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Summary

In a dense and complex emitter environment, a pidbe arrival rate and a large number
of interleaved radar pulse sequences is expectad, foth agile and stable emitters. This
thesis evaluates the combination of interval-otdypathms with different monopulse
parameters, in comparison to a neural network tacdorate emitter classification.

This thesis has evaluated a selection of TOA dee#eing algorithms with the intent to
clearly discriminate between pulses emitted fromeagmitters.

The first section presents the different technigquath emphasis on pinpointing the
different algorithmic structures.

The second section presents a neural network catnaal recognition system, with a
main focus on the fuzzy ARTMAP neural network, whalso some practical
implementations has been presented.

The final section gives a partial system evaluatiased on some statistical means,
seeking to get an estimate on the information flimm the ESM receiver as a function of
both the density and the expected parametric valige$W since this is proportional to
the amount of processed pulses.
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Table 1: List of abbreviations

Abbreviations | Definition

FT Fourier transform

PW Pulse width

PRI Pulse repetition interval
PRF Pulse repetition frequency
DOA Direction of arrival

TOA Time of arrival

PST Pulse sorting transform

SEI Specific emitter identification
VLSI Very-large-scale integration
FPGA Field Programmable Gate Array
MOP Modulation on pulse

MLP Multilayer perceptron

MTI Moving target indicator

KF Kalman filter

PE Processing element

ESM Electronic support measure
PDW Pulse description word
EDW Emitter description word
AD/DA Analog-to-digital/ digital-to analog
FFT Fast Fourier Transform

DL Downlink

PDF Probability density function
TDOA Time difference of arrival
SW Software

IC Integrated circuits

HW Hardware




Introduction

This thesis is based on the Euclid project, deedrds a passive ESM system
implemented in a satellite cluster, to achievedadgtection and geolocation. The
proposed satellite cluster consists of three $si@®lbperating in a delta configuration,
with a relative short inter-satellite geometry; k2 distance along track, and a third
satellite at a 20 km distance. The configuratioasidt impose great demands on satellite
control, but the relative position of the satefliteeeds to be established with high
precision. The satellites operate in a nominalfgudar orbit at 600 km altitude, with an

inclination of 90 degrees. Each satellite carriesi@owave payload with (2*2)n flat
lightweight antenna with a compact RF-circuit aatbdorocessing system, enabling
bandwidth coverage from 1 GHz to 12 GHz.
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Figure 1. Proposed satellite configuration



Emitters

A brief summary from [1] of the targeted emitters:

* Surveillanceradars. Surveillance radars detect and track military eind
aviation. Low frequencies are used, typically ia th band, with large aperture to
function optimally in all kinds of weather and owgeat distances. This means
that they also use a low PRF.

» Air defenseradars. Air defense radars that operate in 2 dimensiatisepresent
most of the observed systems. They operate typicathe C-band.

* Marineradar. Typical marine radars operate in the X-band amttv® S-band. For
large vessels it is a requirement to use bothiresler boats generally uses the
first because of the smaller wavelength which iegpk smaller and lighter
antenna.

» Coastal surveillance radar. Operates in the same band as the marine radars.
Surveillance of coastal areas will generally udea8e, while surveillance of
harbor areas operate in X-band for higher accuracy.

» Mobile ground based surveillance radars. Operates in X-band.

The mentioned radar bands are presented in Table 2.

Table 2: Radar band denomination

Band | Frequency
L 1-2GHz
S 2-4GHz
C 4 -8 GHz
X 8-12 GHz

Pulsed radar can be characterized by a patteranle¢ mtervals that repeats itself from a
given start time, called the phase. The time betvike pulses is referred to as the PRI,
which is the inverse of the PRF. The simplest oittens, called stable emitters, utilize
only one PRI, and its range varies from a few haddnilliseconds down to several
microseconds, where the latter is often referreastéligh PRF.

A pulsed radar can be range ambiguous if a secolsé s transmitted prior to the return
of the first pulse. In general, the radar PRF msselm such that the unambiguous range is
large enough to meet the radar’s operational reqents. Therefore, long-range search
(surveillance) radars would require relatively IBRFs.

In addition, to avoid jamming, lowering the prolddpiof intercept etc, many emitters
apply some kind of agility to the pulses. An oftesed scheme is to vary the PRI from
one pulse-group to another, or even on a puls@iitse basis. This is referred to as a
staggered or a switched dwell emitter, where theedenerally are separated with the
assumption that a staggered emitter changes itsn@Rd often than a switched dwell
emitter. Jittered pulses are also frequently ustere the exact pulse PRI will vary
randomly around an exact value. This is usefubimgensating for blind speeds in MTI
radars.

On the receiver end, if the pulses received aggéd with the arrival time, these time
differences will be equivalent to the emitters Pi#dpending on the accuracy of the



receiver. This makes the TOA of a pulse such ai@rparameter in recognizing the
emitters.
PRF is commonly divided into the following categsri

* LowPRF =0.25-4 kHz

* Medium PRF = 8- 40 kHz

* High PRF  =50-300 kHz

Algorithmic description

The initial proposed solution from [2] suggestatkaral network as part of the ESM
system chain, which was chosen because of the nésaability to classify and
recognize patterns. These patterns represent pemanmeeasured from intercepted pulses
in the ESM system; specifically the PRI, the RF #relPW. The original solution
assumed that TOA deinterleaving could be reliablyieved only for constant PRIs. In
so, it would be advantageous to get a thoroughrstateling of the capabilities and
limitations of the different TOA deinterleaving alithms as this is the basis for reliable
deduction of the individual PRFs of an interleageduence. In addition, the neural
network as a classifier is based on different ppials than standard classification
technigues, and a basic knowledge of the behavitregproposed network for the given
parameters, and its possible implementations, wanalkle the evaluation of the total
system more accurate.






Pulse sorting

The ultimate goal of the signal processing is &ssify and recognize emitters based on
the unique characteristics of their signals. Winatracteristics that are used are
dependent on the ESM system. Some parameters cardseired based on one pulse,
and are called monopulse parameters. These a@é irsiTable 3. Other parameters, such
as PRI, can be derived by analyzing groups of gulse

Table 3: Some monopulse parameters

M onopulse parameters
Frequency (RF)
Amplitude
Direction of arrival (DOA)
Time of arrival (TOA)
Pulse width (PW)

Real-time signal recognition is a complicated tas&inly because of the parametric
agility some emitters have, but also if operatimglénse environments. This makes the
classification difficult, and most (standard) EStems are designed to primarily
recognize emitters with more or less stable charestics. However, as the technology
evolves, more and more emitters utilize agilitparameters as RF and PRI.

Each radar emits a sequence of pulses whose tinaesval are regularly spaced. The
interception of several such signals leads to tarleaved sequence of times of arrivals.
From this interleaved mixture, the individual pulssins need to be sorted, i.e.
deinterleaved. This is referred to as the TOA delaaving.

The proposed overall method is based on a neurabrie which operates on a sequence
of presorted PDWSs. This means that the pulsesraprqressed prior to the presenting to
the network. The proposed network parameters ararlAPW, defined as the ‘what’-
parameters, and with the PRI of the pulse traia #érd and additional parameter. Even
though the network has previously performed witty\satisfactorily results, the used
parameters impose some drawbacks, and this willdmeissed later. Some evaluation
must also be done in connection to the PRI valesause they are assumed to stem
from stable emitters. Omitting the agile emitteiid degrade the performance of the
system accordingly, as the state-of-the-art ersitt@ll be of this sort. The PRI for each
PDW is presented to the network, where the PRtarwed earlier in the chain. The
following section will give a deeper understandaidghe limits and possibilities of this
stage, evaluating simple and more complex algogthm



Techniques

As an alternative to do a complete sampling ofpthise trains, it is evaluated to represent
the pulses by pulse parameters, which will leaa $nificant reduction in size of
information required to be stored after A/D conians

The type of pulse representation chosen is someavhdtary, as the form has little or no
meaning for the wanted shape of the graphical aysptulse shapes could be square,
Gaussian or a delta-function. The pulses deschiyetie PDWs are values for PA, PW
and TOA, but could also include, or use other patans. The main goal is to get as good
a representation as possible for the given alguorith

TOA deinterleaving is traditionally used in mostNESystems, but is a very processor
intensive task. The idea is to get an indicatioprobable PRIs, using as few
computations as possible.

It is crucial to use the algorithms that are robngerms of detecting pulses in high-pulse
densities, when most of the pulses will be corrdpTe@A algorithms are used to extract
all radar patterns that can be reliably recogniesaljing a residue of pulses that can be
analyzed using different techniques.

TOA measurement is done at the leading edge giulse, and represented with a digital
word. Arithmetic computations are performed onmse of these words by the
algorithm.

Sequence search

The sequence search is the simplest of the TOAi#iges, and it works by forming trial
pulse trains from an initial pulse pair, or a iplThe initial pulses are thereby
hypothesized to be the PRI of the pulse train giwan window or tolerance level.

The PRI is called a match provided there are acseifit number of pulses at the PRI
within the predefined tolerance level. The evenesthen removed, to simplify further
processing. If no matches are found, a differenti®Relected.

A typical tolerance level assumes a jitter no nthes 10 % of the pulse train’s mean

PRI. This means that the window is initially se +0-3 times the current best estimate,
which represent* 3 Gaussian standard deviations from the mean.

The Sequence Search provides identification of sequences, greater mmyuand

reliability than the differential histogram preseahin the following, but is slower because
of a greater number of computations. The simplifatyors the technique as a secondary
method, as presented later. To avoid extractindgiphes of the correct PRI, it is

important to extract the smallest intervals fi&me precaution must also be made to the
case of trains with PRIs that differ from integafues of the sampling interval.



Differential Histogram

The TOA of each pulse is represented with a daliatfon at the appropriate sampling
interval, and the deinterleaving algorithm will §rzee the sample, and attempt to extract
the individual sequences. The sample intekvaldefined as the TOA measurement
resolution, and the sample lengtiNasampling intervals (Sl). Each TOA is thus
represented as an integral multiple of the sampiitegval.

A stable PRI sequence can thus be represented as

0.1) =3 (k)

where the sequence has a PRip§I, a start time of; SI, andn; pulses in the sample,
and

1 r:am+q,05asint(l\lj)=n
(0.2) f.(rk) = m
0 ahawse

The total sample consists of a sequence of events E

In short, each TOA is subtracted from every subsetjliOA, and a count accumulated
at each TOA difference. The total sample consistssequence of events E.

The number of computations required for a sample efements is of order.

E 2
(0.3) i =E7 whereE>1 andE <« N

i=0

When several signals are present, counts will oaturultiples, sums, and differences in
addition to the correct PRIs, which gives an ambiguresult.

The difference histogram can be viewed as an atrgation of the sample, as seen by
applying a delay SI;

(0.4) y(d) = Z p(rk) p((r —d)k)

For each delay; i.e. each PRI entry in the histogram, the samfalecontains a count
equal to the number of solutions to the equation

(0.5) q +am =q; +bm, +d wherei, j =1 - X



The full count of events in théh stable sequence occurs at the appropriate RRI an
multiples of the PRI when

(0.6) d=cm, y(d)>n-c for c=1,2,..

Each stable PRI sequence is identified by the coomunt at each multiple of the PRI,
and this is utilized to derive the threshold forietha sequence is said to be present.

A threshold must be defined to which a sequenpedsent if the count goes above the
threshold. It must be chosen carefully to allowrfossing pulses and interfering pulses.
This solution makes the threshold critical; asribe-detected and false identifications
are directly dependent on it.

The differential histogram simply counts the numblkeevent pairs separated by a certain
PRI. It doesn’t identify the sequences, but as idsed on subtractions, the processing is
fast.

Example 1:The following figures indicate the difficulty inying to deduce the number
of pulse trains present in an interleaved sequéficem Figure 2, the periodicity of the
pulse train emerges as a period of 5, with the barcs. Once an additional sequence
with period 8 (Figure 3), and another with peri@i(Eigure 4) is introduced, the
individual periods becomes hard to discern.

The total number of pulses is seen from ‘diff_nist.Only a fraction of the histogram is
displayed.

1 The code in the simulations differs from the mathatical theory presented earlier in that the intedved pulses aren't
represented as a binary sequence, but as arrivakts. This is justified by the use of unit SI. Forénary sequence the row values
represent the differences in arrival times, andso does the simulation omit the subtraction proceelu



number of pulses

number of pulses

90

80

70

60

50

40

30

20

10

90

80

70

60

TOA difference histogram

5 10 15 20

pulse interval

Figure2

TOA difference histogram

25

5 10 15 20 25
pulse interval

Figure3

30

35

40



number of pulses

TOA difference histogram

90

80 -

15 20 25 30 35 40 45

pulse intenal

Figure4

10



Threshold

The optimal threshold function is crucial to evergtogram technique. As the bins in the
histogram correspond to the interval between theesuit follows that the larger the
observed time interval between pulses, the smiddeenumber of appearances of that
interval in a finite observation time, i.e. thedhihold value is inversely proportional to
the bin number.

Mathematically this can be expressed as
xX*E
(0.7) p(r) =

wherert is the bin number, E is the number of observedgsjland x is a constant less
than 1.

From [3] it is found that the optimal function ¢iréshold should take the form

-T

(0.8) Thr(r) = x*(E-0Q* e

where E is the total number of pulses, N is the total murabbins in the histogram, and
c is the difference level. Difference levels are pné=e in the following.

11



CDIF

The CDIF algorithm is more robust than the previpasentioned algorithms, and it
combines histogram techniques with sequential kgaachniques.

As opposed to histogram techniques that forms T@fardnces between all differences,
the CDIF TOA histogram forms TOA differences onBtlween adjacent events initially.
This is called the first difference. First; the obat each interval and the double interval
are compared to a threshold. If both counts argebweshold, the sequential search is
initiated. If no sequence is identified, the TOAelience between each event and the
next (but) one event is calculated, and the caiatcumulated.

The requirement of having the second harmonic pteBmits the searches to cases
where sequences of three events occur, ratheotiigpairs.

The attempt is to remove the smallest PRI radaickiyu

Three pulses are chosen as the starting poinjgotr@andom pulse pairs and sub
intervals of a staggered PRI, which provide a nameurate PRI.

Weight schemes are used to enhance detection mteanipted sequences.
1) The simple weight scheme. Counts events fittindpénsequence, and adds the
number of these events separated by the correctait
2) A complex weighting scheme; for each unbroken secgief events found in the
sample, the reciprocal of the probability is adtiethe count. This requires
monitoring of average pulse density and pulse wibitih will give an
enhancement proportional to the pulse density.

Because of the difficulty of detecting and ideritify agile radars, the signals that can be
reliably extracted should be removed first.

After extraction of stabile PRI sequences, sequenath identical PRIs are identified as
staggered. The final signals to be evaluated arsetivith potentially jittered signals.
This is the most difficult task, and in short isislved by adjusting to a greater PRI
tolerance.

Example 2:The graphs display the four first difference levaisn interleaved sequence
with individual periods of 5 and 8.

The black dotted line represents the threshold fqomation(0.7), and the blue whole line
represents the threshold from equation(0.8).

There are some disadvantages in using the CDIFnts important is the high number
of difference levels required to correctly identifie sequences. As in all the
histogramming techniques, the choice of thresh®ltucial

Another drawback with the CDIF is that when manisps are missing, the multiples of
the true PRI will be detected in the CDIF.

12
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SDIF

This algorithm is a modified and improved versidrihe CDIF. Compared to the
previously mentioned TOA difference algorithm stéss sensitive to interference and
missing pulses, and in so the SDIF has been sdateskigh pulse density radar
environments, and for complex signal types sudheagiency-agile and staggered PRI
radar signals.

The SDIF algorithm, generally consists of two patie estimation of the PRI and the
sequential search. To extract the true PRI, itif8cgent to compute the second
difference and compare it to the threshold values. ho need to also do a comparison of
the second harmonic of the PRI to the thresholdchvis the key limitation of the CDIF,
in addition to the requirement of a high numbedifference levels even in very simple
cases. If one discards the required double PRIagogls being limited to cases where
the sequences of three events occur, and in sacthenulation in the difference
histograms is no longer necessary. As mentionetapter Threshold, the proven
optional threshold for CDIF is inversely proport@mo the bin ordinal number. For the
SDIF, the optimal threshold takes the form of tkpamential function described in
equation(0.8).

In the case of high pulse densities and a largebeuiof interleaved signals, the PRI
analysis by SDIF histogram, becomes complicated naakes detection of emitters
unreliable.

Example 3:The graphs display the first and second differefan interleaved sequence
with the individual periods 5, 8, and 12. The gmadrsplay the first and second
difference after the pulses with period 5 has lreemved.

The simulation code is found in testtotal_SDIF.m.

15
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This simulation illustrate that is sufficient tormpute the second difference and compare
the histogram value to the threshold, as opposatstocompare the threshold to the
double PRI and in so reduces the computation tintie avfactor of two.

The procedure is the same for dissolving the thédod in the simulation above.

Some modifications will remove the imperfections.

1) If many emitters are present, the first differehstogram will produce a few
values exceeding the threshold value, none of wtichesponds to the correct
PRI value. This is why the next difference levesd lambe computed without the
previous sequential search.

2) In case of missing pulses, higher harmonics witlsed the threshold. This is only
a problem if the time PRI exceeds the thresholdh@sequence search starts
from the lowest PRI. This implies that sub-harmastiecking is necessary, and if
it corresponds to some harmonic, this becomesdtenpal PRI. If not, sequential
search is performed for all PRIs that exceed thestiold.

18



Spectra

Sequential search and histograms are computagopainsive, typically in the ordbi?,
where N is the number of pulses to be evaluatedirAslternative, it is suggested to try
to determine the number of pulse trains presentlamfrequency of each pulse train in
the frequency domain. This has a computational ¢exity in the order of N log N. This
makes the standard deinterleaving method; the séiglsearch used as a secondary
method, relatively easy.

There exists several techniques to reveal the igp@cintent of an interleaved sequence,
and some of them will be discussed here.

One solution is to sample the received signal witfequency at least twice the expected
highest PRF, and perform a FFT on the digital dighflae PRFs will appear as tops in the
power density spectrum, computed as the squarefdbé FFT. This method does
however rely on high processor performance bechtgaically requires the processing
of at least 1 Mega samples per second, dependitigecexpected highest PRF.

A Fourier analysis of PDW-data will be able to extrthe same information compared to
the sampling; but with a reduction of size, wittlada-rate of typically 1-100 kHz
(depending of the PRF of the pulse trains), whigbeeially gives an improvement for
high PRFs. This is equivalent to the procedure dotlee histogram methods.

The received interleaved signal consist of the qagsétion of M pulse trains, wherg t
t1,...,t denotes the arrival times of N+1 consecutive @mjlsettingd= 0. The procedure
can be thought of as taking the interval §{.1], containing the first N arrival times,
normalizing its length to approximately,2and then ‘wrapping’ the interval around the
unit circle.

277,(

(0.9) x(n) =e™" forn =0,1,...N-

The magnitude of the discrete Fourier transforrthefsignal contains the information
necessary to deduce the number of pulse traindoamake an estimate of the
frequencies.

Example 4:The graphs display the spectra of an interleavgdesee with individual
periods 5, 8, and 11 and 13. The figures cleadtirduishes the periods, where the
periodicity has been found by representing thegswgith delta pulses, and introduce
zeros in between, representing zero samples. Toadegraph is plotted with
logarithmic magnitude.
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Pulse sorting transform

The Fourier transform represents a frequency domegiresentation for a time function,
and as shown earlier it is very useful when trtimgisualize the PRFs of the interleaved
sequences. However, some problems may occur wdieg the Fourier transform to
evaluate the spectra of interleaved pulse trafr@eé considers a simple case where the
observed pulse train consists of two pulse trairis thie same period, but out of phase
with half the period (anti-phase), the time seqeenil appear to consist of a single
pulse train with double the frequency. When evahggthe Fourier transform of the
interleaved pulse train the individual frequen@es absent.

»
|

The PST is a modified version of the FT that allame to identify both the single double
frequency for the case over, and the individuajdencies. The main advantage when
compared to other sorting techniques is that the [#8sents the entire spectrum of the
signal in a convenient form for pulse sorting.

The PST shares some properties with the FT, wiickaiural as it is a modification of
the FT. The FT can be seen as a special case BRhgbut at the same time it is
important to not view the PST as a generalizatiothe FT, since a generalized function
should inherit most of the properties of its seed.

Linearity, scale change and time translation arermon properties, but the PST lacks the
convolution property. As the form of the FT vareesording to if the applied signals are
discrete or continuous in time, and finite or iténn extent; so does the PST. A
presentation with focus on the continuous time gynergnals will be presented in the
following to get a theoretic background, with tipesial case of the DFT version used in
the simulations presented thereafter.

The FT for a continuous time energy signal v(t) is

21



(0.10) V(Q)= j v(t) e %0t
WhereQ is frequency measured in radians per second. ThasP&function of three
variables;

ﬂ.pl
Q Qp

01)V(Q8.B8)= |

D v(t+1/F)Oe ™ot for B>1,F :2g and 0<sg¢< 2
T

| =—c0

[o RSN

i
QB

2ir
B is the bin factorg is the phase, and the intervals of lerQ_,B centered e% are the

phase bins.

Equation(0.10) can be written as
1/F

(0.12) V(Q)= j > v+ F)Ce ™ot

0 l=—

Q
when choosing a frequen F :Zr and noting that at this frequency the complex

1
exponential is periodic with pericT =E. The time function is thus segmented into

increments of lengtf over its domain, and each segment is time shitedcommon
interval from O toT, and added. The sum is then as shown in equatid#)(0

Because the exponential is periodic, the methaduwifiplying the time function v(t) with
the exponential, and then integrating over infitittee, is equivalent with the method of
forming the sum as shown in equation(0.12), myliqg by the exponential, and then
integrate over only one period.

The PST is then formed from multiplying wihn the exponential, and then integrating

: : ¢ 21
over the interval of time centered 0 of lengtt QB
: 271 : i
Forp>1, the interva QB is shorter than the inten0O - = which means that for a

giveng andp, we are integrating over only parts of the funttut). The parts are
composed of the periodic segments of v(t), ansltitis segmentation that gives the PST
its sorting ability.

A second formulation of equation(0.11) is usefuddaese it is easy to implement on

computers for the discrete case, and its similaoityhe discrete case presented later is
easy to see.
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The formulation is valid only for integ@t

(0.13) V(Q,4, )= T\D/(t)*e'imtat

v(t) - for|g-mod,,, @t j<’7;

V(t)is the segmented functior(t) =,

otherwise

The requirement of integ@ris because of the complex exponential. In equatioan
signal components are added first, and then migtdly an exponential function. In an
infinitely long complex exponential function is us® divide the signal into segments,
which are equivalent only for integpr

lllustrated by the figure, v(t) is the dotted lim®d V(t) is the solid part. The solid parts

occur at regular intervals spaced T seconds apaetspiral depicts the exponential

T
function, periodic with pericz. As there ar@ cycles of the complex exponential in one

period of length T; for integdy, the phase of the exponential is the same in segment
ofv(t) . This means that by multiplying the exponential\ft) and integrating over all

time, (0.13)is equivalent to(0.11) for inteder

~ . / \\ -iant

R AR

Figure 15

4
(e
|

The FT provides an equivalent representation irffréguency domain because all the
information contained in the time function is retd in the FT. This is clear because the
original time function can be recovered from ingform.

If V (Q,0,p) is known for all, ¢ andp, the inverse can be found by settingr, andp

=1. If ¢ is fixed orf is fixed but not an integer, the orthogonalityoist, and it becomes
difficult to invert the function.

If V is known for allQ ande, andp is a fixed integer, the inverse can be calculétech

B 1< |
(0.14) v(t) = > j DV, 5(Q)* e
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Where Vpetais the PST in théh phase birV, ;(Q) =V (Q,¢,5) |

=2
¢(+I)ﬂ

The FT of v(t) at frequencgg™* Q is equal to the sum of the phase bins for the &ST

£-1
frequency omega, thatis; V(8Q)=>V, 4(Q)
i=0

To evaluate the inverse transform for fixed intelgeta; add the terms; pia from each
phase bin, multiply by the exponential, and integy@aer omega. Then multiply the

result by%

For discrete time signals the units for frequernitgrge from radians per second to
radians per sample.
For discrete time signals over a finite time intdrfor periodic signals), the DFT is

formulated as
n<N/k k-1 .
(0.15) V(K)= D> > v(n+IN/k)* e 2P
n=0 |=0
corresponding to

When limiting the sum ovar to the phase bin, and multiplying the frequency iy
obtain the discrete PST, V is

(0.16) V(e g.8)=3 3 v(n+IN [k)*e iz
i N 4T - N 57
with 2= @) andb=o @+

A second formulation that is valid only for integierand that is used in the simulations is

(0.17) V(K.$,8)= Y U(n)*e 12

v g - mod, (XTI Z

0 - otherwise

for v(n)

Since the frequency isn’'t continuous, some modifices must be done when evaluating
the inverse, compared to the previously mentionethod.
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The following section illustrates the usefulnesshef PST for various situations. The
time and frequency axis consists of 120 valuesurxa 20 is a highly composite
number, and at the same time a fairly low numbdrminimize the time needed to
perform the simulations because of the complexithe algorithm.

B = 20 because it is convenient for displaying #siits, as mentioned in [4].

Example 5 The pulse train consists of two interleaved sagas, where both sequences
has a period of 10, but the first sequence staris3 and the other at n=6. Figure 16
displays the first 6 pulses of each sequence.

Figure 17 displays the FFT of the PT, which indésaivo smaller components at k=12
and k=48, and two larger components at k=24 and k¥Bis tells us nothing of the
nature of the individual pulse trains other thachelaas a period of 10.

Figure 18 and 20 displays the magnitude of the RS the two pulse trains appear
clearly as peaks at k=12, around phase bingtaaf 1.25
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Example 8 The total pulse train consists of two interleageduences both with period
12. The phase is n=6 and n=12, which makes itadiffito decide the true nature of the
sequence, i.e. it can either be viewed as a sgagjaence of period 6, or as two
interleaved sequences of period 12 in anti-phageré& 20 displays the sequence in the
time domain. Figure 21 displays the DFT, where amg train with k=20 is present,
which indicates only a single pulse train with pdrb. The discrete PST magnitude plot
shows the mentioned component at k=20, but algoates two smaller components at
k=10, appearing in phase birand Z.
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Example 7 The total pulse train consists of five interledgequences with periods 3, 4,
5, 8 and 10. The phases are x=6, 12, 4, 5 andy@rd-R4 displays the 60 first pulses,
while figure 25 displays the magnitude of the DBiid Figure 26 plots the magnitude of

the discrete PST.
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Neural network

The ESM system is made up of at TOA deinterleamdraaneural net recognition system,
in addition to a receiver and a signal separator.

The intercepted radar pulses are presented to@#edeinterleaver, which discover
periodicities in the incoming Pulse Description \@&ron the basis of some algorithm.

The recognition subsystem is in some ways insgigethe human brain, in that the
processing is done by separating parameters teatide what you see, and where it is
located, i.e. spatial information. The paramet&scdbing a radar emitter typically
consist of values like the pulse width and carfiequency, and also the pulse repetition
interval, even tough this parameter is not direstgasurable, but has to be derived. The
parameters that inhabit the spatial information typically be derived from a directional
receiver, and give values on such parameters estidin and pulse amplitude. They will
not contribute in the same degree as the othenedess in defining the emitter type, but
will be useful when grouping pulse trains, and caring previously recorded tracks

The outputs from the clustering device and neusictassification are presented to the
evidence accumulation field, where responses asgolcwith classifications are
accumulated over time with spatial information.

The neural network subsystem predicts a radarftypeach pulse on the basis of pulse
width and radio frequency, in the form of a resgopattern. This is then associated with
the output from the clustering device. This wilbal for PDW information to be directly
connected to the spatial information, resultingmmanced classification accuracy.

2 Atrack is defined as the recognized emitter sigmatfrom one loading of the pulse buffer to the nex
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The Kalman filter is a very popular algorithm, asmtimum for estimating stochastic
system processes. But since it is a complex algartb implement, it has some
drawbacks. Mainly, in the actual scenario wherdim@processing is a prerequisite, the
fact that the KF uses a huge number of operatiensrnes a strain on the system, and the
KF can be considered a memory Killer [5]. In séoe$ are made in considering other
possible solutions, to avoid letting the KF indackeottleneck.

Fuzzy ARTMAP

The proposed neural net is called fuzzy ARTMAP, anaverview of the architecture
shows the basic principles, where an input vestprésented to ARJand the map field
is used to associate a category number to eacomeflART,’s F2 layer. ART is used

to present target values, and is not used durstqite The vigilance parametetis a
measure on the degree of mismatch. The weightsgept the ‘memorized’ patterns, and
the two primary weight vectors are the top-downghies from F2 to F1 in ARJthat
represent the group of input patterns that chode pm the category layer as their node,
and the weights from every node j in F2 to the outayer F2 in AR that correspond to
the output pattern that node j is mapped to.

An input vector presented to the F1 layer in ARTMA&presents a point in space. For
each neuron in the F2 layer, a choice functiorvéduated, with a purpose of choosing
the smallest hyperbox where the point is represetit¢he point is represented in more
than one box, the smallest box is chosen. If thetp® not represented in any boxes, the
box that needs to be expanded the least, or a newiochosen.

After the neuron is chosen, the vigilance critei®evaluated. If the box is already too
large, the neuron with the second highest choinetion decides the new box. The
vigilance criterion will by this decide the maximisize of the hyperboxes.

When choosing fast learning, represented Wittihhe box is expanded just enough to
include the point that the input vector represéiih  less than one makes the box
move in the direction of the point.
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The parameters must be normalized accordingly prioetwork presentation.
ART flow when presented with a normalized vector:

- complement code

- create network

- learn

o0 1) activate categories, bottom-up, then top-down
2) add new category
3) update weights
4) calculate match
5) (if match >vigilance; category codes input) uedaeights & induce
resonance
6) (else; sort next category in sorted list, chibelt the maximum number
of categories isn't reached) create new categ@yate weights and
induce resonance
o 7)if no change in network in epoch, equilibriuracked, stop training

- categorize

O O OoOOo

o

ARTMAP flow:
- complement code
- create network
- learn, with supervised input, same procedure asitas
- categorize

The simulation gives the response of the netwarlafoombination of stable and
staggered emitters, with parameters given in thiesan the following. Results are given
when trained on each stable emitter.

The idea is to get some measurement on how clabe iBuclidian sense the test set can
lie in relation to the training set, before thewmk is unable to categorize the test set for
the given vigilance.

A trade off between the ability to recognize anel degree of separation must be made,
because the network cannot simultaneously havdudbsseparation and at the same time
recognize similarities.

e Emitter 1 has values with PRF 24 kHz, RF 1 GHz, Wi 800 ns.
» Emitter 2 has values with PRF 200 Hz, RF 5 GHz,RWi3 pus.
+ Emitter 3 has values with PRF 5 kHz, RF 11 GHz, B 10 ns.

The simulations where not as much intended tocte#eeal emitter, but to get a clear
understanding of the network with a good enouglasion of the emitters in the 3
dimensions. The only certain parameter range iR#&vhich is limited by the antenna,
and given as part of the system description frojnThe PW and the PRF are parameters
that vary from manufacturer to manufacturer and ehtml model, where accurate
behavioral description is classified for obviouasens.
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One of the distinct features of a neural networiksi®paqueness. This means that the
actual response is hard to describe by mathematieahs. The following two
simulations will try to deduce what kind of resperibe network has when the PRI
parameter varies. This will give some idea of thetations of the network when the
deinterleaving module labels a staggered emittdr it PRI, even though it isn’t a stable
emitter. The choice of using the Euclidian distamsasurement is based on its
simplicity, and that it is a basis in many metgstems. For example; a given pulse is
described by three parameters, and in so it hagnaip the 3-dimensional parametric
space. When a system is presented with a new pitlse¢he intent to do a classification,
the two points in the parametric space are compaeedrdingly to the Euclidian
distance, described as

(0.18) distance=/ (B, =G, ¥ + (0,~ 0, + (5~ 0s)
Since the network requires normalized vafutee parameters have been divided by the
maximum expected value.

0 The RF maximumvalue = 12 GHz

0 The PRI maximum value = 0.1s

0 The PW maximum value = 10 us

3 The network also requires a minimum value to beosken. This is not necessary for the simulationglire following.
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Example 8 The network is trained on the parameters in tdbknd tested on the
parameters in table 5. The parameters are plottdtei3D space in figures 27 and 28.
The results are displayed in table 6. Figure 2pldys the Euclidian distance as a
function of the pulse. The network indicates a Hlewthe response on the presented test
pulse is deduced as a new class emitter.

The most interesting features of the simulatiothefPRI variations are where the
network decides where to put the boundaries fortweheonsidered a known PRI. An
important factor to keep in mind is that the snrathe PRI, i.e. the higher the PRF, the
smaller does the Euclidian distance become. Thigisthe network somewhat
surprisingly considers a PRF of ~1.8 kHz trainedad?RF of 24 kHz more similar than a
PRF of ~ 133 Hz trained on a PRF of 200 Hz.

Table4
PRI RF PW Name
4,17E-05 1,00E+09 8,00E-07 Em1l
5,00E-03 5,00E+09 3,00E-06 Em2
2,00E-04 1,10E+10 1,00E-08 Em3
Table5
PRI RF PW Name
4,17E-05 1,00E+09 8,00E-07 Em1i
5,42E-04 1,00E+09 8,00E-07 Em1_staggerl
1,04E-03 1,00E+09 8,00E-07 Em1_stagge2
2,04E-03 1,00E+09 8,00E-07 Em1_stagger3
5,00E-03 5,00E+09 3,00E-06 Em2
5,30E-03 5,00E+09 3,00E-06 Em2_staggerl
7,50E-03 5,00E+09 3,00E-06 Em2_stagger2
8,50E-03 5,00E+09 3,00E-06 Em2_stagger3
2,00E-04 1,10E+10 1,00E-08 Em3
4,70E-03 1,10E+10 1,00E-08 Em3_staggerl
5,70E-03 1,10E+10 1,00E-08 Em3_stagger?2
6,70E-03 1,10E+10 1,00E-08 Em3_stagger3
Table6
Name Euclidian distance 0,9 0,99 0,999  0,99999
Em1 0 1 1 1 1
Em1_staggerl 0,005 1 1 -1 -1
Em1_stagger2 0,009983 1 1 -1 -1
Em1_stagger3 0,019983 1 1 -1 -1
Em2 0 2 2 2 2
Em2_staggerl 0,003 2 2 2 -1
Em2_stagger2 0,025 2 2 -1 -1
Em2_stagger3 0,035 2 -1 -1 -1
Em3 0 3 3 3 3
Em3_staggerl 0,045 3 -1 -1 -1
Em3_stagger2 0,055 3 -1 -1 -1
Em3_stagger3 0,065 3 -1 -1 -1
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Figure 27

Figure 28
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Example 9 The simulation is similar to the previous, onlitwa larger Euclidian

distance of the parameters. The network is tragrethe parameters in table 4, and tested
on the parameters in table 7. The parameters atteglin the normalized parametric
space in figures 30. The results are displayedbitet8.

From the Euclidian distance it is clear that alaigte value below 0.99 will make the
network too modest regarding the separation ofgsuls

Table7
PRI RF PW Name
4,17E-05 1,00E+09 8,00E-07 Em1
1,00E-02 1,00E+09 8,00E-07 Em1_staggerl
2,00E-02 1,00E+09 8,00E-07 Em1_stagger2
3,00E-02 1,00E+09 8,00E-07 Em1_stagger3
5,00E-03 5,00E+09 3,00E-06 Em2
4,50E-02 5,00E+09 3,00E-06 Em2_staggerl
5,50E-02 5,00E+09 3,00E-06 Em2_stagger2
6,50E-02 5,00E+09 3,00E-06 Em2_stagger3
2,00E-04 1,10E+10 1,00E-08 Em3
7,00E-02 1,10E+10 1,00E-08 Em3_staggerl
8,00E-02 1,10E+10 1,00E-08 Em3_stagger?2
9,00E-02 1,10E+10 1,00E-08 Em3_stagger3
Table8
Name Euclidian distance 0,8 0,9 0,99
Em1 0 1 1 1
Em1_staggerl 0,099983 1 1 -1
Em1_ stagger2 0,199583 1 1 -1
Em1l_stagger3 0,299583 1 1 -
Em2 0 2 2 2
Em2_ staggerl 0,4 2 -1 1
Em2_ stagger2 0,5 2 -1 -1
Em2_ stagger3 0,6 -1 -1 1
Em3 0 3 3 3
Em3_ staggerl 0,698 -1 -1 -1
Em3_ stagger2 0,798 -1 -1 -1
Em3_ stagger3 0,898 -1 1
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The following two simulations will try to deduce atkind of response the network has
when the RF parameter varies.

Example 10 The network is trained on the parameters in tdbknd tested on the
parameters in table 9. The parameters are plattédure 32. The results are displayed in
table 10.

From table 10 it is clear that the network respionithe same way independent of the
parameter, but dependent on the similarity, expaebgre as the Euclidian distance from
the trained parameter, which was as expected.ditia a Euclidian distance between
0.25 and 0.035 is an ideal value for maintainirggdgbneralization of the network.

Table9
PRI RF PW Name
4,170E-05 1,000E+09 8,000E-07 Em1l
4,170E-05 1,060E+09 8,000E-07 Em1 rf_agilel
4,170E-05 1,120E+09 8,000E-07 Em1_rf_agile2
4,170E-05 1,240E+09 8,000E-07 Em1 rf_agile3
5,000E-03 5,000E+09 3,000E-06 Em2
5,000E-03 5,036E+09 3,000E-06 Em2_rf_agilel
5,000E-03 5,300E+09 3,000E-06 Em2_rf_agile2
5,000E-03 5,420E+09 3,000E-06 Em2_rf_agile3
2,000E-04 1,100E+10 1,000E-08 Em3
2,000E-04 1,154E+10 1,000E-08 Em3_rf_agilel
2,000E-04 1,166E+10 1,000E-08 Em3_rf_agile2
2,000E-04 1,178E+10 1,000E-08 Em3_rf_agile3
Table 10
Name Euclidian distance 0,9 0,99 0,999
Em1l 0 1 1 1
Em1_rf_agilel 0,005 1 1 -1
Em1 _rf _agile2 0,01 1 1 -1
Em1_rf_agile3 0,02 1 1 -1
Em2 0 2 2 2
Em2_rf_agilel 0,003 2 2 2
Em2_rf_agile2 0,025 2 2 -1
Em2_rf_agile3 0,035 2 -1 -1
Em3 0 3 3 3
Em3_rf_agilel 0,045 3 -1 -1
Em3_rf_agile2 0,055 3 -1 -1
Em3_rf_agile3 0,065 3 -1 -1
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Example 11 The network is trained on the values in tablard tested on the values of

table 11. The simulation seeks to confirm the alyezcquired information.

PRI
4,170E-05
4,170E-05
4,170E-05
4,170E-05
5,000E-03
5,000E-03
5,000E-03
5,000E-03
2,000E-04
2,000E-04
2,000E-04
2,000E-04

RF

1,000E+09
2,200E+09
3,400E+09
4,600E+09
5,000E+09
9,800E+09
1,100E+10
1,180E+10
1,100E+10
2,600E+09
1,400E+09
1,000E+09

Name

Em1l
Em1_rf_agilel
Em1_rf_agile2
Em1 _rf_agilee3

Em2
Em2_rf_agilel
Em2_rf_agile2

Em2_rf_agile3 0,566667

Em3
Em3_rf_agilel
Em3_rf_agile2

Em3_rf_agile3 0,833333

0
0,1
0,2
0,3

0
0,4
0,5

0
0,7
0,8

Table11

Table12

48

PW
8,000E-07
8,000E-07
8,000E-07
8,000E-07
3,000E-06
3,000E-06
3,000E-06
3,000E-06
1,000E-08
1,000E-08
1,000E-08
1,000E-08

Name
Em1l
Em1 _rf_agilel
Em1_rf_agile2
Em1_rf_agile3
Em2
Em2_rf_agilel
Em2_rf_agile2
Em2_rf_agile3
Em3
Em3_rf_agilel
Em3_rf_agile2
Em3_rf_agile3
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Table 12 confirms the choice of a vigilance of 0a8%n ideal value. Another interesting
feature of the simulation is that even though ErhZgile seems closer to the third
training parameters, it is classified as an Em3dleAbm?2_rf_agile2 Em2_rf_agile3 are
classified as an Em3, for a vigilance of 0.8. Tams is seen for the three last test
patterns, which are classified as a class 1. Thisn® that we get some measurement on
the classification response when a test pulserié®e vicinity of a training-pulse other
than the intended.

There are several cases one must consider whengleath the limitations of the
network. When training the network, one can chdodeain it on real data collected in
the field, or on generated data. In this phasgiitsignificant regarding the classification-
accuracy of the network, but is necessary keepita i implementing.

Several possible cases can be mentioned in coonegiih missing data. A limited
number of training cases will generally reducediassification capability of a neural
network; however the fuzzy ARTMAP has shown gresgptial in accuracy when
trained only on a few pulses from each emittes thialso the case from initial
simulations.

Due to processing delays and other hardware liortat some input patterns could be
presented to the classifier with missing componéntsperational mode, the classifier
will be presented to new patterns, whenever a ntiyravailable emitter changes mode,
or when encountering new emitters all togetherc&itis impossible to train the network
on the total emitter environment, the network withploy methods to discriminate the
previously unseen patterns from the already knoattems; this is invoked with a
technique that gives a degree of familiarity betwtes patterns. This has not yet been
tested, but initial simulations give results thetd toward a good generalization
capability.

50



HW

In a modern ESM system, it is necessary to betaldiandle high-pulse arrival rates and
deinterleave pulse trains in a dense environmemty&the data often are corrupted,
several pulses are missing and it must operatenknawn PRI modulations. Normally,
and as described earlier, pulse parameters arearethpgainst previously established
pulse groups (emitter bins), where they are cheskedlly to see if they fall within some
defined tolerance level of the existing groupsh#y are, they are assigned to the group;
otherwise a new group is made. The next step istthepdate the tolerance levels, based
on current statistics.

Depending on the algorithm, some general drawbeekh& inherent slowness of
performing ruled-based operations sequentially]dbk of being able to provide a

quality measure on the degree of match betweepatramneters and the groups, and they
will respond with less reliability when the dat@ aoisy, and parameters are missing etc.
In addition, a small failure in general HW can atlse system to fail.

Hardware implementations

This section seeks to give a varied presentatigros$ible solutions of implementing a
NN in HW, and will include both realized and noralieed solutions. A detailed
evaluation of all solution will not be given becaus the difficulty of comparing HW
from published performance figures.

There are many ways to implement the NN, and tlaeybe categorized accordingly to
whether they use analog or digital computation, timevsynaptic weights are stored, if
there is some kind of on-chip learning, and if th@s are meant to be standalone chips,
or has the ability to make larger networks by cating to other chips; multi-chip
systems.

Important considerations to be made when dealitlg VLS| are chip area, performance
and power consumptions, and trade-offs must ofeemade between the performance
and the flexibility when implementing NN in VLSL ik also important to estimate their
values as early as possible in the design proasdhbjs will facilitate the architectural
exploration.

Analogue integrated neural networks have an adgantdoen it is possible to use parallel
data processing elements, which speeds up datagsiag. Analogue data PE are slower
than their digital equivalents, but the analoguesioms of the neural networks computing
primitives; i.e. multiplication and addition, cae much smaller than their digital
equivalents.

A massively parallel NN should be application specas the exact mapping on parallel
HW depends on network topology. For high precisiomputations digital circuits are
required, but the precision offered by analoguemmments are generally believed to be
sufficient [6].
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In addition, there are some additional featurestriteke an analogue implementation
worth considering. Many NN are asynchronous, e#-tsimed, and does not need to be
governed by a clock, and can thereby run at themmar speed of the HW. In
synchronous systems all components change stataftamneously at the clock edges, and
thus draw current from power supply simultaneowgty the demands this puts on the
power supply peak currents. Asynchronous systemp@wer averaging.

Also; increasing clock frequency is a problem wHhestributing the clock over a large
area without skew, when communicating between com@pts

Analogue integrated NN are often taught using d¢hifite-loop training; instead of
downloading a set of predetermined weights, eaghistirained by applying a input
pattern and computing network error on the basth@target values and the actual chip
outputs, and adjusting the weights on the chip r@icg to the learning algorithm in such
a way that the network error decreases.

Another solution is to implement learning algorithin HW. This has some advantages;

= parallelism; learning is a computationally heawsktaypically O(N*) or O(N°)
where N is number of neurons, and it has even gréaportance to utilize
inherent parallelism in the learning algorithm tithe NN

= Adaptivity. The system is taught while it's beinged

= Asynchronous

» Fault tolerant

= Data conversion; the learning algorithm needs act®s
inputs/outputs/intermediate variables of the NNNM is analogue, the use of
analogue HW for the learning algorithm eliminatd3/BA.

Analog solutions usually compute the inner prodisca current sum, but they will differ
in how the weights are stored, with suggested mwistas resistors, CCDs, capacitors,
and (EEP) ROMs (floating gate) [7].

The analogue integrated neural networks are comgide be interesting, but are still in a
more experimental state. Implementations has begting to small-scale networks, and
it is still unproven that they will scale well targer networks.

The field programmable learning array (FPLA) isiaed signal counterpart to the all
digital FPGA in that it enables rapid prototypirfgatgorithms in HW. Unlike the FPGA,
the FPLA is targeted directly for machine learnirygproviding local, parallel, online
analog learning using floating gate MOS synapsgeststors.

HW implementations of learning algorithms can mabignificant increase in
performance; both in terms of speed and power copsan compared to standard
computers, but it is naturally dependent of desgghnique. Many machine learning
architectures and NN map easily to VLSI becaugbeiise of many simple parallel
elements, and the computing is done using onlyl loéarmation; this justifies the use of
a silicon die with millions of transistors inhergnin parallel.

Analog and mixed signals VLSI are often plaguedriymatch (and offsets) in devices,
and increased accuracy is often synonymous witteased power consumption and die
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area. However floating gate transistors can oveectitese intrinsic accuracy limitations.
An FPLA user interface consists of a design contipiteand configuration tool, and a
digital and analog I/O chip interface. The firsables one to extract and compile an
algorithm (or parts of it) to an FPLA configuratidhe second connects with surrounding
digital circuitry and analog devices, for exampasors.

The prototype chip is a 2x2 array of programmaééerning blocks (PLBs), consisting of
two pFETS and two nFETs. The system comprisesadigiputs for programming and bi-
directional I/O for system operation, and has a siz2 mm x 0.7 mm, which later has
been reduced with 50%.

Digital chips generally lower computational spetidm the analogue, values varying
from 3 MCPS to 1.28 GCPS [7]. Solutions regardimacpssors vary from one processor
for each synapse, to one per neuron, or even @uessor for many neurons. The most
common solution is to use one processor per nedveights are stored in shift registers,
latches or memory; typically 1, 2, or 3 transidbdd®AM or 4 or 6 transistor SRAM.

Some hybrids exist, where weights are stored dligitand the inner product is computes
as a current sum.

Some existing digital implementations will be preeel in the following.

A fully digital general-purpose digital neurochipas 16 bit weights stored in an on-chip
RAM, and supports on-chip learning, but exportsdigenoid function. The inner product
is performed using a bit serial technique. Weigtnesfetched in parallel out of RAM, so
RAM access time can be 1/8 of processor cycle thaévations are 8 bits. The
technology is 1.6 micron CMOS. One new activat®oampleted every 2 microseconds,
i.e. 25 MHz clock cycle, and 32 16 bit weights arglel on every cycle, equals ca 800
MCPS.

A SIMD presented in [7] general purpose multiprecesarchitecture called CNAPS id
implemented in 0.8 micron CMOS. High performancehw.6 GCPS inner product,

1.28 GCPS and 300 MCUPS (cell updates per secand)12.8 GCPS using one bit
weights. The synaptic capacity is 2M one bits, R5%bits, 128 K 16 bits, distributed
among 64 processors. The chip consist of 64 procgs32 bit instruction bus, 8 bit
global output bus, 8 bit global input bus, 4 btemprocessor bus. The processors include
4 k bytes weight memory implemented using 4-trdosiSRAM, a memory base address
unit, 32 16 bit registers, 1/0, 8 x 16 bit multgj 32 bit saturating adder, and a logic-
and shift unit. The die size is €87, power < 4 W per chip, scalable, it has learning-o
chip, built-in redundancy (64/80 processors neeadrk), runs at 25 MHz. The chip
requires an external instruction sequencer.

Several properties of the fuzzy ART facilitate thplementation in hardware; among
them the lack of need to do multiplication at eaghapse, the algorithm performs well
with as few as 4 bits of weight precision, and alery little circuit area is needed at each
synapse. However, since the synapses are bi-dinattiand also the flow of weight
values; some effort may be put into deciding thiuseacing of the operations of the
algorithm.
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Implementations tested on datasets of 20000 patievolving a SIMD massively
parallel machine, demonstrates that the fuzzy AR PWAN take advantage of parallel
processing. The performance of the classifiernmugtions can be expressed in terms of
compression, memory and convergence, in additiaghg@ccuracy.

Compression is the averaged ratio of training pastéo committed F2 layer nodes.
Memory is described as the number of normalizetstexg used to store the set of
learned prototype vectors, where the size is dddigewhat is sufficient to store real
values of weights, vigilance parameter, etc. Cogeece time is the time it takes for the
classifier to converge, i.e. recognize presentpdtipatterns. Some simulations have
shown that memory use for the proposed systenpisdlly less than 1000 registers; 10
% of memory used by similar classifiers, in an emvinent consisting of radar pulses
from 15 emitters, with 17 different modes.

Some preprocessing are necessary before presémipattern vectors to the ART'’s; the
first of these to stages are a normalization stdgere an M-dimensional input pattern is
transformed to a vecter(ay,a,....aua), Where every component lies in the interval [0,1]
The second preprocessing stage produces an owpatrl, that includes the

complement vector af; | = (a,a®). The complement coding allows the recognition
system to encode in its memory representation fesiinat are consistently absent, as
well as those that are consistently present.

Many high level neural systems have complex infestractures, but often based on a
small number of ART-like building blocks. Thesewgans that realize the neural
processing system are a necessity when used #imeabhpplications, since the
dependency of software in real world applicatiamshsas robots, satellites, and portables
is unreliable to some extent.

A suggested solution [8] for a functional real-tiglastering microchip neural engine is
based on ART 1 architecture, but with a more VUlr#indly algorithmic structure. The
initial unimproved architecture clustered 100 péxielto 18 categories, and did the
classification and updating of its weights in l#ssn 1.8 microseconds. It also allowed
for a modular expansion, where an M x N array eliest N x 100 pixels into M x 18
categories. But implementations had high area eopsans with high costs; with an

area of tn?’. In addition its yield was about 6 %. The dysfimmeal chips performed
satisfactorily mostly because of the fault-tolenaature of the algorithm.

A common solution to the low yield is to build iedundancy and self testing subsystems
that seek out the faulty subcells and disconnexhtfused in commercial DRAMS), but

in this case this solution increases silicon areat, and processing circuitry.

The most area consuming elements of the initigiopype was an array of several
thousand current sources, which had to match wghegision of 1 %.

An ART1 chip was designed and fabricated whichtelesl 50 binary input patterns in
up to 10 categories, with a yield of ca 98 %, amdiga less than 15 times the initial
prototype. This chip was then used to implementesamlti-chip systems; a two-chip
ART 1, and a three-chip ARTMAP.
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ART 1 is a self- organizing neural associative mgnoapable of generating
(unsupervised) stable recognition codes in resptinaeseries of arbitrarily- many,-
ordered and —complex binary input patterns.

The chip is analog in nature, but its inputs anghots are digital.

There are some specific structures that are uséfeh designing digital NN arithmetic
elements, memory, and noise sources.

Logic design styles; often the highest speed lgihe one that consumes the
most power, so trade-offs between must be madedeetspeed, power, and area.
CPL (complementary pass transistor) is suggested.

Latches/clocking; static or pseudo-static latcinesi-overlapping two-phase or
single-phase clocking

The 4.2 adders implements an efficient, compaatmactator; it interfaces
cleanly to standard 2’s complement

Memory; DRAM,; highest density, but consumes moreer the refreshing
needed in DRAMs could be substantial in very largevorks. SRAM consumes
less power. Shift registers can often be implenteni¢h D or S-RAM, saving
area and power.

Noise sources are important in a wide variety of (ébpecially when stochastic)

A SP (one processor per synapse) solution haswest synaptic storage density, but the
highest computational throughput.

A NP (one processor per neuron) solution has weigiored in memory local to each
processor, and has characteristics similar to ti€XAPS chip.

A FP (fixed number of processors on chip, and bffraveights) solution has the lowest
throughput, but the highest synaptic storage deasitl virtually unlimited capacity. The
number of processors on a FP is I/O limited. Assigi bit weights, 128 pins would be
required to support 32 processors.
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Discussion

In a dense environment, the interarrival time betwsuccessive pulses at the ESM
receiver is a random variable distributed according negative exponential distribution
with parameter L. This is equal to the sum of thks@ repetition frequencies of all active
emitters in the instantaneous view of the receiVee mean value of the interarrival time

1
for a negative exponential distributi0|t>and L is therefore also the average arrival rate

of radar pulses. For a given time interval, thebptwlity thatn pulses arrive at the ESM
receiver during is from [9]

(0.19) POze (L)

n!

This means that the arrival rate of pulses is tliygoportional to the sum of the PRFs
of the active emitters illuminating the system.

It is clear that there will be a difference betwdes theoretical distribution and actual
measured distribution, and that it varies as atfanof the pulse arrival rate.

The time inside the receiver is defined as theisemumeTs. The time needed to assign
an incoming PDW to a pulse train is definedlasand the pulse rate FR.

For the Euclid project, an estimated 5 million pslgre visible every second, and with a
pulse buffer of 10 ms, a single pulse buffer wilhtain 50 000 pulses ideally, i.e. if every
pulses was recorded.

In a dense environment, the TDOA between succegsilges at the ESM receiver input

is a random variable distributed according to aatigg exponential with parameteR.
The PDF of the TDOA is

(0.20) f(t) = PR*& P

The service time is a fixed value, chosen to berthgimum expected PW among the
pulses. Maximum PW is chosen to be 2 pys. The @madf pulses that the receiver is able
to process or the fraction of pulse completiohentthe fraction of the arriving pulses
that are separated in time By or more. This value is denoted Bf, and is given by

(0.21) FP=[ f (ot =e ™™
Ts

This can be thought of as for a given time intertreé number of PDWs emerging from
the receiver is divided by the number of pulsewiag at the receiver input. The

57



analytical values given by equation (0.21) are showfigures 35, 36 and 37 for varying
expected PWs.

It is clear thaFP decreases exponentially with the prodB&* Tsaccording to
equation(0.21). For the given arrival rateTasncreases, the fraction of pulse
completionFP decreases.

The service time inside the ESM receiver and ggrithution is generally dependent on
what pulse parameters are measured and the sdrsagline of the receiver. The

service discipline in short describes the amounineé before the processing of a new
pulse starts. A paralyzable service discipline begirocessing a new pulse after a fixed
time 1. This could be the mean or the maximum PW of thigiag pulses, and for the
simulations an expected maximum is utilized. A pamalyzable service discipline is
ready to process a new pulse as soon as the pseuidse is expired, and the service time
is equal to the pulse width. For overlapping pul$ies service time is the minimum of

the resultant width and certain maximum permissialee.

The service time also varies as a function of tkerdity of the received pulses.

Table13
Pulse arrival rate | Processed pulses
1000000 135335,2832
2000000 36631,27778
3000000 7436,25653
4000000 1341,850512
5000000 226,9996488
6000000 36,86527412
14 x 10% Figure
12 Ts =2e-6 1
g} 10+ .
3
é 8 7 |
v 6r 7
. . |
2 - —
k-
01 1.‘5 é 215 é 3.‘5 i 4.‘5 E 5.‘5 6
arrival rate [pulses /sec] x 10

Figure 35
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Pulse arrival rate | Processed pulses
1000000 367879,4
2000000 270670,6
3000000 149361,2
4000000 73262,56
5000000 33689,73
x 10 Figure
s
B * i
I Ts =le-6 |
*
B . i
1 15 2 2.5 3 3.5 4 4.5 5 5.5
arrival rate [pulses /sec] x 106

Table 14

Figure 36
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Table 15

Pulse arrival rate Processed pulses
1000000 406569,7
2000000 330597,8
3000000 201616,5
4000000 109294,9
5000000 55544,98
6000000 27099,49
x 10° Figure
45 w
4F 7
354 e
0 *
b
ER 1
o
(3]
@ 25 e
& o + Ts=0.9e-6 -
g 15, -
g 1
>
c
1t * 1
05 * i
0 | | | | | | | |

|
1 15 2 25 3 3.5 4 4.5 5 5.5 6
arrival rate [pulses /sec] 6

Figure 37

The figures illustrate the number of processedgautsased on equation(0.21), with the
exact values presented in tables 13, 14 and 15nidimder of processed pulses varies
significantly as a function of the expected maximiBy.

Because the service time isn’t a constant, buisisibuted as an Erlang function, the
actual values will vary from those shown in theufigs. Typically this would reduce the
amount of successfully processed pulses even more.
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When sorting pulses on TOA, the common way to stiligis to allow groups of pulses
into a buffer. The size of the buffer could typlgdle 128 pulses, or the number of
recorded pulses in the last 10 ms.

This number is dependent on several factors witherESM system.

The PDW flow from the receiver to the deinterleargemost efficient when the
deinterleaver module is preceded by a buffer. Ehésiggested to be at 256 pulses in
[10]. This varies as the maximum PW and PR, asdems low, but the pulse sorting is
generally easier the smaller the buffer. Also; aeliey on the search algorithm, the size
of the buffer is essential both in terms of speed if it is desirable to find emitters with
complex PRF patterns. If the size is too smai§ ot possible to fit all the pulses from
emitters with high level stagger into it.

For simplicity it is assumed that the instant teeterleaver completes servicing tHe n
PDW, is the instant when the deinterleaver is readservice the (n+{)PDWs.

This may not be the case in real-time. When thé&bis filled or a given time threshold
is reached, the deinterleaver ought to be donetvélprocessing of the previous loaded
pulse buffer. If this isn’t the case, congestionws, inducing a bottleneck. For a real-
time implementation it could be advantageous tizatiwo or even several buffers. In
this way the process of transferring the detectdsgs to the deinterleaving module
doesn’t need to be perfectly in sync with the daietaver.

A sequential search algorithm, which is considéogde one of the simplest solutions, is
basically to find three pulses with the same PRdl then to find and remove all the
pulses with that PRI. However this algorithm is wety flexible when it comes to jitter
or high level stagger. Problems would also arigmii§e trains with high PRFs are mixed
with low PRFs, which is often the case for ESM eyst.

The same problem occurs for the histogramming fgcles when applied directly on a
pulse train, and in the case of a dense environreente kind of preprocessing would be
an advantage. This could be doing a rough sortasgd on direction and frequency,
where the dominating DOA and RF are classified wittan and standard deviation;
grouping them into classes, and then extract theepun the different classes.
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Simulations performed in [11], where both the CRH& TOA histogram were
implemented in a high level language, show sucuepsfformance on several test sets.
The number of instructions (the low level microggssor instructions required to analyze
the samples), was between 14 000 and 22 000. Fresirulations it was clear that the
TOA difference histogram needs fewer instructidng,has a significantly poorer
performance.

Because of few false PRI values for which sequks#éiarch should be performed, the
SDIF have more correct detected emitters in a reditime of analysis. In addition; only
low level differences has to be calculated, ansl thidluces the number of histograms.
With directional analysis performed first, SDIFdigne on a smaller group of pulses from
the input- buffer. This means that SDIF histogramgrand the following sequential
search is much faster. Simulation shows that throrement of pre-clustering on DOA
(and on RF after TOA), compared to just TOA incesawith more complex
environment.

The main advantage of using PRF spectra for detecti pulse trains, in addition to the
relative low number of computations, is that evieseveral pulses are missing, the
spectra do still occur. Threshold detection is geised, where a dominant/maximum
PREF is located, and the pulses with this PRI ateeted. Several pulse trains will
naturally give several tops in the spectra. Anottttrantage of the algorithm is that the
spectra doesn’t change significantly when jittecuos.

None of the time domain algorithms performs welewlhmplemented as the first part in
an ESM chain, but should rather operate on pulsssate presorted, on DOA, RF or
other parameters. This implies that the systendd&/ihe received pulses in directional
bins, and defines clusters as a function of thermal differences in frequency. The
optimal choice of inter-frequency division thregthohust be made with that in mind that
pulses from frequency agile radars might end up mhfferent RF bins if the threshold is
too small. At the same time; if the threshold i3 kagh, the clusters may end up
excessively large.

The RF is discarded as a second sorting parametaube of RF agile radars. These
would form large pulse clusters in the DOA-RF damaind since the correlation
between pulses are lost; PRI analysis could besdlimpossible.

Some precaution must be taken when using TOA dlgos, in particular when using
sequential search, in a high density environmehgnthe algorithm can extract pulses
belonging to different emitters, if they have cl@g@As. Using two-dimensional
sequential search, with an additional paramet&Viswould improve the results [3].

Regardless of which domain is used to analyze titgeprains, after a PRF-detection, the
corresponding pulses are removed from the buffienveng other low-PRF pulse trains

to be more easily recognized, both because theRRffs mix in with the lower PRFs
creating subharmonics, and the lower PRFs mora otiéze jitter.

When a PRI is detected, the pulses in the bufferemoved. Since the techniques
operate under non-ideal cases, the pulses miglappaar at the projected intervals. This
could be solved by predefining a standard devidtonvhich pulses are said to belong to
the estimated PRF. Another possible solution fntba triplet, and then utilize a Kalman
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filter to track the emission. This way the standdegliation between measured and
estimated pulse train parameters are tracked, winald describe on the jitter, if any.
The search for the next pulse is done in a two ptepess, where the first step is to find
the best pulse which has the best match with tedigted one, inside tie3 standard
deviation interval. This corresponds to a 95 % ckanf finding the next pulse, where 50
% is considered to be a minimum for a robust atgori After the next pulse is found, the
Kalman filter is updated with new mean values of ,RiRplitude and PW, their
covariance matrixes, and time-stepped one forward.

The time needed to assign a PDW to a pulse traia imentioned dependent on the
algorithm. If the PRF is known, the search coulddskiced to N operations, where N is
the number of pulses.

In general, the sequential triplet search is ot N®; and if it is possible to detect
PRI/PRF before every pulse in a pulse train istified and removed from the buffer, the
number of computations can be reduced to N. Instédétecting the PRIs with a
histogram method, the techniques realized in thguency domain is of order MY(N),

compared witt N? for the histograms.

Identification/recognition can be done in many eliéint ways, and at many different
levels. A simple solution could be to associatelainemissions with the intention of
reducing data, and then do a data correlation avidatabase. This has a disadvantage as
emitters that aren’t present in the database wiligive positive recognition results. The
next step would then be to merge different emisstorsee if patterns are periodic; merge
multiple PRFs to a MPRF mode. A PRI from one emitbeanother can be very similar,
but PRFs will vary significantly.

An alternative to correlation of PRIs is to comptlte PRFs very accurately, and then
utilize that the PRF of an emitter is always dedifi®m the crystal-oscillator frequency,
which makes it possible to do SEI. A rada¥$RFs will all be derived from

(0.22) PRF, :% wherek, UN

This technique requires the PRF to be computed aetyrately, and theysis not
deductible from a singular PRF as seen from(02)ause the factor ks unknown.

The method will give recognition with a high corditte level, but the technique could be
unsuitable for real-time satellite implementatibesause the complexity associated with
the pattern recognition increases drastically iftiple emitter scenarios. But when the
PRF is found, a new EDW from the pulse sorting n@dould easily be correlated with

a track of thedysta, With the prerequisite that the measured PRFsigsarmonic of

fcrystal'

Considering that the measured values for PW anahe PDWs will be more or less
the same in each satellite, they need not neclsbarderived in every satellite.
However, since the overall system concept callsfiosatellites to have full functionality
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and to be interchangeable, it is understood thabllites implement full pulse sorting
and identification capability.

Even tough the TAO for each pulse will be differateach satellite; the resulting PRI
values associated with each emitter will also beenoo less the same.

The values for parameters DOA and PA will not t® s$ame degree have similar values
for each satellite, and the expected values wpkte of satellite configuration.

Table 16 is a suggested PDW from [10]

Table 16
PARAMETERS BITS
TOA 32
Estimated background 14
Channel number 8
Phase angel, start 12
Start frequency 12
Pulse length 16
# phase shifts 8
# pulse drops 8
Max amplitude 14
Average/mean amplitude 14
Average/mean frequenc 12
TOTAL 150

The ideal number of bits representing a PDW idaliff to derive. But generally will the
number of bits used to generate a PDW determineetil@red comparison time inside

the deinterleaver. This means that the longerehgth of the PDW, the higher the
probability that the received pulses are blockedheydeinterleaver. At the same time, if
the number of bits is reduced, the resolution amdiic@acy of the measurements degrades.
This means that to maintain a certain performaocea fyiven pulse rate, PDW size and
deinterleaving algorithm, the blocking probabiltyll be reduced if the processor
performance is increased or a bigger buffer iszetl.

Figure 38 displays the relative difference in ot from receiver as the number of bits

in the PDW varies. The expected values are taken fables 13, 14 and 15 with the
estimated 5 million pulses arriving each second.
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Figure 38

There are many neural network algorithms that lteen studied, most of which have
been implemented in software. When choosing fok\ad# SW solution, one must be
aware of that for many applications where real-tprecessing is necessary, and the size
of the computational system have limitations o ssome type of special-purpose HW
will be advantageous. Specifically will the anatageuits’ high-speed computations with
relatively low area and power consumption be agraditive to the digital
implementations. However digital VLSI implementatschave some advantages; high
precision, ease of information storage, ease afessging and multiplexing, ease of
interfacing and design, and high reliability, whiemte some of the reasons of the success
this field have achieved during the last decaddmiiluing all types of computing
machines. Together with the excessive area consompie digital implementations

also have some processing delays associated witple® operations like multiplication,
which are extensively used in neural networks.
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There are some problems in connections with théementation of NN to HW.
* the systems may not be scalable due to the sim@py primary components,
such as multiplexers and D/A’s
* non general problem solving, inflexible
» often not comprise complete solutions, i.e. exteneaght updates
e itis adifficult, time-consuming and error-pronesign process

A digital VLSI can be used to implement both veigth and very large scale networks
efficiently, but there exists a trade-off betweenfprmance and flexibility. The limit of
the implementable network depends on the energggraputation and synaptic storage
density, and also the complexity of the synaptieraction and the neuron model.

1 micrometer technology is considered an old teldgyo where 0.5, .35, .18 and .13 and
further are the newest technologies. Newer teclymesooften lead to problems related to
the design, where older circuit designs have toeldesigned to utilize the technology.
The advantages include more electronics fit ondees, i.e. more IC per wafer, smaller
transistors induce smaller parasitic capacitanoesgya faster circuit, and less charge
needed. Some disadvantages are the cost, biggezrua@nts, and more static power
consumption. It could impose problems when theesgsuns on battery supply.

The choice of technology must be considered irticgldo the aforementioned, and is
somewhat reliant on the field of use. For examplienage sensors in APS, where
capacitors is charged to a certain level, and therharged when illuminated, it is
important to avoid large leak currents since loxgosure times the capacitance is
discharged with the leak current and not as a fonaf illumination. This is why for
high end image circuits used in medicine or spataed applications still use ‘old’
technology.
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Conclusions

This thesis has evaluated a selection of TOA dde#eing algorithms with the intent to
clearly discriminate between pulses emitted fronteagmitters.

The first section presents the different technsquath emphasis on pinpointing the
different algorithmic structures.

The second section presents a neural network catndaal recognition system, with a
main focus on the fuzzy ARTMAP neural network, whalso some practical
implementations has been presented.

The final section gives a partial system evaluaiased on some statistical means,
seeking to get an estimate on the information fisn the ESM receiver as a function of
both the density and the expected parametric valwe$W since this is proportional to
the amount of processed pulses.

The algorithms differ in performance when operatirgctly on dense and complex
pulse environments. This is especially true foritstogram techniques, the frequency
domain techniques would be a more efficient sotutmthe kind of scenario as in Euclid,
especially as a first or second line of processgegjuential search algorithms are
efficient only for a small number of PRIs, with higuality data when implemented as a
primary deinterleaver. In addition, it will not fation well on complex PRIs. A reliance
on the instantaneous parameters such as DOA asiblyoRF must be made prior to the
TOA deinterleaving because of the difficulty inveti/with sorting the agile pulses. As
the RF is found to be an unstable parameter altarins of agility, opens for a sole DOA
sorting prior to deinterleaving. The sequentiarsleas however found to be adequate as
a secondary algorithm, when PRIs are detecteceifrédguency domain.

The expected intercepted pulses are assumed totbe order of 5 million. Only a
fraction of these will be detected in each sagliithich means that the PDWs must be
compressed in some way. If the recognitory taskpemented in satellites, the PDWs
are reduced to EDWSs, which typically reduces thewamof data 100-10000 times. This
recognitory task of producing EDWs involves compdéggnal processing, and an
alternative to traditional accumulation of respafem EDWSs could be to produce
directional description words. This could consisa metwork pulse sorter prior to DL, to
separate the different emitters from one anothkso A count or a sequential evidence
accumulator could be implemented at the end o€lizén.

Any HW implementation has to optimize three cornistsa accuracy, processing speed
and space. An analogue solution is efficient ipp@riea and speed, but this comes at a
cost of a limited accuracy of the network composehte to noise. Also; the field is
considered to be in experimental state. For aaligiiplementation the quantization of
the network parameters and the weight storagesisnéin limitations.

The demonstrated network performs as expected,suithessful classification when
presented with pulse parameters in the vicinittheftraining pattern. But as the network
is evaluated on ideal noise-free parameters, thigaliions lie within these chosen
parameters, as they will vary both as a functiothefcomplexity of the emitter, and as a

67



function of the accuracy of the receiver. Thisspexially true for the PW, which is
considered to be the most unreliable parameteniseaaf time overlapping of radar
pulses in very dense environments, and also becdunsaltipath effects that distorts the
pulse shape.

The proposed algorithm omits the traditionally nplé-parameter deinterleaving
techniques in a way that merges the measuremetitghei aid of a NN, and not by other
metric techniques. However, as the deduction ofrtiridual PRIs of the interleaved
sequence is the final process in when trying taudecn emitter by its EDW makes it
difficult in seeing the gain for complex emittev@enment. This however implies a
presorting, possibly presorted on a rough andRRehistogramming in frequency bins,
further sorting on DOA, and then sent PRI analysis.

The advantage of the NN is that the PDW is autarabyi assigned to its corresponding
emitter without any computational delay other thi@ndelay associated with the
propagation thru the network, which is considereld fractional. Also; since the
directional parameters are presented accordingliyeaBDWSs are presented to the
network, a sequential accumulation of responsesrocc

The successfully received pulses are assumedtteebmnly pulses that are completely
received. At very high arrival rates, the raticsatcessfully processed pulses will be
low. Possibly solutions to this could be to implerngeveral receiver-encoding channels,
or to limit the measurements of the monopulse patara to those that can be obtained
from the leading edge of the pulse, and imposipgralyzable discipline. To get a
complete description of the environment, it coudddalvantageous to utilize some kind of
time-slotting for when the satellites receives psjsand the comparing results. This
ensures that as much of the total scenario is dedoeven though the total information is
distributed amongst several ESM receivers, i.¢hedifferent satellites.
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