
General Purpose Graphics Processing Unit
GPGPU

Olav Haugehåtveit
haugehat@stud.ntnu.no

Department of Electronics and Telecommunication
Norwegian University of Science and Technology

June 2006



GPU Programming model Conclution

Outline

1 GPU
Introduction
Performance analysis

2 Programming model
The graphics programming model
GPGPU programming model

3 Conclution
Conclution



GPU Programming model Conclution

Outline

1 GPU
Introduction
Performance analysis

2 Programming model
The graphics programming model
GPGPU programming model

3 Conclution
Conclution



GPU Programming model Conclution

Introduction

What is a GPU?

GPU = Graphics Processing Unit

Purpose
Draw graphics on the monitor

What scientists what with it?
Non graphics application (ie. numerical simulations)

Why?
Enormous floating point power



GPU Programming model Conclution

Introduction

What is a GPU?

GPU = Graphics Processing Unit

Purpose
Draw graphics on the monitor

What scientists what with it?
Non graphics application (ie. numerical simulations)

Why?
Enormous floating point power



GPU Programming model Conclution

Introduction

What is a GPU?

GPU = Graphics Processing Unit

Purpose
Draw graphics on the monitor

What scientists what with it?
Non graphics application (ie. numerical simulations)

Why?
Enormous floating point power



GPU Programming model Conclution

Introduction

What is a GPU?

GPU = Graphics Processing Unit

Purpose
Draw graphics on the monitor

What scientists what with it?
Non graphics application (ie. numerical simulations)

Why?
Enormous floating point power



GPU Programming model Conclution

Introduction

Floating point increment



GPU Programming model Conclution

Performance analysis

Performance analysis

CPU
Annual growth ≈ 1.5x→ Decade growth ≈ 60x
Follows Moore’s law

GPU
Annual growth ≈ 2.0x→ Decade growth ≈ 1000x
Much faster than Moore’s law



GPU Programming model Conclution

Performance analysis

Performance analysis

CPU
Annual growth ≈ 1.5x→ Decade growth ≈ 60x
Follows Moore’s law

GPU
Annual growth ≈ 2.0x→ Decade growth ≈ 1000x
Much faster than Moore’s law



GPU Programming model Conclution

Performance analysis

Performance analysis

CPU
Annual growth ≈ 1.5x→ Decade growth ≈ 60x
Follows Moore’s law

GPU
Annual growth ≈ 2.0x→ Decade growth ≈ 1000x
Much faster than Moore’s law



GPU Programming model Conclution

Performance analysis

Performance analysis

CPU
Annual growth ≈ 1.5x→ Decade growth ≈ 60x
Follows Moore’s law

GPU
Annual growth ≈ 2.0x→ Decade growth ≈ 1000x
Much faster than Moore’s law



GPU Programming model Conclution

Performance analysis

Performance analysis

CPU
Annual growth ≈ 1.5x→ Decade growth ≈ 60x
Follows Moore’s law

GPU
Annual growth ≈ 2.0x→ Decade growth ≈ 1000x
Much faster than Moore’s law



GPU Programming model Conclution

Performance analysis

Performance analysis

Why are they so fast?
Parallel architecture optimized for floating point arthimetic

2-48 pipelines
≈ 20 flops/pipeline pr. clock!
650 MHz

Data is read and write only
High memory bandwidth



GPU Programming model Conclution

Outline

1 GPU
Introduction
Performance analysis

2 Programming model
The graphics programming model
GPGPU programming model

3 Conclution
Conclution



GPU Programming model Conclution

The graphics programming model

The graphics pipeline

The GPU acts as a stream computer
Given a stream of data, it executes the same operation on
every data element



GPU Programming model Conclution

The graphics programming model



GPU Programming model Conclution

The graphics programming model



GPU Programming model Conclution

The graphics programming model



GPU Programming model Conclution

The graphics programming model



GPU Programming model Conclution

The graphics programming model



GPU Programming model Conclution

The graphics programming model

Looping



GPU Programming model Conclution

GPGPU programming model

Mapping computational concepts to the GPU

CPU
Array
Inner loop
Feedback
Computational
invocation
Computational domain

GPU
Texture
Fragment shader
Render to texture
Geometry raserization
Texture coordinates



GPU Programming model Conclution

GPGPU programming model

Mapping computational concepts to the GPU

CPU
Array
Inner loop
Feedback
Computational
invocation
Computational domain

GPU
Texture
Fragment shader
Render to texture
Geometry raserization
Texture coordinates



GPU Programming model Conclution

GPGPU programming model

Mapping computational concepts to the GPU

CPU
Array
Inner loop
Feedback
Computational
invocation
Computational domain

GPU
Texture
Fragment shader
Render to texture
Geometry raserization
Texture coordinates



GPU Programming model Conclution

GPGPU programming model

Mapping computational concepts to the GPU

CPU
Array
Inner loop
Feedback
Computational
invocation
Computational domain

GPU
Texture
Fragment shader
Render to texture
Geometry raserization
Texture coordinates



GPU Programming model Conclution

GPGPU programming model

Mapping computational concepts to the GPU

CPU
Array
Inner loop
Feedback
Computational
invocation
Computational domain

GPU
Texture
Fragment shader
Render to texture
Geometry raserization
Texture coordinates



GPU Programming model Conclution

GPGPU programming model

Mapping computational concepts to the GPU

CPU
Array
Inner loop
Feedback
Computational
invocation
Computational domain

GPU
Texture
Fragment shader
Render to texture
Geometry raserization
Texture coordinates



GPU Programming model Conclution

GPGPU programming model

The heat equation

Example

The heat equation: ∂2u
∂t2 = ∇2u



GPU Programming model Conclution

GPGPU programming model

The heat equation



GPU Programming model Conclution

GPGPU programming model

The heat equation



GPU Programming model Conclution

GPGPU programming model

The heat equation



GPU Programming model Conclution

GPGPU programming model

The heat equation



GPU Programming model Conclution

GPGPU programming model

The heat equation



GPU Programming model Conclution

Outline

1 GPU
Introduction
Performance analysis

2 Programming model
The graphics programming model
GPGPU programming model

3 Conclution
Conclution



GPU Programming model Conclution

Conclusion

Well suited applications

Large data sets
High parallelism
Minimal dependencies between data elements
High arithmetic intensity
Lots of work to do without CPU intervention



GPU Programming model Conclution

Conclusion

Application ported to the GPU

Matrix Algebra
Partial Differential Equations
Image processing
Fast Fourier Transform
Ray Tracing
Geometric computing
Databases



GPU Programming model Conclution

Conclusion

Advantages and disadvantages

Advantages
flops, Gflops, Tflops
Sony PS3 graphics chip
RSX has 1.8 Tflops!

Disadvantages
Programming model is
inherently parallel
Programming model is
tied to graphics
Limited to 32-bit floating
point
Rapidly evolving
architectures
Largely secret
architectures



GPU Programming model Conclution

End

Questions?


	Main Part
	GPU
	Introduction
	Performance analysis

	Programming model
	The graphics programming model
	GPGPU programming model

	Conclution
	Conclution
	



