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Initial ray tracing

Ray propagation

Starting condition

@ Current sound speed at source, ¢(z)

@ Current depth of source, z

@ Number of rays, n

@ Starting angles for each ray, 6y,
@ Receiver location
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Calculating a step

@ Depth steps with £A layer
@ Sum of all ranges will give the total range
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Initial ray tracing

Bottom inclination

Bottom inclination
@ Orer = Oin + 2
@ The ray will as consequence change direction in
accordance with Snell’s law.
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Initial ray tracing

Values storage

Values to store

@ Bottom and Surface reflection
e Range
o Travel time
e Intersection angle
@ Eigen values at receiver
Intersection angle
Range
Travel time
Depth
Start angle for ray
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Processors

@ \ertex processor (pass the data trough)

@ Fragment processor (executes the math)
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Vertex shader
@ Pass the initial data trough
@ Sets up the space coordinates
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Pixel matrix

Vertex and fragment programs

Vertex shader

@ Pass the initial data trough
@ Sets up the space coordinates

<

Fragment shader

@ A pixel is thought of as one ray
@ 8x8 pixels will result in 64 rays
@ Different values for every pixel

@ All rays are computed in parallel

@ Computes the range and travel time for every loop

A
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Pixel matrix

Looping

@ Values read into math
shader

@ Results from math
shader to screen

@ Results from math
shader set as input to
next loop

@ Ping-ponging
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Read back

Asynchronous read back

@ Read back of values will slow down the overall speed.
(GPU-frame buffer-CPU-GPU)

@ Asynchronous read back will speed up the process.
(GPU-pixel buffer-GPU)
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Pixel matrix

Read back

Asynchronous read back

@ Read back of values will slow down the overall speed.
(GPU-frame buffer-CPU-GPU)

@ Asynchronous read back will speed up the process.
(GPU-pixel buffer-GPU)

All values are stored in a text file for use i later stages. J
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Program results

Program demonstration
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Conclusion

@ Matlab is not optimized CPU code.
@ GPU program is theoretically 200 times faster.

@ GPU program is timed to be 45 times faster with 40000
rays.

@ The GPU program is not optimized.
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Conclusion

Summary

@ The GPU has increased the speed by 40-50 times.
@ Accuracy is the same
@ The performance will increase when program is optimized
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Questions? J
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