COMPUTATION OF ROOM ACOUSTICS
USING PROGRAMABLE VIDEO
HARDWARE

Marcin Jedrzejewski

PJWSTK

marcinj@aster.pl

Krzysztof Marasek

PIJWSTK

kmarasek@pjwstk.edu.pl

Abstract

Keywords:

This paper describes a new method of generating real time acoustics
with the use of widely available graphic video cards. Algorithm that
was mapped to video hardware is ray tracing. Computed echogram was
later used during real time auralization. Simplified acoustic model al-
lows to use this method in real time simulations like video games or fast
acoustics aproximation. Advantage of this method is ability to move
source and listener during simulation without the need for long pre-
computation phase. Test scenes consisted of highly occluded building
architectures. Results show that performing acoustic computation on
GPU can significantly speed it up. Propagation of 16384 rays (at 10
reflections) for few room flat took about 32ms on AMD 2GHz with ATI
Radeon 9800. Such results allow for real time simulations. Computa-
tion of above one million rays took around 1s. Described algorithm is
optimized for working with ATT Radeon 9800 hardware with the use of
DirectX 9 APL

acoustics, GPU, video hardware, ray tracing, impulse response

1. Introduction

Acoustics effects are highly desirable in computer simulations. Appli-

cations like

video games or presentations of architectural environments

can gain quite a lot from adding this new medium. This paper is fo-
cused on implementation of sound paths propagation on GPU. Method

choosen for

auralization is quite straightforward. We want to show that

2

todays graphics hardware can be used to do something it wasn’t designed
for. This is actually a trend that can be seen in many other fields like
physics or mathematics [1].

Graphics Programable Unit

Before going to detailed description of used method, we will introduce
GPU programming model techniques. The most important fact to real-
ize is that there is a big difference between programming for CPU and for
GPU also called streaming processor. CPUs are executing instructions
in serial mode while GPUs are working by executing instructions paral-
lely. Streaming model means that there are many processors executing
parallely the same code and each of them operate on some input data
and produces some output data. Those processors cannot communicate.
Code that is executed on the stream processors is also called kernel. Im-
portant fact is also that GPUs operate on vectors. Vector is a collection
of four floats, in graphics they mostly refer to RGB components and
fourth value is used mainly for alpha blending.

Input data that is going to be processed by GPU kernel is first copied
to texture surfaces and later its being accessed by Pixel Shader. Pixel
shader is a program that is executed on video hardware for each pixel
shown on screen. Texture surface is a block of memory that is stored
inside graphics card and can be accessed from inside pixel shader pro-
gram.

Acoustic model

Precision of computed impulse responses highly depend on the needs.
Our main purpose was to compute echos of one sound source in highly
occluded environment. Each wall contains absorption coefficient for
only one frequency. This restriction is imposed by hardware limitation.
Doppler shifting and interaural time difference can be added during au-
ralization and is described later. Model also computes distance of the
traced path in order to calculate sound attenuation.

Ray tracing method

Ray tracing was widely studied over the last few decades. Recently
there was a lot of work put into runing it on graphics hardware. There is
a difference between ray tracing for graphics and acoustics purposes. The
first one computes visually accurate scenes that mostly are composed
of hundreds of triangles that contains their own shading informations.
Also graphical ray tracing requires big screen resolutions like 800x600
or even more, while in acoustics resolutions of render target textures

Computation of room acoustics using programable videohardware 3

range from 128x128 to 256x256 (128x128 means 16384 traced rays). In
acoustic modeling rays are traced from source until they reach receiver
most often aproximated by bounding sphere, this is ilustrated in Figure
1. Architecture consists only of polygons that represents walls, all detail
objects like furniture, lamps or desks can be omited because they con-
tribute to final results in rather small amount. If there is a need to add
for example a bed as an object that will damp sound waves its enough
to aproximate it with polygon of appropriate absorption cooeficient.

o A
R ‘
m
=2
2 | direct path
= 0 early
o g— 1 reflections
2
late reverberation
\/ : >
S 0.01 0.080.12 0.18 time (s)

Figure 1. On the left we have a top view of a room with one point source (S) and
one receiver (R), there are four traced sound paths of different orders (0,1,2 and 3).
Right picture shows computed echogram, each vertical line (also called tap) represents
one echo for each traced path.

2. Implementation

Most important aspect of efficient algorithm implementation on GPU
is the choice of acceleration data structure. Each ray needs to know
with which polygons it should interact at the given moment. The brute
force method requires intersecting each ray with each polygon in the
scene and chosing the closest one. Computational cost of it is very
high. Our method makes use of spatial coherency and is divided into six
phases. Instead of computing intersections with polygons we intersect
rays with planes which is much more efficient. First four are done during
precomputation stage, last two are done in real time.

Phase 1. Modeling of the scene. Used algorithms requires input
geometry to be ”legal”. This means that walls are composed of boxes
that are combined together. Each wall is made of the set of polygons
and each polygons front face (the one from which point normal vector)
cannot see back face of any other polygon. In order to make geometry

4

always legal, CSG ! is computed with exclusive union boolean operator
used. This precomputation is made each time geometry changes.

Phase 2. Leafy BSP? tree computation. This process partitions our
geometry into solid convex regions also called leafs. More on algorithm
implementation can be found in work by Ranta-Eskola [2].

Phase 3. Portals computation. This is done using previously com-
puted BSP tree. Each portal informs to which leaf we can go from
current leaf.

Phase 4. Further leaf splits. Using planes instead of polygons is
difficult in situations where portal and polygon lay on the same plane
in the given leaf. In such cases there is a need to make additional leaf
splits. Such operation might split other portals which requries path to
neighbouring leafs and computation of a new portal information.

Phase 5. Multi pass rendering. In each loop of iterations two pixel
shaders are executed. First one computes intersections in current leaf
for each ray, second one computes propagation to new leaf, intersection
with receivers sphere and reflected ray. Because leafs can contain more
than 6 planes, ray can stay in current leaf for further plane intersections
in the following pass.

Phase 6. Echogram construction. It involves retrieval of render
target texture with all the final rays and their absorption cooefficients.
This is the major bottleneck in our algorithm. Transfering any data from
video memory to system takes very long and can take up to 16ms to get
128x128 16bit floating point pixel format texture. This will change in
the near future when AGP hardware will be substituted by PCI-Express
busses. Based on data computed during ray propagation each image
source is calculated. This information is enough to place 3D sound
source in space and also use HRTF to model effects like interaural time
difference or pinna response. All of this is implemented with the use of
the DirectX framework.

Texture data organization

Information on planes, portals and leafs are stored in the form of
1D textures. Each plane/portal have its own information in separate

Lconstructive solid geometry

?binary space partition tree

Computation of room acoustics using programable videohardware)

texture (param texture). It contains absorption coefficient and whether
its a polygon plane or portal plane. As can be seen in Figure 2 leaf data
contains index into plane texture and also count of how many planes it
contains (most often six).

leaf lesfO leafl leaf2 ... <t x-currmtl?af number o
€ y - current plane examin
e[0,616 61261 t@(ture)zl-ray atterrl)uation
w - distance to closest plane
datal Xyz w
texture | ray origin | total distance |

plane planed planel plane2
texture [XyzZw [XyZW [XyZw |

param prmO0 prml prm2 .. data2 A

texture [Xy2ZW [Xyzw [xyaw] e | ray direction| closest plane |
Figure 2. Texture input data orga- Figure 3. Pixel shader input and
nization output data organization.

Pixel shader operate on render target textures in cyclical way. Orga-
nization of data is shown in Figure 3. Three render target textures are
used. First one contains state information, second information on origin
of ray and third coordinates of ray direction.

Pixel shaders

Pixel shaders were written using HLSL language, they are highly opti-
mized to stay below limit of 962 instruction for ATI 9800. Main goal was
to compute intersections with six planes during one pass. Pseudocode
for both of them is as follows:

leafIntersect(ray){
- Get plane index for current ray
- Intersect ray with six planes for current leaf
- Store information of closest of intersected rays

}

rayPropagate (ray){
- Check if current leaf contains more planes
- Check if ray is in leaf where listener is located
If yes then intersect ray with bounding sphere
- Check if there was intersection with plane
If yes then reflect ray and its absorption
If it was portal then set new leaf for this ray

364 for arithmetic + 32 for texture

6

Auralization

Real time acoustics generation requires fast methods of signal convo-
lutions. Our method was choosen only for presentation purposes. We as-
sume some maximal number of sound sources and choose from echogram
uniformly echos that have different delays. Each delay is computed with
the use of distances that rays have traveled. Having this information we
can set each sound source to appropriate position to simulate echos.

3. Results

Algorithm shown above was implemented in software without use of
GPU. Only difference was to use polygon intersection instead of inter-
section with all planes in leaf. This way we were able to take benefit
of CPU ability to dynamically break for(;;) loops. Test case involved
tracing 16384 rays uniformly distributed on the source sphere. All rays
were propagated until reaching 10 reflections. CPU implementation took
almost 0.5 second while GPU version took only 32 ms. Also in those
32ms we have almost 16ms which is time it takes to transfer texture data
from video memory to local memory. CPU version of algorithm wasn’t
very highly optimized. Wald et al. [3] have implemented graphical ray
tracer capable of rendering 160 mln. ray-polygon intersections per sec-
ond using cluster of 7 dual-Pentium III’s (800-866MHz). Since we are
dealing with acoustic ray tracer its difficult to compare those results.
Implementation on GPU was capable of computing over 100mln ray-
polygon intersections per second with data retriveal and almost 220mln
without?.

4. Ackowlegments

The authors are grateful to Dr. Maria Tajchert from Warsaw Techni-
cal University for the helpful comments and suggestions.

References

[1] General purpose GPU programming site http://www.gpgpu.org.

[2] Samuel Ranta-Eskola. Binary space partioning trees and polygon removal in real
time 3d rendering. Master’s thesis.

[3] Ingo Wald, Carsten Benthin, and Philipp Slusallek. Distributed Interactive Ray
Tracing of Dynamic Scenes. In Proceedings of the IEEE Symposium on Parallel
and Large-Data Visualization and Graphics (PVG), 2003.

4with the incoming PCI-Express architecture this result will be very realistic.

