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A pixel is thought of as one ray
8x8 pixels will result in 64 rays
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All rays are computed in parallel
Computes the range and travel time for every loop
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(GPU-frame buffer-CPU-GPU)
Asynchronous read back will speed up the process.
(GPU-pixel buffer-GPU)

All values are stored in a text file for use i later stages.
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Conclusion
Matlab is not optimized CPU code.
GPU program is theoretically 200 times faster.
GPU program is timed to be 45 times faster with 40000
rays.
The GPU program is not optimized.
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Summary

Summary
The GPU has increased the speed by 40-50 times.
Accuracy is the same
The performance will increase when program is optimized
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