
EUROGRAPHICS 2004 / M.-P. Cani and M. Slater
(Guest Editors)

Volume 23 (2004), Number 3

GPU-Based Nonlinear Ray Tracing

D. Weiskopf, T. Schafhitzel, and T. Ertl

Institute of Visualization and Interactive Systems
University of Stuttgart

Abstract
In this paper, we present a mapping of nonlinear ray tracing to the GPU which avoids any data transfer back to
main memory. The rendering process consists of the following parts: ray setup according to the camera param-
eters, ray integration, ray–object intersection, and local illumination. Bent rays are approximated by polygonal
lines that are represented by textures. Ray integration is based on an iterative numerical solution of ordinary dif-
ferential equations whose initial values are determined during ray setup. To improve the rendering performance,
we propose acceleration techniques such as early ray termination and adaptive ray integration. Finally, we dis-
cuss a variety of applications that range from the visualization of dynamical systems to the general relativistic
visualization in astrophysics and the rendering of the continuous refraction in media with varying density.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism

1. Introduction

Ray tracing is a versatile technique for the computation of
global illumination and, therefore, is widely used in com-
puter graphics. It is based on geometric optics and is deter-
mined by two major components—the propagation of light
between scene objects and the interaction between light and
matter. The underlying mathematical framework can be for-
mulated in the form of the rendering equation [Kaj86]. In
traditional ray tracing, the interaction is restricted to reflec-
tion and transmission points on the objects’ surfaces and the
light propagation is assumed to be linear between these in-
tersection points. Nonlinear ray tracing generalizes the light-
propagation step by including curved light rays, while keep-
ing the traditional reflection and transmission computations.
This model is an appropriate description for a number of
physical scenarios, such as gravitational lensing by strong
gravitational sources (like galaxy clusters or neutron stars)
or light propagation within a medium with a space-variant
index of refraction (like mirages or in the vicinity of explo-
sions).

Nonlinear ray tracing builds upon linear ray tracing and
essentially extends the representation of light rays—bent
rays are approximated by polygonal lines. Unfortunately,
this polygonal representation leads to a significant increase
in the number of ray–object intersections that have to be

computed. Typically, nonlinear ray tracing is slower by more
than one or two orders of magnitude, compared to linear ray
tracing for the same scene. The goal of this paper is to pro-
vide a fast GPU implementation of nonlinear ray tracing that
exploits the strengths of current GPUs by realizing all ray-
tracing steps without any data transfer back to main mem-
ory. In addition to this direct GPU mapping, we introduce
a number of acceleration techniques to further improve the
rendering performance, e.g., early ray termination and adap-
tive ray integration. Finally, we discuss examples from the
visualization of dynamical systems, general relativistic visu-
alization in astrophysics, and the rendering of the continuous
refraction in media with varying density.

2. Previous Work

Related previous work can be separated into two different
categories that have not yet been investigated together: GPU-
based methods and nonlinear ray tracing. With respect to
GPU techniques, the implementations of linear ray tracing
[PBMH02] and the computation of intersections between
rays and triangles [CHH02] are most relevant for this paper.
Recently, this line of research has been extended to photon
mapping [PDC∗03], and radiosity and subsurface scattering
[CHH03] on GPUs. In general, there is a prevailing trend
towards using GPUs for a variety of general purpose com-

c© The Eurographics Association and Blackwell Publishing 2004. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

D. Weiskopf, T. Schafhitzel & T. Ertl / GPU-Based Nonlinear Ray Tracing

putations [GPG04], e.g., for matrix and optimization opera-
tions [BFGS03, HMG03, KW03], or the simulation of cloud
dynamics [HBSL03].

In the second category, Gröller [Grö95] presents a generic
approach for CPU-based nonlinear ray tracing and discusses
a number of applications for visualizing mathematical and
physical systems. A specific application of nonlinear ray
tracing is the visualization of gravitational light bending
within general relativity [HW01, KWR02, Wei00]. In the
physics literature, the light deflection by neutron stars and
black holes is of special interest [NRHK89, Nem93]. Fi-
nally, nonlinear ray tracing can be used to simulate the
continuous refraction in a medium that exhibits a space-
variant index of refraction, e.g., in the vicinity of explo-
sions [YOH00] or for the refraction aspects found in mirages
[BTL90].

3. Basic Architecture for Nonlinear Ray Tracing

Our architecture for nonlinear ray tracing is built
upon the structure of GPU-based linear ray tracing
[CHH02, PBMH02]. Two categories of entities have to be
represented: scene objects and light rays. Neglecting possi-
ble acceleration data structures (like octrees), a key element
of linear ray tracing is the intersection between nrays rays
and nobjs objects. With [CHH02], this nrays × nobjs problem
could be regarded to have a “crossbar” structure. On a GPU,
the scene objects can be represented by vertex-based geom-
etry, and the rays can be represented by textures. Fragment
operations in programmable pixel shaders allow us to com-
bine textures and geometry in such a “crossbar” fashion.

Nonlinear ray tracing introduces an additional dimension:
each ray consists of a number of ray segments, nsegs. Stated
differently, a three-dimensional “crossbar” structure would
be required for this nrays×nobjs×nsegs problem. We separate
the three-dimensional structure into two levels. In an inner
loop, nrays × nobjs intersection computations are performed,
one for a single segment of each ray. This part is analogous
to the implementation of linear ray tracing. The outer loop
iterates over all segments nsegs.

We restrict ourselves to a ray casting model, traversing
only primary eye rays. Shadow rays are problematic in non-
linear ray tracing because a linear projection from light
sources to scene objects is generally not possible (see the
discussion in [Grö95]). Therefore, secondary effects are ne-
glected. Figure 1 illustrates the complete architecture for this
basic nonlinear ray tracing. Ray segments are stored in 2D
textures that have a one-to-one mapping to the correspond-
ing pixels on the image plane. Scene objects are represented
by vertex-based geometry. In the first step, the initial values
for the first segment of each ray are set according to the cam-
era parameters. The subsequent three steps are iterated over
all segments nsegs. This loop begins with the computation
of the current ray segment, guided by the ordinary differen-
tial equation (ODE) of an underlying model for the curved

Camera Ray Setup

Ray
IntegrationODE

IntersectionScene
Objects

Local
Illumination

Nor mals
Mater ial
Te xture

nsegs

Figure 1: Architecture for nonlinear ray tracing.

rays. Then, the nrays × nobjs intersection computations are
performed for the current segment index. Finally, pixels are
shaded via a local illumination model when an intersection
is found. Since the number of ray segments is fixed and the
same for all rays, the loop over segments can be conceptu-
ally unrolled. Therefore, the ray-tracing architecture is still
compatible with the streaming model on GPUs [PBMH02].
In the following subsections, the previously mentioned steps
are discussed in more detail.

3.1. Ray Setup

Ray setup computes the initial values for the primary rays.
In general, the state of a point on a ray is described by its
position x ∈ R

3 and its direction v ∈ R
3. We denote the

combination p ≡ (x,v) as an element in ray phase space
P = R

6. The ray phase space elements are stored in 2D tex-
tures whose texels correspond to the associated pixels on the
image plane. The six components of p are distributed over
two textures: one texture for positions, the other texture for
directions. In our implementation, the components of these
textures are stored with floating-point precision for maxi-
mum accuracy and flexibility. During ray setup, the initial
values for x are set to the camera position, and the values for
v are determined by the direction towards the corresponding
pixel. The texture for v is filled by rendering a quadrilateral
that covers the image plane, using a pixel shader program for
the computation of the initial directions. The texture for x is
initialized by writing the (constant) camera position.

3.2. Ray Integration

In a generic approach to nonlinear ray tracing, the bending
of rays is determined by an equation of motion in the form

c© The Eurographics Association and Blackwell Publishing 2004.

D. Weiskopf, T. Schafhitzel & T. Ertl / GPU-Based Nonlinear Ray Tracing

of a system of ODEs,

dx(τ)
dτ

= v(τ) ,

dv(τ)
dτ

= f(x(τ),v(τ), . . .) , (1)

where τ describes the parameterization along the rays. The
properties of the equation of motion are determined by the
function f. The dots indicate that there could be additional
parameters that affect the propagation of light. The ini-
tial value problem for these differential equations could be
solved by any explicit numerical integration scheme. For
simplicity we consider first-order Euler integration,

xi+1 = hvi +xi ,

vi+1 = h f(xi,vi, . . .)+vi , (2)

with the stepsize h and the index i for the points along the
polygonal approximation of the light rays. At each integra-
tion step, a read access to the textures with index i and a
write access to the textures with index i + 1 is required. To
save memory, only these two copies of textures are held on
the GPU. After each integration step, the two copies are al-
ternatingly exchanged in a ping-pong rendering scheme. The
numerical operations for Eq. (2) are implemented in a pixel
shader program that outputs its results to multiple render tar-
gets, namely the x and v textures. Once again, the fragments
are generated by rendering a single viewport-filling quadri-
lateral.

We allow the user to choose the integration stepsize h in-
dependently from the ray segment length. Typically, a large
number of integration steps is required to achieve an appro-
priate numerical accuracy. In contrast, the number of ray seg-
ments could be smaller without introducing inaccuracy arti-
facts in the ray–object intersection. A user-specified param-
eter nintegration describes the number of internal integration
steps before a single ray segment is output to the intersec-
tion process. A typical value for nintegration is 10.

3.3. Ray–Object Intersection

A ray segment is defined by the line between xi and xi+1
from the two latest points in ray phase space. Ray–object
intersections are computed directly after the ray integration
step. In this way, previous, older segments are no longer
needed and can be discarded; i.e., this is a reason why only
two copies of the ray phase space textures have to be stored
simultaneously.

Our implementation supports triangles and spheres as
primitive objects. For triangle–ray intersection, we have
adopted the approach by Carr et al. [CHH02] and added a
check for the finite extent of a segment. The computation of
sphere–ray intersection is based on [Gla93] and also takes
into account a finite segment length. Following [CHH02],
a single scene object is represented by a vertex-based primi-
tive. The object parameters are transferred to the pixel shader

program in the form of attached texture coordinates. The
intersection between an object and all rays is triggered by
rendering a viewport-filling quad. The pixel shader program
checks whether an intersection takes place and, if that is the
case, computes the intersection point.

Visibility is determined by including a test against the
depth value that is stored in a depth texture. If the current
intersection point is closer, the depth texture will be updated
and the corresponding pixel will be drawn (as described in
the following subsection on local illumination). Note that the
z value (in eye or clip coordinates) is not appropriate to de-
scribe a depth ordering for nonlinear ray tracing. Instead, the
monotonically increasing index i serves as a measure for the
distance between camera and a point on a ray. For the loca-
tion of a point within a segment, we use a local coordinate
that has value 0 at the beginning of the segment and value
1 at the end. The summation of the integer index i and the
fractional part from the local coordinate results in an accu-
rate depth ordering. The depth buffer is implemented by a
floating-point texture. The simultaneous read and write ac-
cess for this depth buffer is realized by ping-pong rendering.

3.4. Local Illumination

The last step is the local illumination at the ray–object inter-
section points. The current implementation supports ambi-
ent lighting and light-emitting objects. Textures can be used
to modulate the material properties of objects. In addition,
“fake” Blinn-Phong illumination is implemented, based on
straight connections between a hit point on the surface and
the light sources. This model is mainly used for testing pur-
poses.

Based on the position of the intersection, texture coor-
dinates, normal vectors, and material colors are computed
by interpolation and used to evaluate the local illumination
model. Finally, the value is updated in the image buffer,
which is a texture that holds the intermediate pixel colors.
Since local illumination requires information about the inter-
section point, its implementation is combined with the above
intersection computation in a single pixel shader program.

4. Acceleration Techniques and Extensions

4.1. Early Ray Termination

Nonlinear ray tracing builds upon a large number of ray seg-
ments of finite length. Therefore, the total length of rays di-
rectly determines the rendering time. The goal of early ray
termination is to reduce the computational steps by pruning
rays. We consider two different conditions under which a
ray can be stopped without introducing any errors. The first
pruning criterion exploits the fact that only the first hit is re-
quired for opaque scene objects: Once (at least) one intersec-
tion is found within a ray segment, no further segments need
to be generated and traversed. The second criterion relies on

c© The Eurographics Association and Blackwell Publishing 2004.

D. Weiskopf, T. Schafhitzel & T. Ertl / GPU-Based Nonlinear Ray Tracing

Ray Setup

Test for Ray
Termination

Ray
Integration

Intersection

Local
Illumination

nsegs

if term
inated

Figure 2: Data flow with early ray termination.

cutting rays that have left the scene and propagate to infinity
without any chance of intersecting objects. Here, a bound-
ing geometry is laid around the scene, and rays that inter-
sect this geometry are discarded. Our implementation uses a
bounding sphere that contains all scene objects and is placed
in almost flat space in which rays cannot “turn around” and
propagate back into the scene.

Early ray termination essentially leads to a conditional
break in the loop over ray segments. Since breaks are not
compatible with the streaming model of GPUs, we propose
the following approach. As shown in Figure 2, a complete
loop over all segments nsegs is performed for all rays. How-
ever, the expensive computations for ray integration, inter-
sections, and local illumination are conceptually skipped for
terminated rays. The early z test is effective in aborting pixel
operations early and therefore cuts down computation times
significantly. The early z test allows us to essentially skip the
pixel shader operations for the integration, computation, and
illumination of terminated rays, even though the correspond-
ing fragments are still generated during rasterization.

The early z test is implicitly enabled on modern GPUs,
but works only under some conditions. Most importantly,
the depth value of a fragment must not be modified by a
pixel shader program. In the architecture from Figure 2, the
pixel shader for the “Test for Ray Termination” checks the
aforementioned termination criteria. It outputs a depth value
of 1 (i.e., the distance of the far clipping plane) if the ray is
not terminated, and a value of 0 (i.e., near clipping plane)
if the ray is terminated. This step does not yet use the early
z test. The subsequent steps, however, are realized by ren-
dering quadrilaterals with a constant z value of 0.5 and can

therefore exploit the early z test to discard pixel operations
for terminated rays.

4.2. Adaptive Ray Integration

Adaptive ray integration is an approach to increase both ren-
dering performance and quality. We adopt the idea of step-
size control from adaptive numerical integration schemes.
In a step-doubling approach, each integration step is taken
twice, once as a full step, then, independently as two half
steps. The difference between both results is a measure for
the accuracy associated with the current stepsize. If the dif-
ference is below a given threshold, the stepsize is increased;
if the difference is larger than another threshold, the step-
size is decreased. Since pixel shader programs do not sup-
port conditional branching, this decision is realized by using
compare instructions (cmp command in DirectX).

The GPU implementation is illustrated in Figure 3. The
steps with sizes h and h/2 are computed by the Euler integra-
tion process from Section 3.2. The current stepsize, which
may differ from ray to ray, is stored in the previously unused
fourth component of the v texture. The “Compute New Step-
size” pixel shader compares both results and determines the
stepsize for the subsequent integration step.

Previous Point in
Ray Phase Space

ODE Integration
With Step h

ODE Integration
With Step h/2

ODE Integration
With Step h/2

Compute New
Stepsize

Figure 3: Adaptive ray integration.

Stepsize control not only improves the speed and quality
of numerical integration, but, at the same time, can reduce
the number of ray segments. For example, regions with only
weakly curved rays are covered with large segments and,
therefore, only few intersection computations are required.
Of course, this speed-up is only effective in combination
with early ray termination at scene boundaries and objects
because otherwise integration and intersection computations
would be performed for a constant, maximum number of
segments.

c© The Eurographics Association and Blackwell Publishing 2004.

D. Weiskopf, T. Schafhitzel & T. Ertl / GPU-Based Nonlinear Ray Tracing

4.3. Environment Mapping for Asymptotically Flat Sky

Light rays that leave the scene boundary usually result in
the background color. As an alternative, we use an environ-
ment texture that represents light-emitting objects at infinity.
A cube texture implements such a “sky box”, where the di-
rection v of a ray at the boundary serves as texture coordi-
nates. This model is valid for scenarios in which the bound-
ary geometry already is in (almost) flat regions (where rays
are not or only slightly bent).

5. Applications

5.1. Visualization of Nonlinear Dynamics

One field of application for nonlinear ray tracing is the vi-
sualization of dynamical systems. Nonlinear dynamics and
chaotic behavior can be investigated by examining paths in
phase space that describe the temporal evolution of a dynam-
ical system [ASY96]. We follow [Grö95] in discussing two
examples for chaotic systems—the Lorenz and the Rössler
systems. The Lorenz system [Lor63] is governed by

f(x) =





σ(y− x)
ρx− y− xz

xy−βz



 ,

with x = (x,y,z). Figure 4 (b) shows an example for ray
tracing with the parameters β = 8/3, σ = 10, ρ = 28. The
Rössler system [Rös76] is described by

f(x) =





−(x+ z)
x+αy

β+ z(x− γ)



 .

A possible choice of parameters is α = 3/8, β = 2, and γ = 4.

5.2. Motion in a Potential Field

Another closely related example for nonlinear ray tracing
uses the motion in a potential field to model curved paths.
The equation of motion for a particle within a radial force
field that is centered around the point xc yields:

f(x) = −
(x−xc)

r
ξ(r) ,

where r = ||x− xc|| is the distance to the center point, and
the function ξ(r) describes the radial behavior. This force
field subsumes the Yukawa potential,

V (x) = ζ e−µr

r
,

which represents the effective potential for a large class of
fundamental physical particle–particle interactions [Gro93].
The corresponding force is computed by determining the
gradient of the potential, i.e., f(x) = −∇V . The parameter
µ reflects the rest mass of the particles that mediate the inter-
action; ζ is a constant scaling factor. For example, electro-
magnetic interaction is mediated by massless photons (the

gauge bosons of the Maxwell field) and therefore has µ = 0.
Similarly, Newton’s law of gravitation also has vanishing µ.
On the other hand, the strong interaction between nucleons
(such as protons or neutrons) is mediated by heavy particles,
which reduces the range of interaction and is described by a
non-vanishing positive value for µ. Adopting a generalized
radial field, ξ(r) can represent any continuous function. The
example in Figure 4 (c) uses

ξ(r) = 2
r3

R3 −3
r2

R2 +1 ,

for 0 ≤ x ≤ R [Grö95].

5.3. Air with Continuously Varying Index of Refraction

Within a medium with a space-variant index of refraction,
light is subject to continuous refraction. Typically, a vary-
ing index of refraction is caused by a non-constant density
of air, for example for mirages [BTL90] or in the vicinity of
explosions [YOH00]. The model of [YOH00] allows for a
discretization of continuous refraction: The index of refrac-
tion is updated along the light ray; and when the index of
refraction changes by more than a threshold, the new direc-
tion of the ray is computed according to Snell’s law using
the gradient of the refraction index as the surface normal.

Figure 4 (d) shows an example of light propagation in
a medium with varying index of refraction. The index of
refraction resembles the explosion model from [YOH00].
However, we do not use a numerical simulation to compute
the spatial distribution of the index of refraction, but a noise-
based procedural model that is not based on a physics simu-
lation.

5.4. General Relativistic Visualization

Light is bent by gravitational sources and therefore non-
linear ray tracing is ideally suited for the visualization of
the effects of general relativity on light propagation. Light
rays are identical to null geodesics within the curved space-
times of general relativity (see Appendix A). The underlying
geodesic equation is a second-order ODE that can be trans-
formed into the structure of Eq. (1). Figure 4 (e) illustrates
light bending around a non-rotating black hole whose space-
time is described by the Schwarzschild metric. For compari-
son, the test scene from Figure 4 (a) is used. The astrophysi-
cal scenario in Figure 4 (f) shows a neutron star (blue) and a
much less heavier, accompanying star (yellow) in front of a
background star field. Checkerboard textures are attached to
the two stars to visualize the distortions on the surfaces. The
background is represented by an environment texture that is
mapped onto a “sky box” as described in Section 4.3.

Relativistic visualization supports scientists in under-
standing numerical or analytical results from gravitational
research because it provides a compact representation that is
independent of the coordinate system [Wei00]. In addition,

c© The Eurographics Association and Blackwell Publishing 2004.

D. Weiskopf, T. Schafhitzel & T. Ertl / GPU-Based Nonlinear Ray Tracing

(a) (b)

(c) (d)

(e) (f)

Figure 4: Images generated by GPU-based nonlinear ray tracing: (a) undistorted image of the test scene; (b) rays governed
by the Lorenz system, with the same test scene as in (a); (c) rays in a radial potential field; (d) rays in a medium with varying
index of refraction; (e) general relativistic ray tracing with a black hole (Schwarzschild spacetime). Image (f) visualizes an
astrophysical scenario with a neutron star (blue) and a much less heavier, accompanying star (yellow) in front of a background
star field. Checkerboard textures are attached to the two stars to reveal the distortions on the surfaces.

c© The Eurographics Association and Blackwell Publishing 2004.

D. Weiskopf, T. Schafhitzel & T. Ertl / GPU-Based Nonlinear Ray Tracing

visualization also serves as a tool in teaching physics courses
and explaining important aspects of relativity to the public,
e.g., in popular-science films or exhibitions.

6. Implementation and Results

Our implementation is based on DirectX 9.0, and all frag-
ment operations are formulated in the assembler-level Pixel
Shader 2.0 language. We use 32 bit floating-point textures to
represent the depth values and the positions x and directions
v along rays. Tests with 16 bit floating-point textures led
to a significantly degraded image quality and thus showed
that the accuracy of integration and intersection computa-
tions was heavily affected. All images in Figure 4 were
generated by our ray-tracing system on a Windows XP PC
with an ATI Radeon 9700 (128 MB) GPU and a Pentium
4 (2.8 GHz) CPU. The following measurements were also
performed with this hardware configuration.

Figure 5 shows the performance characteristics for a vary-
ing number of spherical scene objects. The other parame-
ters are fixed: The viewport has a size of 800× 600 pixels;
500 integration steps are computed within a Schwarzschild
spacetime (Section 5.4), leading to 50 ray segments. The up-
per (slower) curve in Figure 5 represents the original, non-
optimized implementation from Section 3, while the lower
(faster) line displays the rendering performance for ray trac-
ing with early ray termination and adaptive ray integration
from Section 4. The vertical offset of the two curves for
nobjs = 1 indicates how much time is spent to solve the ODE
and construct the curved rays. Under the present test con-
ditions, the acceleration techniques reduce the computation
times by some forty percent. More importantly, the slope of
the lower curve is much smaller than the slope of the upper
curve, i.e., the acceleration methods improve the intersection
computations by pruning the rays. Both curves are almost

0

5

10

15

20

0 5 10 15 20

Ti
m

e
in

 S
ec

on
ds

Number of Objects

Rendering Times for the Schwarzschild Model

Without Acceleration
With Acceleration

Figure 5: Comparison of rendering times for accelerated
and non-accelerated nonlinear ray tracing. The number of
spheres in the scene changes along the horizontal axis.

Table 1: Rendering times in seconds on a 800× 600 view-
port, with 10 scene objects, 30 ray segments, and 300 inte-
gration steps.

No Acceleration Acceleration
Methods Methods

Lorenz System 3.87 3.13
Potential Field 4.22 1.16
Varying Index 3.35 2.42
of Refraction
Schwarzschild 4.91 3.79

straight lines, which shows that the intersection and shading
steps depend linearly on the number of scene objects.

Table 1 documents rendering times for different models
of curved rays. We compare results for the Lorenz system,
a potential field, a medium with varying index of refraction,
and the Schwarzschild metric. The viewport has a size of
800×600 pixels, the scene consists of 10 spherical objects,
and 300 integration steps were performed to build 30 ray
segments each. The first column shows the rendering times
for the non-optimized implementation. The Schwarzschild
solver is slower than the solvers for the other models be-
cause its evaluation of the function f involves a larger num-
ber of numerical instructions. The second column reflects
the rendering times for the acceleration methods. Render-
ing is faster, although the speed-up heavily depends on the
underlying ODE system. In our example for the potential
field, only a weak attractive force is applied, leading to rather
straight light rays. Therefore, a significant increase in speed
can be achieved by adaptive integration.

7. Conclusion and Future Work

We have presented a fast GPU implementation of nonlinear
ray tracing that avoids any data transfer back to main mem-
ory. Curved light rays are represented by polygonal lines that
are constructed via an iterative numerical ODE solver. The
rendering process can be mapped to the streaming model of
current GPUs by subsequently executing ray setup, ray inte-
gration, ray–object intersection, and local illumination. We
have proposed two acceleration techniques to improve the
rendering performance: early ray termination and adaptive
ray integration. In particular, we have investigated ways to
introduce such acceleration techniques into the streaming ar-
chitecture on GPUs.

In future work, some of the bottlenecks of the current im-
plementation could be addressed. Especially, the inner loop
for the internal ODE integration steps could be unrolled
within a longer pixel shader program. In this way, much
communication via the floating-point textures for ray posi-
tions and directions could be avoided. Furthermore, space
partitioning strategies that are known from linear ray tracing

c© The Eurographics Association and Blackwell Publishing 2004.

D. Weiskopf, T. Schafhitzel & T. Ertl / GPU-Based Nonlinear Ray Tracing

could be incorporated to achieve a better scalability with re-
spect to the number of scene objects. Finally, deferred shad-
ing could be used to accelerate the illumination computa-
tion. By deferring the shading process to the very end of the
ray-tracing algorithm, lighting would only be evaluated for
actually hit points.

Acknowledgments

We would like to thank the anonymous reviewers for help-
ful remarks to improve the paper. Special thanks to Bettina
Salzer for proof-reading, and to Joachim Vollrath for his help
with the video.

Appendix A: Geodesics in Spacetime

Here, a brief discussion of the mathematical background of
general relativity and, in particular, the propagation of light
is given. For a comprehensive presentation we refer to the
textbooks [MTW73, Wei72]. The concept of curved space-
time is the geometric basis for general relativity. Spacetime
is a pseudo-Riemannian manifold and can be characterized
by the infinitesimal distance ds,

ds2 =
3

∑
µ,ν=0

gµν(x)dxµ dxν ,

where gµν(x) are entries in a 4× 4 matrix, representing the
metric tensor at the point x in spacetime. The quantities dxµ

describe an infinitesimal distance in the µ direction of the
coordinate system. Trajectories of freely falling objects are
identical to geodesics. Geodesics are the generalization of
the idea of straightest lines to curved manifolds and are solu-
tions to the geodesic equations, a set of second-order ODEs:

d2xµ(τ)
dτ2 +

3

∑
ν,ρ=0

Γµ
νρ(x)

dxν(τ)
dτ

dxρ(τ)
dτ

= 0 ,

where τ is an affine parameter along the geodesic. The
Christoffel symbols Γµ

νρ are determined by the metric ac-
cording to

Γµ
νρ(x) =

1
2

3

∑
α=0

gµα(x)

(

∂gαν(x)

∂xρ +
∂gαρ(x)

∂xν −
∂gνρ(x)

∂xα

)

,

where gµα(x) is the inverse of gµα(x). Light rays are a spe-
cial class of geodesics: lightlike or null geodesics, which ful-
fill the null condition,

3

∑
µ,ν=0

gµν(x)
dxµ(τ)

dτ
dxν(τ)

dτ
= 0 .

During ray setup, the initial position in spacetime and the
initial spatial direction of the light ray are determined as in
the other models from Section 5. The temporal component
of the initial direction is then computed according to the null
condition.

An important class of spacetimes is described by the
Schwarzschild metric,

ds2 =

(

1−
2M
r

)

dt2 −
dr2

1−2M/r
− r2

(

dθ2 + sin2 θdφ2
)

.

This metric represents a vacuum solution for Einstein’s gen-
eral relativistic field equations and describes the spacetime
around a non-rotating, non-charged, spherically symmetric
distribution of matter and energy. It applies to many com-
pact astrophysical objects, for example, to regular stars, neu-
tron stars, or black holes. We choose units in which the
speed of light and the gravitational constant are 1. The pa-
rameter M denotes the mass of the source of gravitation. In
asymptotically flat outer regions of spacetime, the spheri-
cal Schwarzschild coordinates, r, θ, and φ, are identical to
the standard spherical coordinates of flat space. In our im-
plementation, the spherical Schwarzschild coordinates are
transformed into pseudo-Cartesian Schwarzschild coordi-
nates. In this way, the x, y, and z components in the ray setup
can be directly used as input to the Schwarzschild metric.
Finally, t denotes time. The temporal component of the po-
sitions xµ(τ) can be neglected in stationary scenes.

References

[ASY96] ALLIGOOD K. T., SAUER T. D., YORKE J. A.:
Chaos: An Introduction to Dynamical Systems.
Springer, New York, 1996.

[BFGS03] BOLZ J., FARMER I., GRINSPUN E.,
SCHRÖDER P.: Sparse matrix solvers on
the GPU: Conjugate gradients and multigrid.
ACM Transactions on Graphics 22, 3 (2003),
917–924.

[BTL90] BERGER M., TROUT T., LEVIT N.: Ray trac-
ing mirages. IEEE Computer Graphics and Ap-
plications 10, 3 (1990), 36–41.

[CHH02] CARR N. A., HALL J. D., HART J. C.: The
ray engine. In Proceedings of the Eurograph-
ics/SIGGRAPH Workshop on Graphics Hard-
ware (2002), pp. 37–46.

[CHH03] CARR N. A., HALL J. D., HART J. C.:
GPU algorithms for radiosity and subsur-
face scattering. In Proceedings of the SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware (2003), pp. 51–59.

[Gla93] GLASSNER A. S. (Ed.): An Introduction to
Ray Tracing, 4th ed. Academic Press, London,
1993.

[GPG04] GPGPU: General-Purpose Computation on
GPUs. Web Page: http://www.gpgpu.org, 2004.

[Gro93] GROSS F.: Relativistic Quantum Mechanics
and Field Theory. John Wiley & Sons, New
York, 1993.

c© The Eurographics Association and Blackwell Publishing 2004.

D. Weiskopf, T. Schafhitzel & T. Ertl / GPU-Based Nonlinear Ray Tracing

[Grö95] GRÖLLER E.: Nonlinear ray tracing: Visualiz-
ing strange worlds. The Visual Computer 11, 5
(1995), 263–276.

[HBSL03] HARRIS M. J., BAXTER W., SCHEUERMANN

T., LASTRA A.: Simulation of cloud dy-
namics on graphics hardware. In Proceedings
of the SIGGRAPH/Eurographics Workshop on
Graphics Hardware (2003), pp. 92–101.

[HMG03] HILLESLAND K. E., MOLINOV S.,
GRZESZCZUK R.: Nonlinear optimization
framework for image-based modeling on
programmable graphics hardware. ACM Trans-
actions on Graphics 22, 3 (2003), 925–934.

[HW01] HANSON A. J., WEISKOPF D.: Visualizing rel-
ativity. SIGGRAPH 2001 Course #15 Notes,
2001.

[Kaj86] KAJIYA J. T.: The rendering equation. Com-
puter Graphics (SIGGRAPH ’86 Proceedings)
20, 4 (1986), 143–150.

[KW03] KRÜGER J., WESTERMANN R.: Linear algebra
operators for GPU implementation of numerical
algorithms. ACM Transactions on Graphics 22,
3 (2003), 908–916.

[KWR02] KOBRAS D., WEISKOPF D., RUDER H.: Gen-
eral relativistic image-based rendering. The Vi-
sual Computer 18, 4 (2002), 250–258.

[Lor63] LORENZ E. N.: Deterministic nonperiodic
flow. Journal of the Atmospheric Sciences 20
(1963), 130–141.

[MTW73] MISNER C. W., THORNE K. S., WHEELER

J. A.: Gravitation. Freeman, New York, 1973.

[Nem93] NEMIROFF R. J.: Visual distortions near a neu-
tron star and black hole. American Journal of
Physics 61, 7 (July 1993), 619–632.

[NRHK89] NOLLERT H.-P., RUDER H., HEROLD H.,
KRAUS U.: The relativistic “looks” of a neutron
star. Astronomy and Astrophysics 208 (1989),
153.

[PBMH02] PURCELL T. J., BUCK I., MARK W. R., HAN-
RAHAN P.: Ray tracing on programmable
graphics hardware. ACM Transactions on
Graphics 21, 3 (2002), 703–712.

[PDC∗03] PURCELL T. J., DONNER C., CAMMARANO

M., JENSEN H. W., HANRAHAN P.: Pho-
ton mapping on programmable graphics
hardware. In Proceedings of the SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware (2003), pp. 41–50.

[Rös76] RÖSSLER O.: An equation for continuous
chaos. Physics Letters A 57, 5 (1976), 397–398.

[Wei72] WEINBERG S.: Gravitation and Cosmology:
Principles and Applications of the General The-
ory of Relativity. John Wiley & Sons, New
York, 1972.

[Wei00] WEISKOPF D.: Four-dimensional non-linear
ray tracing as a visualization tool for gravita-
tional physics. In Proceedings of IEEE Visual-
ization (2000), pp. 445–448.

[YOH00] YNGVE G. D., O’BRIEN J. F., HODGINS

J. K.: Animating explosions. In Proceedings of
SIGGRAPH 2000 Conference (2000), pp. 29–
36.

c© The Eurographics Association and Blackwell Publishing 2004.

