
Preface

This report is a result and documentation of a master assignment spring 2006, in the area of
marine acoustics at the Department of Electronics and Telecommunication at the Norwegian
University of Science and Technology (NTNU). The master report is written by Olav
Haugeh̊atveit, with professor Jens. M. Hovem as technical supervisor. Trond Runar Hagen
with SINTEF ICT Applied Mathematics in Oslo has been assisting with the computer pro-
gramming.

Trondheim June 14, 2006

i

ii

Abstract

Commodity computer graphics chips are probably today’s most powerful computational hard-
ware one can buy for money. These chips, known generically as Graphics Processing Units
or GPUs, has in recent years evolved from afterthought peripherals to modern, powerful pro-
grammable processor. Due to the movie and game industry we are where we are to today.
One of Intel’s co-founder Gordon E. Moore said once that the number of transistors on a
single integrated chip was to double every 18 month. So far this seems to be correct for the
CPU. However for the GPU the development has gone much faster, and the floating point
operations per second has increased enormously.

Due to this rapid evolvement many researchers and scientists has discovered the enormous
floating point potential can be taken advantage of, and a numerous applications has been
tested such as audio and image algorithms. Also in the area of marine acoustics this has
become interesting, where the demand for high computational power is increasing.

This master report investigates how to make a program capable to run on a GPU for calcu-
lating an underwater sound field. To do this a graphics chips with programmable vertex and
fragment processor is necessary. Programming this will require graphics API like OpenGL,
a shading language like GLSL, and a general purpose GPU library like Shallows. A written
program in Matlab is the basic for the GPU program. The goal is to reduce calculation time
spent to calculate a underwater sound field.

From this the increment from Matlab to GPU was found to be around 40-50 times. How-
ever if Matlab was able to calculate the same number of rays as maximum on the GPU, the
increment would probably be bigger. Since this study was done on a laptop with nVidia
GeForce Go 6600 graphics chip, a higher gain would theoretically be obtainable by a desktop
graphics chip.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 1

2 Marine Acoustics Theory 3
2.1 PlaneRay model . 3

2.1.1 Initial ray tracing . 4
2.1.2 Sorting and interpolation . 6
2.1.3 Synthesis of the sound field . 7

3 GPU Theory 9
3.1 GPU . 9

3.1.1 History . 9
3.2 GPU pipeline . 10

3.2.1 Processing stages . 11
3.3 Graphic Programming Languages . 12

3.3.1 OpenGL and Direct3D . 12
3.3.2 BrookGPU . 12
3.3.3 Shading Languages . 13
3.3.4 GPGPU library . 13

3.4 Heat Equation, an Example . 13

4 GPGPU Program 17
4.1 Initial Settings . 18
4.2 Shaders . 21
4.3 GPGPU work flow . 21

5 Results 25
5.1 GPGPU program results . 25
5.2 Matlab comparison . 27

6 Discussion 29
6.1 Further Work . 30

6.1.1 GPU advantage . 31

Bibliography 33

v

A Some explanations 35

B Program usage 37

C Development tools 41

D Using Visual Studio 43
D.1 Boost . 43
D.2 Shallows . 43

E Ray tracing on GPU article 45
E.1 Introduction . 46
E.2 A simple ray-tracing algorithm . 47
E.3 Description of a Graphics Processing Unit . 48
E.4 Implementation . 49

E.4.1 Initial Settings . 49
E.4.2 Shaders . 50
E.4.3 GPGPU workflow . 50

E.5 Examples of calculated sound fields . 50
E.6 Discussion and evaluation . 51

E.6.1 Bottlenecks . 51
E.6.2 Further Work . 52

vi

List of Figures

2.1 PlaneRay model addressing . 3
2.2 Range and depth increment . 4
2.3 Bottom hit . 6
2.4 Eigen rays to receiver . 7

3.1 Computational increment . 10
3.2 GPU pipeline . 11
3.3 The graphics pipeline stages . 11
3.4 Solution to the heat equation . 14
3.5 Heat Equation sample . 14

4.1 Creating frames as the calculation executes . 17
4.2 Application and shader implementing . 18
4.3 Sound speed profiles . 20

5.1 GPGPU program with source at 20 m . 25
5.2 GPGPU program with source at 256 m . 26
5.3 GPGPU program with source at 150 m . 26
5.4 GPGPU program with source at 150 m . 26
5.5 GPGPU program with source at 150 m . 27

6.1 Improvement for GPU . 29
6.2 Frame rates for GPU . 30
6.3 Linear curve and Beizèr spline curve . 31

E.1 Range increment . 47
E.2 Graphics pipeline . 48
E.3 Pipeline stages . 48
E.4 Frame creation . 49
E.5 Application loop . 49
E.6 Sound field with source at 20 meter . 51
E.7 Sound field with source at 150 meter . 51
E.8 GPU improvement . 51
E.9 GPU frame rate . 51

vii

viii

List of Tables

2.1 Dimensions for creating correct printing area 7

5.1 Matlab versus GPU . 27
5.2 CPU versus GPU . 28

ix

x

Chapter 1

Introduction

This chapter explains why GPU are of general interest as a computational resource for de-
velopers and scientists. An outline for the rest of the report is introduced. Further reading
requires some technical insight in marine acoustics and computer graphics programming.

1.1 Motivation

The main area of applications for graphics processing units (GPUs) has been in the movie and
game industry, enabling fast rendering of anti aliased, textured and shaded geometric prim-
itives. As their performance and functionalities have been increasing and now give support
for floating point computation in addition to that compilers for high-level programming lan-
guages have been released, many new algorithm and application have been suggested. These
try to take advantages of the parallelism and vector processing capabilities of the GPUs.

The reason for focusing on the GPU are numerous. One reason is, if you are already
planning to visualize your data, you can remove unnecessary data streams from the CPU to
the GPU.

The GPU offers a parallel model for programming with internal parallel operations which
practically is a broad vector model with varying size on the matrix . The GPU has a much
higher performance compared to the CPU, and it gives access to high internal bandwidth.
When programming we have to focus on exploiting this internal bandwidth, and the parallel
processing capabilities.

Using the GPU as a co-processor can in light of this improve many numerical tasks. The
CPU can than be used for other tasks as the GPU is left with much of the computational
work. Hopefully this will achieve good performance width low cost.

1.2 Outline

In chapter 2 the theory for ray tracing in marine acoustics is presented, together with the
whole PlaneRay model. Chapter 3 contains an explanation of how a GPU operates. Further
in chapter 4 the GPU application is explained. Results and discussion follows in chapter 5
and 6. At the end of chapter 6 a discussion on further work is presented.

As appendix some word explanations, GPU program usage, information on used software
and hardware and how to set up Visual Studio for GPGPU programming follows. From this
report an article about GPU for ray tracing in marine acoustics is written [20]. As the last

1

2 Chapter 1. Introduction

appendix this article can be found, without its bibliography. However the references in the
bibliography used in this report is the same. Full source code can be found at [26].

Chapter 2

Marine Acoustics Theory

This ray tracing of underwater sound field is based on a model called PlaneRay developed at
Norwegian University of Science and Technology in Trondheim, Norway, by Jens M. Hovem
et al. The whole model is presented here, however only the first part, the initial ray tracing
without acoustic intensity and beam displacement, are implemented on the GPU since this is
the demanding computational part.

2.1 PlaneRay model

The model PlaneRay is an acoustic propagation model based on ray tracing [6]. A special and
essential feature of this model is a unique sorting and interpolation routine for efficient deter-
mination of large number of eigenrays, also for range dependent environments. The bottom
is modeled with a plane wave reflection coefficient and in principle any number of acoustic
or elastic layers can be included. Figure 2.1 shows the general shallow water propagation
problem that is addressed in the model.

Figure 2.1: The PlaneRay model computes the received field from a source to receivers located on a
horizontal line.

The receivers are located on a horizontal line in the water. The bottom can be a fluid
sedimentary layer over an elastic half space and both can be range dependent. The sound
speed profile can only be a function of depth and not with range. The effect of a layered
bottom is included with plane wave reflection coefficient and rays are only traced to the water
sediment interface and not into the bottom. The algorithm can be considered as having three
stages:

3

4 Chapter 2. Marine Acoustics Theory

• The initial ray tracing using a large number of rays to map out the entire sound field.

• Sorting and interpolation to determine the trajectorys and the ray history of the eigen-
rays connecting the source to the receiver.

• Synthesis of the acoustic field in frequency domain by coherently adding the contribu-
tions of the eigenrays, and calculation of the full-waveform time response by Fourier
transformation.

2.1.1 Initial ray tracing

The input information is the range dependent bathymetry, a sound speed profile and the
source location. The initial ray tracing is done by launching a relative large number of rays,
with angles selected to cover the entire space between the source location and out to the
receiver array. For each ray, the range and the travel time trough out the entire sound field
is calculated. When the rays hits the receiver array, some values are recorded, as intersection
angle, range and depth, together with location and the angle for reflection from the bottom
and surface. All of this information is stored and used in following stages. In the current
model the rays are not traced into the bottom and both the sound speed profile and the
bathymetry are fixed, i.e the ray tracing is only executed once for each site.

Figure 2.2: When the algorithm steps in depth with ∆layer, it calculates a range increment for each
step. The sum of all ranges are the total range.

The implementation used in the PlaneRay model is to divide the water column into a
large number of layers with the same thickness ∆z, as shown in figure 2.2. Within each layer
the sound speed profile is approximated with a straight line, and the sound speed profile can
be written as

c(z) = ci + gi(z − zi), (2.1)

where ci is the sound speed at depth zi and gi is the local sound speed gradient. Since the
sound speed profile in each of this layers has a constant gradient, the ray in each layer follows
a circular arc. The sum of all rays path within each layer is the total distance of the ray. The
radius of this curvature is given by the local sound speed gradient,

gi =
c(zi+1)− c(zi)

zi+1 − zi
, (2.2)

Chapter 2. Marine Acoustics Theory 5

where c(zi+1) − c(zi) is the sound speed difference from one layer to the next, and zi+1 − zi

is the depth difference, and the ray parameter

ξ =
cosθ(z)

c(z)
=

cosθ0

c0
. (2.3)

Here θ0 is the initial angle, and c0 is the initial sound speed at the source. With this the
radius is given by

Ri(z) = − 1
ξgi(z)

. (2.4)

When the ray is traveling from one layer to the next, the range increment is written by

ri+1 − ri = −Ri

(
sin θi+1 − sin θi

)
, (2.5)

which can also be written

ri+1 − ri =
1

ξgi

[√
1− ξ2c2(zi+1)−

√
1− ξ2c2(zi)

]
. (2.6)

The sum of all layers range will be the total distance for the ray. Travel time for the ray is
calculated by

τi+1 + τi =
1
|gi|

ln

(
c(zi+1)
c(zi)

1 +
√

1− ξ2c2(zi)
1 +

√
1− ξ2c2(zi+1)

)
. (2.7)

Here given for one layer. The sum of all layers time will be the total travel time for the ray.
The algorithm makes repeated use of equation (2.6) and (2.7), stepping with depth incre-

ments ∆z in such a way that the new depth zi+1 is given by the old depth zi as

zi+1 = zi ±∆z (2.8)

The plus sign indicates a ray going downwards and the minus sign, a ray going down upwards.
Evidently the sign has to change when the ray strikes the bottom and the surface, and when
the ray goes trough a turning point.

The acoustic intensity is calculated by using the principle that the power within a space
limited by a pair of rays with initial angular separation of dθ0 centered on the initial angle
θ0 will remain between the two rays, regardless of the rays’ paths. The acoustic intensity as
function of horizontal range, I(r) is according to this principle given by

I(r) = I0
r2
0

r

cos θ0

sin θ

∣∣∣∣dθ0

dr

∣∣∣∣
= I0

(
r2
0

r

)(c0

c

) cos θ

sin θ

∣∣∣∣dθ0

dr

∣∣∣∣ . (2.9)

When the water depth varies with distance the ray parameter is no longer constant, but
changes with the bottom inclination angle. An incoming ray with angle θin is reflected to the
angle θref when the bottom angle is α.

θref = θin + 2α (2.10)

6 Chapter 2. Marine Acoustics Theory

Figure 2.3: When the ray hits the bottom, outgoing angle will be different from the incoming one,
in accordance to Snell’s law.

where θref is the outgoing angle and θin is the incoming angle. Seen in figure 2.3
Consequently the ray parameter has to change to

ξref =
cos(θref)

c
=

cos(θin + 2α)
c

= ξin cos(2α)−

√
1− ξ2

refc2

c
sin(2α).

(2.11)

Beam displacement is also implemented in the model as an option. When the incident
grazing angle is lower than the critical angle the ray appears to be displaced a certain distance
∆l along the interface. The beam displacement is

∆l =
∂δ

∂k
= 2k

ρ0ρ(γ2
0 + γ2

1)
γ0γ1(ρ2

1γ
2
0 + ρ2

0γ
2
1)

. (2.12)

Where δ is the phase angle of the reflection coefficient for the interface between the water (0)
and the bottom (1) for angles lower than the critical angle

δ = 2tan

(
−i

ρ0γ1

ρ1γ0

)
. (2.13)

In equation (2.12) and (2.13), k is the horizontal wave number, γ0 γ1 are the vertical wave
numbers and ρ0 ρ1 are the densities of the water and the bottom medium respectively. The
beam displacement of equation (2.13) is a function of frequency and valid only for the half-
space model. In the PlaneRay model the beam displacement is introduced in the initial ray
tracing for one frequency specified by the user and can therefore only be used for narrow band
signals.

The first step in the modeling is to apply the algorithm described above to a relative large
number of rays spanning the whole range of initial angles that are relevant for the actual
studies. For each ray the trajectory, travel time and the transmission loss are calculated and
stored in the computer disk together with the ray history in terms of number, angle and
locations of bottom and surface reflection and turning point. Since the sound speed profile
and the bathymetry are supposed to be fixed and not changed, this ray tracing calculation is
only done once for each site.

2.1.2 Sorting and interpolation

The next step is to determine the eigenrays and their trajectories and the approach used in
PlaneRay is based on interpolation on the results of the initial ray tracing. However, the

Chapter 2. Marine Acoustics Theory 7

Figure 2.4: The eigenrays to receiver at range r0 is found by interpolating between the two rays
arriving at the same receiver depth at range r1 and r2.

Table 2.1: Dimensions for creating correct printing area.

Class Bottom hits Surface hits Ray
Class 0 0 0 Direct ray
Class 1 n-1 n Positive and negative start angle
Class 2 n n Positive start angle
Class 3 n n Negative start angle
Class 4 n n-1 Positive and negative start angle

interpolation has to be done on rays that have same type of ray history. This consideration
is illustrated in figure 2.4. The figure shows three ray paths from the source to reach three
receivers at the same depth but different range. All the three rays have one reflection from
surface and two reflections from the bottom. The two rays intersecting the receiver depth at
range r1 and r2 are the two rays from the initial ray tracing and the desired ray is the one
with start angle θ0 reaching the target at range r0. Notice that all the rays have the same
number of reflections from the surface (one), and the bottom (two). Therefore the relation
between initial angle θ0 and receiver range can be expected to follow a reasonable smooth
curve amendable to interpolation. In the case of a constant sound speed there will be 5
classes of arrivals and these are shown in Table 2.1. With a depth dependent c(z) there will
be additional classes in order to include upper and lower turning point. The user is required
to supply a selection table of classes to be included in the synthesis of the complete time and
frequency response.

2.1.3 Synthesis of the sound field

The received sound field is synthesized by coherently adding the contributions of the eigenrays.
No rays are traced into the bottom and a layered bottom is described entirely by plane ray
reflection coefficients. The reflection coefficient between the water and the sediment layer, r01

is given as

r01 =
Zp1 − Zp0

Zp1 + Zp0
, (2.14)

8 Chapter 2. Marine Acoustics Theory

and r12 is the reflection coefficient between the sediment layer and the solid half space,

r12 =
Zp1cos

22θs2 + Zs2sin
22θs2 − Zp2

Zp1cos22θs2 + Zs2sin22θs2 + Zp2
. (2.15)

In equation 2.14 and 2.15 Zki is the acoustic impedance for the compressional (k=p) and
shear (k=s) waves in water column (i=0), sediment layer (i=1) and solid half-space (i=2),
respectively. θs2 is the transmitted grazing angle for the shear wave in the solid half-space.

Chapter 3

GPU Theory

3.1 GPU

GPU stands for Graphics Prosessing Unit, and is a dedicated graphics rendering device for
a personal computer or game console. Modern GPUs are very efficient at manipulating and
displaying computer graphics, and their highly-parallel structure makes them more effective
than typical CPUs for a range of complex algorithms. A GPU implements a number of
graphics primitive operations in a way that makes them render much faster than drawing
directly to the screen with the CPU.

3.1.1 History

Modern GPUs are descended from the monolithic graphic chips of the late 1970s and 1980s. In
the late 1980s and early 1990s, high-speed, general-purpose microprocessors became popular
for implementing high-end GPUs [13]. Several (very expensive) graphics boards for PCs and
computer workstations used digital signal processor chips to implement fast drawing functions,
and many laser printers where shipped with a post script raster image processor. By the early
1990s, the rise of Microsoft Windows sparked a surge of interest in high-speed, high-resolution
2D bitmapped graphics (which had previously been the domain of Unix workstations and the
Apple Macintosh). For the PC market, the dominance of Windows meant PC graphics vendors
could now focus development effort on a single programming interface, GDI.

Throughout the 1990s, 2D Graphics User Interface (GUI) acceleration continued to evolve.
As manufacturing capabilities improved, so did the level of integration of graphics chips. Video
acceleration became popular as standards when VCD and DVD arrived, and the Internet grew
in popularity and speed. In the mid-1990s, computer CPUs were becoming powerful enough to
handle real-time 3D graphics. Graphics chip manufacturers scrambled to be the first to offer
hardware 3D acceleration to their product line-ups. However, as manufacturing technology
again progressed, video, 2D GUI acceleration, and 3D functionality were all integrated into
one chip. Out of this the two major graphics vendors nVidia and ATI grew up.

With the advent of APIs like DirectX 8.0 and OpenGL, GPUs added programmable
shading to their capabilities. Each pixel could now be processed by a short program that
could include additional image textures as inputs, and each geometric vertex could likewise
be processed by a short program before it was projected onto the screen. nVidia also held
the crown for being the first to market with a chip capable of programmable shading, the
GeForce 3 (NV20).

9

10 Chapter 3. GPU Theory

Modern GPUs use most of their transistors to do calculations related to 3D computer
graphics. They were initially used to accelerate the memory-intensive work of texture map-
ping and rendering polygons, later adding units to accelerate geometric calculations such as
translating vertices into different coordinate systems.

Recent developments in GPUs include support for programmable shaders which can ma-
nipulate vertices and textures with many of the same operations supported by CPUs, over-
sampling and interpolation techniques to reduce aliasing, and very high-precision color spaces.
Because most of these computations involve matrix and vector operations, engineers and sci-
entists have increasingly studied the use of GPUs for non-graphical calculations. In figure

Figure 3.1: In the past years the GPU has outgrown the CPU when it comes to floating point
performance. With the two manufactures ATI and nVidia constantly competing, the
performance is rapidly growing.

3.1 the increase in computational power for last four years are shown. As can be seen there
are enormous floating point power in the GPU chip compared to a CPU. Because all these
applications exceed an actual GPU’s usage target, a new term, General Purpose Graphics
Processing Unit (GPGPU) is usually employed to describe them. While GPGPUs are the
same chips as GPUs, there is increased pressure on manufacturers from ”GPGPU users” to
improve hardware design, usually focusing on adding more flexibility to the programming
model.

3.2 GPU pipeline

The GPU uses a pipeline architecture to process multiple fragments in parallel. This means
that it can do a lot more operations at same time, compared to the CPU. In figure 3.2 the
GPU pipeline are shown.

Chapter 3. GPU Theory 11

Figure 3.2: The Programmable Graphics Pipeline acts as a stream computer. On every element in
the stream, the fragment processor computes in accordance with instructions given in
the shader file.

3.2.1 Processing stages

In principal concern the GPU is split up in two processing stage, vertex and fragment, in the
pipeline. For each stage a program containing instruction will be applied, called shader. The
shader in the first stage will transform the initial data to a primitive, which is than rasterized
before sent to the next stage. Here all pixel are computed in accordance to instructions given
in the shader file, like color and depth. This is shown in figure 3.3. The final result are sent
to the frame buffer for visualizing on the screen.

Figure 3.3: When initial data are sent trough the pipeline, they are transformed to a visible object
sent to the frame buffer. Stages consists of making pixels of the primitives before coloring.

Vertex Processor

Vertex transformation is the first processing stage in the graphics hardware pipeline. The
transformation will preform a sequence of math operations on each vertex, like texture coor-
dinate generation and transformation, lighting and color material applications [18]. Programs
that are intended to run on this processor are called vertex shaders or vertex programs. Ver-
tex shaders can be used to specify a completely general sequence of operations to be applied
to each vertex. On the other hand, they can not perform graphics operations that require
knowledge of other vertices at a time or that require topological knowledge, e.g. perspective

12 Chapter 3. GPU Theory

division, back face culling and depth range. The processor operates on one vertex at a time,
and continue inside the Vertex Program Loop until it terminates. Its design is focused on the
functionality needed to transform and light a single vertex. The output of the vertex proces-
sor is sent through subsequent stages of processing before the fragment processor performs
its operations. The vertex processor writes to memory through multiple stages, as can been
seen in figure 3.2

Fragment Processor

The fragment processor operates on fragment values and their associated data, and is intended
to perform operations on inputs from the rasterization stage. This includes operations on in-
terpolated values, texture access and texture application, fog, color sum and point size [18].
Programs that run on this processor are called fragment shaders or fragment programs. Frag-
ment shaders can be used to specify a completely general sequence of per-fragment operations
to be applied to each fragment passing through the processor. Every fragment is invisible
to all the others, so the fragment shaders can not perform graphics operations that require
knowledge of other fragments. This programmable unit can only write to the frame buffer.
It does not have read capability. However, it does have the capability of texture lookup. In
GPGPU the fragment processor has to be exploited, because it writes directly to the frame
buffer and has the most processor within. 48 in the newest from manufacture ATI1.

3.3 Graphic Programming Languages

Efficient programming the GPU is essential to take advantage of the calculation speed. This
is done with programming language like C/C++ and GLSL. Also librarys like OpenGL, Boost
and Shallows can be used.

3.3.1 OpenGL and Direct3D

OpenGL stands for Open Graphics Libary, and is one of two APIs for GPUs [1]. Microsoft’s
Direct 3D is the second one, and is designed explicitly for Windows platform. However this
makes it especially popular among game developers. OpenGL is a cross platform interface,
and is compatible with operating systems like Linux, Unix and Windows, The use is widely
in CAD, virtual reality, scientific visualization and video game development. Both APIs uses
C/C++ language for implementation.

3.3.2 BrookGPU

Brook for GPUs is a compiler and runtime implementation of the Brook stream program
language for modern graphics hardware, and is a research project in Stanford University
Graphics lab in USA. The idea is to develop a programming language which is not meant for
graphic tasks, but rather for general purpose programming on the GPU. It utilizes the parallel
processing possibility as one important parameter to optimize the code. Another name for it
is C for streams because GPU is a streaming processor. BrookGPU can be found at [17].

1ATI X1900XTX

Chapter 3. GPU Theory 13

3.3.3 Shading Languages

GLSL

OpenGL Shading Language (GLSL) is a high level shading language based on the C pro-
gramming language, and developed by OpenGL ARB as an extension to OpenGL. It is not
operating system specific, and works on Windows, Linux and Unix. The OpenGL Shad-
ing Language specification defines 22 basic data types, some are the same as used in the C
programming language, while others are specific to graphics processing [3].

Cg

C for Graphics (Cg), C for graphics is made for programming GPUs by nVidia. It has the
ability to compile a written code to be optimized for the GPU. Cg is based on C and much of
the syntax is alike. The idea behind Cg is to make the programmer focus on the idea, not on
the hardware implementation [18]. Cg programs are portable by the fact that they can run
on every operating systems like GLSL.

HLSL

The High Level Shader Language (HLSL) is a shader language developed by Microsoft for use
with Direct3D, and is very similar to Cg. HLSL allows expensive graphical computations to
be done on the graphics card, thus freeing up the CPU for other purposes. However it runs
only on Windows operating system [18].

3.3.4 GPGPU library

Shallows

Shallows is a GPGPU programming library developed by SINTEF ICT Applied Mathematics
in Oslo and are a C++ library designed to make GPGPU programming easier and safer. The
aim is to reduce the time spent on writing and debugging OpenGL related C/C++ code,
so the developers of GPGPU applications can concentrate on implementing the algorithms
instead. Shallows can be found at [15].

3.4 Heat Equation, an Example

The heat equation is a partial differential equation (PDE), and it show how the graphics
pipeline can exploit its power in a GPGPU application. The 2D heat equation can be written

∂2u

∂t2
= ∇2u. (3.1)

To numerically solve such equations, one need to discretize the equation use approximations
to derivates. When using a forward difference scheme, the equation reduces to

un+1
i,j = 2un

i,j − un−1
i,j +

k

h2

(
un

i+1,j + un
i−1,ju

n
i,j+1 + u1

i,j−1 + 4un
i,j

)
. (3.2)

For the 2D heat equation this typically boils down to a grid point at time step t+1 being a
weighted sum of it’s 4 neighbors and itself at time step t. Here, we let a pixel correspond to

14 Chapter 3. GPU Theory

Figure 3.4: The solution of the heat equation is a weighted sum of it’s 4 neighbors and it self at time
step t

a grid point, and the neighboring pixels are thus the neighboring grid points. This is shown
in figure 3.4.

The code in listing 3.1 is a program written in GLSL and solves the heat equation using
equation 3.2. For every loop the program runs the values for the neighboring pixels are read.
This five values are summed together, and the result are sent to the frame buffer, which is
a render target. The render target then stores the values in the texture array, for use as
input to next calculating. This is known as ping-ponging. As seen in listing 3.1 the texture
containing the values are searched from using sampler2D. For visualizing the result, a specific
shader is used. See listing 3.2. Here the values are only passed trough and plotted on the
screen. To get the right position on the screen the ModelViewProjectionMatrix are used. The

Figure 3.5: The heat equation shows a melting of the colors as a result of the pixels are summed
together

final result are a melting of the red and black color. Shown in figure 3.5.

Chapter 3. GPU Theory 15

Listing 3.1: When calculating the heat equation the color value for the neighboring pixels are added
together, and the color values are written to the frame buffer.

[Vertex shader]

void main (void)
{

texCoord = gl MultiTexCoord0 ;
g l P o s i t i o n = gl ModelViewProject ionMatr ix ∗ g l Ver tex ;

}

[Fragment shader]

uniform sampler2D texture ;
uniform f l o a t h ;

void main ()
{

const f l o a t r = 0 . 2 3 ; // S t a b i l i t y c r i t e r i o n . r = eps ∗dT/dX∗dY

// Read the ne ighbor ing tex ture va lue s
vec4 u = texture2D (texture , gl TexCoord [0] . xy) ;
vec4 u pj = texture2D (texture , gl TexCoord [0] . xy + vec2 (h , 0 . 0)) ;
vec4 u mj = texture2D (texture , gl TexCoord [0] . xy − vec2 (h , 0 . 0)) ;
vec4 u ip = texture2D (texture , gl TexCoord [0] . xy + vec2 (0 . 0 , h)) ;
vec4 u im = texture2D (texture , gl TexCoord [0] . xy − vec2 (0 . 0 , h)) ;

// Sum them toge the r
vec4 r e s u l t = (1.0 −4.0∗ r)∗u + r ∗(u pj + u mj + u ip + u im) ;

// Output the r e s u l t to the f ramebu f f e r
g l FragColor = r e s u l t ;

}

Listing 3.2: Visualizing the result is a simply texture lookup, after placing the pixel in space.
[Vertex shader]

void main ()
{

g l Po s i t i o n = gl ModelViewProject ionMatr ix ∗ g l Ver tex ;
gl TexCoord [0]= gl MultiTexCoord0 ;

}

[Fragment shader]

uniform sampler2D texture ;

void main ()
{

vec4 co l=texture2D (texture , gl TexCoord [0] . xy) ;
g l FragColor = co l ;

}

16 Chapter 3. GPU Theory

Chapter 4

GPGPU Program

The GPU is a streaming processor, and for every element in the stream the same calculations
are done. The stream is ran over and over again, and it continues until the user interferes or
other data is set as input. Calculating a sound field with PlaneRay consist of many iterations
of same mathematics, however the input values change for every iteration. Setting the initial
data as start values for the stream, the shader will calculate the ray path. If one ray is taught
of as one pixel, the pixel gird size will give the number of rays. Doing this on the stream once,
one frame is generated. Usually the graphics pipeline makes frames for visualizing moving
objects. Using this characteristic property to the GPGPU program, we will get the rays
paths. From figure 4.1 the frames are created as the time goes by. Number of frames that are
created are determined by the pixel grid size. With a large amount of pixels the frame rate
will become low due to more calculations within each frame.

Figure 4.1: For every loop the program does, a frame consisting of pixel is created with distinct
values for every pixels. When the program creates 10 frames per second with a pixel
grid of 7x7, 490 different calculation are done.

Each frame is stored in the frame buffer for temporarily storage, so the values can be
visualized and set as input for next iteration. Looping of values for use in next iteration is
called ping-ponging and is common in GPGPU applications . How the program works in one
loop are shown in figure 4.2

The frame buffer is the GPU’s memory, and usually this memory is overwritten for every
loop for visualization purposes. When storing the wanted values they must be written to the
CPU for permanent storage, since the GPU overwrites the memory for every iteration. This

17

18 Chapter 4. GPGPU Program

Figure 4.2: Two shaders are used to calculate and visualize the sound field. Initial values are stored
in an array for texture lookup in the math shader. The result are visualized to screen
and set as input to next program loop.

read back will slow down the overall calculation speed, because the program must write the
calculated value to the CPU before proceeding. However using asynchronous read back this
bottleneck can be minimized.

4.1 Initial Settings

Initial setting for the GPU pipeline is the first main thing to do. Here all the setting for
keyboard, window size and view space are done. This is the same as setting up a regular
GPU application. As can be seen from Listing 4.1 the display function are empty. It is here
the calculations are taking place. Setting up the initial setting with GLUT, which is a utility
library for OpenGL, is an easy way to go. The code in Listing 4.1 uses this library. Using
other librarys like Qt and WIN32 the command window will not be shown, only the main
window. However in this application GLUT is sufficient.

Further on the sound speed profile needs to be implemented. This is done by reading
a text file containing any kind of sound speed profiles into an array on the CPU. Getting
this data to the GPU is done by copying the array to a texture on the GPU. By the help of
Shallows this is done in one sentence. A selection of five different sound speed profiles for the
program are shown in figure 4.3.

For layers other than one meter an interpolation routine using

∆ = max[c(zi), c(zi+1)]−min[c(zi), c(zi+1)] (4.1)

is ran, where σ is the absolute difference between two layers. This value are split on wanted

Chapter 4. GPGPU Program 19

Listing 4.1: By setting the initial settings with GLUT, the code is much less than with e.g Qt or
MFC.

#inc lude <iostream>
#inc lude <GL/ g lu t . h>
// These two g l oba l s s t o r e the cur rent window width and he ight .
i n t window width ;
i n t window height ;

/∗ This func t i on i s c a l l e d whenever a key i s pressed , f o r t h i s app l i c a t i on
∗ the only p o s s i b i l i t y i s to qu i t . ∗/

void keyboard (unsigned char key , i n t winx , i n t winy){
switch (key) {

case ’q ’ :
e x i t (EXIT SUCCESS) ;}}

/∗ This func t i on loads i d e n t i t y OpenGL matr ices , and only ad ju s t s
the viewport . S ince we w i l l end up with d i f f e r e n t s i z e s o f the
computat ional g r id and v i s u a l i z a t i o n window i s i s n i c e to to
s epara te the ca l l ba ck and the func t i on doing the main work . ∗/

void reshape (i n t width , i n t he ight){
glMatrixMode (GL PROJECTION) ;
g lLoadIdent i ty () ;
g lViewport (0 , 0 , width , he ight) ;

glMatrixMode (GL MODELVIEW) ;
g lLoadIdent i ty () ; }

/∗ This w i l l be r e g i s t e r e d as the reshape ca l l ba ck . ∗/
void r e shape ca l l ba ck (i n t width , i n t he ight){

window width=width ;
window height=he ight ;
reshape (window width , window height) ; }

/∗ Our main d i sp l ay loop , empty as o f yet . ∗/
void d i sp l ay () {} ;

/∗ I n i t i a l i z e g lut , c r e a t e a window and s t a r t r ender ing . ∗/
i n t main (i n t argc , char ∗∗ argv){

g l u t I n i t (&argc , argv) ;
g lutIn i tWindowPos i t ion (100 , 100) ;
g lutInitWindowSize (512 , 512) ;
g lut In i tDisp layMode (GLUT DOUBLE | GLUT RGBA | GLUT DEPTH) ;
i n t windowID = glutCreateWindow (”SimpleHeat us ing sha l l ows ”) ;
glutSetWindow (windowID) ;
glutReshapeFunc (r e shape ca l l ba ck) ;
glutKeyboardFunc (keyboard) ;
g lutDisplayFunc (d i sp l ay) ;
glutMainLoop () ; }

20 Chapter 4. GPGPU Program

(a) Summer Conditions (b) Winter Conditions

(c) Negative Sound speed (d) Positive Sound speed

(e) Positive and Negative Sound speed

Figure 4.3: Summer, Winter, Negative, Positive and Positive/Negative sound speed profiles

Chapter 4. GPGPU Program 21

number of layers

η =
∆

numberoflayers
, (4.2)

and the new values are added to the lowest of the two sound speed values. The interpolation
routine used is linear, and only used when more values of the sound speed profile than the
initial 512 are needed. With this the interpolation routine needs only 512 values as input
for all layer thickness. Other initial settings like source depth, bottom depth, receiver depth,
bottom contour and start angle are set in the source code and stored in an array for later to
be transfered to texture on the GPU.

The GPU needs somewhere to store the data after calculation, and usually this is done
in a render target. A render target is generic name for data storage on the GPU, such as
a frame buffer or texture. Since the calculation needs to be visualized, a on- and off-screen
frame buffer is needed. This two are set in the beginning of the program, along with four
render targets for swapping data in and out of the shader.

GPU does all calculations in parallel, because it usually generates motion frames. A
GPGPU application can take advantage of this by using a grid made of out of pixels to
execute a number of calculation. From figure 4.1 a 7x7 calculation grid is shown, which in
this case will result in 49 rays, since each pixel is taught of as one ray. Each pixel computes
in accordance to instructions written in a shader file. Which the instructions are the same
for all pixels, however the values are different.

4.2 Shaders

As mentioned the shader is a small program within the main program which does the math-
ematics calculations and rendering. Here shaders has been written in GLSL, in preference
to Cg and HLSL. As in Listing 4.2 of the mathematics shader program, the shader contains
instructions for both the vertex and fragment part in the pipeline. In this code the vertices are
only passed trough to the fragment processor. By writing uniform sampler2D texSetValues
the shader knows it shall use values within this texture when calculating. In the texture lies
values to be used in calculation in the form of a four-component vector. Meaning four different
values can be sent to each pixel from one texture. Current program uses two four-component
vectors in the ping-ponging, meaning eight values for each pixel are written to the earlier set
off-screen frambuffer after each calculation. When finding the values belonging to each pixel
the texture2D command is used. Here the first four values in the texture are set to pixel
number one, next four values to pixel number two, and so on. When it comes to the sound
speed profile the values are not changed when calculating, however the texture are used only
as a look up texture. Instructions used are the formulas 2.1 till 2.7 and 2.10 from chapter two.
The results of calculation are stored in two four-component vectors using swizzle operators.
In the bottom of Listings 4.2 this four-component vectors are written to the frame buffer for
storage.

4.3 GPGPU work flow

For making the shader files and initial settings working together a work flow is needed. In
Listings 4.3 the work flow starts with creating textures from arrays, which shallows does with

22 Chapter 4. GPGPU Program

Listing 4.2: For each pixel in the grid, this program code is applied. For every iteration the program
fetches the values for calculation from texSetValues and texInit2. This values are the
result from last calculation. The other textures are only lookup textures, and remains
the same trough out the simulation.

[Vertex shader]
vary ing vec4 texCoord ;
void main (void){

texCoord = gl MultiTexCoord0 ;
g l P o s i t i o n = gl ModelViewProject ionMatr ix ∗ g l Ver tex ;}

[Fragment shader]
vary ing vec4 texCoord ;
uniform sampler1D texSSPCurr ;
uniform sampler2D texSetValues ;
uniform sampler2D t e x I n i t ;
uniform sampler2D t e x I n i t 2 ;

void main (void){
vec4 t exSta r t = texture2D (t ex In i t , texCoord . xy) ;
vec4 texCurr = texture2D (texSetValues , texCoord . xy) ;
vec4 spCurr = texture1D (texSSPCurr , texCurr . x / (5 1 2)) ;
vec4 texCurr2 = texture2D (t ex In i t 2 , texCoord . xy) ;
.
’ ’ Formulas from chapter 2 ’ ’
.
vec4 r e s u l t ;
r e s u l t . x = texCurr . x + texCurr . z ;
r e s u l t . y = texCurr . y + range inc ;
r e s u l t . z = texCurr . z ;
r e s u l t .w = texCurr .w + t rave l t ime ;

vec4 r e s u l t 2 ;
r e s u l t 2 . x = rayparam ;
r e s u l t 2 . y = Bottom . x ;
r e s u l t 2 . z = Bottom . y ;
r e s u l t 2 .w = spCurr . x ;

//The r e s u l t s are sent to frame bu f f e r
gl FragData [0] = r e s u l t ;
gl FragData [1] = r e s u l t 2 ;}

Chapter 4. GPGPU Program 23

a simple command. Using boost shared pointer gives the program an easy control over the
texture, which in this case is a 4 component vector. The newly created textures now contains
the initial values earlier set in the program. This initial values are the earlier mentioned input
to the shader.

The results are stored in a given frame buffer, here called offs fb. For visualization another
frame buffer is used, here called ons fb. Which shader to use is given by a simple command.
Reshaping the calculation grid must be done so the wanted number of rays are calculated,
done with the reshape function. At the end of Listing 4.3 the output render target are swapped
with an other render target so the calculated values are set as input to next iteration.

Visualizing the result, the other shader pass the calculated values to the screen, along
with a visualizing of the bottom and a time- and frame-counter. This will show how fast the
program calculates. From figure 4.1, 49 rays are calculated, done as one frame. When the
program makes 350 frames per second (fps), 49x350 = 17150 different ray calculations are
done in one second.

At the end all results in the frame buffer must be stored in an array on the CPU. The
reason for storing this at the CPU is because the frame buffer in GPU is overwritten for every
calculation. When not clearing this, the visualization of the results will be the rays path on
the screen. However moving the window will create the path to be wiped out by other random
data. So for safe storage the results needs to be sent to the CPU. Doing this by not interfering
with the speed of the calculation, asynchronous read back must be used. This means that the
read back of data is done simultaneously while the calculations executes. The values from the
read back process are stored in a dimensionless vector, with range values for bottom, surface
and receiver when ray hits the respectively place, and at the end written to text file. Also
some additional information is then added in the vector like start angle, intersection angle
and travel time. All this values shall be used in later stages in the PlaneRay model.

24 Chapter 4. GPGPU Program

Listing 4.3: The work flow for the GPGPU program is set in the display function. Here all the array
to texture and swapping of render targets are set. Also the work flow in and out from
the shader file is set. Telling it what texture to use and where to store the calculated
result.

boost : : shared ptr<Texture1D> in i t texSSPCurr = sha l l ows : : u t i l s :
: createFloatTexture1D (512 , 4 , SSPCurr) ;

boost : : shared ptr<Texture1D> in i t texSSPNext = sha l l ows : : u t i l s :
: createFloatTexture1D (512 , 4 , SSPNext) ;

boost : : shared ptr<Texture1D> in i t texBottom = sha l l ows : : u t i l s :
: createFloatTexture1D (512 , 4 , bottom) ;

boost : : shared ptr<Texture2D> i n i t t e x I n i t = sha l l ows : : u t i l s :
: createFloatTexture2D (BUFF DIM, BUFF DIM, 4 , i n i t) ;

boost : : shared ptr<Texture2D> i n i t t e x I n i t 2 = sha l l ows : : u t i l s :
: createFloatTexture2D (BUFF DIM, BUFF DIM, 4 , i n i t 2) ;

boost : : shared ptr<Texture2D> i n i t t e xS e tVa lu e s = sha l l ows : : u t i l s :
: createFloatTexture2D (BUFF DIM, BUFF DIM, 4 , s e t v a l u e s) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Off−Screen Rendering ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
o f f s f b . r e s e t (new Of fScreenBuf f e r (BUFF DIM, BUFF DIM)) ;
r t [0] = o f f s f b −>createRenderTexture2D () ;
r t [1] = o f f s f b −>createRenderTexture2D () ;
r t [2] = o f f s f b −>createRenderTexture2D () ;
r t [3] = o f f s f b −>createRenderTexture2D () ;
curr1 = r t [0] ;
next1 = r t [1] ;
curr2 = r t [2] ;
next2 = r t [3] ;
RayShader . r e s e t (new GLProgram) ;
RayShader−>r e adF i l e (” rayEquations . g l shade r ”) ;
RayShader−>setFrameBuffer (o f f s f b) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗ On−Screen Rendering ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
ons fb . r e s e t (new OnScreenBuffer) ;
on s r t . r e s e t (new OnScreenRenderTarget (GL BACK LEFT)) ;
RenderShader . r e s e t (new GLProgram) ;
RenderShader−>useNormalizedTexCoords () ;
RenderShader−>r e adF i l e (”rayRenderer . g l shade r ”) ;
RenderShader−>setFrameBuffer (ons fb) ;
RenderShader−>setOutputTarget (0 , on s r t) ;
RenderShader−>set InputTexture (” r e s u l t ” , r t [0]−> getTexture ()) ;

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ I n i t i a l va lue s ∗∗/
In i tProg . r e s e t (new GLProgram) ;
In itProg−>useNormalizedTexCoords () ;
In i tProg−>r e adF i l e (” rayEquations . g l shade r ”) ;
In i tProg−>setFrameBuffer (o f f s f b) ;
In i tProg−>set InputTexture (”texSSPCurr ” , in i t texSSPCurr) ;
In i tProg−>set InputTexture (”texSSPNext ” , in i t texSSPNext) ;
In i tProg−>set InputTexture (”texBottom ” , in i t texBottom) ;
In itProg−>set InputTexture (” t e x I n i t ” , i n i t t e x I n i t) ;
In i tProg−>set InputTexture (” t e x I n i t 2 ” , i n i t t e x I n i t 2) ;
In i tProg−>set InputTexture (” texSetValues ” , i n i t t e xS e tVa lu e s) ;

reshape (BUFF DIM, BUFF DIM) ;
In itProg−>setOutputTarget (0 , curr1) ;
In i tProg−>run () ;
In i tProg−>setOutputTarget (0 , next1) ;
In i tProg−>run () ;
In i tProg−>setOutputTarget (1 , curr2) ;
In i tProg−>run () ;
In i tProg−>setOutputTarget (1 , next2) ;
In i tProg−>run () ;

Chapter 5

Results

The GPGPU program calculates a underwater sound field, with 40 km in range and up to
500 meter depth. The bottom can be set as terrain contour, which will make the rays change
direction in accordance to Snell’s law. All the parameters that are necessary to adjust for
numerous sound fields are implemented, such as source depth, number of rays, receiver depth
and start angle for every ray. However to make all this changes the source code has to be
modify and compiled for every time. See appendix B for more information.

5.1 GPGPU program results

A selection of sound fields from the GPU program is shown in figure 5.1 to 5.5. In figure 5.3 to
5.5 the layer thickness are varied, respectively 1 meter, 0.5 meter and 0.1 meter. By varying
the layer thickness the accuracy should increase, because there are more values in the sound
speed profile to calculate from. However by doing this the overall calculation speed decreases.
A trade off for accuracy and speed has to be made. When using layer thickness 0.5 meter

the accuracy has not been compromising the calculation time in a larger scale. From figure
5.5 the layer thickness is 0.1 meter, which makes the computation time much higher than for
figure 5.3 and 5.4. However the frame rate is almost the same.

Figure 5.1: With the source at 20 meter of depth using a winter sound speed profile the rays has a
concentration near the water surface. Here the layer thickness is 0.5 meter.

25

26 Chapter 5. Results

Figure 5.2: With the source at 256 meter of depth using a positive and negative sound speed profile
we get a sound tunnel, because the source is set where the sound speed profile turns from
positive to negative. Here the layer thickness is 0.5 meter.

Figure 5.3: With the source at 150 meter of depth using a summer sound speed profile the rays has
a concentration around depth of source. Since the source is set at the turning point from
negative to positive sound speed, a sound tunnel will be made. Here the layer thickness
is 1.0 meter.

Figure 5.4: The sound speed profile here are same as the figure above, only the layer thickness is 0.5
meter.

Chapter 5. Results 27

Figure 5.5: The sound speed profile here are the same as the two figures above, only the layer
thickness is 0.1 meter.

5.2 Matlab comparison

From earlier studies [19] Matlab is said to be 2-4 times slower than a pure CPU code. If the
already written Matlab code is optimal, we can make an assumption and say that an optimal
CPU code is twice the speed of Matlab. From table 5.1 and 5.2 the improvement will than
be halved.

Table 5.1: By timing the GPU application and the Matlab application the computational increment
can be found. Some values are estimated by the fact that the increment for Matlab in
seconds is approximated by a factor of four for twice the number of rays.

Number of rays FPS Matlab [sec.] GPU[sec.] Improvement
100 350 3.91 14.5 0.27
256 330 9.96 15.0 0.66
1024 288 40.85 17.2 2.38
2304 230 93.98 20.5 4.58
4096 184 172.83 25.7 6.73
9216 124 504.15 30.2 16.70
16384 75 1163.20 58.2 19.99
40000 34 5412.30 120.1 45.06
90000 11 26149.70* 253.8 103.03
160000 2.8 86595.80* 438.7 197.40

*Estimated values

The estimated values in table 5.1 and 5.2 are estimates for 90000 and 160000 rays in
Matlab. Due to hardware limitations, this amount of rays is not possible to calculate on
current hardware. The computation time is than estimated by the fact that four times the
the ray, the time increases by an approximated factor of 4 in Table 5.1 for small number of
rays. If this assumption is correct, the maximum gain by converting the initial ray tracing
from Matlab to a GPU is 200 times by using current hardware. By this the improvement
from a CPU implementation will of course be less than comparing to Matlab. A timed gain
of 22 times, with the estimate of 100 times when maximum number of rays are simulated.

By the fact that this program is ran on a laptop graphics chip, the performance from a

28 Chapter 5. Results

Table 5.2: Saying the CPU is twice the speed of Matlab, the GPU improvement will become smaller.

Number of rays estimated CPU [sec.] GPU[sec.] Improvement
100 1.955 14.5 0.13
256 4.98 15.0 0.33
1024 20.43 17.2 1.19
2304 46.99 20.5 2.29
4096 86.42 25.7 3.36
9216 251.08 30.2 8.32
16384 581.60 58.2 9.99
40000 2706.15 120.1 22.53
90000 13074.85* 253.8 51.52
160000 43297.90* 438.7 98.70

*Estimated values

desktop graphics card could theoretically be higher1.

1e.g nVidia 7950GX2 or ATI X1900XTX

Chapter 6

Discussion

The GPU program is timed to be somewhat faster than Matlab, and are increasingly faster
when more rays are calculated. However, when small number of rays are calculated, Matlab
is faster. A reason for this can be that the GPU code is not optimized, and it also use
computational effect on rendering the bottom contour.

The GPU hardware1 used in this study support a calculation grid of 410x410, which is
more than Matlab can do, due to hardware limitations. In summary the result this GPU
program have in measured processing time is about 45 times the calculation speed than using
Matlab. In figure 6.1 the improvement when calculating up to 40000 rays was is shown.
Compared with the measured processing time using Matlab, the estimates are almost 200

Figure 6.1: The GPU has increased the calculation time for high density of rays, however for small
amount of rays Matlab outperform the GPU.

times higher with maximum number of rays.
In practice more rays than 2000 rays are not necessary, but increasing the number of layers

is more interesting. Doubling the number of layers will double time, so from table 5.1, 2304
ray will take 41 seconds to calculate.

When simulating the sound field a constant frame rate on 60 FPS was obtained for lower
number of rays than 25000. The reason for constant frame rate was due to vertical synchro-
nization was enabled [25]. Disabling this feature made a maximum frame rate of 350 frames

1nVidia GeForce Go 6600

29

30 Chapter 6. Discussion

Figure 6.2: The GPU has a high frame rate when small number of rays are calculated, and increas-
ingly higher with more rays.

per second when small number of rays where calculated. The frame rate for all different
numbers of rays are shown in figure 6.2.

6.1 Further Work

General computation on a GPU is principally interesting because of the high floating point
processing power. To make use of the full potential in computing power, this GPU code has
to be optimized. Making the number of texture lookups in the shader file less is one thing
to achieve high processing power. Another important factor is to use arithmetic operators
instead of if, else, for and while loops in the shader file. Also the asynchronous read back
earlier discussed, which is not implemented, will increase the time.

In the program code 512 values are read from a text file being the sound speed profile, for
a layer thickness of 1 meter. When the layer thickness is more than 1 meter, more sound speed
values are needed, so an interpolation routine between the layers are used. This interpolation
routine is linear, however to obtain a more accurate result a Beizèr spline interpolation could
be used. From figure 6.3 the Beizèr curve is smoother than the linear curve. Using this will
give more realistic results. The Beizèr spline curve is given by

c(t) =
n∑

i=0

PiBi,n(t) (6.1)

where

Bi,n(t) =
(

n

i

)
ti(1− t)n−i (6.2)

is the Bernstein polynomial. However since the sound speed profile in the PlaneRay model is
assumed to be linear between two layers, this will only make a difference in current GPGPU
program when a layer thickness less than 1 meter is used.

Chapter 6. Discussion 31

(a) Linear interpolation
(b) Beizèr spline interpola-
tion

Figure 6.3: Using Beizèr spline interpolation instead of linear interpolation the sound speed will
become more accurate when the layer thickness is less than 1 meter.

Making it easier for the user to change the program parameter will make the program
more surveyable for simulation. By using Qt, MFC or WIN32 a good GUI (graphics user
interface) can be made.

6.1.1 GPU advantage

In a study from MIT [21] a nonlinear inversion method based on the parabolic equation
(PE) method was developed and tested using simulated data. This method was proposed in
1992, and for the current supercomputer2 at that time, it took for a given problem using this
method, 1.3 hours to calculate at 250 MFLOPS. Using todays state of the art graphics chip3

this can theoretically [14] be improved by a factor of 2200 times, calculating at 550 GFLOPS.

2Cray X-MP/24
3ATI X1900XTX

32 Chapter 6. Discussion

Bibliography

[1] OpenGL Architecture Review Board. OpenGL Programming Guide, Fourth Edi-
tion, Addison-Wesley, Boston, 2004.

[2] OpenGL Architecture Review Board. OpenGL Reference Manual, Fourth Edition,
Addison-Wesley, Boston, 2004.

[3] Rost, R. J. OpenGL Shading Language, First Edition, Addison-Wesley, Boston, 2004.

[4] Edited by Pharr, M. GPUGems2 Programming Techniques for High-Performance
Graphics and General-Purpose Computation, Addison-Wesley, 2005.

[5] Hovem, J. M. Marine Acoustics, The Physics of Sound in Underwater Environment,
Part I, NTNU, Trondheim, 2005 and ARL, Texas, 2005.

[6] Hovem, J. M. A forward model for geoacoustic inversion based on ray tracing and plane
wave reflection coefficients, NTNU, Trondheim, 2006.

[7] Medwin, H. and Clay, S. C. Fundamentals of acoustical oceanography. Academic
press, Boston, 1998.

[8] Jensen, F. B., Kauperman, W. A., Porter, M. B. and Schmidt, H. Computa-
tional ocean acoustics. AIP Press, American Institute of Physics, Woodbury, New York
City, 1994.

[9] Carr, N. A., Hall, J. D. and Hart, J. C. The Ray Engine, University of Illnois,
2002.

[10] Purcell, T. J., Buck, I., Mark, W. R. and Hanrahan, P. Ray Tracing on Pro-
grammable Graphics Hardware, Stanford University

[11] Wright, R. S. Jr and Sweet, M. OpenGL SuperBible, Second Edition Waite Group
Press, Boston, 1999.

[12] Angel, E. Interactive Computer Graphics, A Top Down Approach Using OpenGL,
Fourth Edition Addison-Wesley, Boston, 2006.

[13] Graphics prcessing unit. http: // en. wikipedia. org/ wiki/ Graphics_

processing_ unit

[14] Floating point operations per second. http: // en. wikipedia. org/ wiki/

Teraflop

33

http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Graphics_processing_unit
http://en.wikipedia.org/wiki/Teraflop
http://en.wikipedia.org/wiki/Teraflop

34 BIBLIOGRAPHY

[15] Shallows GPGPU library. http: // shallows. sourceforge. net/

[16] Boost C++ library http: // boost. org/

[17] Brooks for GPU http: // graphics. stanford. edu/ projects/ brookgpu/ index.

html

[18] Kilgard, F. The Cg tutorial. The definitive guide to programmable real-time graphics.
Addison-Wesley, Boston, 2003.

[19] Comparing Matlab to C/C++. http: // www. stats. uwo. ca/ faculty/ aim/

epubs/ MatrixInverseTiming/ default. htm

[20] Haugeh̊atveit, O., Hovem. J. M. and Hagen. T. R. Calculation of underwater
sound fields with Graphic Processing Unit (GPU) Norwegian University of Science and
Technology, Trondheim, and SINTEF ICT Applied Mathematics, Oslo, 2006.

[21] Collins, M. D., Kuperman, W. A. and Schmidt, H. Nonlinear inversion for ocean-
bottom proporties Naval Reasarch Laboratory, Massachusetts Institute of Technology,
1992.

[22] Weiskopf, D., Schafhitzel, T. and Ertl, T. GPU-Based Nonlinear Ray Tracing,
Institute of Visualization and Interactive Systems, University of Stuttgart, Eurographics
2004.

[23] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn,
A. E. and Purcell, T. J. A Survey of General-Purpose Computation on Graphics
Hardware, The Eurographics Association, 2005.

[24] Jedrzejewski, M. and Marasek, K. Computation of room acoustics using pro-
grammable video hardware, Polish Japanese Institute of Information Technology, 2004.

[25] Vertical synchronization. http: // en. wikipedia. org/ wiki/ Vertical_ sync

[26] Haugeh̊atveit, O. The use of GPU in underwater sound field calculation. http://
folk.ntnu.no/haugehat/. Trondheim, 2006.

http://shallows.sourceforge.net/
http://boost.org/
http://graphics.stanford.edu/projects/brookgpu/index.html
http://graphics.stanford.edu/projects/brookgpu/index.html
http://www.stats.uwo.ca/faculty/aim/epubs/MatrixInverseTiming/default.htm
http://www.stats.uwo.ca/faculty/aim/epubs/MatrixInverseTiming/default.htm
http://en.wikipedia.org/wiki/Vertical_sync
http://folk.ntnu.no/haugehat/
http://folk.ntnu.no/haugehat/

Appendix A

Some explanations

Word definitions

• GPGPU = General Purpose Graphics Processing Unit. A concept to use the GPU for
other tasks than it was intended for, such as scientific and mathematical computation.

• vertex = a vertex is a point in 3D space with a particular location, usually given in
terms of its x, y, and z coordinates. It is one of the fundamental structures in polygonal
modeling.

• vertices = plural of vertex, defines the edges of lines, triangles and squares.

• fragment = pixel.

• pixel = pixel is one of the many tiny dots that make up the representation of a picture
in a computer’s memory. The color for a pixel is composed out of red, green and blue.

• render = draw the primitives, in GPGPU it does the calculation.

• texture = array on the CPU, used to store variables.

• ping-ponging = storing the calculated values in one texture, and read them back to
the input texture for next calculation.

• frame buffer = storage for data

• off-screen frame buffer = storage for not visualized data.

• on-screen frame buffer = storage for visualized data, this is what we see on the
screen.

• render target = on- and off-screen frame buffer, and texture buffer.

• shader = the code within a shader is done on each pixels in the fragment processor,
and there are also instructions on how the vertex processor should treat the initial data.

• state machine = GPU is a state machine, which means that when a condition is set,
it will not change until the condition gets another value.

35

36 Chapter A. Some explanations

• VRAM = Video Random Access Memory which is a high-speed, high-density tempo-
rary storage for graphics memory. Build out of DRAM.

• V-sync = Generally video displays are refreshed sequentially and on older CRT based
displays, a short delay is required between updating the lowest horizontal line of the
display and returning to refresh the highest. This delay, which is preserved by more
modern display equipment, gives an opportunity in computer graphics to alter the con-
tents of a frame buffer without visible graphical errors such as partially redrawn graphics
or page tearing. Must be turned off for faster calculation.

• GUI = Graphical User Interface. Gives the user an easier way to control the program.

Appendix B

Program usage

Since the program does not have a GUI (Graphics User Interface), every change has to
be written in the source code before compiling the program. Here the start angle, source
depth, layer thickness, receiver depth, sound speed profile and bottom contour can be chosen.
Beginning from the top in the source code the pixel grid is first to define.

const unsigned int BUFF_DIM = 10;

The pixel grid here is 10x10 and will result in 100 rays. Next in the source code to be given
by the user is the sound speed profile to be used.

InFile.open("SoundSpeedProfile2.dat", ios::in);

Here the text file SoundSpeedProfile2.dat is given as input which is the summer profile in
chapter 4. Further the layer thickness is given when altering deltaStep. Here set to 1 meter.
Start angle follows in Degrees. Here set from 5◦ till −5◦. Further the depth and range for the
source is given.

float deltaStep = 1.0f;
float Degrees = 5.0f;
float delta = (Degrees*2)/float(BUFF_DIM*BUFF_DIM);
float temp = 0.0f;
for(int i=0; i<=BUFF_DIM*BUFF_DIM; i++)
{
setvalues[i*4] = 100.0f; // Depth for source.
setvalues[i*4+1] = 0.0f; // Range for source.
setvalues[i*4+2] = deltaStep; // Direction of the ray
setvalues[i*4+3] = 0.0f; // Travel time, always starts at zero
}

for(int j=0; j<=BUFF_DIM*BUFF_DIM; j++)
{
init[j*4] = (Degrees - temp)*Pi/180;
if((Degrees - temp)<0.0)
setvalues[j*4+2] = -deltaStep;
temp += delta;
}

37

38 Chapter B. Program usage

The rest of the above code part is setting initial values like start angle to coordinate with
number of rays. The array setvalues are an input to the shader file. Below the bottom is
modeled, with the parameter y being the bottom depth. All the rest is bottom contour, split
up in five steps, where the user can make the bottom rise or fall.

float x = 0.0f;
float y = 200.0f;
float delta2 = 0.0f;
float delta3 = 0.0f;
float rangeStep = 0.0f;
float angle = 0.0f;
float norm = 1.0f;

for(int z=0; z<512; z++)
{
bottom[z*4] = (x + rangeStep)/norm;
bottom[z*4+1] = (y + delta2)/norm;

if (z <= 102)
{
delta2 += 0.0;
angle = atanf((102.0*0.0)/(39.0*102.0));
}
else if (z <= 204)
{
delta2 += 0.0;
angle = atanf((102.0*0.0)/(39.0*102.0));
}
else if (z <= 306)
{
delta2 += 0.0;
angle = atanf((102.0*0.0)/(39.0*102.0));
}
else if (z <= 408)
{
delta2 += 0.0;
angle = atanf((102.0*0.0)/(39.0*102.0));
}
else
{
delta2 += 0.0;
angle = atanf((104.0*0.0)/(39.0*104.0));
}
bottom[z*4+2] = angle;
bottom[z*4+3] = 50.0f;
delta3 += 0.001;
rangeStep += 39.0;

Chapter B. Program usage 39

}

Further down in the source code in the function display the frame buffer can be cleared by
using

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

If it is preferred to change the read back length, the number 10000 below must be set at a
number between 0 and 40000 since the visualized sound field is within this range. Also the
receiver depth is set here.

int receiverDepth = 50;

for (int i=0; i < BUFF_DIM*BUFF_DIM; i++)
{
if(readback3[i*4+1] < 10000)
{
if ((readback3[i*4+2] + readback4[i*4+2]) == 0)
{
//Depth for hit (bottom_label / surface_label /
turning_below_label / turning_above_label)

save[i].push_back(readback3[i*4]);
//Range to hit from source (bottom_range / surface_range)
save[i].push_back(readback3[i*4+1]);
//Angle for bottom when hit (bottom_angle)
save[i].push_back(init[i*4]-bottom[i*4+2]);
}
if(readback3[i*4] == reciverDepth)
{
//Reciver depth
save[i].push_back(readback3[i*4]);
//Range when reciver is hit N time (eig_range)
save[i].push_back(readback3[i*4+1]);
//Travel time for ray when N hit (eig_time)
save[i].push_back(readback3[i*4+3]);
//Start angle for ray N(eig_theta)
save[i].push_back(init[i*4]);
//Angle for ray to reciver when N hit (eig_angle)
save[i].push_back(readback3[i*4+2]*acos(init2[i*4]*SSPCurr[reciverDepth*4]));
}
}
}

40 Chapter B. Program usage

Appendix C

Development tools

Hardware

• Acer TravelMate 4652LMi

• Intel Pentium M 740 (2MB L2 cache, 1.73GHz, 533MHz FSB)

• 512MB DDR2 SDRAM

• NVIDIA GeForce Go 6600 with 64MB VRAM

Software

• Microsoft Visual Studio 2005

• Boost C/C++ Library

• OpenGL 2.0 library with GLUT

• Shallows GPGPU library

41

42 Chapter C. Development tools

Appendix D

Using Visual Studio

Since the program is developed in Windows environment, Visual Studio is used. Setting up
the developer program for GPGPU programming is done by includeing Shallows GPGPU
library and Boost C++ library. Shallows relay on the Boost C++ library to work properly,
so installing Boost it than the first thing to do after installing the developer program.

D.1 Boost

From the boost home page [16] the library can be downloaded. After downloading the library
it needs to be compiled with the developer tool. This is done with the

bjam "-VC_8_0=gcc"

command from the command window. Further instructions can be found under ’Getting
Started’ in the home page. In environment variables the path to the compilers directory must
be added if not present. After compiling the librays default directory is

C:\Boost

, and here the library objects are placed. A link to this must be set in the program properties
in Visual Studio before compiling Shallows.

D.2 Shallows

Before starting GPGPU programming, Shallows needs to be compiled, and resulting .dll file
must be placed under the

C:\Windows\system32

catalogue. The output files must be included when a GPGPU program is made. This affects
the files in the

include

and

lib

catalogue.

43

44 Chapter D. Using Visual Studio

Appendix E

Ray tracing on GPU article

Calculation of underwater sound fields with Graphics

Processing Unit (GPU)

Olav Haugeh̊atveit1, Jens M. Hovem1, Trond R. Hagen2

haugehat@stud.ntnu.no, hovem@iet.ntnu.no, Trond.R.Hagen@sintef.no

Norwegian University of Science and Technology, Trondheim, Norway1

SINTEF ICT, Department of Applied Mathematics, Oslo, Norway2

45

46 Chapter E. Ray tracing on GPU article

Abstract
This paper reports the initial results of using a modern

graphic board to calculate sound propagation in the

ocean. A ray tracing algorithm has been implemented

on a Graphics Processing Unit (GPU) and used to cal-

culate the trajectories of a large number of rays in an

ocean where the sound speed varies with depth and the

bathymetry varies with horizontal range. The algo-

rithm and the implementation are described and some

examples of tracing rays out to several kilometers are

presented. With the GPU implementation we have

achieved a reduction in computation time of the order

100 compared with a conventional CPU implementa-

tion while retaining the same numerical accuracy.

Keywords: Programmable graphics processor, Un-

derwater acoustics, Ray tracing

E.1 Introduction

In the last few years, modern graphics cards have
developed extremely rapidly in terms of process-
ing speed, memory size, and most significantly,
programmability. So far, this development has
largely been driven by the mass-market demand
for faster and more realistic computer games and
multi-media entertainment. But several research
groups are now realizing that this graphics hard-
ware can also be used to dramatically speed up
many conventional numerical methods of impor-
tance in scientific computing. An example of sci-
entific computation where this method may be-
come very useful is the modeling of sound propa-
gation in ocean.

In this paper we report the initial results of a
study to use a Graphics Processing Unit (GPU)
for acoustic ray tracing in the ocean. The moti-
vation for this work was to obtain experience in
programming a GPU and evaluate the implica-
tions and the gain in computation time by using
programmable GPU for modeling of wave propa-
gation phenomena.

Mathematical/numerical modeling of the acous-
tic propagation in the oceans is an important is-
sue in underwater acoustics and required in many
applications in order assess the performance of
acoustic equipments such as echo sounders, sonar,
and communications systems. In particular, fast
and versatile propagation modals are required in

model-based estimation of oceanographic param-
eters of the water and geo acoustic parameters of
the sea floor where the acoustic propagation model
is required to be run many times with different
environmental parameters. Ray acoustics stud-
ies and ray tracing calculations are the simplest
means for assessment of sound propagation in the
sea. This is essentially a high-frequency approxi-
mation of the solution of the wave equation, appli-
cable to frequencies so high that the signal wave-
length is considerably smaller than the character-
istic distance of variation in sound speed. Accord-
ing to ray acoustics, the sound follows rays that
are normal to surfaces with the same phase. When
generated from a point source in a medium with
constant sound speed, the phase fronts form sur-
faces that are concentric circles, and the sound fol-
lows straight paths that spread out from the sound
source. If the speed of sound is not constant, the
sound rays will follow curved paths rather than
straight ones. The computational technique known
as ray tracing is a method used to calculate the
coordinates of the sound rays emanating from the
source.

The sound speed in the ocean varies with the
oceanic condition, in particular with the temper-
ature and the salinity of the waters. Diurnal and
seasonal changes in these conditions may therefore
have strong impact on the propagation conditions.
In general, the sound speed will vary both with
depth and with range, but for many applications
we may neglect variations with range and only
consider the depth dependence of the sound speed
in addition to the effect of range dependent water
depth or bathymetry. As indicated before, long
computation times can often be a concern and lim-
itation in application of ocean acoustics models,
also for models based on ray tracing. Therefore,
the new programmable Graphics Processing Unit
(GPU) offers new possibilities in implementation
that are considerably faster than a CPU based im-
plementation, by doing the calculation in parallel.
The idea of using GPU for ray tracing is not new or
original, earlier studies considered tracing sound
rays in rooms [24], and tracing light rays [10] [9] in
visualization applications for more realistic light-
ing. In theses articles the sound speed is assumed
constant and the rays are straight lines. We have
found one article that considers so called nonlin-
ear ray tracing [22], for tracing light rays in space
with varying wave speed After first presenting the
simple ray tracing algorithm used in this study, we
will describe the essential features of the GPU im-

Chapter E. Ray tracing on GPU article 47

plementation. We will then present some results
of rays in an ocean with depth dependent sound
speed with range dependent bathymetry and com-
pare the computation time with a CPU implemen-
tation. Finally we will discuss and conclude.

E.2 A simple ray-tracing al-
gorithm

In this section we will give a short description of
the ray tracing algorithm used in the present work,
more information of theory can be found in text
books such as the book by Jensen et al. (1994) [8]
or Medwin and Clay (1998) [7]. In the implemen-
tation used here, the water column is divided into
a large number of layers with the same thickness
∆z as shown in figure 1. Within each layer, the

Figure E.1: The algorithm step with ∆layer and
calculate a range increment for every step. The
sum of all layers range will give the total range
for the ray.

sound speed is approximated with a straight line
so that, in the layer zi < z < zi + 1, the sound
speed is taken to be

c(z) = ci + gi(z − zi), (E.1)

where ci is the sound speed at depth zi, and the
sound speed gradient in the segment is gi. Since
the sound speed in each of these layers has a con-
stant gradient, the ray in each layer follows a cir-
cular arc; the arc’s radius of curvature Ri(z) is
given by the local sound speed gradient gi(z) and
the ray parameter,

Ri(z) = − 1
ξgi(z)

. (E.2)

The ray parameter is defined as:

ξ =
cosθs

c(zs)
. (E.3)

where θs is the initial angle of the ray’s trajec-
tory at the source depth zs and the sound speed
is c(zs). After traveling through the layer from zi

to zi + 1; the ray’s range increment is

ri+1 − ri = −Ri

(
sin θi+1 − sin θi

)
, (E.4)

which also can also be written in the form

ri+1 − ri =
1

ξgi

[√
1− ξ2c2(zi+1)−

√
1− ξ2c2(zi)

]
.

(E.5)

The local sound speed gradient is approximated
by

gi =
c(zi+1)− c(zi)

zi+1 − zi
. (E.6)

The travel time increment is

τi+1 + τi =
1
|gi|

ln

(
c(zi+1)
c(zi)

1 +
√

1− ξ2c2(zi)
1 +

√
1− ξ2c2(zi+1)

)
(E.7)

When the water depth varies with distance the ray
parameter is no longer constant, but changes with
the bottom inclination angle. An incoming ray
with angle θin is reflected to the angle θref when
the bottom angle is α.

θref = θin + 2α (E.8)

Consequently, the ray parameter has to change to

ξref =
cos(θref)

c
=

cos(θin + 2α)
c

= ξin cos(2α)−

√
1− ξ2

refc2

c
sin(2α).

(E.9)

The algorithm makes repeated use of equation (5)
and (7), stepping with depth increments ∆z in
such a way that the new depth zi+1 is given by
the old depth zi as

zi+1 = zi ±∆z (E.10)

The plus sign indicates a ray going downwards
and the minus sign, a ray going upwards. Evi-
dently the sign has to change when the ray strikes
the bottom and the surface, and when the ray

48 Chapter E. Ray tracing on GPU article

goes trough a turning point. The layer thickness,
or depth increment ∆z and the number of depth
points Nz,

Nz =
max(waterdepth)

∆z
. (E.11)

The algorithm presented so far gives the trajectory
and travel time for a single ray with initial angle
∆θ departing from a given source depth zs. By
tracing a large number of rays with different initial
angles, we obtain a visualization of the complete
sound field with shadow zones, with particular low
sound intensity, and convergence zones with high
intensity. This visualization is useful in itself but
for a more detailed study requires further process-
ing steps consisting of finding all the rays that
connects the source with a given receiver location,
the so called eigenrays, and thereafter adding the
contributions of all eigenrays taking into account
their travel times and the amplitudes. The am-
plitudes are computed from the calculation of the
acoustic intensity which again is calculated by us-
ing the principle that the power within a space
limited by a pair of rays with initial angular sepa-
ration of dθ0 centered on the initial angle θ0 will re-
main between the two rays, regardless of the rays’
paths. The acoustic intensity as function of hor-
izontal range, I(r) is according to this principle
given by

I(r) = I0
r2
0

r

cosθ0

sinθ

∣∣∣∣dθ0

dr

∣∣∣∣ . (E.12)

These two processing steps are not carried out in
the current GPU implementation, but by another
program using the result of the ray tracing cal-
culation. This means that, in addition to the vi-
sualization of the ray coverage, we need to store
a number of generated rays during the trajectory
calculations, such as the eigenrays to any position
in space with their travel times and amplitudes.

E.3 Description of a Graphics
Processing Unit

A Graphics Processing Unit is a dedicated graph-
ics rendering device for a personal computer or
game console. Modern GPUs are very efficient
at manipulating and displaying computer graph-
ics, and their parallel structure makes them more
effective than typical CPUs for a range of com-
plex algorithms. A GPU implements a number of

graphics primitive operations in a way that makes
them render much faster than drawing directly to
the screen with the CPU. The GPU uses a pipeline

Figure E.2: The graphics pipeline processing
stages used to perform rendering to the frame
buffer. By programming the vertex and frag-
ment processor to do other things than it was
intended for, we can calculate the sound field.
Figure are from [18].

architecture to process multiple fragments in par-
allel. This means that it can do a lot more oper-
ations at same time, compared to the CPU. From
figure 2 the vertex and fragment processing stages
is the programmable part of the pipeline. Making
an object visible is shown in figure 3, where the ini-
tial data are processed in multiple stages. For ev-

Figure E.3: In the graphics pipeline stages the
initial data are colored before making the prim-
itives. The primitives can be triangles or lines.
By rasterizing and interpolating the primitives,
a visible object is made. Figure are from [18].

ery initial data that is pushed through the pipeline
the vertex and fragment stages will transform the
data in accordance to the instructions given. This
instruction are written in a file for each stage, be-
ginning with the vertex processor, which will make
primitives out of vertex data. The vertex and frag-
ment processor is taught of as one unit, however
they consist of several processors. Since rasteriza-
tion and interpolation are more demanding than
primitive assembly, the fragment processor consist

Chapter E. Ray tracing on GPU article 49

of more processors. The result sent to the frame
buffer is than displayed on the screen as e.g a char-
acter in a computer game.

E.4 Implementation

Calculating a sound field with PlaneRay are done
in steps, using the result as input to next iter-
ation of the algorithm. Transferring this to the
GPU can be done by writing the algorithm in a
shader file, which executes the instruction on ev-
ery element going through the pipeline. Thinking
of one pixel as one ray will make the shader cal-
culate one step for the ray tracing algorithm as
one frame is generated. As the time steps for-
ward, a number of frames will be created depend-
ing on the pixel grid size, shown in figure 4. This
will make the ray path through the ocean. Cal-
culating a step for all the rays in parallel, each
pixel needs different initial values. This can be
made possible with texture lookup. In figure 5
the program runs trough one step, calculating a
number of rays from the pixel grid size. The val-
ues are different for each pixel, which will make
the output values also different. Visualizing the

Figure E.4: For every frame the program cre-
ates, the pixel grid size determines the number
of rays to be generated.

rays paths, the range values are written to the
screen for every iteration. The result are also set
as input to next iteration by swapping render tar-
gets, described as ping-ponging. This property are
common in GPGPU applications.

The frame buffer is the GPUs memory, and
usually this memory is overwritten for every loop
for visualization purposes. When storing the wanted
values they must be written to the CPU for perma-
nent storage, since the GPU overwrites the mem-
ory for every iteration. This read back will slow
down the overall calculation speed, because the

Figure E.5: After a step in the ray-tracing al-
gorithm is done, the results are written to a
render target for input to next iteration. For
visualization of the result, it is also sent to a
render shader. The rays path will than be dis-
played on the screen.

program must write the calculated value to the
CPU before proceeding. However using asynchronous
read back this bottleneck can be minimized.

E.4.1 Initial Settings

The first step is to set up the settings for the key-
board, window size and view space for the data.
This is the same as setting up a regular GPU ap-
plication. The next step is to read in the sound
speed profile from a text file into an array on the
CPU. This data is then copied as a texture on
the GPU. By the help of Shallows this is done in
one sentence. With current program follows five
different profiles to choose from, however any pro-
file can be used. The GPU needs somewhere to
store the data after calculation, and usually this is
done in a render target. A render target is generic
name for data storage on the GPU, such as a frame
buffer or texture. Since the calculation needs to
be visualized, an on- and off-screen frame buffer is
needed. This two are set in the beginning of the
program, along with four render targets for swap-
ping data in and out of the shader. GPU does
all calculations in parallel, and creates a frame for
ever iteration of the code. A GPGPU application
can take advantage of this by using a grid made of
out of pixels to execute a number of calculation.
For a calculation grid out of 7x7, will in current
application result in 49 rays, since each pixel is
taught of as one ray. Each pixel is computed ac-
cordingly to the instructions given in the shader

50 Chapter E. Ray tracing on GPU article

file. The instructions are the same for all pixels,
however the input values are different.

E.4.2 Shaders

A shader is a small program within the main pro-
gram which does the mathematics calculations and
rendering. The shaders contains instructions for
both the vertex and fragment part in the pipeline.
In current code the vertices are only passed trough
to the fragment processor. In a texture lies values
to be used in calculation in the form of a four-
component vector. Meaning four different values
can be sent to each pixel from one texture. Cur-
rent program uses two four-component vectors in
the ping-ponging, meaning eight values for each
pixel are written to the earlier set off-screen frame
buffer after each calculation. When finding what
values belonging to each pixel the texture2D com-
mand is used. Here the first four values in the tex-
ture are set to pixel number one, next four values
to pixel number two, and so on. When it comes to
the sound speed profile the values are not changed
when calculating, however the data is stored in a
constant texture. Instructions used are the formu-
las from initial Ray Tracing section. The results of
the calculation are stored in two four-component
vectors using swizzle operators.

E.4.3 GPGPU workflow

For making the shader files and initial settings
working together a work flow is needed. The work
flow starts with creating textures from arrays. Us-
ing boost shared pointer gives the program an easy
control over the texture, which in this case is a
4 component vector. The newly created textures
now contains the initial values earlier set in the
program. This initial values are the earlier men-
tioned input to the shader.

The results are stored in a given frame buffer,
and for visualization another frame buffer is used.
Which shader to use is given by a simple com-
mand. Reshaping the calculation grid must be
done so the wanted number of rays are calculated,
done with the reshape function. At the end, the
output render target are swapped with an other
render target so the calculated values are set as
input to next iteration.

By visualizing the result of the other shader
pass the calculated values are shown on the screen
along with a visualizing of the bottom and a time-
and frame-counter. This gives an impression of

how fast the program calculates. From figure 4,
49 rays are calculated, done as one frame. When
the program makes 350 frames per second (fps),
49x350 = 17150 different ray calculations are done
in one second.

At the end all results in the frame buffer must
be stored in an array on the CPU. The reason this
has to be stored at the CPU is because the frame
buffer in GPU is overwritten for every calculation.
When not clearing this, the visualization of the re-
sults will be the rays path on the screen. Since the
frame buffer is over written for every calculation,
the data in the window will be not be permanent.
Clearing the frame buffer will make the visualized
path to be erased. So for safe storage the results
needs to be sent to the CPU. Doing this by not
interfering with the speed of the calculation, asyn-
chronous read back must be used. This means
that the read back of data is done simultaneously
while the calculations executes. The values from
the read back process are stored in a dimensionless
vector, with range values for bottom depth, sur-
face depth and receiver depth when ray hits the
respectively place. Also some additional informa-
tion is than added in the vector like start angle,
intersection angle and travel time. All this val-
ues shall be used in other stages in the PlaneRay
model.

E.5 Examples of calculated sound
fields

In the following we present two examples of sound
field calculated by the ray tracing program de-
scribed above. The two examples are typical for
sound propagation under summer and winter con-
ditions at particular location in the Norwegian sea
where the water depth varies from 400 to 350 me-
ter. In practice the sound speed values are ob-
tained by measurements at certain depths with
relative large spacing. The first step is therefore
to interpolate the measured sound speed points to
even spacing ∆z, Equation (10). The values of ∆z
is important for the accuracy of the calculation, in
the examples we have used the value of ∆z = 0.5
meter, the total number of layers is therefore 800.
In both cases the rays have angles between 5◦ and
−5◦. The sound fields for winter and summer con-
ditions are shown in Figure 6 and 7 respectively.
In both cases, the interpolated sound speed pro-
files are shown to the left and the ray tracing to
the right.

Chapter E. Ray tracing on GPU article 51

Figure E.6: With the source at 20 meter of depth
using a winter sound speed profile the rays has
a concentration near the water surface. Here
the layer thickness are 0.5 meter.

Figure E.7: With the source at 150 meter
of depth and summer sound speed profile,
the rays has a concentration around depth of
source, resulting in a sound tunnel. Layer
thickness are 0.5 meter.

E.6 Discussion and evaluation

Comparing this GPU application to what the same
Matlab application performs, the computational
time difference is increasing with number of rays.
As one can see from figure 8 the implementation
in GPU is 45 times faster than the implementa-
tion in Matlab when calculating a 200x200 grid,
which results in 40000 rays. With more rays the
current1 hardware has limitations, and Matlab is
than not suited for calculation. From figure 9 one
can see how the frame rate decreases with number
of rays. However the GPU can handle grid size up
to 410x410, but than the frame rate is low. Theo-
retically the GPU is 200 times faster than Matlab
when 168100 rays are computed. This number is
an approximate from the fact that when four times
the rays, the Matlab calculation time is four times
higher. This applies for small number of rays, and
the estimate are done by assuming this character-
istic property resume also with large number of
rays. Since Matlab runs on the CPU, it is not op-

1Intel Centrino M 740 processor with 512 MB
DDR2 and nVidia GeForce Go6600 with 64 MB
VRAM

Figure E.8: The GPU has increased the calcula-
tion time for high density of rays, however for
small number of rays Matlab outperform the
GPU.

Figure E.9: The GPU has high frame rate when
small number of rays are calculated, and this
is decreasing with number of rays.

timal CPU code. An application in Matlab will
not calculate as fast as a straight forward CPU
application. Estimating CPU vs Matlab the CPU
is 2-4 times faster [19], depending on the applica-
tion.

E.6.1 Bottlenecks

One bottleneck is the read back of data, which
come into being when values from the calculation
are to be stored at the CPU. Since the CPU gets
the values from the GPUs frame buffer, the GPU
has to wait for the values to be stored at the CPU.
In the current program the read back is only done
up to 10 km, however this can be extended.

Another destructive speed effect for the pro-
gram is the use of if, else, for and while loops in
the shader file. To much texture lookup will also
create the same effect.

52 Chapter E. Ray tracing on GPU article

E.6.2 Further Work

As mentioned earlier, effectively programming the
shader files will probably increase the speed of the
application. An improvement for the read back of
data is doing it asynchronously, getting the values
to the CPU by using a pixel buffer. This will make
the GPU and CPU write and read from the same
memory. Since this is done at the same time, it
will have a positive effect on the computational
speed.

Instead of using if and else sentences, the use
of arithmetic operators are more efficient. Also a
Beizèr spline interpolation of the sound speed val-
ues between two point, would make the ray trac-
ing more accurate. As of today the interpolation
is linear. This interpolation routine is only an in-
crease of data when the layer thickness is less than
1 meter in this application, so the acoustic model
will not be affected by this. Only the result.

In 1992 a method for nonlinear inversion for
ocean-bottom properties [21] was calculated on a
supercomputer at that time2, at 250 MFLOPS it
took 1.3 hours to calculate. State of the art graph-
ics hardware today3 could theoretically do this in
2.11 seconds [14] using 550 GFLOPS.

Starting with this article, calculations meth-
ods in marine acoustics can take advantage of this
speedup.

2CRAY X-MP/24
3ATI X1900

	1 Introduction
	1.1 Motivation
	1.2 Outline

	2 Marine Acoustics Theory
	2.1 PlaneRay model
	2.1.1 Initial ray tracing
	2.1.2 Sorting and interpolation
	2.1.3 Synthesis of the sound field

	3 GPU Theory
	3.1 GPU
	3.1.1 History

	3.2 GPU pipeline
	3.2.1 Processing stages

	3.3 Graphic Programming Languages
	3.3.1 OpenGL and Direct3D
	3.3.2 BrookGPU
	3.3.3 Shading Languages
	3.3.4 GPGPU library

	3.4 Heat Equation, an Example

	4 GPGPU Program
	4.1 Initial Settings
	4.2 Shaders
	4.3 GPGPU work flow

	5 Results
	5.1 GPGPU program results
	5.2 Matlab comparison

	6 Discussion
	6.1 Further Work
	6.1.1 GPU advantage

	Bibliography
	A Some explanations
	B Program usage
	C Development tools
	D Using Visual Studio
	D.1 Boost
	D.2 Shallows

	E Ray tracing on GPU article
	E.1 Introduction
	E.2 A simple ray-tracing algorithm
	E.3 Description of a Graphics Processing Unit
	E.4 Implementation
	E.4.1 Initial Settings
	E.4.2 Shaders
	E.4.3 GPGPU workflow

	E.5 Examples of calculated sound fields
	E.6 Discussion and evaluation
	E.6.1 Bottlenecks
	E.6.2 Further Work

