General Purpose Graphics Processing Unit
GPGPU

Olav Haugehatveit
haugehat@stud.ntnu.no

Department of Electronics and Telecommunication
Norwegian University of Science and Technology

June 2006

Q Gru

@ Introduction
@ Performance analysis

9 Programming model
@ The graphics programming model
@ GPGPU programming model

e Conclution
@ Conclution

Q Gru

@ Introduction
@ Performance analysis

GPU
®0

Introduction

What is a GPU?

GPU = Graphics Processing Unit

GPU
®0

Introduction

What is a GPU?

GPU = Graphics Processing Unit

Purpose
@ Draw graphics on the monitor

GPU
®0

Introduction

What is a GPU?

GPU = Graphics Processing Unit

Purpose
@ Draw graphics on the monitor

What scientists what with it?

@ Non graphics application (ie. numerical simulations)

GPU
®0

Introduction

What is a GPU?

GPU = Graphics Processing Unit

Purpose
@ Draw graphics on the monitor

What scientists what with it?

@ Non graphics application (ie. numerical simulations)

Why?
Enormous floating point power J

GPU
oe

Introduction

Floating point increment

200
« ATI [9700PRO
9800PRO X800XT
X1B0DXT] a
Nvidia [FX 5900
160 r 6800UItra 7800GTX]
» Intel Pentium IV
o 120
o
o
-
L
© 80
]
40

0
2001 2002 2003 2004 2005 2006

{Data courtesy of lan Buck, Mike Houston)

GPU
®0

Performance analysis

Performance analysis

@ Annual growth ~ 1.5x — Decade growth ~ 60x

GPU
®0

Performance analysis

Performance analysis

@ Annual growth ~ 1.5x — Decade growth ~ 60x
@ Follows Moore’s law

GPU
®0

Performance analysis

Performance analysis

CPU
@ Annual growth ~ 1.5x — Decade growth ~ 60x

@ Follows Moore’s law

<
V.

GPU
®0

Performance analysis

Performance analysis

CPU
@ Annual growth ~ 1.5x — Decade growth ~ 60x

@ Follows Moore’s law)

@ Annual growth ~ 2.0x — Decade growth ~ 1000x

A,

GPU
®0

Performance analysis

Performance analysis

CPU
@ Annual growth ~ 1.5x — Decade growth ~ 60x

@ Follows Moore’s law)
@ Annual growth ~ 2.0x — Decade growth ~ 1000x
@ Much faster than Moore’s law

A,

GPU
oce

Performance analysis

Performance analysis

Why are they so fast?

@ Parallel architecture optimized for floating point arthimetic
@ 2-48 pipelines
e ~ 20 flops/pipeline pr. clock!
e 650 MHz

@ Data is read and write only
@ High memory bandwidth

Programming model

Outline

9 Programming model
@ The graphics programming model
@ GPGPU programming model

Programming model
000000

The graphics programming model

The graphics pipeline

Fragment
l ‘ ’ Process

Textures Render to texture

CPU

Application
RAM

The GPU acts as a stream computer
Given a stream of data, it executes the same operation on
every data element

Programming model
0@00000

The graphics programming model

CPU

Application

Textures Render to texture

glBind Texture(tex, GLL.TEXTURE2D);
glUseProgram(proglD);

The CPU: glBegin{ GL_TRIANGLES);
e glNormal3f(0.0, -0.35, 0.67);
P Uploacls shaders glVertex3f(-1.0, 0.0, 0.0);
> Uploads textures glNormal3f(0.001, -0.49, -0.62);

P Sends — glVertex3f(1.0, 0.0, 0.0);

P Executes the pipeline

glEnd();
glFlush();

Programming model
00e0000

The graphics programming model

CPU

Application
RAM

Fragment
Processt

Render to texture

Textures

\

\

The vertex processor transforms

v

>
>
>
>

Position
Normal

Color

Texture coordinates
User defined attributes

(=1,0)

(1.0)

Programming model
[e]e]e] Jelele]

The graphics programming model

CPU
Application !

Textures Render to texture

P Vertices are assembled into primitives.

P Primitives are clipped A

P Vertices are projected into window coordinates ™

P Primitives are rasterized into fragments /"/J‘ J‘ I h\,\
P> Attributes are interpolated across primitives AJ_J_L —= e

(a fragment is a meta-pixel is has depth as well as (x, y)-
coordinate)

Programming model
0000e00

The graphics programming model

CPU
Application
RAM

Textures Render to texture

The fragment processor:
P calculates the final color and depth

This usually involves texture lookup and viewport calculations
based on attributes from the vertex proce

Programming model
0000080

The graphics programming model

CPU
Applicati
I)PR:;;A'O“ Textures. Rendert)/{exture

P Fragments are discarded or blended
P Writing to auxiliary buffers

Programming model
000000e

The graphics programming model

Looping

CPU
Application
RAM

Render to texture

Finally all primitives are displayed!

Programming model
9000000

GPGPU programming model

Mapping computational concepts to the GPU

CPU

Programming model
9000000

GPGPU programming model

Mapping computational concepts to the GPU

CPU C—

@ Array @ Texture

Programming model
9000000

GPGPU programming model

Mapping computational concepts to the GPU

CPU C—

@ Array @ Texture
@ Inner loop @ Fragment shader

Programming model
9000000

GPGPU programming model

Mapping computational concepts to the GPU

CPU C——

@ Array @ Texture
@ Inner loop @ Fragment shader
@ Feedback @ Render to texture

Programming model
9000000

GPGPU programming model

Mapping computational concepts to the GPU

CPU
@ Array
@ Inner loop
@ Feedback

@ Computational
invocation

@ Texture

@ Fragment shader

@ Render to texture

@ Geometry raserization

Programming model
9000000

GPGPU programming model

Mapping computational concepts to the GPU

CPU C—

@ Array @ Texture

@ Inner loop @ Fragment shader

@ Feedback @ Render to texture

@ Computational @ Geometry raserization
invocation @ Texture coordinates

@ Computational domain

V.

Programming model
0@00000

GPGPU programming model

The heat equation

The heat equation: %itg =Vu

Programming model
[e]e] lelele]e]

GPGPU programming model

The heat equation

CPU

Application
RAM

Textures Render to texture

glUseProgram(waveequation);
glUniferm1i(0, n_minus);
glUniformli(1, n);
glDrawBuffers(1, &n_plus)
glBegin(GL_QUADS);

For every timestep

P> Binds the previous rendertargets as textures glVertex2f(0.0, 0.0);

P Secupa glVertex2f(1.0, 0.0);

. glVertex2f(1.0, 1.0);

P Draws a single quad glVertex2f(0.0, 1.0);
glEnd();

swap(n_plus, n_minus);
swap(n-minus, n);

Programming model
[e]e]e] Jelele]

GPGPU programming model

The heat equation

CPU

Application
RAM

Textures Render to texture

\
\

P Calculates texture coordinates

The vertex processor:

P Passes everything trough

varying vecd Xcoord;
varying vecd Ycoord;

Xcoord=gl_MultiTexCoord0.yxxx +
vec4(0.0,0
Ycoord=gl-MultiTexCoord0.xyyy+
vecd(0.0,0.0,-1.0,1.0);

gl_Position = ftransform();

Programming model
[e]e]ele] lele]

GPU programming model

The heat equation

CPU
Application

RAM Textures Render to texture

/

/

/

/

> The geometry is rasterized into pixels

» Texture coordinates are interpolated

Programming model
[e]e]ele]e] o]

GPGPU programming model

The heat equation

Fragment
Proc

CPU
Application
RAM

Textures Render to texture

varying vecd Xcoord;
varying vecd Ycoord;

uniform sampler2D n;

The fragment shader calculates our expression N .
uniform sampler2D n_minus;

urHl _pyn =1 vecd tex = texture2D(n, Xcoord.yx);
i W i vecd tex0 = texture2D(n, Xcoord.wx);
k 5 o o n vecd tex1 = texture2D(n, Xcoord.2x);
+ oz Wiy Ui+ 0 0 — A vecd tex2 — texture2D(n, Ycoord xw);

vecd tex3 = texture2D(n, Ycoord.xz);

Tt o = e e vecd texL = texture2D(n_minus, Xcoord.yx);
gl_FragData[0] = (2.0 * tex - texL +
(2.0/4.0)*(tex0 + texl + tex2 + tex3 -
4.0%tex)):

Programming model
000000

GPGPU programming model

The heat equation

Fragme
Process

CPU

Application
p;l)?,‘-\M Textures Render to texture

Qur computation is written to a texture

It can immediately be reused in the next step
No data is transfered to the CPU

Nothing is displayed on screen

Yvvy

Conclution

Outline

e Conclution
@ Conclution

Conclution
@00

Conclusion

Well suited applications

Large data sets

High parallelism

Minimal dependencies between data elements
High arithmetic intensity

Lots of work to do without CPU intervention

Conclution
(o] Jo}

Conclusion

Application ported to the GPU

Matrix Algebra

Partial Differential Equations
Image processing

Fast Fourier Transform

Ray Tracing

Geometric computing
Databases

Conclution
[e]e]]

Conclusion

Advantages and disadvantages

Advantages
@ flops, Gflops, Tflops

@ Sony PS3 graphics chip
RSX has 1.8 Tflops!

Disadvantages

@ Programming model is
inherently parallel

@ Programming model is
tied to graphics

@ Limited to 32-bit floating
point

@ Rapidly evolving
architectures

@ Largely secret
architectures

Conclution
[]

Questions? J

	Main Part
	GPU
	Introduction
	Performance analysis

	Programming model
	The graphics programming model
	GPGPU programming model

	Conclution
	Conclution
	

