
Graphics Hardware (2002), pp. 1–10
Thomas Ertl, Wolfgang Heidrich, and Michael Doggett (Editors)

The Ray Engine

Nathan A. Carr Jesse D. Hall John C. Hart

University of Illinois

Abstract
Assisted by recent advances in programmable graphics hardware, fast rasterization-based techniques have made
significant progress in photorealistic rendering, but still only render a subset of the effects possible with ray
tracing. We are closing this gap with the implementation of ray-triangle intersection as a pixel shader on existing
hardware. This GPU ray-intersection implementation reconfigures the geometry engine into a ray engine that
efficiently intersects caches of rays for a wide variety of host-based rendering tasks, including ray tracing, path
tracing, form factor computation, photon mapping, subsurface scattering and general visibility processing.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism
Keywords:Hardware acceleration, ray caching, ray classification, ray coherence, ray tracing, pixel shaders.

1. Introduction

Hardware-accelerated rasterization has made great
strides in simulating global illumination effects, such
as shadows35, 25, 7, reflection3, multiple-bounce reflection5,
refraction9, caustics29 and even radiosity13. Nonetheless
some global illumination effects have eluded rasterization
solutions, and may continue to do so indefinitely. The
environment map provides polygon rasterization with
limited global illumination capabilities by approximating
the irradiance of all points on an object surface with the
irradiance at a single point3. This single-point irradiance
approximation can result in some visually obvious errors,
such as the boat in wavy water shown in Figure 1.

Ray tracing of course simulates all of these effects and
more. It can provide true reflection and refraction, complete
with local and multiple bounces. Complex camera mod-
els with compound lenses are easier to simulate using ray
tracing15. Numerous global illumination methods are based
on ray tracing including path tracing12, Monte-Carlo ray
tracing33 and photon mapping10.

Ray tracing is classically one of the most time consum-
ing operations on the CPU, and the graphics community has
been eager to accelerate it using whatever methods possible.
Hardware-based accelerations have included CPU-specific
tuning, distribution across parallel processors and even con-

Figure 1: What is wrong with this environment-mapped pic-
ture? (1) The boat does not meet its reflection, (2) the boat
is reflected in the water behind it, and (3) some aliasing can
be seen in the reflection.

struction of special purpose hardware, as reviewed in Sec-
tion 2.

Graphics cards have recently included support for pro-
grammable shading in an effort to increase the realism of
their rasterization-based renderers16. This added flexibility is
transforming the already fast graphics processing unit (GPU)
into a supercomputing coprocessor, and its power is being

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

applied to a wider variety of applications than its developers
originally intended.

One such application is ray tracing. Section 3 shows how
to configure the graphics processing unit (GPU) to compute
ray-triangle intersections, and Section 4 details an imple-
mentation. This GPU ray-triangle intersection reconfigures
the graphics accelerator into aray engine,described in Sec-
tion 5, that hides the details of its back-end GPU ray-triangle
intersection, allowing the ray engine to be more easily inte-
grated into existing rendering software systems.

The ray engine can make existing rasterization-based ren-
derers look better. A rasterization renderer augmented with
the ray engine could trace the rays necessary to achieve ef-
fects currently impossible with rasterization-only rendering,
including local reflections (Figure 1), true refractions and
sub-surface scattering11.

The ray engine is also designed to be efficiently integrated
into existing ray-tracing applications. The ray engine per-
forms best when intersecting caches of coherent rays21 from
host-based rendering tasks. This is a form of load balanc-
ing that allows the GPU to do what it does best (perform
the same computation on arrays of data), and lets the CPU
do what the GPU does worst (reorganize the data into effi-
cient structures whose processing requires flow control). A
simple ray tracing system we built using the ray engine is al-
ready running at speeds comparable to the fastest known ray
tracer, which was carefully tuned to a specific CPU32. The
ray engine could likewise accelerate Monte Carlo ray trac-
ing, photon mapping, form factor computation and visibility
preprocessing.

2. Previous Work

Although classic ray tracing systems support a wide variety
of geometric primitives, some recent ray tracers designed to
achieve interactive rates (including ours) have limited them-
selves to triangles. This has not been a severe limitation
as geometric models can be tessellated, and the simplicity
of the ray-triangle intersection has led to highly efficient
implementations2, 18.

Hardware z-buffered rasterization can quickly determine
the visibility of triangles. One early hardware optimization
for ray tracing was the first-hit speedup, which replaced eye-
ray intersections with a z-buffered rasterization of the scene
using object ID as the color34. Eye rays are a special case
of a coherent bundle of rays. Such rays can likewise be effi-
ciently intersected through z-buffered rasterization for hard-
ware accelerated global illumination28, of which ray tracing
is a subset.

One obvious hardware acceleration of ray tracing is to op-
timize its implementation for a specific CPU. The current
fastest CPU implementation we are aware of is a coherent
ray tracer tuned for the Intel Pentium III processor32. This

ray tracer capitalized on a variety of spatial, ray and mem-
ory coherencies to best utilize CPU optimizations such as
caching, branch prediction, instruction reordering, specula-
tive execution and SSE instructions. Their implementation
ran at an average of 30 million intersections per second on
an 800 Mhz Pentium III. They were able to trace between
200K and 1.5M rays per second, which was over ten times
faster than POV-Ray and Rayshade.

There have been a large number of implementations of
ray tracers on MIMD computers26. These implementations
focus on issues of load balancing and memory utilization.
One recent implementation on 60 processors of an SGI Ori-
gin 2000 was able to render at 5122 resolution scenes of from
20 to 2K patches at rates ranging from two to 20 Hz19.

Special purpose hardware has also been designed for ray
tracing. The AR350 is a production graphics accelerator de-
signed for the off-line (non-real-time) rendering of scenes
with sophisticated Renderman shaders8. A ray tracing sys-
tem designed around multiprocessors with smart memory is
also in progress23.

Our ray engine is similar in spirit to another GPU-based
ray tracing implementation that simulates a state machine24.
This state-based approach breaks ray tracing down into sev-
eral states, including grid traversal, ray-triangle intersection
and shading. This approach performs the entire ray tracing
algorithm on the GPU, avoiding the slow readback process
required for GPU-CPU communication that our approach
must deal with. The state-based method however is not par-
ticularly efficient on present and near-future GPU’s due to
the lack of control flow in the fragment program, resulting
in a large portion of pixels (from 90% to 99%) remaining
idle if they are in a different state than the one currently be-
ing executed. Our approach has been designed to organize
ray tracing to achieve full utilization of the GPU.

3. Ray Tracing with the GPU

3.1. Ray Casting

The core of any ray tracer is the intersection of rays with ge-
ometry. Rays are represented parametrically asr(t) = o+ td
whereo is the ray origin,d is the ray direction andt ≥ 0 is
a real parameter corresponding to points along the ray. The
classic implementation of recursive ray tracing casts each
ray individually and intersects it against the scene geometry.
This process generates a list of parametersti corresponding
to points of intersection with the scene’s geometric primi-
tives. The least positive element of this list is returned as the
first intersection, the one closest to the ray origin.

Figure 2(a) illustrates ray casting as a crossbar. This il-
lustration represents the rays with horizontal lines and the
(unorganized) geometric primitives (e.g. triangles) with ver-
tical lines. The crossing points of the horizontal and vertical
lines represent intersection tests between rays and triangles.

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

Figure 2: Ray intersection is a crossbar.Online Submission ID: 0092

Figure 3: Programmable pixel shading is a crossbar.

vanced shading [Lindholm et al. 2001]. These programmable el-
ements can be separated into two components, the vertex shader
and the pixel shader, as shown in Figure 3(b).

The vertex shader replaces the graphics pipeline with a user-
programmable stream processor. This stream processor cannot
change the number of vertices passing through it, but it can change
the vertex attributes, including position, color and texture coordi-
nates.

The pixel shader generalizes the per-pixel access and application
of texture. The pixel shader can perform arithmetic operations on
the texture coordinates before they index into the texture, and can
then perform additional arithmetic operations with the fetched tex-
ture result. In a single pass, the pixel shader computes each pixel in
isolation, and cannot access data stored at other pixels in the frame-
buffer.

The speed of modern graphics accelerators is indicated by vertex
rate, which measures the vertical bandwidth of Figure 3, and its
pixel rate, which measures the horizontal bandwidth. The pixel
rate is an order of magnitude faster than the vertex rate on modern
graphics cards.

3.3 Mapping Ray Casting to Programmable Shading
Hardware

We map the ray casting crossbar in Figure 2 to the rasterization
crossbar in Figure 3 by distributing the rays across the pixels and
broadcasting a stream of triangles to each pixel by sending their
coordinates down the geometry pipeline as the vertex attribute data
(e.g. color, texture coordinates) of screen filling quadrilaterals.

The rays are stored in two screen-resolution textures. The color
of each pixel of the ray-origins texture stores the coordinates of
the origin of the ray. The color of each pixel of the ray-directions
texture stores the coordinates of the ray direction vector.

An identical copy of the triangle data is stored at each vertex
of a screen-filling quadrilateral. Rasterization of this quadrilateral
interpolates these attributes at each pixel of its screen projection.
Since the attributes are identical at all four vertices, interpolation
simply distributes a copy of the triangle data to each pixel.

A pixel shader performs the ray-triangle intersection computa-
tion by merging the ray data stored per-pixel in the texture maps
with the triangle data distributed per-pixel by the interpolation of
the attribute data stored at the vertices of the quadrilateral. The
specifics of this implementation will be described further in Sec-
tion 4

3.4 Discussion

The decision to store rays in texture and triangles as vertex at-
tributes was based partially on precision. The geometry pipeline
supports full-precision 32-bit floating point values whereas the tex-
ture pipeline is restricted to 8-bit clamped fixed-point values. Rays
can be specified with five real values whereas triangles require nine.

We found it easier and more accurate to store the five ray values in-
stead of the nine triangle values in the lower texture precision. We
were also able to use special high-precision texture modes designed
for bump mapping to store the ray origins as 10- and 11-bit values,
and ray directions as 16-bit values.

Vertex shaders perform computations at a higher precision and
range (currently 32-bit floating point) than do pixel shaders (cur-
rently 16-bit fixed point ranging from -8 to 8). We nonetheless de-
cided to perform ray-triangle intersection as a pixel shader instead
of a vertex shader. Vertex shaders do not have direct access to the
rasterization crossbar, so our test implementation of ray-triangle in-
tersection as a vertex shader had to store ray data as constants in the
vertex shader’s local memory. Furthermore the triangle rate is an
order of magnitude slower than the pixel rate on modern graphics
accelerators. The vertex shader was able to compute 4.1M ray-
triangle intersections per second, which is much less than what the
pixel shader (or the CPU) is capable of performing.

Since the GPU can be viewed as a SIMD processor [Peercy et al.
2000], the decision to distribite ray data as pixels and broadcast the
geometry was also influenced by other SIMD ray tracing imple-
mentations. SIMD ray tracers have the choice of rays or geometry
distribution.Ray distributionstores the ray data locally per proces-
sor and broadcasts the geometry simultaneously to all processors
whereasgeometry distributionstores the triangle data locally and
broadcasts the ray data.

The AR350 ray tracing hardware utilized a fine-grain ray dis-
tribution to isolated processors [Hall 2001]. This distribution im-
proved load balancing, but inhibited the possible advantages of ray
coherence. The geometry was broadcast from the host similar to
standard graphics cards.

The coherent ray tracer [Wald et al. 2001b] also distributed rays
at its lowest level. It intersected each triangle with four coherent
rays using the SIMD instructions available on the CPU. An axis-
aligned BSP-tree provided spatial coherence of the triangle data,
but required special implemention to efficiently support parsing by
the four ray-parallel processes.

One counterexample worth noting is a distributed-memory paral-
lel ray tracer that used a geometry distribution to handle the special
problems of ray tracing large scene databases [Wald et al. 2001a].

One final benefit of ray distribution, as the next section will show,
is that it allows us to use thez-buffer to efficiently maintain the
parametric distance to the first triangle intersected by each ray.

4 Ray-Triangle Intersection on the GPU

The pixel shader implementation of ray-triangle intersection treats
the GPU as a SIMD parallel processor [Peercy et al. 2000]. In this
model, the framebuffer is treated as an accumulator data array of 5-
vectors(r,g,b,α,z), and texture maps are used as data arrays for in-
put and variables. Operations on this data array are performed using
image-processing combinations of the textures and the framebuffer.
Pixel shaders are sequences of these image-processing combina-
tion operators. While compilers exist for multipass programming
[Peercy et al. 2000; Proudfoot et al. 2001], the current limitations
of pixel shaders required complete knowledge and control of the
available instructions and registers to implement ray intersection.

4.1 Input

Ray Data. As mentioned in Section 3.3, the GPU component of
the ray engine intersects multiple rays with a single triangle. Every
pixel in the data array corresponds to an individual ray. Our imple-
mentation stores ray data in two textures: a ray-origins texture and
a ray-directions texture. Batches of rays cast from the eyepoint or a
point light source will have a constant color ray-origins texture and

3

Figure 3: Programmable pixel shading is a crossbar.

This crossbar represents an all-pairs check of every ray
against every triangle. Since their inception, ray tracers
have avoided checking every triangle against every primi-
tive through the use of spatial coherent data structures on
both the rays and the geometry. These data structures reor-
ganize the crossbar into a sparse overlapping block structure,
as shown in Figure 2(b). Nevertheless the individual blocks
are themselves full crossbars that perform an all pairs com-
parison on their subset of the rays and geometry.

The result of ray casting is the identification of the geome-
try (if any) intersected first by each ray. This result is a series
of points in the crossbar, no greater than one per horizontal
line (ray). These first intersections are shown as black disks
in Figure 2(c). The other ray-triangle intersections are indi-
cated with open circles and are ignored in simple ray casting.

3.2. Programmable Shading Hardware

Graphics accelerators have been designed to implement a
pipeline that converts polygons vertices from model coor-
dinates to viewport coordinates. Once in viewport coordi-
nates, rasterization fills the polygon with pixels, interpolat-
ing the depth, color and texture coordinates in a perspective-
correct fashion. During rasterization, interpolated texture co-
ordinates index into texture memory to map an image texture
onto the polygon.

This rasterization process can also be viewed as a cross-
bar, as shown in Figure 3(a). The vertical lines represent
individual polygons passing through the graphics pipeline
whereas the horizontal lines represent the screen pixels.

Consider the case where each polygon, a quadrilateral, ex-

actly covers all of the screen pixels. Then rasterization of
these polygons performs an all-pairs combination of every
pixel with every polygon.

While even early graphics accelerators were pro-
grammable through firmware4, modern graphics accelera-
tors contain user-programmable elements designed specifi-
cally for advanced shading16. These programmable elements
can be separated into two components, the vertex shader and
the pixel shader, as shown in Figure 3(b). The vertex shader
is a user-programmable stream processor that can alter the
attributes (but not the number) of vertices sent to the ras-
terizer. The pixel shader can perform arithmetic operations
on multiple texture coordinates and fetched texture samples,
but does so in isolation and cannot access data stored at any
other pixel. Pixel shaders run about an order of magnitude
faster than vertex shaders.

3.3. Mapping Ray Casting to Programmable Shading
Hardware

We map the ray casting crossbar in Figure 2 to the rasteriza-
tion crossbar in Figure 3 by distributing the rays across the
pixels and broadcasting a stream of triangles to each pixel
by sending their coordinates down the geometry pipeline as
the vertex attribute data (e.g. color, texture coordinates) of
screen filling quadrilaterals.

The rays are stored in two screen-resolution textures. The
color of each pixel of the ray-origins texture stores the co-
ordinates of the origin of the ray. The color of each pixel of
the ray-directions texture stores the coordinates of the ray
direction vector.

An identical copy of the triangle data is stored at each
vertex of a screen-filling quadrilateral. Rasterization of this
quadrilateral interpolates these attributes at each pixel of its
screen projection. Since the attributes are identical at all four
vertices, interpolation simply distributes a copy of the trian-
gle data to each pixel.

A pixel shader performs the ray-triangle intersection com-
putation by merging the ray data stored per-pixel in the tex-
ture maps with the triangle data distributed per-pixel by the
interpolation of the attribute data stored at the vertices of the
quadrilateral. The specifics of this implementation will be
described further in Section 4.

3.4. Discussion

The decision to store rays in texture and triangles as vertex
attributes was based initially on precision. Since rays can be
specified with five real values whereas triangles require nine
we found it easier and more accurate to store the ray values
at the lower texture precisions.

We also chose to implement ray-triangle intersection as
a pixel shader instead of a vertex shader. Vertex shaders do

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

not have direct access to the rasterization crossbar, and hence
needed to store ray data as constants in the vertex shader’s lo-
cal memory. The vertex shader is also slower, and was able to
compute 4.1M ray-triangle intersections per second, which
is much less than what the CPU is currently capable of per-
forming.

Viewing the GPU as a SIMD processor20 allowed us to
compare other SIMD ray tracing implementations. SIMD
ray tracers typically distribute rays to the processors and
broadcast the geometry, or distribute geometry and broad-
cast the rays. The AR350 ray tracing hardware utilized a
fine-grain ray distribution to isolated processors8, which im-
proved load balancing, but inhibited the possible advantages
of ray coherence. The coherent ray tracer32 also distributed
rays at its lowest level, intersecting each triangle with four
coherent rays using SSE whereas an axis-aligned BSP-tree
coherently organized the triangles (but required special im-
plemention to efficiently intersect four-ray bundles). Geom-
etry distribution on the other hand seems better suited for
handling the special problems due to ray tracing large scene
databases31.

4. Ray-Triangle Intersection on the GPU

The pixel shader implementation of ray-triangle intersec-
tion treats the GPU as a SIMD parallel processor20. In
this model, the framebuffer is treated as an accumulator
data array of 5-vectors(r,g,b,α,z), and texture maps are
used as data arrays for input and variables. Pixel shaders
perform sequences of operations that combine the textures
and the framebuffer. While compilers exist for multipass
programming20, 22, the current limitations of pixel shaders
required complete knowledge and control of the available
instructions and registers to implement ray intersection.

4.1. Input

Ray Data. As mentioned in Section 3.3, the GPU compo-
nent of the ray engine intersects multiple rays with a sin-
gle triangle. Every pixel in the data array corresponds to an
individual ray. Our implementation stores ray data in two
textures: a ray-origins texture and a ray-directions texture.
Batches of rays cast from the eyepoint or a point light source
will have a constant color ray-origins texture and their tex-
ture map could be stored as a single pixel or a pixel shader
constant.

Triangle Data. The triangle data is encapsulated in the at-
tributes of the four vertices of a screen filling quad. Leta,b,c
denote the three vertices of the triangle, andn denote the
triangles front facing normal. The triangle id was stored as
the quad’s color, and the vectorsa,b,n,ab(= b−a),ac,bc
were mapped to multi-texture coordinate vectors. The re-
dundant vector information includes ray-independent pre-
computation that reduces the size and workload of the pixel
shader. Our implementation passes only the three vertices of

the triangle from the host, and computes the additional re-
dundant values in the vertex shader.

The texture coordinates for texture zero (s0, t0) are spe-
cial and are not constant across the quadrilateral. They are
instead set to(0,0),(1,0),(1,1),(0,1) at the four vertices,
and rasterization interpolates these values linearly across the
quad’s pixels. These texture coordinates are required by the
pixel shader to access each pixel’s corresponding ray in the
screen-sized ray-origins and ray-directions textures.

4.2. Output

The output of the ray-triangle intersection needs to be
queried by the CPU, which can be an expensive opera-
tion due to the asymmetric AGP bus on personal computers
(which sends data to the graphics card much faster than it can
receive it). The following output format is designed to return
as little data as necessary, limiting itself to the index of the
triangle that intersects the ray closest to its origin, using the
z-buffer to manage the ray parametert of the intersection.

Color. The color channel contains the color of the first trian-
gle the ray intersects (if any). For typical ray tracing appli-
cations, this color will be a unique triangle id. These triangle
id’s can index into an appearance model for the subsequent
shading of the ray-intersection results.

Alpha. Our pixel shader intersection routine conditionally
sets the fragments alpha value to indicate ray intersection.
The alpha channel can then be used as a mask by other ap-
plications if the rays are coherent (e.g. like eye rays through
the pixels in the frame buffer).

The t-Buffer. The t-value of each intersection is computed
and replaces the pixel’sz-value. The built-inz-test is used
so the newt-value will overwrite the existingt-value stored
in the z-buffer if the new value is smaller. This allows the
z-buffer to maintain the least positive solutiont for each ray.
Since the returnedt value is always non-negative, thet-value
maintained by thez-buffer always corresponds to the first
triangle the ray intersects.

4.3. Intersection

We examined a number of efficient ray-triangle intersection
tests6, 2, 18, and managed to reorganize one18 to fit in a pixel
shader.

Our revised ray-triangle intersection is evaluated as
ao = o−a, (1)

bo = o−b, (2)

t = −n ·ao
n ·d , (3)

aod = ao×d, (4)

bod = bo×d, (5)

u = ac·aod, (6)

v = −ab ·aod, (7)

w = bc ·bod. (8)

The intersection passes only if all three (unnormalized)
barycentric coordinatesu,v and w are non-negative. If the
ray does not intersect the triangles, the alpha channel for that

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

Figure 4: Leaky teapot, due to the low precision implemen-
tation on PS1.4 pixel shaders used to test the performance
of ray-triangle intersection. Our simulations using the preci-
sion available on upcoming hardware are indistinguishable
from software renderings.

pixel is set to zero and the pixel is killed. The parametert is
also tested against the current value in thez-buffer, and if it
fails the pixel is also killed. Surviving pixels are written to
the framebuffer as the ray intersection currently closest to
the ray origin.

This implementation reduces cross products, which re-
quire multiple pixel shader operations to compute. The quo-
tient (3) was implemented using thetexdepthinstruction,
which implements the “depth replace” texture shader.

4.4. Results

We tested the PS1.4 implementation of the ray-triangle in-
tersection using the ATI R200 chipset on the Radeon 8500
graphics card. The limited numerical precision of its pixel
shader (16-bit fixed point, with a range of±8) led to some
image artifacts shown in Figure 4, this implementation did
suffice to measure the speed of an actual hardware pixel
shader on the task of ray intersection.

We clocked our GPU implementation of ray intersection
at 114M intersections per second. The fastest CPU-based
ray tracer was able to compute between 20M and 40M in-
tersections per second on an 800Mhz Pentium III32. Even
doubling the CPU numbers to estimate performance on to-
day’s computers, our GPU ray-triangle intersection perfor-
mance already exceeds that of the CPU, and we expect the
gap to widen as GPU performance growth continues to out-
pace CPU performance growth.

5. Ray Engine Organization

This section outlines the encapsulation of the GPU ray-
intersection into a ray engine. It begins with a discussion of
why the CPU is a better choice for the management of rays
during the rendering process. Since the CPU is managing the
rays, the ray engine is packaged to provide easy access to the
GPU ray-intersection acceleration through a front-end inter-
face. This interface accepts rays in coherent bundles, which

can be efficiently traced by the GPU ray-intersection imple-
mentation.

5.1. The Role of the CPU

We structured the ray engine to perform ray intersection on
the GPU and let the host organize the casting of rays and
manage the resulting radiance samples. Since the bulk of the
computational resources used by a ray tracer are spent on
ray intersection, the management of rays and their results is
a relatively small overhead for the CPU, certainly smaller
than performing the entire ray tracing on the CPU.

The pixel shader on the GPU is a streaming SIMD proces-
sor good at running the same algorithm on all elements of a
data array. The CPU is a fast scalar processor that is better at
organizing and querying more sophisticated data structures,
and is capable of more sophisticated algorithmic tools such
as recursion. Others have implemented the entire ray tracer
on the GPU24, but such implementations can be cumbersome
and inefficient.

For example, recursive ray tracing uses a stack. While
some have proposed the addition of state stacks in pro-
grammable shader hardware17, such hardware is not cur-
rently available. Recursive ray tracing can be implemented
completely on the GPU24, but apparently at the expense of
generating two frame buffers full of reflection and refrac-
tion rays at each intersection, which are then managed by
the host.

The need for a stack can be avoided by path tracing12.
Paths originating from the eyepoint passing through a pixel
can accumulate its intermediate results at the same location
in texture maps. Path tracing requires importance sampling
to be efficient, even with fast ray intersection. Sophisticated
importance sampling methods30 use global queries into the
scene database, as well as queries into previous radiance re-
sults in the scene. Such queries are still performed more ef-
ficiently on the CPU than on the GPU.

Some ray tracers also organize rays and geometry into co-
herent caches that are cast in an arbitrary order to more effi-
ciently render large scenes21. The management of ray caches
and the radiances resulting

rom their batched tracing requires a lot of data shuffling.
An implementation on the GPU would require all of the pix-
els in the image returned by the batch ray intersection algo-
rithm to be shuffled to contribute to the radiance of the pre-
viously cast rays. While dependent texturing can be used to
perform this shuffling24, the GPU is ill-designed to organize
and set up this mapping.

We used the NV_FENCE extension to overlap the com-
putation of the CPU and GPU. This allows the CPU to test
whether the GPU is busy working on a ray-triangle bun-
dle so the CPU can continue to work simultaneously on ray
caching.

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

5.2. The Ray Engine Interface

Organizing high-performance rendering services to be trans-
parent makes them easier to integrate into existing rendering
systems14. We structured the ray engine as both a front end
driver that runs on the host and interfaces with the appli-
cation, and a back end component that runs on the GPU to
perform ray intersections.

The front end of the ray engine accepts a cache of rays
from a host application. This front end converts the ray cache
into the texture map data for the pixel shader to use for in-
tersection. The front end then sends the geometry (from a
shared database with the application) down the geometry
pipeline to the pixel shader. The pixel shader is treated as a
back end of this system that intersects the rays with the trian-
gles passed to it. The front end grabs the results of ray inter-
section (triangle id,t-value and, if supported, the barycentric
coordinates) and returns them to the application in a more
appropriate format.

v

Ray Intersection Pixel Shader

GPU

CPU

Application (Ray Tracing, Path Tracing,
 Photon Mapping, Form Factors)

Front End

Ray Data
as

Texture
Maps

Triangle
Data as

Flat Quad
Attributes

Relevant
Intersection

Data as
Pixels

Ray
Cache

Cache
Results

The Ray Engine

Geometry

Figure 5: The organization of the ray engine.

The main drawback of implementing ray casting applica-
tions on the host is the slow readback bandwidth of the AGP
bus when transferring data from the GPU back to the CPU.
This bottleneck is addressed by the ray engine system with
compact data that is returned infrequenty (once after all tri-
angles have been sent to the GPU).

5.3. The Ray Cache

Accelerating the implementation of ray intersection is not
enough to make ray tracing efficient. The number of ray
intersections needs to be reduced as well. The ray engine
uses an octree to maintain geometry coherence and a 5-D
ray tree1 to maintain ray coherence.

The ray engine works more efficiently when groups of

similar rays intersect a collection of spatially coeherent tri-
angles. In order to maintain full buckets of coherent rays,
we utilize a ray cache21. Ray caching allows some rays to
be cast in arbitrary order such that intersection computations
can be performed as batch processes.

As rays are generated, they are added to the cache, which
collects them into buckets of rays with coherent origins
and directions. For maximum performance on the ray en-
gine, each bucket should contain some optimal hardware-
dependent number of rays. Our bucket size was 256 rays,
organized as two 64× 4 ray-origin and ray-direction tex-
tures. Textures on graphics cards are commonly stored in
small blocks instead of in scanline order to better capitalize
on spatial coherence by placing more relevant texture sam-
ples into the texture cache of the GPU. The size of these
texture blocks is GPU-dependent and can be found through
experimentation.

If adding a ray makes a bucket larger than the optimal
bucket size then the node is split into four subnodes along
the axis of greatest variance centered at the using the mean
values of the ray origins and directions. We also add rays
to the cache in random order which helps keep the tree bal-
anced.

When the ray tracer needs a result or the entire ray cache
becomes full, a bucket is sent to the ray engine to be inter-
sected with geometry. We send the fullest buckets first to
maximize utilization of the ray engine resources. Each node
of the tree contains the total number of rays contained in the
buckets below it. Our search traverses down the largest val-
ued nodes until a bucket is reached. While this simple greedy
search is not guaranteed to find the largest bucket, it is fast
and works well in practice since the buckets share the same
maximum size. This greedy search also tends to balance the
tree.

Once the search has chosen a bucket, rays are stolen from
that node’s siblings to fill the bucket to avoid wasting inter-
section computations. Due to the greedy search and the node
merging described next, this ensures that buckets sent to the
ray engine are always as full as possible, even though in the
ray tree they are typically only 50-80% full.

Once a bucket has been removed from the tree and traced,
it can often leave neighboring buckets containing only a few
rays. Our algorithm walks back up the tree from the removed
bucket leaf node, collecting subtrees into a single bucket
leaf node if the number of rays in the subtree has fallen be-
low a threshold. Our tests showed that this process typically
merged only a single level of the tree.

The CPU performs a ray bucket intersection test1 against
the octree cells to determine which should be sent to the
GPU. We also used the vertex shader to cull back-facing tri-
angles as well as triangles outside the ray bucket from inter-
section consideration. The vertex shader cannot change the
number of vertices passing through it, but it can transform

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

the screen-filling quad containing the triangle data to an off-
screen location which causes it to be clipped.

5.4. Results

We implemented the ray engine on a simulator for an up-
coming GPU based on the expected precision and capabil-
ities needed to support the Direct3D 9 specification. These
capabilities allow us to produce full precision images that
lack the artifacts shown earlier in Figure 4.

We used the ray engine to classically ray trace a teapot
room and an office scene, shown in Figure 6(a) and (c).
We applied the ray engine to a Monte-Carlo ray tracer that
implemented distributed ray tracing and photon mapping,
which resulted in Figure 6(b). The ray engine was also used
to ray trace two views of one floor from the Soda Hall
dataset, shown in Figures 6(d) and (e).

The performance is shown in Figure 1. Since our imple-
mentation is on a non-realtime simulator, we have estimated
our performance using the execution rates measured on the
GeForce 4. We measured the performance in rays per sec-
ond, which measures the number of rays intersected with
the entire scene per second. This figure includes the expen-
sive traversal of the ray-tree and triangle octree as well as the
ray-triangle intersections.

Scene Polygons Rays/sec.

Teapot Room Classical 2,650 206,905
Teapot Room Monte-Carlo 2,650 149,233
Office 34,000 114,499
Soda Hall Top View 11,052 129,485
Soda Hall Side View 11,052 131,302

Table 1: Rays per second across a variety of scenes and ap-
plications.

This perfomance meets the low end performance of the
coherent ray tracer, which was able to trace from 200K to
1.5M rays per second32. It too used coherent data structures
to increase performance, in this case an axis aligned BSP tree
organized specifically to be efficiently traversed by the CPU.
Our ray traversal implementation is likely not as carefully
optimized as theirs.

6. Analysis and Tuning

Suppose we are given a set ofR rays and a set ofT trian-
gles for performing ray-triangle intersection tests. We de-
note the time to run the tests on the GPU and CPU respec-
tively as GPU(R,T) and CPU(R,T). To acheive improved
performance, we are only interested in values ofRandT for
which GPU(R,T) ≤ CPU(R,T), suggesting the right prob-
lem granularity for which the GPU performs best.

Since the GPU performs all pairs intersection test between

the rays and triangles passed to it, its performance is inde-
pendent of scene structure

GPU(R,T) = O(RT). (9)

The running time for CPU(R,T) is dependent on both scene
and camera (sampling) structure since partitioning structures
in both triangle and ray space may be used to reduce com-
putation

CPU(R,T)≤O(RT). (10)

As Section 4.4 shows, the constant of proportionality in the
O(RT) in (9) is smaller (by at least a factor of two) than the
one in (10). Tuning the ray engine will require balancing the
raw speed of GPU(R,T) with the efficiency of CPU(R,T).

6.1. The Readback Bottleneck

We can model GPU(R,T) by analyzing the steps in the GPU
ray-triangle intersection in terms of GPU operations, and
empirically measuring the speed of these operatrions. A sim-
ple version of this model sufficient for our analysis is

GPU(R,T) = TRfill−1 +Rγ readback−1, (11)

whereγ is the number of bytes read back from the graphics
card per ray. This model shows that the GPU ray-triangle
intersection time is linearly dependent on the number of
rays and affinely dependent on the number of triangles. This
model does not include the triangle rate, which would add a
negligible term proportianal toT to the model. Once we de-
termine values for fill and readback we can then determine
the smallest number of trianglesTmin needed to make GPU
ray-triangle intersection practical.

The fill rate is measured in pixels per second (which in-
cludes the cost of the fragment shader execution) whereas
the readback rate is measured in bytes per second. The fill
rate is measured pixels per second instead of bytes per sec-
ond because it is non-linear in the number of bytes trans-
ferred (modern graphics cards can for example multitexture
two textures simultaneously). Since our ray engine uses two
ray textures (an origins texture and a directions texture) we
simply divide the number of rays (pixels) by the fill rate (pix-
els per second) to get the fragment shader execution time.

We determine values for the fill and readback rates empir-
ically. For example, the GeForce3 achieves a fill rate of 390
MP/sec. (dual-textured pixels) and an AGP 4x readback rate
of 250 MB/sec (which is only one quarter of the 1 GB/sec
that should be available on the AGP bus). Returning a single
64-bit triangle ID uses aγ of four, whereas returning an ad-
ditional three single-precision floating-point barycentric co-
ordinates setsγ to 16. Hence we can return triangle ID’s at a
rate of 62.5M/sec., but when we include barycentrics the rate
drops to 15.6M/sec. We can further increase performance by
reducing the number of bytes used for the index of each tri-
angle, especially since the ray engine sends smaller buckets
of coherent triangles to the GPU.

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

(a) (b) (c) (c) (c)

Figure 6: Images tested by the ray engine: teapot Cornell box ray traced classically (a) and Monte Carlo (b), office (c), and
Soda Hall side (d) and top (e) views.

0 5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

500

600
R ay T riangle Intersection P erformance: (R T)/G P U(R ,T)

triangles

m
ill

io
n

 in
te

rs
e

ct
io

n
 t

e
st

s/
se

c

Radeon 8500 LE perf.

Radeon 8500 LE max perf.

GeForce3 perf.

GeForce3 max perf.

GeForce4 max perf.

GeForce4 perf.GeForce4 w/full �
AGP 4x bandwidth

Figure 7: Theoretical performance in millions of ray-
triangle intersection tests per second on the GPU withγ = 4.

For small values ofT the performance is limited by the
readback rate. AsT increases, the constant cost of read-
back is amortized over a larger number of intersections tests.
(When we measured peak ray-triangle intersection rates on
the Radeon 8500, we sent thousands of triangles to the
GPU.) In each case, the curve asymptotically approaches the
fill rate, which is listed as the maximum performance possi-
ble. Realistically, only smaller values ofT should be con-
sidered since the GPU intersection routine is an inefficient
all-pairsO(RT) solution and our goal is to only send coher-
ent rays and triangles to it.

Figure 7 shows that even for small value ofT, the perfor-
mance is quite competitive with that of a CPU based imple-
mentation in spite of the read back rate limitation. For exam-
ple, the ray-triangle intersections per second for ten triangles
clock at 240M on the GeForce3 and 286M on the GeForce4
Ti4600 (if they had the necessary fragment processing capa-
bilities). The recent availability of AGP 8x, and the upcom-
ing AGP 3.0 standard will further reduce the impact of the

readback bottleneck and further validate this form of general
GPU processing.

6.2. Avoiding Forced Coherence

The previous section constructed a model for the efficiency
of the GPU ray-triangle intersection. We must now deter-
mine when it is more efficient to use the CPU instead of the
GPU.

It is important to exploit triangle and ray coherence only
where it exists, and not to force it where it does not. We
hence identify the locations in the triangle octree where the
ray-triangle coherence is high enough to support efficient
GPU intersection. This preprocess occurs after the triangle
octree construction, and involves an additional traversal of
the octree, identifying cells that represent at leastTmin trian-
gles. Since these cells are ideal for GPU processing we refer
to these cells as GPU cells.

Rendering employs a standard recursive octree traversal
routine. When a ray ray traverses through a cell not tagged
as a GPU cell, the standard CPU based ray-triangle intersec-
tion is performed. If a ray encounters a GPU cell during its
traversal, the ray’s traversal is terminated and it is placed in
the ray cache for that cell for future processing. When the
ray cache corresponding to a given GPU cell reachesRmin
rays, its rays and triangles are sent to the GPU for process-
ing using the ray-intersection kernel.

A point may be reached where the ray engine has receive
all known rays from the application to be processed. At this
poing there may exist GPU cells whose ray cache is non-
empty, but containing less thanRmin rays. A policy may be
chose to select a GPU cell and force its ray cache to be send
to the CPU instead of the GPU. This allows the ray engine
to continually advance towards completion for rendering the
scene.

6.3. Results

We have performed numerous tests to tune the parameters of
the geometry engine to eek out the highest performance.

Table 2 demonstrates the utilization of the GPU. As men-
tioned earlier, only reasonably sized collections of coherent

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

Scene % GPU Rays

Teapot Room Classical 89%
Teapot Room Monte-Carlo 71%
Office 65%
Soda Hall Top View 70%
Soda Hall Side View 89%

Table 2: Percentage of rays sent to the GPU across a variety
of scenes and applications.

rays and triangles are sent to the GPU. The remaining rays
and triangles are traced by the CPU. The best performers
resulted from classical ray tracing of the teapot room and
the ray casting of the Soda Hall side view. The numerous
bounces from Monte Carlo ray tracing likely reduce the co-
herence on all but the eye rays. Coherence was reduced in the
office scene due to the numerous small triangles that filled
the triangle cache before the ray cache could be optimally
filled. The Soda Hall top view contains a lot of disjoint small
“silhouette” wall polygons that likely failed to fill the trian-
gle cache for a given optimally filled ray cache.

System Rays/sec. Speedup

CPU only 135,812
plus GPU 165,098 22%
Asynch. Readback 183,273 34%
Infinitely Fast GPU 234,102 73%

Table 3: Speedup by using the GPU to render the teapot
room.

Table 3 illustrates the efficiency of the ray engine. The
readback delay was only responsible for 12% of the poten-
tial speedup of 34%. One feature that would allow us to re-
cover that 12% is to be able to issue an asynchronous read-
back (as is suggested in OpenGL 2.0), such that the CPU
and GPU can continue to work during the readback process.
The NV_FENCE mechanism could then report when the
readback is complete. This feature could possibly be added
through the use of threads, but this idea has been left for fu-
ture research.

The last row of Table 3 shows the estimated speed if we
had an infinitely fast GPU, which shows that most of our
time is spent on the CPU reorganizing the geometry and
rays into coherent structures. This effect has been observed
in similar ray tracers32, where BSP tree traversal is “typically
2-3 times as costly as ray-triangle intersection.”

Table 4 shows the effect of tuning the number of triangles
that get sent to the GPU. In each of these cases, the number
of rays intersected by each GPU pass was set to 64.

Table 5 shows that the number of rays in each bucket can
also be varied to achieve peak efficiency. Tuning the ray en-
gine to assign more rays to the GPU frees the CPU to per-

T GPU Rays Rays/sec. Speedup

CPU 135,812
4–16 78% 147,630 8%
5–12 81% 157,839 16%
5–15 89% 165,098 22%

Table 4: Tuning the ray engine by varying the range of tri-
angles T sent to the GPU, measured on the teapot room.

R Rays/sec. Speedup

CPU 135,812
64 165,098 22%

128 177,647 31%
256 180,558 33%
512 175,904 29%

Table 5: Tuning the number of rays R sent to the GPU for
intersection.

form more caching. For example, for the teapot room clas-
sical ray tracing, we were able to achieve a 52% speedup
over the CPU by settingR to 256 and hand tuning the octree
resolution.

7. Conclusions

We have added ray tracing to the growing list of applications
accelerated by the programmable shaders found in modern
graphics cards. Our ray engine performed at speeds compa-
rable to the fastest CPU ray tracers. We expect the GPU will
become the high-performance ray-tracing platform of choice
due to the rapid growth rate of GPU performance.

By partitioning computation between the CPU and GPU,
we combined the best features of both, at the expense of
the slow readback of data and the overhead of ray caching.
The AGP graphics bus supports high-bandwidth transmis-
sion from the CPU to the GPU, but less bandwidth for re-
covery of results. We expect future bus designs and driver
implementations will soon ameliorate this roadblock.

The overhead of ray caching limited the performance
speedup of GPU to less than double that of the CPU only,
and this overhead as also burdened others32. Even though
our method for processing the data structures is considered
quite efficient27, we are anxious to explore alternative struc-
tures that can more efficiently organize rays and geometry
for batch processing by the GPU.

Acknowledgements

This research was supported in part by the NSF grant #ACI-
0113968, and by NVidia. The idea of using fragment pro-
grams for ray-triangle intersection and the crossbar formal-
ism resulted originally from conversations with Michael Mc-
Cool.

c© The Eurographics Association 2002.

Carr, Hall and Hart / The Ray Engine

References

1. ARVO, J., AND K IRK , D. B. Fast ray tracing by ray classifi-
cation.Proc. SIGGRAPH 87(July 1987), 55–64.

2. BADOUEL, D. An efficient ray-polygon intersection. In
Graphics Gems. Academic Press, Boston, 1990, pp. 390–393,
735.

3. BLINN , J. F.,AND NEWELL, M. E. Texture and reflection in
computer generated images.Comm. ACM 19, 10 (Oct. 1976),
542–547.

4. CLARK , J. The geometry engine: A VLSI geometry system
for graphics.Proc. SIGGRAPH 82(July 1982), 127–133.

5. DIEFENBACH, P. J.,AND BADLER, N. I. Multi-pass pipeline
rendering: Realism for dynamic environments. InProc. Sym-
posium on Interactive 3D Graphics(Apr. 1997), ACM SIG-
GRAPH, pp. 59–70.

6. ERICKSON, J. Pluecker coordinates. Ray Trac-
ing News 10, 3 (1997), 11. www.acm.org-
/tog/resources/RTNews/html/rtnv10n3.html#art11.

7. FERNANDO, R., FERNANDEZ, S., BALA , K., AND GREEN-
BERG, D. P. Adaptive shadow maps.Proc. SIGGRAPH 2001
(Aug. 2001), 387–390.

8. HALL , D. The AR350: Today’s ray trace rendering proces-
sor. InHot 3D Presentations, P. N. Glagowski, Ed. Graphics
Hardware 2001, Aug. 2001, pp. 13–19.

9. HEIDRICH, W., LENSCH, H., AND SEIDEL, H.-P. Light
field-based reflections and refractions.Eurographics Render-
ing Workshop(1999).

10. JENSEN, H. W. Importance driven path tracing using the
photon map.Proc. Eurographics Rendering Workshop(Jun.
1995), 326–335.

11. JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND

HANRAHAN , P. A practical model for subsurface light trans-
port. Proc. SIGGRAPH 2001(Aug. 2001), 511–518.

12. KAJIYA , J. T. The rendering equation.Proc. SIGGRAPH 86
(Aug. 1986), 143–150.

13. KELLER, A. Instant radiosity. Proc. SIGGRAPH 97(Aug.
1997), 49–56.

14. KIPFER, P.,AND SLUSALLEK , P. Transparent distributed pro-
cessing for rendering.Proc. Parallel Visualization and Graph-
ics Symposium(1999), 39–46.

15. KOLB, C., HANRAHAN , P. M., AND M ITCHELL , D. A real-
istic camera model for computer graphics.Proc. SIGGRAPH
95 (Aug. 1995), 317–324.

16. LINDHOLM , E., KILGARD , M. J., AND MORETON, H. A
user-programmable vertex engine.Proc. SIGGRAPH 2001
(July 2001), 149–158.

17. MCCOOL, M. D., AND HEIDRICH, W. Texture shaders.
In Proc. Graphics Hardware 99(August 1999), SIG-
GRAPH/Eurographics Workshop, pp. 117–126.

18. MÖLLER, T., AND TRUMBORE, B. Fast, minimum storage
ray-triangle intersectuion.Journal of Graphics Tools 2, 1
(1997), 21–28.

19. PARKER, S., MARTIN , W., SLOAN , P.-P. J., SHIRLEY, P. S.,
SMITS, B., AND HANSEN, C. Interactive ray tracing. In1999
ACM Symposium on Interactive 3D Graphics(Apr. 1999),
ACM SIGGRAPH, pp. 119–126.

20. PEERCY, M. S., OLANO , M., A IREY, J.,AND UNGAR, P. J.
Interactive multi-pass programmable shading.Proc. SIG-
GRAPH 2000(2000), 425–432.

21. PHARR, M., KOLB, C., GERSHBEIN, R., AND HANRAHAN ,
P. M. Rendering complex scenes with memory-coherent ray
tracing.Proc. SIGGRAPH 97(Aug. 1997), 101–108.

22. PROUDFOOT, K., MARK , W. R., TZVETKOV, S.,AND HAN-
RAHAN , P. A real-time procedural shading system for
programmable graphics hardware.Proc. SIGGRAPH 2001
(2001), 159–170.

23. PURCELL, T. J. SHARP ray tracing architecture. SIGGRAPH
2001 Real-Time Ray Tracing Course Notes, Aug. 2001.

24. PURCELL, T. J., BUCK, I., MARK , W. R.,AND HANRAHAN ,
P. Ray tracing on programmable graphics hardware.Proc.
SIGGRAPH 2002(July 2002).

25. REEVES, W. T., SALESIN, D. H., AND COOK, R. L. Render-
ing antialiased shadows with depth maps.Proc. of SIGGRAPH
87 (Jul. 1987), 283–291.

26. REINHARD, E., CHALMERS, A., AND JANSEN, F. Overview
of parallel photorealistic graphics.Eurographics ’98 STAR
(Sep. 1998), 1–25.

27. REVELLES, J., URENA, C., AND LASTRA, M. An efficient
parametric algorithm for octree traversal.Proc. Winter School
on Computer Graphics(2000).

28. SZIRMAY-KALOS, L., AND PURGATHOFER, W. Global ray-
bundle tracing with hardware acceleration.Proc. Eurograph-
ics Rendering Workshop(June 1998), 247–258.

29. TRENDALL , C., AND STEWART, A. J. General calculations
using graphics hardware with applications to interactive caus-
tics. InRendering Techniques 2000: 11th Eurographics Work-
shop on Rendering(Jun. 2000), Eurographics, pp. 287–298.

30. VEACH, E., AND GUIBAS, L. J. Metropolis light transport.
Proc. SIGGRAPH 97(Aug. 1997), 65–76.

31. WALD , I., SLUSALLEK , P., AND BENTHIN, C. Interactive
distributed ray tracing of highly complex models. InRender-
ing Techniques 2001(2001), Eurographics Rendering Work-
shop, pp. 277–288.

32. WALD , I., SLUSALLEK , P., BENTHIN, C., AND WAGNER,
M. Interactive rendering with coherent ray tracing.Computer
Graphics Forum 20, 3 (2001), 153–164.

33. WARD, G. J. The radiance lighting simulation and rendering
system.Proc. SIGGRAPH 94(Jul. 1994), 459–472.

34. WEGHORST, H., HOOPER, G., AND GREENBERG, D. Im-
proved computational methods for ray tracing.ACM Trans.
on Graphics 3, 1 (Jan. 1984), 52–69.

35. WILLIAMS , L. Casting curved shadows on curved surfaces.
Proc. SIGGRAPH 78(Aug. 1978), 270–274.

c© The Eurographics Association 2002.

