Sound field calculation with GPU

Fast under water ray tracing

Olav Haugehatveit
haugehat@stud.ntnu.no

Department of Electronics and Telecommunication
Norwegian University of Science and Technology

2006 June 9.

o PlaneRay
@ Initial ray tracing

e Implementation
e GPGPU
@ Pixel matrix

e Result

@ Program results
@ Conclusion

PlaneRay

Outline

o PlaneRay
@ Initial ray tracing

PlaneRay
[]

Scenario

Recivers

PlaneRay
[JeJele]

Initial ray tracing

Ray propagation

Starting condition

@ Current sound speed at source, ¢(z)

PlaneRay
[JeJele]

Initial ray tracing

Ray propagation

Starting condition

@ Current sound speed at source, ¢(z)

@ Current depth of source, z

PlaneRay
[JeJele]

Initial ray tracing

Ray propagation

Starting condition

@ Current sound speed at source, ¢(z)

@ Current depth of source, z
@ Number of rays, n

PlaneRay
[JeJele]

Initial ray tracing

Ray propagation

Starting condition

@ Current sound speed at source, ¢(z)

@ Current depth of source, z
@ Number of rays, n
@ Starting angles for each ray, 6y,

PlaneRay
[JeJele]

Initial ray tracing

Ray propagation

Starting condition

@ Current sound speed at source, ¢(z)

@ Current depth of source, z

@ Number of rays, n

@ Starting angles for each ray, 6y,
@ Receiver location

PlaneRay
[e] Tele]

Initial ray tracing

Ray propagation

—— Range! ———<— Range2 —

Calculating a step

@ Depth steps with £A layer

PlaneRay
[e] Tele]

Initial ray tracing

Ray propagation

—— Range! ———<— Range2 —

T -
Ly{m \\
[
; N

Calculating a step

@ Depth steps with £A layer
@ Sum of all ranges will give the total range

PlaneRay
[e]e] o]

Initial ray tracing

Bottom inclination

Bottom inclination
@ Orer = Oin + 2

PlaneRay
[e]e] o]

Initial ray tracing

Bottom inclination

Bottom inclination
@ Orer = Oin + 2
@ The ray will as consequence change direction in
accordance with Snell’s law.

PlaneRay
[e]e]e])

Initial ray tracing

Values storage

Values to store

PlaneRay
[e]e]e])

Initial ray tracing

Values storage

Values to store

@ Bottom and Surface reflection
e Range
e Travel time
e Intersection angle

PlaneRay
[e]e]e])

Initial ray tracing

Values storage

Values to store

@ Bottom and Surface reflection
e Range
o Travel time
e Intersection angle
@ Eigen values at receiver
Intersection angle
Range
Travel time
Depth
Start angle for ray

Implementation

Outline

e Implementation
e GPGPU
@ Pixel matrix

Implementation
[]

GPGPU

Overview

3D
Application
Or Game

3D API
OpenGI
or Direct3D
- CPU — GPU Boundary

Assembied Pisel
Paygons, Lins|

Primitive
Assembly

GPU
Front End

Pretransiomed
Vericas.

Transiormesd
Vertces

Programmable
Fragment
Processor

Programmable
Vertex

Processor

Implementation
[]

GPGPU

Overview

3D
Application
r Game

3D API

OpenGI
or Direct3D
- CPU — GPU Boundary

aPU
Commands &
Deta Swream
Vertex

GP!

u
Front End

pra
Ve

Raster
Operations

Primitive
Assembly

Programmable Programmable
ertex Fragment
Processor Processor

Processors

@ \ertex processor (pass the data trough)

@ Fragment processor (executes the math)

Implementation
[JeJele]

Pixel matrix

Vertex and fragment programs

Vertex shader
@ Pass the initial data trough
@ Sets up the space coordinates

Implementation
[JeJele]

Pixel matrix

Vertex and fragment programs

Vertex shader

@ Pass the initial data trough
@ Sets up the space coordinates

<

Fragment shader

@ A pixel is thought of as one ray
@ 8x8 pixels will result in 64 rays
@ Different values for every pixel

@ All rays are computed in parallel

@ Computes the range and travel time for every loop

A

Y [pixels]

c
o
=
©
S
)
c
o
o
)
£
@
S
™

Implementation
[e]e] o]

Pixel matrix

Looping

@ Values read into math
shader

Implementation
[e]e] o]

Pixel matrix

Looping

@ Values read into math
shader

@ Results from math
shader to screen

Implementation
[e]e] o]

Pixel matrix

Looping

@ Values read into math
shader

@ Results from math
shader to screen

@ Results from math
shader set as input to
next loop

Implementation
[e]e] o]

Pixel matrix

Looping

@ Values read into math
shader

@ Results from math
shader to screen

@ Results from math
shader set as input to
next loop

@ Ping-ponging

Implementation
[e]e]e])

Pixel matrix

Read back

Asynchronous read back

@ Read back of values will slow down the overall speed.
(GPU-frame buffer-CPU-GPU)

@ Asynchronous read back will speed up the process.
(GPU-pixel buffer-GPU)

Implementation
[e]e]e])

Pixel matrix

Read back

Asynchronous read back

@ Read back of values will slow down the overall speed.
(GPU-frame buffer-CPU-GPU)

@ Asynchronous read back will speed up the process.
(GPU-pixel buffer-GPU)

All values are stored in a text file for use i later stages. J

Outline

e Result

@ Program results

Result
[]
Program results

Program demonstration

Conclusion

o0

Conclusion

Conclusion

@ Matlab is not optimized CPU code.
@ GPU program is theoretically 200 times faster.

@ GPU program is timed to be 45 times faster with 40000
rays.

@ The GPU program is not optimized.

Conclusion
o]]

Conclusion

Summary

@ The GPU has increased the speed by 40-50 times.
@ Accuracy is the same
@ The performance will increase when program is optimized

Conclusion
[]

Questions? J

	Main Part
	PlaneRay
	
	Initial ray tracing

	Implementation
	GPGPU
	Pixel matrix

	Result
	Program results

	Conclusion
	Conclusion
	

