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@ Non graphics application (ie. numerical simulations)

Why?
Enormous floating point power J
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CPU
@ Annual growth ~ 1.5x — Decade growth ~ 60x

@ Follows Moore’s law )
@ Annual growth ~ 2.0x — Decade growth ~ 1000x
@ Much faster than Moore’s law

A,
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Why are they so fast?

@ Parallel architecture optimized for floating point arthimetic
@ 2-48 pipelines
e ~ 20 flops/pipeline pr. clock!
e 650 MHz

@ Data is read and write only
@ High memory bandwidth
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The graphics programming model

The graphics pipeline

Fragment
l ‘ ’ Process

Textures Render to texture

CPU

Application
RAM

The GPU acts as a stream computer
Given a stream of data, it executes the same operation on
every data element
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The graphics programming model

CPU

Application

Textures Render to texture

glBind Texture( tex, GLL.TEXTURE2D );
glUseProgram( proglD );

The CPU: glBegin{ GL_TRIANGLES);
e glNormal3f( 0.0, -0.35, 0.67 );
P Uploacls shaders glVertex3f( -1.0, 0.0, 0.0 );
> Uploads textures glNormal3f( 0.001, -0.49, -0.62 );

P Sends — glVertex3f( 1.0, 0.0, 0.0 );

P Executes the pipeline

glEnd();
glFlush();
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The graphics programming model

CPU

Application
RAM

Fragment
Processt

Render to texture

Textures

\

\

The vertex processor transforms

v

>
>
>
>

Position
Normal

Color

Texture coordinates
User defined attributes

(=1,0)

(1.0)
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The graphics programming model

CPU
Application !

Textures Render to texture

P Vertices are assembled into primitives.

P Primitives are clipped A

P Vertices are projected into window coordinates ™

P Primitives are rasterized into fragments /"/J‘ J‘ I h\,\
P> Attributes are interpolated across primitives AJ_J_L —= e

(a fragment is a meta-pixel is has depth as well as (x, y)-
coordinate)
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The graphics programming model

CPU
Application
RAM

Textures Render to texture

The fragment processor:
P calculates the final color and depth

This usually involves texture lookup and viewport calculations
based on attributes from the vertex proce
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The graphics programming model

CPU
Applicati
I)PR:;;A'O“ Textures. Rendert)/{exture

P Fragments are discarded or blended
P Writing to auxiliary buffers
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The graphics programming model

Looping

CPU
Application
RAM

Render to texture

Finally all primitives are displayed!
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GPGPU programming model

Mapping computational concepts to the GPU

CPU
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GPGPU programming model

Mapping computational concepts to the GPU

CPU
@ Array
@ Inner loop
@ Feedback

@ Computational
invocation

@ Texture

@ Fragment shader

@ Render to texture

@ Geometry raserization
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GPGPU programming model

Mapping computational concepts to the GPU

CPU C—

@ Array @ Texture

@ Inner loop @ Fragment shader

@ Feedback @ Render to texture

@ Computational @ Geometry raserization
invocation @ Texture coordinates

@ Computational domain

V.
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GPGPU programming model

The heat equation

The heat equation: %itg =Vu
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GPGPU programming model

The heat equation

CPU

Application
RAM

Textures Render to texture

glUseProgram( waveequation );
glUniferm1i( 0, n_minus );
glUniformli( 1, n );
glDrawBuffers( 1, &n_plus )
glBegin( GL_QUADS);

For every timestep

P> Binds the previous rendertargets as textures glVertex2f( 0.0, 0.0);

P Secupa glVertex2f( 1.0, 0.0);

. glVertex2f( 1.0, 1.0);

P Draws a single quad glVertex2f( 0.0, 1.0);
glEnd();

swap( n_plus, n_minus );
swap( n-minus, n );
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GPGPU programming model

The heat equation

CPU

Application
RAM

Textures Render to texture

\
\

P Calculates texture coordinates

The vertex processor:

P Passes everything trough

varying vecd Xcoord;
varying vecd Ycoord;

Xcoord=gl_MultiTexCoord0.yxxx +
vec4(0.0,0
Ycoord=gl-MultiTexCoord0.xyyy+
vecd(0.0,0.0,-1.0,1.0);

gl_Position = ftransform();
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GPU programming model

The heat equation

CPU
Application

RAM Textures Render to texture

/

/

/

/

> The geometry is rasterized into pixels

» Texture coordinates are interpolated
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GPGPU programming model

The heat equation

Fragment
Proc

CPU
Application
RAM

Textures Render to texture

varying vecd Xcoord;
varying vecd Ycoord;

uniform sampler2D n;

The fragment shader calculates our expression N .
uniform sampler2D n_minus;

urHl _pyn =1 vecd tex = texture2D(n, Xcoord.yx);
i W i vecd tex0 = texture2D(n, Xcoord.wx);
k 5 o o n vecd tex1 = texture2D(n, Xcoord.2x);
+ oz Wiy Ui+ 0 0 — A vecd tex2 — texture2D(n, Ycoord xw);

vecd tex3 = texture2D(n, Ycoord.xz);

Tt o = e e vecd texL = texture2D(n_minus, Xcoord.yx);
gl_FragData[0] = (2.0 * tex - texL +
(2.0/4.0)*(tex0 + texl + tex2 + tex3 -
4.0%tex)):
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GPGPU programming model

The heat equation

Fragme
Process

CPU

Application
p;l)?,‘-\M Textures Render to texture

Qur computation is written to a texture

It can immediately be reused in the next step
No data is transfered to the CPU

Nothing is displayed on screen

Yvvy
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Conclusion

Well suited applications

Large data sets

High parallelism

Minimal dependencies between data elements
High arithmetic intensity

Lots of work to do without CPU intervention
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Conclusion

Application ported to the GPU

Matrix Algebra

Partial Differential Equations
Image processing

Fast Fourier Transform

Ray Tracing

Geometric computing
Databases
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Conclusion

Advantages and disadvantages

Advantages
@ flops, Gflops, Tflops

@ Sony PS3 graphics chip
RSX has 1.8 Tflops!

Disadvantages

@ Programming model is
inherently parallel

@ Programming model is
tied to graphics

@ Limited to 32-bit floating
point

@ Rapidly evolving
architectures

@ Largely secret
architectures
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Questions? J
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