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Problem Description
In earlier work at NTNU, high speed multipliers have been studied[1]. The result of that work is
available as a netlist generator for optimized high speed multiplier structures at http://modgen.
dnsalias.com. The cost function here involves minimizing the number of carries fed forward
between columns in the multiplier tree structure. This project assignment will investigate how this
cost function can be extended to include power cost. It involves working with an existing
optimization algorithm coded in C, and extend it with power estimation functionality based on[2].
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[2] S. T. Oskuii, Design of Low-Power Reduction-Trees in Parallel Multipliers, 2008
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Abstract

Power consumption becomes more important as more devices becomes embedded or battery
dependant. Multipliers are generally complex circuits, consuming a lot of energy. This thesis
uses Sand’s [1] multiplier generator, made for his master thesis, as a basis. It uses tree
structures to perform the multiplication, but does not take power consumption into account
when generating a multiplier.

By adding power optimization to the generator, multipliers with low energy consumption
could be made automatically. This thesis adds different reduction tree algorithms (Wallace [2],
Dadda [3] and Reduced Area [4]) to the program, and an optimal algorithm might be found.
After the multiplier tree generation, an optimization step is performed, trying to exploit
the delay and activity characteristics of the generated multiplier. A simplified version of
Oskuii’s [5] algorithm is used. To be able to compare the different algorithms with each
other, a pre-layout power estimation routine was implemented. The estimator is also used
by the post-generation optimization. Since accuracy is important in an estimator, the delay
through a multiplier was also investigated.

Taking the previous mentioned steps into account, we are able to get a 10% decrease in
overall power reduction in a 0,18/0,15µm CMOS technology, reported by "IC Compiler". De-
lay characteristics of a multiplier is also supplied, and can be used by other power estimators.

This thesis shows how to achieve less power consumption in multipliers. It also shows
that the delay model is important for estimation purposes, and how an estimator is used to
optimize a multiplier. The findings in this thesis can be used as is, or be used as a basis for
further study.
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Chapter 1

Introduction

Multipliers are used in a wide range of devices, from large scale processors to small embedded
DSP chips. As multipliers are large, slow and complex components, a lot of research has
been done to make the components smaller and faster [2, 3, 4, 15, 16]. As more of the
electronic devices becomes embedded or handheld, they become more dependant on battery
as a power source. To improve battery life-time, the research focus has shifted to improve
power consumption [17, 18, 19, 20, 5]. By reducing power-usage, it is possible to drastically
improve the battery-life of handheld devices.

Since tree multipliers, like Wallace [2] and Dadda [3], are faster and use less power than
traditional array multipliers [21] (though have larger area), this thesis concentrates its focus
on tree multipliers. The wires inside the tree multipliers have very different length, because
of the irregular layout of such multipliers, and signal delay and power impacts the design
more than in array multipliers. Over half of the used power is because of excess switching,
which produces nothing to the end result [22], and should therefore have lot of optimization
potential [5].

By employing different kind of tree multiplier generating algorithms, we can find what
kind of algorithm performs best. Since there also are a lot of spurious switching activity
in multipliers, another way to power optimize multipliers are to reduce these glitches. By
altering how the adders inside the multiplier are interconnected, it should be possible to get
decreased power usage [5].

This thesis uses six different algorithms to design tree multipliers: Wallace [2], Dadda [3],
Reduced area [4], algorithm used by Sand’s multiplier generator [1] and algorithms proposed
here and in a project prior to this master thesis work [23]. To compare these algorithm
before layout, a Monte Carlo approach for power estimation is used [10]. The result of the
power estimation is used to power a post-generation optimization of each multiplier using a
simplified optimization algorithm proposed by Oskuii [5].

The background theory for the different kind of algorithms that generates the tree multi-
pliers are presented in this thesis, together with theory on power estimation for combinational
CMOS circuits. An implementation of five algorithms is added to the existing VHDL-netlister
program written in C by Sand [1], to produce a wide range of tree multipliers, will be pre-
sented. An implementation of an estimator is also discussed, in addition to an implementation
of a simpler optimization routine based in Oskuii’s model [5]. The estimator is fed real-world
timing delay from an SDF-file[14] of a post-layout multiplier. The delay data is extracted
using a parser implemented for this thesis. Using netlister with the implementations from
this thesis, multiple 8× 8, 16× 16 and 32× 32 multipliers are generated and compared using
the said estimator. Power estimates for two algorithms from post-layout analysis are also
presented, to verify if an improvement are found.

1



2 CHAPTER 1. INTRODUCTION

1.1 Power Usage in CMOS

The power used in CMOS-circuits consists of two parts, dynamic and static power dissipa-
tion [18]:

P = Pdynamic + Pstatic (1.1)

The dynamic power consumption is power used as a function of activity. The static
component is power consumed as a function of time.

1.1.1 Static Power Consumption

The part describes power used even though there is no activity in the circuit. Ideally CMOS
components should not have any static power consumption, since there are no direct paths
from Vdd to ground. In practical applications this is not the case, since MOS transistors are
not perfect switches. There will always be leakage currents in MOS transistors [18].

Reverse biased currents flows through the source or drain and the substrate, because
parasitic diodes in the MOS transistors are one of the static leakage currents. The sub
threshold leakages current run through the transistors (from source to drain), because the
gate of the transistor is close to the threshold voltage, and therefore lets some current flow
through. These currents used to be negligible, however it seems to become more prominent
as transistors become smaller [19, 24] and really starts to emerge at 0,13µm [25]. The static
power dissipation is primarily determined by fabrication technology [26].

1.1.2 Dynamic Power Consumption

The dynamic part of the power consumption in CMOS can be divided into two parts [20].

Pdynamic = Pshort−circuit + Pswitching (1.2)

The short circuit happens when both the PMOS and the NMOS transistor is open at
the same time. This happens during a switch, because the PMOS and NMOS does not
switch instantly, but has a switching delay. This makes a short circuit line from Vdd to
ground through the CMOS component. As we can see in figure 1.1, if the NMOS and PMOS
transistors in the inverter are both open at the same time, a short-circuit path i available
from Vdd to ground. The phenomena is described in equation 1.3, where Vdd is the supply
voltage and Isc is the current flowing through during the short circuit period of the switch.
As long as the inputs of the NMOS and PMOS transistors are properly balanced, this power
dissipation should be less than 20% of the dynamic power dissipation [27].

Pshort−circuit = VddIsc (1.3)

The power used in switching the CMOS from one state to another is largely used to charge
parasitic capacitance in lines between the CMOS-cells [18]. When the output of a gate is
turned from 0 → 1, the NMOS part of the CMOS cuts off the connection to ground, and
the PMOS part of the CMOS enables a connection from Vdd to the output. This causes the
capacitance on the output port and line to be charged, with the energy equal to:

Energytransition = CV 2
dd (1.4)

Where Vdd is the power source. Half of this power is dissipated at once in the PMOS
transistors, while the other half is stored in the capacitance [18]. When the port is turned
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Figure 1.1: Switching power usage in CMOS

from ’1’ to ’0’, the line is connected to ground, and the energy stored in the capacitance is
also dissipated (see figure 1.1).

Since an equal amount of energy is used to charge the circuit for each 0→ 1 transitions,
it is possible to get an equation for power used in switching. Considering the frequency f of
the circuit, and the probability for a 0→ 1 switch at the gate α, we get the equation[18]:

Pswitching = αfCV 2
dd (1.5)

Although the other sources of power dissipation have increased their share, switching
power consumption is still by far the largest source for power usage in CMOS today [27, 18,
22], and is therefore a prime candidate for optimization.

As we can see from the equation, there are three elements to improve power usage:
Voltage, physical capacitance and activity. Over the years, lower voltage has been employed
in CMOS, causing a reduction in switching power usage [19, 25]. Physical capacitance is
strongly correlated to the line length between transistors and the kind of technology being
used (size of transistors and lines) [18]. Activity is maybe the most system-dependant factor
in the equation. By reducing the activity in the design, it is possible to reduce the amount
of power used in the design.

1.1.3 Glitching

So far we have looked at where the power is dissipated. As we have seen, switching activity
dictates some of the power usage in CMOS. A problem arises when the inputs on an element
do not change at the same time. This might cause the element to use energy two times
instead of one. This leads to the problem that some circuits switch more than they need, to
reach their final state. This effect is called glitching. This happens when the inputs on an
element are not balanced, and the inputs enter the element at different times, as we can see
in figure 1.2. Here we can see the output OUTA first become ’1’, then ’0’ and finally ’1’, which
is its final state. The adder’s OUTA uses double amount of energy (i.e. α > 1 in equation
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1.5) to get to the final state. If we have even more combinatorial elements following this
FA, these spurious switching activities will spread down the whole design, until a buffer or
register halt the propagation. According to Kalis [22], tree multipliers uses 30% to 75% of
its power in this kind of spurious switching. This shows there is a lot of potential of reducing
energy consumption by reducing glitching.

FA

INA

INB

INC

OUTA

OUTB

Figure 1.2: Glitching on an adder

1.2 VHDL netlister

The netlister this thesis uses as a foundation for the implementation of the multiplier gen-
erator algorithms, the estimator and the optimization routine is originally written by Espen
Sand for his master thesis [1]. The code generates a multiplier, and write out the resulting
multiplier using VHDL. The application takes arguments for the size of the multiplier, as well
as different options to add Booth-recoding [15], pipelining and a vector merging adder. The
program is used without these functions in this thesis, and is only used to generate VHDL
for a multiplier tree.

The program is divided into several parts, and generates a list of partial products that
it passes to a reduction tree generator module of the program. The netlister already has a
tree generator build in, but several new tree generators can easily be added to the program,
as long as the same data structures are used. Since the generation is sequential, it is easy
to add step between the tree generator, and the writing of VHDL-file, making it possible to
add an optimization step before writing the multiplier to VHDL.

1.3 Outline of this Thesis

Chapter 1 contains a small introduction to what power consumption in electronics are, and
a brief explanation of the netlister program that is used as a basis for this thesis. Chapter
2 explains how multipliers in electronic circuits work, and how the partial products are
generated. Since multipliers contains two schools of generation, the chapter gives a brief
explanation of array multipliers. A more in-depth study of different tree multipliers is given,
containing the theory behind the tree multiplier generation algorithms used in this thesis.

Chapter 3 reviews both probalistic approaches, as well as simulation approaches to esti-
mate energy consumption. It also contains theory about the chosen simulation estimation,
using the Monte Carlo approach [10].

Chapter 4 contains a comparison of the different tree multiplier generator algorithms, and
some insight on the advantage and disadvantage of each algorithm. Oskuii’s [5] algorithm for
reducing power through changing the interconnection between the adders in the multiplier
is also studied, together with a simplified version of said algorithm. The Optimization
alternatives for the vector merging adder are discussed last.

Chapter 5 examines the implementation of the estimator used in this thesis. The estimator
is implemented as a simulator at gate level, counting activity at each gate. It explains how
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the simulator uses an event-based scheme to keep the run-time as low as possible. It also
discusses what kind of timing-data is available to use in the estimator, and what data is
beneficial to use. An SDF-parser was written for this thesis, and the implementation and
choices made during the implementation are showed to the reader.

Chapter 6 contains details on how the optimization routine are implemented. Choices of
implementation are also discussed.

Chapter 7 have results and discussions about the extraction of the delay model from
existing multipliers. It also contains graphs over the performance of the estimator, and
results on how good the line optimization are and discussions about the topics.

Chapter 8 has the conclusion of this thesis, and a suggestion of future work. It is follows
by appendices and a bibliography

1.4 Main contributions
This thesis has made the following contributions to the field, and this are outlined here:

– An implementation of a gate-level estimator, that estimates power-usage before syn-
thesis.

– Comparison of different algorithms power usage, using implemented estimator.

– Evaluation of the effect of line-optimization

– Timing data from post-layout multipliers.

– Implementation of a simplified version of Oskuii’s [5] optimization routine.

– Added five algorithms for generating multiplier trees to the existing netlister [1].

– A tool to read SDF-files [14], to extract timing data to use in a timing model.

The SDF-parser is written in Perl. The netlister build upon during this thesis is written
in C , and the added algorithms for generating multiplier trees, the estimator and the
optimization routine is therefore also written in C.





Chapter 2

Multiplication

Multiplication is a very common task in modern digital electronics. The two most important
methods used is to either perform shift and add operations and use existing components in
a CPU, or add a multiplier unit. Further information about shift and add operation can be
found in Parhami[9].

Multipliers in digital design are often divided into two subgroups: Array multipliers and
tree multipliers[9, 28]. Array multipliers use a rigid pattern to construct their multipliers.
This leads to compact designs and an evenly distributed delay. Tree multipliers on the other
hand reduces the number of bits in each level in the tree until the calculation is done. Since
this produces a complex tree structure, the delay is not evenly distributed. This may cause
glitches that uses power. And the tree structure uses a lot of interconnection, end therefor
uses a lot more area. Despite the larger area and not so evenly distributed delay, the tree
multipliers use less power than array multipliers[21].

Another advantage tree multiplier have, is that they are a lot faster. The depth of an array
multiplier is O(n) = n while it is O(n) = log2 n for multiplier trees[28] Even though the wiring
cause more delay for multiplier trees, it still perform faster than array multipliers[21, 29].

2.1 Terminology

This thesis contains a lot of discussion around how multipliers are generated and different
parts of the multiplier. To make the discussion understandable to the reader, it is important
to be on the same terms when using different words. The three words: column, row and stage,
will be used to describe different parts of a tree multiplier in this thesis. Partial products
(see section 2.2) are organized into rows and columns. This is shown in figure 2.1, where all
the partial products containing the bit b0 share the same row. An example of a column is
[a1b0, a0b1]. Each column contains partial products width different weight or value. By this
we mean that each PP (partial product) in the rightmost column has the value of 20 = 1,
and in the next column 21 = 2 and so forth. This is show in figure 2.7. To describe the value
or weight of a partial product, the word bitweight or columnweight is used in this thesis.

During the reduction of partial products, full- and half-adders are added to the design, and
a new set of partial products emerges (since adders reduce the number of partial products).
During the thesis, each of these sets are called stages. The first stage is the initial set of
partial products, the second stage is the set of partial products after the first reduction.
Figure 2.8 show five stages, where the topmost tree contains the original partial products
(denoted as • in the tree), and the next tree contains the tree at the second stage, after the
first reduction.

7
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2.2 Partial products

a3 a2 a1 a0 Input
× b3 b2 b1 b0

a3b0 a2b0 a1b0 a0b0
a3b1 a2b1 a1b1 a0b1 Partial products

a3b2 a2b2 a1b2 a0b2
a3b3 a2b3 a1b3 a0b3

p7 p6 p5 p4 p3 p2 p1 p0 Result

Figure 2.1: Basic bit-level multiplication

Multiplication is often done by dividing the problem into smaller multiplications, calcu-
lating the smaller multiplications and accumulate the result. In hardware this is often done
by dividing the problem down to multiplying one bit with another, as this can be done with
a regular AND operation. Each of these one bit multiplications are called a partial product
(PP). The partial products are then added together to form the result of the multiplication.
Figure 2.1 show how a is multiplied with b using unsigned integers as input, where value ai
is the bit in position i. Each bit from a is multiplied with each bit in b. This does however
not account for signed numbers, and several other methods of generating partial products
has been proposed [9].

When using two’s complement form for signed integers, the corresponding partial products
are given in Figure 2.2.(a). This PP generation does however require signed arithmetic to
sum the partial products. This was improved by the Baugh-Wooley [8], and is shown in
Figure 2.2.(b). This partial product generator uses NOT ports in addition to AND ports,
but does not require signed arithmetic. The method does however require more additions,
but this is usually outweighed by only requiring addition. The Baug-Wooley generator has
been modified to require less additions, as shown in Figure 2.2.(c). This generator requires a
minimal amount of extra additions to perform signed multiplication.

2.3 Array multipliers
Array multipliers use the fact that multiplications form a recurring pattern. In Figure 2.1
we see a basic setup for a bitwise multiplication. We multiply each bit in one multiplicand,
with every bit in the other multiplicand. This is done for every bit in the first multiplicand,
and then shifted position of the bit. Then all the bits are summed together, and produce the
result of the multiplication.

2.3.1 Ripple-Carry Array
Using Ripple-Carry adders, we can exploit the recurring operation, and make an adder array.
In Figure 2.3 we see the each column represents the first multiplicand that gets multiplied with
each bit in the second multiplicand. The elements are actually an adder and an AND-gate
that performs the actual multiplication. Ain·Bin is put into the adder together with Cin
from the previous column and Sin. The adder then produces Sout (Sum out) and Cout
(Carry out). Aout and Bout is just an extension of Ain and Bin respectively[28].

A problem with the Ripple-Carry approach is that it is very slow for larger implementa-
tions. Since the carry have to propagate through every row in the column, we get a very long
critical path with this implementation.
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a4 a3 a2 a1 a0
× b4 b3 b2 b1 b0

−a4b0 a3b0 a2b0 a1b0 a0b0
−a4b1 a3b1 a2b1 a1b1 a0b1

−a4b2 a3b2 a2b2 a1b2 a0b2
−a4b3 a3b3 a2b3 a1b3 a0b3

a4b4 −a3b4 −a2b4 −a1b4 −a0b4
p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

(a)

a4 a3 a2 a1 a0
× b4 b3 b2 b1 b0

a4b0 a3b0 a2b0 a1b0 a0b0
a4b1 a3b1 a2b1 a1b1 a0b1

a4b2 a3b2 a2b2 a1b2 a0b2
a4b3 a3b3 a2b3 a1b3 a0b3

a4b4 a3b4 a2b4 a1b4 a0b4
a4 a4

1 b4 b4
p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

(b)

a4 a3 a2 a1 a0
× b4 b3 b2 b1 b0
1 a4b0 a3b0 a2b0 a1b0 a0b0

a4b1 a3b1 a2b1 a1b1 a0b1
a4b2 a3b2 a2b2 a1b2 a0b2

a4b3 a3b3 a2b3 a1b3 a0b3
1 a4b4 a3b4 a2b4 a1b4 a0b4
p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

(c)

Figure 2.2: (a) 2’s complement (b) Baugh-Wooley [8] (c) Modified Baugh-Wooley [9]

2.3.2 Carry-Save Array

A solution to the slow Ripple-Carry problem with a long critical path, is to let the carry travel
down the column. This way the columns are not dependent on the column to the right, like
they are with Ripple-Carry. In Figure 2.4 a Carry-Save Array is implemented. The element
in the figure is an adder and an AND-gate that performs the actual multiplication. Ain·Bin
is put into the adder together with Cin from the previous column and Sin. The adder then
produces Sout (sum out) and Cout (carry out). Aout and Bout is just an extension of Ain
and Bin respectively[28].

Since the carry only propagates down in each column, the result from the array is not
completely finished. Some of the lines now consists of two outputs for a given bit level.
Because of this, the result needs to be put into a Vector Merging Adder (VMA) to get only
one output per bit level. This unit can be designed using different types for adder techniques,
eg. Ripple-Carry or Carry-Look-ahead. Even though the array needs this extra calculation,
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Figure 2.3: Ripple-carry array multiplier

the Carry-Save multiplier is faster than the Ripple-Carry Array in most cases[28]

2.4 Tree multipliers

Tree multipliers use different approach. They still use the same scheme for carry propagation,
as Carry-Save adders used in previous section. But in addition to regular adders (hereby
referred to as a full adder), they also use an element called a half adder. The full adder is
a regular adder, with three inputs and two outputs (a 3,2 counter), while a half adder is
an adder with two inputs and two outputs (a 2,2 counter). The output Sum is the same
bitweight as the input, while Cout is one value higher. As showed in the equation below
(Cin = 0 for HA)[9]:

A+B + Cin = S + 2Cout (2.1)

The block schematic of the full adder (FA) and the half adder (HA) is given i Figure 2.6,
and standard gate-level designs for those two components is given in Figure 2.5. They have
the following algorithmic output[9]:
HA:

S = A⊕B (2.2)

Cout = A·B (2.3)

FA:
S = (A⊕B)⊕ Cin (2.4)

Cout = (A·B) + (Cin · (A⊕B)) = (A·B) + (Cin ·A) + (Cin ·B) (2.5)

The result may have up to two outputs per bitweight (or column). By using a vector
merging adder, one can reduce the output to a valid binary result. As said in Section 2.3.2,
there are a lot of different ways to design a VMA. More discussion of the impact of VMA is
done in section 4.3.
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BoutBin
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0

0
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Figure 2.4: Carry-Save array multiplier

All of the algorithms use a matrix where the columns represents each bitweight and the
number of rows represent how many partial products that bitweight has. Figure 2.7 shows
an example of such a matrix, and how it is calculated. Each partial product is also often only
represented by a dot (•) in the graph. The algorithm then reduces the matrix by adding FAs
and HAs to it, which produces an output matrix, which represents the partial products for
the next stage of the algorithm. The output matrix contains the partial products that still
needs reduction. This task is repeated several times, until the output matrix contains only
columns with one or two partial products. Each bitweight will then only have two outputs,
and the result from the tree can be put into a vector merging adder (VMA). By connecting
the FAs and HAs from each reduction stage, we will get a structure that looks very similar
to a tree, hence the name: tree multiplier.

Because tree multipliers are faster and use less power than array multipliers[9, 21], the

Figure 2.5: Full adder (FA) and half adder (HA)
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A B A B

Cout SS

Cin

HA FA

Cout

Figure 2.6: Half-adder and Full-adder elements used in Carry-Save adders

a3 a2 a1 a0
b3 b2 b1 b0

a3b3 a3b2 a3b1 a3b0 a2b0 a1b0 a0b0
a2b3 a2b2 a2b1 a1b1 a0b1

a1b3 a1b2 a0b2
a0b3

Inputs: 1 2 3 4 3 2 1
Bitweight: 6 (26) 5 (25) 4 (24) 3 (23) 2 (22) 1 (21) 0 (20)

Figure 2.7: Setup of partial products in a tree multiplier

power optimizing done in this project is to decrease the power used in well-known tree
multiplier schemes. The rest of this section contains explanation on how three tree algorithms
function.

2.4.1 Wallace-tree

The Wallace algorithm[2] is the oldest of the algorithms presented here. It reduces the input
matrix by grouping the rows together, and performs reductions on each group. Rows that are
not part of any group is just transferred to the next stage of the algorithm. The algorithm
is as following:

1 Group the rows into sets of three (see Figure 2.8)

2 Add FA for each group with three wires in, and a HA for each group with two wires in.
This produces a new set of partial products, which represent the next stage.

3 If one or more columns contains more than two bits/rows, repeat the process.

In Figure 2.8 we see a 8 × 8 multiplier, that uses 39 FAs and 14 HAs. If we compare the
resulting multiplier with the Carry-Save array, it uses less adder elements (8× 8 Carry-Save
array uses 64 adders). And the delay is a lot smaller. The Wallace tree needs for reduction
stages, and therefore have a critical path of four elements, but the 8 × 8 Carry-Save array
have a critical path consisting of eight elements. Tree structure does not have such a nice
repetitive structure as the array, so it uses a lot more area on wiring[21].
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Figure 2.8: Wallace tree for a 8× 8 multiplier
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Figure 2.9: Dadda tree for a 8× 8 multiplier
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2.4.2 Dadda-trees

The Dadda algorithm reduces the tree by reducing columns instead of rows. The goal of
the algorithm is to use the least amount of elements as possible. To accomplish this, the
algorithm adds elements as late as possible. The algorithm is as follows[3, 30]:

1 Let d1 = 2 and dj+1 = b3 · dj/2c, where dj is the maximum height of the tree at the
j-the reduction stage. Find the largest j, so that at least one of the columns has more
bits than dj .

2 Use FAs and HAs to reduce the partial products, so that no column has more than dj
bits left (see Figure 2.9)

3 If one or more columns contains more than two bits/rows, let j = j− 1 and repeat step
2.

The Dadda algorithm uses less FAs and HAs than Wallace. According to Habibbi and
Witz[16] it uses the optimum amount of FAs. It is possible to make algorithms that use less
HAs, but they would require more FAs.

And since it allocates elements as late as possible, it requires a larger VMA than Wallace.
This is because the least significant bit would not get reduces until the last stage, and we
will always start at bit two for the VMA. Therefore the VMA would always need (n·m)−2
bits for a Dadda multiplier. But the Dadda tree uses a lot less HAs, and is in studies found
to be faster and smaller than the Wallace tree[31], despite the larger VMA.

2.4.3 Reduced Area multiplier

Since Dadda uses a larger VMA and Wallace uses HAs extensively, Bickerstaff et. al.[4] pro-
poses an algorithm that tries to improve those drawbacks. Their "Reduced Area Multiplier"
uses few HAs (about the same as Dadda) and needs a smaller VMA than Wallace. Since
this algorithm also tries to reduce the number of wires as early as possible, this algorithm
should produce less interconnection and smaller area than both Dadda and Wallace[4]. The
Reduced Area multiplier uses this algorithm[4]:

1 Add bbi/3c FAs in each column, where bi is the number of bits in column i.

2 HAs are used only when

2.1 When required to reduce the number of bits in a column to the number of bits
specified in the Dadda series (see Chapter 2.4.2).

2.2 To reduce the rightmost column containing only two bits

As we can see from step 2.2, this algorithm always tries to reduce the least significant
two-wire output. Because of this, it will reduce the VMA with at least one for every row.
This is the reason it gets smaller VMA-sizes. And since it has the least interconnection[4] it
should dissipate the least amount of power through interconnections.
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Figure 2.10: Reduced Area tree for a 8× 8 multiplier



Chapter 3

Power estimation

Power estimation is the technique to find the power usage of a design, without having to do
the actual implementation on silicon. Several different types of power can be measured, but
finding the average or worst case power consumption is widely the most used application.
By doing this before implementing, developers are able to cut the cost, since computer based
estimations are much cheaper than actual silicon implementations. As the requirement for
low power increases, the research and need for high level power estimation also increases [32].

Numerous methods for estimating power exists, often divided into two categories [33]:
probabilistic and statistic. Inside each sub category, there are also different techniques based
whether the estimation is done on system-, block-, gate- or transistor-level, and if the circuit
is strongly combinatorial or not. In section 1.1.2 we show that the power usage is strongly
correlated with the activity in the circuit. This is therefore the most used variable in the
estimation. Several techniques considers the other power elements too small to be of any value
to estimate [33]. The power consumed is also dependant on chip heating and temperature,
but these variables are often set to a constant value when doing estimations [34]. The effect
estimate of the chip might be higher or lower than an real world application This since corner
values often are chosen, instead of typical operation temperatures. The estimate relative to
other estimates using the same parameters will still be accurate.

The importance of accurate timing data are also important, since a lot of the switching
activity comes from glitches (explained in section 1.1.3) in multipliers [22]. Without proper
delay values, the power estimation will be considerably less accurate. This is especially true
in circuits with high probability of glitches, such as multipliers.

3.1 Probabilistic based methods
Probabilistic approaches are based on calculating the probability of a change in a gate,
and using that information to determine the probable power consumption. Several different
techniques exists, but a common foundation is that it is easy to calculate a gate probable

A B OUT
0 0 1
0 1 0
1 0 0
1 1 0

Table 3.1: Truth table for NOR-gate

17
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power consumption. Given that a gate consumes power during 0 → 1 transitions (see
Equation 1.5 on page 3), it is only necessary to calculate the probability for this scenario to
happen. Using the truth table of a NOR-gate, given in table 3.1, in a zero delay environment
produces this equation:

p(0→ 1) = p(0) · p(1) = 3
4 · 1

4 = 0,1875 (3.1)

This calculation does, however, not take glitching into account, or consider that gates
have delays between them. This kind of delay is shown to have a large impact on larger
combinatorial circuits, such as multipliers [22]. This model also considers the probability for
the inputs to be uniformly distributed. It is often assumed that signals are independent of
each other, but that is not often the case. Two signals may never be high at the same time.
This is called spatial correlation [34].

Another assumption is that a signals value over two clock cycles are independent of each
other. This is often also not the case. This is called temporal correlation. The signals in
equation 3.1 are considered both spatial and temporal independent [34].

To overcome the limitations of the simple signal probability model, several other methods
have been proposed [34]. A proposition to use waveforms to solve the temporal dependency
has been used, and by this changing the probability for each gate inputs based on time.
This method might look similar to an event-driven simulation approach. A similar method
is also used by Oskuii [5] in his optimization work. Another approach is to calculate the
average number of transitions in each node in a circuit, using a single pass algorithm using
the concept of Boolean difference. A third method tries to handle both spatial (though only
internally) and temporal by using binary decision diagram [11]. The method defines the
boolean function for each node, and uses this information to generate BDD-diagrams for the
node, and using this information to calculate power usage. The disadvantage with BDD is
that it is slow. A overview over these techniques is found in Najm [34].

All but one (BDD) of the techniques ignores spatial dependency. They are fast to compute,
according to Najm [34]. BDD does take spatial dependency into account, but are also a slow
algorithm. They are also less pattern dependent than their statistic counterpart. This is
because the designer can specify the probability of the inputs, which is often more available
to designers than specific input patterns. Another solution is to calculate the probabilities
by surveying a large set of input patterns. Since the only calculation that needs to be done
to the input patterns, is the calculation of probability for, large data sets can be used. They
are however quite complex, and can be more difficult to implement than their counterpart.
The accuracy is also slightly lower than statistical approaches, but they can be faster [34].

3.2 Statistic based estimations

Statistic approaches are simpler. The basic idea is to mimic a system, and do simulation
with different input patterns, and then sum up the power used during the simulation. We
only look at switching power, which is common in simulation techniques. This is because the
majority of power dissipates from switching. Naming each input xi, and combining this with
Equation 1.4, the energy consumption of transition in each signal is [10]:

Energytransition of xi = 1
2CiV

2
dd (3.2)
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By counting transitions in each node, it it possible to calculate the energy used by
summing the energy used in each gate [10]:

Energytotal = 1
2

N∑
i=1

nxiCiV
2
dd (3.3)

Where N is the number of gates and nxi is the number of transitions in signal xi. If we
introduce nxi(T ) instead of nxi , which is the number of transitions happening during time
T , one can compute the power effect of the system [10]:

PT = 1
2

N∑
i=1

nxi(T )
T

CiV
2
dd (3.4)

Since we usually need an average power dissipation over time, the average power dissipa-
tion is therefore given by the following equation [10]:

Pswitching = lim
T→∞

PT = lim
T→∞

1
2

N∑
i=1

nxi(T )
T

CiV
2
dd (3.5)

Simulation techniques use this as a basis to calculate the power used. The time T is in the
equation set to be infinite, but that is not very feasible. In practical application simulation
is done over a finite time interval, and the measured power is then believed to converge close
to the actual power usage of the system [34].

These techniques are however very pattern dependent. Different input patterns could
result in very different results of the power optimization, and is therefore hard to determine
the accuracy of the result. And if we were to test all possible input variables, it would be too
time consuming.

3.3 A Monte Carlo approach

To address the problems outline in the previous section, Burch [10] proposed a Monte Carlo
approach for power estimation. By defining it xi(t) as a stochastic process, it is possible to
calculate the error of the estimation. When the error is known, it is possible to know when
to stop simulating, by stopping when the desired level of error is reached.

By defining xi(t) a stochastic process, xi(t), one can define PT as the random power of
xi(t) over the interval (−T

2 ,+
T
2 ]:

PT = 1
2

N∑
i=1

nxi(T )
T

CiV
2
dd (3.6)

Burch [10] show that the expected value of PT is the same for any T , and thus showing:

Pswitching = expected value[PT ] (3.7)

The problem is now reduced to a mean estimation problem, which is common in statistics.
The whole deduction is available in Burch [10].
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Start

Load Circuit Description and Simulation information

Initilize Circuit and Simulate Through Setup Region

Simulate Through Sampling Region and Estimate Power

Is Error Acceptable?

Report Result

End

Y

N

Combine New Estimate With Previous Estimate

Determine Maximum Expected Error For Desired Confidence

Figure 3.1: Flow diagram of Monte Carlo. From Burch [10]

3.3.1 Flow of the method

The Monte Carlo approach defines the flow-chart in figure 3.1 as its method. The first thing
to do is to load the circuit and simulation information. The next step is the setup phase. The
point of this is to put the circuit in a working state, so the power information extracted from
the circuit is as accurate as possible. The length of the setup is determined by the length of
the critical path. It is important that all elements in the design switch at stable rates before
the recording of power information starts.

When the setup is done, it is possible to extract power information from the circuit. This
is very similar to the setup step. By restarting the simulator, it is possible to record power
usage in the circuit during this stage of the simulation. A problem of the approach, is that
there are not easy to compute the length of this part of the simulation. The variable is most
feasible to find through experiments, or by setting it larger enough by a good margin.

The power result is then analyzed, and the maximum expected error is calculated. If
the maximum expected error is larger than the desired error, one has to run the simulation
for another round. By doing the iterations until the expected maximum error is below the
desired error, one has a power estimate that is sufficient.
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3.3.2 Calculating Maximum expected error
An important aspect in the Monte Carlo approach is to calculate the, since the is the stop
criteria for the algorithm. By computing the error, the algorithm becomes easier to use, since
the user can specify if one wants very fast but not very accurate or a very accurate estimate
of power.

By assuming PT is normally distributed, Burch [10] gives the following equation for a
stop criteria:

tα/2sT

ηT
√
N
< ε (3.8)

Where ε is the desired percentage error, ηT is the sample average and sT is the sample
standard deviation over theN different PT -values found through simulation. The variable tα/2
is obtained through the t distribution [35]. Burch [10] also claims the number of simulations
(i.e. the number of different PT values) need to be done remains almost constant in proportion
to the circuit size. The number of iterations should infant decrease slightly when used on
larger circuits. This makes the Monte Carlo technique independent of circuit size, and places
the run-time of the estimation in the hands of the simulator.

This stop criteria determines when to stop to get the power estimation of the whole circuit
under the desired percentage error. A problem in optimization problems is that one often
need information about where in the circuit is the power dissipated.

Xakellis [36] proposes a slightly different stop criteria, that simulates the circuit longer,
to get accurate power results on gate level. Dividing the gates into regular density nodes and
low density nodes, the algorithm uses a different stop criteria for each group. The regular
density nodes have an average amount of transitions during the simulation, and can therefore
with few iterations give power estimates within the acceptable error level. The low density
nodes however have far less transitions during the simulation, and would require a lot more
stimuli to get power estimates within the accepted level of error. Xekallis [36] therefore sets
another stop criteria for those nodes. Since the low density nodes have few transition, they
have the least impact on power usage, it should be acceptable with higher margin of error in
these nodes. By dividing the nodes like this, the run time of the algorithm gets significantly
reduces, compared to treating all nodes as regular nodes, with almost no decrease in the
overall accepted level of error.

3.4 Random number generator
Since simulation approaches are in need of input patterns to perform power estimation, it is
common to use a random or pseudo random number generator. By using a pseudo random
number generator with a seed, it is possible to get the same random numbers for each set of
numbers the random number generator delivers. This means the the generator can deliver
the same input-patterns for several circuits that are under test, or even several different
programs, without having to save the input-patterns.

A linear feedback shift register [12, 13] (LFSR) can be used as a pseudo random number
generator, and produces the same sequence of random numbers, given the same seed. A
LFSR is very easy to implement in both hardware and software, as it only uses a shift register
and a set of XOR-ports. It delivers good random numbers, almost equal to the statistical
expectation value of true random events. The LFRS has a sequence of 2n − 1 states, where
n is the size of the shift register.

The LFSR can be implemented with either XOR or XNOR ports. This section will
show an example of an XOR implementation. The LFRS has all 0’s as an illegal state
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Listing 3.1: 32-bit LFSR implemented in software (C code)
stat ic uint32_t l f s r_s e ed = $0 \ t imes 01$ ;

uint8_t l f s r_rand ( )
{

uint32_t b i t ;
b i t = ( ( l f s r_ s e ed >> 31) ^ ( l f s r_ s e ed >> 21) ^

( l f s r_ s e ed >> 1) ^ ( l f s r_ s e ed ) ) & 1 ;
l f s r_ s e ed = ( l f s r_s e ed << 1) | ( b i t ) ;
return b i t ;

}

when implementing with XOR, since the register would then be locked in the same state
indefinitely. When using XNOR, the illegal state is all 1’s. The LFSR uses XOR/XNOR
ports on selected bits in the register as a feedback into the register. This way it produces
a new unique sequence for each shift, if the XOR/XNOR ports are placed to get maximum
sequence length [12, 13].

1 32

Bit 1

Bit 2 Bit 22

Output

Bit 32

Shift Register

Alt. output

Figure 3.2: A 32-bit LFSR, implemented in hardware

Figure 3.2 show an example of an implementation in hardware. Here bits 1, 2, 22 and 32
are XOR’ed, and used as a feedback for the register. The placement of the XOR elements
ensures a maximum length of the sequence. A list of placement of XOR elements for maximum
length can be found in [12, 13]. The bit shifted out of the register is in most cases used as
the output. This means that one has to do a shift operation for each pseudo random bit,
to ensure statistical properties needed for a random number generator. Listing 3.1 show an
implementation in software, although using the alternative output from Figure 3.2 instead of
the regular output, and a startup seed of 1.



Chapter 4

Power optimization

Optimization may be applied in most stages of the generation of multiplier. Most opti-
mizations are done at either block-level or at transistor-level. This chapter focuses on
three types of optimizations done at block-level. Algorithm optimization concentrates on
how different reduction schemes differ from each other, and that some might have better
power-characteristics than others.

Interconnect optimization focuses on connections between adders inside the multiplier
tree. There are several different ways of connecting the adders together, and some mutations
might be better than others. Since the multiplier trees use Carry-Save scheme, there is a
need for a VMA as last stage of the multiplier. The last section look at sizes of VMAs, and
their impact on the overall power consumption.

4.1 Algorithm optimization
There are several algorithms used to generate multiplier trees, as explained in Section 2.4.
Since they use different reduction schemes, they will also use a different amount of adders, as
seen in Table 4.1. This gives each scheme different delays and power consumption properties.
The difference in the adders also makes the bit width of the VMA different, which in turn
influences how much power the VMA will use. The smaller the VMA is, the less power
consumption it will have.

Research effort has been made to compare array multipliers with tree multipliers, and
most sources agree that tree multipliers have less delay and use equal or less power, at the

Generation algorithms Size FA HA Adder size
Wallace [2] 8× 8 38 15 11
Dadda [3] 8× 8 35 7 14
Reduced Area [4] 8× 8 39 7 10
Wallace [2] 12× 12 102 34 18
Dadda [3] 12× 12 99 11 22
Reduced Area [4] 12× 12 104 11 17
Wallace [2] 16× 16 200 54 25
Dadda [3] 16× 16 195 15 30
Wallace [2] 32× 32 906 164 55
Dadda [3] 32× 32 899 31 62

Table 4.1: Comparison of well-known tree generation algorithms. Numbers from [4] and [6]

23
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cost of area on the chip [21, 29]. There are however less research about how power usage of
different tree multipliers is compared to each other.

Several studies have investigated the delay and size differences of the different multipli-
ers [16, 31, 4, 6]. The conclusion of all of them is that Dadda multipliers use less area then a
Wallace type multiplier, while having about equal delay. Since the Dadda multipliers use less
area and adder elements, there is reason to believe they also use less power. This is however
not confirmed by any of the studies.

The Reduced Area (RA) multiplier by Bickerstaff [4] uses less area than the Dadda
multiplier, but uses a few more adder elements. The main reason RA multipliers are smaller,
are because they use less area on wiring. Since Dadda reduces as late as possible, it should
be more prone to glitching problems than RA. These two properties (less area and earlier
reduction) of the RA multiplier should lead to less power consumption than Dadda, and
therefore also Wallace. In addition to using less power, the RA multiplier needs the smallest
VMA of all three algorithms, and should therefore save energy in that part of the multiplier
as well.

This comparison leads us to believe that the Wallace uses the most power of the three
algorithms. Which algorithms, the Dadda or the RA, that uses the least amount of power is
not easily determined. RA uses slightly more adders, while using less wires than Dadda. It
would seem as if the RA algorithm would perform better than Dadda.

4.2 Interconnect optimization

Each algorithm produces a tree structure of adders. However, the algorithms do not describe
how the interconnections between the adders are supposed to be. Changing the interconnec-
tions inside a column does not change the functionality. A column containing four partial
products might get reduced with one FA. Three of the PPs are then connected to the adder,
and the fourth PP is just a feed-through line to the next stage in the reduction process. This
causes different delays for different partial products, and raises the question: How should
the lines be connected to consume the least amount of power? An exhaustive search of all
possible mutations would be too time consuming to compute.

4.2.1 Reduction of search space

Oskuii [5] suggests that the lines with the highest activity should be connected to the least
amount of adders. This will lead to less transitions in the circuit. He also extends the
assumptions, and proposes that lines with the most activity should be connected to gates
with the the least amount of delay. Since glitches are caused by unbalanced inputs, it should
be energy efficient to let the lines with highest probability for transition traverse as fast as
possible in the tree. This will let the high transition lines less likely to cause glitches.

Najm [34] introduced the notation of transition density, which Oskuii [5] also adopts. The
density describes the average amount of transitions in a gate:

Di = lim
T→∞

nxi(T )
T

(4.1)

Since each column adds PPs to the the same column on the next reduction stage, or
the column with a larger bit weight, optimizing should be done from the rightmost columns
(least significant bits) to the rightmost columns (most significant bits), and from the first stage
to the last stage. This should prevent the optimization to change the power consumption
of previous optimizations. Oskuii [5] therefore assumes it is safe to optimize each column
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separately, if done in this order. By doing this, one might end up at a local minima, but
this is a good trade-off compared to doing a brute force search of all possibilities. Since the
problem is NP hard [37], local solution is an acceptable solution, since a global minima would
require a full test of all possibilities.

Oskuii [5] proposes to do a post-optimization, after the multiplier tree is generated.
Iterating through every column in every stage, each partial product is sorted by transition
density (like in Figure 4.1). In each column, a set of interconnect mutations believed to give
low power consumption is made. This reduces the problem dramatically, since it discards
most mutations in this step. Each low power mutation runs through a power estimator, and
the mutation yielding the lowest power consumption is used for the column. This is done for
all columns in the multiplier.

The reduction of interconnect mutation is done with the knowledge that FAs and HAs
have different delay. An HA only has one gate in its critical path for both inputs, which is
less then the FA. The HA should therefore have higher density partial products as inputs,
than an FA. A feed-through (a partial product not connected to a adder in the stage) has no
gates, and should therefore have a very small delay. The partial products with the highest
density should therefore not be connected to an adder, but rather get redirected to the next
stage of the reduction. We now have two rules, which should reduce the amount of mutations
in each column.

Looking at Figure 2.5 on page 11, we can see that an FA does not have balanced inputs.
The C input has less gates to both outputs than input A and B. This means that input C has
less delay through the adder than A and B. Adding the partial products with least density
to input A and B should give less power consumption. This makes three rules to reduce
the amount of interconnect mutations. By employing these rules when construction a set of
possible interconnections, we get a much smaller set then by using all possible mutations.
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Figure 4.4: Sorting PPs based on their estimated transition densities

Table 4.2: The search alternatives of a 7-bit column

# To next Full-adder 1 Full-adder 2
stage A B Cin A B Cin

1 D∗
1 D∗

4 D∗
3 D∗

2 D∗
7 D∗

6 D∗
5

2 D∗
1 D∗

5 D∗
3 D∗

2 D∗
7 D∗

6 D∗
4

3 D∗
1 D∗

5 D∗
4 D∗

2 D∗
7 D∗

6 D∗
3

Figure 4.1: Sorting partial products based on activity. From [5]

The algorithm can be rather computing exhaustive, since it is mandatory to do power
estimates for each mutation, and then choose the mutation that uses the least amount of
energy. It is therefore critical to have a fast power estimator. The optimization routine can
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also be used to optimize against highly correlated input data. By estimating power usage
using correlated data, the optimization will optimize towards the least amount of power usage
for that kind of input. This shows that the optimization routine proposed is very dependent
on the estimation for accurate results.

4.3 Vector Merging adder
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radix-r SD number, A = ak-lak-2 . . . ala0 is given by 

IC-1 

i = O  

2.3 Carry-Save Number Representation 
The carry-save (CS) number system is an encoded number 

representation, which is most commonly used when three or 
more operands are to be added as in the accumulation of the 
partial products in multiplication. An n-digit CS number A is 
made up of n CS digits, each of which consists of a carry and 
sum pair (ac;+l, as ; ) ,  where ac;+l, a s ; ~ { O ,  l}. The magnitude 
of A = ac,ac,-l . . . acl + as,-las,-2 . . as0 is given by: 

n 

x = - y ( a c .  + asi)  . T i  

i=O 

where as, = 0, and the least significant carry aco is assumed 
to be zero. 

111. AN OVERVIEW OF THE ADDERS 

Most of the adders we have simulated are standard ones 
whose descriptions can be found in literature and in com- 
puter arithmetic books [14], [25]. However, for the sake of 
completeness, we present a brief description of the different 
adder classes along with appropriate references. All adders 

n = 32 bits 

(b) 

TABLE I 
ASYMPTOTK TIME AND AREA REQUIRF,MENTS OF n-bit ADDERS 

Adder Type I Abbreviation I Time 1 Area 
R i d e  Carry Adder I RCA 

were optimized by removing inverters, wherever possible, by 
switching signal polarities between successive levels. 

3.1 Ripple Carry Adders 
The ripple carry adder (RCA) and the manchester carry 

chain adder (MCC) are both O ( n )  time, O ( n )  area adders, 
where n is the width of the operands. In the worst case, a 
carry can propagate from the least significant bit position to 
the most significant bit position. A block diagram of the RCA 
is shown in Fig. 1. The full adder and half adder designs 
used to build the RCA are shown in Fig. 2. The full adder 
(FA), also referred to as a (3,2) counter, computes a sum bit, 
C = a . b cin + ( a  + b + Cin) . a and an outgoing carry 
bit, cout = a. b + ( U  + b )  . cin. That is, it adds two operand 
bits with the incoming cany bit to produce a sum bit and an 
outgoing carry bit. The half adder (HA), also referred to as a 
(2,2) counter, adds two operands to compute: sum = a @ b 
and cout = a . b. 

The MCC, shown in Fig. 3 is a VLSI adder that makes use 
of the well-known carry generate, propagate and kill functions 
~ 5 1 .  

Propagate: 
Generate: 

p ;  = ai @ b; 
gi = ai . bi 

Kill: k; = G .  b, 
Once a carry is generated, it is quickly propagated along a 
chain of pass transistors until it is killed or reaches the most- 
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Table 4.2: List of surveyed adder types in Nagendra [7]

There are a lot of different types of adders that can be used as a Vector Merging Adder,
to convert the result to a regular binary number. Nagendra [7] has an excellent overview over
commonly used adders, and Table 4.2, Table 4.3 and Figure 4.2 are from that survey.
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SD-64 1.12 
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0.96 
1.62 
1.76 
1.45 
2.27 
3.00 
2.36 
2.03 
2.71 
2.42 
2.17 
2.25 
2.23 
2.11 

1440 
1982 
2132 
2442 

2360 
3166 
2812 
2490 
2572 
2530 
2364 

2078 

TABLE I1 
ADDER CIRCUIT DESCRIPTION 
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4780 315 
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Fig. 13. (a) Number of transistors. (b) Area. 

ELM C: 

two levels of full adders. The designs of FA and HA are the 
same as in Fig. 2. 

Finally, Table I summarizes the delay and area characteris- 
tics as well as the abbreviations used for the various adders. 

Iv. SOURCES OF POWER DISSIPATION IN CMOS 
In our experiments, we used static CMOS (Complementary 

Metal-Oxide-Semiconductor), which is a popular logic style 
because of its high packing density, low power dissipation and 
high yield [26]. The three major sources of power dissipation 
in CMOS circuits are 

Ptotal 

=switching power + short circuit power + leakage power 

(1) 

The first term in (1) represents the switching component of 
power which is due to the charging and discharging of load 
capacitances, where p f  is the activity factor of the circuit, C, 
is the load capacitance, V d d  is the supply voltage and f is 
the clock frequency. The switching power is the dominant 
term in a well designed circuit and it can be lowered by 
reducing any one or more of pf , CL, V d d  and f ,  while retaining 

=Pf ' C L  ' V 2 d  ' f + Is,  ' V d d  + Ileakage ' V d d .  

AREA 
7 0  h 

5 4 0  

$ 
- 
w 30 

8 
2 0  

1 0  

FICA MCC CSK VSK CSL CLA ELK ELM CSA S[ 
0 0  

the required speed and functionality. In our experiments, we 
vary the load capacitance by transistor sizing (circuit design 
style) and vary the activity factor of the circuit by using 
different types of adders. In this paper, we do not study the 
effects of varying the supply voltage and keep it fixed at 5 V. 
Since a quadratic improvement in power consumption may be 
obtained by lowering Vdd, many researchers have investigated 
the effects of lowering the supply and threshold voltages. 
Unfortunately, reducing the supply voltage reduces power, 
but the delays increase with the effect being more drastic at 
voltages close to the threshold voltage [9]. Liu and Svensson 
[16] have demonstrated that power reductions of about 40 
times can be obtained without speed loss by using supply 
voltages down to about 0.48 V. However the threshold voltage 
also needs to be scaled and this requires highly advanced 
device technology and manufacturing strategies. 

The second term in (1) is due to the short circuit current 
I,,, which arises when both the 1%- and the p-transistors are 
on simultaneously for a short period of time during 1 4 0 or 
0 4 1 transitions [26]. The longer the input transition time, 
the longer this period and hence more power is consumed. 
Therefore the short circuit power dissipation can be reduced by 
properly sizing and reordering transistors such that the output 

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on April 17,2010 at 17:40:21 UTC from IEEE Xplore.  Restrictions apply. 

Table 4.3: Area and number of transistors in adders from Nagendra [7] survey

Table 4.2 contains the different adders surveyed, and their delay and area functions of
size. Table 4.3 contains area and transistor usage information about the adder structures.
Since the survey counts transistors instead of adder elements, one has to convert the tree
structures in this thesis to transistors to compare the size of the VMA to the size of the
multiplier tree. Nagendra uses 24 transistors for each FA and 14 transistor for each HA, and
uses six transistors around each adder as buffer and driver. The total transistors for each
adder element can be found in table 4.4.

Since it is beneficial to know how much impact the VMA has on the overall power usage,
we will combine the information from Nagendra [7] with known sizes for multiplier trees [4].
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Element Transistors
FA 30
HA 20

Table 4.4: Transistor count for each element used in Nagandra [7]

Transistors
Generation algorithms Size Adder size Tree RCA adder CSA adder
Wallace [2] 8× 8 11 1440 836 1628
Dadda [3] 8× 8 14 1190 1064 2072
Reduced Area [4] 8× 8 10 1320 760 1480
Wallace [2] 12× 12 18 3740 1368 2664
Dadda [3] 12× 12 22 3190 1672 3256
Reduced Area [4] 12× 12 17 3340 1292 2516
Wallace [2] 16× 16 25 7080 1900 3700
Dadda [3] 16× 16 30 6150 2280 4440
Wallace [2] 32× 32 55 30460 4180 8140
Dadda [3] 32× 32 62 27590 4712 9176

Table 4.5: Comparison of reduction trees and VMA

By using the tree information found in table 4.1, and converting the FA and HA numbers to a
transistor count, it is possible to make comparison of the multiplier tree and the corresponding
vector merging adder. This estimation will not be correct, since we assume the transistor
count would be the same for each adder element as the transistor count used in Nagendra [7],
but it should give a good approximation. The result is displayed in table 4.5.

The size of the VMA is also presented, and the size of two possible adder structures are
approximated using linear regression. It should be accurate since both algorithms have O(n)
size increase (according to Table 4.2). The adders chosen are one small (Ripple Carry Adder)
and one large (Carry Save Adder) structure, to show the extreme points.

As we can see in Table 4.5, the 8× 8 multiplier tree as about the same size as the VMA.
This is true for 8× 8 multipliers, but since the tree structure grows O(n2) [4], this is not true
for larger multipliers. The 12 × 12 are as we can see larger than the corresponding VMA.
Width even larger multipliers, the power significance of the VMA gets smaller.

Figure 4.2 presents the power usage of the different adder structures. The power values
used are computed using HSPICE at 5V. Nagendra [7] does not recommend using the values
for external comparison, only to compare the adders relative to each other. Using the
survey done by Nagendra [7], it would be easy to choose a VMA based on the desired delay
(information found in the Nagendra [7]) and power (from Figure 4.2) based on what the
design needs.
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these outputs may drive other gates. We found that as long 
as the fan-out is less than four, no further sizing is nec- 
essary and this is the case with all the linear time adders. 
However, in the case of the carry select and carry lookahead 
adders, additional sizing had to be done by hand in some 
cases. 

Since our low-level sizing optimization criterion favors 
power rather than speed, the resulting circuit has smaller 
transistors, smaller layouts, shorter wires, and consequently 
lower capacitance. A 16-b ELM adder generated by Pe@ex 
operating in the power sizing mode described above was found 
to consume about 4% less power when compared to the same 
circuit with all unit-sized transistors (3X). Less than 5% of the 
gates were sized and the maximum width of the p transistor 
was 5X and that of the n transistor was 3X. 

For the sake of realism, all measurements in Section VI 
were taken with each input supplied through a dnver consisting 
of two inverters in series and each output node dnving a unit 
sized inverter load, as shown in Fig. 12. The drivers and the 
loads were included in the transistor description given as input 
to Pe$ex so that they featured in the power dissipation based 
transistor sizing. 
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VI. EXPERIMENTS 

The experimental results described in this section were 
obtained using the extraction style parameters from MOSIS for 

- hpl.2 micron scalable CMOS technology. A detailed transistor 
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Chapter 5

Implementing the power estimator

The estimator in this thesis is implemented as a simulator that simulates the propagation of
signals through the multiplier. The power is then calculated based on 0→ 1 transitions in the
different gates. To get a more accurate result, the simulator runs several simulations, using
the Monte Carlo[10] approach, explained in section 3.3. The simulation is done at gate-level,
and the multiplier therefore needs to be flattened before the simulation starts, because the
generated multiplier have generated at block-level.

A simulation method was chosen since it gives very accurate results to the problem, as
it is possible to choose the margin of error by tuning the length of the simulation. The
simulator also records the activity in each gate, to use as a profile for the optimization to be
done later. This is similar to the technique used in Xakellis [36] and explained in section 3.3.
This is because we want to use the activity information in each gate as a parameter for the
optimization. To get the simulation to be accurate, it is important to supply accurate delay
data to the model. This aspect of the simulation is discussed in section 5.4.

An alternative to this method is to choose one of the probabilistic approaches from
section 3.1. It was not chosen, due to the simulation being more accurate and taking
spatial correlation into account. The method was also believed to be easier to implement. A
simulation for power estimation is, according to Najm [34], very effective in practice.

5.1 The input data-structure

The netlister generates a multiplier tree using a specific data structure to store the result,
before it is transformed into VHDL. This data structure is also used by the tree generators
added to the program for this thesis. This section gives a quick explanation of the data
structures used. A more thorough explanation can be found in Sand [1].

In figure 5.1 we can see a representation of the data structure used in the netlister. The
data structures use linked lists [37] to tie the structures together. The structure ADDERTREE
represents a collection of columns, each with the same column weight. The list of FAGROUP
represent a column at a given stage in the multiplier generation process. The first FAGROUP
in the first ADDERTREE represent the first column in the first stage of the process. See section
2.1 for a summary of terminology used for multipliers.

The FA structure represents the individual adder. It can represent a regular full-adder,
but also an half-adder or a feed-through element. Each FA is connected to the FA-structures
that is its input and outputs (show by the S and C block in figure 5.1). FAGROUP also holds
a list of FA-elements, representing the adders at a given stage and column in the multiplier
tree.

29
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Figure 5.1: Multiplier trees as they are represented in the netlister. Figure taken from
Sand [1].

5.2 Preprocessing of the multiplier

Since the simulator runs several times on each multiplier, an easy way to improve performance,
is to do as all the calculations independent of the simulation, before the simulation starts.
The multiplier generated by the netlister uses the structure explained in the previous section,
and is flattened to gate-level by transforming each FA-block and HA-block to their respective
gates (as shown in figure 5.2).

The gates is then put into a data structure that makes it easy to transverse back and forth
in the structure, and makes calculations of outputs easy. This approach uses more memory,
but makes the calculations done during the simulation easier. The reason for this design is
that we want the simulation to be fast. The amount memory for this approach is minimal,
since each adder in the tree only uses 288 bytes. This corresponds to 338Kb memory for a
32 × 32 multiplier (approximately 1200 gates). This is a small memory footprint consider
that today’s computers have between 1Gb and 4Gb RAM. A possibility for increased run
speed is superior to this little memory increase.

Listing 5.1 show the data structure used to store each gate (SIMGATE). The structure
contains information on what type of gate it is, and which gates it is connected to (both
input and output connections). The amount of 0→ 1 transitions is stored in activity. The
variables next and first are used to traverse through the gates, and is primarily used to
unallocate memory when the simulation is finished.

Since the delay through a gate is stored in the data structure representing the gate, and
not as a fixed number, it is possible to apply a timing model to the multiplier tree prior to
the actual simulation. In this implementation, the delay is set to a fixed number, based on
the type of port. This makes the design flexible, since it is possible to write a routine at a
later date that analyzes the tree, and assigns timing data to each gate. This step would be
naturally fit between this step and the simulation.

Since the amount of transitions is stored in each gate, this information can be used to make
a power-profile of the multiplier. This profile can then be used in the optimization process.
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Figure 5.3: Model of simulator operation

The structure SIMBLOCK is used as a bridge between the block-level and the gate-level. Each
block element (FA-element) in the pre-generated multiplier has a corresponding SIMBLOCK
element. This way the generated tree has a 1:1 mapping of the estimated power used.

5.3 Simulation

After the generation of the gate-level data structures, the model is ready to be simulated.
The simulator uses an event-queue to determine what to do. The input-gates is set to
pseudo-random numbers, and the gates are added to the event queue. The model of the
circuit is then simulated, by calculation outputs from the gates, and then adding the new
input to the event-queue, until the circuit has reached its steady-state.

The pseudo-random number generator is a linear feedback shift register (LFSR)[13, 12].
It is wise to use a commonly known algorithm that produces the same result every time, since
that would make the simulations reproducible. The reason to choose this algorithm is that
it is very easy to implement in hardware, and therefore also in any VHDL test bench. The
algorithm also produces very uncorrelated and very uniformly distributed numbers, and that
makes the result from the estimation more accurate. The LFSR used in this simulator uses a
32 bit wide register to produce the pseudo-random numbers, and always start with the seed
0× 01 at the start of each estimation-cycle (when the multiplier is flattened).
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Listing 5.1: C definitions of data structures used in the simulator
enum simgatetype_t {

SIMGATE_NULL, SIMGATE_AND, SIMGATE_XOR, SIMGATE_OR,
SIMGATE_OUT, SIMGATE_IN, SIMGATE_PIPE, SIMGATE_NO
} ;

struct SIMBLOCK
{

struct FA∗ element ;
struct SIMBLOCK∗ next ;
struct SIMGATE∗ gate s [GATESIZE ] ;
struct SIMGATE∗ output [ 2 ] ; /∗ 0 = SUM, 1 = CARRY ∗/
struct SIMGATE∗ input [ 3 ] ; /∗ 0 = InA , 1 = InB , 2 = InC ∗/

} ;
typedef struct SIMBLOCK SIMBLOCK;

struct SIMGATE
{

struct SIMGATE∗ input [ 2 ] ;
struct SIMGATE∗ output [ 2 ] ;
enum simgatetype_t type ;
uint8_t value ;
struct SIMBLOCK∗ parent ;
struct SIMGATE∗ next ;
struct SIMGATE∗ f i r s t ;
uint32_t de lay ;
uint32_t a c t i v i t y ;
uint32_t timestamp ;

} ;
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The standard C library is delivered with a function that delivers a random number. The
reason for not using this function is that the implementation of the function is left to the
writer of the C library. It is therefore hard to make the result reproducible. We also want a
uniform distribution between zero and one. This is not guaranteed with the C library call.
Other random number generators were not considered, since LFSR fitted the requirement
very well.

The event queue is actually implemented using several queues. Each queue corresponds
to a specific time in the simulation. The current queue holds what signals that needs to be
set at the current time, the next queue whats needs to be set at the next time interval and
so forth. When the queue that represents the current time is empty, next queue is set to
be the current one (time goes on), and the empty queue is reused for a different time of the
simulation.

The simulation continues until all the queues are empty. When this occurs, it means that
the multiplier has come to a state where everything is stable, and the correct result is on the
output pins of the multiplier. No more energy will be used to change the values of the gates
before a new set of inputs are used.

This simulation is done several times. First without counting the number of transitions,
and then several more times by counting the number of transitions. This is done to set the
multiplier in an active state, by letting the gate get a to an unknown state. This is more
realistic than letting all the gates start at the value of zero, and should therefore provide
better accuracy. The simulator has a pre-run of ten simulations before starting the actual
simulation. This is a bit more than suggested in Burch [10], but is done since the multiplier
tree is quite complex. It is important that every gate have a chance to change its value before
the actual simulation begins.

After the setup simulation is done, a set of simulations that also records the switching in
the tree is done. Through experiments, this number is set to 100. Section 7.2 shows that this
number seem to be too high. But since we need an accurate power profile for optimization, we
have to do more simulations to get higher accuracy at gate level. Remembering Section 3.3, it
states that a higher number of simulation rounds were needed for accurate power estimation
per gate.

The simulator does not contain a stop criterion. This makes the validity of the estimator
small. This should have been improved during the thesis, but due to time constraints, it
was not possible. The estimator is instead configured to do more iterations than should be
necessary, to compensate for the lack of stop criterion and error calculation.

Using this method[10], the mean value of the power used would statistically converge to
the real world power usage of the multiplier.

5.4 Timing model
It is important that the timing model used by the estimator is accurate. Since glitches happen
due to timing between gates, a poor timing model will give inaccurate or erroneous glitching
compared to a real world implementation.

Since timing is such an important aspect of the estimator, some time was allocated to
investigate how timing in post-layout multipliers are. This information would then be used
to configure the timing parameters of the simulator, to give a more accurate estimate.

5.4.1 Available timing data
Timing data is supplied by Johnny Pihl at Atmel Norway, originally used in Kalis [22].
They are supplied as SDF-files [14], which contain both the netlist, and the timing data
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inside elements and between elements in the design. Data from four post-layout designs were
supplied, with a list of functional behavior of the elements in the netlist.

The multipliers supplied were three multipliers designed by Oskuii for his thesis [5] and
one designed by the netlister used in this thesis [1]. All of the multipliers are mapped
into 0,18/0,15µm CMOS process by Atmel Norway. Timing data for each multiplier is
also supplied under two different process voltage and temperature (PVT) conditions, since
CMOS elements behave differently under different conditions. The first PVT condition, called
PVT-MIN, is using a working temperature of -40◦C and a supply voltage of 1.95V. The second
PVT condition, called PVT-MAX, is using a working temperature of 100◦C and a supply
voltage of 1.60V.

The two multipliers generated by Oskuii [5] are using a optimization routine from his
thesis. One is optimized for minimum power usage, and the other for maximum power usage.
The third multiplier from Oskuii [5] is generated through random interconnection. The last
multiplier is generated by the netlister created by Sand [1] (also called Modgen) for his thesis.
It was generated by the netlister before modification made in this thesis, and his therefore
using the original reduction tree generator. All four multipliers are 32× 32 in size.

To improve the estimation, it is possible to use the timing data from these multipliers as
delay for the block-level multipliers we want to simulate. By examining the delay through
and between full- and half-adders in supplied multipliers, the estimation could become more
accurate. This would also make the estimator more dependent on the synthesis tools and
technology library used. The reason the delay between the gates is different from each other,
is because the wire they have to charge to make a transition have variable length. When the
synthesis tool places the adder elements on the silicon during layout, the placement will be
in an irregular pattern. This causes different length between adder elements inside the tree,
which causes the wires between them to have variable length.

The irregularities is due to the way the adders are connected to each other. The adders
have two outputs, and those outputs are connected to adders in different columns. Another
reason the lines have different length is that some PP are not connected to any adder in that
stage, but rather fed through to the next stage in the reduction process. There is reason to
believe these lines are longer than the rest. Figure 5.4 show a column in a tree multiplier
that have seven PP inputs. Six of them are connected to two adders, while one of them is
not connected any adder in this stage. We assume that this would lead to a longer wire for
this PP, as it will be harder for the synthesis tool to place the input and output adder close
together. The figure also shows how the Carry and Sum lines are going to be connected to
adders in different columns later in the reduction tree.

Since the multipliers are synthesized and technology mapped, they are also optimized
in regards to what kind of blocks the technology has available. This means the synthesis
and mapping tool will have to flatten the multiplier tree to perform the optimization, and
therefore might use different gates than those we assume (from section 2.6) in our estimation.

5.4.2 Implementation of data extraction

A problem when the netlist is flattened by the synthesis tool, is that the data of the internal
structure is lost. This makes it a lot harder to determine why the delay is the way it is, because
it is hard to determine which element gives which delay. The netlist only contains the name
of the technology block, input and outputs to the block, interconnections and delay. The
name of the block has been is lost, and instead of grouping the full- and half-adder together,
they are split up to improve optimization. The multiplier tree is just a list of elements named
U < number >.
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FA FA

Figure 5.4: Example of reduction of a seven PP inputs

To determine where delays are introduced, a SDF-parser was written in Perl (see Appendix
B.1). Since most of the structure information is gone in the SDF-file, a simple program
counting each element in the netlist was written (code in Appendix B.2). Since the multiplier
tree is the main component in the multiplier, the elements used the most should be a part
of the multiplier tree. The program also print the truth table of each element, so it easy
determines what the function of the element is. A text file containing the boolean function
of each element in the technology library was supplied by Johnny Pihl at Atmel Norway, and
was used to produce the truth table of each element.

Some of the elements were identified as parts in a full-adder. The technology library has
a triple XOR element, which is assumed used to calculate the Sum-bit in a full adder (see
Figure 2.6 on page 12). An element with three inputs was identified as a Carry-generator.
These two technology blocks are assumed to be a full adder. It is interesting to see that the
synthesis and mapping tool inserts two separate elements for generating the full-adder. As
we see in Figure 2.6, one of the XOR-gates in this configuration is shared between the Sum
and Carry output. This might mean the synthesis tool adds more elements to the design
than necessary, and the multiplier might use more energy.

There are around 900 FAs in a 32×32 bit multiplier, but there were only around 250 of each
these two elements. This means the synthesis tool designs full-adders differently, depending
on unknown circumstances. The list over counted elements provided some information on
the distribution of other elements, and NAND and XNOR-ports were the most used ports in
the design. These ports are however also the building blocks for half-adders.

To recognize the full-adders from half-adders, a tool searching for a specific type of element
(code in Appendix B.3), and reporting the connections this element has, was written in Perl.
A small portion of the elements were manually examined. The connections the element has is
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Element Name Function
Triple XOR 3XOR Sum element of FA
Carry 3CARRY Carry element of FA
XNOR XNOR Sum element of HA (inverted)
NAND NAND Carry element of HA (inverted)

Table 5.1: Technology mapping for adders

XNOR NAND3CARRY3XOR

(a) (b)

Figure 5.5: (a) Assumed technology mapping of some FAs (b) Assumed technology mapping
of some HAs

drawn on paper, trying to determine a pattern of how the FAs are build by the synthesis tool.
This research did not come to a conclusion. It seems as if the synthesis tool optimizes the
adders together, so two full-adders or a full-adder and a half-adder might share technology
blocks. This makes it hard to determine the delay through a single adder. Instead we have
to calculate the delay through some of the adders in the design, and only those using the
triple XOR and carry element. This gives us less elements to examine, but enough elements
to give us an indication of the delay.

The delay through the half-adder suffers similar drawbacks. It is hard to determine which
elements are used to generate half-adders. By assuming the XNOR and NAND correspond to
the XOR and AND port in Figure 2.6, it should be possible to extract delay for HA adders.
The function is the same, if the outputs are inverted.

An extraction tool was written in Perl (code in Appendix B.4). This extraction tool
searches through the netlist, and extracts the elements described in this section (shown in
Table 5.1). To verify that the extracted element is in fact part of an adder, the tool checks
the connections to the inputs of the extracted element. This is illustrated in Figure 5.5. The
triple XOR (3XOR) has to be connected to a carry block (3CARRY) to be assumed a FA.
The extraction tool only reports delay information for elements verified this way.

The delay from the extracted elements from the netlist are written to datafiles, and can
be put into Octave or Matlab to create graphs. Histograms of the delay are presented in
Chapter 7 and in Appendix A.



Chapter 6

Implementation of power
optimization

6.1 Algorithm optimization

Since the netlister is very modular, two new algorithms were added. The first one was added
as an extreme point, and tries to use as few half-adders as possible. The second algorithm
was added due to a wrongful implementation of a Dadda reduction scheme.

The reason why as many algorithms as possible is added to the implementation, is because
very little research comparing power consumptions in different multipliers were found. By
implementing three well known algorithms together with the original algorithm used in the
netlister [1] and two new algorithms proposed here, it is possible to compare all algorithms.
This might lead to a definite answer of which algorithm is the most power effective.

6.1.1 Conservative

This algorithm tries to use the minimum amount of half-adders, without creating a too deep
tree. The algorithm is very simple, and is based on three simple rules.

1 Add bbi/3c FAs in each column, where bi is the number of bits in column i.

2 Start at the rightmost column. If the column has two bits left (bi mod 3 = 2) and no
column to the right of the current column has more than two output bits (oi−n <=
2 , for all n ∈ [1, i]) and oi is one (where oi is the number of outputs from column i
already assigned), add a HA. If not, then transfer the remaining bits to the next stage.
Perform the same test on the next column, until all columns are checked.

3 If any column has more than two partial products, another stage is needed. Run the
algorithm again with the new set of partial products.

The algorithm is a greedy algorithm that adds as many FA as possible. The reason for
the second rule is to prevent the tree to get too deep. HAs are mostly added at the last stage
to prevent the use of FAs to propagate an extra carry bit to the leftmost column. For each
column a carry bit needs to be pushed to the left, an extra reduction stage is needed when
only using FAs. With the help of HAs, this can be done in one stage.

In the left part of Figure 6.1 we have an example of only adding FAs. The figure shows
that we need three stages to reduce the relatively small collections of wires. If we, on the
other hand, use rule 2, as we see on the right part of the figure, it can be done in one stage,
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Figure 6.1: Left: Propagation of an extra carry bit using FAs only. Right: Propagation of
an extra carry bit using both FAs and HAs

and therefore is much faster. This might cause the need for a larger VMA, but only if this
occurs to the rightmost bits. It is still probably worth because of the speed gain. Worst case
is that we get extremely long chains similar to the one on the left side.

A problem with this algorithm is that is does not guarantee a shortest possible tree. In
some cases you might end up with a deeper tree than by using Wallace, Dadda or RA. Testing
indicates that the algorithm in some cases needs an extra reduction stage. But since this
tree generator optimizes with regards to power, it should not be written off before we see if
it uses less power than the other alternatives.

This algorithm uses the least amount of HAs of all the algorithms tested, and uses about
the same amount of FAs as the Reduced Area multiplier algorithm. However it uses a VMA
as large as Dadda.

6.1.2 Almost Dadda-trees

The concept behinds this algorithm is to try to balance the tree to get a multiple of three in
each column after each stage. It is in most cases ineffective to add an HA, if that prevents
adding an FA in the next reduction stage, since FAs actually removes a bit, but HAs only
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send one of the bits to the next column. It is called almost Dadda since the Dadda algorithm
also tries to utilize the FAs as good as possible. But this algorithm tries to add FAs as soon
as possible instead of as late as possible, to make the tree more delay balanced.

1 Add bbi/3c FAs in each column, where bi is the number of bits in column i.

2 Start at the rightmost column.

2.1 If the column has two bits left (bi mod 3 = 2) and no column to the right of the
current column has more than two output bits (oi−n <= 2 , for all n ∈ [1, i]) and
oi is one (where oi is the number of outputs from column i already assigned), add
an HA.

2.2 Or if the column has two bits left (bi mod 3 = 2), then add an HA if it enables
the creation of an extra FA at the next stage (oi mod 3 = 2).

2.3 If not, then transfer the remaining bits to the next stage.

Perform the same test on the next column, until all columns are checked.

3 If any of the columns has more than two partial products, another stage is needed. Run
the algorithm again with the new set of partial products.

The algorithm is equal to the Conservative algorithm, but it has an extra rule. Point 2(c)
is there to add HAs to the design if this makes it possible to add another FA at the next
reduction stage. This way we get as many FAs as possible in the design as soon as possible,
and thus reduces the number of lines through the multiplier.

This algorithm uses the most FAs of all the algorithms. This algorithm might not be
the best with regards to area and speed, but since it is delay balanced, it proves to be quite
energy effective.

6.2 Interconnect optimization

Generate

multiplier

Power estimation Optimization Done?

N

Y

Finished

Figure 6.2: Flow diagram of optimization

The implementation of the optimization is a simplified version of Oskuii’s [5] post opti-
mization algorithm. The reason it was simplified for this implementation is that the simulator
uses a couple of seconds to achieve a power estimate. In the original approach, each adder
required several power estimations, and would therefore use a long time optimizing. The
simplification is done to reduce the runtime of the optimization considerably.

6.2.1 Implementation

The method used in this implementation uses the estimator to calculate the activity in each
gate, which provides a power or activity profile for the multiplier tree. The optimization
routine then uses this profile to rearrange the interconnections. This implementation rear-
ranges the whole multiplier based on one estimation, and chooses one mutation, based on
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Port Priority Paired with
Port A and Port B, on FA 1 Low transition partial products
Port C, on FA 2
HA 3
Feed-through 4 High transitions partial products

Table 6.1: Priority used by the optimizer. High priority means high power consumption.
Port names from Figure2.5 on page 11

 PP1

 PP2

 PP3

 PP4

 PP5

Sorting Rearranging

 INA − HA1

 INB − HA1

 INB − FA2

 INC −FA2

 INA − FA2  INC − FA1

 PP4

 PP1

 PP5

 PP3

 PP2

 INB − FA2

 INA − FA2

 INA − HA1

 INB −HA1

 INC − FA1

 PP4

 PP1

 PP5

 PP3

 PP2

 INB − FA2

 INA − FA2

 INA − HA1

 INB −HA1

Figure 6.3: An example of optimization of a column

the criteria set by Oskuii [5] (see Section 4.2). The implementation chooses the mutation of
interconnections it sees as the best fit, opposed to trying out different mutations. This is done
by sorting the partial products and ports of each column in each stage, and then pairing the
highest activity partial product with the port causing the least power consumption. Figure
2.5 on page 11 contains the assumed design of the adders used in the multiplier tree.

Feed-through ports are not really ports, but internally used elements to indicate that
the partial product should be forwarded to the next stage without any action. These lines
therefore do not contain any gates, and should be considered to have very low or no power
consumption. Half adders (HA) have only one gate as their critical path for both input ports,
and is considered to have low power consumption on transitions. The full-adder (FA) has an
unbalanced layout, and the input ports are therefore considered separately. Input C has only
a single XOR gate in its critical path to output S, but input A and B have two XOR gates.
This should imply that input C has lower dynamic power consumption than input A and B.
These are the same assumptions made by Oskuii [5]. The priorities used by the optimizer is
therefore as in Table 6.1.

The optimization routine used in this thesis iterates through every stage in the multiplier
tree, and in each stage iterates through every column. In each column every partial product
is put into a list, which is sorted using insertion sort [37]. Every port which the partial
products can connect to, is put into another list, and sorted using the criteria in Table 6.1.
We now have two lists, where the top of the partial product list is the partial product with
the most activity, and the top of the port list is the port which consumes the least amount of
energy per transition. By connecting the top two entries in each list, and doing this kind of
pairing for the rest of the list as well, one should get the optimal power usage for his column.

Figure 6.3 contains an example of how a column is optimized. The first stage shows
the column before optimization, when the partial products are connected to adder ports at
random. The partial products are then sorted, based on the amount of transitions during
the power estimation. The ports are also sorted according to Table 6.1. This is the first step
in the optimization of a column. As we can see, PP4 is the partial product with the most
transitions, and PP3 has the least transitions. In the port list, port INB-HA2 has the highest
priority, and port INB-FA1 has the lowest priority. Ports with equal priority are placed in
arbitrary order. This state is shown in the middle part of the figure. The interconnections
between the partial products are then removed and reapplied, pairing the partial product
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Oskuii [5] Thesis implementation
Several different interconnections in each column Tries one solution for each column

Estimates power for each solution Estimates power for whole design
One iteration for the whole design Several iterations for the whole design

Table 6.2: Comparison of Oskuii’s [5] optimization algorithm and the one used in the thesis

with their corresponding adder port. The is the second step of the optimization of a column,
and is showed in the right part of the figure.

After all the interconnections in every column in the multiplier are rearranged, the
multiplier should use less power. The optimization routine assumes independency among
the gates, but the activity in one gate is dependent on the activity of the connected gates.
To compensate for this, another round of power estimation is done. This should update
the dependencies, and let the optimization routine base its optimization on more accurate
data. An optimization is done based the new power profile, which could further lessen the
power consumption. A flowchart of this approach is shown in Figure 6.2. The optimizer will
eventually converge to a local minima. This implementation uses ten iterations to be sure the
optimization has reached a steady state. This number was found through experimentation.

6.2.2 Comparison

The main difference with this implementation compared to Oskuii’s [5] is shown in table 6.2.
This implementation only tries one solution of interconnections, while Oskuii’s tries several
solution. The reason this was simplified, is because of run time issues. The optimization
would take a very long time to compute. This will probably make this optimization routine
optimize less than Oskuii’s method. This disadvantage is however improved upon by running
the optimization routine several times. Each run of the optimization routine will improve
power, until a steady state is found.

Both Oskuii’s [5] method and this implementation will only find a local minima, since it
does not try every solution possible. This is an accepted limitation to NP hard [37] problems,
since computing trying every solution would be practically impossible to calculate due to the
amount of possible solutions.





Chapter 7

Results and discussion

This chapter contains the results of the experiments done for this thesis. The first experiment
tries to calculate the delay in a multiplier. This information is then used as delay-parameters
for the estimator designed in this thesis. The estimator run-time and accuracy is analyzed.
Six multipliers are then generated and optimized, and their optimization are discussed.

7.1 Timing model

Since one of the multipliers supplied is generated with the netlister modified in this thesis, it
is natural to use that design for the basis of delay calculation. We have chosen to look at the
MAX-PVT condition, as this is closer to everyday temperature in processors. Similar graphs
for some of the other multipliers can be found in Appendix A.

Each collection of histograms contains information about one output pin of a adder. The
separate histograms describes the delay from each input to the output. The different bars
in each graph represents possible events on the input and output. 0 → 1 represents change
from zero to one on the output, and 1 → 0 the opposite. The label ’posedge’ and ’negedge’
explains if a positive or a negative edge on the input drives the transition.

Figure 7.1 shows the delay from the input of a FA to the Sum output bit. It is very
interesting to see that the delays varies a lot. Some adders might have double amount of
delay compared to others. It would be very interesting to know why the delay varies as much
as it does. Due to the time constraints for this thesis, no exploration of the cause to this was
done. Speculation suggests the partial products not going to a adder in a stage (feed-through)
might add significant delay to that wire. Other reasons might be because of the irregular
pattern, the synthesis tool can not put the adders on the silicon in a balanced order, and the
delay is therefore very unbalanced.

The load on each output (apart of the wire load) should be the same. Every adder output
on each adder should drive exactly two other gates (see Figure 2.6 on page 12). This result
shows that delay is very dependent on adder placement.

Another result from the same figure, is that one of the inputs has significantly less delay
than the other two. Is confirms the assumption made in Section 4.2, that C has less delay than
input A and B. The names of the ports and their order are different though. The synthesis
tool might therefore connect the adders wrongfully together, since we assumes input C (the
last input) is the fastest, but input A1 (the first input) is in fact the fastest. Some of the
post-optimization done in this thesis might therefore not work as intended after synthesis,
even though the full adder is explicitly defined as Figure 2.6 in the generated VHDL-file.
This is hard to verify, since the structure is flattened, and the wire and port names are lost.
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Figure 7.1: Timing through full-adder, from input to sum output

Figure 7.2 shows the delay from the inputs of a FA to the carry output bit. The delays
for each input is quite equal to each other. There are minor differences in the delay, but it
probably just small variations in the transistors in the element.

The delay is also very spread for this element, probably for the same reasons as the Sum
element. Variations from 0.3µs to 0.6µs , and some ports have as much as 0.9µs delay. The
delay is about the same as input A1 on the Sum bit, but considerably less than input A2 and
A3. This shows a reason why the transitions through the multiplier tree are uneven.

Figure 7.3 contains information about line delay from the SDF-file. The line delay is
accumulated for both elements in the FA, and thus for both output lines. As we can see, the
line delay is almost zero. The reason for this is that the delay from charging the wires and
transistors are baked into the delay of the elements. The estimator therefore sets the line
delay to zero, and uses the delay from the elements as configuration instead. The net result
should be the same.

The delay of Sum line in the HA is shown in Figure 7.4. The reason XNOR ports are
examined, and not XOR ports is because it is assumed that the synthesis tool optimizes the
XOR ports into XNOR ports. The output of the XNOR is inverted, and it is assumed the
synthesis tool also converts some of the adders to accept inverted inputs. This might explain
why it was very hard to find other adder structures in the netlist (as explained in Section 5.4).
The delay from the XNOR is used as is, and not with the additional delay of an inverter on
the output port. Since it adder structures that accept inverted inputs is possible and does not
invert the input is possible, the delay of an inverter would probably create more inaccurate
delay data. The sole delay for the XNOR port was therefore chosen as configuration of the
simulator.

This element also has varied delay. A interesting note is that the delay varies after what
kind of transition is done. This is something the simulator implemented does not take into
account. The simulator might therefore be less accurate.
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Figure 7.2: Timing through full-adder, from input to carry output
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Figure 7.4: Timing through half-adder, from input to sum output

Figure 7.5 contains the delay information for the Carry bit of the HA. This element has
the most varied delay of all the elements examined. From 0.1µs to 0.9µs . This is quite
puzzling, and might indicate that the extraction tool listed NAND ports not part of a HA.
The results for the NAND and XNOR ports as a indication of the delay through a HA should
therefore be used carefully. NAND ports are also examined for the same reason as XNOR
ports were examined instead of XOR ports.

The line delay is shown in Figure 7.6. The delay is almost zero for HA as well, and
probably for the same reason as the line delay of the FA.

A mean value for all the delays is calculated, and used to configure the simulator. The
mean delay is shown in Table 7.1. Since the delay through the FA is irregular, the low value
for the SUM is chosen for one input, and the two other values mean value chosen for the two
other inputs. The delay to the carry bit is considered equal for all inputs, and therefore the
mean value is used as input to the simulator. Since the simulator uses a gate level approach,
the delay is distributed over the gates in the element.

Since we assume that feed-through elements make longer wires, an extra delay has been
added to wires going through a feed-through element. This delay has been set to 150µs .
Since we were not able to find correlation about longer delays through feed-through wires in
the netlist, this value is just a guess based on the timing variance of the histograms.

7.2 Estimator

The simulator can be configured to sample run a fixed amount sample. Each sample contains
the number of transitions made by the multiplier tree to do one calculation. By increasing
the amount of samples collected, the accuracy of the estimation is increased at the cost of
runtime. This section contains results for the runtime and accuracy of the estimator.
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0

500

1000

1500

2000

2500

0 0.05 0.1 0.15 0.2 0.25

Line delay FA

0->1
1->0

Figure 7.6: Line timing from half-adder to next element



48 CHAPTER 7. RESULTS AND DISCUSSION

FA SUM A1 0.443
A2 0.613
A3 0.671

CARRY A 0.5015
B 0.4865
CI 0.446

HA SUM 0.508
CARRY 0.413

Table 7.1: Mean delay through elements

Figure 7.7 and 7.8 contains the runtime of the estimator. As we can see from the figure,
one estimation with 100 samples takes around 2.5 seconds for a 32 × 32 multiplier. This is
the reason the optimization on the whole multiplier at once. If the optimization routine had
estimated the power usage for several mutations in each column, runtime of the optimization
would dramatically increase. The runtime data was gathered using a Intel(R) Xeon(R) CPU
X5550 2.67GHz CPU.

The graph also shows that the runtime increases linearly with sample size. Size is
expected, as each sample takes a finite amount of time to compute. By comparing the
run time across sizes, we can see the estimator’s run speed increase linearly as well.

The runtime for other multiplier sizes are given in Appendix A.3.
To determine how many samples are needed, we need to investigate how accurate we want

the estimation to be. Figure 7.9 and 7.10 show the average amount of transitions after n
samples. For the 8× 8 multiplier, the average transitions starts to converge after around 30
samples, and the 32× 32 multiplier after around 50.

The estimator should calculate the error of the estimation, as described in Section 3.3,
but due to time constraints, this was not implemented. To get the error of the estimation to
be as small as possible, a larger sample size where chosen. The sample size also have to be
larger to get a accurate power profile of the multiplier, and not just an overall estimate. A
sample size of 100 samples seemed through experiments as a good value, considering speed
and accuracy.

The graphs also shows how the different multipliers react equally on the same input. By
using the same input patterns for all the multipliers, and through the optimization step, the
power estimate should be considered very accurate for comparing. This makes the comparison
done before and after optimization quite accurate.

The different algorithms use different amounts of power. These graphs represent the
number of transitions used by the multiplier, before interconnect optimization is performed on
the multiplier. As we can see, the choice of algorithm greatly impacts the power performance
of the multiplier. The Wallace algorithm is by far the worst reduction tree scheme to use,
considering power consumption. More discussion of power usage of the different algorithms
is given in the next section.

7.3 Optimization

Figure 7.11 and 7.12 contains amount of transitions used after 100 samples, shown after n
number of optimization runs. All multipliers reduce their power consumption by between
5% and 28%, according to Table 7.2. The algorithm benefiting the most from interconnect
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Figure 7.10: Power estimation accuracy of simulations size, 32× 32 multiplier
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Figure 7.11: Power usage after each optimization step, 8× 8 multiplier

optimization is the conservative algorithm. The interconnect optimization seems to reduce
the power consumption by a fair deal.

It might seem that the Modgen algorithm benefits the least from the interconnect algo-
rithm. The reason for this might be because the estimator does not provide a power profile
that is as good as the one for the other multipliers. Another reason is that the Modgen tree
is more difficult to balance.

The other algorithms show a large reduction in power consumption. This reduction might
be larger than it is in reality. By using the same input vector for all of the estimations, the
multiplier gets optimized based on this input. Another set of input vectors might optimize
the multiplier differently, and there is no guarantee this optimization is the best for all input
vectors. The random number generator used in this thesis should be good enough to get a
very random set of data, but might not be.

The Monte Carlo method should on the other hand give very accurate results for the design
as a whole, but lower accuracy about the power consumption of each element. This means
that the power profile used by the optimization might not be very accurate, but it seems to
be accurate enough to optimize the design. The estimation of the whole design should be
accurate, given the delay assumptions made earlier. For this reason, the estimation should
be quite pattern independent, but an increase of samples per estimation or a calculation of
the error margin could shed further light on the topic. This was not possible to do, due to
the time limit of the thesis.

Figure 7.13 shows a estimated gate count for different multipliers in different sizes. The
estimation uses five gates for FA and two gates for HA as a basis for the calculation, because
this configuration is a very common adder structure (see Figure 2.6). Note the logarithmic
scale in the graph. This shows that the different reduction algorithms use about the same
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Figure 7.12: Power usage after each optimization step, 32× 32 multiplier

8× 8 multiplier 32× 32 multiplier
Name Pre opt Post opt Change Pre opt Post opt Change
Modgen 5651 5328 -5.51% 113909 101105 -11.2%
Conservative 6447 4602 -28.6% 120291 91895 -23.6%
Almost Dadda 6726 5416 -19.5% 122465 101645 -17.0%
Dadda 6726 5416 -19.5% 122423 101645 -16.9%
Reduced Area 6870 5535 -19.4% 122559 101758 -16.9%
Wallace 8230 6445 -21.7% 132054 113501 -14.1%

Table 7.2: Improvement by optimization
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amount of gates, with the exception of Wallace. The Wallace algorithm uses slightly more
gates than the rest. The graph also shows that the size of the multiplier grows exponentially.

To compare the different algorithms, their transition count after interconnect optimization
has been placed in Figure 7.14. Note the logarithmic scale of the Y axis. Since the graph
does not show clearly the differences between the algorithms, a percentage difference between
the algorithms is shown in Figure 7.15. The algorithms are compared again the Modgen
algorithm, and this algorithm is therefore represented as 0% in the graph. A value over 0
means the algorithm consumes more power than the Modgen algorithm, and under 0 means
less power.

As we can see the power consumption clusters into three groups, Wallace, Dadda-like and
the Conservative. The Wallace algorithm performs the worst of all the algorithms, and it
is also the algorithm using the most adder elements. This might explain why it is the least
performing candidate.

It seems the Dadda algorithm should be used as the preferred algorithm when comparing
power consumption with other techniques, which is nearly the same age as Wallace, and
performs a better and use less area [6]. Wallace is more famous than Dadda, despite not
performing equally well.

The cluster of algorithms called Dadda-like earlier contains the original Dadda, Almost
Dadda, Reduced Area and the original Modgen algorithm. Both the Reduced Area and
Almost Dadda algorithms are modifications to the original Dadda algorithm. The original
Modgen algorithm uses a greedy approach, and tries to reduce the number of HA elements,
which also is a Dadda-like behavior. The similarities of these algorithms might be the cause
of their very equal power consumption. They also use very similarly amount of adders in the
tree.

The Conservative algorithm uses the least amount of power after interconnect optimiza-
tion. It also has the least amount of HAs, while still having fewer FAs than both Dadda
and Reduced Area. The amount of full- and half-adders used by the different algorithms
are found in Appendix A.6. The Conservative algorithm performs consistently better for
multiplier sizes from 8× 8 to 32× 32. Graphs showing transition counts for other multiplier
sizes are given in Appendix A.5.

The reason the Conservative consumes less power than the other algorithm might be
because it has fewer adder elements then the other algorithms. Less transistors to switch
might transfer to less power used.

7.4 Post-layout analysis

A few of the designs were chosen and sent to Johnny Pihl at Atmel Norway, and synthesis
and technology mapping was done by him. The designs were sent through "IC Compiler", to
get an estimated power usage after layout. This is a coarse power estimate, put should give
an realistic indication of how much power consumption is actually reduced. The results are
presented in Table 7.3.

Since the assignment says the work done in this thesis should reduce power consumption
of the generated by the netlister, a multiplier generated by the original netlister was used as
a basis for the comparison. The other algorithm used for synthesis is the Conservative. It
was chosen because it seems to be the algorithm with the least power consumption. Both
algorithms were synthesized before and after interconnect optimization.

All of the designs were implemented as full multipliers, containing a booth recoding step,
the reduction tree and a VMA step. This was done to examine the overall power reduction,
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Figure 7.15: Power comparison after optimization for different multiplier trees

and not just from the reduction tree, since the size of the VMA varies among the different
algorithms.

It would have been beneficial to compare all of the algorithms used in this thesis, but this
was not possible given the time constraints of the thesis.

The results in Table 7.3 shows a 11% decrease in power when choosing the conservative
over the original Modgen algorithm. This is inconsistent with the results of the simulator
used in this thesis, which show the Modgen algorithm to be more energy effective before
optimization. The reason for this might be inaccuracy in the simulator used in this thesis.
The power calculation done in IC Compiler is also using the standard settings, and this might
not put the multiplier under standard multiplication operation. The result is also done with
a booth recoder and a VMA, which power usage is not estimated by the simulator in this
thesis. These are probably the main reasons for the deviation.

The effect of interconnect optimization is low in the post-layout design. It is between 2.5%
and 1.0%. This might be because the synthesis tool does not interconnect the multiplier tree
the way we assume. Since we are exploiting the fact that one of the inputs in a FA is faster
than the others, it is important that this assumption gets transferred to the synthesis tool.
The synthesis tool is doing optimization as well, and this might interfere with the optimization
done in this thesis.
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Change from
Design Effect Original Conservative
Modgen Original 54.6909 mW 0 % 13.17 %
Modgen Original Optimized 53.2783 mW -2.58 % 10.25 %
Conservative 48.3245 mW -11.64 % 0 %
Conservative Optimized 47.8362 mW -12.53 % -1.01 %

Table 7.3: Effect used by complete multipliers, before and after interconnect optimization



Chapter 8

Conclusion

8.1 Delay and estimating
The investigation of how the delay varies between elements inside the multiplier is important
because it shows us that the delay is very varied. By using a too coarse delay model, the
estimated power consumption might not be as accurate as intended. The main reason for the
varying delay is possibly the different length of the wires, so more research about why the
wires are longer could possibly lead to better ways of optimizing multiplier trees. The delay
in the multiplier is the decisive reason for the extra power consumption through glitching,
and is therefore also important for the optimization. The delay data found in this thesis can
be used as a starting point for a better delay model used by an estimator or optimization
routine.

A power estimator is very important when comparing different multipliers. It is used as
the basis for the comparison. The estimator might also be used in the optimization, to verify
that one solution is better than another. This thesis contains an implementation of a power
estimator that can be reused and improved to help further research in the field of low power
circuits.

By using the delay data it is possible to train the estimator to make estimations based
on which synthesis and layout tool that is being used. Since the delay data can be changed
within the estimator, it is possible to analyze a SDF-file made from another synthesis tool
with a different technology library, and use that delay information instead. The current
implementation is dependent on the synthesis tools and technology library used, but it is
possible to change the estimator to be dependant on another tool and library. This, however,
must be done manually. An improvement of the SDF-reading tools would be able to produce
delay information from SDF-files automatically.

8.2 Multiplier generation
Choosing the best algorithm when generating a multiplier tree can reduce power consumption
with at least 10%. This emphasizes the importance of using different kinds of generation
methods when comparing multipliers. The different algorithms have different properties.
This thesis also shows that more research should be put in the subject of which reduction
tree method that is preferred for low power usage, and not only research concerning size and
delay.

The interconnect optimization shows a reduction in power consumption in the multiplier
tree. How much the gain the optimization gives is not verified in this thesis. The synthesis
tool tries to optimize the circuit by changing the type of gates used inside the adders. This
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might negate some of the power improvements shown in the pre-layout estimation. By trying
different synthesis and technology mapping setting for the tools, it might be possible to force
the synthesis tool to make less optimizations and transformations during the process. This
can improve the usefulness of the interconnect optimization, but might not give an overall
power improvement. Synthesis tools are mature software, and generally good at optimizing,
but they usually optimize in regards to size and delay, and not power.

The algorithm proposed by Oskuii [5] should be investigated further, as this thesis shows
that a simplification of the algorithm produce power reductions. The original algorithm
should improve power usage better than the implementation used in this thesis. It is very
important to use a good estimator when employing the algorithm, and an accurate timing
model is important to model the glitches through the multiplier properly.

The netlister improved by this thesis should produce power effective multipliers. It also
gives researchers a tool to fast and easy generate a lot of different multipliers. The tool
can be used to research a broad range of different multipliers with different configurations.
This thesis does not contain a survey of how the multipliers perform after post-synthesis and
layout. The netlister should provide a tool that enables fast and easy generations of a lot of
different multipliers, and would be useful for anyone trying to make such a survey.

8.3 Directions for further work
The timing model should be improved. Now it only uses a mean value through the elements,
and a delay penalty when being feed-through. The delay penalty for the lines routed
through stages is only assumed in this thesis, and suggests that further work should therefore
investigate if this is indeed the The reason for the different delays are known to be different
wire length between adders, and it would be very interesting to be able to predict wire length.
Since the workings of the synthesis tool is in most cases proprietary, it is apparently hard to
get the wire length estimation 100%, but there should be a possibility to be fairly accurate.

By estimating wire lengths, one can use the data in the optimization. The long and slow
wire should be used sparingly, and thus be connected to low density gate outputs. By having
this information it might be possible to do optimization without doing estimation for each
step.

The estimator implemented in this thesis should be extended to calculating the error from
the Monte Carlo method. This way it would be possible to stop after a dynamic number of
samples instead of a fixed amount. This might decrease running time, and make the netlister
faster. If the estimator gets further improved, it might be able to use it to estimate all the
different mutations in the tree, instead of the simplified optimization routine used now.

Gate-level estimation is probably not as accurate as post-layout power estimation. A
survey of the power consumption of different configurations should enlighten how well the
estimator works, and which solutions will reduce power consumption in real implementations.
The netlister includes possibilities to add Booth recoding [15, 17] and pipelining. These
additions could also be surveyed, coupled with different VMA configurations. The netlister
currently only supports one type of VMA, but several variations could be implemented.
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Timing models

A.1 Modgen multiplier, min PVT
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Figure A.1: Timing through full-adder, from input to sum output
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A.2 Generated multipliers
Multiplier generated in [5]

A.2.1 Optimized for minimum power, max PVT

0
20
40
60
80

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3XOR: a1 -> z

negedge: 0->1
negedge: 1->0
posedge: 0->1
posedge: 1->0

0
20
40
60
80

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3XOR: a2 -> z

negedge: 0->1
negedge: 1->0
posedge: 0->1
posedge: 1->0

0
10
20
30
40
50
60
70
80
90

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3XOR: a3 -> z

negedge: 0->1
negedge: 1->0
posedge: 0->1
posedge: 1->0

Figure A.7: Timing through full-adder, from input to sum output



64 APPENDIX A. TIMING MODELS

0
10
20
30
40
50
60
70
80

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3CARRY: a -> z

0->1
1->0

0
10
20
30
40
50
60
70
80
90

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3CARRY: b -> z

0->1
1->0

0
10
20
30
40
50
60
70
80

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3CARRY: ci -> z

0->1
1->0

Figure A.8: Timing through full-adder, from input to carry output

0

100

200

300

400

500

0 0.02 0.04 0.06 0.08 0.1

Line delay FA

0->1
1->0

Figure A.9: Line timing from full-adder to next element



A.2. GENERATED MULTIPLIERS 65

0

50

100

150

200

250

300

350

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

XNOR: a1 -> z

negedge: 0->1
negedge: 1->0
posedge: 0->1
posedge: 1->0

0

50

100

150

200

250

300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

XNOR: a2 -> z

negedge: 0->1
negedge: 1->0
posedge: 0->1
posedge: 1->0

Figure A.10: Timing through half-adder, from input to sum output

0

50

100

150

200

250

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NAND: a1 -> z

0->1
1->0

0

50

100

150

200

250

300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

NAND: a2 -> z

0->1
1->0

Figure A.11: Timing through half-adder, from input to sum output



66 APPENDIX A. TIMING MODELS

0

500

1000

1500

2000

2500

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Line delay FA

0->1
1->0

Figure A.12: Line timing from half-adder to next element



A.2. GENERATED MULTIPLIERS 67

A.2.2 Optimized for maximum power, max PVT
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Figure A.16: Timing through half-adder, from input to sum output
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A.3 Estimator time usage
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Figure A.19: Time usage of the estimator, 12x12 multiplier
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Figure A.20: Time usage of the estimator, 16x16 multiplier
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Figure A.21: Time usage of the estimator, 24x24 multiplier
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A.4 Estimator accuracy of sample size
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Figure A.22: Power estimation accuracy of simulations size, 12x12 multiplier
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Figure A.23: Power estimation accuracy of simulations size, 16x16 multiplier
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Figure A.24: Power estimation accuracy of simulations size, 24x24 multiplier
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A.5 Power usage after optimization
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Figure A.25: Power usage after each optimization step, 12x12 multiplier
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Figure A.26: Power usage after each optimization step, 16x16 multiplier
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Figure A.27: Power usage after each optimization step, 24x24 multiplier
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A.6 Multipler adder usage

Table A.1: Number of adders, depth and size of VMA for a 8x8 multiplier
Type of tree No FA No HA Depth Output lines VMA size
Conservative 48 2 4 26 14
Almost Dadda 47 7 4 27 14

Dadda 43 14 5 31 14
Reduced Area 49 6 5 25 10

Wallace 47 23 5 27 10
Old algorithm 45 6 4 29 13

Table A.2: Number of adders, depth and size of VMA for a 16x16 multiplier
Type of tree No FA No HA Depth Output lines VMA size
Conservative 218 8 6 56 30
Almost Dadda 218 23 6 56 30

Dadda 212 14 6 62 29
Reduced Area 218 14 6 56 25

Wallace 215 62 6 59 26
Old algorithm 212 30 6 61 29

Table A.3: Number of adders, depth and size of VMA for a 32x32 multiplier
Type of tree No FA No HA Depth Output lines VMA size
Conservative 940 22 8 118 62
Almost Dadda 945 64 8 113 62

Dadda 932 30 8 126 61
Reduced Area 940 30 8 118 55

Wallace 938 163 8 120 55
Old algorithm 932 56 8 125 61





Appendix B

Perl-code for reading SDF-files

B.1 SDF-reader library

Listing B.1: SDF-reader library
1 #!/ usr / bin / p e r l
2
3 use s t r i c t ;
4 package sd f ;
5
6 # I n t e r n a l f u n c t i o n s
7 sub sp l i t_de l ay
8 {
9 my $temp = $_ [ 0 ] ;

10 $temp =~ s /^\(// ;
11 $temp =~ s /\) $ // ;
12 my @retval = s p l i t ( " : " , $temp ) ;
13 return @retval ;
14 }
15
16 sub get_delay
17 {
18 my @temp = @_;
19 my %re t v a l ;
20 @{ $ r e t va l { ’ 01 ’ }} = sp l i t_de l ay (pop(@temp) ) ;
21 i f ($#temp >= 0)
22 {
23 @{ $ r e t va l { ’ 10 ’ }} = sp l i t_de l ay (pop(@temp) ) ;
24 }
25 else
26 {
27 @{ $ r e t va l { ’ 10 ’ }} = @{ $ r e t va l { ’ 01 ’ }} ;
28 }
29
30 return %re t v a l ;
31 }
32
33 # Var iab l e s f o r LLSClib−pars ing
34 my $pin ;
35 our %c e l l d e f i n i t i o n ;
36
37 # Var iab l e s f o r paring the SDF− f i l e
38 our %con f i g ;
39 our %t r e e ;
40 our %c e l l p r o f i l e ;
41 our %conn ;
42 our %connrev ;
43
44 my $ c e l l , my $ in s tance ;
45
46 my @lastcommand ;

79
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47 my $nes t ing = 0 ;
48
49 sub sp l i t_po r t
50 {
51 my $temp = $_ [ 0 ] ;
52 my @temp = s p l i t (/ $ con f i g { ’ d i v i d e r ’ }/ , $temp ) ;
53 my $port = pop(@temp) ;
54 my $ i n s t = join ( $ con f i g { ’ d i v i d e r ’ } , @temp) ;
55 return ( $port , $ i n s t ) ;
56 }
57
58
59
60
61 open(FILE , " . . / LLSClib_functions . txt " ) | | die ( "Can not open LLSClib " ) ;
62
63 while(<FILE>)
64 {
65 my $command , my $parameter ;
66
67 chomp( ) ;
68 i f (/^\ s ∗(\w+)\s ∗\(\ " (\w+)\"\) \ s ∗{\ s ∗$ /)
69   {
70     $command = $1 ;
71     $parameter  = $2 ;
72     i f  ($command eq " c e l l " )
73     {
74       $ c e l l  = $parameter ;
75     }
76     e l s i f  ($command eq " pin " )
77     {
78       $pin  = $parameter ;
79     }
80
81   }
82   e l s i f  (/^\ s ∗(\w+)\ s ∗\ :\ s ( .+) $ /)
83   {
84     $command = $1 ;
85     $parameter  = $2 ;
86     i f  ($command eq ’ func t i on ’ )
87     {
88       $ c e l l d e f i n i t i o n { $ c e l l }{ $pin }{ ’ o ld func ’}  = $parameter ;
89       $parameter  =~ s /^\"// ;
90       $parameter  =~ s /\" $ // ;
91       $parameter  =~ s /(\w+)/\ $ inputs \{\ ’ $1 \ ’\}/ g ;
92       $parameter  =~ s /\∗/ \& /g ;
93       $parameter  =~ s/\+/ \ |  /g ;
94       $parameter  =~ s /\!/\~/ g
95     }
96     $ c e l l d e f i n i t i o n { $ c e l l }{ $pin }{$command} = $parameter ;
97   }
98   e l s i f  (/ t e s t_ c e l l /)
99   {

100     $ c e l l  = " t e s t_ce l l_ " . $ c e l l ;
101   }
102   e l s e
103   {
104     p r in t  STDERR " Error par ing c e l l−d e f i n i t i o n s : " . $_ . " \n " ;
105   }
106
107 }
108
109 c l o s e (FILE) ;
110
111
112 whi le (<STDIN>)
113 {
114   # Mathes each l i n e
115   # $1 Command
116   # $2 Parameters
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117   # $3 End o f  node/not end o f  node
118   i f  (/^\ s ∗\ ( ( [ ^\ s ] ∗ ) \ s ∗ ( ( ? : \ s ∗ [ ^ \ ( \ ) \ s ]+\ s ∗ | \ s ∗\ ( [ ^\ ) ]+\)\ s ∗) ∗) (\ ) ?) $ /)
119   {
120     my $command = $1 ;
121     my $parameters_str ing  = $2 ;
122     my $endofnode  = $3 ;
123     my @parameters ;
124     whi l e  ( $parameters_str ing  =~ m/\ s ∗ ( [ ^ \ ( \ ) \ s ]+ | \ ( [ ^ \ ) ]+\) ) \ s ∗/g )
125     {
126       push (@parameters ,  $1 ) ;
127     }
128
129     # Remember where in  the  t r e e  we are .  Push commands on the  array
130     # to  c r e a t e  an array  with a l l  the  above nodes
131     i f  ( $endofnode  ne " ) " )
132     {
133       $nes t ing++;
134       push (@lastcommand ,  $command) ;
135     }
136
137     i f  ($command eq "DIVIDER" )
138     {
139       $con f i g { ’ d i v i d e r ’}  = $parameters_str ing ;
140     }
141     e l s i f  ($command eq "CELLTYPE" )
142     {
143       $ c e l l  = $parameters [ 0 ] ;
144       $ c e l l  =~ s /^\"// ;
145       $ c e l l  =~ s /\" $ // ;
146     }
147     e l s i f  ($command eq "INSTANCE" )
148     {
149       $ in s tance  = $parameters [ 0 ] ;
150       i f  ( $ in s tance  eq " " )
151       {
152         $ in s tance  = "TOP" ;
153       }
154     }
155     e l s i f  ($command eq "INTERCONNECT"  && $lastcommand[$#lastcommand ]  eq "ABSOLUTE" )
156     {
157       my $ i n s t  = s h i f t ( @parameters ) ;
158       my $ long in  = $ i n s t ;
159       my $in  = " d e f au l t " ;
160       my $out = s h i f t ( @parameters ) ;
161
162       my $regex  = $con f i g { ’ d i v i d e r ’ } . ’ ( [ ^ ’ . $ c on f i g { ’ d i v i d e r ’ } . ’ ]+ ) $ ’ ;
163       i f  ( $ i n s t  =~ s / $regex //)
164       {
165         $ in  = $1 ;
166       }
167       e l s e
168       {
169         $ in  = $ i n s t ;
170         $ i n s t  = "TOP" ;
171       }
172       %{$t r e e { $ i n s t }{ ’ i o ’}{ $ in }{ $out }} = get_delay ( @parameters ) ;
173       i f  ( !  grep ( $ longin ,  @{ $ t r e e { $ i n s t }{ ’ output ’}}) )
174       {
175         push (@{ $ t r e e { $ i n s t }{ ’ output ’}} ,  $ long in ) ;
176       }
177       push (@{$conn{ $ long in }} ,  $out ) ;
178       $connrev{$out} = $ long in ;
179     }
180     e l s i f  ($command eq "IOPATH"  && $lastcommand[$#lastcommand ]  eq "ABSOLUTE" )
181     {
182       my $in  = s h i f t ( @parameters ) ;
183       my $out = s h i f t ( @parameters ) ;
184       %{$t r e e { $ in s tance }{ ’ i o ’}{ $ in }{ $out }} = get_delay ( @parameters ) ;
185       %{$t r e e { $ in s tance }{ ’ iopath ’}{ $ in }{ $out }} = get_delay ( @parameters ) ;
186       $ in  =~ s /^\(\w+ (\w+)\) $/$1 / ;
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187       $ t r e e { $ in s tance }{ ’ route ’}{ $ in } = $out ;
188       $ t r e e { $ in s tance }{ ’ input ’}{ $ in s tance . $ con f i g { ’ d i v i d e r ’ } . $ in } = 1 ;
189       #$connrev{ $ in s tance . $ con f i g { ’ d i v i d e r ’ } . $out} = $ in s tance . $ con f i g { ’ d i v i d e r ’ } . $ in ;
190       #push (@{$conn{ $ in s tance . $ con f i g { ’ d i v i d e r ’ } . $ in }} ,  

$ in s tance . $ con f i g { ’ d i v i d e r ’ } . $out ) ;
191       #push (@{$connrev { $ in s tance . $ con f i g { ’ d i v i d e r ’ } . $out }} ,  

$ in s tance . $ con f i g { ’ d i v i d e r ’ } . $ in ) ;
192     }
193   }
194   e l s i f  (/^\ s ∗\) \ s ∗$ /)
195   {
196     # Remove a node from the  array ,  s i n c e  the  node i s  c l o s ed
197     $nest ing−−;
198     my $command = pop (@lastcommand ) ;
199     i f  ($command eq "CELL" )
200     {
201       i f  ( $ c e l l  eq " " )  { $ c e l l  = "UNKNOWN" ;  }
202       push (@{ $ c e l l p r o f i l e { $ c e l l }} ,  $ in s tance ) ;
203       $ t r e e { $ in s tance }{ ’ c e l l t y p e ’}  = $ c e l l ;
204       $ c e l l  = " " ;
205     }
206   }
207   e l s e
208   {
209     p r in t  STDERR " Error read ing l i n e \n" ;
210   }
211 }
212
213 1 ;

Listing B.1: SDF-reader library

B.2 Gate counter
Count the number of each element, so one can guess what kind of elements is used in the
multiplicator

Listing B.2: Code to count each element in multiplier tree
1 #!/ usr / bin / p e r l
2
3 my $ inc = __FILE__;
4 $ inc =~ s /\/ [^\/ ]∗ $ // ;
5 push(@INC, $ inc ) ;
6 require ’ r eadsd f . p l ’ ;
7
8 foreach my $k ( sort {$#{$sd f : : c e l l p r o f i l e {$a}} <=> $#{$sd f : : c e l l p r o f i l e {$b}}} (keys

%sd f : : c e l l p r o f i l e ) )
9 {

10 # Print i n f o about c e l l
11 print " \n " ;
12 print "−−−−−−−−−−−−−−−−−−−−−−−−\n" ;
13 print $k . "  occurs  " .($#{ $sd f : : c e l l p r o f i l e {$k}}+1) . " \n " ;
14 # Gather input and output i n f o about c e l l
15 my @inputs , my @outputs , my @outputfunc , my %inputs ;
16 foreach my $ i (keys %{$sd f : : c e l l d e f i n i t i o n {$k }})
17 {
18 i f ( $ sd f : : c e l l d e f i n i t i o n {$k}{ $ i }{ ’ d i r e c t i o n ’ } eq " output " )
19 {
20 push(@outputs , $ i ) ;
21 push( @outputfunc , $ sd f : : c e l l d e f i n i t i o n {$k}{ $ i }{ ’ f unc t i on ’ }) ;
22 print $ i . "  has func t i on  " . $ sd f : : c e l l d e f i n i t i o n {$k}{ $ i }{ ’ o ld func ’ } . " \n " ;
23 }
24 else
25 {
26 push( @inputs , $ i ) ;
27 $ inputs { $ i } = 0 ;
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28 }
29 }
30 # Gather s t a t i s t i c s
31 my %stat ;
32 foreach my $ in s tance (@{ $sd f : : c e l l p r o f i l e {$k }})
33 {
34 foreach my $ i (keys %{$sd f : : t r e e { $ in s tance }{ ’ iopath ’ }})
35 {
36 i f (1 )
37 {
38 foreach my $ j (keys %{$sd f : : t r e e { $ in s tance }{ ’ iopath ’ }{ $ i }})
39 {
40 $ s t a t { $ i }{ $ j }{ ’ count ’}++;
41 $ s t a t { $ i }{ $ j }{ ’ 01 ’ } += $sd f : : t r e e { $ in s tance }{ ’ iopath ’ }{ $ i }{ $ j }{ ’ 01 ’ } [ 1 ] ;
42 $ s t a t { $ i }{ $ j }{ ’ 10 ’ } += $sd f : : t r e e { $ in s tance }{ ’ iopath ’ }{ $ i }{ $ j }{ ’ 10 ’ } [ 1 ] ;
43 }
44 }
45 }
46 }
47 # Print s t a t s
48 foreach my $ i ( sort keys %stat )
49 {
50 foreach my $ j (keys %{$s ta t { $ i }})
51 {
52 print $ i . "=>" . $ j . "  : " ;
53 print "   0−>1: " . ( $ s t a t { $ i }{ $ j }{ ’ 01 ’ }/ $ s t a t { $ i }{ $ j }{ ’ count ’ }) ;
54 print "   1−>0: " . ( $ s t a t { $ i }{ $ j }{ ’ 10 ’ }/ $ s t a t { $ i }{ $ j }{ ’ count ’ }) ;
55 print "  ( " . $ s t a t { $ i }{ $ j }{ ’ count ’ } . " ) \n " ;
56 }
57 }
58
59 # Make truth−t a b l e
60 print " |  " . join ( "  |  " , @inputs ) . "  |  " . join ( "  |  " , @outputs ) . "  | \ n " ;
61
62 my $ s i z e ;
63 i f ($# inputs < 0)
64 {
65 $ s i z e = 0 ;
66 }
67 else
68 {
69 $ s i z e = (1 << ($# inputs+1) ) ;
70 }
71 for (my $ i = 0 ; $ i < $ s i z e ; $ i++)
72 {
73 for (my $ j = 0 ; $ j <= $#inputs ; $ j++)
74 {
75 $ inputs { $ inputs [ $ j ] } = ( $ i >> $j ) & 1 ;
76 print " |  " . $ inputs { $ inputs [ $ j ] } . "  " ;
77 }
78 for (my $ j = 0 ; $ j <= $#outputs ; $ j++)
79 {
80 # Eval i s dangerous , but saves a l o t o f time
81 my $ r e s = eval ( $outputfunc [ $ j ] ) & 1 ;
82 print " |  " . $ r e s . "  " ;
83 }
84 print " \n " ;
85 }
86 print "−−−−−−−−−−−−−−−−−−−−−−−−\n" ;
87 }

Listing B.2: Code to count each element in multiplier tree

B.3 Gate printer

Listing B.3: Prints of part of the multiplier tree
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1 #!/ usr / bin / p e r l
2
3 use s t r i c t ;
4
5 my $ inc = __FILE__;
6 $ inc =~ s /\/ [^\/ ]∗ $ // ;
7 push(@INC, $ inc ) ;
8 require ’ r eadsd f . p l ’ ;
9

10 foreach my $ i (keys %sd f : : t r e e )
11 {
12 i f ( $ sd f : : t r e e { $ i }{ ’ c e l l t y p e ’ } eq ’ xn02d1 l l ’ )
13 {
14 my %p r i n t l i s t ;
15 print

"−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ;
16 print "  FOUND CELL ! ! ! \ n " ;
17 print

"−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\n" ;
18 foreach my $base_input (keys %{$sd f : : t r e e { $ i }{ ’ input ’ }})
19 {
20 print "INPUT:  " . $ sd f : : connrev{$base_input } . "  

( " .($#{ $sd f : : conn{ $sd f : : connrev{$base_input }}}+1) . "  outputs ) \n " ;
21 my @temp = s p l i t (/ $sd f : : c on f i g { ’ d i v i d e r ’ }/ , $ sd f : : connrev{$base_input }) ;
22 my $port = pop(@temp) ;
23 my $ i n s t = join ( $ sd f : : c on f i g { ’ d i v i d e r ’ } , @temp) ;
24
25 $ p r i n t l i s t { $ i n s t } = 1 ;
26
27 foreach my $nextport (@{ $sd f : : conn{ $sd f : : connrev{$base_input }}})
28 {
29 my @temp = s p l i t (/ $sd f : : c on f i g { ’ d i v i d e r ’ }/ , $nextport ) ;
30 my $port = pop(@temp) ;
31 my $ i n s t = join ( $ sd f : : c on f i g { ’ d i v i d e r ’ } , @temp) ;
32 $ p r i n t l i s t { $ i n s t } = 2 ;
33 }
34 }
35
36 foreach my $ i n s t ( sort keys %p r i n t l i s t )
37 {
38 print "INSTANCE:  " . $ i n s t . "   CELLTYPE:  " . $ sd f : : t r e e { $ i n s t }{ ’ c e l l t y p e ’ } ;
39 print "  COLUMN:  " . $ p r i n t l i s t { $ i n s t } . " \n " ;
40 foreach my $input (keys %{$sd f : : t r e e { $ i n s t }{ ’ input ’ }})
41 {
42 print " IO :  " . $ sd f : : connrev{ $input } . "  −> " . $ input . " \n " ;
43 }
44 }
45
46 foreach my $ i n s t ( sort keys %p r i n t l i s t )
47 {
48 foreach my $output (@{ $sd f : : t r e e { $ i n s t }{ ’ output ’ }})
49 {
50 foreach my $input (@{ $sd f : : conn{$output }})
51 {
52 my @temp = s p l i t (/ $sd f : : c on f i g { ’ d i v i d e r ’ }/ , $ input ) ;
53 my $port = pop(@temp) ;
54 my $ i n s t = join ( $ sd f : : c on f i g { ’ d i v i d e r ’ } , @temp) ;
55 print "INSTANCE:  " . $ i n s t . "   CELLTYPE:  " . $ sd f : : t r e e { $ i n s t }{ ’ c e l l t y p e ’ } ;
56 print "  COLUMN:  3\n" ;
57 foreach my $input (keys %{$sd f : : t r e e { $ i n s t }{ ’ input ’ }})
58 {
59 print " IO :  " . $ sd f : : connrev{ $input } . "  −> " . $ input . " \n " ;
60 }
61 }
62 }
63 }
64 }
65 }
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Listing B.3: Prints of part of the multiplier tree

B.4 SDF to datafile generator

Used to make datafiles for generating the histograms of the SDF-files

Listing B.4: Generates datafiles for delay histograms
1 #!/ usr / bin / p e r l
2
3 use s t r i c t ;
4
5 my $ inc = __FILE__;
6 $ inc =~ s /\/ [^\/ ]∗ $ // ;
7 push(@INC, $ inc ) ;
8 require ’ r eadsd f . p l ’ ;
9

10 my %s t a t l i s t ;
11
12 foreach my $ i (keys %sd f : : t r e e )
13 {
14 # Find elements used in FA1 ( Trip le−XOR and a 3−in−carry element )
15 i f ( $ sd f : : t r e e { $ i }{ ’ c e l l t y p e ’ } eq ’ x r 03d1 l l ’ )
16 {
17 my $sum = $ i ;
18 my $carry ;
19 my $count = 0 ;
20 foreach my $pp (@{ $sd f : : conn{ $sd f : : connrev{ $ i . $ sd f : : c on f i g { ’ d i v i d e r ’ } . ’ a1 ’ }}})
21 {
22 (my $port , my $ i n s t ) = &sd f : : s p l i t_po r t ( $pp ) ;
23 i f ( $ sd f : : t r e e { $ i n s t }{ ’ c e l l t y p e ’ } eq ’ c g01d0 l l ’ )
24 {
25 $carry = $ i n s t ;
26 $count++;
27 }
28 }
29 foreach my $pp (@{ $sd f : : conn{ $sd f : : connrev{ $ i . $ sd f : : c on f i g { ’ d i v i d e r ’ } . ’ a2 ’ }}})
30 {
31 (my $port , my $ i n s t ) = &sd f : : s p l i t_po r t ( $pp ) ;
32 i f ( $carry eq $ i n s t ) { $count++; }
33 }
34 foreach my $pp (@{ $sd f : : conn{ $sd f : : connrev{ $ i . $ sd f : : c on f i g { ’ d i v i d e r ’ } . ’ a3 ’ }}})
35 {
36 (my $port , my $ i n s t ) = &sd f : : s p l i t_po r t ( $pp ) ;
37 i f ( $carry eq $ i n s t ) { $count++; }
38 }
39 i f ( $count == 3)
40 {
41 push(@{ $ s t a t l i s t { ’ 3sum ’ }} , $sum) ;
42 push(@{ $ s t a t l i s t { ’ 3 car ry ’ }} , $carry ) ;
43 }
44 }
45 # Find elements used in HA ( j u s t take a l l nand and xnor−po r t s )
46 e l s i f ( $ sd f : : t r e e { $ i }{ ’ c e l l t y p e ’ } eq ’ nd02d0 l l ’ )
47 {
48 push(@{ $ s t a t l i s t { ’ha_nand ’ }} , $ i ) ;
49 }
50 e l s i f ( $ sd f : : t r e e { $ i }{ ’ c e l l t y p e ’ } eq ’ xn02d1 l l ’ )
51 {
52 push(@{ $ s t a t l i s t { ’ ha_xnor ’ }} , $ i ) ;
53 }
54 }
55
56 foreach my $type (keys %s t a t l i s t )
57 {
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58 open(GATE, ">" . $type . " _gate . dat " ) ;
59 open(LINE , ">" . $type . " _l ine . dat " ) ;
60
61 my @inputs ;
62 my @outputs ;
63
64 foreach my $input (keys %{$sd f : : t r e e { $ s t a t l i s t { $type } [ 0 ] } { ’ iopath ’ }})
65 {
66 push( @inputs , $ input ) ;
67 foreach my $output (keys %{$sd f : : t r e e { $ s t a t l i s t { $type } [ 0 ] } { ’ iopath ’ }{ $input }})
68 {
69 i f ( ! ( grep ( $output , @outputs ) ) )
70 {
71 push(@outputs , $output ) ;
72 }
73 }
74 }
75 @inputs = sort @inputs ;
76 @outputs = sort @outputs ;
77 my $l ine_rows = 0 ;
78
79 # Cal cu l a t e rows f o r l i n e−de lay
80 foreach my $entry (@{ $ s t a t l i s t { $type }})
81 {
82 foreach my $output ( @outputs )
83 {
84 foreach my $input (keys %{$sd f : : t r e e { $entry }{ ’ i o ’ }{ $output }})
85 {
86 $l ine_rows++;
87 }
88 }
89 }
90
91 print GATE "# " . join ( " \ t \ t " , @inputs ) . " \n " ;
92 print GATE "# name :  gate \n" ;
93 print GATE "# type :  matrix \n" ;
94 print GATE "# rows :  " .($#{ $ s t a t l i s t { $type }}+1) . " \n " ;
95 print GATE "# columns :  " .(($# inputs+1)∗2) . " \n " ;
96
97 print LINE "# Comment − " . join ( " \ t " , @outputs ) . " \n " ;
98 print LINE "# name :  l i n e d e l a y \n" ;
99 print LINE "# type :  matrix \n" ;

100 print LINE "# rows :  " . $ l ine_rows . " \n " ;
101 print LINE "# columns :  " .(($# outputs+1)∗2) . " \n " ;
102
103 # Generate avarage
104 my @gateavg ;
105 my @lineavg ;
106
107 foreach my $entry (@{ $ s t a t l i s t { $type }})
108 {
109 my $incrementor = 0 ;
110 foreach my $input ( @inputs )
111 {
112 print GATE "  " . $ sd f : : t r e e { $entry }{ ’ i o ’ }{ $input }{ $outputs [ 0 ] } { ’ 01 ’ } [ 1 ] ;
113 print GATE "  " . $ sd f : : t r e e { $entry }{ ’ i o ’ }{ $input }{ $outputs [ 0 ] } { ’ 10 ’ } [ 1 ] ;
114 $gateavg [ $ incrementor++] +=

$sd f : : t r e e { $entry }{ ’ i o ’ }{ $input }{ $outputs [ 0 ] } { ’ 01 ’ } [ 1 ] ;
115 $gateavg [ $ incrementor++] +=

$sd f : : t r e e { $entry }{ ’ i o ’ }{ $input }{ $outputs [ 0 ] } { ’ 10 ’ } [ 1 ] ;
116 }
117 print GATE " \n" ;
118
119 foreach my $output ( @outputs )
120 {
121 my $longoutput = $entry . $ sd f : : c on f i g { ’ d i v i d e r ’ } . $output ;
122 foreach my $input (keys %{$sd f : : t r e e { $entry }{ ’ i o ’ }{ $output }})
123 {
124 $incrementor = 0 ;
125 print LINE "  " . $ sd f : : t r e e { $entry }{ ’ i o ’ }{ $output }{ $input }{ ’ 01 ’ } [ 1 ] ;
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126 print LINE "  " . $ sd f : : t r e e { $entry }{ ’ i o ’ }{ $output }{ $input }{ ’ 10 ’ } [ 1 ] ;
127 $ l i n eavg [ $ incrementor++] +=

$sd f : : t r e e { $entry }{ ’ i o ’ }{ $output }{ $input }{ ’ 01 ’ } [ 1 ] ;
128 $ l i n eavg [ $ incrementor++] +=

$sd f : : t r e e { $entry }{ ’ i o ’ }{ $output }{ $input }{ ’ 10 ’ } [ 1 ] ;
129 print LINE " \n" ;
130 }
131 }
132 }
133
134 # AVG
135 print GATE "# NAMES:  " . join ( "  " , @inputs ) . " \n " ;
136 print GATE "# AVG:   " ;
137 foreach my $avg (@gateavg )
138 {
139 print GATE "  " . ( $avg/($#{ $ s t a t l i s t { $type }}+1) ) ;
140 }
141 print GATE " \n" ;
142
143 print LINE "# NAMES:  " . join ( "  " , @outputs ) . " \n " ;
144 print LINE "# AVG:   " ;
145 foreach my $avg ( @lineavg )
146 {
147 print LINE "  " . ( $avg/ $l ine_rows ) ;
148 }
149 print LINE " \n" ;
150
151
152 close (GATE) ;
153 close (LINE) ;
154 }

Listing B.4: Generates datafiles for delay histograms





Appendix C

C-code

C.1 Estimation

C.1.1 estimation.h

C-code C.1: Header file for estimator
1 #ifndef ESTIMATE_H
2 #define ESTIAMTE_H
3
4 #include "modgen . h "
5
6 #define PRINT_ELEMENT(x ) ( ( x & FA_ELEMENT) ? "FA" : ( ( x & HA_ELEMENT) ? "HA" : "NO" ) )
7
8 enum simgatetype_t {
9 SIMGATE_NULL, SIMGATE_AND, SIMGATE_XOR, SIMGATE_OR, SIMGATE_OUT, SIMGATE_IN,

SIMGATE_PIPE, SIMGATE_NO
10 } ;
11
12 #define DELAY_MAX 510
13 #define NO_DELAY 0
14 #define LINE_DELAY 0
15
16 #define AND_DELAY 12 /∗ 2.4 de lay − 12 ∗/
17 #define OR_DELAY 12 /∗ 2.4 de lay − 12 ∗/
18 #define XOR_DELAY 21 /∗ 4.2 de lay − 21 ∗/
19
20 #define INIT_STACK_SIZE 1024
21
22 #define GATESIZE 5 /∗ Max number o f g a t e s in each b l o c k ∗/
23
24 /∗ From modgen . c ∗/
25 extern FA ∗External Input ;
26 extern FA ∗ExternalOutput ;
27 extern FA ∗RoundBitInput ;
28
29 struct STACKENTRY;
30 typedef struct STACKENTRY STACKENTRY;
31 struct SIMGATE;
32 typedef struct SIMGATE SIMGATE;
33
34 /∗ Datatypes and v a r i a b l e s f o r the hashmap ∗/
35 struct SIMBLOCK
36 {
37 struct FA∗ element ;
38 struct SIMBLOCK∗ next ;
39 struct SIMGATE∗ gate s [GATESIZE ] ;
40 struct SIMGATE∗ output [ 2 ] ; /∗ 0 = SUM, 1 = CARRY ∗/
41 struct SIMGATE∗ input [ 3 ] ; /∗ 0 = InA , 1 = InB , 2 = InC ∗/
42 } ;
43 typedef struct SIMBLOCK SIMBLOCK;

89
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44
45 struct SIMGATE
46 {
47 struct SIMGATE∗ input [ 2 ] ;
48 struct SIMGATE∗ output [ 2 ] ;
49 enum simgatetype_t type ;
50 uint8_t value ;
51 struct SIMBLOCK∗ parent ;
52 struct SIMGATE∗ next ;
53 struct SIMGATE∗ f i r s t ;
54 uint32_t de lay ;
55 uint32_t a c t i v i t y ;
56 uint32_t timestamp ;
57 } ;
58
59 struct SIMHASHMAP {
60 uint32_t mask ;
61 uint32_t s i z e ;
62 uint32_t l o g s i z e ;
63 struct SIMBLOCK ∗∗map ;
64 } ;
65 typedef struct SIMHASHMAP SIMHASHMAP;
66
67 /∗ Datatypes and v a r i a b l e s f o r the s imu la t ion s t a c k ∗/
68 struct STACKENTRY
69 {
70 uint8_t value ;
71 struct SIMGATE∗ gate ;
72 int16_t de lay ;
73 } ;
74
75 struct STACKPAGE
76 {
77 struct STACKENTRY∗ s tack ;
78 uint32_t s i z e ;
79 uint32_t cur rent ;
80 uint32_t l a s t ;
81 } ;
82 typedef struct STACKPAGE STACKPAGE;
83
84 struct FASTACK
85 {
86 struct STACKPAGE∗ page ;
87 uint32_t s i z e ;
88 uint32_t cur rent ;
89 } ;
90 typedef struct FASTACK FASTACK;
91
92 struct SIMSTRUCTURES
93 {
94 struct SIMHASHMAP hashmap ;
95 FASTACK ∗ s tack ;
96 FASTACK ∗ outstack ;
97 ADDERTREE∗ t r e e ;
98 uint32_t a c t i v i t y ;
99 uint32_t maxdepths ;

100 uint32_t outputs ;
101 uint32_t count ;
102 } ;
103 typedef struct SIMSTRUCTURES SIMSTRUCTURES;
104
105 /∗ Functions ∗/
106 /∗ S t r u c t u r e f u n c t i o n s ∗/
107 SIMBLOCK∗ getFA(SIMHASHMAP∗ hashmap , FA∗ element ) ;
108
109 /∗ Simu la tor func t ions ∗/
110 double RunTestSimulationOnStructures ( struct SIMSTRUCTURES sim , uint32_t i t e r a t i o n s ,

uint32_t preruns ) ;
111 struct SIMSTRUCTURES In i tE s t imat i onS t ru c tu r e s (ADDERTREE ∗WTree) ;
112 void dea l l o cEs t imat i onS t ruc tu r e s ( struct SIMSTRUCTURES sim ) ;
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113
114 #endif /∗ ESTIMATE_H ∗/

C-code C.1: Header file for estimator

C.1.2 estimation.c

C-code C.2: Source file for estimator
1
2 #include "modgen . h "
3 #include <a s s e r t . h>
4 #include " e s t imate . h "
5
6 /∗ The ou tpu tga te . Put t h i s as output , to i n d i c a t e t h a t t h i s i s the l a s t e lement ∗/
7 stat ic SIMGATE OutputGate ;
8 /∗ L i s t o f i n p u t g a t e s . Used to s t a r t the s imu la t ion with a s e t o f input v a l u e s ∗/
9 stat ic SIMGATE∗ InputGate = 0 ;

10
11 /∗ Print−f u n c t i o n s ∗/
12
13 void pr int_stackentry (STACKENTRY s )
14 {
15 char ∗ cons tant s [ ] = {
16 "SIMGATE_NULL" ,
17 "SIMGATE_AND" ,
18 "SIMGATE_XOR" ,
19 "SIMGATE_OR" ,
20 "SIMGATE_OUT" ,
21 "SIMGATE_IN" ,
22 "SIMGATE_PIPE" ,
23 "SIMGATE_NO"
24 } ;
25 p r i n t f ( "Gate :  0x%x  Type :  %s  Gate value :  %i   Change value :  %i   Delay :  %i " ,

( uint32_t ) s . gate ,
26 cons tant s [ s . gate−>type ] , s . gate−>value , s . value , s . de lay ) ;
27 }
28
29 /∗ Linear feedback s h i f t r e g i s t e r pseudo−random number generator ∗/
30 /∗ X i l i n x XAPP210 and XAPP052 ∗/
31 stat ic uint32_t l f s r_ s e ed = 0x01 ;
32
33 uint8_t l f s r_rand ( )
34 {
35 uint32_t b i t ;
36 b i t = ( ( l f s r_ s e ed >> 31) ^ ( l f s r_ s e ed >> 21) ^ ( l f s r_ s e ed >> 1) ^ ( l f s r_ s e ed ) ) &

1 ;
37 l f s r_ s e ed = ( l f s r_ s e ed << 1) | ( b i t ) ;
38 return b i t ;
39 }
40
41 void l f s r_ r e s e t ( )
42 {
43 l f s r_ s e ed = 0x1 ;
44 }
45
46
47 /∗ Functions f o r the hashmap ∗/
48
49 /∗ C a l c u l a t e s a hash f o r the FA ∗/
50 stat ic uint32_t gethash (SIMHASHMAP∗ hashmap , FA∗ element )
51 {
52 return ( ( ( uint32_t ) element ^ ( ( uint32_t ) element>>3) ^ ( ( uint32_t ) element<<5)) &

hashmap−>mask) ;
53 }
54
55 stat ic void i n i t ha sh (SIMHASHMAP∗ hashmap , uint32_t s i z e )
56 {
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57 double logtemp ;
58 hashmap−>s i z e = s i z e ;
59 logtemp = log ( (double ) s i z e ) / l og ( 2 . 0 ) ; /∗ l o g2 o f s i z e ∗/
60 i f ( logtemp > ( uint32_t ) logtemp )
61 hashmap−>l o g s i z e = ( uint32_t ) ( logtemp+1) ;
62 else
63 hashmap−>l o g s i z e = ( uint32_t ) logtemp ;
64 hashmap−>s i z e = 1<<hashmap−>l o g s i z e ;
65 hashmap−>mask = (hashmap−>s i z e )−1;
66 hashmap−>map = (SIMBLOCK∗∗) c a l l o c (hashmap−>s i z e , s izeof (SIMBLOCK∗) ) ;
67 a s s e r t (hashmap−>map != NULL) ;
68 }
69
70 stat ic void de l e t ehash (SIMHASHMAP∗ hashmap )
71 {
72 uint32_t i = 0 ;
73 SIMBLOCK ∗ptr ,∗ next ;
74 SIMGATE ∗gate , ∗ nextgate ;
75 for ( i = 0 ; i < hashmap−>s i z e ; i++)
76 {
77 while (hashmap−>map [ i ] != NULL)
78 {
79 ptr = hashmap−>map [ i ] ;
80 while ( ptr != 0)
81 {
82 next = ptr−>next ;
83 f r e e ( ptr−>gate s [ 0 ] ) ;
84 f r e e ( ptr ) ;
85 ptr = next ;
86 }
87 hashmap−>map [ i ] = NULL;
88 }
89 }
90
91 gate = InputGate ;
92 while ( gate != 0)
93 {
94 nextgate = gate−>next ;
95 f r e e ( gate ) ;
96 gate = nextgate ;
97 }
98 InputGate = 0 ;
99 f r e e (hashmap−>map) ;

100 }
101
102 stat ic SIMBLOCK∗ addFA(SIMHASHMAP∗ hashmap , FA ∗ element )
103 {
104 uint32_t hash ;
105 SIMBLOCK ∗hashelement , ∗ptr ;
106 hash = gethash (hashmap , element ) ;
107 i f ( hashmap == NULL)
108 {
109 return NULL;
110 }
111 hashelement = (SIMBLOCK∗) mal loc ( s izeof (SIMBLOCK) ) ;
112 a s s e r t ( hashelement != NULL) ;
113 i f ( hashelement == NULL)
114 {
115 return NULL;
116 }
117
118 hashelement−>element = element ;
119 hashelement−>next = 0 ;
120 /∗
121 hashelement−>inputA = 0;
122 hashelement−>inputB = 0;
123 hashelement−>inputC = 0;
124 hashelement−>outA = 0;
125 hashelement−>outB = 0;
126 ∗/
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127
128 i f (hashmap−>map [ hash ] == 0)
129 {
130 hashmap−>map [ hash ] = hashelement ;
131 }
132 else
133 {
134 ptr = hashmap−>map [ hash ] ;
135 while ( ptr−>next != 0) ptr = ptr−>next ;
136 ptr−>next = hashelement ;
137 }
138 return hashelement ;
139 }
140
141 SIMBLOCK∗ getFA(SIMHASHMAP∗ hashmap , FA∗ element )
142 {
143 SIMBLOCK ∗ptr ;
144 i f ( element == NULL)
145 {
146 return NULL;
147 }
148 ptr = hashmap−>map [ gethash (hashmap , element ) ] ;
149 while ( ptr != NULL)
150 {
151 i f ( ptr−>element == element )
152 return ptr ;
153 ptr = ptr−>next ;
154 }
155 return NULL;
156 }
157
158 stat ic void printhashmap (SIMHASHMAP∗ hashmap )
159 {
160 SIMBLOCK ∗ptr ;
161 int i ;
162 uint32_t counter ;
163 for ( i =0; i<hashmap−>s i z e ; i++)
164 {
165 counter = 0 ;
166 ptr = hashmap−>map [ i ] ;
167 i f ( ptr != NULL)
168 {
169 counter++;
170 ptr = ptr−>next ;
171 while ( ptr != NULL)
172 {
173 counter++;
174 ptr = ptr−>next ;
175 }
176 }
177 p r i n t f ( "Hashmap %.6 i :  %i \n" , i , counter ) ;
178 }
179 }
180
181 stat ic void printbighashmap (SIMHASHMAP∗ hashmap )
182 {
183 SIMBLOCK ∗ptr ;
184 int i ;
185 uint32_t counter ;
186 for ( i =0; i<hashmap−>s i z e ; i++)
187 {
188 counter = 0 ;
189 ptr = hashmap−>map [ i ] ;
190 i f ( ptr != NULL)
191 {
192 p r i n t f ( "Hashmap(%.4 i ) (0 ) :  %x\n" , i , (unsigned int ) ptr−>element ) ;
193 counter++;
194 ptr = ptr−>next ;
195 while ( ptr != NULL)
196 {
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197 p r i n t f ( "Hashmap(%.4 i )(% i ) :  %x\n" , i , counter , (unsigned int )
ptr−>element ) ;

198 counter++;
199 ptr = ptr−>next ;
200 }
201 }
202 }
203 }
204 /∗ Stack f u n c t i o n s ∗/
205 stat ic FASTACK∗ i n i t s t a c k ( uint32_t s i z e )
206 {
207 int i = 0 ;
208 FASTACK∗ s tack = mal loc ( s izeof (FASTACK) ) ;
209 a s s e r t ( s tack != NULL) ;
210 i f ( s tack == NULL)
211 {
212 p r i n t f ( "Out o f  memory to  make stack  f o r  s imu la t i on \n" ) ;
213 return NULL;
214 }
215 stack−>page = c a l l o c ( s i z e , s izeof (STACKPAGE) ) ;
216 a s s e r t ( stack−>page != NULL) ;
217 stack−>s i z e = s i z e ;
218 stack−>current = 0 ;
219 i f ( stack−>page == NULL)
220 {
221 p r i n t f ( "Out o f  memory to  make stack  f o r  s imu la t i on \n" ) ;
222 return NULL;
223 }
224 for ( i =0; i < s i z e ; i++)
225 {
226 stack−>page [ i ] . s tack = c a l l o c (INIT_STACK_SIZE, s izeof (STACKENTRY) ) ;
227 a s s e r t ( stack−>page [ i ] . s tack != NULL) ;
228 i f ( stack−>page [ i ] . s tack == NULL)
229 {
230 p r i n t f ( "Out o f  memory to  make stack  f o r  s imu la t i on \n" ) ;
231 }
232 stack−>page [ i ] . s i z e = INIT_STACK_SIZE ;
233 stack−>page [ i ] . cu r r ent = (INIT_STACK_SIZE−1) ;
234 stack−>page [ i ] . l a s t = 0 ;
235 }
236 return s tack ;
237 }
238
239 stat ic void de l e t e s ims ta ck (FASTACK∗ s tack )
240 {
241 int i = 0 ;
242 for ( i = 0 ; i < stack−>s i z e ; i++)
243 {
244 f r e e ( stack−>page [ i ] . s tack ) ;
245 }
246 f r e e ( stack−>page ) ;
247 f r e e ( s tack ) ;
248 s tack = NULL;
249
250 }
251
252 stat ic void pushsimstack (FASTACK∗ stack , STACKENTRY element )
253 {
254 uint32_t crnt = stack−>current+element . de lay ;
255 a s s e r t ( stack−>s i z e >= element . de lay ) ;
256 i f ( c rnt >= stack−>s i z e )
257 crnt −= stack−>s i z e ;
258 stack−>page [ c rnt ] . cu r r ent++;
259 i f ( stack−>page [ c rnt ] . cu r r ent >= stack−>page [ c rnt ] . s i z e )
260 stack−>page [ c rnt ] . cu r r ent = 0 ;
261 /∗ Create a l a r g e r s t a c k i f the s t a c k f i l l s up
262 ∗ In what order i s the s t a c k i s in i s not important . Everyth ing
263 ∗ happens at the same time anyway .
264 ∗ We j u s t doub le the stack , s ince t h a t s most e f f e c t i v e
265 ∗/
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266 i f ( stack−>page [ c rnt ] . s tack [ stack−>page [ c rnt ] . cu r r ent ] . gate != NULL)
267 {
268 #i f d e f DEBUG
269 p r i n t f ( " Expanding stack(% i )  %i−>%i \n" , crnt , stack−>page [ c rnt ] . s i z e ,

stack−>page [ c rnt ] . s i z e <<1) ;
270 #end i f
271 STACKENTRY ∗temp = c a l l o c ( stack−>page [ c rnt ] . s i z e <<1, s izeof (STACKENTRY) ) ;
272 i f ( temp == NULL)
273 {
274 p r i n t f ( " Could not c r e a t e  a l a r g e r  stack ,  s imu l t a t i on  r e s u l t  w i l l  be 

wrong\n" ) ;
275 return ;
276 }
277 memcpy( temp ,
278 &stack−>page [ c rnt ] . s tack [ stack−>page [ c rnt ] . cu r r ent ] ,
279 ( stack−>page [ c rnt ] . s i z e −

stack−>page [ c rnt ] . cu r r ent ) ∗ s izeof (STACKENTRY) ) ;
280 memcpy(&temp [ stack−>page [ c rnt ] . s i z e − stack−>page [ c rnt ] . cu r r ent ] ,
281 &stack−>page [ c rnt ] . s tack [ 0 ] ,
282 ( stack−>page [ c rnt ] . cu r r ent ) ∗ s izeof (STACKENTRY) ) ;
283 f r e e ( ( stack−>page [ c rnt ] ) . s tack ) ;
284 stack−>page [ c rnt ] . s tack = temp ;
285 stack−>page [ c rnt ] . cu r r ent = stack−>page [ c rnt ] . s i z e ;
286 stack−>page [ c rnt ] . l a s t = 0 ;
287 stack−>page [ c rnt ] . s i z e <<= 1 ; /∗ Mul t i p l y with 2 ∗/
288 }
289 stack−>page [ c rnt ] . s tack [ stack−>page [ c rnt ] . cu r r ent ] = element ;
290
291 }
292
293 stat ic STACKENTRY popsimstack (FASTACK∗ s tack )
294 {
295 uint32_t crnt = stack−>current ;
296 STACKENTRY r e t v a l ;
297 r e t v a l = stack−>page [ c rnt ] . s tack [ stack−>page [ c rnt ] . l a s t ] ;
298 i f ( r e t v a l . gate == NULL)
299 return r e t v a l ;
300 stack−>page [ c rnt ] . s tack [ stack−>page [ c rnt ] . l a s t ] . gate = NULL;
301 stack−>page [ c rnt ] . l a s t++;
302 i f ( stack−>page [ c rnt ] . l a s t >= stack−>page [ c rnt ] . s i z e )
303 {
304 stack−>page [ c rnt ] . l a s t = 0 ;
305 }
306 return r e t v a l ;
307 }
308
309 stat ic void nexts imstack (FASTACK∗ s tack )
310 {
311 stack−>current = stack−>current+1>=stack−>s i z e ?0 : stack−>current +1;
312 }
313
314 stat ic int s imstackisempty (FASTACK∗ s tack )
315 {
316 uint8_t isempty = 1 ;
317 uint32_t i ;
318 for ( i = 0 ; i < stack−>s i z e ; i++)
319 {
320 i f ( stack−>page [ i ] . s tack [ stack−>page [ i ] . l a s t ] . gate != NULL)
321 {
322 isempty = 0 ;
323 }
324 }
325 return isempty ;
326 }
327
328 stat ic int s imstack i scur rentempty (FASTACK∗ s tack )
329 {
330 uint32_t crnt = stack−>current ;
331 i f ( stack−>page [ c rnt ] . s tack [ stack−>page [ c rnt ] . l a s t ] . gate == NULL)
332 {
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333 return 1 ;
334 }
335 else
336 {
337 return 0 ;
338 }
339 }
340
341
342 /∗ U t i l i t y f u n c t i o n s ∗/
343 uint8_t FindFAInput ( const FA∗ out , const FA∗ in )
344 {
345 return 0 ;
346 }
347
348 struct SIMGATE∗ f indGateInput ( const SIMBLOCK∗ current , const SIMBLOCK∗ input )
349 {
350 return 0 ;
351 }
352
353 /∗ Simulator ∗/
354
355 struct SIMGATE∗ newInputGate ( struct SIMGATE∗ l a s t )
356 {
357 l a s t−>type = SIMGATE_IN;
358 l a s t−>input [ 0 ] = 0 ;
359 l a s t−>input [ 1 ] = 0 ;
360 l a s t−>output [ 0 ] = 0 ;
361 l a s t−>output [ 1 ] = 0 ;
362 l a s t−>next = mal loc ( s izeof (SIMGATE) ) ;
363 a s s e r t ( l a s t−>next != NULL) ;
364 l a s t−>next−>f i r s t = l a s t−>f i r s t ;
365 l a s t−>next−>next = 0 ;
366 return l a s t ;
367 }
368
369 uint32_t In i tTre e (ADDERTREE ∗WTree , FASTACK∗ stack , SIMHASHMAP∗ hashmap )
370 {
371 uint32_t Outputs = 0 ;
372 ADDERTREE ∗CurrentTree = WTree ;
373 FAGROUP ∗CurrentGroup , ∗TopGroup ;
374 FA ∗CurrentFA , ∗TopFA;
375
376 SIMBLOCK ∗ptr ;
377 SIMGATE ∗ i n p u t l i s t ;
378
379 i n p u t l i s t = mal loc ( s izeof (SIMGATE) ) ;
380 a s s e r t ( i n p u t l i s t != NULL) ;
381 i n p u t l i s t−>f i r s t = i n p u t l i s t ;
382 i n p u t l i s t−>next = 0 ;
383 InputGate = i n p u t l i s t ;
384
385 OutputGate . type = SIMGATE_OUT;
386
387 /∗ Make SIMBLOCK f o r each FA, and add FAs i n t o the hashmap ∗/
388 CurrentTree = WTree ;
389 while ( CurrentTree != NULL)
390 {
391 CurrentGroup = CurrentTree−>FaGrp ;
392 TopGroup = CurrentTree−>FaGrp ;
393 while ( CurrentGroup != NULL)
394 {
395 CurrentFA = CurrentGroup−>Grp ;
396 TopFA = CurrentGroup−>Grp ;
397 while (CurrentFA != NULL)
398 {
399 ptr = addFA(hashmap , CurrentFA ) ;
400 i f ( ptr == NULL)
401 {
402 p r i n t f ( " Error  adding FA to  HASH\n" ) ;
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403 }
404
405 i f (CurrentFA−>OutA == ExternalOutput )
406 Outputs++;
407 i f (CurrentFA−>OutB == ExternalOutput )
408 Outputs++;
409 // NEXT FA
410
411 /∗ A l l o c a t e memory f o r g a t e s ∗/
412 ptr−>gate s [ 0 ] = (SIMGATE∗) c a l l o c (5 , s izeof (SIMGATE) ) ;
413 a s s e r t ( ptr−>gate s [ 0 ] != NULL) ;
414 ptr−>gate s [0]−>value = 0 ;
415 ptr−>gate s [0]−>timestamp = 0 ;
416 uint32_t i ;
417 for ( i = 1 ; i<GATESIZE; i++)
418 {
419 ptr−>gate s [ i ] = ptr−>gate s [ 0 ] + i ;
420 ptr−>gate s [ i ]−>value = 0 ;
421 ptr−>gate s [ i ]−>timestamp = 0 ;
422 }
423
424 /∗ Define which i n t e r n a l g a t e s r epr e s en t the output o f the b l o c k ∗/
425 i f (CurrentFA−>Status & FA_ELEMENT)
426 {
427 ptr−>output [ 0 ] = ptr−>gate s [ 3 ] ;
428 ptr−>output [ 1 ] = ptr−>gate s [ 4 ] ;
429 }
430 else i f (CurrentFA−>Status & HA_ELEMENT)
431 {
432 ptr−>output [ 0 ] = ptr−>gate s [ 0 ] ;
433 ptr−>output [ 1 ] = ptr−>gate s [ 1 ] ;
434 }
435 else i f (CurrentFA−>Status & NO_ELEMENT)
436 {
437 ptr−>output [ 0 ] = ptr−>gate s [ 0 ] ;
438 i f (CurrentFA−>InB != NULL)
439 {
440 ptr−>output [ 1 ] = ptr−>gate s [ 1 ] ;
441 }
442 }
443
444 CurrentFA = CurrentFA−>Next ;
445 }
446 CurrentGroup = CurrentGroup−>Next ;
447 }
448 CurrentTree = CurrentTree−>Next ;
449 }
450
451 /∗ Populate prede f ined a c t i o n s f o r each SIMFA ∗/
452 CurrentTree = WTree ;
453 while ( CurrentTree != NULL)
454 {
455 CurrentGroup = CurrentTree−>FaGrp ;
456 TopGroup = CurrentTree−>FaGrp ;
457 while ( CurrentGroup != NULL)
458 {
459 CurrentFA = CurrentGroup−>Grp ;
460 TopFA = CurrentGroup−>Grp ;
461 while (CurrentFA != NULL)
462 {
463 ptr = getFA(hashmap , CurrentFA ) ;
464 i f ( ptr == NULL)
465 {
466 p r i n t f ( " Error  g e t t i n g  FA from HASH\n" ) ;
467 }
468
469 SIMGATE ∗ inputA , ∗ inputB , ∗ inputC ;
470
471 /∗ Find inputA ∗/
472 i f ( ptr−>element−>InA != 0 && ptr−>element−>InA−>OutA == ptr−>element )
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473 {
474 SIMBLOCK∗ in = getFA(hashmap , ptr−>element−>InA) ;
475 i f ( in != 0)
476 {
477 inputA = in−>output [ 0 ] ;
478 }
479 }
480 else i f ( ptr−>element−>InA != 0 && ptr−>element−>InA−>OutB ==

ptr−>element )
481 {
482 SIMBLOCK∗ in = getFA(hashmap , ptr−>element−>InA) ;
483 i f ( in != 0)
484 {
485 inputA = in−>output [ 1 ] ;
486 }
487 }
488 else i f ( ptr−>element−>InA == External Input )
489 {
490 /∗ Add a dummy gate , used to s e t the input va lue ∗/
491 inputA = newInputGate ( i n p u t l i s t ) ;
492 i n p u t l i s t = i n pu t l i s t−>next ;
493 }
494 else
495 {
496 inputA = 0 ;
497 }
498 /∗ Find inputB ∗/
499 i f ( ptr−>element−>InB != 0 && ptr−>element−>InB−>OutA == ptr−>element )
500 {
501 SIMBLOCK∗ in = getFA(hashmap , ptr−>element−>InB) ;
502 i f ( in != 0)
503 {
504 inputB = in−>output [ 0 ] ;
505 }
506 }
507 else i f ( ptr−>element−>InB != 0 && ptr−>element−>InB−>OutB ==

ptr−>element )
508 {
509 SIMBLOCK∗ in = getFA(hashmap , ptr−>element−>InB) ;
510 i f ( in != 0)
511 {
512 inputB = in−>output [ 1 ] ;
513 }
514 }
515 else i f ( ptr−>element−>InB == External Input )
516 {
517 /∗ Add a dummy gate , used to s e t the input va lue ∗/
518 inputB = newInputGate ( i n p u t l i s t ) ;
519 i n p u t l i s t = i n pu t l i s t−>next ;
520 }
521 else
522 {
523 inputB = 0 ;
524 }
525 /∗ Find inputC ∗/
526 i f ( ptr−>element−>InC != 0 && ptr−>element−>InC−>OutA == ptr−>element )
527 {
528 SIMBLOCK∗ in = getFA(hashmap , ptr−>element−>InC) ;
529 a s s e r t ( in != 0) ;
530 i f ( in != 0)
531 {
532 a s s e r t ( in−>output [ 0 ] != 0) ;
533 inputC = in−>output [ 0 ] ;
534 }
535 }
536 else i f ( ptr−>element−>InC != 0 && ptr−>element−>InC−>OutB ==

ptr−>element )
537 {
538 SIMBLOCK∗ in = getFA(hashmap , ptr−>element−>InC) ;
539 a s s e r t ( in != 0) ;
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540 i f ( in != 0)
541 {
542 a s s e r t ( in−>output [ 1 ] != 0) ;
543 inputC = in−>output [ 1 ] ;
544 }
545 }
546 else i f ( ptr−>element−>InC == External Input )
547 {
548 /∗ Add a dummy gate , used to s e t the input va lue ∗/
549 inputC = newInputGate ( i n p u t l i s t ) ;
550 i n p u t l i s t = i n pu t l i s t−>next ;
551 }
552 else
553 {
554 inputC = 0 ;
555 }
556
557 /∗ Add inpu t s to b l o c k ∗/
558 ptr−>input [ 0 ] = inputA ;
559 ptr−>input [ 1 ] = inputB ;
560 ptr−>input [ 2 ] = inputC ;
561 i f ( ptr−>element−>Status & FA_ELEMENT)
562 {
563 a s s e r t ( ptr−>input [ 2 ] != NULL) ;
564 }
565
566
567
568 i f ( ptr−>element−>Status & FA_ELEMENT)
569 {
570 /∗ Reverse connect ion ∗/
571 i f ( inputA != 0)
572 {
573 inputA−>output [ 0 ] = ptr−>gate s [ 0 ] ; /∗ Connected to X ∗/
574 inputA−>output [ 1 ] = ptr−>gate s [ 2 ] ; /∗ Connected to Z ∗/
575 }
576 i f ( inputB != 0)
577 {
578 inputB−>output [ 0 ] = ptr−>gate s [ 0 ] ; /∗ Connected to X ∗/
579 inputB−>output [ 1 ] = ptr−>gate s [ 2 ] ; /∗ Connected to Z ∗/
580 }
581 i f ( inputC !=0)
582 {
583 inputC−>output [ 0 ] = ptr−>gate s [ 1 ] ; /∗ Connected to Y ∗/
584 inputC−>output [ 1 ] = ptr−>gate s [ 3 ] ; /∗ Connected to S ∗/
585 }
586
587 /∗ XOR−gate − Output X ∗/
588 ptr−>gate s [0]−> input [ 0 ] = inputA ; /∗ input A ∗/
589 ptr−>gate s [0]−> input [ 1 ] = inputB ; /∗ input B ∗/
590 ptr−>gate s [0]−>output [ 0 ] = ptr−>gate s [ 1 ] ; /∗ Connected to ∗/
591 ptr−>gate s [0]−>output [ 1 ] = ptr−>gate s [ 3 ] ; /∗ Connected to ∗/
592 ptr−>gate s [0]−>parent = ptr ;
593 ptr−>gate s [0]−>delay = 200 ;
594 ptr−>gate s [0]−>type = SIMGATE_XOR;
595 /∗ AND−gate − Output Y ∗/
596 ptr−>gate s [1]−> input [ 0 ] = inputC ; /∗ input C ∗/
597 ptr−>gate s [1]−> input [ 1 ] = ptr−>gate s [ 0 ] ; /∗ l i n e X ∗/
598 ptr−>gate s [1]−>output [ 0 ] = ptr−>gate s [ 4 ] ; /∗ Connected to ∗/
599 ptr−>gate s [1]−>output [ 1 ] = 0 ; /∗ Connected to ∗/
600 ptr−>gate s [1]−>parent = ptr ;
601 ptr−>gate s [1]−>delay = 46 ;
602 ptr−>gate s [1]−>type = SIMGATE_AND;
603 /∗ AND−gate − Output Z ∗/
604 ptr−>gate s [2]−> input [ 0 ] = inputA ; /∗ input A ∗/
605 ptr−>gate s [2]−> input [ 1 ] = inputB ; /∗ input B ∗/
606 ptr−>gate s [2]−>output [ 0 ] = ptr−>gate s [ 4 ] ; /∗ Connected to ∗/
607 ptr−>gate s [2]−>output [ 1 ] = 0 ; /∗ Connected to ∗/
608 ptr−>gate s [2]−>parent = ptr ;
609 ptr−>gate s [2]−>delay = 294 ;
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610 ptr−>gate s [2]−>type = SIMGATE_AND;
611 /∗ XOR−ga te − Output S ∗/
612 ptr−>gate s [3]−> input [ 0 ] = ptr−>gate s [ 0 ] ; /∗ l i n e X ∗/
613 ptr−>gate s [3]−> input [ 1 ] = inputC ; /∗ input C ∗/
614 ptr−>gate s [3]−>output [ 0 ] = 0 ; /∗ Connected to output ∗/
615 ptr−>gate s [3]−>output [ 1 ] = 0 ; /∗ Connected to output ∗/
616 ptr−>gate s [3]−>parent = ptr ;
617 ptr−>gate s [3]−>delay = 443 ;
618 ptr−>gate s [3]−>type = SIMGATE_AND;
619 // ptr−>output [ 0 ] = ptr−>g a t e s [ 3 ] ;
620 /∗ OR−ga te − Output C ∗/
621 ptr−>gate s [4]−> input [ 0 ] = ptr−>gate s [ 1 ] ; /∗ l i n e Y ∗/
622 ptr−>gate s [4]−> input [ 1 ] = ptr−>gate s [ 2 ] ; /∗ l i n e Z ∗/
623 ptr−>gate s [4]−>output [ 0 ] = 0 ; /∗ Connected to output ∗/
624 ptr−>gate s [4]−>output [ 1 ] = 0 ; /∗ Connected to output ∗/
625 ptr−>gate s [4]−>parent = ptr ;
626 ptr−>gate s [4]−>delay = 200 ;
627 ptr−>gate s [4]−>type = SIMGATE_OR;
628 // ptr−>output [ 1 ] = ptr−>g a t e s [ 4 ] ;
629
630 }
631 else i f ( ptr−>element−>Status & HA_ELEMENT)
632 {
633 /∗ Reverse connect ion ∗/
634 i f ( inputA != 0)
635 {
636 inputA−>output [ 0 ] = ptr−>gate s [ 0 ] ; /∗ Connected to S ∗/
637 inputA−>output [ 1 ] = ptr−>gate s [ 1 ] ; /∗ Connected to C ∗/
638 }
639 i f ( inputB != 0)
640 {
641 inputB−>output [ 0 ] = ptr−>gate s [ 0 ] ; /∗ Connected to S ∗/
642 inputB−>output [ 1 ] = ptr−>gate s [ 1 ] ; /∗ Connected to C ∗/
643 }
644 /∗ XOR−ga te − Output S ∗/
645 ptr−>gate s [0]−> input [ 0 ] = inputA ;
646 ptr−>gate s [0]−> input [ 1 ] = inputB ;
647 ptr−>gate s [0]−>parent = ptr ;
648 ptr−>gate s [0]−>delay = 413 ;
649 ptr−>gate s [0]−>type = SIMGATE_XOR;
650 // ptr−>output [ 0 ] = ptr−>g a t e s [ 0 ] ;
651 /∗ AND−ga te − Output C ∗/
652 ptr−>gate s [1]−> input [ 0 ] = inputA ;
653 ptr−>gate s [1]−> input [ 1 ] = inputB ;
654 ptr−>gate s [1]−>parent = ptr ;
655 ptr−>gate s [1]−>delay = 508 ;
656 ptr−>gate s [1]−>type = SIMGATE_AND;
657 // ptr−>output [ 1 ] = ptr−>g a t e s [ 1 ] ;
658 }
659 else i f ( ptr−>element−>Status & NO_ELEMENT)
660 {
661 /∗ Feed−through − Port A ∗/
662 i f ( inputA != 0)
663 {
664 ptr−>gate s [0]−> input [ 0 ] = inputA ;
665 ptr−>gate s [0]−>parent = ptr ;
666 ptr−>gate s [0]−>delay = 150 ;
667 ptr−>gate s [0]−>type = SIMGATE_NO;
668 // ptr−>output [ 0 ] = ptr−>g a t e s [ 0 ] ;
669 }
670 /∗ Feed−through − Port B ∗/
671 i f ( inputB != 0)
672 {
673 ptr−>gate s [1]−> input [ 0 ] = inputA ;
674 ptr−>gate s [1]−>parent = ptr ;
675 ptr−>gate s [1]−>delay = 150 ;
676 ptr−>gate s [1]−>type = SIMGATE_NO;
677 // ptr−>output [ 1 ] = ptr−>g a t e s [ 1 ] ;
678 }
679 }
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680 /∗ Check i f we have reached the end o f the chain ∗/
681 i f ( ptr−>element−>OutA == ExternalOutput )
682 {
683 ptr−>output [0]−>output [ 0 ] = &OutputGate ;
684 }
685 i f ( ptr−>element−>OutB == ExternalOutput )
686 {
687 ptr−>output [1]−>output [ 0 ] = &OutputGate ;
688 }
689 CurrentFA = CurrentFA−>Next ;
690 }
691 CurrentGroup = CurrentGroup−>Next ;
692 }
693 CurrentTree = CurrentTree−>Next ;
694 }
695
696
697 // printb ighashmap () ;
698 return Outputs ;
699 }
700
701 stat ic void SetInputs (ADDERTREE∗ WTree , FASTACK∗ stack , SIMHASHMAP∗ hashmap )
702 {
703 ADDERTREE ∗CurrentTree = WTree ;
704 FAGROUP ∗CurrentGroup , ∗TopGroup ;
705 FA ∗CurrentFA , ∗TopFA;
706
707 // SIMFA ∗ p t r ;
708 STACKENTRY entry ;
709 entry . de lay = 0 ;
710
711 CurrentTree = WTree ;
712 while ( CurrentTree != NULL)
713 {
714 CurrentGroup = CurrentTree−>FaGrp ;
715 TopGroup = CurrentTree−>FaGrp ;
716 while ( CurrentGroup != NULL)
717 {
718 CurrentFA = CurrentGroup−>Grp ;
719 TopFA = CurrentGroup−>Grp ;
720 while (CurrentFA != NULL)
721 {
722 SIMBLOCK ∗block = getFA(hashmap , CurrentFA ) ;
723 /∗ Add i n p u t v e c t o r s to the s t a c k ∗/
724 i f (CurrentFA−>InA == External Input )
725 {
726 entry . gate = block−>input [ 0 ] ;
727 entry . va lue = l f s r_rand ( ) ;
728 block−>input [0]−>value = entry . va lue ;
729 pushsimstack ( stack , entry ) ;
730 }
731 i f (CurrentFA−>InB == External Input )
732 {
733 entry . gate = block−>input [ 1 ] ;
734 entry . va lue = l f s r_rand ( ) ;
735 block−>input [1]−>value = entry . va lue ;
736 pushsimstack ( stack , entry ) ;
737 }
738 i f (CurrentFA−>InC == External Input )
739 {
740 entry . gate = block−>input [ 2 ] ;
741 entry . va lue = l f s r_rand ( ) ;
742 block−>input [2]−>value = entry . va lue ;
743 pushsimstack ( stack , entry ) ;
744 }
745
746 // NEXT FA
747 CurrentFA = CurrentFA−>Next ;
748 }
749 CurrentGroup = CurrentGroup−>Next ;
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750 }
751 CurrentTree = CurrentTree−>Next ;
752 }
753 }
754
755 struct SIMSTRUCTURES In i tE s t imat i onS t ru c tu r e s (ADDERTREE ∗WTree)
756 {
757 struct SIMSTRUCTURES r e t v a l ;
758 ADDERTREE ∗CurrentTree = WTree ;
759 FAGROUP ∗CurrentGroup , ∗TopGroup ;
760 FA ∗CurrentFA , ∗TopFA;
761
762 /∗ Make sure the a c t i v i t y s t a r t s at 0 ∗/
763 r e t v a l . a c t i v i t y = 0 ;
764
765 /∗ Count the number o f FA/HA/NO−e lements ∗/
766 r e t v a l . count = 0 ;
767 r e t v a l . maxdepths = 0 ;
768 while ( CurrentTree != NULL)
769 {
770 i f ( CurrentTree−>Depth > r e t v a l . maxdepths )
771 {
772 r e t v a l . maxdepths = CurrentTree−>Depth ;
773 }
774 CurrentGroup = CurrentTree−>FaGrp ;
775 TopGroup = CurrentTree−>FaGrp ;
776 while ( CurrentGroup != NULL)
777 {
778 CurrentFA = CurrentGroup−>Grp ;
779 TopFA = CurrentGroup−>Grp ;
780 while (CurrentFA != NULL)
781 {
782 r e t v a l . count++;
783 // NEXT FA
784 CurrentFA = CurrentFA−>Next ;
785 }
786 CurrentGroup = CurrentGroup−>Next ;
787 }
788 CurrentTree = CurrentTree−>Next ;
789 }
790
791 /∗ I n i t the h a s h t a b l e ∗/
792 i n i t ha sh (&( r e t v a l . hashmap ) , r e t v a l . count ) ;
793 /∗ I n i t the d i f f e r e n t event−s t a c k s ∗/
794 // s t a c k = i n i t s t a c k (FA_DELAY>HA_DELAY?FA_DELAY+1:HA_DELAY+1) ;
795 r e t v a l . s tack = i n i t s t a c k (DELAY_MAX+1) ;
796 r e t v a l . outs tack = i n i t s t a c k ( (LINE_DELAY∗2)+1) ;
797 /∗ F i l l the h a s h t a b l e ∗/
798 r e t v a l . outputs = In i tTree (WTree , r e t v a l . stack , &( r e t v a l . hashmap ) ) ;
799 /∗ Remember what adder t ree t h e s e s t a c k s and hashmaps be longs to ∗/
800 r e t v a l . t r e e = WTree ;
801
802 return r e t v a l ;
803 }
804
805 void dea l l o cEs t imat i onS t ruc tu r e s ( struct SIMSTRUCTURES sim )
806 {
807 de l e t e s ims ta ck ( sim . s tack ) ;
808 de l e t e s ims ta ck ( sim . outs tack ) ;
809 de l e t ehash (&( sim . hashmap ) ) ;
810 }
811
812 double RunTestSimulationOnTree (ADDERTREE ∗WTree , uint32_t i t e r a t i o n s , uint32_t

preruns )
813 {
814 double r e t v a l ;
815 struct SIMSTRUCTURES sim = In i tE s t imat i onS t ru c tu r e s (WTree) ;
816 r e t v a l = RunTestSimulationOnStructures ( sim , i t e r a t i o n s , preruns ) ;
817 dea l l o cEs t imat i onS t ruc tu r e s ( sim ) ;
818
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819 return r e t v a l ;
820 }
821
822 double RunTestSimulationOnStructures ( struct SIMSTRUCTURES sim , uint32_t i t e r a t i o n s ,

uint32_t preruns )
823 {
824 int i = 0 ;
825 double es t imate = 0 . 0 ;
826 uint32_t zerotoone = 0 , onetozero = 0 ;
827 uint32_t timestamp = 0 ;
828
829 SIMGATE ∗ptr ;
830 STACKENTRY entry , nextentry ;
831 nextentry . va lue = 0 ;
832 nextentry . gate = 0 ;
833
834 struct t imeva l s ta r t t ime , stopt ime ;
835
836 gett imeofday(&star t t ime , NULL) ;
837
838 /∗ Reset the pseudo−random number generator ∗/
839 l f s r_ r e s e t ( ) ;
840
841 /∗ S t a r t s imu la t ion ∗/
842 for ( i = 0 ; i < ( i t e r a t i o n s+preruns ) ; i++)
843 {
844 /∗ F i l l the t r e e with input ∗/
845 SetInputs ( sim . t ree , sim . stack , &(sim . hashmap ) ) ;
846 /∗ Run u n t i l a l l s t a c k s are empty ∗/
847 while ( ! s imstackisempty ( sim . s tack ) | | ! s imstackisempty ( sim . outs tack ) )
848 {
849 /∗ Run u n t i l t h i s s p e s i f i c time i s done ∗/
850 while ( ! s imstack i scurrentempty ( sim . s tack ) | |

! s imstack i scur rentempty ( sim . outs tack ) )
851 {
852 entry = popsimstack ( sim . s tack ) ;
853 /∗ Change va lue o f l i n e s ∗/
854 while ( entry . gate != NULL)
855 {
856 ptr = entry . gate ;
857 i f ( ptr−>value != entry . va lue | | ptr−>type == SIMGATE_IN)
858 {
859 /∗ Monte Carlo − Do not count a c t i v i t y during prerun−per iod ∗/
860 i f ( i >= preruns )
861 {
862 i f ( ptr−>value == 0 && entry . va lue == 1)
863 {
864 ptr−>a c t i v i t y++;
865 zerotoone++;
866 }
867 i f ( ptr−>value == 1 && entry . va lue == 0)
868 {
869 onetozero++;
870 }
871 }
872
873 ptr−>value = entry . va lue ;
874 /∗ Ca lcu la t e l i n e de lay ∗/
875 i f ( ptr−>output [ 0 ] != 0 && ptr−>output [ 1 ] != 0)
876 {
877 nextentry . de lay = 2 ∗ LINE_DELAY;
878 }
879 else
880 {
881 nextentry . de lay = LINE_DELAY;
882 }
883 i f ( ptr−>type == SIMGATE_NO)
884 {
885 nextentry . de lay = ptr−>delay ;
886 }
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887 /∗ Send va lue to next ga te ∗/
888 i f ( ptr−>output [ 0 ] != 0)
889 {
890 nextentry . gate = ptr−>output [ 0 ] ;
891 pushsimstack ( sim . outstack , nextentry ) ;
892 }
893 i f ( ptr−>output [ 1 ] != 0)
894 {
895 nextentry . gate = ptr−>output [ 1 ] ;
896 pushsimstack ( sim . outstack , nextentry ) ;
897 }
898 }
899 /∗ Input c a l c u l a t i o n ∗/
900 entry = popsimstack ( sim . s tack ) ;
901 }
902
903 /∗ Change timestamp ∗/
904 timestamp++;
905 entry = popsimstack ( sim . outs tack ) ;
906 while ( entry . gate != NULL)
907 {
908 ptr = entry . gate ;
909 nextentry . gate = entry . gate ;
910 /∗ Output c a l c u l a t i o n ∗/
911 switch ( ptr−>type ) {
912 case SIMGATE_AND:
913 nextentry . va lue = ptr−>input [0]−>value &

ptr−>input [1]−>value ;
914 nextentry . de lay = ptr−>delay ;
915 break ;
916 case SIMGATE_XOR:
917 nextentry . va lue = ptr−>input [0]−>value ^

ptr−>input [1]−>value ;
918 nextentry . de lay = ptr−>delay ;
919 break ;
920 case SIMGATE_OR:
921 nextentry . va lue = ptr−>input [0]−>value |

ptr−>input [1]−>value ;
922 nextentry . de lay = ptr−>delay ;
923 break ;
924 case SIMGATE_NO:
925 i f ( ptr−>input [ 1 ] != 0)
926 {
927 nextentry . va lue = ptr−>input [1]−>value ;
928 nextentry . de lay = ptr−>delay ;
929 pushsimstack ( sim . stack , nextentry ) ;
930 }
931 nextentry . va lue = ptr−>input [0]−>value ;
932 nextentry . de lay = ptr−>delay ;
933 break ;
934 default :
935 break ;
936 }
937 i f ( entry . gate−>type != SIMGATE_OUT)
938 {
939 pushsimstack ( sim . stack , nextentry ) ;
940 }
941 /∗ NEXT ∗/
942 entry = popsimstack ( sim . outs tack ) ;
943 }
944 }
945 /∗ Next c y c l e ∗/
946 nexts imstack ( sim . s tack ) ;
947 nexts imstack ( sim . outs tack ) ;
948 }
949 } /∗ End f o r loop ∗/
950
951 gett imeofday(&stoptime , NULL) ;
952 s t a r t t ime . tv_sec = stopt ime . tv_sec − s t a r t t ime . tv_sec ;
953 s t a r t t ime . tv_usec = stopt ime . tv_usec − s t a r t t ime . tv_usec ;
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954 i f ( s t a r t t ime . tv_usec < 0)
955 {
956 s t a r t t ime . tv_sec−−;
957 s t a r t t ime . tv_usec += 1000000;
958 }
959
960 es t imate = zerotoone ;
961
962 p r i n t f ( "     Powerestimate :  %f     0−>1: %i    1−>0: %i  (Used %i ,%.6 i  sec ) \n" ,

est imate , zerotoone , onetozero ,
963 s t a r t t ime . tv_sec , s t a r t t ime . tv_usec ) ;
964 // p r i n t f ( " Outputs : %i MaxDepth : %i \n " , Outputs , MaxDepth) ;
965
966 return es t imate ;
967 }

C-code C.2: Source file for estimator

C.2 Optimaliztion

C.2.1 optimize.c

C-code C.3: Source file for optimalization routine
1
2 #include "modgen . h "
3 #include " e s t imate . h "
4 #include <a s s e r t . h>
5
6 enum faport_t
7 {
8 FAOUTPUT_OUTS, FAOUTPUT_OUTC, FAINPUT_INA, FAINPUT_INB, FAINPUT_INC
9 } ;

10
11 struct FALISTELEMENT
12 {
13 FA ∗ element ;
14 enum faport_t outputport ;
15 struct FALISTELEMENT ∗next ;
16 uint32_t p r i o r i t y ;
17 } ;
18
19 struct FALIST
20 {
21 struct FALISTELEMENT ∗∗∗ inputs ;
22 struct FALISTELEMENT ∗∗∗ outputs ;
23 uint32_t s t ag e s ;
24 uint32_t columns ;
25 uint32_t ∗ s t a r t l e v e l ;
26 } ;
27
28 void i n i tFALi s t ( struct FALIST ∗ l i s t , struct ADDERTREE ∗WTree)
29 {
30 ADDERTREE ∗CurrentTree = WTree ;
31 FAGROUP ∗CurrentGroup , ∗TopGroup ;
32 FA ∗CurrentFA , ∗TopFA;
33 uint32_t i ;
34 uint32_t s tage = 0 , columns = 0 ;
35 stat ic const uint32_t extra_stages = 2 ;
36
37 /∗ Ca lcu la t e s i z e o f the m u l t i p l i c a t o r ∗/
38 CurrentTree = WTree ;
39 while ( CurrentTree != NULL)
40 {
41 CurrentGroup = CurrentTree−>FaGrp ;
42 TopGroup = CurrentTree−>FaGrp ;
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43 columns++;
44 s tage = 0 ;
45 while ( CurrentGroup != NULL)
46 {
47 CurrentFA = CurrentGroup−>Grp ;
48 TopFA = CurrentGroup−>Grp ;
49 s tage++;
50 while (CurrentFA != NULL)
51 {
52 CurrentFA = CurrentFA−>Next ;
53 }
54 CurrentGroup = CurrentGroup−>Next ;
55 }
56 i f ( s tage+extra_stages > l i s t −>stage s )
57 {
58 l i s t −>stage s = stage+extra_stages ;
59 }
60 i f ( CurrentTree−>Star tLeve l+stage+extra_stages > l i s t −>stage s )
61 {
62 l i s t −>stage s = CurrentTree−>Star tLeve l+stage+extra_stages ;
63 }
64 CurrentTree = CurrentTree−>Next ;
65 }
66
67 l i s t −>columns = columns+1;
68
69 l i s t −>inputs = c a l l o c ( l i s t −>stages , s izeof ( struct FALISTELEMENT∗∗) ) ;
70 l i s t −>outputs = c a l l o c ( l i s t −>stages , s izeof ( struct FALISTELEMENT∗∗) ) ;
71 a s s e r t ( l i s t −>inputs != NULL) ;
72
73 /∗ Ca lcu la t e s t a r t i n g s t a g e s ∗/
74 l i s t −>s t a r t l e v e l = c a l l o c ( l i s t −>columns , s izeof ( uint32_t ) ) ;
75 CurrentTree = WTree ;
76 columns = 0 ;
77 while ( CurrentTree != NULL)
78 {
79 l i s t −>s t a r t l e v e l [ columns ] = CurrentTree−>Star tLeve l ;
80 columns++;
81 CurrentTree = CurrentTree−>Next ;
82 }
83
84 for ( i = 0 ; i < l i s t −>stage s ; i++)
85 {
86 l i s t −>inputs [ i ] = c a l l o c ( l i s t −>columns , s izeof ( struct FALISTELEMENT∗) ) ;
87 a s s e r t ( l i s t −>inputs [ i ] != NULL) ;
88 l i s t −>outputs [ i ] = c a l l o c ( l i s t −>columns , s izeof ( struct FALISTELEMENT∗) ) ;
89 a s s e r t ( l i s t −>outputs [ i ] != NULL) ;
90 }
91 }
92
93 void destroyFAList ( struct FALIST ∗ l i s t )
94 {
95 uint32_t i , j ;
96 struct FALISTELEMENT ∗ entry , ∗ nextentry ;
97
98 for ( i = 0 ; i < l i s t −>stage s ; i++)
99 {

100 for ( j = 0 ; j < l i s t −>columns ; j++)
101 {
102 entry = l i s t −>inputs [ i ] [ j ] ;
103 while ( entry != NULL)
104 {
105 nextentry = entry−>next ;
106 f r e e ( entry ) ;
107 entry = nextentry ;
108 }
109
110 entry = l i s t −>outputs [ i ] [ j ] ;
111 while ( entry != NULL)
112 {
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113 nextentry = entry−>next ;
114 f r e e ( entry ) ;
115 entry = nextentry ;
116 }
117 }
118 f r e e ( l i s t −>inputs [ i ] ) ;
119 f r e e ( l i s t −>outputs [ i ] ) ;
120 }
121
122 f r e e ( l i s t −>inputs ) ;
123 f r e e ( l i s t −>outputs ) ;
124 }
125
126 void s e tFAL i s tP r i o r i t i e s ( struct FALIST∗ l i s t , struct SIMSTRUCTURES sim )
127 {
128 uint32_t stage , column ;
129 struct FALISTELEMENT ∗ entry ;
130 struct SIMBLOCK∗ block ;
131
132 for ( s tage = 0 ; s tage < l i s t −>stage s ; s tage++)
133 {
134 for ( column = 0 ; column < l i s t −>columns ; column++)
135 {
136 /∗ Set a c t i v i t y on o u t p u t p o r t s ∗/
137 entry = l i s t −>outputs [ s tage ] [ column ] ;
138 while ( entry != NULL)
139 {
140 block = getFA(&(sim . hashmap ) , entry−>element ) ;
141 i f ( entry−>outputport == FAOUTPUT_OUTS)
142 {
143 /∗ Get a c t i v i t y from SUM−output , and use i t to during the s o r t ∗/
144 entry−>p r i o r i t y = block−>output [0]−> a c t i v i t y ;
145 }
146 i f ( entry−>outputport == FAOUTPUT_OUTC)
147 {
148 /∗ Get a c t i v i t y from CARRY−output , and use i t during the s o r t ∗/
149 entry−>p r i o r i t y = block−>output [1]−> a c t i v i t y ;
150 }
151
152 entry = entry−>next ;
153 }
154 }
155 }
156 }
157
158 /∗ Inser t ion−s o r t o f FAListElements ∗/
159 struct FALISTELEMENT∗ sortFAListElement ( struct FALISTELEMENT∗ f i r s t )
160 {
161 struct FALISTELEMENT ∗ entry , ∗ so r t ent ry , ∗ l a s t s o r t e n t r y , ∗ nextentry ;
162 i f ( f i r s t == NULL)
163 {
164 return f i r s t ;
165 }
166 entry = f i r s t ;
167 nextentry = f i r s t −>next ;
168 f i r s t −>next = NULL;
169 while ( nextentry != NULL)
170 {
171 /∗ Get next element in the l i s t ∗/
172 entry = nextentry ;
173 nextentry = entry−>next ;
174 entry−>next = NULL;
175 s o r t en t ry = f i r s t ;
176 l a s t s o r t e n t r y = NULL;
177 /∗ Find placement ∗/
178 while ( s o r t en t r y != NULL && entry−>p r i o r i t y < sor tent ry−>p r i o r i t y )
179 {
180 l a s t s o r t e n t r y = so r t en t r y ;
181 s o r t en t ry = sor t ent ry−>next ;
182 }
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183 /∗ I n s e r t ∗/
184 /∗ I f l a s t e lement in the l i s t ∗/
185 i f ( s o r t en t r y == NULL)
186 {
187 l a s t s o r t e n t r y−>next = entry ;
188 }
189 /∗ I f f i r s t e lement in the l i s t ∗/
190 else i f ( s o r t en t r y == f i r s t )
191 {
192 entry−>next = so r t en t r y ;
193 f i r s t = entry ;
194 }
195 /∗ I f middle element ∗/
196 else
197 {
198 entry−>next = so r t en t r y ;
199 l a s t s o r t e n t r y−>next = entry ;
200 }
201 }
202 return f i r s t ;
203 }
204
205 void sortFAList ( struct FALIST∗ l i s t , struct SIMSTRUCTURES sim )
206 {
207 uint32_t stage , column ;
208 // s t r u c t FALISTELEMENT ∗ entry , ∗ nex ten t ry ;
209
210 s e tFAL i s tP r i o r i t i e s ( l i s t , sim ) ;
211
212 for ( s tage = 0 ; s tage < l i s t −>stage s ; s tage++)
213 {
214 for ( column = 0 ; column < l i s t −>columns ; column++)
215 {
216 /∗ Sort inpu t s ∗/
217 l i s t −>inputs [ s tage ] [ column ] =

sortFAListElement ( l i s t −>inputs [ s tage ] [ column ] ) ;
218
219 /∗ Sort outputs ∗/
220 l i s t −>outputs [ s tage ] [ column ] =

sortFAListElement ( l i s t −>outputs [ s tage ] [ column ] ) ;
221 }
222 }
223 }
224
225 void rearrangeFAList ( struct FALIST∗ l i s t )
226 {
227 uint32_t stage , column ;
228 struct FALISTELEMENT ∗ input , ∗output , ∗ i t e r a t o r ;
229 uint32_t ex t e rna l = 0 ;
230
231 for ( s tage = 0 ; s tage < l i s t −>stage s ; s tage++)
232 {
233 for ( column = 0 ; column < l i s t −>columns ; column++)
234 {
235 input = l i s t −>inputs [ s tage ] [ column ] ;
236 output = l i s t −>outputs [ s tage ] [ column ] ;
237 while ( input != NULL)
238 {
239 ex t e rna l = 0 ;
240
241 /∗ Connect outpute lement to input ∗/
242 i f ( input−>outputport == FAINPUT_INA)
243 {
244 i f ( input−>element−>InA == External Input )
245 {
246 ex t e rna l = 1 ;
247 }
248 else
249 {
250 input−>element−>InA = output−>element ;
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251 }
252 }
253 else i f ( input−>outputport == FAINPUT_INB)
254 {
255 i f ( input−>element−>InB == External Input )
256 {
257 ex t e rna l = 1 ;
258 }
259 else
260 {
261 input−>element−>InB = output−>element ;
262 }
263 }
264 else i f ( input−>outputport == FAINPUT_INC)
265 {
266 i f ( input−>element−>InC == External Input )
267 {
268 ex t e rna l = 1 ;
269 }
270 else
271 {
272 input−>element−>InC = output−>element ;
273 }
274 }
275 else
276 {
277 a s s e r t (0 ) ; /∗ This shou ld not happen ∗/
278 }
279
280 /∗ Connect inpute lement to output ∗/
281 i f ( ex t e rna l != 1)
282 {
283 a s s e r t ( output != NULL) ;
284 i f ( output−>outputport == FAOUTPUT_OUTS)
285 {
286 output−>element−>OutA = input−>element ;
287 }
288 else i f ( output−>outputport == FAOUTPUT_OUTC)
289 {
290 output−>element−>OutB = input−>element ;
291 }
292 else
293 {
294 a s s e r t (0 ) ; /∗ This shou ld not happen ∗/
295 }
296 output = output−>next ;
297 }
298
299 input = input−>next ;
300 }
301 /∗ Move outputs to the next s tage , i f they havent been connected ye t ∗/
302 i f ( output != NULL)
303 {
304 i t e r a t o r = l i s t −>outputs [ s tage ] [ column ] ;
305 /∗ I s t h i s the f i r s t in the l i s t ? ∗/
306 i f ( output == i t e r a t o r )
307 {
308 l i s t −>outputs [ s tage ] [ column ] = 0x0 ;
309 }
310 else
311 {
312 while ( i t e r a t o r−>next != output )
313 {
314 i t e r a t o r = i t e r a t o r−>next ;
315 a s s e r t ( i t e r a t o r == NULL) ;
316 }
317 /∗ We have found the l a s t e lement t h a t was connect ∗/
318 i t e r a t o r−>next = NULL;
319 }
320
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321 /∗ Lets shor ten t h i s t h i s l i s t , and append the unconnected ones on the
next s t a g e ∗/

322 i t e r a t o r = l i s t −>outputs [ s tage +1] [ column ] ;
323 i f ( i t e r a t o r == NULL)
324 {
325 l i s t −>outputs [ s tage +1] [ column ] = output ;
326 }
327 else
328 {
329 while ( i t e r a t o r−>next != NULL)
330 {
331 i t e r a t o r = i t e r a t o r−>next ;
332 }
333 i t e r a t o r−>next = output ;
334 l i s t −>outputs [ s tage +1] [ column ] =

sortFAListElement ( l i s t −>outputs [ s tage +1] [ column ] ) ;
335 }
336 }
337 }
338 }
339 }
340
341
342 struct FALISTELEMENT∗ addPort ( struct FALIST ∗ l i s t , uint32_t stage , uint32_t column ,

FA∗ element , enum faport_t port )
343 {
344 /∗ Do not change the f i n i s h e d outputs o f the m u l t i p l i c a t i o n ∗/
345 i f ( port == FAOUTPUT_OUTS && element−>OutA == ExternalOutput )
346 {
347 return NULL;
348 }
349 else i f ( port == FAOUTPUT_OUTC && element−>OutB == ExternalOutput )
350 {
351 return NULL;
352 }
353
354
355 struct FALISTELEMENT ∗ entry ;
356 struct FALISTELEMENT ∗new_entry = mal loc ( s izeof ( struct FALISTELEMENT) ) ;
357 new_entry−>outputport = port ;
358 new_entry−>element = element ;
359 new_entry−>next = NULL;
360
361 /∗ Check i f t h i s s t a g e i s an too e a r l y s t a g e ∗/
362 i f ( s tage < l i s t −>s t a r t l e v e l [ column ] )
363 {
364 s tage = l i s t −>s t a r t l e v e l [ column ] ;
365 }
366
367 i f ( port == FAOUTPUT_OUTC)
368 {
369 a s s e r t ( element−>OutB != 0x0 ) ;
370 }
371
372 i f ( port == FAOUTPUT_OUTS | | port == FAOUTPUT_OUTC)
373 {
374 entry = l i s t −>outputs [ s tage ] [ column ] ;
375 i f ( entry == NULL)
376 {
377 l i s t −>outputs [ s tage ] [ column ] = new_entry ;
378 }
379 else
380 {
381 while ( entry−>next != NULL)
382 {
383 entry = entry−>next ;
384 }
385 entry−>next = new_entry ;
386 }
387 }
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388 else i f ( port == FAINPUT_INA | | port == FAINPUT_INB | | port == FAINPUT_INC)
389 {
390 /∗ C l a s s i f y input por t ∗/
391 i f ( new_entry−>element−>Status & FA_ELEMENT)
392 {
393 i f ( port == FAINPUT_INC)
394 {
395 new_entry−>p r i o r i t y = 1 ;
396 }
397 else
398 {
399 new_entry−>p r i o r i t y = 2 ;
400 }
401 }
402 else i f ( new_entry−>element−>Status & HA_ELEMENT)
403 {
404 new_entry−>p r i o r i t y = 3 ;
405 }
406 else i f ( new_entry−>element−>Status & NO_ELEMENT)
407 {
408 new_entry−>p r i o r i t y = 4 ;
409 }
410
411 entry = l i s t −>inputs [ s tage ] [ column ] ;
412 i f ( entry == NULL)
413 {
414 l i s t −>inputs [ s tage ] [ column ] = new_entry ;
415 }
416 else
417 {
418 while ( entry−>next != NULL)
419 {
420 entry = entry−>next ;
421 }
422 entry−>next = new_entry ;
423 }
424 }
425
426 return new_entry ;
427 }
428
429 void printFAList ( struct FALIST∗ l i s t )
430 {
431 uint32_t stage , column ;
432 struct FALISTELEMENT ∗ entry ;
433 uint32_t outputs , inputs ;
434
435 for ( s tage = 0 ; s tage < l i s t −>stage s ; s tage++)
436 {
437 for ( column = 0 ; column < l i s t −>columns ; column++)
438 {
439 p r i n t f ( " \nCOL:  %.2d (%.2d) " , column , l i s t −>s t a r t l e v e l [ column ] ) ;
440 entry = l i s t −>outputs [ s tage ] [ column ] ;
441 outputs = 0 ;
442 while ( entry != NULL)
443 {
444 // p r i n t f ( " %d : 0x%x " , i , ( uint32_t ) entry ) ;
445 // p r i n t f ( " %d " , entry−>p r i o r i t y ) ;
446 p r i n t f ( "  %d" , s tage ) ;
447 outputs++;
448 i f ( entry−>outputport == FAOUTPUT_OUTS && entry−>element−>OutA ==

ExternalOutput )
449 {
450 p r i n t f ( "  OUTA" ) ;
451 outputs−−;
452 }
453 i f ( entry−>outputport == FAOUTPUT_OUTC && entry−>element−>OutB ==

ExternalOutput )
454 {
455 p r i n t f ( "  OUTB" ) ;
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456 outputs−−;
457 }
458 entry = entry−>next ;
459 }
460
461 entry = l i s t −>inputs [ s tage ] [ column ] ;
462 inputs = 0 ;
463 while ( entry != NULL)
464 {
465 inputs++;
466 i f ( entry−>outputport == FAINPUT_INA && entry−>element−>InA ==

External Input )
467 {
468 p r i n t f ( "  INA" ) ;
469 inputs−−;
470 }
471 i f ( entry−>outputport == FAINPUT_INB && entry−>element−>InB ==

External Input )
472 {
473 p r i n t f ( "  INB" ) ;
474 inputs−−;
475 }
476 i f ( entry−>outputport == FAINPUT_INC && entry−>element−>InC ==

External Input )
477 {
478 p r i n t f ( "  INC" ) ;
479 inputs−−;
480 }
481 entry = entry−>next ;
482 }
483
484 p r i n t f ( "  IN :  %d  OUT:  %d" , inputs , outputs ) ;
485 }
486 }
487 p r i n t f ( " \n " ) ;
488 }
489
490 /∗∗
491 ∗
492 ∗ Takes a m u l t i p l i c a t o r and rearranges the connect ions between the b l o c k
493 ∗ to decrease the power usage
494 ∗/
495 void PowerOptimize (ADDERTREE∗ WTree , int i t e r a t i o n s )
496 {
497 struct SIMSTRUCTURES sim ;
498 double powerusage ;
499 ADDERTREE ∗CurrentTree = WTree ;
500 FAGROUP ∗CurrentGroup , ∗TopGroup ;
501 FA ∗CurrentFA , ∗TopFA;
502 uint32_t columns = 0 , s tage = 0 , i = 0 ;
503 struct FALIST f a l i s t ;
504
505 for ( i = 0 ; i<i t e r a t i o n s ; i++)
506 {
507
508 /∗ I n i t i l i z e t e s t−s t r u c t u r e s ∗/
509 sim = In i tE s t ima t i onS t ru c tu r e s (WTree) ;
510 /∗ Create power−p r o f i l e ∗/
511 powerusage = RunTestSimulationOnStructures ( sim , 100 , 10) ;
512
513 i n i tFALi s t (& f a l i s t , WTree) ;
514
515 /∗ Add a l l o f the output s and inpu t s i n f o the n e t l i s t ∗/
516 columns = 0 ;
517 CurrentTree = WTree ;
518 while ( CurrentTree != NULL)
519 {
520 CurrentGroup = CurrentTree−>FaGrp ;
521 TopGroup = CurrentTree−>FaGrp ;
522 columns++;
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523 s tage = 0 ;
524 while ( CurrentGroup != NULL)
525 {
526 CurrentFA = CurrentGroup−>Grp ;
527 TopFA = CurrentGroup−>Grp ;
528 s tage++;
529 while (CurrentFA != NULL)
530 {
531 struct FALISTELEMENT ∗ entry ;
532 uint32_t e f f e c t i v e_ s t a g e = stage + CurrentTree−>Star tLeve l ;
533 entry = addPort(& f a l i s t , e f f e c t i v e_ s t a g e +1, columns , CurrentFA ,

FAOUTPUT_OUTS) ;
534 /∗ Dont add empty l i n e elements , and route l i n e e lements through

∗/
535 i f (CurrentFA−>Status & NO_ELEMENT)
536 {
537 i f (CurrentFA−>OutB != NULL)
538 {
539 entry = addPort(& f a l i s t , e f f e c t i v e_ s t a g e +1, columns ,

CurrentFA , FAOUTPUT_OUTC) ;
540 a s s e r t (CurrentFA−>OutB != 0x0 ) ;
541 }
542 }
543 else
544 {
545 i f (CurrentFA−>OutB != NULL)
546 {
547 /∗ Add the carry b i t over to the next column ∗/
548 entry = addPort(& f a l i s t , e f f e c t i v e_ s t a g e +1, columns+1,

CurrentFA , FAOUTPUT_OUTC) ;
549 a s s e r t (CurrentFA−>OutB != 0x0 ) ;
550 }
551 }
552
553 /∗ Add i n p u t p o r t s ∗/
554 addPort(& f a l i s t , e f f e c t i v e_s t ag e , columns , CurrentFA ,

FAINPUT_INA) ;
555 i f (CurrentFA−>InB != NULL)
556 {
557 addPort(& f a l i s t , e f f e c t i v e_s t ag e , columns , CurrentFA ,

FAINPUT_INB) ;
558 }
559 i f (CurrentFA−>Status & FA_ELEMENT)
560 {
561 addPort(& f a l i s t , e f f e c t i v e_s t ag e , columns , CurrentFA ,

FAINPUT_INC) ;
562 a s s e r t (CurrentFA−>InC != NULL) ;
563 }
564
565 CurrentFA = CurrentFA−>Next ;
566 }
567 CurrentGroup = CurrentGroup−>Next ;
568 }
569 CurrentTree = CurrentTree−>Next ;
570 }
571
572 sortFAList (& f a l i s t , sim ) ;
573 rearrangeFAList (& f a l i s t ) ;
574 // printFAList(& f a l i s t ) ;
575
576 destroyFAList(& f a l i s t ) ;
577 dea l l o cEs t imat i onS t ruc tu r e s ( sim ) ;
578 }
579 // p r i n t f ( " Power o p t i m i z a t i o n ended\n ") ;
580 }

C-code C.3: Source file for optimalization routine
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