin are measured to 275
Hz (A0) and 460 Hz (T1). The radiation patterns of a violin are also presented
for a few frequencies. They show that the violin is more or less omnidirectional
up to about 400 Hz. For higher frequencies, the radiation pattern soon becomes
more complex.

It is interesting to compare the results of the double bass and the violin. The
double bass is, after all, a scaled-up version of the violin. We can see that
both instruments have two frequency bands in which the ERLE values are
much higher than in the other bands, but these bands are shifted upwards in
frequency for the violin, compared with the double bass. In the same way,
the shape of their spectrums are quite alike, but the spectrum of the violin is
shifted upwards in frequency. The bands with the highest ERLE values also
coincide quite well with the two lowest resonances of the instruments.

5.3.4 Clarinet

Figure 5.7(e) shows the ERLE values for the recordings of the clarinet. This
shows some damping in the octave bands between 125 and 1000 Hz, with the
"fast" playing style having significantly higher values in the 125 - 500 Hz octave
bands. The fast playing style also yields lower standard deviations.

The magnitude spectrum of the clarinet, plotted in figure 5.7(f), shows a very
large difference between the calm and fast playing style. While there is almost
no energy under 400-500 Hz with the calm playing style, the fast style has
energy all the way down to about 100 Hz. This may explain the significant
difference in ERLE values in the 125 - 500 Hz octave bands.
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(b) Double bass: Magnitude spectrum
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(e) Clarinet: ERLE values
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(f) Clarinet: Magnitude spectrum

Figure 5.7: ERLE values, with mean and standard deviation, for a
double bass, a violin, and a clarinet. The corresponding magnitude
spectrums are also plotted.
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5.3.5 Bassoon

Figure 5.8(a) shows the ERLE values for the recordings of the bassoon. Clearly,
the attempted damping of the crosstalk has done nothing (or even made
things a bit worse) for the "calm" playing style, while some damping has been
accomplished in the 125-500 Hz octave bands for the "fast" playing style.

The magnitude spectrum of the bassoon is plotted in figure 5.8(b). We can
see that there is little difference between the two playing styles, except for the
calm style actually having more energy in the low end on the spectrum, below
500 Hz. There is also a high-frequency cut-off at about 1000-2000 Hz.

5.3.6 Classical guitar

Figure 5.8(c) shows the ERLE values for the classical guitar. There is
substantial damping in the 125 - 500 Hz octave bands. Here, the difference
between the two playing styles is not so great, but still the "fast" style has a
better mean value in the 125 Hz band. The ERLE values are quite similar to
those of the steel-stringed guitar being played in the acoustic booth (see figure
5.2(c)), but are slightly higher.

The magnitude spectrum of the classical guitar (figure 5.8(d)) is practically
identical for the two playing styles, and also very similar to that measured for
the steel string guitar in the acoustic booth.

5.3.7 SNR values at the music conservatory

As for the measurements in the acoustic booth, a measurement of the signal-
to-noise ratio was done at the music conservatory. A loudspeaker playing white
noise was used as the sound source. The results are plotted in figure 5.9. As
can be seen from the plot, the situation is very much the same as in the acoustic
booth; the SNR values are generally lowest for the lowest frequencies (about
35 dB), and gradually rise to a level of about 70 dB at 500 Hz, from where
the values are approximately constant. This means that the background noise
level should not represent any systematic difference between the results from
the acoustic booth and from the conservatory.

5.3.8 Sound example: Practical use of the learn and freeze
method using double bass and violin as sound sources

As described in section 4.5.2, a experiment was conducted at the conservatory
to study the practical use of the learn and freeze method with two musical
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(d) Classical guitar: Magnitude spectrum

Figure 5.8: ERLE values, with mean and standard deviation, for
a bassoon, and a classical guitar. The corresponding magnitude
spectrums are also plotted.
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Figure 5.9: SNR values in octave bands for a loudspeaker playing
white noise in the ensemble room at the conservatory.
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instruments. The double bass was used as the crosstalk-producing sound
source, and a violin was used as the second sound source.

First, a learning recording was made with both instruments in place but
only the double bass playing. Then a second recording was made with both
instruments playing. The mic-to-mic impulse response estimated from the
first recording was then used to reduce the double bass crosstalk in the violin
microphone in the second recording.

The file dbass+violin_before contains the signal from the violin microphone
before crosstalk cancellation, and file dbass+violin_after contains the signal
after cancellation. Since the double bass is not a very loud instrument to begin
with, the crosstalk is not very loud either, but nevertheless there is an audible
difference between the two tracks. The mean ERLE values of the bass were
found to be relatively high in the two lowest frequency bands, and lower in the
higher frequency bands (see figure 5.7(a)). This is in agreement with what is
heard in the sound examples: The double bass crosstalk is mainly damped in
the lower frequencies. The loudness of the crosstalk is not necessarily perceived
as lower, but the sound is slightly less "boomy" and defined. Note that a stereo
or a pair of headphones with sufficient bass response may be needed to hear
this, since the difference is mainly at very low frequencies.
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5.4 Perceptual effects of different filter lengths

As described in section 2.6, the theoretically maximum achievable ERLE is a
direct function of the length of the impulse response estimate. In practice, the
impulse response will hit the "noise floor" of the room after a certain time,
and one can not expect to gain additional crosstalk cancellation by making
this estimate longer than this.

For the best possible damping, the filter length should be at least as long
as the impulse response before it hits the noise floor, or there will be a
residual "reverberation tail" which is not cancelled. But what will happen
if the estimate is longer than necessary? As described in section 4.5.8, a
small experiment has been conducted to study the effect of a too-long impulse
response estimate for two widely different sound sources; a loudspeaker playing
white noise and a drum. The results of this experiment are presented below.

Figure 5.10(a) shows a plot of the estimated impulse response in the acoustic
booth, using a loudspeaker playing white noise as the sound source. We see
that in this case, the filter length may be longer than necessary, since the last
coefficients are very close to zero. However, the fact that they are close to zero
also means that there is no harm done in using a too-long filter, except for the
waste of filter coefficients.

In comparison to this, figure 5.10(b) shows the estimated impulse response
when a snare drum without snares is used as a sound source. The drum and
the microphones were placed in approximately the same positions as when a
loudspeaker was used. Comparing with figure 5.10(a), we see that the impulse
response estimate has a kind of noisy tail which does not decay with time (as a
room impulse response always does), but rather has an approximately constant
amplitude. Clearly this is a result of an imperfect estimate, and not of the
acoustic system’s properties. If this estimate is used for crosstalk cancellation,
the noise tail at the end is heard as an unnatural reverberation. The files
drum_toolongfilter_before and drum_toolongfilter_after supplied with
this report contain before and after versions of crosstalk cancellation where this
estimate has been used. Here one can clearly hear that although the sound
level is somewhat lower in the after version, there is also a reverberation or
echo effect, almost as if the player is standing outside, perhaps near a reflective
wall. In general, such an effect is unwanted as long as it can not be controlled.
Although this example was made using the learn and freeze method, this kind
of effect will probably also be a problem using the continuous update method.
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(a) Estimated impulse response for loudspeaker playing white noise
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Figure 5.10: Comparison of estimated impulse responses using
white noise and a snare drum as sound sources in the acoustic
booth. In both cases the filter length used is too long. For the white
noise response, this is not a problem, since the last coefficients are
very close to zero. For the snare drum, the imperfect estimate of
the response combined with a too-long filter length results in an
"unnatural", non-decaying tail.
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5.5 Effects of microphone directivity and type

As described in section 4.5.4, an experiment was conducted in the acoustic
booth to study the effects of microphone directivity on the achievable
crosstalk cancellation. A loudspeaker playing white noise was used as the
sound source, and measurements were made for three different cases: Both
reference and room microphone having a omnidirectional directivity, both
microphones having a cardioid directivity and facing the loudspeaker, and
both microphones having a cardioid directivity, with the reference microphone
facing the loudspeaker and the room microphone turned 90° to the side. Figure
5.11(a) shows the mean and standard deviations of the ERLE results resulting
for each of the directivity settings.

It is evident that the omnidirectional microphone yields the lowest mean ERLE
values, and also the highest standard deviations. The cardioid directivity gives
a mean ERLE which is several dB higher than that of the omnidirectional
microphone – especially in the lower frequency bands. The results of the
cardioid microphone which was turned 90° away from the sound source lies
between the other two – the mean ERLE values are slightly better than that
of the omnidirectional microphone in the lower frequency bands, and more or
less the same in higher frequency bands.

A measurement was also conducted to compare the AKG microphones used in
all the other measurements with two dynamic microphones produced by Shure.
An SM 57 was used as reference microphone, while an SM 58 was used as a
room microphone. Both have a cardioid directivity. These are low-budget,
standard microphones used on almost any stage in the world. The directivity
of the AKG microphones was also set to cardioid, for the conditions to be as
similar as possible. The achieved ERLE values for both microphone types are
shown in figure 5.11(b).

The results are somewhat better for the Shure microphones for lower
frequencies, and more or less the same for higher frequencies. This is in
spite of the Shure microphones being dynamic (and therefore having a lower
sensitivity) and the AKG microphones costing several times as much as the
Shure microphones. Thus it turns out that the microphones that are already in
use on many stages are also well suited for the crosstalk cancellation methods
presented in this work.
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Figure 5.11: Plots of ERLE, with mean and standard deviation,
for different microphone directivities and types. A loudspeaker
playing white noise was used as the sound source.
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5.6 Simulated experiment with the continuous
update method

No real-life experiments with the continuous update method were done, but
a few experiments were simulated using a synthetic impulse response in
MATLAB, as described in section 4.5.5. The goal of these experiments was
to study the effect of doubletalk on the adaptation (see also the discussion on
doubletalk in section 3.2).

White noise was used as the input signal for the first experiment. This was
filtered with the synthetic impulse response to create a room microphone signal,
but sections of electric guitar were added to the room microphone signal to
simulate doubletalk. The system distance of the filter and the envelope of
the error signal were plotted to investigate the effects of doubletalk on the
adaptation process. Example sound files have also been made to illustrate
these effects.

Figure 5.12(a) shows some of the plots resulting from the experiment. The top
plot shows the room microphone signal, consisting of noise with three periods of
guitar doubletalk added. The middle plot shows the error signal, which is what
would go on to the sound mixer. Ideally, this signal should only contain the
guitar doubletalk, and no noise. The bottom plot shows the system distance.

From the error plot, the method seems to work reasonably well – we can see
that the amplitude of the noise in the error signal decays before the first guitar
segment, and that the noise level in between the guitar segments is very low.
However, the system distance plot reveals that the guitar doubletalk causes
system distance to rise to the same level as is was before adaptation began. In
between the doubletalk, the system distance quickly sinks back to its minimum
value.

Since the error signal is what we would actually hear, it has been included
with this report, as file contud_wnoise+elguitar_mu_05. Listening to this,
one finds that the noise level quickly decreases after a certain start-up period,
as can be seen from the plot. During the guitar segments, the sound is kind
of noisy, with some annoying clicking sounds. After the guitar has stopped,
one can also hear a kind of reverberation, which was not there to begin with
(compare with the original guitar sound, file elguitar+silence).

Figure 5.12(b) shows the same kind of plots, but in this case a step size of
µ = 0. 1 has been used. Here it takes longer for the envelope of the noise
to decrease, both before the first guitar segment and in between segments.
From the system distance plot one can see that the distance increases during
doubletalk segments, but not as high as the case was for µ = 0. 5. The system
distance also decreases more slowly in between doubletalk segments.
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The error signal for this case has been included, as a sound file called
contud_wnoise+elguitar_mu_01. We can hear that there is no longer any
annoying clicking during guitar segments, but the reverberation effect is much
more pronounced. This reverberation is probably what we can see as "tails"
after guitar segments in the error signal plot in figure 5.12(b).

Although is it no surprise that the system distance increases when there is
doubletalk, it is very interesting that this "distortion" of the filter segments
is not random, but rather shaped by the doubletalk signal. In this way, pure
noise which is filtered though the filter actually sounds like the reverberation of
the doubletalk sound. Although such reverberation is unwanted for most cases,
this is still better than if the filter had been distorted more or less randomly,
letting through a lot of noise. This is of course a special case – most musical
crosstalk will not be stationary and white like in this case.

A similar experiment was conducted using a guitar signal as the input signal
in stead of white noise, and a trombone signal acting as doubletalk. This
was done in order to test the effects of doubletalk when two music signals
are used, simulating a case more similar to a practical application. The same
adaptation parameters were used, with µ = 0.5 and 0.1. The error signals
from this experiment are found as files contud_elguitar+tromb_mu_05 and
contud_elguitar+tromb_mu_01. For µ = 0. 5 we hear that the guitar signal
decays quite rapidly, but that it "blows up" again during doubletalk segments,
as a result of the doubletalk distorting the filter coefficients. This is not heard
as a reverberation effect, but a rather annoying guitar signal (whose amplitude
constantly changes) mixed with the trombone.

With µ = 0. 1, the envelope of the guitar signal decays a bit more slowly to
begin with. During doubletalk segments, the guitar does not "blow up" again
in the same way as in the previous example, but, it is possible to hear some of
the same effect. When there is doubletalk, the perceived loudness of the guitar
increases.
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(b) Results with µ = 0,1

Figure 5.12: Plots of room microphone signal, error signal and
system distance for an example of the continuous update method
with two different values of µ.
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5.7 Testing the minimum phase property of the
reference microphone impulse response

As described in section 4.5.6, an experiment was conducted to test whether
the impulse response estimated with "best-case" conditions would fulfill the
minimum phase criterion. This is necessary for the inverse of the response to
be stable and causal, as described in section 3.1.

A loudspeaker and a microphone were set up with a 30 cm distance, and the
impulse response between them was estimated from a 10 second recording of
the loudspeaker playing white noise. The resulting impulse response is plotted
in figure 5.13(a).

In [16], a Nyquist plot is recommended to determine whether an impulse
response is minimum phase or not. Such a plot is a polar plot of the frequency
response, with the radius given by the magnitude response and the angle given
by the phase response. According to the Nyquist criterion [16], the Nyquist
plot will encircle the origin once for each zero of the filter which lies outside the
unit circle. Since the definition of a minimum phase system is that no zeros
lie outside of the unit circle, the system is identified as minimum phase only if
the Nyquist plot does not encircle the origin.

The Nyquist plot of the calculated impulse response is shown in figure 5.13(b).
Clearly, the plot encircles the origin, so the impulse response is not minimum
phase. As mentioned in section 3.1, this means that the inverse of the impulse
response can not be guaranteed to be stable and causal, and thus a mic-to-mic
impulse response between a reference microphone and another microphone can
not be assumed to be either. This suggests that a perfect crosstalk cancellation
is not theoretically feasible for the cases that have been investigated in this
work, but as experiments have shown, substantial reduction of crosstalk is
possible in many cases.

Note also that the impulse response that was analyzed was that of the total
system of loudspeaker, room and microphone. Ideally, the effects of the
loudspeaker and the microphone should have been included, since it is the
room impulse response that should be tested for the minimum phase property.
There is a chance that the loudspeaker and microphone contributed to the
minimum phase criterion not being fulfilled, but this was not investigated
further in this work.
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Figure 5.13: Time domain and Nyquist plot of an impulse
response measured in the acoustic booth. The Nyquist plot
encircles the origin, indicating that the impulse response is not
"minimum phase".
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5.8 Comparing noise input signals and their conver-
gence rates for adaptive algorithms

As described in section 4.5.7, an simulated experiment was conducted to study
the convergence rates of three different kinds of noise; white noise, pink noise,
and white noise which has been played by a loudspeaker and recorded with a
microphone in the acoustic booth. Each of these were filtered with a synthetic
impulse response to create a room microphone signal, and then the FBLMS
algorithm was used, with identical parameters, on each signal pair.

The magnitude specta of each of the noise signals were calculated. These are
plotted in figure 5.14. The "raw" white and pink noise spectra are as expected,
but the spectrum of the recorded white noise is non-flat. This is probably due
to a combination of microphone, loudspeaker and room properties.
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Figure 5.14: Magnitude spectrums of different noise types: Pink,
white, and white which has been played through a loudspeaker in
the acoustic booth and recorded with a microphone.

Three different length segments were used for adaptation on each kind of noise
signal, one of 10 seconds, one of 30 seconds and one of 60 seconds. ERLE values
were calculated from the impulse response estimates resulting from each of the
segments, and these are all plotted in figure 5.15. This was done to study the
achieved degree of convergence for different length input signals for each of the
noise types.

Figure 5.15(a) shows the ERLE values after the 10 second sequence. Here we
see that ERLE values are more or less proportional to the magnitude spectra of
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the signals - pink noise has higher ERLE values in the lower frequency bands,
while the white noise has equal values in all bands. The ERLE values of the
recorded white noise are generally lower than those of the raw white noise, and
are not as "flat".

Figure 5.15(b) shows the ERLE values after the 30 second sequence. Here,
both the raw noise signals have reached a steady state, and have equal ERLE
values in all frequency bands. The recorded noise has a reached the same levels
for the highest frequency bands, but has progressively lower values for lower
frequencies.

Figure 5.15(c) shows the ERLE values after the 60 second sequence. It is
obvious that all three signal have yielded the same results in this case. The
reason for the adaptation stopping at about 60-70 dB is probably due to the
truncation of the impulse response estimate – the adaptive filtering can not
compensate for the last reverberation tail outside the impulse response estimate
"window".

These results show that given enough time, the adaptative process will yield
the same result, independent of which input signal is used – but if the process
is aborted before it has converged properly, ERLE values are quite different
for different input signals. It also seems that in general, the recorded white
noise has a lower convergence rate than the other noise types – especially for
the lowest frequencies.
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(a) ERLE after 10 seconds
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(b) ERLE after 30 seconds
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(c) ERLE after 60 seconds

Figure 5.15: Comparison of ERLE using different kinds of noise
and 10, 30 and 60 second sound clips for adaptation. The first plot
illustrates how the adaptive algorithm will reduce the overall error
by reducing the most crosstalk in the frequency bands containing
most energy. The second plot shows how the convergence rate is
slow for the lowest frequencies when recorded white noise is used.
The last plot shows that all input signals will yield the same result
when the process has converged completely.
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5.9 Evaluation of the method used to calculate
ERLE

The ERLE values which have been presented in the preceding sections have
been calculated in the following way (see also sections 2.5 and 4.5.8): A
recording of the reference signal x(n) and the room microphone signals d(n)
have been fed to an adaptive algorithm, and used to estimate the impulse
response between the two microphones. Then, this impulse response has
been used to filter the reference signal, and this filtered signal (d̂(n)) has
been subtracted from the room microphone signal (d(n) − d̂(n)), to cancel
out crosstalk. The difference in energy between the crosstalk-reduced signal
and the original room microphone signal has been used to calculate the ERLE
values.

A small experiment was conducted to investigate if computing ERLE from the
same clip that was used for the impulse response estimation would give any
bias in the results. Ideally, one should be able to use another recording of
the reference and room signals, together with the impulse response estimate,
and calculate the same ERLE values. The ERLE values should be a general
measure of performance, and not specific to one particular sound clip.

Both approaches mentioned above were tried on recordings which were done
in the acoustic booth. This was done for four different sound sources; a
loudspeaker playing white noise, a snare drum, an amplified electric guitar
and a singing person. Recordings of these sources was done in six different
microphone positions, and ERLE values were computed as described above for
each position. The difference between ERLE values computed for the same
segment and for two different segments was calculated for each position, and
the mean of these differences was calculated. These mean values are shown
in figure 5.16. Standard deviations were also quite high (about 3-6 dB), but
these were not plotted in order to make the plot easier to read.

In the case of the drum and the electric guitar, it is clear that both ways of
calculating the ERLE values yield practically the same result. For the white
noise, there is quite a large difference – using a different clip for computing
ERLE seems to give lower values in general. For the person singing, the
opposite is the case: For several frequencies there is a negative difference,
meaning that the ERLE values computed for a different clip are actually higher.

The ERLE values that are computed should be representative for the actual
damping – not only of the clip that is used for impulse response estimation,
but also for all other sounds coming from the same sound source. The results
given here are not conclusive – it seems that using the same clip for estimation
and calculation of ERLE may overestimate the damping for some cases, and
underestimate them for others. As mentioned, variations were also quite high,
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Figure 5.16: Mean difference between ERLE computed from
the same clip used for impulse response estimation, and ERLE
computed from the clip following that.

making the results less reliable. To get a better impression of what the "real"
ERLE values really are, they should be calculated for a large number of
segments for each impulse response estimate – but this is beyond the scope
of this work. But using the results that have been produced, one must bear in
mind that these may not be representative for all possible cases.
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6
Discussion

In this chapter, the results of the preceding chapter will be discussed. The
discussion is segmented into sections. First, section 6.1 discusses the choice
of the FBLMS algorithm for the adaptive filtering, and also some of the
characteristics of this algorithm. White noise was chosen as a reference signal
for this work, and in section 6.2 the results obtained with this signal are
discussed. Following this, in section 6.3, is a discussion of the ERLE values
calculated for all other sound sources that have been used in this work. The
microphone directivity was found to influence the performance of the crosstalk
cancellation method, and the result of the experiments regarding this are
discussed in section 6.4. A simulated experiment was also conducted to study
the effect of doubletalk on the continuous update method, and the results of
this are discussed in section 6.5. Although most of the results in this report
are expressed in terms of plots and ERLE values, it is what is actually heard
that counts in the final application. In section 6.6, various perceptual effects
of adaptive filtering and impulse response estimation are discussed. Finally,
section 6.7 lists areas of possible future research.

6.1 Choice of adaptive algorihm

In section 5.1, both the NLMS and the FBLMS algorithms were tested, using
a synthetic impulse response in a simulated experiment. The NLMS algorithm
was chosen rather than the LMS algorithm, because of its useful modification:
The normalization makes it easier to choose a suitable value for the step size,
and it also makes the convergence rate less variable in the case of a non-
stationary input signal. The FBLMS algorithm was chosen both because of its
block processing, its high computational effectivity (due to convolution done by
multiplication in the frequency domain), and also its possibility of a frequency-
normalized step size (as mentioned in section 2.3.6). These two algorithms were
seen as the best possible choice for the application of adaptive techniques in
this work, within the non-block and the block domain, respectively. Other,
slightly more sophisticated algorithms, like the AP and RLS algorithms [8]
were also looked into as alternatives for this application, but they were found
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to be too computationally complex - experiments with these algorithms could
not be done with the available equipment.

In the first experiment, using white noise as the input signal, the NLMS
algorithm was seen to converge about 3 times as fast as the FBLMS algorithm.
The rate of convergence was also constant, for both algorithms - this is probably
due to the special qualities of the input signal. The results are consistent with
what was claimed in section 2.2.3 – since all the eigenvalues of the correlation
matrix of white noise are equal, all the corresponding filter weights have an
equal convergence rate, and thus the overall convergence rate is constant.
The faster convergence rate of the NLMS algorithm is no surprise, as the
NLMS algorithm updates its filter coefficients each sample, while the FBLMS
algorithm updates them only once for each block (in this case once per 512
samples). The surprise in this case is actually that the convergence rate of the
FBLMS algorithm is as high as it is - this is probably due to its more accurate
gradient estimate (see section 2.3.4).

In the second experiment, a recording of an acoustic guitar was used as the
input signal. The NLMS algorithm also converged faster to begin with, but
after a short time the convergence almost stopped, leaving the system distance
at an approximately constant value. The system distance of the FBLMS
algorithm stayed at an almost constant level at the beginning of the adaptation.
This was probably due to the initial values of the power spectrum estimate that
normalizes the step size for each frequency bin – if the initial values are too
high compared with the signal’s actual power spectrum, the effective step size
becomes very small. The recursion used in the estimate of the power spectrum
causes a delay before the values of the power spectrum are properly adjusted,
and the effective step sizes become large enough for the convergence rate to
rise. The system distance then drops, and stabilizes at an almost constant
level about 3 dB below that of the NLMS algorithm.

The fact that the FBLMS algorithm reaches a smaller system distance is
probably due to the decorrelating (or "whitening") effect of the frequency-
normalized step size (see section 2.3.6). Although the effect is not very large
in this case, it still demonstrates that the FBLMS algorithm may perform
better than the NLMS algorithm when correlated input signals are used.

Both algorithms also exhibited a sudden change in convergence rate – the
convergence was fast to begin with, but then the system distance stopped at
a almost constant level, as mentioned above. This is probably due to a large
eigenvalue spread in the correlation matrix of the guitar signal. As mentioned
in section 2.2.3, filter weights corresponding to relatively large eigenvalues will
have fast convergence rates, while weights corresponding to smaller eigenvalues
converge slower. So for both algorithms, the fast drop in system distance
is probably an effect of the fast estimation of some filter weights, while the
following almost constant system distance is due to the very slow convergence
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rate of other weights.

In addition to this, the experiment also showed how computationally effective
the FBLMS algorithm is compared to the NLMS algorithm. Since the FBLMS
algorithm also seemed to perform better for correlated signals, it was chosen
as the "default" algorithm for the rest of the experiments.

6.2 White noise measurements

A loudspeaker playing white noise was chosen as the reference sound source
for experiments. This was both because white noise is the ideal input signal
to an gradient search algorithm (as stated in section 2.2.3), but also because
the loudspeaker is immobile, and experiments with it are easily repeatable, as
argued in section 4.2. Experiments were done with this sound source both in
the acoustic booth and in the ensemble room at the conservatory.

6.2.1 Comparison with theoretically achievable ERLE values

Knowing the number of filter weights, the sampling frequency, and the
reverberation time of the room, it is possible to calculate an approximate value
for the maximum achievable ERLE in that room, as described in section 2.5.
In the acoustic booth, the sampling frequency was 44,1 kHz, the filter length
was N = 8192, and the reverberation time was approximately 0,1 seconds.
According to equation 2.49, the maximum ERLE value should be

ERLEmax = 60 · N

T60 · Fs
= 60 · 8192

0,1s · 44100Hz
≈ 111dB (6.1)

Similarly, for the ensemble room at the conservatory, the sampling frequency
was 44,1 kHz, the filter length was N = 16384, and the reverberation time was
approximately 0,7 seconds. This makes the maximum theoretically achievable
ERLE

ERLEmax = 60 · N

T60 · Fs
= 60 · 16384

0,7s · 44100Hz
≈ 32dB (6.2)

In reality, the maximum achieved ERLE values for the white noise source were
about 35 dB (for the 250-1000 Hz octave bands) in the acoustic booth and
27 dB (for the same bands) in the ensemble room at the conservatory, as
shown in figures 5.2(a) and 5.6. Values were somewhat lower to both sides of
this frequency range. Comparing with the theoretical values, it seems obvious
that the theoretical calculation fits best for the ensemble room, which had a

83



6 DISCUSSION

relatively long reverberation time compared with the acoustic booth. Possible
reasons for this include

• An inaccurate value for the reverberation time. When the reverberation
time is very short, equation 2.49 is very sensitive to inaccuracies. If the
actual reverberation time in the acoustic booth was somewhat higher,
the theoretical maximum value for ERLE would have been several dB
lower.

• The adaptation process may have been stopped before it had converged
properly. If there were filter coefficients which converged significantly
slower than others (see section 2.2.3), the adaptation process may
have been judged as completely converged, when it was actually just
converging very slowly. This is discussed further in section 6.2.5.

• The envelope of the actual impulse response may not have an exponential
decay, which is assumed for the theoretical calculation. Also, as it
was pointed out in section 3.1, a mic-to-mic impulse response is a
convolution of the impulse response from the sound source to the room
microphone and the inverse of the impulse response to the reference
microphone. Although a room impulse response can be assumed to have
an exponential decay in general, the same can not be said about the
inverse of such a response.

• External mechanisms may limit the maximally achievable ERLE,
independent of the room reverberation time and the filter length. Such
mechanisms may include background noise and time variance.

6.2.2 Effect of background noise

The signal-to-noise ratio (SNR) was measured for the white noise source in
both rooms, and the levels turned out to be approximately the same for both
rooms. This is seen by comparing figures 5.4 and 5.9. The 63 Hz octave
band had the lowest SNR level, about 35 dB. Higher frequency bands had
increasingly higher levels, and above and including the 500 Hz band, the SNR
was at a constant level of about 70 dB. The low SNR levels at low frequencies
may be a result both of high levels of background noise, and of the loudspeaker
radiating sound less effectively in this frequency range.

The ERLE values for the white noise source were generally lower in the lowest
octave bands (63 and 125 Hz). This can probably be explained by the low SNR
levels at the low end of the frequency range, since a high level of background
noise will interfere with the adaptive process, limiting the achievable ERLE.
But in addition to this, ERLE values also became gradually lower in the highest
octave bands (2000 to 8000 Hz), for both rooms. One possible explanation to
this may be time variance.
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6.2.3 Effect of time variance

With the learn and freeze method, the impulse response is estimated through
a learning sequence. The estimate at the end of this sequence is then used for
crosstalk cancellation of the whole sequence, and ERLE values are calculated
from this. If there is some time variance during this measurement, the
algorithm will adapt to the changes, and thus the final estimate will be more
accurate for the end of the sequence than for the beginning. Thus, a time
variance within the measurement period may give rise to lower ERLE values.

Time variance in a room may have several causes; for example temperature
changes (which affects the sound speed), air movement, movement of
microphone or loudspeaker, movement of other objects in the room, heating
of the loudspeaker’s voice coil, sampling frequency drift in hardware, etc. [20].
Since these measurements were done in a closed room with no people in it,
and both the loudspeaker and the microphone were mounted on stands, air
movement and temperature changes are assumed to be the most probable
causes of time variance in this case.

A change in the system due to time variance will cause an error in an estimation
of an impulse response, but the impact of this error is often dependent
on frequency. For example, a small displacement of a microphone may be
irrelevant as far as low frequencies are concerned, while at the same time it
is on the scale of a wavelength at higher frequencies. For this reason, time
variance is mainly a problem at higher frequencies. This is illustrated in many
articles, for example [15].

The fact that time variance often has a progressively larger impact for higher
frequencies makes it a plausible candidate for a mechanism to reduce ERLE at
higher frequencies. If the background noise has a "high-pass" effect on ERLE,
while the time variance has a "low-pass" effect, this would explain the "band-
pass" distribution of the ERLE values across the frequency range, with the
maximum ERLE values in the mid-range.

6.2.4 Effect of different distances to room microphones

Measurements in the ensemble room using white noise were also done for two
different distances between reference microphone and room microphones. The
ERLE values for both cases were plotted in 5.6 for comparison. The results for
the different distances seemed to indicate a "shift" effect - for the 63-250 Hz
octave bands, the 2 meter distance resulted in the highest ERLE values, while
the 1.2 meter distance gave higher ERLE values in the higher frequency bands.
One would perhaps expect the 2 meter distance to result in slightly lower ERLE
values overall, since the power of the direct sound to the reverberant sound
should be somewhat less in this case – but this does not explain the results in
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the lower frequency bands. Perhaps this is a result of a near-field vs. far-field
effect, but no real explanation has been found for this effect.

6.2.5 Effect of the room on the input signal

In the experiment described in section 5.8, the convergence rates of different
noise types were compared for a synthetic impulse response. The noise signals
were pink and white noise, and also white noise which had been played through
a loudspeaker in the acoustic booth, and recorded by a microphone positioned
30 cm from the speaker. When the adaptation process was stopped before
it had converged, the shape of the resulting ERLE values was shown to be
approximately equal to the spectrums of the input signal: The white noise
signal gave approximately equal values in all octave bands, while the pink
noise gave higher values in the lower frequency bands. This is a natural effect
of the LMS algorithm trying to reduce the overall (or full-band) error – if there
is more energy at some frequencies than others, the algorithm uses more of its
resources on reducing the error at these frequencies, since this will minimize
the error over the entire frequency range.

The experiment also revealed that the convergence rate of the recorded white
noise was considerably slower that that of the "raw" white noise – especially
at low frequencies. This seems to indicate that the collective effect of the
loudspeaker, the room and the microphone makes the signal less suitable as an
input signal. Most probably this is caused by the reverberation of the room,
which introduces correlation into the signal. The reverberation time of the
acoustic booth was also longer at the lowest frequencies in the acoustic booth
(see figure 4.3), and this may be the reason why the convergence rate was extra
slow at the lowest frequencies.

During experiments using white noise, the algorithm was assumed to have
converged when the envelope of the error signal seemed to have reached a
constant value. It may be that the algorithm had not always converged for
the lower frequencies, but that this was not visible, because 1) the convergence
rate was so slow, and 2) the narrow bandwidth of low-frequency bands makes
changes in these bands less visible when the full-band signal is inspected
visually. If the adaptive process was actually aborted before the filter was
fully converged for the low frequencies, this may account for some for the low
ERLE values found at lower frequencies (together with background noise, as
mentioned above).
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6.3 ERLE values for musical instruments

The learn and freeze method was used on a number of musical instruments,
both in the acoustic booth and in the ensemble room at the conservatory.
Looking at the results, it seems that several factors may influence how well
the crosstalk cancellation works when musical instruments are used as sound
sources. In this section, we will discuss some of these, and also suggest possible
improvements to the method.

6.3.1 Effect of the room

Unfortunately, the same instruments were not recorded in both the acoustic
booth and the ensemble room, making it harder to compare results from the
two rooms directly. The only exception is the acoustic guitar, if one ignores
the fact that the guitars used in the two different rooms were slightly different,
and that the player was not the same in each case. Comparing the results
for the guitar (figure 5.2(c) and 5.8(c)), one finds that the ERLE values are
actually slightly higher for the experiment in the ensemble room. This is
a surprise, as the ensemble room should represent a less ideal case for the
adaptive algorithm, with its far longer reverberation time. Comparing some
of the other results as well, it does not seem like the results from the ensemble
room are considerably worse than those from the acoustic booth. As long as
the filter length and adaptation time are adjusted to the reverberation time,
it seems that the crosstalk cancellation may work approximately equally well
in very different rooms.

6.3.2 Effect of the magnitude spectrum

For most of the musical instruments, there seems to be a correlation between
the magnitude spectrum and the ERLE values – the values are high in
frequency bands where the magnitude is high. One possible reason for this
is that the signal-to-noise ratio is also high in these frequency bands. Another
may be that the adaptive algorithm prioritizes the reduction of crosstalk in the
frequency bands which contain the most energy, as was seen in the experiment
with pink noise as the input signal (described in section 5.8 – the adaptive
algorithm uses more of its resources (the filter coefficients) in reducing crosstalk
in bands which contain more energy, since this will minimize the total error.
See also the discussion in section 6.2.5).

When the ERLE values are not equal in all frequency bands, this means that
some frequency bands of the crosstalk are damped more than others. A sound
example of this was given for the acoustic guitar (see section 5.2.8), where there
was damping mainly in the 125 - 500 Hz bands. Although the magnitude
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spectrum tells us that this is the frequency range where the magnitude is
highest (thus making this the frequencies where there is most to gain by
damping), the residue after damping has an "unnatural" spectrum where the
high-frequency components are dominant. See also the discussion in section
6.6.1.

6.3.3 Effect of the playing style

At the conservatory, measurements were done with the musicians using two
different playing styles - termed "calm" and "fast". Compared with the results
for the calm playing style, the fast style seemed to result in slightly higher
ERLE values for all instruments – especially in octave bands where crosstalk
cancellation was already substantial. In some cases, the different playing styles
also resulted in different magnitude spectra – this was particularly evident in
the case of the clarinet (see figure 5.7(e) and 5.7(f)). If the fast playing style
brought more energy into some frequency bands, this may in part explain
why the ERLE values became higher in these bands - a higher signal-to-noise
ratio may improve the impulse response estimation. For other instruments the
ERLE values became higher even though there was little change in the spectra.
In these cases, it may be that a faster playing style results in a less correlated
input signal, thus improving the impulse response estimation.

6.3.4 Effect of directivity and time variance

Time variance has already been mentioned in section 6.2.3 as a possible reason
for poor ERLE values, especially at high frequency. When the sound source
is a musical instrument, which is handheld by the player, another source of
time variance is introduced: The movement of the player. This effect should
also be all the more pronounced if the instrument exhibits a large degree of
directivity, since a small displacement of the instrument could greatly influence
how sound is radiated into the room. The directivity at a given frequency may
also change depending on how the instrument is played (fingering, etc.). In
general, musical instruments are close to omnidirectional at low frequencies,
while they may exhibit complex directivities at higher frequencies [6]. This
may be part of the explanation of low ERLE values at higher frequencies for
several instruments.

Similarly, the size of the instrument may also affect the degree of time variance.
If the instrument is large, a small movement of the instrument may correspond
to substantial changes of the impulse response.

For example, the bassoon turned out to have very low ERLE values,
particularly for the calm playing style. This may be explained by it being
subject to a large degree of time variance – the fact that sound may be radiated
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from all holes along the instrument, creating a complex directivity, together
with the considerable length of the instrument, suggests that this might be the
case.

One possible opposite of this example may be the results obtained from a male
person singing. For this source, ERLE values were quite high over several
octave bands. A possible reason for this is that the human mouth is a "simpler"
source: It is smaller and easier to hold still, thus making it less vulnerable to
time variance.

6.4 Microphone directivity

Since it was possible to change the directivity of the AKG microphones that
were used for most measurements, an experiment could be conducted to study
the effect of the directivity on the performance of the learn and freeze method.
A loudspeaker playing white noise was used as the sound source. The results
revealed that a cardioid directivity gave mean ERLE values that were a few dB
higher in most frequency bands, compared with an omnidirectional directivity.
This was the case when the microphone was turned towards the loudspeaker
– but the results with the cardioid setting were also slightly better when the
room microphone was turned 90 degrees away from the loudspeaker. This was
mainly in the low frequency bands.

Using a directional microphone in stead of an omnidirectional one, and
pointing it at the sound source, will increase the level of the direct
sound to the ambient sound (sound coming from other directions, like
reverberation). Correspondingly, the reverberation time is effectively shorter
when a directional microphone is used, making a mic-to-mic impulse response
simpler. This is probably the reason why the cardioid directivity resulted in
higher ERLE values. The sensitivity of a cardioid microphone at 90° from
its axis is approximately 6 dB less than on-axis. Even though this means a
reduction of the direct sound level when the room microphone is turned 90°
from the sound source, the results seem to indicate that the overall effect of
the directivity is still positive.

Microphones designed for use on a stage are usually directional, most often
with a cardioid or supercardioid directivity. This helps reduce crosstalk and
reverberation levels. The fact that the active crosstalk cancellation also
works better with directional microphones indicates a "win-win" situation:
The directivity helps reduce crosstalk both passively and actively (through
making the impulse response easier to estimate). The fact that relatively
cheap, standard stage microphones (Shure SM 57 and 58) turned out to yield
slightly better results than expensive cardioid microphones (AKG 414) is also
promising for the practical application of crosstalk cancellation.
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6.5 Simulated experiment with the continuous
update method

A simulated experiment was done to study the effects of doubletalk on the
continuous update method. The input signal was filtered with a synthetic
impulse response to create reference and "desired" (or "room microphone")
signals for the adaptive algorithm, but short segments of another signal
was added to the desired signal, simulating doubletalk. The results of the
experiments, which are described in section 5.6, illustrated some interesting
effects:

When white noise was used as the main input signal, with an electric guitar as
the doubletalk signal, the doubletalk distorted the filter in such a way that it
produced a reverberation-like effect for the guitar. The noise was "shaped" in
such a way that the output of the filter sounded harmonic and "guitar-like".
The effect was more pronounced for a small step size (µ = 0,1) than a larger
one (µ = 0,5). The system distance was also seen to rise during doubletalk
segments.

This is probably an effect of how the filter coefficients are updated (see equation
2.17). The filter update uses both the reference signal x(n) and the error signal
e(n). Since the x(n) signal is pure noise in this case, there is no doubt that it
is the error signal which causes the effect.

In periods of doubletalk, the error signal will consist of two parts: The residue
of crosstalk that has not been cancelled (white noise in this experiment), and
the doubletalk signal (the guitar). In these cases, the doubletalk dominates the
error signal, and interferes with the filter update process. The filter update
then represents a kind of feedback path for this doubletalk – not a direct
feedback path, but an indirect one, by letting the filter coefficients become
similar to the doubletalk. When white noise is fed through the filter, the
output is perceived as reverberation. The impression is also enhanced by the
effect that when the doubletalk stops, the filter is able to gradually adjust back
to its correct values, thus also gradually reducing the guitar-like sound. This
is perceived as a "reverberation tail".

When a guitar signal was used as the input signal, and a recording of a
trombone was used as doubletalk, it was not possible to perceive the same
kind of reverberation-like effect. In stead, it seemed like the filter distortion
caused by the doubletalk only degraded the crosstalk cancellation, so that the
perceived level of crosstalk rose. This problem was smaller with a smaller step
size µ. The reason why there was no perceived reverberation effect for the last
case may be the special nature of white noise: It is stationary, with a constant
amplitude and a flat spectrum. Such a signal may be much easier to "shape" to
create a reverberation-like effect than a guitar signal, which is nonstationary,
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with a constantly changing amplitude and spectrum.

In the first experiment, with white noise as the input signal, a large step size
made the system distance go back to approximately its initial value during
doubletalk periods - but the fast convergence rate made the "reverberation
tail" after these segments quite short. With a smaller step size, the system
distance did rise during doubletalk segments, but not as high as for the larger
step size. The relatively slow convergence rate also made the reverberation
effect after doubletalk segments more pronounced.

In the second experiment, where a guitar signal was used as the input signal,
there was no perceived reverberation effect. In this case, the smaller step size
lessened the impact of the filter distortion, making the overall result better
than when a larger step size was used.

This second experiment is closer to a "real" application of the continuous
method, since two musical instruments are used for the input and doubletalk
signals. Although the first experiment illustrated the possibility of a
pronounced reverberation effect for small step sizes, it seems that a small
step size will yield the best results in "real life". As was mentioned in section
3.2, the continuous method method would also benefit greatly from applying
a double-talk detector, which can slow down or stop the adaptation in case of
doubletalk. Using this, this method may well be an alternative to the learn
and freeze method in a real application.

6.6 Perceptual effects

6.6.1 Frequency-dependent damping

In section 5.2.8, two sound examples were presented, illustrating the use of the
learn and freeze method on the recordings of two different instruments: An
acoustic and an electric guitar. A speech sample was also added to the results,
to illustrate how the guitar signals acted as crosstalk, and how this changed
when the crosstalk cancellation was used.

The example with the electric guitar illustrated a quite successful crosstalk
cancellation, with substantial damping in most frequency bands. While the
speech was more or less unintelligible before the crosstalk cancellation, it is
clearly heard afterwards. In the example with the acoustic guitar, the crosstalk
cancellation worked mainly for lower frequencies. The perceived result was
mostly that of having "turned down the bass", rather than reducing the overall
level of the crosstalk. This raises a question: If one has to accept some
crosstalk, what sounds best to the listener: The original (natural-sounding)
crosstalk, or a "high-pass" version? This will be one of many challenges in a
practical implementation for crosstalk reduction.
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6.6.2 Frozen filter coefficients leading to fluctuation in
crosstalk cancellation

A special effect was observed in two of the sound examples that were presented
in section 5.2.8: There was a fluctuation in the residue after crosstalk
cancellation. This was perhaps most easily heard in the sound example
illustrating the use if the learn and freeze method "in real life", using a
loudspeaker playing white noise as the crosstalk-generating sound source, and
a male voice as the second source. The suggested explanation was that the
actual impulse response in the room was changing while the impulse response
estimate used for crosstalk cancellation was kept constant (or "frozen"). Such
a change of the impulse response was most likely caused by movement of the
person, perhaps combined with movement of the air in the room etc. In this
way, time variance in the room not only interferes with the learning process, as
discussed in sections 6.2.3 and 6.3.4, but also reduces the effect of the crosstalk
cancellation after the filter is "frozen".

The crosstalk cancellation method basically relies on adding a opposite-phase
model of the crosstalk to the already existing crosstalk. The difference in
phase between the crosstalk and the model must be minimal for the crosstalk
cancellation to work. If the model has a phase shift, for example caused by a
time delay, the effect of the crosstalk cancellation is severely reduced. Because
of the shorter wavelength in the air, the crosstalk reduction at high frequencies
will be more vulnerable to movements in the room than it is at low frequencies,
since a small change will represent a relatively larger change in phase for a
high-frequency sound than for a low-frequency sound. If, for example, there
is a change in the room (for example a person moving) representing a shift
of 3.4 cm, this is equal to half a wavelength at 5 kHz but only a hundredth
of a wavelength at 100 Hz. The higher sensitivity to changes is probably the
reason why the fluctuation in the crosstalk residue was mainly heard for higher
frequencies.

During the experiment, the person was trying not to move at all. Still, the
fluctuations in crosstalk residue could be heard, and this is to be expected,
since even movements on the scale of centimeters may severely reduce the
effect of the crosstalk cancellation. This illustrates the weakness of the learn
and freeze method – since there will always be some degree of movement in the
room, the effect of the crosstalk cancellation will vary with time. A method
based on continuous update in the crosstalk cancellation filter may be able to
track such movements and keep the reduction of crosstalk at a more constant
level.
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6.6.3 Filter length

Intuitively, the mic-to-mic impulse response estimate used in the crosstalk
cancellation should be as long as possible, to include as much of the
reverberation tail as possible. But as was illustrated in section 5.4, in some
cases of poor impulse response estimation, the estimate will contain a noisy
tail which does not decay with time. The result is an unnatural-sounding
reverberation effect. In this case a truncation of the estimate will yield a better
result. The consequence of this is that the filter length should be carefully
chosen – long enough to provide substantial damping, short enough to avoid
the effect just mentioned. The most important parameter when choosing filter
length will be the reverberation time of the room. In a practical application,
a way to estimate the reverberation independently of the adaptive algorithm
would probably be useful for making a suitable choice of filter length.

6.7 Future considerations

6.7.1 Low complexity implementation: log-log LMS

Many approaches have been used to try to reduce the complexity of LMS-style
algorithms. Some have tried to just use the sign of the input or the error
signals, or both, in the filter update equation ("sign-data", "sign-error" and
"sign-sign" algorithms, respectively). This reduces both memory requirements
and computational load during adaptation, but also reduces filter performance
drastically. In [13], the authors suggest quantizing both input and error
signals to the nearest power of 2, so that these signals can be represented in
their log2 form, yielding much shorter word lengths. This algorithm is called
the "log-log LMS" algorithm, and has the same kind of advantages as the
sign-type algorithms – but the experiments performed in [13] suggest that its
performance is very close to that of the original LMS algorithm. Although the
signals are quantized, information about their dynamic range is still retained,
and the authors claim that this is because important information about the
dynamic range of the signals is retained. The complexity of this algorithm
is actually also less than that of the sign-data and sign-error algorithms, and
the chip area requirements for ASIC implementation are also lower. For an
implementation in a sound mixer, reduced complexity and chip area are both
very interesting qualities in an algorithm. Although this algorithm has not
been tested in this work, it may be interesting for future research in related
areas.
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6.7.2 Blind signal separation

In this work, only asymmetrical crosstalk case have been studied. If there is
only one-way crosstalk, as described in section 3.1, adaptive filtering may be
applied. If, on the other hand, there is symmetrical crosstalk – that each in
the instruments are more or less equally strong, so that there is substantial
crosstalk both ways – adaptive filtering can not be used, as one does not have
access to the original signals from both instruments, only a mixture of these.
In this case, Blind Signal Separation (BSS) may turn out to be a useful tool.

Blind signal separation techniques are based on separating signals from
two independent sources with different probability distributions. Several
approaches and implementations exist.

Blind signal separation works very well for a simple mix of two signals.
Unfortunately, this is not the case for two instruments playing in the same
room, being recorded by two microphones. The sound from each instrument
will hit both microphones, along with several reflections from the walls. This
is termed a "convolutive mix", and has turned out to be a much harder case
for BSS.

6.7.3 Subband processing

All experiments in this work was done at a sampling frequency of 44.1 kHz, in
order to span the entire frequency range audible to the human ear. This means
that the filters needed for crosstalk cancellation have to be several thousand
coefficients long. The filter may be made considerably shorter by performing
the adaptive filtering in subbands, since the sampling rate in each band can
be reduced [8]. Also, for several of the instruments that were tested, there
was little or no crosstalk cancellation in the higher frequencies. If one still
wished to reduce the low-frequency crosstalk, it would be possible to perform
adaptive filtering in only a low-frequency band, and thus reduce both sampling
frequency and filter length.

6.7.4 Measuring input signal quality

During this work, it was obvious that some instruments and input signals were
a better "raw material" for the adaptive algorithm than others, yielding better
impulse response estimates and faster convergence rates. This is probably
partly a result of the signals themselves being less correlated, resulting in a
smaller eigenvalue spread of the correlation matrix (see section 2.2.3) – and also
partly a result of the physical properties of the instrument and its interaction
with the room, resulting in a smaller degree of time variance (as discussed in
section 6.3.4).
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6.7. Future considerations

From this sprang an idea: Can the input signal "quality" be measured in
some quantifiable way, without actually performing the adaptive filtering? The
effect of physical aspects of the instrument and the room are probably hard to
quantify from a recorded microphone signal, but it should be possible to find
a measure for the degree of "self-correlation". One possible way to measure
this would be to estimate the correlation matrix, and calculate the eigenvalues
and the eigenvalue spread from this estimate. This approach would probably
be well suited to stationary signals (whose correlation matrices have constant
eigenvalues), but if this method were to be used on musical signals, their highly
transient and nonstationary nature may present a problem.

Another, and somewhat simpler measure was also looked into – that of the
"spectrum flatness". It can be shown [14, section 3.4.5] that the eigenvalue
spread of a stationary signal is upper bounded by the dynamic range of the
power spectrum;

X (R) ≤ max{Px(ω)}
min{Px(ω)}

(6.3)

where Px(ω) is the power spectrum of the signal. The larger the spread in
eigenvalues, the larger the dynamic range of the power spectrum. Since a large
dynamic range indicates a "non-flat" power spectrum, the "flatness" of the
spectrum was suggested as a measure of input signal quality. A flat spectrum
should represent a signal with small eigenvalue spread, making it a "good"
input signal. This is in agreement with the classification of white noise (which
has a completely flat spectrum) as the ideal input signal (see section 2.2.3).
Similarly, a spectrum with large peaks and dips should indicate a "bad" input
signal.

The flatness of the spectrum can be measured with what is (quite
appropriately) called the Spectral Flatness Measure (SFM) [14, section 4.1.1].
This is based on the ratio of the geometric mean of the power spectrum to
the arithmetic mean. If the spectrum is completely flat, both mean values will
be equal and the ratio will be 1. If the spectrum is shaped in any way (for
example with sharp peaks), the ratio will be less than 1. Since both mean
values must be positive, the SFM is always greater than 0.

To test the SFM as a measure of input signal quality, a preliminary experiment
was conducted: Adaptive filtering was done on a segment, and then the SFM
was calculated for the same segment. The SFM and fullband ERLE values
were then compared for a number of segments. This was done for both real
and simulated measurements (with a synthetic impulse response). The SFM
measure was successful in classifying signals as having non-flat spectrums
(for example instruments with harmonics resulting in several peaks in the
spectrum), but the correlation with the ERLE value was poor, especially for
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the real-world measurements. For the real-world measurements, this may be
explained in part by effects like time variance in the room, but the fact that
correlation was poor also for the simulated case seems to indicate that the
flatness of the spectrum alone is not enough to determine what ERLE value
can be expected.

Due to the inconclusive result of the preliminary experiment, this was not
investigated further, but classification of input signal quality still remains an
interesting problem. Finding alternative ways to measure such quality, or
looking further into the use of SFM may both be items for future research.
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7
Conclusions

In this work, a method to reduce acoustic crosstalk has been investigated. This
has been based on estimation of an impulse response between microphones
by adaptive filtering. By using the signal from the microphone closest
to the instrument producing crosstalk, and filtering it with the estimated
impulse response, the crosstalk in the other microphone may be modeled and
subtracted.

A version of the Block LMS algorithm was chosen as the main adaptive
algorithm for use in experiments. With this algorithm, many of the operations
involved in the updating of the filter were performed in the frequency
domain, and thus this algorithm is called the Frequency Block LMS (FBLMS)
algorithm. A decorrelation of the input signals, by normalization with an
estimate of the power spectrum, was also implemented in this algorithm. An
experiment was conducted comparing this algorithm with the normalized LMS
(NLMS) algorithm. The experiment illustrated that although the convergence
rate of the FBLMS algorithm was somewhat slower than that of the NLMS, the
FBLMS algorithm was much more computationally effective, and also seemed
to yield a smaller final system distance.

Two different methods were also suggested for crosstalk cancellation. The
first was termed "learn and freeze", with the name meaning that the adaptive
algorithm should first estimate the impulse response with only the crosstalk-
producing sound source playing, and then "freeze" the filter coefficients. The
resulting crosstalk cancellation filter is then kept constant during performance,
when both instruments are playing. The learn and freeze method was used
for most experiments, both because it allowed for simpler and more easily
repeatable experiments, and because the achieved crosstalk cancellation was
easier to measure. Sound examples illustrated that if the crosstalk cancellation
filter is kept constant while the actual impulse response in the room is changing,
the "residue crosstalk" will fluctuate. Experiments also showed that even very
small changes may affect the crosstalk reduction at high frequencies.

The second method that was suggested was called "continuous update",
meaning that the adaptive filter should continuously update the filter
coefficients while both sound sources are playing. Several challenges of this
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method were pointed out. A simulated experiment was also conducted, and
this revealed that so-called "doubletalk" (when other sound source are playing
in addition to the one producing crosstalk) may give rise to unwanted distortion
of the impulse response estimate and corresponding unwanted sound artifacts.
The method is still seen to have potential, if a suitable doubletalk detector can
be implemented to slow down or stop adaptation during doubletalk segments.

A loudspeaker playing white noise was used as a reference sound source,
representing an approximate "best case". In a small heavily damped room,
the maximum achieved damping of the crosstalk from this source was
approximately 35 dB. This was achieved in the 500-1000 Hz octave bands,
while damping was generally somewhat lower in bands above and below this.
It is suggested that low-frequency background noise is the cause of less damping
in the low-end of the frequency range, while time variance is the cause of less
damping in the higher frequencies. Similar experiments in a larger, "ensemble"
room resulted in maximal damping of approximately 27 dB, with less damping
in the high and low end also in this case. Theoretical calculations of the
maximally achievable damping were shown to be much more accurate for the
larger ensemble room than for the small, damped room.

An experiment was also conducted to investigate the influence of microphone
directivity on the achieved crosstalk cancellation. Results showed that for a
white noise source, a microphone with cardioid directivity gave slightly better
damping than an omnidirectional microphone – even when it was not aimed
directly at the sound source. It is suggested that this is because the ratio
of the direct sound to the reverberation is increased. It was also found that
two inexpensive, dynamic microphones (Shure SM 57 and SM 58) resulted
in slightly better damping than AKG C 414 microphones, which are more
expensive condenser microphones.

Using the learn and freeze method, experiments were done for several musical
instruments, in both the small, heavily damped room, and the larger ensemble
room. Although the same instruments were not tested for both rooms, the
results indicate that the achievable damping was quite similar in these rooms.
This is consistent with what was found in the experiment using white noise,
and seems to suggest that substantial crosstalk cancellation may be possible
in a wide range of rooms.

Some of the experiments were done with the players using both a "calm"
and a "fast" playing style. The fast style resulted in slightly better crosstalk
cancellation in all cases. It is suggested that this may be due to a "fast"
musical signal having less correlation, thus making it a better input signal to
a adaptive algorithm.

For several of the musical instruments, there was substantial crosstalk
cancellation only in a few octave bands. These were most often the bands in
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which the instruments were able to radiate the most energy. It was suggested
that the increased signal-to-noise ratio in these bands made a higher degree
of crosstalk cancellation possible, and also that such high-energy bands are
"prioritized" by the adaptive algorithm, to minimize the overall error. Complex
directivities and a high degree of time variance are also suggested as reasons
for poor crosstalk reduction, especially in high frequency bands.

It was also pointed out that if there is crosstalk reduction in only a few octave
bands, the spectrum of the remaining crosstalk will be changed, making it
sound "unnatural" in some cases. This problem was also illustrated through
sound examples. This poses a possible challenge for a practical application of
crosstalk cancellation: What is actually most pleasing to the human listener
– loud, but natural-sounding crosstalk, or partly cancelled crosstalk with an
unnatural spectrum?

In all, the results of the experiments with crosstalk cancellation were quite
variable, depending of the sound source. Experiments with a loudspeaker
playing white noise and an electric guitar amplifier both yielded substantial
damping, while the damping of some musical instruments was on the scale of
just a few dB, often in only two or three octave bands. This indicates that the
methods investigated in this work may not be usable for any sound source in
a practical application (like a sound mixer), but that much can be gained in
some cases. The sound sources that seem to be yield the best results are those
that are completely stationary, like a loudspeaker or a guitar amplifier.
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A
MATLAB code

A.1 FBLMS implemented as MATLAB function

function varargout = flms(x,d,L,mu,varargin)
%FLMS LMS filtering performed in the frequency domain
%
% H = FLMS(X,D,L,MU) returns an estimate of length L of the system
% impulse response defined by the input signal X and the output signal D.
% Block LMS adaptive filtering, performed in the frequency domain and
% with a block size of L, is used to estimate H. MU is the step size
% parameter. MU is normalized by the power of the input signal in each
% block.
%
% H = FLMS(X,D,L,MU,GAMMA,'fnorm') will in stead normalize MU by en
% esimate of the power in each frequency bin. Thus, the step size is a
% function of frequency. GAMMA is the "forgetting factor" of the power
% spectrum estimate.
%
% [H,E] = FLMS(X,D,L,MU,...) will also return the error signal E =
% D−D_EST, where D_EST is found by filtering X with the filter estimates
% H during adaption.
%
% Martin Hansen 04.02.2008
%
% 2008, 1. April: Changed from zero−padding in the back to truncation of
% x and d

%% Check that x and d have the same length
N = length(x);
if N 6= length(d)

error('x and d vectors must be the same length')
end

%% Set the 'normalized' switch
normalized = false;
if nargin > 5

if strcmp(varargin{2}, 'fnorm')
normalized = true;
gamma = varargin{1};

end
end

%% Make sure that x and d are column vectors
x = x(:);
d = d(:);
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%% Vector initialization
% x and d are truncated to have a length equal to an integer times L.
r = mod(N,L);
if r % If r is not zero, truncation is needed

N = N − r; % Update N
x = x(1:(end−r));
d = d(1:(end−r));

end

% x is padded in front with a block of zeros to account for "time −1",
x = [zeros(L,1) ; x];

% Preallocate the rest of the vectors
e = zeros(N,1);
y = zeros(N,1);
H_est = zeros(2*L,1);

% Initial power spectrum esimate. The initial value is not set to zero, to
% avoid division by zero. Since the average value of a power spectrum is
% proportional to the FFT length, the initial estimate is also scaled by L.
P = L*ones(2*L,1);

%% For loop
% Index vectors and window vector
x_index = 1:(2*L);
index = 1:L;
first_L_win = [ones(L,1);zeros(L,1)];

if not(normalized)
for ii = 1:(N/L)

% Frequency domain representation of X
X = fft(x(x_index));

% Filtering done in frequency domain, and transformed to time domain
y_temp = real(ifft(X.*H_est));

% Only the L last samples of y_temp are usable bacause of aliasing
y(index) = y_temp(L+1:end);

% Calculate error in time domain
e(index) = d(index) − y(index);

% Frequency representation of error
E = fft([zeros(L,1);e(index)]);

% Correlation between x end e done in frequency domain
% Only L first samples are used bacause of aliasing
Phi = first_L_win.*real(ifft(conj(X).*E));

% Calculate mu normalized by estimate of signal power
mu_norm = mu/(x(index+L)'*x(index+L));

% Update filter coefficients in frequency domain
H_est = H_est + mu_norm*fft(Phi);

% Update indices
x_index = x_index + L;
index = index + L;

end

else % "Normalized"
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for ii = 1:(N/L)
% Frequency domain representation of X
X = fft(x(x_index));

% Filtering done in frequency domain, and transformed to time domain
y_temp = real(ifft(X.*H_est));

% Only the L last samples of y_temp are usable bacause of aliasing
y(index) = y_temp(L+1:end);

% Calculate error in time domain
e(index) = d(index) − y(index);

% Frequency representation of error
E = fft([zeros(L,1);e(index)]);

% Update power estimate
P = gamma*P + (1−gamma)*real((X.*conj(X)));

% Correlation between x end e done in frequency domain
% Only L first samples are used bacause of aliasing
Phi = first_L_win.*real(ifft( (conj(X).*E)./P ));

% Update filter coefficients in frequency domain
H_est = H_est + mu*fft(Phi);

% Update indices
x_index = x_index + L;
index = index + L;

end
end

% Tranform filter coeffs to time domain
h_est_temp = real(ifft(H_est));

% Only L first samples are not equal to zero
h_est = h_est_temp(1:L);

varargout{1} = h_est;
varargout{2} = e;
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A.2 Function for generating synthetic impulse re-
sponses - creexpir()

function varargout = creexpir(fs,Nsamp,T60,V,dist,Q)
%
% Creates an impulse response with an ideally exponential decay.
% Relates to the direct sound at 1 m distance.
% If the optional parameter dist is given, a direct sound is added
% as a perfect pulse and the exponential part starts after this.
%
% impres = creexpir(fs,Nsamp,T60,V,dist,Q);

% 971208 Added the directivityfactor Q.
% 11.02.2008 Added possibility to return direct sound delay

if nargin < 6,
Q = 1;

end
c = 344;
% impres = randn(Nsamp,1);
% t = [0:Nsamp−1]/fs;
% tau = T60/6.91;
expwin = exp(−(0:Nsamp−1)*3*log(10)/fs/T60)';
% clear t
impres = randn(Nsamp,1).*expwin;
clear expwin
scale = sum(impres.^2)/(100*pi*T60/V);
impres = impres/sqrt(scale);
if nargin ≥ 5,

if dist > 0,
ncut = floor(dist/c*fs);
if ncut ≥ 1,

impres(1:ncut) = zeros(ncut,1);
impres(ncut) = sqrt(Q)/dist;

end
end

end

varargout{1} = impres;
varargout{2} = ncut;
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