
Sound field calculation with GPU
Fast under water ray tracing

Olav Haugehåtveit
haugehat@stud.ntnu.no

Department of Electronics and Telecommunication
Norwegian University of Science and Technology

2006 June 9.



PlaneRay Implementation Result Conclusion

Outline

1 PlaneRay
Initial ray tracing

2 Implementation
GPGPU
Pixel matrix

3 Result
Program results
Conclusion



PlaneRay Implementation Result Conclusion

Outline

1 PlaneRay
Initial ray tracing

2 Implementation
GPGPU
Pixel matrix

3 Result
Program results
Conclusion



PlaneRay Implementation Result Conclusion

Scenario



PlaneRay Implementation Result Conclusion

Initial ray tracing

Ray propagation

Starting condition
Current sound speed at source, c(z)

Current depth of source, z
Number of rays, n
Starting angles for each ray, θ0n

Receiver location



PlaneRay Implementation Result Conclusion

Initial ray tracing

Ray propagation

Starting condition
Current sound speed at source, c(z)

Current depth of source, z
Number of rays, n
Starting angles for each ray, θ0n

Receiver location



PlaneRay Implementation Result Conclusion

Initial ray tracing

Ray propagation

Starting condition
Current sound speed at source, c(z)

Current depth of source, z
Number of rays, n
Starting angles for each ray, θ0n

Receiver location



PlaneRay Implementation Result Conclusion

Initial ray tracing

Ray propagation

Starting condition
Current sound speed at source, c(z)

Current depth of source, z
Number of rays, n
Starting angles for each ray, θ0n

Receiver location



PlaneRay Implementation Result Conclusion

Initial ray tracing

Ray propagation

Starting condition
Current sound speed at source, c(z)

Current depth of source, z
Number of rays, n
Starting angles for each ray, θ0n

Receiver location



PlaneRay Implementation Result Conclusion

Initial ray tracing

Ray propagation

Calculating a step
Depth steps with ±∆ layer
Sum of all ranges will give the total range



PlaneRay Implementation Result Conclusion

Initial ray tracing

Ray propagation

Calculating a step
Depth steps with ±∆ layer
Sum of all ranges will give the total range



PlaneRay Implementation Result Conclusion

Initial ray tracing

Bottom inclination

Bottom inclination
θref = θin + 2α

The ray will as consequence change direction in
accordance with Snell’s law.



PlaneRay Implementation Result Conclusion

Initial ray tracing

Bottom inclination

Bottom inclination
θref = θin + 2α

The ray will as consequence change direction in
accordance with Snell’s law.



PlaneRay Implementation Result Conclusion

Initial ray tracing

Values storage

Values to store
Bottom and Surface reflection

Range
Travel time
Intersection angle

Eigen values at receiver
Intersection angle
Range
Travel time
Depth
Start angle for ray



PlaneRay Implementation Result Conclusion

Initial ray tracing

Values storage

Values to store
Bottom and Surface reflection

Range
Travel time
Intersection angle

Eigen values at receiver
Intersection angle
Range
Travel time
Depth
Start angle for ray



PlaneRay Implementation Result Conclusion

Initial ray tracing

Values storage

Values to store
Bottom and Surface reflection

Range
Travel time
Intersection angle

Eigen values at receiver
Intersection angle
Range
Travel time
Depth
Start angle for ray



PlaneRay Implementation Result Conclusion

Outline

1 PlaneRay
Initial ray tracing

2 Implementation
GPGPU
Pixel matrix

3 Result
Program results
Conclusion



PlaneRay Implementation Result Conclusion

GPGPU

Overview

Processors
Vertex processor (pass the data trough)

Fragment processor (executes the math)



PlaneRay Implementation Result Conclusion

GPGPU

Overview

Processors
Vertex processor (pass the data trough)

Fragment processor (executes the math)



PlaneRay Implementation Result Conclusion

Pixel matrix

Vertex and fragment programs

Vertex shader
Pass the initial data trough
Sets up the space coordinates

Fragment shader
A pixel is thought of as one ray
8x8 pixels will result in 64 rays
Different values for every pixel
All rays are computed in parallel
Computes the range and travel time for every loop



PlaneRay Implementation Result Conclusion

Pixel matrix

Vertex and fragment programs

Vertex shader
Pass the initial data trough
Sets up the space coordinates

Fragment shader
A pixel is thought of as one ray
8x8 pixels will result in 64 rays
Different values for every pixel
All rays are computed in parallel
Computes the range and travel time for every loop



PlaneRay Implementation Result Conclusion

Pixel matrix

Frame generation



PlaneRay Implementation Result Conclusion

Pixel matrix

Looping

Looping
Values read into math
shader
Results from math
shader to screen
Results from math
shader set as input to
next loop
Ping-ponging



PlaneRay Implementation Result Conclusion

Pixel matrix

Looping

Looping
Values read into math
shader
Results from math
shader to screen
Results from math
shader set as input to
next loop
Ping-ponging



PlaneRay Implementation Result Conclusion

Pixel matrix

Looping

Looping
Values read into math
shader
Results from math
shader to screen
Results from math
shader set as input to
next loop
Ping-ponging



PlaneRay Implementation Result Conclusion

Pixel matrix

Looping

Looping
Values read into math
shader
Results from math
shader to screen
Results from math
shader set as input to
next loop
Ping-ponging



PlaneRay Implementation Result Conclusion

Pixel matrix

Read back

Asynchronous read back
Read back of values will slow down the overall speed.
(GPU-frame buffer-CPU-GPU)
Asynchronous read back will speed up the process.
(GPU-pixel buffer-GPU)

All values are stored in a text file for use i later stages.



PlaneRay Implementation Result Conclusion

Pixel matrix

Read back

Asynchronous read back
Read back of values will slow down the overall speed.
(GPU-frame buffer-CPU-GPU)
Asynchronous read back will speed up the process.
(GPU-pixel buffer-GPU)

All values are stored in a text file for use i later stages.



PlaneRay Implementation Result Conclusion

Outline

1 PlaneRay
Initial ray tracing

2 Implementation
GPGPU
Pixel matrix

3 Result
Program results
Conclusion



PlaneRay Implementation Result Conclusion

Program results

Theorem
Program demonstration



PlaneRay Implementation Result Conclusion

Conclusion

Conclusion
Matlab is not optimized CPU code.
GPU program is theoretically 200 times faster.
GPU program is timed to be 45 times faster with 40000
rays.
The GPU program is not optimized.



PlaneRay Implementation Result Conclusion

Conclusion

Summary

Summary
The GPU has increased the speed by 40-50 times.
Accuracy is the same
The performance will increase when program is optimized



PlaneRay Implementation Result Conclusion

End

Questions?


	Main Part
	PlaneRay
	
	Initial ray tracing

	Implementation
	GPGPU
	Pixel matrix

	Result
	Program results

	Conclusion
	Conclusion
	



