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Abstract

This paper reports the initial results of using a modern
graphic board to calculate sound propagation in the
ocean. A ray tracing algorithm has been implemented on
a Graphics Processing Unit (GPU) and used to calculate
the trajectories of a large number of rays in an ocean where
the sound speed varies with depth and the bathymetry
The algorithm and the
implementation are described and some examples of tracing
With the

GPU implementation we have achieved a reduction in

varies with horizontal range.
rays out to several kilometers are presented.

computation time of the order 100 compared with a
conventional CPU implementation while retaining the same

numerical accuracy.
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acoustics, Ray tracing

1 Introduction

In the last few years, modern graphics cards have
developed extremely rapidly in terms of process-
ing speed, memory size, and most significantly,
programmability. So far, this development has
largely been driven by the mass-market demand
for faster and more realistic computer games and
multi-media entertainment. But several research
groups are now realizing that this graphics hard-
ware can also be used to dramatically speed up
many conventional numerical methods of impor-
tance in scientific computing. An example of scien-
tific computation where this method may become
very useful is the modeling of sound propagation in

ocealn.

In this paper we report the initial results of a
study to use a Graphics Processing Unit (GPU) for
acoustic ray tracing in the ocean. The motivation
for this work was to obtain experience in program-
ming a GPU and evaluate the implications and the
gain in computation time by using programmable
GPU for modeling of wave propagation phenomena.

Mathematical /numerical modeling of the acous-
tic propagation in the oceans is an important issue
in underwater acoustics and required in many ap-
plications in order assess the performance of acous-
tic equipments such as echo sounders, sonar, and
communications systems. In particular, fast and
versatile propagation modals are required in model-
based estimation of oceanographic parameters of
the water and geo acoustic parameters of the sea
floor where the acoustic propagation model is re-
quired to be run many times with different envi-
ronmental parameters. Ray acoustics studies and
ray tracing calculations are the simplest means for
assessment of sound propagation in the sea. This
is essentially a high-frequency approximation of the
solution of the wave equation, applicable to fre-
quencies so high that the signal wavelength is con-
siderably smaller than the characteristic distance of
variation in sound speed. According to ray acous-
tics, the sound follows rays that are normal to sur-
faces with the same phase. When generated from
a point source in a medium with constant sound
speed, the phase fronts form surfaces that are con-
centric circles, and the sound follows straight paths
that spread out from the sound source. If the speed
of sound is not constant, the sound rays will fol-
low curved paths rather than straight ones. The



computational technique known as ray tracing is
a method used to calculate the coordinates of the
sound rays emanating from the source.

The sound speed in the ocean varies with the
oceanic condition, in particular with the tempera-
ture and the salinity of the waters. Diurnal and
seasonal changes in these conditions may therefore
have strong impact on the propagation conditions.
In general, the sound speed will vary both with
depth and with range, but for many applications we
may neglect variations with range and only consider
the depth dependence of the sound speed in addi-
tion to the effect of range dependent water depth
or bathymetry. As indicated before, long computa-
tion times can often be a concern and limitation in
application of ocean acoustics models, also for mod-
els based on ray tracing. Therefore, the new pro-
grammable Graphics Processing Unit (GPU) offers
new possibilities in implementation that are consid-
erably faster than a CPU based implementation, by
doing the calculation in parallel. The idea of using
GPU for ray tracing is not new or original, earlier
studies considered tracing sound rays in rooms [10],
and tracing light rays [§] [7] in visualization appli-
cations for more realistic lighting. In theses arti-
cles the sound speed is assumed constant and the
rays are straight lines. We have found one article
that considers so called nonlinear ray tracing [11],
for tracing light rays in space with varying wave
speed After first presenting the simple ray tracing
algorithm used in this study, we will describe the
essential features of the GPU implementation. We
will then present some results of rays in an ocean
with depth dependent sound speed with range de-
pendent bathymetry and compare the computation
time with a CPU implementation. Finally we will
discuss and conclude.

2 A simple ray-tracing algo-
rithm

In this section we will give a short description of
the ray tracing algorithm used in the present work,
more information of theory can be found in text
books such as the book by Jensen et al. (1994) [2] or
Medwin and Clay (1998) [I]. In the implementation
used here, the water column is divided into a large
number of layers with the same thickness Az as

shown in figure 1. Within each layer, the sound
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FIGURE 1: The algorithm step with Alayer and calcu-
late a range increment for every step. The sum of
all layers range will give the total range for the ray.

speed is approximated with a straight line so that,
in the layer z; < z < z; + 1, the sound speed is
taken to be

(1)

where ¢; is the sound speed at depth z;, and the
sound speed gradient in the segment is g;. Since the
sound speed in each of these layers has a constant
gradient, the ray in each layer follows a circular
arc; the arc’s radius of curvature R;(z) is given by
the local sound speed gradient g;(z) and the ray
parameter,

c(z) =i+ gi(z — z),

1
Ri(=) = _fgi(z) '

The ray parameter is defined as:

(2)
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where 6, is the initial angle of the ray’s trajectory
at the source depth z, and the sound speed is ¢(zs).
After traveling through the layer from z; to z; + 1;
the ray’s range increment is

ripr1 —1r; = —R; (sin 0;+1 — sin 91-), (4)

which also can also be written in the form

Tig1 —Ti = é [\/1 —23(zi41) — V1 - 5202(271)} :
Z (5)




The local sound speed gradient is approximated by

_c(zit1) = c(2)
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The travel time increment is
1 1 c(ziy1) 1—¢82¢2(%)
—1In
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(7)

When the water depth varies with distance the ray
parameter is no longer constant, but changes with
the bottom inclination angle. An incoming ray with
angle 0y, is reflected to the angle 6,.; when the
bottom angle is a.

Tit1 + T3 =

9ref =0;, + 2« (8)

Consequently, the ray parameter has to change to

cos(Orer)  cos(Bipn + 2a)
fref = =
c c
1— 2 fcz (9)
= &;n cos(2a) — ~ sin(2a).
c

The algorithm makes repeated use of equation (5)
and (7), stepping with depth increments Az in such
a way that the new depth z;11 is given by the old
depth z; as

Zi+1 = %4 + Az (10)
The plus sign indicates a ray going downwards and
the minus sign, a ray going upwards. Evidently the
sign has to change when the ray strikes the bottom
and the surface, and when the ray goes trough a
turning point. The layer thickness, or depth incre-
ment Az and the number of depth points N,,

max(waterdepth)
N, = v .

(11)

The algorithm presented so far gives the trajectory
and travel time for a single ray with initial angle
Af departing from a given source depth z;. By
tracing a large number of rays with different initial
angles, we obtain a visualization of the complete
sound field with shadow zones, with particular low
sound intensity, and convergence zones with high
intensity. This visualization is useful in itself but

for a more detailed study requires further process-
ing steps consisting of finding all the rays that con-
nects the source with a given receiver location, the
so called eigenrays, and thereafter adding the con-
tributions of all eigenrays taking into account their
travel times and the amplitudes. The amplitudes
are computed from the calculation of the acous-
tic intensity which again is calculated by using the
principle that the power within a space limited by
a pair of rays with initial angular separation of df,
centered on the initial angle 6y will remain between
the two rays, regardless of the rays’ paths. The
acoustic intensity as function of horizontal range,
I(r) is according to this principle given by

dby

2 cosby
dr

I(r) =1I

0 -
r sinf

. (12)

These two processing steps are not carried out in
the current GPU implementation, but by another
program using the result of the ray tracing calcula-
tion. This means that, in addition to the visualiza-
tion of the ray coverage, we need to store a number
of generated rays during the trajectory calculations,
such as the eigenrays to any position in space with
their travel times and amplitudes.

3 Description of a Graphics
Processing Unit

A Graphics Processing Unit is a dedicated graphics
rendering device for a personal computer or game
console. Modern GPUs are very efficient at manip-
ulating and displaying computer graphics, and their
parallel structure makes them more effective than
typical CPUs for a range of complex algorithms.
A GPU implements a number of graphics primi-
tive operations in a way that makes them render
much faster than drawing directly to the screen
with the CPU. The GPU uses a pipeline archi-
tecture to process multiple fragments in parallel.
This means that it can do a lot more operations
at same time, compared to the CPU. From figure
2 the vertex and fragment processing stages is the
programmable part of the pipeline. Making an ob-
ject visible is shown in figure 3, where the initial
data are processed in multiple stages. For every
initial data that is pushed through the pipeline the
vertex and fragment stages will transform the data



3D
Application
Or Game

3D API:
OpenGl
or Direct3D
CPU — GPU Boundary

el
—|Location
Rasterization |stream
Raster

Operations

GPU Primitive

Assembly

Interpolation

Programmable
Vertex
Processor

Programmable
Fragment
Processor

FIGURE 2: The graphics pipeline processing stages used
to perform rendering to the frame buffer. By pro-
gramming the vertex and fragment processor to do
other things than it was intended for, we can calcu-
late the sound field. Figure are from [14].
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FIGURE 3: In the graphics pipeline stages the initial
data are colored before making the primitives. The
primitives can be triangles or lines. By rasterizing
and interpolating the primitives, a visible object is
made. Figure are from [14].

in accordance to the instructions given. This in-
struction are written in a file for each stage, be-
ginning with the vertex processor, which will make
primitives out of vertex data. The vertex and frag-
ment processor is taught of as one unit, however
they consist of several processors. Since rasteriza-
tion and interpolation are more demanding than
primitive assembly, the fragment processor consist
of more processors. The result sent to the frame
buffer is than displayed on the screen as e.g a char-
acter in a computer game.

4 Implementation

Calculating a sound field with PlaneRay are done
in steps, using the result as input to next iteration
of the algorithm. Transferring this to the GPU can
be done by writing the algorithm in a shader file,
which executes the instruction on every element go-

ing through the pipeline. Thinking of one pixel as
one ray will make the shader calculate one step for
the ray tracing algorithm as one frame is generated.
As the time steps forward, a number of frames will
be created depending on the pixel grid size, shown
in figure 4. This will make the ray path through the
ocean. Calculating a step for all the rays in paral-
lel, each pixel needs different initial values. This
can be made possible with texture lookup. In fig-
ure 5 the program runs trough one step, calculating
a number of rays from the pixel grid size. The val-
ues are different for each pixel, which will make the
output values also different. Visualizing the rays
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FIGURE 4: For every frame the program creates, the
pixel grid size determines the number of rays to be
generated.

paths, the range values are written to the screen
for every iteration. The result are also set as in-
put to next iteration by swapping render targets,
described as ping-ponging. This property are com-
mon in GPGPU applications.

The frame buffer is the GPUs memory, and usu-
ally this memory is overwritten for every loop for
visualization purposes. When storing the wanted
values they must be written to the CPU for perma-
nent storage, since the GPU overwrites the memory
for every iteration. This read back will slow down
the overall calculation speed, because the program
must write the calculated value to the CPU before
proceeding. However using asynchronous read back
this bottleneck can be minimized.

4.1 Initial Settings

The first step is to set up the settings for the key-
board, window size and view space for the data.
This is the same as setting up a regular GPU ap-
plication. The next step is to read in the sound
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FIGURE 5: After a step in the ray-tracing algorithm
is done, the results are written to a render target
for input to next iteration. For visualization of the
result, it is also sent to a render shader. The rays
path will than be displayed on the screen.

speed profile from a text file into an array on the
CPU. This data is then copied as a texture on the
GPU. By the help of Shallows this is done in one
sentence. With current program follows five differ-
ent profiles to choose from, however any profile can
be used. The GPU needs somewhere to store the
data after calculation, and usually this is done in a
render target. A render target is generic name for
data storage on the GPU, such as a frame buffer or
texture. Since the calculation needs to be visual-
ized, an on- and off-screen frame buffer is needed.
This two are set in the beginning of the program,
along with four render targets for swapping data in
and out of the shader. GPU does all calculations
in parallel, and creates a frame for ever iteration of
the code. A GPGPU application can take advan-
tage of this by using a grid made of out of pixels to
execute a number of calculation. For a calculation
grid out of 7x7, will in current application result
in 49 rays, since each pixel is taught of as one ray.
Each pixel is computed accordingly to the instruc-
tions given in the shader file. The instructions are
the same for all pixels, however the input values are
different.

4.2 Shaders

A shader is a small program within the main pro-
gram which does the mathematics calculations and
rendering. The shaders contains instructions for

both the vertex and fragment part in the pipeline.
In current code the vertices are only passed trough
to the fragment processor. In a texture lies val-
ues to be used in calculation in the form of a four-
component vector. Meaning four different values
can be sent to each pixel from one texture. Current
program uses two four-component vectors in the
ping-ponging, meaning eight values for each pixel
are written to the earlier set off-screen frame buffer
after each calculation. When finding what values
belonging to each pixel the texture2D command is
used. Here the first four values in the texture are
set to pixel number one, next four values to pixel
number two, and so on. When it comes to the sound
speed profile the values are not changed when cal-
culating, however the data is stored in a constant
texture. Instructions used are the formulas from
initial Ray Tracing section. The results of the cal-
culation are stored in two four-component vectors
using swizzle operators.

4.3 GPGPU workflow

For making the shader files and initial settings
working together a work flow is needed. The work
flow starts with creating textures from arrays. Us-
ing boost shared pointer gives the program an easy
control over the texture, which in this case is a 4
component vector. The newly created textures now
contains the initial values earlier set in the program.
This initial values are the earlier mentioned input
to the shader.

The results are stored in a given frame buffer,
and for visualization another frame buffer is used.
Which shader to use is given by a simple command.
Reshaping the calculation grid must be done so the
wanted number of rays are calculated, done with
the reshape function. At the end, the output ren-
der target are swapped with an other render target
so the calculated values are set as input to next
iteration.

By visualizing the result of the other shader pass
the calculated values are shown on the screen along
with a visualizing of the bottom and a time- and
frame-counter. This gives an impression of how fast
the program calculates. From figure 4, 49 rays are
calculated, done as one frame. When the program
makes 350 frames per second (fps), 492350 = 17150
different ray calculations are done in one second.

At the end all results in the frame buffer must



be stored in an array on the CPU. The reason this
has to be stored at the CPU is because the frame
buffer in GPU is overwritten for every calculation.
When not clearing this, the visualization of the re-
sults will be the rays path on the screen. Since the
frame buffer is over written for every calculation,
the data in the window will be not be permanent.
Clearing the frame buffer will make the visualized
path to be erased. So for safe storage the results
needs to be sent to the CPU. Doing this by not
interfering with the speed of the calculation, asyn-
chronous read back must be used. This means that
the read back of data is done simultaneously while
the calculations executes. The values from the read
back process are stored in a dimensionless vector,
with range values for bottom depth, surface depth
and receiver depth when ray hits the respectively
place. Also some additional information is than
added in the vector like start angle, intersection
angle and travel time. All this values shall be used
in other stages in the PlaneRay model.

5 Examples of calculated

sound fields

In the following we present two examples of sound
field calculated by the ray tracing program de-
scribed above. The two examples are typical for
sound propagation under summer and winter con-
ditions at particular location in the Norwegian sea
where the water depth varies from 400 to 350 meter.

In practice the sound speed values are obtained by
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FIGURE 6: With the source at 20 meter of depth using a
winter sound speed profile the rays has a concentra-
tion near the water surface. Here the layer thickness
are 0.5 meter.

measurements at certain depths with relative large
spacing. The first step is therefore to interpolate
the measured sound speed points to even spacing
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FIGURE 7: With the source at 150 meter of depth and
summer sound speed profile, the rays has a concen-
tration around depth of source, resulting in a sound
tunnel. Layer thickness are 0.5 meter.

Az, Equation (10). The values of Az is important
for the accuracy of the calculation, in the examples
we have used the value of Az = 0.5 meter, the total
number of layers is therefore 800. In both cases the
rays have angles between 5° and —5°. The sound
fields for winter and summer conditions are shown
in Figure 6 and 7 respectively. In both cases, the
interpolated sound speed profiles are shown to the
left and the ray tracing to the right.

6 Discussion and evaluation

Comparing this GPU application to what the same
Matlab application performs, the computational
time difference is increasing with number of rays.
As one can see from figure 8 the implementation
in GPU is 45 times faster than the implementa-
tion in Matlab when calculating a 200x200 grid,
which results in 40000 rays. With more rays the
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FIGURE 8: The GPU has increased the calculation time
for high density of rays, however for small number
of rays Matlab outperform the GPU.
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FIGURE 9: The GPU has high frame rate when small
number of rays are calculated, and this is decreasing
with number of rays.

currentﬂ hardware has limitations, and Matlab is
than not suited for calculation. From figure 9 one
can see how the frame rate decreases with number
of rays. However the GPU can handle grid size up
to 410x410, but than the frame rate is low. Theo-
retically the GPU is 200 times faster than Matlab
when 168100 rays are computed. This number is
an approximate from the fact that when four times
the rays, the Matlab calculation time is four times
higher. This applies for small number of rays, and
the estimate are done by assuming this characteris-
tic property resume also with large number of rays.
Since Matlab runs on the CPU, it is not optimal
CPU code. An application in Matlab will not cal-
culate as fast as a straight forward CPU applica-
tion. Estimating CPU vs Matlab the CPU is 2-4
times faster [15], depending on the application.

6.1 Bottlenecks

One bottleneck is the read back of data, which come
into being when values from the calculation are to
be stored at the CPU. Since the CPU gets the val-
ues from the GPUs frame buffer, the GPU has to
wait for the values to be stored at the CPU. In the
current program the read back is only done up to
10 km, however this can be extended.

Another destructive speed effect for the program
is the use of if, else, for and while loops in the
shader file. To much texture lookup will also create
the same effect.

Hntel Centrino M 740 processor with 512 MB DDR2 and
nVidia GeForce Go6600 with 64 MB VRAM

6.2 Further Work

As mentioned earlier, effectively programming the
shader files will probably increase the speed of the
application. An improvement for the read back of
data is doing it asynchronously, getting the values
to the CPU by using a pixel buffer. This will make
the GPU and CPU write and read from the same
memory. Since this is done at the same time, it will
have a positive effect on the computational speed.

Instead of using if and else sentences, the use
of arithmetic operators are more efficient. Also a
Beizer spline interpolation of the sound speed val-
ues between two point, would make the ray tracing
more accurate. As of today the interpolation is lin-
ear. This interpolation routine is only an increase
of data when the layer thickness is less than 1 me-
ter in this application, so the acoustic model will
not be affected by this. Only the result.

In 1992 a method for nonlinear inversion for
ocean-bottom properties [12] was calculated on a
supercomputer at that timd? at 250 MFLOPS it
took 1.3 hours to calculate. State of the art graph-
ics hardware todayEI could theoretically do this in
2.11 seconds [I3] using 550 GFLOPS.

Starting with this article, calculations methods
in marine acoustics can take advantage of this
speedup.
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