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Problem Description
Light extraction from light emitting diodes (LED) is very much limited by total internal reflection
because semiconductors usually have very high refractive index. At our department Gallium
Antimonide emitting LEDs have been grown using molecular beam epitaxy.

This thesis explores the use of photonic crystals to reduce the effect of total internal reflection
from Gallium Antimonide LED. Numerical simulations of a LED with photonic crystal top layer will
therefore be conducted.

To perform the simulations an electromagnetic model of the grown LED will be developed based
on physical dimensions and material parameters estimated from previous research. The modeling
of the photonic crystal is to be performed with finite difference time domain (FDTD) methods. The
thesis will treat photonic crystal theory necessary for utilizing FDTD for this problem. To evaluate
the physical performance of the simulated structures, the results are to be in the form of light
extraction efficiency and radiation pattern. The simulation methods including post processing will
be documented. As the simulations are computationally demanding, a method for distributing the
load over several nodes must be used.
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Abstract

This master’s thesis describe electromagnetic simulations of a gallium antimonide
(GaSb) light emitting diode, LED. A problem for such devices is that most of the
generated light is reflected from the surface due to total internal reflection, and
is therefore prevented from coupling out of the semiconductor material. Etching
out a 2D photonic crystal grating on the LED surface would put aside the abso-
lute rule of total internal reflection, and could therefore be used to increase the
total transmission. The simulation method which was developed was supposed
to find geometry parameters for the photonic crystal to optimize the light ex-
traction. A set of plane waves were therefore simulated using FDTD to build an
equivalent to the Fresnel equations for the photonic crystal surface. From that
the total transmittance and radiation patterns for the simulated geometries were
calculated. The results indicated an increase in the transmission properties of up
to 70% using a square grating of holes where the holes have a radius of 0.5µm,
the hole depth is 0.4µm, and the grating constant is 1µm. A hexagonal grating of
holes and a square grating of isotropically etched holes were also simulated, and
featured improvements on the same scale, but with different dimensions for the
holes. The simulations were computationally very demanding, and the simulation
structure therefore had to be highly trimmed to limit the calculation time to rea-
sonable values. This might have reduced the accuracy of the results. Especially
the optimum grating constant, and the value of the optimum improvement itself
is believed to be somewhat inaccurate.
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Glossary

FDTD Finite-difference time-domain. Simulation method which steps through
time and uses a discretized space grid.

GaInSb Gallium indium antimonide. Semiconductor material.

GaSb Gallium antimonide. Semiconductor material.

LED Light Emitting Diode. Diode where recombination of charge carriers is
radiative.

MEEP MIT Electromagnetic Equation Propagation. Simulation software that
uses the FDTD-method.

PBC Periodic boundary conditions. Boundary conditions for a simulation cell
which effectively simulates a photonic crystal where the unit cell is given by
the simulation cell. The kB-vector must be specified for such simulations.

PML Perfectly matched layer. A layer in a simulation cell which insulates the
interior from the boundary conditions of the edges.
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Chapter 1

Introduction

This thesis describes numerical simulations of the light extraction properties of
a Gallium Antimonide (GaSb) light emitting diode, LED, with a 2D photonic
crystal grating on its surface. LEDs are usually made of semiconductor material
which has a very high refractive index. This causes a very small critical angle, and
consequently most of the light experiences total internal reflection at the surface.
As will be explained a photonic crystal can refract light, that otherwise would be
completely reflected, to an angle that is smaller than the critical angle. Thereby
can the total transmission through the surface be increased. The common way
of reducing this problem is to place an epoxy dome, with higher refractive index
than air, over the LED. The method described here could be used in conjunc-
tion with such a dome by increasing the coupling from the semiconductor to the
epoxy material. The simulations are however performed for a semiconductor to
air interface because this is the easiest to fabricate. They are therefore a step
towards a viable design where the preliminary goal is to develop a working simu-
lation model which relate well to measurements on actual samples. At the time of
startup on the work described in this thesis, the LED structure had been grown by
PhD student Tron Arne Nielsen, using molecular beam epitaxy, MBE. The sur-
face was however not patterned, and simulations were needed to find a photonic
crystal which would significantly increase the light extraction. The objective of
the simulations were therefore to find an optimal photonic crystal for fabrication.
Also gaining experience and knowledge about photonic crystals and methods for
simulating their electromagnetic properties were important motivational factors.

The second chapter in this thesis describes some general theory regarding pho-
tonic crystals that is needed in order to understand the simulations. The third
chapter treats the necessary theory behind LEDs, and directly analyses the actual
LED assumed in these simulations. The purpose of this is mainly to establish
the properties of the light incident on the photonic crystal surface. As will be
explained these properties affect the extraction efficiency of the surface, and are
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INTRODUCTION

therefore needed. The light extraction of a LED without a photonic crystal is also
found in this chapter. This is the reference which the extraction efficiencies of
the photonic crystals is later measured against. The fourth chapter presents the
simulation method which has been developed in this thesis. First the necessary
theory which describes the light extraction process is explained. Later sections
describe, on basis of the physical theory, how numerical simulations are used to
find the desired parameters describing the extraction efficiency. Also the actual
simulations that are performed are presented in this chapter. That is the exact
geometries and the parameters which describe them. In the fourth chapter, the
simulation software which has been used is presented. The usage of the simulation
applied tool and the scripts made for running large series of simulations on several
computers are described. Also much of the post processing code that incorpo-
rates the developed simulation method is presented here. Following is a chapter
that shows an essential subset of the simulation results. Finally a discussion of
the results, their credibility, and suggestions for further work is stated before a
conclusion with regards to the results and the simulation method is drawn.
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Chapter 2

Photonic crystal theory

2.1 Introduction

A photonic crystal is a structure where the refractive index varies periodically in
one, two, or three dimensions as illustrated in Figure 2.1.1. The realization of
such structures could for instance be etched out structures in semiconductor or
dielectric solids. In this case the refractive index will vary between the refractive
index of air and of the employed solid. If desirable, the etched out matter can in
turn be replaced by another material using various techniques.

Figure 2.1.1: Illustration of photonic crystals structures 1.

Photonic crystals can be used for many purposes where the most known is to
create a photonic band gap. That is a periodic structure where light at a certain

1Figure 2.1.1 is from ref. [12]
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2.2 Eigenvalue equation PHOTONIC CRYSTAL THEORY

wavelength range is unable to propagate. One example of this is fiber Bragg
gratings which reflect light within a narrow band. This is an example of a finite
1D photonic crystal where the light within a certain band is unable to propa-
gate in the grating and is instead reflected. Photonic crystals in two and three
dimensions can have similar properties, but they are much more complicated.
The principle of photonic band gap is not really relevant for this thesis and will
therefore not be discussed. Instead the light diffraction in 2D photonic crystals
is primarily the property which is utilized. In order to clarify this phenomenon,
the following sections will describe the relevant theory for light propagation in
photonic crystals. The most important concepts are the scaling properties of the
Maxwell equations and the effect of Bloch symmetry. The theory in chapter 2
will mainly be based on the first three chapters of [12].

2.2 Eigenvalue equation

The basis of light propagation in photonic crystals starts, as for all electromag-
netic problems, with the Maxwell equations which are stated in equations (2.2.1)
through (2.2.4). Although not stated explicitly, the parameters in these equations
are dependent on both time and position.

∇×Et +
∂Bt

∂t
= 0 (2.2.1)

∇×Ht −
∂Dt

∂t
= J t (2.2.2)

∇Dt = ρ (2.2.3)

∇Bt = 0 (2.2.4)

Et Electric field vector
Ht Magnetic field vector
Bt Magnetic flux density
Dt Electric flux density
J t Electric current density
ρ Electric charge per unit volume (space charge)

The following derivation will assume a linear, isotropic, non absorbing, non mag-
netic, source free, but not necessarily homogeneous medium. This will give the
relations stated in equations (2.2.5) to (2.2.8).

4
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Dt = ε0ε (r) Et (2.2.5)

Bt = µ0Et (2.2.6)

J t = 0 (2.2.7)

ρ = 0 (2.2.8)

ε0 Electrical vacuum permittivity (≈ 8.85 · 10−12 F/m)
ε Relative electrical permittivity. The value is dependent on position
µ0 Magnetic vacuum permeability (= 4π · 10−7 H/m)
r Position vector

Only stationary solutions will be considered, which means solutions where the
only time dependence is a complex harmonic oscillation at a certain frequency.
As explained in [12], this does not lead to loss of generality because any solution
can be constructed from a linear combination of harmonic solutions using Fourier
transform techniques. This assumption is stated in mathematical terms for Et
and Ht in equations (2.2.9) and (2.2.10) respectively.

Et (r, t) = E (r) e− jωt (2.2.9)

Ht (r, t) = H (r) e− jωt (2.2.10)

ω Angular frequency.
t Time in seconds.
E (r) Electric field distribution. Includes both amplitude and phase information
H (r) Magnetic field distribution. Includes both amplitude and phase information

Solutions to the Maxwell equations which are of the form of equations (2.2.9) and
(2.2.10) are called eigenmodes, modes, or sometimes states. The field distribution
in the medium is determined by the vector functions E(r) and H(r), and the time
dependence is determined by the ω-factor in the complex exponential function.
Inserting the assumed solutions in equations (2.2.9) and (2.2.10) into the Maxwell
equations and using the assumptions in equation (2.2.5) to (2.2.8), transforms the
Maxwell equations into equations (2.2.11) to (2.2.14). The r-dependence is here
not stated explicitly for the fields.

∇×E = jωµ0H (2.2.11)

∇×H = − jωε0ε (r) E (2.2.12)

∇ (ε(r)E) = 0 (2.2.13)

∇H = 0 (2.2.14)
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As stated in [12], the H-field can be decoupled from the E-field using the following
procedure. Divide equation (2.2.12) by ε (r), and take the curl. Equation (2.2.11)
can now be used to eliminate E. The result is here stated in equation (2.2.15).
Note that the factor 1/(ε0µ0) has been replaced with c2.

∇×

(
1
ε(r)
∇×H

)
=

(
ω

c

)2
H (2.2.15)

c Speed of light in vacuum.

Equation (2.2.15) together with equation (2.2.14), expresses all the requirements
for the H-field for a mode of the structure defined by ε (r). The E-field can
subsequently be found using equation (2.2.12). The left side of equation (2.2.15)
defines an operation on H, and the equation as a whole states that the result of
this operation must be equal to a scaled version of the original H-field. Such an
equation is called an eigenvalue equation because its solutions H are eigenfunc-
tions or eigenmodes of the operation on the left side. This can be stated more
precisely by defining an operator Θ̂, which is defined by equation (2.2.16).

Θ̂V(r) = ∇×

(
1
ε(r)
∇×V(r)

)
(2.2.16)

V(r) Arbitrary vector function.

Using this operator definition, equation (2.2.15) can be expressed as equation
(2.2.17).

Θ̂H =

(
ω

c

)2
H (2.2.17)

The solution to equation (2.2.17) are the eigenfunctions of the operator Θ̂, and

the corresponding eigenvalues are the required value of the factor
(
ω
c

)2
.

2.3 Uniform media

This section will use the theory described in section 2.2 to analyze the electro-
magnetic properties of uniform media. Since these are well known the purpose
is mainly to give a familiar example of the nomenclature and the general theory

6
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in section 2.2. The aim is to better illustrate the differences and similarities be-
tween the analyses of this known structure and more advanced photonic crystal
structures.

Equation (2.2.15) is valid for all possible structures defined by a dielectric constant
ε(r). It is not limited to photonic crystals or any other structure. In particular it
applies to a uniform medium where ε(r) is constant. For such a medium the Θ̂-
operator in equation (2.2.16) simplifies to equation (2.3.1), and equation (2.2.15)
simplifies to equation (2.3.2).

Θ̂V(r) =
1
εr
∇×∇×V(r) (2.3.1)

εr Dielectric constant in uniform medium.

1
εr
∇×∇×H =

(
ω

c

)2
H (2.3.2)

Using appropriate vector identities equation (2.3.2) can be further simplified to
the known Helmholtz equation here stated in equation (2.3.3).

1
εr
∇

2H =

(
ω

c

)2
H (2.3.3)

Solutions which satisfy equation (2.3.3) and (2.2.14) are plane waves which can
be expressed by equation (2.3.4) provided that H0⊥k.

H = H0 e jkr (2.3.4)

H0 Vector constant
k Wave vector

Inserting the assumed solution in equation (2.3.4) into the eigenvalue equation
(2.2.15) verifies the solutions, and gives a relation between the possible eigen-

functions H, and their corresponding eigenvalues
(
ω
c

)2
. This relation is the known

dispersion relation for uniform media here stated in equation (2.3.5).

|k|2

εr
=

(
ω

c

)2
(2.3.5)

A more physical way of describing this result is that the modes of a uniform
medium are plane waves, and have frequencies ω equal to |k|c

√
εr

.
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2.4 Scaling properties

The Θ̂-operator defined in equation (2.2.16) has many useful properties whereof
most are thoroughly described in [12]. This section will describe the scaling prop-
erties because these are of significant importance when interpreting the analysis
which will be described in later chapters. These properties are not related to
a particular structure, and therefore apply for an arbitrary ε(r). As the name
suggests, the property describes the relation between the modes of two structures
which are scaled copies of each other. To find this relation two structures ε1(r)
and ε2(r) are defined such that ε2(r) = ε1(r/s), or equivalently ε2(sr) = ε1(r) .
This means that the structure described by ε2(r) is the structure described by
ε1(r) magnified by a factor s. The eigenvalue equation for ε2(r) is stated in equa-
tion (2.4.1). The spatial dependence of the field is here specified because it is
relevant for the coming derivation.

∇×

(
1

ε2(r)
∇×H2(r)

)
=

(
ω2

c

)2
H2(r) (2.4.1)

The position vector r will be substituted by a primed vector r′ = r
s . To specify

that the differentiation implied by the curl operators is with respect to r′, they
will also be primed. Using regular substitution rules, the primed curl operator
can loosely be said to satisfy the equality ∇×= 1

s∇
′×. This changes equation (2.4.1)

into equation (2.4.2).

1
s
∇′×

(
1

ε2(sr′)
1
s
∇′×H2(sr′)

)
=

(
ω2

c

)2
H2(sr′) (2.4.2)

Recognizing that ε2(sr′) in equation (2.4.2) can be replaced by ε1(r′), and moving
the s-factor to the right side changes the equation into equation (2.4.3).

∇′×

(
1

ε1(r′)
∇′×H2(sr′)

)
=

( sω2

c

)2
H2(sr′) (2.4.3)

Equation (2.4.3) is now of the same form as the eigenvalue equation for the ε1-
structure. This means that the valid solutions for one of the structures is also a
valid solution for the other provided the scaling relations in equations (2.4.4) to
(2.4.6) are used.

ε1(r) = ε2(sr) (2.4.4)

H1(r) = H2(sr) (2.4.5)

ω1 = sω2 (2.4.6)
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PHOTONIC CRYSTAL THEORY 2.5 Waves in periodic media

Ref. [12] mentions that this property is very useful when testing new structures.
They can then be fabricated on a larger scale, and the tests can be done with
low frequency microwaves instead of waves with optical frequencies. This can
substantially ease the fabrication of such test structures since it can be done on
a much larger scale than would be required otherwise. In this thesis the property
will be used the other way around. If a measurement or a simulation can be
performed over a broad frequency spectrum, this can be utilized to obtain a
result for a range of scaling factors. One example is if a result is desired only for
a single wavelength, and for a range of structures that are simple scaled copies
of each other. In such a context, it is desirable to express the length scale of the
desired structure based on the length scale of the tested or simulated structures
and the two wavelengths involved. Based on equation (2.4.4) and (2.4.6) such a
relation can be obtained, and is here stated in equation (2.4.7).

l2 = l1 ·
λ2

λ1
(2.4.7)

l1 Length of arbitrary feature in ε1-structure
l2 Length of corresponding feature in ε2-structure
λ1 Vacuum wavelength of light in ε1-structure
λ2 Vacuum wavelength of light in ε2-structure

According to [12], equation (2.2.15) also has a similar property regarding scaling
of the dielectric constant ε. This is however not relevant for the structure in mind
because it contains air which has an invariable dielectric constant. If this was not
the case, the results might have been relevant also for other materials than what
will be discussed here.

2.5 Waves in periodic media

2.5.1 Periodic media

In the previous sections light propagation has been discussed for media of arbi-
trary form. In this section photonic crystal structures will be the primary topic.
In the beginning of this chapter photonic crystals were defined as structures with
a periodic dielectric constant. Mathematically this can be defined by equation
(2.5.1). The following analyses in this section will assume that ε(r) satisfies this
equation.
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ε(r) = ε(r + `1a1 + `2a2 + `3a3) (2.5.1)

`i Arbitrary integer constants
ai Primitive lattice vectors. These are specific for a particular photonic crystals. (i = 1, 2, 3)

The primitive lattice vectors ai, determine the spatial period and direction of the
periodicity of the structure as illustrated in Figure 2.5.1. When they are equally
long, their length is often denoted as the lattice constant a. For periodicity in one
or two dimensions only one or two lattice vectors are needed. Equation (2.5.1)
can however still be valid if the spare vectors are set to zero. The unit cell is also
a useful notion when dealing with periodic structures. As indicated in Figure
2.5.2, this is a segment which if replicated infinitely in all directions will result in
the entire structure.

Figure 2.5.1: Examples of lattice vectors 2.

2.5.2 Reciprocal space

It is useful to look at the spatial frequencies of the structure ε(r). Its Fourier
transform holds this information, and will here be denoted ε̆(k). Because of the
periodicity of ε(r), ε̆(k) must be zero everywhere except at certain points in k-
space. On these points the function has an infinite value in a way such that a
definite integral over the dot is finite. They are therefore a three dimensional
version of Dirac’s delta function. This concept is just a generalization of the con-
cept that the only frequency components of a periodic function are the function’s

2Figure 2.5.1 is from ref. [12]
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(a) Square grating (b) Hexagonal grating

Figure 2.5.2: Examples of unit cells in two 2D photonic crystal structures. Both the
stippled shapes can represent the unit cell.

actual frequency and its harmonics. Although the value at the different points in
general is different, their placement must according to [12] form a periodic struc-
ture in k-space. This structure is called the reciprocal lattice, and the k-space
is called the reciprocal space. The reciprocal lattice can also be described by
primitive lattice vectors, which are called the reciprocal lattice vectors, and have
the symbol bi. A photonic crystal has the same number of primitive reciprocal
lattice vectors bi as primitive lattice vectors ai. The relation between these is
derived in [12], Appendix B. The result from this derivation is that they must
satisfy equation (2.5.2).

ai · bk = 2πδik (2.5.2)

b j Primitive reciprocal lattice vectors ( j = 1, 2, 3)
δik Kronecker delta function. (1 if i = k, 0 otherwise).

The bi-vectors must be orthogonal to all but one ai-vector and vice versa. If
the ai-vectors are mutually orthogonal like the ones illustrated in Figure 2.5.1,
then the bi-vectors stated by equation (2.5.3) satisfy equation (2.5.2). Here the
bi-vectors are parallel to the ai-vectors, and their lengths are inversely dependent
on each other. Also their units are the inverse of each other.

bi = 2π
ai

ai · ai
(2.5.3)

Figure 2.5.3 illustrates such a structure in two dimensions. The reciprocal lattice
is here calculated from a finite grating using the fft-function in Matlab. This
causes the points in the reciprocal lattice to have a finite width and a finite value.
The actual structures which will be considered in this thesis can all be regarded
as such a rectangular grating, and equation (2.5.3) will therefore be sufficient.
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  a
1

  a
2

(a) Rectangular grating

  b
1

  b
2

(b) Reciprocal lattice of (a)

Figure 2.5.3: Example of a 2D rectangular grating and its reciprocal lattice

2.5.3 Bloch states

To analyze how a periodic medium affects the modes a new operator T̂ai is defined
in equation (2.5.4). It operates on functions of position in space, and shifts the
argument by the lattice vector ai.

T̂ai f (r) = f (r + ai) (2.5.4)

f (r) Arbitrary function of position

Note that when this operator is operated on ε(r) in equation (2.5.1), the result
is by definition equal to ε(r). In equation (2.5.5) this operator is used on the
definition of the Θ̂-operator from equation (2.2.16) when the dielectric constant
is periodic. It is here evident that the two operators commute, which means their
order can be swapped without changing the result.

T̂aiΘ̂H(r) = ∇×

(
1

ε(r + ai)
∇×H(r + ai)

)
= ∇×

(
1
ε(r)
∇×H(r + ai)

)
= Θ̂T̂aiH(r) (2.5.5)

In equation (2.5.6), the T̂ai-operator has been used on equation (2.2.17) together
with the commutative property with the T̂ai-operator.
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T̂aiΘ̂H = T̂ai

(
ω

c

)2
H

Θ̂T̂aiH =

(
ω

c

)2
T̂aiH (2.5.6)

Equation (2.5.6) states that if H are modes of the system, then T̂aiH must also
be modes of the same system. Since both equations (2.5.6) and (2.2.17) are valid
for all modes of the system, then H and T̂aiH must be the same mode. This
again means that one of them can be expressed as a scaled version of the other,
which is expressed in equation (2.5.7).

T̂aiH = αaiH (2.5.7)

αai Arbitrary complex scaling constant

Equation (2.5.7) can be used recursively by applying the T̂ai-operator to it, and
replacing T̂aiH on the right side by αaiH. This means equation (2.5.7) can be
generalized to equation (2.5.8).

(
T̂ai

)l
H = (αai)lH (2.5.8)

l Integer which determines how many ai the r-argument is shifted .

Looking at equation (2.5.8), it is apparent that |αai| = 1 in order to avoid a
diverging field. |αai| is therefore restricted to a pure phase constant. Put in a
different way, the mode field in two neighbouring unit cells must be identical
except for a constant phase shift. Such a field which is a solution of equation
(2.5.7) is shown in equation (2.5.9). Here ukBi(r) is a periodic function which is
unaffected by the T̂ai-operator, and αai = e jkBi bi·r

H = ukBi(r) · e jkBi bi·r (2.5.9)

ukBi (r) Vector function that is periodic with the structure.
bi Primitive reciprocal lattice vector.
kBi Real constant.

The derivation above has taken into account the periodicity in one arbitrary
dimension numbered i. If the same procedure is repeated for the two remaining
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dimensions, then equation (2.5.9) transforms into equation (2.5.10). Here the
three kBi-constants are represented by the vector kB.

H = ukB(r) · e jkB·r (2.5.10)

kB Vector constant (= kB1b1 + kB2b2 + kB3b3)

The fact that the field can be expressed as the product of a plane wave and
a periodic function with the same periodicity as the structure is called Bloch’s
theorem. The solutions H, which have this property in three dimensions are
called Bloch states, and the vector constant here labeled kB is called a Bloch
wave vector. Take note that until now, there is not any limitation to what value
kB can hold, and the function ukB(r) is dependent on this value.

2.5.4 Discrete bands

The previous section showed how the form of the allowed solution must be. This
section will consider the effect this form has on the eigenvalue equation, and find
some relations between the defined parameter kB, and a corresponding eigenvalue,
or frequency ω. For a given value of kB, H from equation (2.5.10), can be inserted
into the eigenvalue equation in equation (2.2.15). Because kB is given, the periodic
function ukB(r) is the only degree of freedom for the H-field. Since this is a periodic
function the only real degree of freedom is within one unit cell of the photonic
crystal. For 3D photonic crystals this unit cell will have a finite volume, and
its modes will be similar to that of cavities. These only have modes at discrete
frequencies. The eigenvalue equation only has solutions for a non continuous
discrete set of eigenvalues or frequencies ω. It is therefore possible to number these
solutions or modes with increasing ω where the mode one has the lowest frequency.
1D and 2D photonic crystals will have the same property if the propagation is in
the line or plane of the crystal. This means that the H-field is constant in the
directions perpendicular to the crystal.

2.5.5 Brillouin zone

In section 2.5.3, there were not any limitations to the values of kB. Although
this is true, it will in this section be shown that it is only necessary to consider
a limited range of kB-vectors. Because ukB in equation (2.5.10) is periodic in
the same way as the structure itself, its Fourier transform consists of distinct
points as discussed in section 2.5.2. The inverse transform is therefore a Fourier
series summing the contribution of all these points. Using this property, equation
(2.5.10) can be expressed as equation (2.5.11).
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H = e jkB·r
∑
m1

∑
m2

∑
m3

ŭkB(m1,m2,m3) e j(m1 b1+m2 b2+m3 b3)·r (2.5.11)

ŭkB Fourier constants for ukB

mi Summing indices (i=1,2,3)
bi Reciprocal lattice vectors of the structure (i=1,2,3)

H in equation (2.5.11) can be inserted into the eigenvalue equation to solve for
an arbitrary value of kB. If a value of kBp = kB0 + pb1 were to be chosen where
p is an integer, then equation (2.5.11) can be written as equation (2.5.12).

H = e j(kB0+pb1)·r
∑
m1

∑
m2

∑
m3

ŭkBp(m1,m2,m3) e j(m1 b1+m2 b2+m3 b3)·r

= e jkB0·r
∑
m1

∑
m2

∑
m3

ŭkBp(m1,m2,m3) e j((m1+p)b1+m2 b2+m3 b3)·r

= e jkB0·r
∑
m1

∑
m2

∑
m3

ŭkBp(m1 − p,m2,m3) e j(m1 b1+m2 b2+m3 b3)·r (2.5.12)

p Arbitrary integer

Although the ŭkBp-constants will be shifted by the integer p, the form of H was
the same as if kB would be chosen to be kB0. H would be able to form the same
functions in both cases. Since insertion into the eigenvalue equation would yield
all solutions in both cases, they would have to be the same solutions. The same
principle would apply if an arbitrary number of any primitive reciprocal lattice
vectors were be added to the kB0-vector. Because of this it is only necessary to
consider kB-vector within the range of one primitive reciprocal lattice vector, or
more precicely; only within one unit cell of the reciprocal lattice of the struc-
ture. This region in the reciprocal space is called the Brillouin zone. Choosing a
kB-vector outside this zone would only yield another way of expressing the same
solutions.

After finding the exact solutions to the eigenvalue equation, the result is a func-
tion which maps kB and the mode number to the field function ukB(r), and a
corresponding frequency ω. Figure 2.5.4 is an example from [12] which shows a
mapping from kB to ω. The scaling properties described in section 2.4 are here
used to properly scale the ω-axis. The structure which the bands in Figure 2.5.4
applies to are illustrated inside the figure as green dielectric rods. The rods have
dielectric constant (ε = 8.9), and the surrounding material has dielectric constant
(ε = 1). Since the structure is a two dimensional photonic crystal, kB has two
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non-zero components, and the plot in figure 2.5.4 should have illustrated a func-
tion of two variables. Instead the figure plots ω along a path in the kB1, kB2-plane.
The most common path to follow for two dimensional square photonic crystals
is the closed path defined by the three corners (0, 0), (|b1| , 0), (|b1| , |b2|) in the
(kB1, kB2)-plane. These corners have the respective symbols Γ, X and M, and are
shown in a small figure inside Figure 2.5.4. The figure shows ω as a function of kB
along this path for two polarizations. According to [12], TE polarization means
that the electric field is perpendicular to the rods in the structure, while TM po-
larization means that the magnetic field is perpendicular to these rods. Note also
that Figure 2.5.4 assumes that the field is constant along the dimension parallel
to the rods in the photonic crystal. This is the dimension perpendicular to the
small figure with green dots inside Figure 2.5.4, and is called the out of plane
dimension.

Figure 2.5.4: Band structure of square grating where the the lattice constant is a. 3

2.5.6 Out of plane propagation

In two dimensional photonic crystals there are modes which are not constant
along the out of plane direction. Because the structure is constant along this
dimension, the variation must according to [12] be a pure phase shift similar to
plane waves in homogeneous media. It is therefore convenient to define a k-vector

3Figure 2.5.4 is from ref. [12]
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which has the non-zero component k3 in the out of plane direction. The index 3
here denotes the out of plane dimension since 1 and 2 denote the two dimensions
which have the photonic crystal periodicity. There is not any Brillouin zone in
this dimension, and k3 can therefore hold any real value. This difference compared
to the kB-components is why it is here defined as an independent vector. Using
this definition, equation (2.5.10) can instead be written as equation (2.5.13).

H = ukB,k(r) · e j(kB+k)·r (2.5.13)

Figure 2.5.5 from [12] illustrates this by plotting ω as a function of both kB and
k3 for a hexagonal photonic crystal. In this figure k3 is labeled kz. Because it is
hexagonal the plotted path in the (kB1, kB2)-plane is here somewhat different than
in Figure 2.5.4. The figure only plots the lowest band, but higher bands should
have a similar pattern of raising ω with increased k3.

Figure 2.5.5: Lowest band with a non-zero out of plane wave vector for a hexagonal
2D photonic crystal. 4

4Figure 2.5.5 is from ref. [12]
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2.6 Mode coupling

Previous sections have discussed the modes of electromagnetic waves in photonic
crystals. This section will consider how such modes can be excited by waves in
homogeneous media, and vice versa. Because two dimensional photonic crystals
are relevant for this thesis, only those will be discussed. More specifically the
structure shown in Figure 2.6.1 will be the basis of the coming discussion. Here
an arbitrary semi infinite photonic crystal is next to a homogeneous material
with dielectric constant εh. Although it will not be directly utilized here, this
structure actually satisfies the periodic media equation in equation (2.5.1) for
two dimensions.

ε
h

PC

x

z

y

Figure 2.6.1: Infinite layer of 2D photonic crystal bounded by uniform media at the
top and bottom.

Bienstman presents in [3] a coupled mode theory which gives quantitative precise
measures of how this coupling occurs. This is however very complex, and not
really necessary for the work which will be presented here. Instead this section
will be used to find the modes which can couple to each other, while not finding
quantitative measures of how good this coupling is. The basis of the coupled
mode theory are the boundary conditions imposed by the Maxwell equations.
These require some sort of continuity across the interface between the photonic
crystal and the homogeneous media. In particular these all require that the scalar
fields of the modes are not orthogonal on the interface. In mathematical terms
this means that 〈HPC,Hh〉 in equation (2.6.1) must be non-zero. Here ∗ denotes
complex conjugation. The equation is also a very common definition of an inner
product of two scalar functions on the inferface plane.

〈HPC,Hh〉 =

∫
Inter f ace

H∗PC(r) · Hh(r)dA (2.6.1)

HPC Scalar magnetic mode field in the photonic crystal
Hh Scalar magnetic mode field in the homogeneous media

Using a two dimensional version of equation (2.5.11) for HPC and the plane wave
solution in equation (2.3.4) for Hh, equation (2.6.1) transforms into equation
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(2.6.2). Note that the vector scaling constant H0 in equation (2.3.4) has been
omitted as it does not affect the form of the mode. The coordinate system
indicated in Figure 2.6.1 has been used. The integral is performed on the interface
between the two media which is a plane parallel to the xy-plane. Note that since
the photonic crystal is two dimensional in the xy-plane, the primitive reciprocal
lattice vectors b1 and b2 must also be in this plane.

〈HPC,Hh〉 =

∞∫
x=−∞

∞∫
y=−∞

e− jkB·r
∑
m1

∑
m2

ŭkB(m1,m2) e− j(m1 b1+m2 b2)·r · e jk·rdA

=
∑
m1

∑
m2

ŭkB(m1,m2) ekzz

∞∫
x=−∞

∞∫
y=−∞

e j(kxy−kB−m1 b1−m2 b2)·rdA (2.6.2)

r Position in space (= xx̂ + yŷ + z ẑ) where x̂ is the unit vector in the x-direction
kz Component of k which is in the z-direction
kxy Component of k which is in the xy-plane.

For the result of equation (2.6.2) to be non-zero, the integral must be non-zero
for at least one term in the double sum. From Fourier analysis it is known
that such an integral can only be non-zero if the vector sum in the exponential
function is zero. Otherwise the integrand will oscillate over the integration plane
resulting in an average value of zero. Another way of putting this requirement is
that expressed in equation (2.6.3). The difference between the k-vector projection
on the interface plane and the kB-vector of the photonic crystal mode must be a
reciprocal lattice vector. That is a vector composed of an integer amount of each
primitive reciprocal lattice vector.

kxy − kB = m1b1 + m2b2 (2.6.3)

The actual shape of the u-function can cause some of its Fourier coefficients
ŭkB(m1,m2) to be zero and therefore impose additional limits to the coupling. Also
the polarization of the modes can cause additional constraints on the coupling.
However to find these the exact mode fields of the photonic crystal must be found,
and an exact coupled mode theory as that described by Bienstman [3] must be
used.
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Chapter 3

LED

The purpose of the photonic crystal described in this thesis is to increase the
external quantum efficiency of a LED. The fabrication of the LED structure had
been done by Tron Arne Nilsen before the work described in this thesis started.
The LED and its principle of operation, will therefore only be shortly presented
here. The optical properties which in turn will affect the performance of the
photonic crystal will however be analyzed in more detail.

3.1 General LED theory

A pn-junction forming a diode is illustrated in Figure 3.1.1. Here two separate
parts of a single semiconductor crystal have different doping types [23]. Because of
the high differences in hole and electron concentrations in the two parts, positive
holes will diffuse to the n-side and negative electrons will diffuse to the p-side.
This transfer of charge causes a buildup of space charge in a region very close to
the interface between the two doping types. The charge causes again an electrical
field which counteracts the diffusion current. In thermal equilibrium the net
current is therefore zero, and the band diagram [23] looks like Figure 3.1.2. The
region with space charge is called the depletion zone because it does not contain
any free charge carriers. In Figure 3.1.2 the depletion zone can be identified as
the region where the band diagrams have a slope.

p n

Figure 3.1.1: Regular pn-junction

If an external voltage source applies a positive voltage to the p-side, the counter-
acting electric field will decrease, causing a net diffusion current. Charge carriers
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Ecn

Evp

EFp

Ecp

Figure 3.1.2: Band edges for valence and conduction band on p and n-side. Dotted
line is Fermi level

can then move across the junction and later recombine [23] on the other side.
This recombination releases energy as the charge carriers shift to a lower state.
If the bandgap in the semiconductor is a a direct gap, meaning the electrons can
change energy state without changing their momentum [23], the released energy
can be in the form of electromagnetic radiation. The released energy is equal
to the bandgap of the semiconductor and decides the wavelength of the emitted
radiation through Eq. (3.1.1)

λ =
ch
Eg

(3.1.1)

λ wavelength in vacuum
c Speed of light
h Planck’s constant
Eg Bandgap energy Ec − Ev in Figure 3.1.2

3.2 LED structure

The actual LED which is the topic of this thesis consists of several layers grown
on a gallium antimonide (GaSb) substrate, and is illustrated in Figure 3.2.1. The
substrate itself is n-doped and the first grown layer is also n-doped GaSb. The
purpose of this layer is to set the doping levels to a desired value and to get a better
crystal quality in the active region of the LED. Next is the transition between the
n and p-doped side of the crystal. This boundary is the pn junction, and it is here
the charge carriers will move across and into the side of opposite doping when
an external voltage is applied. The lowest and first p-doped layer is composed of
gallium indium antimonide (Ga0.925In0.075Sb). Here the indices indicate that 7.5%
of the gallium in GaSb, measured in mole, is replaced by indium. Above there is
a p-doped layer of GaSb where the doping concentration is gradually decreased
as illustrated in Figure 3.2.1. The indium in the lowest p-doped layer causes a
slight narrowing of the bandgap, and the injected electrons will therefore need to
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pass an energy barrier to reach the higher layers with pure GaSb. This causes
a slight confinement of minority carriers [23], but a significant amount are still
able to diffuse into the higher layer. The different doping concentrations in the
graded layer also have a similar effect. According to [22], there is an increased
narrowing of the bandgap with increased doping, causing each sub layer to have a
small confinement of electrons. Another apparent effect of non uniform bandgap
is that the light emitted from the different regions will have a correspondingly
different wavelength. The effects of this will however not be considered here
since the width of each layers’ emission spectrum is believed broader than the
wavelength spread due to different doping. The top layer is made of intrinsic GaSb
forming an insulator. As illustrated in Figure 3.2.1, a hole must be etched in this
intrisic layer for the p-side metal contact. It is in this layer the photonic crystal
is supposed to be etched out. Since it typically will be made by etching out holes
in the material, it is beneficial to keep it away from the emitting regions. The
alternative would lead to a net decrease of emitting material, and a possibility of
undesired recombination caused by surface effects.

GaSb

GaSb

Ga In Sb0.925 .0750

GaSb

GaSb

graded p-doping

5e19    p-doping

~3e17  n-doping

2e18    n-doping

{{1µm

{{1µm

{{
{100nm

substrate

intrinsic

p-side
metal

contact

2e18 } 300nm

3e18 } 200nm

6e18 } 200nm

2e19 } 150nm

5e19 } 150nm

graded p-doping
composition

1.9µm

Figure 3.2.1: Different crystal layers and corresponding doping. The doping concen-
trations are measured in cm−3

The combined emission spectrum from all layers is shown in Figure 3.2.2. The
main peak at 0.7eV is most probably generated in the pure GaSb layers, and the
smaller shoulder around 0.65eV is generated in the In-containing layer.

Figure 3.2.3 shows the structure of the LED after all processing steps are done.
On the top one can see the intrinsic top layer shown in Figure 3.2.1. This is
where the light is able to couple out of the device . The p-side contact surrounds
this window and has an extended area for wire bonding. The n-side contact is
not visible in Figure 3.2.3 as it is on the bottom side of the substrate. Outside
the contact the layers shown in Figure 3.2.1 are etched away such that charge
carriers in the p-layers are confined to the LED. This etched surface has also been
passivated by a layer of insulating silicon nitride which has been deposited. This
prevents currents from flowing along this surface effectively shorting the LED.
Figure 3.2.3 also indicates a coordinate system. This defines the directions used
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Figure 3.2.2: Meassured emission spectrum from the LED. The measurement is done
by Tron Arne Nilsen using an FTIR spectrometer.

throughout this thesis.

Figure 3.2.3: Illustration of the LED structure

3.3 Internal radiation distribution

3.3.1 General

The first step towards determining the radiation exiting the device is to deter-
mine the properties of the emitted radiation inside the semiconductor. More
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precisely, it is necessary with an angular power density function valid just below
the interface between the topmost p-doped layer and the intrinsic layer in Figure
3.2.1. Such a function is expected to vary across the emission spectrum of the
LED shown in Figure 3.2.2. For simplicity the coming analysis will only consider
two points in this spectrum. These are the main peak at 0.7eV and the small
shoulder at 0.65eV. The following analysis will primarily rely on two assumptions
which are:

• Each volume element in the emitting region of the semiconductor will emit
isotropically.

• Light moving downwards in the substrate will be absorbed before returning
to the top side after reflecting on the bottom side. The light emitted in
the downwards direction will therefore not contribute to the power density
function which is to be constructed. Also light that is reflected downwards
by the top surface will be considered lost.

3.3.2 Distribution function

Radiometric units such as radiance or radiant intensity would usually be the
preferred quantities for these analyses. Due to the chosen simulation method
that will be described in a later chapter, it will in this case be better with a
power density function in the two transversal wave vector components kx and ky.
Using the notation of [4] and the principles of fourier optics [20] these variables are
related to the spherical angles θ and φ in the far field radiation pattern. The far
field radiation pattern is a function of θ and φ which measures the power density
per unit solid angle at a distance that is significantly larger than the width of
the LED. In general the distance should be even bigger, but since the LED is
not expected to have any significant spatial coherence, the requirement can be
relaxed. It is definetly worth mentioning that the radiation pattern discussed
here is not what one would expect to find by measuring the emitted light from
the physical LED at different angles. Since the goal is to find the radiation
distribution inside the LED, the effect of the semiconductor to air interface must
be omitted. This means that the structure to evaluate must be the actual LED
surrounded by a material of the same refractive index as the LED itself. The
transversal wave vector components of light traveling at an angle described by
θ and φ are stated in equations (3.3.1) and (3.3.2). Using these equations it is
possible to relate the far field radiation pattern to a power density function in kx

and ky.
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kx = kT cos(φ) = k sin(θ) cos(φ) (3.3.1)

ky = kT sin(φ) = k sin(θ) sin(φ) (3.3.2)

kx, ky Wave vector components

kT Transversal component of wave vector
√

k2
x + k2

y

k Medium dependent wave number (n · k0)
θ Angle from z-axis
φ Angle from x-axis in the xy-plane

When changing the variables of a power density function the power obtained by
integrating over parts of the domain, must be preserved. For example the total
power emitted is the integral of the radiation pattern over the upper hemisphere,
and is stated in equation (3.3.3)

P =

∫
U pper

hemisphere

I(θ, φ)dΩ =

∫ 2π

φ=0

∫ π
2

θ=0
I(θ, φ) sin θdθdφ (3.3.3)

P Total power
dΩ Differential solid angle
I (θ, φ) Power density per unit solid angle in the far field

An identical value for P should be obtained by integrating the power density
function in kx and ky, Ik, over all possible kx and ky. The possible kx and ky are

limited by the fact that the total transversal k vector component,
√

k2
x + k2

y , must

be less than k. The integration area will therefore be a surface in the kx ky-plane
limited by a circle with center in the origin and radius k. This is stated in equation
(3.3.4).

P =

∫
k2

x+k2
y<k2

Ik(kx, ky)dkxdky (3.3.4)

To accommodate the mentioned requirement, the power density function must
according to [5] be scaled with the Jacobian determinant. Equation (3.3.5) states
this requirement when changing from a density in kx and ky to one in θ and φ.

dP = Ik(kx, ky) dkxdky = Ik

(
kx(θ, φ), ky(θ, φ)

)
|JT | dθdφ (3.3.5)

Ik Power density function in kx, ky

|JT | Jacobian determinant

The Jacobian determinant is given by equation (3.3.6)
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|JT | =

∣∣∣∣∣∣∂(kx, ky)
∂(θ, φ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∂kx
∂θ

∂kx
∂φ

∂ky

∂θ

∂ky

∂φ

∣∣∣∣∣∣∣ = k2 cos(θ) sin(θ) (3.3.6)

Ik Power density function in kx, ky

|JT | Jacobian determinant

Inserting equation (3.3.6) into (3.3.5) and recognizing the factor sin(θ)dθdφ as dΩ

transforms equation (3.3.5) into equation (3.3.7)

dP = k2 Ik

(
kx(θ, φ), ky(θ, φ)

)
cos(θ)︸                                 ︷︷                                 ︸

I(θ,φ)

dΩ (3.3.7)

Recognizing the power density per unit solid angle in the far field from equation
(3.3.7) and expressing θ and φ as functions of kx and ky, gives the relation between
the two power density functions expressed in equation (3.3.8)

Ik

(
kx, ky

)
=

1

k2 cos
(
θ(kx, ky)

) I
(
θ(kx, ky), φ(kx, ky)

)
=

1

k2

√
1 − k2

x+k2
y

k2

I
(
θ(kx, ky), φ(kx, ky)

)
(3.3.8)

Because of equation (3.3.8), it is possible to construct a power density function
for the far field, and subsequently transform it to apply to the transversal wave
vector components. The following sections will describe the formation of such
a radiation pattern. The effect shaping the function and the needed material
parameters will first be described before a proper radiation pattern is presented.

3.3.3 Absorption

The material interacts with the light mainly through spontaneous emission and
absorption. The most simple model to analyze is a thick layer of light emitting
material where each volume element emits isotropically. In this context a thick
layer means that the thickness is much larger than the penetration depth of the
light. Penetration depth is here defined as the length in which the irradiance of
a plane wave has fallen to e−1. This is the inverse of the absorption coefficient
α used in [20]. This finite absorption will influence the angular distribution of
the radiation because oblique rays will have a longer path length in the material
than perpendicular rays. The light originating from a depth δ in the emitting
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layer, and propagating at an angle θ to the face normal will have an optical
path length in the layer equal to δ/ cos θ. This corresponds to an attenuation
of e−αδ/ cos θ. Figure 3.3.1 illustrates such a beam path. The radiation pattern
can then be constructed by integrating the contribution to optical power of all
volume elements in the emitting layer. The assumption that the penetration
depth is significantly less than the layer thickness allows integration of δ from
zero to infinity. The result is, as shown in equation (3.3.9), the familiar cosine
distribution.

Non emitting
and non
absorbing
material

Emitting and
absorbing
material

z

δ

P

θ

δ/cosθ

Beam
path

Figure 3.3.1: Beam path of light emitted at a point P, and traveling at an angle θ.

I(θ, φ) =

∫
LED

Ue−αδ/ cos θdV = UALED

∫ ∞

δ=0
e−αδ/ cos θdδ

=
UALED

α
cos θ (3.3.9)

U Generated optical power per unit volume
α Optical absorption coefficient. (Inverse of penetration depth)
ALED Area of the LED surface

Several of the assumptions that equation (3.3.9) are based on, are indeed not
necessarily fulfilled by the physical structure. The most apparent being that
the penetration depth probably is not much smaller than the overall thickness
of the emitting layer. According to [21], the penetration depth of most direct
gap semiconductors is around 1µm for wavelengths with a photon energy that is
higher than the bandgap. This value must at best be considered an indication
of what order of magnitude to expect. Measured or calculated values for the
material compositions and doping levels used are not available in the literature.
In addition the emitted light has a photon energy very close to the bandgap
of the material, meaning the absorption coefficients of the different layers will
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vary significantly over the emission spectrum of the LED. To make matters even
more complicated the different layers contribute to different parts of the emission
spectrum, meaning that both the beam paths and absorption coefficients are
dependent on wavelength. A final complication is that the layers also generate a
different amount of optical power per unit volume. This is both because of varying
minority carrier concentrations and because the layers have different radiative
recombination rates [21]. The following sections will address these issues with
regard to the structure in mind. However, since exact parameters are not known,
the resulting conclusion should be considered preliminary.

Effect of finite thickness

The effect of final thickness of the emitting layer is easily determined by narrowing
the limits of the integral in equation (3.3.9). Equation (3.3.10) shows this with a
layer thickness t.

I(θ, φ) = UALED

∫ t

δ=0
e−αδ/ cos θdδ

=
UALED

α

(
1 − e−αt/cosθ

)
cos θ (3.3.10)

t Thickness of light emitting layer

Figure 3.3.2 plots equation (3.3.10) for different values of αt. Note that it is only
the angular variations that are of interest in this context. The plots in Figure
3.3.2 are therefore normalized to the maximum value, excluding the effect of the
1/α-factor in equation (3.3.10).

The effect of a thinner emitting layer looks apparent from the plots in figure 3.3.2.
Although the power density still goes to zero as θ approaches π/2, the curves are
more constant in the area around θ = 0. A physical reason for this effect is that
absorption plays a less significant role as long as the effective beam path is less
then the penetration depth. As a result the power density does not start decaying
until θ reaches a value where the beam path length is equal to the penetration
depth.

Effect of absorbing cap layer

As mentioned the different layers in figure 3.2.1 emit at slightly different wave-
lengths. Because of this, it is not correct to consider all layers as a block of
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Figure 3.3.2: Normalized plots of equation (3.3.10) showing the angular distribution
for a finitely thick emitting layer.

emitting material. When treating each wavelength independently, there will typ-
ically be one or some layers contributing to emission as characterized by equation
(3.3.10). There will however be layers above not contributing much to emission,
but still affecting the radiation due to their absorption. Therefore it is necessary
to take into account the effect of an absorbing layer on top of the emitting layer.
This can be done very easily by adding a θ dependent absorption factor to equa-
tion (3.3.10). Equation (3.3.11) states the results, and Figure 3.3.3 shows three
different plots illustrating the effect.

I(θ, φ) =
UALED

α

(
1 − e−αt/ cos θ

)
e−αctc/ cos θ cos θ (3.3.11)

αc Absorption coefficient in cap layer
tc Thickness of cap layer

The plots in Figure 3.3.3 show the angular distribution when an absorbing cap
layer is added on top of the emitting layer. The product αctc is for each plot set
to the same as αt, for example illustrating a cap layer with the same thickness
and absorption as the emitting layer, or twice the thickness and half the absorp-
tion. The main difference from Figure 3.3.2 is a less flat curve because the net
absorption is larger and therefore shapes the curve more. Another distinct dif-
ference is the rapid exponential decay when θ approaches 90◦ which comes from
the exponential nature of this absorption.
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Figure 3.3.3: Normalized plots of equation (3.3.11) showing the angular distribution
when an absorbing cap layer is added to the emitting layer. αctc is for
each plot, set to the same value as αt

3.3.4 Absorption coefficient

p-doped layers

From section 3.3.3 it is evident that the absorption coefficient is critical for the
angular power density. It is therefore important to get a good estimate of it.
Measurements of the absorption coefficient made by Iluridze et. al. [10] in p-
doped GaSb cooled to 77K is shown for four different doping concentrations in
Figure 3.3.4.

The doping levels in Figure 3.3.4 can, with some interpolation give a reasonable
estimate of the absorption coefficients in the graded p-doped region illustrated
in Figure 3.2.1. Because the use of the LED most probably will be in temper-
ated environments, it is of much greater interest to find an absorption coefficient
valid for room temperature. Such measurements with both the desired doping
levels and the desired temperature have not been found, but Becker et. al. [2]
have performed measurements of lightly p-doped GaSb in both 77K and 300K
environments. These measurements are illustrated in Figure 3.3.5.

It is clear from Figure 3.3.5 that the increased temperature causes shift in the
absorption spectrum toward lower photon energies. Applying a similar shift for
the absorption spectra in figure 3.3.4 might give an indication to the real ab-
sorption coefficients to expect for room temperature. This must however only be
considered as a vague estimate since the effect of temperature might be signif-
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Figure 3.3.4: Absorption coefficient measured by Iluridze et. al. [10] for four differ-
ent p type doping concentrations. The measurements are done with a
temperature of 77K.

icantly different for the different doping concentrations. Figure 3.3.6 illustrates
these shifted absorption spectra and an overlay of the emission spectrum of the
LED. Beware that the emission spectrum is plotted as if the y axis was a linear
scale.

Another approach would be to consider band gap narrowing as a function for
doping concentrations, and to shift the curve for 300K in Figure 3.3.5 accordingly.
Stollwerck et al have in [22] cited values calculated by Jain et al [11] for the
bandgap narrowing. According to Stollwerck et al these values correspond well
to measurements done by Titkov et al [24] and Hjelt et al [9]. The calculated
function is illustrated in Figure 3.3.7.

Shifting the absorption curve for 300K in Figure 3.3.5 for the same doping con-
centrations as in Figure 3.3.4 results in the absorption spectra illustrated in figure
3.3.8.

The differences between the absorption spectra in Figure 3.3.8 and Figure 3.3.6
are very significant, and indicate that finding the real absorption coefficient is a
much more complicated process than any of the two approaches discussed here.
As indicated by Figure 3.3.3, the absorption coefficient does noticeably affect the
radiation pattern. Finding it exactly will however require transmission measure-
ments on epitaxially grown layers with the desired doping concentrations. Since
this would be much too time consuming and costly, and really not within the
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Figure 3.3.5: Absorption coefficient measured by Becker et al [2] for low doping con-
centration (1.2 · 1017). The measurements are done with a temperature
of 77K and 300K.

scope of this thesis, such work has not been done here. Instead the analysis must
rely on the assumed absorption spectra in Figure 3.3.6 and 3.3.8. It is believed
that the shifted measurements by Iluridze et al in Figure 3.3.6 are somewhat
more accurate. This is because it only assumes that the deformation of the ab-
sorption curve due to doping is equal for 77K and 300K. The alternative assumes
no deformation for 300K despite measured deformation for 77K. Since the first
seems to be more reasonable, it will be the main assumption for estimating the
absorption coefficient. This assumption can be divided into two more precise
assumptions. The first being that the shift in photon energy caused by increased
temperature is equal despite different doping concentrations. The second being
that the increased temperature does not deform the absorption curve, the only ef-
fect being the assumed shift. Ghezzi et al [8] have done measurements on n-doped
GaSb which show an increased temperature dependence with increasing doping
concentration. These measurements are shown in Figure 3.3.9, but only cover
the part of the absorption spectrum where the absorption coefficient is larger
than 1000cm−1. In addition n-doping does not necessarily cause the same effects
as p-doping. In absence of any definite absorption coefficient, the spectrum in
Figure 3.3.6 will here be the basis of the coming discussions. It must however be
clear that this can introduce a notable source of error.
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Figure 3.3.6: The absorption spectra from Figure 3.3.4 shifted 80meV. The LED
emission spectrum is plotted as if the scale was linear to make it resem-
ble Figure 3.2.2

The green curve in Figure 3.3.6 applies for a doping concentration of 3.0·1019cm−3,
and the blue for a doping concentration of 1.8 · 1019cm−3. Since the two lowest
layers of p-doped GaSb in Figure 3.2.1 have a similar doping concentration, an
absorption coefficient of 1000cm−1 will be assumed for these layers for the light
generated within them. The three layers above have lower doping concentrations
and correspond best to the black curve in figure 3.3.6. These layers will work as a
cap layer for the light emitted below, and has an assumed absorption coefficient
of 300cm−1 for the light emitted from the lowest p-doped layers. Estimating the
absorption spectrum for the p-doped layers containing indium is also difficult.
It is however not unreasonable to believe that the absorption coefficient for the
light emitted here is the same as the absorption coefficient in the highly p-doped
layers for the light emitted there. As it is believed that the indium containing
layer emits at a photon energy of approximately 0.65eV, the two lowest p-doped
GaSb layers will work as a cap layer with an absorption coefficient of 400cm−1

according to Figure 3.3.6. The absorption in the higher levels is assumed too
small to make a significant difference for this light. To improve the overview over
these absorption coefficients, Table 3.3.1 lists them for the different layers.
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Figure 3.3.7: Band gap narrowing as a function of doping concentration. The curve
is calculated by Jain et al [11]

n-doped layers

The n-doped layers below the pn junction are somewhat more difficult. Mainly
because it is difficult to know the wavelength of the light emitted from the two
layers. It will in the following, be assumed that the emission from these layers also
is centered around the peak in the emission spectrum shown in Figure 3.2.2. As
mentioned Ghezzi et al [8] have done measurements here shown in Figure 3.3.9,
of the absorption coefficient in n-doped GaSb. These are however only presented
for the photon energy spectrum between 0.73eV and 0.86eV which only touches
the emission spectrum of the LED. Using extrapolation, a value of approximately
500cm−1 is estimated for the grown layer, and a value of approximately 200cm−1 is
estimated for the substrate. This has been done while expecting a turning point
in the graph around a value of 1000cm−1 This is similar to the measurements on
p-doped GaSb shown in Figure 3.3.5. The absorption coefficients discussed here
are also listed in Table 3.3.1 in the rows for the n-doped layers.
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Figure 3.3.8: The absorption spectrum from Figure 3.3.5 shifted in photon energy by
values for band gap narrowing in figure 3.3.7. The different plots are for
different p-type doping concentrations. The LED emission spectrum is
plotted as if the scale was linear to make it resemble Figure 3.2.2

Table 3.3.1: Absorption coefficients for different layers

Layer doping cm−3 α @ 0.65eV [cm−1] α @ 0.7eV [cm−1] Thickness [µm]

GaSb p = 2 · 1018 0 300 0.3
GaSb p = 3 · 1018 0 300 0.2
GaSb p = 6 · 1018 0 300 0.2
GaSb p = 2 · 1019 400 1000 0.15
GaSb p = 5 · 1019 400 1000 0.15

GaInSb p = 5 · 1018 1000 1000 0.1
GaSb n = 2 · 1018 - 500 1.9
GaSb n = 3 · 1017 - 200 500
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Figure 3.3.9: Absorption coefficient of n-doped GaSb measured by Ghezzi et al
[8].The doping concentrations measured in cm−3 are as follows: #105:
p = 2.9 · 1016, #87: n = 8.0 · 1015, #92: n = 1.4 · 1017, #90: n = 6.4 · 1017,
#84: n = 7.6 · 1017
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3.3.5 Emission distribution

In section 3.3.4 the absorption coefficients for the different layers have been stated
for two points in the emission spectra. For the light with a photon energy of
0.65eV this is sufficient for calculating a radiation pattern based on the absorption
in the emitting material and the above layers. Because there are several layers
emitting light with a photon energy of 0.7eV, it is a somewhat more difficult
task to calculate its radiation pattern. The contribution to the total radiation
pattern from each of these layers, must be scaled properly with a measure of
their emission rate. Mathematically this must be done by finding relative values
for the U parameter in equations (3.3.9), (3.3.10), and (3.3.11). This parameter
expresses light generation per unit volume of the emitting material. A quantity
that is proportional to U is the spontaneous emission rate Rspon given by equation
(3.3.12) [21] for p-doped layers. The equivalent expression for n-doped layers can
be found by replacing all n symbols by p and vice versa.

Rspon =
∆n
τr
≈

n
τr

(3.3.12)

Rspon Photon emission rate per volume
τr Minority carrier radiative lifetime
∆np Excess electron density in p-doped material
np Electron density in p-doped material

As stated by equation (3.3.12), this requires values for radiative lifetime for the
different layers, and a minority carrier distribution (np and pn) for the doped
layers. Take note that the indices of the minority carrier symbols indicate on
which side of the junction they apply for (n or p), and the symbol itself indicates
whether it is an electron or hole concentration.

Minority carrier injection

The first step towards finding the minority carrier concentrations for the different
layers in Figure 3.2.1 is to find relative numbers for the amount of holes injected
into the n-doped region, and of electrons injected into the p-doped region. The
minority carriers are injected through the pn junction from the side of opposite
doping. According to [23], the minority carrier concentration at the edge of
the depletion zone for a normal diode is determined by the potential difference
between the p and n-side and the majority carrier concentration on the opposite
side. Equations (3.3.13) and (3.3.14) state this when the doping concentrations
are much greater than the intrinsic carrier concentrations, and when all doping
atoms are ionized to form majority carriers.
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np(0) = Nde
−q(V0−V)

kT (3.3.13)

pn(0) = Nae
−q(V0−V)

kT (3.3.14)

np(0) Electron concentration on the p-side at the edge of the depletion zone
np(0) Hole concentration on the n-side at the edge of the depletion zone
Nd Doping concentration on n-side
Na Doping concentration on p-side
q Elementary charge
V0 Built in contact potential for the pn junction [23]
V Applied external voltage
k Boltzmann constant
T Temperature in Kelvin

Equations (3.3.13) and (3.3.14) give the concentrations of charge carriers at the
edges of the depletion zone. More precisely they take into account the diffusion
mechanisms through a short potential barrier. Short means here that the recom-
bination rate within the depletion zone is negligible. The actual pn junction is
between the n-doped layer and the indium containing p-doped layer. This would
usually lead to complications because the two layers have a different bandgap.
Such an asymmetry causes the diffusion barrier due to the depletion zone to be
different for electrons and holes. In this case the electron diffusion would be
increased at the expense of the hole diffusion. The electrons diffusing into the
p-doped layers will however have to overcome an equivalent barrier when diffus-
ing from the indium containing layer to the p-doped pure GaSb layers. For the
emission in the pure GaSb containing layers this means that the effect of smaller
bandgap in the indium containing layer is eliminated. In a sense the bandgap is
equal on both sides of the barrier if it is considered to start at the depletion zone
and extend all the way to the p-doped pure GaSb layers. This would however
challenge the mentioned criterion that the barrier must be short for equation
(3.3.13) and (3.3.14) to be valid. The pn junction will because of this be treated
as if the barrier is equal for both holes and electrons. The only error introduced
by this method is a too low electron concentration in the indium containing layer.
As mentioned at the start of this section, the amount of emission in this layer
does not need to be comparable to the other regions because it emits at another
wavelength.

Only a relative measure of the hole to the electron concentrations is needed in this
context. The common factors in equations (3.3.13) and (3.3.14) can therefore be
contained in a single constant. Using the doping concentrations in Figure 3.2.1
therefore gives the relative numerical values for the minority carrier concentra-
tions stated in equations (3.3.15) and (3.3.16).
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np(0) ≈ 1 · K1 (3.3.15)

pn(0) ≈ 25 · K1 (3.3.16)

K1 Constant containing all the common factors in equation (3.3.13) and (3.3.14)

Diffusion

The next step is to find out how the minority charge is transported away from the
pn junction and, how it is distributed over the layers in figure 3.2.1. In a uniform
medium which extends far beyond the pn junction, this process is, according to
[23], characterized by the diffusion length Lp for holes and Ln for electrons. The
minority carrier concentration will then decay exponentially in the same way light
does in an absorbing medium. For example the hole concentration in a n-doped
region will decay as e−x/Lp when x is the distance to the edge of the depletion
region. The requirement for this to be true is that the semiconductor medium
extends several diffusion lengths from the pn junction. If this is not true, and the
semiconductor is instead terminated by a metal contact at a distance smaller than
the diffusion length, the distribution is somewhat different. The metal contact
will pin the minority carrier concentration to zero, and it will linearly increase
toward the pn junction where it is given by equations (3.3.13) and (3.3.14). This
is believed to be the situation on the p-doped side under the metal contacts.
When instead the semiconductor medium is terminated by an insulator at a dis-
tance significantly smaller than the diffusion length, the concentration gradient
is expected to fall in comparison to the situation where it decays exponentially.
This is expected to be the situation on the p-side where the surface is not covered
by metal contacts, and a constant minority carrier concentration will therefore
be assumed.

Finding out which regime to use for the different layers requires the diffusion
lengths Lp and Ln. According to [23] these can be found using their definition
and the Einstein relation. The resulting expression for electrons (Ln) is given by
equation 3.3.17. The equivalent expression for holes can be found by changing
all n-indices to p.

Ln =

√
µnτnkT

q
(3.3.17)

Ln Electron diffusion length
µn Electron mobility [23]
τn Electron lifetime in p-doped material
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Mobility

The mobility is a parameter which gives the speed of a charge carrier when sub-
jected to an electric field. This is according to [23] dependent on both doping
and temperature, but that doping loses its relevance at high temperatures. Mea-
surements done by Mathur et al [15] suggest that a value of 2500 cm2

Vs would be
reasonable for the electron mobility for all pure GaSb layers at room temperature.
The same value will also be assumed for the indium containing layer since this
is heavily dominated by GaSb. Ref. [26] has collected measurements of the hole
mobility at room temperature from four sources. According to these measure-
ments, the mobility is 430 cm2

Vs at a doping concentration of 2 · 1018 and 610 cm2

Vs at
a doping concentration of 3 · 1017.

Carrier lifetime

The carrier lifetime is also needed in equation (3.3.17). This parameter expresses
the mean time a minority carrier exists before it recombines with a majority
carrier. This process can emit radiation, but there are also other non radiative
sources of recombination. In this context the total lifetime is interesting. Stollw-
erck et al [22] have calculated the different lifetimes for both holes and electrons
at room temperature. The electron lifetimes are shown in Figure 3.3.10, and the
hole lifetimes are shown in Figure 3.3.11.

Table 3.3.2: Minority carrier diffusion length for different layers

Layer doping [cm−3] Diffusion length Ln/p [µm] Thickness [µm]

GaSb p = 2 · 1018 4.7 0.3
GaSb p = 3 · 1018 4.0 0.2
GaSb p = 6 · 1018 2.8 0.2
GaSb p = 2 · 1019 1.3 0.15
GaSb p = 5 · 1019 0.62 0.15

GaInSb p = 5 · 1018 0.62 0.1
GaSb n = 2 · 1018 6 1.9
GaSb n = 3 · 1017 13 500
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Figure 3.3.10: Calculated electron lifetime as a function of p-doping concentration.
Calculations are performed by Stollwerck et al [22]
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Figure 3.3.11: Calculated hole lifetime as a function of n-doping concentration. Cal-
culations are performed by Stollwerck et al [22]
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Diffusion lengths

Using the stated mobilities and carrier lifetimes, the diffusion lengths of the differ-
ent layers are calculated using equation (3.3.17). The resulting values are stated
in Table 3.3.2. The diffusion length in all grown layers is larger than the layer
thicknesses. As discussed in a previous section, this causes a constant minority
carrier concentration across the layers. Also the fact that the p-doped layers end
with an intrinsic layer can lead to a more constant distribution than one would
normally assume for an unbounded p-doped layer. This can be assumed since the
intrinsic layer will act as a barrier and thereby cause pooling, or poor drainage, of
the minority charge carriers. The n-doped side is on the other hand not bounded,
and an exponential decay from the pn junction should be assumed. For simplicity,
it will however be assumed that the minority charge concentration is constant to
a depth of one diffusion length, and zero deeper into the substrate. The diffusion
lengths for the grown layer and the substrate are in the same order of magnitude,
and the value for the substrate will be chosen in this context since most of the
charge containing region is in the substrate. In this way the substrate gets an
effective optical thickness equal to its diffusion length subtracting the thickness
of the overlaying grown layer. The electron concentration in the pure GaSb p-
doped layers will therefore be given by equation (3.3.15) for all layers, and the
hole concentration will be given by equation (3.3.16) for the top 13µm of the
n-doped side.

Emission rates

As stated in equation (3.3.12), the emission rate per volume is also dependent on
the radiative lifetime of the minority carriers. These are calculated by Stollwerck
et al [22], and are shown in Figure 3.3.10 and Figure 3.3.11. As these are only
calculations, the accuracy should not be expected to be very high. They should
however give an indication of the emission rates for the different layers. Using
equation (3.3.12), the minority carrier concentrations from equations (3.3.15)
and (3.3.16), and the radiative lifetimes from Figures 3.3.10 and 3.3.11, gives
the values for Rspon shown in Table 3.3.3. Note that the minority carrier lifetime
for the grown n-doped layer is extrapolated since the curve in Figure 3.3.11 only
covers doping concentrations up to 1 ·1018. K2 is a common scaling factor without
denotation.

Table 3.3.3 sums up the discussion in this section and gives the necessary rel-
ative light emission rates needed to construct a radiation pattern for the entire
structure.
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Table 3.3.3: Photon emission rate at 0.7eV from different layers

Layer doping [cm−3] Rspon/K2 [cm−3s−1] Effective thickness [µm]

GaSb p = 2 · 1018 1.7 0.3
GaSb p = 3 · 1018 2.5 0.2
GaSb p = 6 · 1018 5.1 0.2
GaSb p = 2 · 1019 17 0.15
GaSb p = 5 · 1019 43 0.15

GaInSb p = 5 · 1018 - 0.1
GaSb n = 2 · 1018 4.3 1.9
GaSb n = 3 · 1017 0.64 11.1

Photon recycling

Before ending the discussion about material interaction the principle of photon
recycling deserves some attention. When a photon is absorbed by the material,
an electron is excited across the badgap, and an electron hole pair is created. This
can again recombine and generate either thermal energy or a new photon. If the
probability of generating a photon is high enough, the process which earlier has
been described as absorption, is really isotropic scattering. Since the absorbed
and emitted photon is not correlated in any way, this does not affect the theory for
calculating radiation patterns discussed in previous sections. It merely provides
another way of moving minority carriers, which will add to the effect of diffusion.
According to von Roos [25], the effect can cause an effective diffusion length larger
than otherwise expected, but that this effect is highly limited. von Roos did these
calculations on GaAs, and they are therefore not directly transferable to GaSb.
In this context the effect will be fully ignored because of the highly complicated
theory required, and because of von Roos’s conclusion that this effect is small in
general. For the p-side of the diode, such an increased diffusion length would only
make the applied assumptions more correct. For the n-doped side the effective
thickness of the substrate should be slightly larger than what is calculated in
previous sections. This would however only counteract the error introduced by
assuming a constant diffusion length on the n-doped side.

3.3.6 Radiation pattern

Finding the combined radiation pattern from all layers is performed by summing
their different contributions. Each layer must be represented by a term with the
form of equation (3.3.10). The cap layer factor must also be split into a factor
for each overlying layer. The resulting expression is shown in equation (3.3.18).
Here the layers are numbered with number one assigned to the topmost p-doped
layer in figure 3.2.1, and increasing by one for each step downwards.
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I(θ, φ) = ALED

N∑
i=1

[
Ui

αi

(
1 − e−

αiti
cos θ

)
cos(θ) · e−

∑i−1
k=1

αktk
cos θ

]
(3.3.18)

ti Thickness of layer i
tk Thickness of layer k
Ui Emission per unit volume for layer i
αi Absorption coefficient for layer i
αk Absorption coefficient for layer k
ALED Area of the LED surface

Equation (3.3.18) has been evaluated using layer thicknesses and emission per
unit volume from Table 3.3.3 and absorption coefficients from Table 3.3.1. As the
result contains a lot of terms, only the resulting plots are presented here. Figure
3.3.12 shows the result for 0.7eV, and Figure 3.3.13 shows the result for 0.65eV.
The plots are normalized such that the power through the upper hemisphere is
unity. These powers have been calculated by integrating equation (3.3.18) as
stated in equation (3.3.3) using the trapezoidal method.
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Figure 3.3.12: Normalized plot of equation (3.3.18) for light at 0.7eV. The plot is
normalized such that the total power through the upper hemisphere
is unity.

In section 3.3.2, a preferred way of representing the radiation pattern is presented.
Instead of using the power per unit solid angle as a function of θ and φ, the power
per unit area in the kx ky plane as a function of kx and ky is used. Here kx and ky are
the two transversal components of the k-vector. The transformation can be done
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Figure 3.3.13: Normalized plot of equation (3.3.18) for light at 0.65eV. The plot is
normalized such that the total power through the upper hemisphere
is unity.

using equation (3.3.8), and the result is shown in Figure 3.3.14 and Figure 3.3.15
for 0.7eV and 0.65eV, respectively. These figures show the power density as a
function of kx with ky equal to zero. This fully describes the entire power density
function because it is still constant in the φ-direction. Since the transformation is
wavelength dependent through the k-factor in equation (3.3.8), and because the
range of kx and ky is wavelength dependent, the axis of Figure 3.3.14 and Figure
3.3.15 have been properly normalized. The x axis measures kx/k and the y axis
measures the power density multiplied by k2.
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Figure 3.3.14: Radiated power per unit area in the kx ky plane at a photon energy of
0.7eV
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Figure 3.3.15: Radiated power per unit area in the kx ky plane at a photon energy of
0.65eV
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3.4 Transmission to air

The prime goal of this thesis is to find a measure of how much more of the optical
power it is possible to extract from a LED by etching a photonic crystal grating on
its surface. In this section it will be determined how much of the optical power is
extracted from a LED with an unpatterned surface. To measure the transmission
property of the surface, a parameter called the surface transmission efficiency, ηs,
is defined. It is here defined as the ratio between the power exiting the top of
the LED, and the total power incident on the semiconductor air interface. The
transmission through this interface is governed by the Fresnel equations, which
are derived in [20]. The transmission is dependent on the θ-angle of the light,
the refractive indices of the two media on each side of the boundary, and the
polarization state of the light. At a given propagation angle (θ, φ), all possible
polarization states can be described as a linear combination of TE and TM-
polarization. Pure TE-polarization is when the electric field is perpendicular to
the plane of incidence or equivalently, parallel to the boundary and perpendicular
to the propagation direction. Pure TM polarization is when the magnetic field
possesses the mentioned properties. These two polarizations have independent
transmission coefficients. Because the emitted light is assumed to be unpolarized,
the optical power is assumed to be equally distributed over the two polarizations,
and the combined power transmission coefficient is the arithmetic mean of the
two. In ref. [20], the field reflection coefficients are given, and reproduced here in
equation (3.4.1) for TE polarized light and in equation (3.4.2) for TM polarized
light. In these equations n1 is the refractive index of the GaSb semiconductor
which Edwards et al [6] have measured to be 3.8 for the wavelengths of interest,
and n2 is the refractive index of air which has the numerical value 1.

rT E =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
(3.4.1)

rT M =
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
(3.4.2)

n1 Refractive index of the medium prior to the boundary (semiconductor)
n2 Refractive index of the medium beyond the boundary (air)
θ1 Propagation angle of the incident light, relative to the face normal of the boundary
θ2 Propagation angle of the transmitted light, relative to the face normal of the boundary.

Equations (3.4.1) and (3.4.2) contain the angle θ2 which is linked to the angle of
incidence through Snell’s law which is stated in equation (3.4.3).
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n2 sin θ2 = n1 sin θ1 (3.4.3)

cos θ2 =

√
1 −

(
n1

n2

)2

sin2 θ1

In this context, the most interesting form of these equations is the power trans-
mission coefficients which are related to equations (3.4.1) and (3.4.2) through
equation (3.4.4). The two polarizations are here also combined according to the
discussion in the previous paragraph.

T =
1
2

(TT E + TT M) =
1
2

(
1 − |rT E |

2 + 1 − |rT M |
2
)

(3.4.4)

T Combined transmission coefficients as a function of the angle of the incident light
TT E transmission coefficients for TE-polarized light
TT M transmission coefficients for TM-polarized light

The transmitted power density per unit solid angle for the incident light can be
found by multiplying T in equation (3.4.4) with I(θ, φ) from equation (3.3.18).
θ1 in equation (3.4.4) will then be the same as θ in equation (3.3.18). The eas-
iest way of finding the total transmitted power is to integrate the transmission
coefficient multiplied with the incident power density function per unit solid an-
gle. The surface transmission efficiency can be found by dividing by the total
incident power which can be found using equation (3.3.3). This is expressed in
mathematical terms in equation (3.4.5).

ηs =

∫
U pper

hemisphere

T (θ, φ)I(θ, φ)dΩ

∫
U pper

hemisphere

I(θ, φ)dΩ
(3.4.5)

ηs Surface transmission efficiency

The actual value of ηs is wavelength dependent, and here the values for the two
photon energies 0.65eV and 0.7eV, discussed in section 3.3.6, will be calculated.
Using the power densities shown in Figure 3.3.14 and Figure 3.3.15, and the
transmission coefficients from equation (3.4.4) enables calculation of the actual
ηs for the two wavelengths. Equation (3.4.5) can be simplified to equation (3.4.6)
because both T and I are independent of φ, and because the transmission is zero
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above the critical angle θc. The integral in the nominator of equation (3.4.6)
has been calculated using the trapezoidal method, and the denominator is unity
because of the normalization used for the power density function. The results are
shown in Table 3.4.1.

ηs =
2π

∫ θc

θ=0
T I(θ)

Pincident
(3.4.6)

θc Critical angle of incidence (arcsin (n2/n1))

Table 3.4.1: Surface transmission efficiency

Photon energy [eV] Surface transmission efficiency

0.65 2.44%
0.7 2.82%

Table 3.4.1 shows that an unpatterned surface has an extremely low surface trans-
mission efficiency. The main reason for this is that the high refractive index of
the semiconductor causes a very small critical angle θc ≈ 15◦. Thus most of the
light experiences total internal reflection. The surface transmission efficiency for
the optical power at 0.65eV is smaller than what it is at 0.7eV. This is because
more of the power is at large θ-angles at 0.65eV than at 0.7eV. Note that the
surface transmission efficiency is only a measure of the transmittivity of the top
surface. Other factors reducing the total efficiency of the LED, such as non ra-
diative recombination, absorption, and the fact that half of the optical power is
emitted downwards into the substrate, are not taken into consideration.
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Chapter 4

Simulation model

4.1 Physical principle

4.1.1 General

This chapter will mainly discuss the simulation model used to calculate the effects
of a photonic crystal on the top layer of a LED. However, this first section will
focus on the physics of the photonic crystal. This is needed to make sure the
simulation model incorporates all the physical effects. Figure 4.1.1 shows the
structure which is to be examined. A two dimensional photonic crystal separates
the bulk semiconductor from the surrounding air. As discussed in chapter 3, light
is generated in the semiconductor, and is incident on the interface between the
bulk semiconductor and the photonic crystal.

εGaSb

PC

x

z

y

εAir

Figure 4.1.1: Photonic crystal (PC) at the semiconductor-air interface

The coupling mechanism from the semiconductor to the photonic crystal is based
on the principle discussed in section 2.6. For light to couple to a mode in the pho-
tonic crystal its wave-vector parallel to the interface must satisfy equation (2.6.3).
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Since it will be used extensively, the transversal wave-vector kT is defined as the
projection of the wave-vector on the interface plane. The word transversal is here
used because the vector is transversal to the flow of energy which is of interest.
As there are not any restrictions on the out of plane wave-vector component or
the mode number, this makes light with a given kT-vector able to couple to all
possible modes at a certain kB-point in the two dimensional Brillouin-zone. Note
that since ω must be conserved, all these modes must have the same eigenvalue,
however their out of plane wave-vector component can be different. If one want
to imagine these modes in a band diagram, it is therefore beneficial to imagine
curves defined by the intersection of a constant ω-plane and the possible mode
surfaces. Figure 2.5.5 shows one such a mode plane, and a constant ω-plane would
be parallel to the kz-kB-plane. The number of possible modes would therefore be
limited and increase with increasing ω.

At the interface between the photonic crystal and air, the modes at a certain
kB-point can couple to plane waves in air according to (2.6.3). This means all
these modes can couple to all plane waves with kT-vectors equal to those which
coupled to the photonic crystal in the first place. This enables light to couple
to plane waves in air despite it having a kT-vector in the semiconductor which is
longer than the wave number k0 in air. In the case of a plane surface, this would
cause total internal reflection. If there is a combination of primitive reciprocal
lattice vectors which when added to the kT-vector in the semiconductor results in
a kT-vector which is shorter than k0, coupling to air is possible. When studying
equation (2.6.3) it is also possible conclude that if all points within the Brillouin
zone have a kB-vector which have a length smaller than k0, there will always be
such a combination of primitive reciprocal lattice vectors.

x

z

yAir

b
1

k
s

k
a1k

a4

k
a2k

a3

GaSb

Figure 4.1.2: Diffraction through a photonic crystal surface

Figure 4.1.2 shows for one dimension, a plane wave in the semiconductor with
wave-vector ks that couples to several plane waves in air which have wave-vectors
kai for i = 1, 2, 3, 4. The conclusion of this discussion is that a plane wave inside
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the semiconductor can couple out to plane waves in air which have wave-vectors
which differ from the original wave-vectors by an integral number of primitive
reciprocal lattice vectors. Using this rule, it is not really necessary to consider
the modes of the photonic crystal, or the out of plane wave-vector component.
The only essential parameter of the photonic crystal is its primitive reciprocal
lattice vectors bi. All the other parameters will influence the coupling as well,
but the bi-vectors apply the strictest limitations to how light couples through the
surface.

4.1.2 Multiple incident plane waves

The previous section considered what happens when one plane wave from the
semiconductor is incident on the photonic crystal. Since it in chapter 3 was con-
cluded that light with a spectrum of wave-vectors is generated it is also necessary
to consider what happens when multiple plane waves are incident on the sur-
face. A given plane wave in air with wave-vector ka, and transversal wave vector
kTa can get optical power from plane waves in the semiconductor which have
transversal wave vectors kTs = kTa + m1b1 + m2b2 when m1 and m2 are integers.
Since typically a number of plane waves in the semiconductor satisfies this con-
dition, their individual contribution must be summed. Considering the spatial
Fourier transform of the scalar electric field, Eks(kT), inside the bulk semiconduc-
tor and Eka(kT) in air, equation (4.1.1) states this summation in mathematical
terms. The scalar fields are here used for simplicity. The effect of polarization
will be accounted for later.

Eka(kT) =
∑
m1

∑
m2

γ(kT,m1,m2) Eks(kT + m1b1 + m2b2) (4.1.1)

kT Transversal wave-vector. Projection of the wave-vector on the interface plane.
γ(kT , m1, m2) Coupling coefficient.
Eka(kT) Spatial Fourier transform of the scalar electric field in air.
Eks(kT) Spatial Fourier transform of the scalar electric field in bulk semiconductor.
b1, b2 Reciprocal lattice vectors of the photonic crystal.

Finding the power flow through the surface would in reality involve the field
directions and the dielectric constants of the materials in question. Although it
is possible to account for these, it would complicate the equations. Since the point
which will be made is not dependent on these effects they will therefore here be
omitted. With these simplifications, the power flow is the square of the absolute
value of equation 4.1.1. Equation (4.1.2) states this by multiplying with the
complex conjugate. The four necessary summation symbols are here represented
by only one because of space constraints.
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S ka(kT) = |Eka(kT)|2

=
∑

m1, m2
m̂1, m̂2

γ(kT,m1,m2) Eks(kT + m1b1 + m2b2) · γ∗(kT, m̂1, m̂2) E∗ks(kT + m̂1b1 + m̂2b2)

=
∑

m1, m2

|γ(kT,m1,m2)|2 S ks(kT + m1b1 + m2b2) (4.1.2)

+
∑

m1, m2
m̂1, m̂2
m1,m̂1
m2,m̂2

γ(kT,m1,m2) γ∗(kT, m̂1, m̂2) Eks(kT + m1b1 + m2b2) E∗ks(kT + m̂1b1 + m̂2b2)

S ka(kT) Spatial Fourier transformed power density in air.
S ks(kT) Spatial Fourier transformed power density in bulk semiconductor.

As usual when multiple sources of radiation are combined into one, the combined
power density is a scaled sum of the power densities of the sources, and several
interference terms. Take note that the interference here is caused by combining
light generated by the same source, at roughly the same time, and at the same
positions. The effect is therefore not characterized by temporal coherence or
transversal spatial coherence. The spatial field distribution does determine the
interference, but not in a way that is directly linked to spatial coherence. Instead
it is necessary to think of the coherence in the transversal wave-vector space. The
next section will analyze these properties in more detail.

4.1.3 Coherence in wave-vector space

This section will look at the statistical coherence between light with different kT.
The analysis will be done with kT in one dimension instead of two in order to ease
notation and to provide a better overview. The results are readily translatable
to two dimensions. The x-direction will therefore be chosen as the transversal
direction in accordance with Figure 4.1.1. The kT-vector can then be replaced
with the scalar kx. A common way of specifying the coherence in the time domain
is the autocorrelation function. A similar function can be defined for the kx-
dimension, and is here stated in equation (4.1.3).
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G(q) =

∞∫
−∞

E∗ks(kx) · Eks(kx + q) dkx (4.1.3)

G(q) Autocorrelation function.
q Argument of G which specifies the shift in kx of which G is the covariance.

G(q) in equation (4.1.3) is a measure of how similar the amplitude is for a plane
wave with transversal wave-vector kx compared to one with wave vector kx + q.
The value at a specific q is proportional to the mean covariance obtained by
integrating over kx. G(0) will therefore be the total power, and the function will
typically fall towards zero for both increasing and decreasing q. The width around
the peak near q = 0 tells how much difference there must be in kx for two plane
waves before their amplitudes are incoherent. The Wiener-Khinchin theorem [20]
can be used to find the function G(q) based on available parameters. Since it is
not too complicated, and since it is rarely used in this context, it will be shown
here. The plane wave amplitude Eks(kx) is related to the regular electric field as
a function of position, Es(x) through Fourier transform as stated in equations
(4.1.4) and (4.1.5).

Es(x) = F −1 {Eks(kx)} (x) =
1

2π

∞∫
−∞

Eks(kx) e jkx x dkx (4.1.4)

Eks(kx) = F {Es(x)} (kx) =

∞∫
−∞

Es(x) e− jkx x dx (4.1.5)

F Fourier transform operator

Using equation (4.1.5) to replace Eks(kx), and changing the order of some of the
integrals transforms equation (4.1.3) to equation (4.1.6). Recognizing the last
integral as the Dirac delta function, and using this to solve the ξ-integral leads
to the conclusion that G(kx) is the Fourier transform of the transversal intensity
profile.

G(q) =

∞∫
x=−∞

∞∫
ξ−∞

E∗s(x) · Es(ξ) e−qξ

∞∫
q=−∞

e jkx(x−ξ) dkx

︸              ︷︷              ︸
δ(x−ξ)

dξ dx (4.1.6)

=

∞∫
x=−∞

E∗s(x) · Es(x)e− jqxdx = F {Is(x)} (q) (4.1.7)

55



4.1 Physical principle SIMULATION MODEL

This means that the width of the intensity profile in a plane is inversely propor-
tional to the width of G(q). One example of this is a colinear laser beam with a
relatively wide intensity profile. Since the beam is colinear, the plane wave am-
plitude Ekkx must decay very rapidly as |kx| increases. This again means that q
in equation (4.1.3) must be very small to make sure both Ek-factors are non-zero
for at least parts of the integral. A wide laser beam is therefore highly incoher-
ent in the transversal wave vector space. An opposite example is a point source
with an intensity profile width which is near-to-zero. The point source radiates
isotropically, meaning Ek(kx) do not decay as |kx| increases. In addition all the
plane waves are caused by the one and only oscillation, meaning they must have
correlated amplitudes, and consequently G(q) becomes a wide function. A point
source is therefore highly coherent in the transversal wave vector space.

The width of G(q), ∆q is according to general properties of the Fourier trans-
form approximately equal to the inverse of the width of the intensity profile ∆x,
which is stated in equation (4.1.8).

∆q =
1

∆x
(4.1.8)

∆q Width of G(q)
∆x Width of I(x)

The interference terms in equation (4.1.2) are significant if ∆q is larger than the
primitive reciprocal lattice vectors bi. For the 1D case the one and only primitive
reciprocal lattice vector is according to equation (2.5.3) equal to 2π/a where a is
the grating period. Using this and equation (4.1.8) it is possible to transform the
requirement into a minimum number of grating periods Nper.

2π
a
> ∆q =

1
∆x

(4.1.9)

Nper =
∆x
a
>

1
2π

(4.1.10)

Nper Number of periods in the grating (Width measured in grating periods).

Since the slopes of G(q) are not necessarily steep, it is reasonable to add some
clearance to the requirement in equation (4.1.10). However since the grating
under investigation will have between 100 and 1000 periods, it will be assumed
that all the interference terms in equation (4.1.2) are zero. The resulting equa-
tion describing the transmission through the two dimensional photonic crystal is
therefore the one given in equation (4.1.11).
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S ka(kT) =
∑

m1, m2

Γ(kT,m1,m2) S ks(kT + m1b1 + m2b2) (4.1.11)

Γ(kT ,m1,m2) Power coupling coefficient.

4.1.4 Polarization

The previous section analyzed how multiple plane waves can mix and form one
plane wave when moving through a two dimensional photonic crystal. The effects
of polarization were however not discussed, and will therefore be lightly treated
here. The polarization state of a plane wave can generally be described by a sum
of two orthogonal linear polarization states. When describing light transmission
through plane surfaces, the two polarizations used are typically TE and TM po-
larization. TE means transversal electric, and denotes light with an electric field
transversal to the plane of incidence, and consequently an electric field parallel to
the plane surface. TM means transversal magnetic, and denotes light where the
magnetic field has the same properties as the electric field has for TE polarized
light. As stated in equations (3.4.1) and (3.4.2), these two polarizations have
different transmission coefficients when passing through an interface, and it is
reasonable to believe the same for a photonic crystal surface. When either of the
two polarizations are transmitted through a planar surface the polarization state
is preserved. If the incident light is TE polarized, then the transmitted light is
also TE polarized. This is however not necessarily true for a photonic crystal.

An effect of this is that transmitted light with TE polarization might originate
from both TE and TM polarized light below the photonic crystal. Therefore the
the question about interference effects when combining the two polarizations will
appear in a similar way as the possibility for interference between different plane
waves. It will be assumed that there is not any correlation between the TE and
TM polarized light inside the LED. This effectively eliminates interference terms.
Under these assumptions the introduction of polarization is merely a mild com-
plication which doubles the terms in equation (4.1.11). Equations (4.1.12) and
(4.1.13) state this new relation between incident and transmitted light. There are
two equations which each describe the power of a transmitted plane wave with a
certain polarization in air.
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S ka,T E(kT) =
∑

m1, m2

ΓT E→T E(kT,m1,m2) S ks,T E(kT + m1b1 + m2b2)

+
∑

m1, m2

ΓT M→T E(kT,m1,m2) S ks,T M(kT + m1b1 + m2b2) (4.1.12)

S ka,T M(kT) =
∑

m1, m2

ΓT M→T M(kT,m1,m2) S ks,T M(kT + m1b1 + m2b2)

+
∑

m1, m2

ΓT E→T M(kT,m1,m2) S ks,T M(kT + m1b1 + m2b2) (4.1.13)

S ka,T E(kT) Power density in air of TE polarized light.
S ka,T M(kT) Power density in air of TM polarized light.
S ks,T E(kT) Power density in bulk semiconductor of TE polarized light.
S ks,T M(kT) Power density in bulk semiconductor of TM polarized light.
ΓTv→Tw(kT ,m1,m2) Coupling coefficient for coupling of Tv polarized light in

bulk semiconductor to Tw polarized light in air.

4.2 Simulation principle

4.2.1 Fresnel principle

The main purpose of the simulations described here is to find the light extraction
from a LED with a 2D photonic crystal surface. In section 3.4, the surface trans-
mission efficiency was calculated for a planar surface. The method used there
was to construct an angular radiation pattern, and multiply it by the transmis-
sion coefficients given by the Fresnel equations. Integrating the result over the
upper hemisphere then resulted in the total transmitted power, and the surface
transmission efficiency was this power divided by the total power incident on the
surface. The same principle will be used for the photonic crystal surface. The
angular distribution of the incident light will be the same, but since there are no
Fresnel equations giving the transmission coefficients, these will be obtained by
simulation. The simulation task will therefore be to obtain transmission coeffi-
cients for different angles of incidence and polarization. Instead of operating in
the angular domain, the principles stated in section 3.3.2 will be used to operate
in the transversal wave-vector domain. The simulations can not be expected to
produce transmission coefficients valid for the entire two dimensional continuous
domain of angles of incidence. Instead it will be necessary to find coefficients for
a discrete set of angles or values of kT. This will be done by making a uniform
grid of points in the two dimensional space of kT. Because the maximum length
of kT is limited by the wavenumber in bulk semiconductor ks, the point outside
the circle of radius ks will be omitted. In addition the photonic crystals which will
be simulated will have a number of rotational and mirror symmetry-properties
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which can reduce the needed domain even further. Figure 4.2.1 illustrates this
for a square photonic crystal with mirror symmetry axis along the x, y and the
diagonal direction. Figure 2.5.2(a) illustrates an example of such a structure.

kx

ky

ks

Figure 4.2.1: Grid of points which will have their transmission coefficients simulated
for a square photonic crystal with three mirror symmetry axis

4.2.2 FDTD

The simulation software which was used for the simulations described in this
thesis has the name MEEP [7], and is based on the finite-difference time-domain
(FDTD) method. The key concept is to consider a finite space, and to divide it
into a grid of voxels which are a 3D version of pixels. Each voxel holds a value
of ε(r) valid for its volume, and a value of all three components of the H(r) and
E(r) fields. The Maxwell equations are approximated to form a set of difference
equations which are used to update the fields in small time steps. In this way the
software works by mimicking real wave propagation. The procedure is somewhat
analog to to Euler’s method for solving differential equations [14].The fields are
excited by manipulating the J-term in the Maxwell’s equation for specific voxels
in the grid. As the density of voxels, or resolution, is increased the result is
supposed to converge to the exact solution. MEEP utilizes an algorithm for
smoothing of the dielectric function in space which according to Farjadpour [7]
makes the results converge quadratically to the actual solution. One of the main
advantages of FDTD simulations is that since it operates in the time domain,
the results from one simulation can give information about the properties of the
structure over a wide band. Since it operates by approximating actual wave
propagation it can be used for several purposes, and one very common is to find
transmission and reflection coefficients. These are normally found by running
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two simulations. One with the scattering structure under investigation, and one
without which serves as a reference that is used to calibrate the source.

4.2.3 Boundary conditions

In the previous section it was stated that the simulated space must be finite.
This implies a need for boundary conditions on the edges of the simulated vol-
ume. The simplest forms are hard mirror walls which pin either the parallel
magnetic or electric field to zero.

Another possibility which is more suitable for the current problem are periodic
boundary conditions (PBC). These use the fields on the left side as boundary
conditions for the right side and vice versa. The top and bottom side, and the
front and rear sides also form identical pairs. The structure would therefore feel
an identical structure with identical excitation right next to it. An infinite peri-
odic structure can in this way be simulated only by considering one unit cell. As
outlined here this method does however only take modes with kB = 0 in equa-
tion (2.5.10) into consideration. To account for the rest, the fields on the left
side is multiplied by a phase constant e jφ1 before they are used as a boundary
condition on the right side. The inverse phase constant e− jφ1 is used for the op-
posite direction, and different constants are used for the other two directions. If
the dimensions of the unit cell is D1, D2 and D3 in the first, second, and third
direction respectively, and the phase coefficients used are φ1, φ2 and φ3, then
equation (4.2.1) gives the elements of kB of the modes that are taken into ac-
count. In this way all modes can be simulated for an infinite structure by only
considering one unit cell. The downside is that only one kB can be considered
simultaneously. Figure 4.2.2 illustrates this principle for a 2D unit cell. Since the
simulation software knows the dimensions of the unit cell, the phase coefficients
are set indirectly by specifying the kB-vector. In the following sections this kind
of boundary conditions will be called PCB with a certain kB.

kB1 = φ1/D1 (4.2.1)

kB2 = φ2/D2

kB3 = φ3/D3

kB1, kB2, kB3 The elements of kB of the modes accounted for in the simulation.
φ1, φ2, φ3 Phase added/subtracted when generating boundary conditions.
D1,D2,D3 The length of the unit cell in all three directions.

In addition to mirror walls and PBC, perfectly matched layers (PML) can be
used to form the desired boundary conditions. These are not really boundary
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Figure 4.2.2: Principle of PBC for a 2D unit cell

conditions, and must be used together with mirror walls or PBC. Instead a layer of
finite thickness is placed between the interior of the simulation cell and the walls.
Waves which are excited within the cell will start decaying exponentially once
they enter the PML. Before they reach the actual boundary, their field strengths
should be satisfactorily attenuated such that the actual boundary condition will
not have any effect. One can say that the PML insulates the interior of the
unit cell from the boundaries. The unit cell will therefore see boundaries padded
with PML as an infinite empty medium which does not reflect any radiation. It
should be noted that PML is not simulated as a dielectric with an absorption
coefficient. For example waves incident on the PML will in the limit of infinite
resolution, not be partially reflected like they would if there was a transition in
the complex refractive index. There are also more differences between PML and
ordinary absorbing media which will not be discussed here.

4.3 Simulation structure

4.3.1 General

This section will describe the actual simulation structure used for finding the
properties of the photonic crystal surface of the LED. In section 4.2.1, the prin-
ciple was outlined. The simulations must provide transmission coefficients for
different incident plane waves. The typical way of achieving this in a FDTD
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simulation is to excite a broadband pulse under the surface and record the trans-
mitted waves. These can subsequently be compared to the total incident power to
obtain a transmission coefficient. The total incident power is most easily obtained
by performing a reference simulation which basically is the same, only without
the surface. Figure 4.3.1 illustrates a cross section of the applied model and its
reference.

Air ( = 1)εAir

GaSb ( = 3.8)εGaSb

PML in air

PML in GaSb

ReferenceModel

Source
layer

Recording
layer

Photonic
crystal

x

z

y

0

0.2

0.35

1.25

1.85

2.05

2.45

0 1

Figure 4.3.1: Simulation model and the reference structure. The units of the dimen-
sions are explained in section 4.5.1.

4.3.2 Excitation and boundary conditions

A wave is excited by current densities in the source layer. In addition to the
physical electric current density J in equation (2.2.2), excitation can also be
achieved using magnetic current densities. This is a source term added to equation
(2.2.1) such that it becomes equal to equation (4.3.1). Note that in order to
distinguish between electric and magnetic current densities they are denoted Je
and Jm respectively.

∇×Et +
∂Bt

∂t
= −J t m (4.3.1)

J t m Magnetic current density.
t-index denotes time dependent variable instead of frequency dependent.

Even though the Jm-term is non physical, it is a convenient way of exciting the
desired waves. In fact the explicit use of either Je or Jm in such simulations will
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in most cases not be related to the physical origin of the wave anyway. It is just
a method of achieving an appropriate wave for the specific simulation.

Periodic boundary conditions are applied to the model, and it is therefore effec-
tively repeated indefinitely in all directions. There are however PML layers at the
top and bottom which insulate the repeated blocks in the z-direction. Therefore,
the effective structure being simulated is that shown in Figure 4.3.1 repeated
indefinitely in the x and y-directions. The source layer generates fields with a
certain kT-vector by linearly modulating the phase over the plane according to
equation (4.3.2).

J = J0 e jkT r = J0 e j(kx x+kyy) (4.3.2)

J Magnetic or electric current density in the source plane
J0 Current density amplitude
kT Transversal wave vector
r Position vector in the source plane
kx Component of k-vector in the x-direction of the excited wave
ky Component of k-vector in the y-direction of the excited wave

The kB of the PBC must then be chosen such that the current density on the
effective infinite source plane is a continuous function. This is most easily achieved
by specifying kB equal to kT. This can also be done when kT extends outside
one unit cell in the reciprocal lattice of the 2D photonic crystal. In fact adding
an arbitrary integral number of reciprocal lattice vectors to kB will not alter the
boundary conditions because the added phase constants in Figure 4.2.2 do not
change. This also means that the entire set of plane waves on the upper side of
the photonic crystal will have suitable boundary conditions as long as they are
suitable for the incident plane wave.

4.3.3 Polarization and beam steering

For a given optical frequency the source plane excites a plane wave where the
angles of propagation θ and φ are specific. In fact equations (3.3.1) and (3.3.2)
states the relation between the excited kT and the angles. The simulation must
be conducted separately for two orthogonal polarizations. To ensure mutual or-
thogonality, pure TE and TM waves are excited. TE waves are excited using only
electric currents for the source, and TM waves are excited using only magnetic
currents. For both TE and TM, the direction of J0 in equation (4.3.2) is orthog-
onal to kT , but still within the xy-plane of the source. This also ensures a non
diverging current density which otherwise would cause complications since the
charge density would be non zero. When using only one of the available currents
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simultaneously it is impossible to direct the optical power upwards in the model.
If both were used according to Love’s Equivalence Principle [1], a pure upwards
propagating wave could be excited. This would however require a definite angle
of propagation θ. Since the excited pulse is highly broadband and kT is pinned,
this angle is different for each optical frequency. Therefore only one of the cur-
rents are used simultaneously, and the lower side PML must be used to absorb
the downwards emitted wave. Figure 4.3.2 illustrates the upwards moving part
of an excited monochromatic TE and TM wave.
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Figure 4.3.2: Cross section illustration of excited monochromatic TE and TM waves

4.3.4 Grating structures

Figure 4.3.1 shows a typical cross section of the 3D structure being simulated.
This is the unit cell of the simulated photonic crystal which is under investigation.
The simulations described here are focusing on three kinds of photonic crystals.
These are a square grating of holes, a hexagonal grating of holes, and a square
grating of isotropically etched holes. The forms of the two first are shown in
Figure 2.5.2. Both of these are typically cylindrically shaped holes in the surface.
They can be fabricated using photolithography to protect the surrounding areas,
but leaving an opening for the holes. They can subsequently be etched out using
an anisotropic dry etch method such as sputter etching or reactive ion etching.
These gratings are typically characterized by the radius and depth of the holes
and the lattice constant. The last grating which is a square grating of isotropically
etched holes can be made using the same kind of photolithography. The difference
is that the holes are etched using a liquid chemical which etches equally deep in all
directions. The hole radius and depth, and the lattice constant are sufficient for

64



SIMULATION MODEL 4.3 Simulation structure

characterizing these holes as well, but here it is important to understand that all
the material that is closer to the exposed area than the hole depth will be etched
away. Figure 4.3.3 illustrates the holes caused by both these etching techniques.
Here a is the lattice constant, d is the hole depth, and R is the hole radius.
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Figure 4.3.3: Cross section of the simulated gratings.

The simulation software, MEEP, which was used for this work only allows cuboid
shaped models, which means only rectangular unit cells can be simulated. For
the square gratings, this is not an issue, but the unit cell of the hexagonal grating
can not be used directly. To overcome this problem a slightly larger unit cell is
defined as indicated in Figure 4.3.4. The length Dx is equal to the lattice constant
a, while Dy is equal to

√
3a. Compared to square gratings, the hexagonal gratings

will have a longer total running time of the simulations because the unit cell is
larger, and because it lacks the diagonal symmetry line.

Dx

Dy

a

Figure 4.3.4: Rectangular unit cell of hexagonal grating
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4.3.5 Simulation series

A simulation series is the set of simulations of a certain kind of structure. A total
of six such series are described here, and each of the three grating structures
presented in section 4.3.4 had one such series. These three can be regarded as
the primary simulation series described here. The other three secondary series
which were meant as a more detailed investigation of the square grating of holes
illustrated in Figure 2.5.2(a). These were started after the primary series were
completed to further investigate the most interesting results, and as a way of es-
timating the accuracy of the simulations. One of secondary series was performed
using a source with lower lower frequency than the primary, one was performed
with higher spatial resolution, and one was performed with both low frequency
and high resolution. To easily distinguish between simulation series with differ-
ent frequencies and spatial resolutions, they will be denoted as low or normal
frequency series, and normal or high resolution series. The exact differences be-
tween the different simulation series are explained in greater detail in section
4.5.

4.4 Simulation method

4.4.1 Transmission spectra

As mentioned in section 4.2.2, the simulations can give transmission coefficients
for a broad frequency band. The source emits a short Gaussian shaped pulse with
the spatial modulation from equation (4.3.2), and the polarization as described in
section 4.3.3. The time dependence of a Gaussian pulse is illustrated in equation
(4.4.1). This should not be confused with a Gaussian beam where the spatial
distribution is Gaussian. The pulse propagates through the photonic crystal and
reaches the recording layer indicated in Figure 4.3.1. The Et and Ht fields in
this layer are recorded and stored for further processing. The Fourier transform
of the recorded fields, E(ω) and H(ω) can then easily be calculated using an fft-
algorithm. The total transmitted power spectrum can then be calculated using
equation (4.4.1). The ω-dependence which for most preceding derivations has
been implicit, is here stated explicitly.
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Figure 4.4.1: Real part of a Gaussian pulse.

PtransCont(ω) =

∫
Recording

plane

1
2
< [S(ω)] · ẑ dA =

∫
Recording

plane

1
2
< [E(ω) × H∗(ω)] · ẑ dA (4.4.1)

PtransCont(ω) Transmitted power spectrum for a continuous space
ẑ Unit vector in the z-direction
< Real part operator

Because the simulations are conducted using discretized space, equation (4.4.1)
must be approximated by a sum. Since the final result is supposed to be trans-
mission coefficients, the scaling constants can be omitted. This also includes the
constants normally introduced when approximating an integral by a sum. Equa-
tion (4.4.2) states the resulting expression for the simulated transmitted power
spectrum.

Ptrans(ω) =
∑

Recording
plane

< [E(ω) × H∗(ω)] · ẑ (4.4.2)

Ptrans(ω) Transmitted power spectrum for a discrete space

The transmission coefficient spectrum is the ratio of Ptrans(ω) to Pinc(ω) which is
the power spectrum of the wave moving upwards in the model from the source
layer. Pinc(ω) can be found by performing a reference simulation with the same
model, but without the scattering photonic crystal surface. This model must
consist of a uniform medium which has the same refractive index as the medium
surrounding the source layer. The impedance seen by the source should then be
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the same in both simulations and the emitted power spectrum in the upwards
direction should be the same. The transmission spectrum T (ω, kT) can therefore
be found using equation (4.4.3).

T (ω, kT) =
Ptrans(ω)
Pinc(ω)

=

∑
Recording
plane in
model

< [E(ω) × H∗(ω)] · ẑ

∑
Recording
plane in

re f erence

< [E(ω) × H∗(ω)] · ẑ
(4.4.3)

kT Part of wave vector which is parallel to the surface, (xy-plane in Figure 4.1.1)
T (ω, kT) Transmission spectrum for incident light with transversal wave vector kT
Pinc(ω) Power spectrum incident on the photonic crystal surface.

T (ω, kT) in equation (4.4.3) measures the power transmission of a single incident
plane wave with transversal wave vector kT, and angular frequency ω. It does not
take into account how the transmitted field distribution is, only its total power.

4.4.2 Surface transmission efficiency

The procedure described in section 4.4.1 gives the transmission spectrum for one
particular value of kT of the incident wave. Repeating it for a range of kT-
vectors, and for both polarizations will give a frequency specific lookup table
with the same role as the Fresnel equations have for plane surfaces. For a given
frequency ω0, a 3D plot of the function T (ω0, kT) in kT-space will give insight
into how the photonic crystal surface affects the transmission properties of the
surface. For example it would be possible to see the transmission for incident
angles which would undergo total internal reflection if the surface was plane. The
key parameter describing the performance of the photonic crystal is the surface
transmission efficiency ηs introduced in section 3.4. For a given frequency ω0 this
property is dependent on the transmission coefficient T (ω0, kT) and the angular
radiation distribution of the light incident on the surface. This distribution was
derived in chapter 3 and is plotted in Figures 3.3.12 to 3.3.15. It is important
to note that this is the actual light hitting the surface in the physical LED, it
is not the simulated Ptrans(ω) in equation (4.4.2). Equation (3.4.5) states the
definition of ηs when the incident radiation distribution is given by I(θ, φ) in
spherical coordinates. Since the simulated transmission spectrum is a function of
kT rather than θ and φ, it is more convenient to move to the kT-domain. Using
the theory from section 3.3.2, this results in the expression in equation (4.4.4).
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ηs(ω) =

∫
k2

x+k2
y<k2

T (ω, kx, ky) Ik(kx, ky) dkx dky∫
k2

x+k2
y<k2

Ik(kx, ky) dkx dky
(4.4.4)

ηs Surface transmission efficiency
kx x-component of kT
ky y-component of kT
Ik(kx, ky) Radiation distribution incident on the photonic crystal surface

T (ω, kx, ky) is known for a discrete set of kx and ky, and Ik(kx, ky) can be calculated
rapidly for any kx and ky. Because Ik has sharp peaks as shown in Figures 3.3.14
and 3.3.15, a sharp resolution in kx,ky-space is necessary. This is however not
feasible for T (ω, kx, ky) because the simulations would become too time consuming.
T (ω, kx, ky) is therefore linearly interpolated to provide approximate transmission
coefficients for a high resolution version of Ik(kx, ky). The integral is subsequently
calculated using the trapezoidal method.

4.4.3 Radiation pattern

Purpose

Finding the surface transmission efficiency ηs, and the geometry that maximizes
it, was the primary objective of the work this thesis is based on. Although the
quantity is not directly measurable, the improvement from an unpatterned LED
can be measured. In the interest of quality proofing the simulations it is however
desirable to have a more revealing result that contains more information than
this single number. A radiation pattern is suitable for such a task. That is a
power density function Ik,ext(kx, ky) that measures the radiation at different angles
on the outside of the LED. This function can be converted to a power density
function that measures power per unit solid angle. Such a function is directly
measurable by placing a detector at a distance from the LED and rotating the
LED to specific angles.

Principle

The transmission spectrum which was calculated in equation (4.4.3) is the ratio
of the simulated transmitted power to the simulated incident power. To caclulate
a radiation pattern it is necessary to find the propagation direction of the light
on the outside of the LED for each simulation. That way it is possible to find
the fraction of the incident light wave that is converted to the different refraction
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orders on the outside. This fraction would then be the coupling coefficient Γ in
equation (4.1.11). This equation states the output power density with a certain
kT as a sum of the incident power density function at several distinct kT-points.
Note that there is a difference between the simulated incident and transmitted
waves, and the actual incident and transmitted waves. The ratios between the
transmitted and incident waves are the same, and the simulations give this ratio
which is applied to the real incident waves found in Chapter 3. Since equation
(4.1.11) relies on the coupling from several incident plane waves, it is important
to simulate all those needed. With reference to Figure 4.2.1, it therefore becomes
important to perform simulations with a suitable set of kT-values for the incident
plane wave. If a simulation is performed with an incident beam with kT = kT0,
then there must also be simulations for kT = kT0 + m1b1 + m2b2 for all integers
m1 and m2 that give a kT-vector which is shorter than the wave number in the
semiconductor. The first task is then to find the propagation direction of the
transmitted light for each simulation.

Propagation direction

When a plane wave is transmitted through the surface, it couples to a number of
plane waves due to diffraction. Finding the power in each of these plane waves
can be done by calculating the spatial Fourier transform of the fields. Since
the simulations effectively simulate an infinite surface, it should be possible to
get an arbitrarily high resolution in such a Fourier transform. The recorded
fields that are Fourier transformed along the time axis are only valid for one
unit cell. However since the phase difference between neighbouring cells is known
through the kB-vector, the fields for an arbitrarily high number of unit cells can be
found. A consecutive spatial Fourier transform could then give the radiation as a
function of kT with an arbitrarily high resolution. Another, less computationally
demanding, method could however also be used. If a function of time is strictly
periodic with the period T its Fourier transform has all its energy concentrated
at 0, 1/T , 1/(2T ) and so on. The power at these points can then be found as
the absolute square of the corresponding terms in the function’s Fourier series.
When finding such a Fourier series, it is only necessary to consider one period of
the function. The recorded fields are in general not periodic functions, and can
be expressed with the form of equation (4.4.5). Note that this is not the same as
the mode field in equation (2.5.10) where u and H are supposed to form a single
mode of the structure. Here E and v are in general composed of several modes,
but all having the same kB-vector.
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E = v(r) · e jkB·r (4.4.5)

kB Vector constant within the plane of the crystal and within the Brillouin zone.
v(r) Function that is periodic in the plane of the crystal. Arbitrary in the z-direction.

E in equation (4.4.5) consists of two periodic functions, and is therefore periodic
only if the ratio of the two functions’ frequency is a rational number. Although
kB in the simulations could be chosen such that this was true, it is not something
which will be assumed here. It is however possible to calculate the spatial Fourier
transform of the two periodic functions individually and combine them afterwards
by convolution as stated in equation (4.4.6).

Ek(kt) = F 2 {E(r)} (kT) =
1

4π2F
2 {v(r)} (kT) ∗ F 2

{
e jkB·r

}
(kT) (4.4.6)

Ek(kt) 2D spatially Fourier transform of the electric field
F 2 2D Fourier transform operator
∗ Convolution operator

The Fourier transform of the complex exponential function is stated in equation
(4.4.7). The easiest way of verifying this is to take the inverse Fourier transform
of the result.

F 2
{
e jkB·r

}
(kT) = 2πδ(kT x − kBx) · 2πδ(kTy − kBy) = 4π2δ(kT − kB) (4.4.7)

δ(a1 − a2) Dirac’s delta function

Convolution with Dirac’s delta function causes a pure shift of the argument. The
spatially Fourier transformed electric field is therefore the Fourier transform of
the v(r)-function shifted by the vector kB. This is here stated in equation (4.4.8).

Ek(kT) = F 2 {v(r)} (kT − kB) (4.4.8)

Assuming that the photonic crystal has a rectangular unit cell, equation (4.4.8) is
the Fourier transform of a purely periodic function in both the x and y-direction.
Since the simulation software used only supports rectangular unit cells, this will
be valid for all photonic crystals discussed here. The non-zero values of the
Fourier transform can therefore be calculated as terms in the function’s 2D Fourier
series. The propagation direction or kT-vector corresponding to the different
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Figure 4.4.2: Diagram of kT-vectors associated with the terms in the 2D Fourier series
of the electric field

terms will however be shifted by kB. For example, the center-point that normally
is associated with an upwards propagating wave with kT = 0 will be the amplitude
of the wave propagating with kT = kB. Figure 4.4.2 illustrates some of the kT-
values associated with other points in the diagram of the Fourier series terms.

Since the simulations produce the electric field, and not the v-function, the
method for calculating Ek(kT) would firstly involve dividing the field with e jkB·r

to effectively remove the kB-dependence. Then the discrete Fourier transform
(DFT) [19] of exactly one unit cell could be calculated using an fft-algorithm.
The result of this would then give the terms in the Fourier series. In contrast
to the time continuous Fourier series, the DFT would provide a radiation dis-
tribution only for limited values of kx and ky. Typically the maximum kx-value
would be kBx + Nx/2 ∗ bxx. Here Nx is the number of voxels along the x-direction,
in other words the width of the unit cell measured in voxels. This should not
cause any problems as long as the maximum kx is higher than the wavenumber
for the light in air. The radiation at such kx-points must be zero anyway since
the field would be evanescent in the z-direction. The requirement is therefore
that the spatial resolution must be higher than a minimum value. This require-
ment is very much like the sampling theorem [19] used in signal theory. Other
concerns require the spatial resolution to be significantly higher anyway, mean-
ing this would not become a problem. In fact storing these spatially Fourier
transformed fields could remove a lot of redundant information and thereby save
storage capacity. This because the points for the Fourier transformed version of
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the fields that lie within the wave number usually are within a 3× 3 matrix while
the original non transformed fields usually fill a 30× 30 matrix. Disregarding the
points outside the wave number limit could therefore reduce the needed storage
space by approximately 100 times.

Coupling coefficients

Equation (4.4.8) gives the spatially Fourier transformed electric field in a cer-
tain propagation direction kT as a result of one single incident plane wave with
transversal wave vector which here will be labeled kTs. To further distinguish be-
tween the wave vectors in air and the bulk semiconductor, the wave vector in air
will here be labeled kTa. This is in conjunction with figure 4.1.2. The simulated
quantities will typically have two arguments that are transversal wave-vectors.
The first represents kT of the resulting wave in air, while the second one is kT
of the incident wave in the semiconductor. For example, the spatially Fourier
transformed electric field will be denoted Ek(kTa; kTs). Note that the difference
kTa − kTs must be a valid reciprocal lattice vector. Although the same quantities
are frequency dependent, this will not be stated explicitly to simplify the nota-
tion. A similar equation to equation (4.4.8) can also be found for the magnetic
field, and the power flow at different kTa can then be found with equation (4.4.9).

Sk(kTa; kTs) = < [Ek(kTa; kTs) × Hk
∗(kTa; kTs)] · ẑ (4.4.9)

ẑ Unit vector in the z-direction

Here equation (4.4.9) gives the simulated power transmitted through the surface
at different kTa as a result of a single incident plane wave with wave vector kTs.
Dividing this result by the total power of the incident wave i.e. the total power
in the reference simulation could subsequently give the coupling coefficients Γ

used in equation (4.1.11). Since the spatially Fourier transformed fields were
calculated using discrete Fourier transform [19], it is also necessary to divide by
the number of pixels in the cross section of the model. Equation (4.4.10) states
this mathematically.

Γ(kTa; kTs) =
Sk(kTa; kTs)

Nx Ny Pinc(kTs)
(4.4.10)

Γ(kTa; kTs) Coupling coefficient from kTs to kTa.
Nx Number of pixels along the x-axis of the model.
Ny Number of pixels along the y-axis of the model.
Pinc(kTs ) Simulated incident power on the surface (reference simulation).

The coupling coefficient Γ is stated somewhat differently in equation (4.4.10)
compared to equation (4.1.11). The integers m1 and m2 in equation (4.1.11)
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represent the kT of the source plane wave in the semiconductor, while in equation
(4.4.10) this is stated explicitly through kTs. The final radiation pattern can
subsequently be constructed by applying the coupling coefficients to the internal
radiation distribution Ik(kT) found in section 3.3.6, and summing all the terms
that couple to identical plane waves in air. Since the two possible polarizations for
the incident light are simulated independently, the contribution from both must
also be combined as the incident field is assumed to be unpolarized. Equation
(4.4.11) states this and gives the complete radiation pattern in air. The sums are
over the points in kTs where the vector difference kTs − kTa is a valid reciprocal
lattice vector of the photonic crystal.

Ika(kTa) =
1
2

∑
kTs

ΓT E(kTa; kTs) Iks(kTs) +
∑
kTs

ΓT M(kTa; kTs) Iks(kTs)

 (4.4.11)

Ika(kTa) External radiation pattern.
Iks(kTs) Internal radiation pattern found in section 3.3.6.

4.4.4 Resolution

The resolution of the external radiation pattern is the number of valid points in
the Ika(kTa)-function which are within the light cone, meaning that |kTa| < 2π/λ.
If the spacing between points in the x and y direction is ∆kx and ∆ky, respectively,
equation 4.4.12 states this resolution.

Resext =
4π3∆kx∆ky

λ2 (4.4.12)

Resext Resolution of the external radiation pattern.
∆kx Spacing between points in the x-direction.
∆ky Spacing between points in the y-direction.
λ Wavelength in vacuum.

The spacing between the points is preserved through the surface, but the light
cone is substantially widened because of the high refractive index of the semi-
conductor. This means that to achieve a particular ∆kx and ∆ky, the number of
points in kTs for which a simulation must be performed, is significantly higher
than the resolution obtained in the external radiation pattern. This number,
Resint, is given by equation (4.4.13). The ratio between the two resolutions is n2

where n = 3.8, meaning the obtained resolution of the external radiation pattern
would be 14 times less than the number of simulated points in kTs.
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Resint =
4π3n2∆kx∆ky

λ2 (4.4.13)

Resint Number of points in kTs for which a simulation must be performed.
n Refractive index of the semiconductor (3.8).

4.5 Simulation parameters

4.5.1 Units

The simulation software, MEEP, which has been used here uses its own units for
length and time. They are defined in such a way that the physical constants c,
ε0 and µ0 are all unity. To relate the simulation to the real world it is therefore
necessary to utilize the electromagnetic scaling properties discussed in section 2.4.
Equation (2.4.7) states the relation between the length ratio and the wavelength
ratio between two similar structures. Rearranging the equation can give the
relations in equations (4.5.1) and (4.5.2) which states the physical length of a
structure relative to the physical wavelength and in absolute terms, respectively.
Both these equations are based on a light velocity of 1 in the simulations. The
index s means the symbol denotes a quantity of the simulated structure, and the
index r means it is a real physical quantity.

lr

λr
= ls · νs (4.5.1)

lr = ls
c h νs

Ep
(4.5.2)

ls Length in simulation.
νs Optical frequency in simulation.
lr Physical length.
λr Physical vacuum wavelength.
Ep Physical photon energy.
c Physical speed of light in vacuum.
h Planck’s constant.

As can be seen in figure 4.3.1, the width of one unit cell is 1. This means that
the lattice constant also is 1, something which is true for all the simulation series
presented here. Looking at equation (4.5.1), the real lattice constant, measured
in wavelengths, has the same numerical value as the simulated optical frequency.
For normal frequency simulation series the range of simulated optical frequencies
was between νs = 0.4 to νs = 1.3, and for two low frequency series, it was between
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νs = 0.2 to νs = 0.6. The lattice constant of the corresponding real physical
structure, measured in wavelengths, would have the same value, and the absolute
values for the two photon energies 0.65eV and 0.7eV are listed in Table 4.5.1.

Table 4.5.1: Simulated physical lattice constants (a)

Photon energy Vacuum wavelength a @ νs = 0.2 a @ νs = 0.4 a @ νs = 1.3
[eV] [µm] [µm] [µm] [µm]
0.65 1.91 0.38 0.76 2.5
0.70 1.77 0.35 0.71 2.3

Another peculiar concept regarding the units is that the Bloch k-vector kB is
related to wavelength as 1/λ instead of the usual 2π/λ. To ensure consistency,
all kinds of k-vectors in the post processing software also follow this rule. These
kinds are in addition to Bloch k-vectors, the plane wave k-vectors and reciprocal
lattice vectors. Since rounding errors can be avoided because the irrational π-
factor is removed, this actually makes the parameter passing slightly easier. As
a consequence of this, equation (4.4.12) would lose a (2π)2-factor if the k-vector
were denoted in this way. The rest of the equations remain unchanged as they
typically consist of fractions of the form k/k0. Changing the denomination of
both the k-vector and the wave number does not affect the ratio between them.

4.5.2 Variable parameters

The actual simulation where one plane wave is excited and the transmitted field
is recorded, is typically characterized by a set of parameters. The variable pa-
rameters are those which are varied within a simulation series. The simulations
presented here had 4 such parameters which had their values scanned to cover all
possible combinations. All these scans can be characterized by a certain scanning
range and a resolution which together determine the number of simulations to
run. Since all possible combinations of these parameters were simulated their res-
olution ranges had a vital influence of the total running time of the simulations.
2 of these parameters were the 2 components of the kT-vector of the source (kTs)
which were scanned in order to cover all angles of incidence. The scanning range
was limited by the maximum wave number in the semiconductor (nk0,max) which
with the applied units is equal to nνmax. With the refractive index of GaSb at
3.8, and a maximum optical frequency of 1.3, the maximum wavenumber became
4.94. For the low frequency simulation series where νmax was 0.6, the maximum
wave number was instead 2.28. As mentioned in section 4.2.1 it was not neces-
sary to simulate the entire domain limited by nk0,max since the unit cells possess
certain symmetry properties. The square gratings had a horizontal, vertical and
a diagonal line of mirror symmetry which reduced the scanning range as illus-
trated in Figure 4.2.1. The hexagonal grating lacked the diagonal line meaning
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the entire quadrant where kx > 0 and ky > 0 must be simulated. The chosen
resolution for kx and ky was 0.1, and 0.05 for the low frequency simulations. The
other two variable parameters were the depth and radius of the grating holes,
and are defined in Figure 4.3.3. The upper bound for the depth is determined
by the thickness of the top layer of intrinsic GaSb of the LED shown in Figure
3.2.1. This is 1µm thick, and the hole depth should be limited to slightly less
than this. At the simulation frequency νs = 1, 1µm real length corresponds to
0.56 in simulation units, and an upper bound was therefore set at approximately
0.55. This will mean somewhat deeper than 1µm for the highest simulation fre-
quencies and somewhat shallower for the lower frequencies. For the low frequency
simulations, the limit was extended to 1.35. The upper bounds for the radius of
the holes were when neighbouring holes overlapped completely, effectively creat-
ing a lowered plane surface. The holes were however allowed to partially overlap
effectively creating a grating of pillars instead of holes. Keeping in mind that the
grating period was unity, this limit is 1/

√
2 for the square gratings , and 1/

√
3

for the hexagonal grating. The ranges and resolutions of all these four variables
are listed in Table 4.5.2. They are given for six types of simulations where three
of them are for the three different grating types presented in section 4.3.4, and
the other three are more detailed simulations of the square grating of holes.

4.5.3 Constant parameters

The simulations are also characterized by a set of constant parameters. These are
identical for the individual simulations within a simulation series, and typically
describe the physical structure being simulated. The size of the simulation cell,
the spatial resolution, the distances between all the layers shown in Figure 4.3.1,
and the thicknesses and the strength of the two PML layers are such constant
parameters. Also these parameters affect both the total running time and the
accuracy of the results. Large structures are typically more realistic, but lead to
a higher number of voxels, and consequently longer running time for the simu-
lations. The next sections will present different groups of constant parameters
which are used in the simulations. The variables are also listed in Table 4.5.3
where the given values are valid for the square gratings with optical frequencies
ranging from 0.6 to 1.3.

Layer spacings

The distances between the different layers in Figure 4.3.1 are as mentioned con-
stant parameters. It is typically best with large spacing between each layer in
Figure 4.3.1 and with thick PML. This reduces any influence the surface and
bottom PML might have on the source, and possible evanescent fields from the
surface are allowed to decay properly before reaching the recording layer and the
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top PML. Two sets of values were used for these parameters, one for each of the
two frequency ranges. The spacings in the low frequency simulations were twice
the ones in the normal frequency simulations. This because evanescent decay
rates were assumed scale approximately inversely proportional to the wavelength.
The spacings shown in Figure 4.3.1 were used for the simulations with highest
frequency. These are also stated in Table 4.5.3, and can be recognized as the first
letter in the parameters’ names is a lower case “d”.

Simulation time

The simulation time, that is the number of time units, for each simulation was
controlled by two parameters. One of these controlled the Gaussian source which
was used to excite the fields. The time response is supposed to be Gaussian
which implies it never actually reaches zero, and that it has been non zero for an
infinitely long time before it reaches its peak value. This is impossible to achieve,
and the source must instead be abruptly started finitely before the peak and
abruptly stopped finitely after the peak. The time separating the peak and both
turn on and cut off is defined by a parameter the parameter “sourceCutoff”. A
long waiting time would naturally increase the simulation time while a short one
could introduce errors by exciting unexpected high frequency components. The
simulation must also at one time be stopped. This time is for all the simulations
set to 10 times the e−2-width of the Gaussian pulse. The second parameter
concerning the simulation time is the stop threshold. In this case it is a measure
of how much the Poynting vector in the z-direction in the center of the recording
plane must decay from its maximum value before the simulation is stopped. A
too low value here would alter the frequency content of the recorded field, while a
very large value would cause a needlessly long simulation time. The actual value
was set to 1 · 10−4 for most of the simulations, and 1 · 10−6 for the low frequency
simulations. Both of these time related parameters are stated in Table 4.5.3 as
“sourceCutoff” and “stopTh” where the latter is only valid for simulations with
frequency range νs = 0.6 to νs1.3.

Spatial resolution

The spatial resolution is the most critical parameter with regards to the total run-
ning time of the simulations. It specifies a three dimensional resolution, meaning
the amount of voxels is cubically dependent on this parameter. In addition the
resolution in time is linearly dependent on the resolution. This concept is ex-
plained in more detail in section 4.5.3. This means that the running time of the
simulations are biquadratically dependent on the resolution. Choosing just high
enough resolution is therefore essential if the simulations is to be completed within
reasonable time. The developers of the simulation software have recommended a
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rule of thumb stating that even crude simulations should have eight voxels per
wavelength in the region of highest refractive index. For the refractive index of
GaSb which is 3.8, and an optical frequency of 1, this translates to a resolution
of “30.4”. The chosen resolution was 30 which means that the accuracy for the
frequencies above 1 can not be considered to be very good. This was however
necessary for the simulations to complete within reasonable time. The discretized
Maxwell equations are however linear, meaning that the power at different fre-
quencies should not mix. This ensures that imperfections for high frequencies do
not affect the lower frequencies. Some simulations were alse performed with a
resolution of 60 as a way of estimating the accuracy of the simulations with lower
resolution. As can be seen from Table 4.5.2, these were only performed for very
few gratings. The ones that looked most interesting after the regular simulations
were selected for the high resolution simulations. The resolution in the regular
low frequency simulation was conducted with a resolution of only 20, while the
low frequency high resolution simulation had a resolution of 60. The resolution
for the simulations with neither high resolution or low frequency is stated in Table
4.5.3.

Sampling frequency

The fields are sampled in the recording plane as the simulation progresses. It is
important that this frequency is high enough, but too high a value would result in
needless disk writing and thereby increasing the simulation time. Also the post
processing would require more time as the resulting dataset would be higher.
The minimum value for this frequency is limited by the folding in frequency
domain which occurs when either sampling a continuous signal or down-sampling
a discrete signal [19]. Sampling of real signals must therefore be performed at
a frequency which is twice the highest frequency component in the signal. For
complex signals where the prefix of the frequency is known, this can be relaxed to
a sampling frequency that is simply higher than the highest frequency component
in the signal. This is because the spectrum of such signals do not have inversion
symmetry around the origin. The size of the simulation time steps determines the
highest possible sampling frequency, and to get maximum accuracy the applied
sampling frequency must be such that the time between consecutive samples is a
multiple of the simulation step size. In fact the simulation software rounds off the
specified sampling frequency to achieve this. By default the simulation software
sets the time steps to half the numerical value of the distance between adjacent
voxels. This is according to the developers of the simulation software, very near
the limit of numerical stability. The similarities in numerical values come from
the fact that the speed of light in the simulations is unity. The highest frequency
utilized in the simulations is 1.3, however since the spectrum falls off exponentially
there is also power at higher frequencies. A sampling frequency of 5 was therefore
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chosen as it leaves a significant margin down to the 1.3-limit, and it is also a valid
sampling frequency for all the spatial resolutions which have been used in these
simulations. The same sampling frequency has been used for all the simulations
as this simplified the post processing. The value is stated in table 4.5.3 where it
has the symbol “Fs”.

Since the total running time was a highly limiting factor for these simulations, it
was essential that all constant parameters were just at the limit where they started
to affect the results. In order to approach this limit, a series of 2D simulations
were conducted where these parameters were swept. The unit cell was like the
cross section of the 3D cell, and effectively formed a surface with grooves instead
of holes. The chosen values for these parameters are stated in Table 4.5.3.

Subpixel smoothing

Subpixel smoothing, or subpixel averaging, is a feature of the simulation software
which make voxels on the boundary between two materials take a weighted aver-
age value. As mentioned in section 4.2.2 Farjadpour [7] shows how this improves
the accuracy of the simulations. The reason it is mentioned here is that not all
simulation series had this feature enabled. For most of them there was not a
downside to having it enabled, but for the square grating of isotropically etched
holes it significantly increased the running time. This feature was therefore turned
off for that specific simulation series. The reason for this increase in running time
is probably that the this grating had to be defined using a programming function
that returned a certain ε as a function of position. The other gratings could
instead be defined using predefined geometric shapes. It is reasonable to believe
that the latter increases the efficiency of the calculation of this average ε.
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Table 4.5.2: Variable parameters

Square grating of holes
kx ky d R

Minimum 0 0 0.05 0.05
Resolution 0.1 0.1 0.05 0.05

Maximum 5.9 min
(
kx,

√
k2

max − k2
x

)
0.55 0.7

Square grating of isotropically etched holes
kx ky d R

Minimum 0 0 0.05 0.05
Resolution 0.1 0.1 0.08 0.05

Maximum 5.9 min
(
kx,

√
k2

max − k2
x

)
0.53 0.65

Hexagonal grating of holes
kx ky d R

Minimum 0 0 0.05 0.05
Resolution 0.1 0.0980 0.08 0.05

Maximum 5.9
√

k2
max − k2

x 0.53 0.55

Square grating of holes (Low frequency)
kx ky d R

Minimum 0 0 0.15 0.1
Resolution 0.05 0.05 0.15 0.05

Maximum 2.25 min
(
kx,

√
k2

max − k2
x

)
1.35 0.7

Square grating of holes (High resolution)
kx ky d R

Minimum 0 0 0.35 0.45
Resolution 0.1 0.1 - 0.05

Maximum 5.9 min
(
kx,

√
k2

max − k2
x

)
0.35 0.55

Square grating of holes (High resolution and low frequency)
kx ky d R

Minimum 0 0 0.9 0.5
Resolution 0.05 0.05 - 0.05

Maximum 2.25 min
(
kx,

√
k2

max − k2
x

)
0.9 0.6
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Table 4.5.3: Constant parameters for the square gratings with νs ∈ [0.6, 1.3]

Parameter Description Value

dPMLTop Thickness of top PML 0.4
dTransPML Distance between top PML and record-

ing layer
0.2

dSurfTrans Distance between recording layer and
semiconductor surface

0.6

dSourceSurf Distance between semiconductor sur-
face and source layer

0.9

dReflSource Distance between source layer and
recording layer for reflected wave (this
recording layer was not used)

0.1

dPMLRefl Distance between recording layer for re-
flected wave and bottom PML

0.05

dPMLBot Thickness of bottom PML 0.2
sourceCutoff Waiting time before the Gaussian

source is stopped/started (measured in
multiples of the Gaussian e−2-width)

10

stopTh Fraction of maximum value before sim-
ulation is terminated

1 · 10−4

TPMLSt Top PML strength (related to exponen-
tial decaying coefficient)

6

BPMLSt Bottom PML strength (related to ex-
ponential decaying coefficient)

1

Dx Cell size in the x-direction 1
Dy Cell size in the y-direction 1
Fs Sampling frequency 5
resolution Spatial resolution 30
eps-averaging? Subpixel smoothing On
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4.6 Semi analytic reference

4.6.1 Purpose

When calculating both the surface transmission coefficient and the radiation pat-
tern, the simulations need to be compared to a reference simulation. That is a
simulation without a semiconductor-air interface. The temporal Fourier trans-
form of the recorded fields are used to find the power that is emitted upwards
by the source in the semiconductor. The usable result from these reference sim-
ulations is therefore a power spectrum that calibrates the source. In general this
spectrum can be expected to depend on the size of the simulation cell, the reso-
lution and the kT-vector of the source, kTs. For most of the simulation series, it
is therefore necessary with a dedicated set of reference power spectra that covers
all the simulated kTs-vectors. Even though the reference simulations seem to be
very easy with just a homogeneous material as seen in Figure 4.3.1, they are in
fact much more time consuming than the actual simulations. The wave must pass
through much more high index material with low velocity, and there is not any
structure that can disturb the wave to make it move more upwards. The latter
especially apply to waves with a long kTs-vector, and thereby a very oblique angle
of propagation. Since the different frequencies in the pulse have equal kTs-vector,
they must have different angle of propagation and also different velocity in the
z-direction. This will cause the pulse to be very chirped when arriving at the
recording plane. This can in turn lead to that the lowest frequencies with lowest
velocity to a greater extent than high frequencies, arrive after the simulation has
stopped causing errors in the power spectrum. To reduce these problems, at-
tempts towards an analytical model of the reference was made, and is presented
in the following section.

4.6.2 Dependence on the transversal wave vector

The following section will concentrate on the power spectrum’s dependence of
the transversal wave vector. The analysis will be carried out with a 2D model
in the xz-plane. It is assumed that it can be extended to 3D by replacing the kx

component in the 2D case with the length of the kT-vector. Since the polarization
direction is relative to the propagation direction as a TE or TM wave, this can
be shown to be true by rotating the coordinate system around the z-axis. The
objective is to find the emitted power as a function of kTs and the optical frequency
while assuming the current densities are independent of kTs. The procedure will
be shown for TE polarized light, while only the result will be presented for TM
polarized light. The model for TE polarized light is illustrated in Fiugre 4.6.1
and shows a planar monochromatic source which radiates equally in both the
positive and negative z-direction in an infinite homogeneous dielectric medium.
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Since kx is pinned for both the upwards and downwards propagation, kz must be
equal with opposite sign, meaning θ+ = θ−.
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Figure 4.6.1: Monochromatic TE-wave excited by planar current source

In the plane of the source, the electric current density is given, in the units of
the simulation software, by equation (4.6.1). The electric and magnetic fields are
assumed to be plane waves with kx identical to the source as stated in equations
4.6.2 and 4.6.3.

Je = Je0e j2πkx x (4.6.1)

Je Electric current density.
Je0 Complex amplitude of electric current density (Only in the y-direction).

E =

{
E0e j2π(kx x+kzz) if z ≥ 0
E0e j2π(kx x−kzz) if z < 0 (4.6.2)

H =

{
H0e j2π(kx x+kzz) if z ≥ 0
H0e j2π(kx x−kzz) if z < 0 (4.6.3)

E0 Complex vector amplitude of the electric field.
H0 Complex vector amplitude of the magnetic field.

The vector amplitudes of both the current density and the the electric field are
assumed to only have y-components with respective amplitudes g and a as stated

84



SIMULATION MODEL 4.6 Semi analytic reference

in equations (4.6.4) and (4.6.5). The objective is first to find the relation between
the amplitudes a and g.

Je0 = ŷg (4.6.4)

E0 = ŷa (4.6.5)

ŷ Unit vector in the y-direction.

If a general plane wave with arbitrary polarization is inserted into the first of
Maxwell’s equations (2.2.11), then the relation in equation (4.6.6) can be derived.
Note that right side has the factor ν instead of the usual ω. This is because k is
denoted in the units of the simulation software.

k × E0 = νµ0H0 (4.6.6)

ν Optical frequency

Equation (4.6.6) can be used to find the complex vector amplitude of the magnetic
field, and the result is stated in equation (4.6.7). Here the relations in equations
(4.6.8) to (4.6.10) have been used to replace the k-vector components. Note that
since k is different above and under the source plane, H0 will also be different.

H0 =

{ aη0
n [−x̂ cos(θ) + ẑ sin(θ)] if z ≥ 0

aη0
n [x̂ cos(θ) + ẑ sin(θ)] if z < 0 (4.6.7)

η0 Vacuum wave impedance
(√

µ0
ε0

)
.

kz = k cos(θ) (4.6.8)

kx = k sin(θ) (4.6.9)

k
νµ0

=
nν
c

=
nν
√
µ0ε0

νµ0
= n

√
ε0

µ0
=

n
η0

(4.6.10)

n Refractive index
k Wave number (= |k|)
θ Propagation angle, equal to θ+ and θ− in Figure 4.6.1

The electromagnetic equivalence principle is presented by Balanis in [1] chapter
12. It is presented as a way of constructing imaginary sources based on the
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knowledge of the fields on a closed surface which encloses real sources. In its
most basic form, it is actually the boundary conditions for the surface and is here
stated in equations (4.6.11) and (4.6.12).

Jm = −n̂× (E+ − E−) (4.6.11)

Je = n̂× (H+ − H−) (4.6.12)

Jm Magnetic current density
Je Electric current density
n̂ Normal vector to the source surface (= ẑ)
E+ Electric field just above the source surface
E− Electric field just below the source surface
H+ Magnetic field just above the source surface
H− Magnetic field just below the source surface

It can easily be verified that equation (4.6.11) is zero by inserting the electric
field form equation (4.6.2). This is as expected since the source does not have
a magnetic current density. Inserting the magnetic field into equation (4.6.12)
does however give a result as H0 is not the same above and under the source
plane. The result is a relation between the amplitudes a and g, and is stated
in equation (4.6.13). The fact that the left and right sides of equation (4.6.12)
could be matched also verifies the plane waves assumed in equations (4.6.2) and
(4.6.3).

Je0 = ŷg = −2 cos(θ)
aη0

n
ŷ (4.6.13)

Since a is known, it is now possible to find expressions for the fields expressed by
the amplitude of the current density g. Equation (4.6.14) uses this to find the
time average Poynting vector above the source plane.

S̄ =
1
2

(E × H∗) =
n g2

8η0 cos2(θ)
[x̂ sin(θ) + ẑ cos(θ)] (4.6.14)

S̄ Time average Poynting vector

The power flow per unit area out of the source is the component of S̄ which is
normal to the source surface. Multiplying this component by the area of the
source gives the total power P emitted by the source at a certain angle. This is
performed in equation (4.6.15).
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Ps = AsS̄ · ẑ =
n As g2

8η0 cos(θ)
(4.6.15)

As Area of the source
Ps Power emitted upwards by the source

In the simulations g is kept constant for all angles, and it is therefore useful to
express the emitted power as a function of the power emitted at θ = 0. Equation
(4.6.16) states this relatively simple relation, and equation (4.6.17) states the
same relation expressed with k-vectors instead of the angle θ

Ps(θ) =
Ps(θ = 0)

cos(θ)
(4.6.16)

Ps(kT) =
Ps(θ = 0)√
1 −

(
|kT |

k

)2
(4.6.17)

If the source instead was emitting TM polarized radiation, the relations in equa-
tions (4.6.16) and (4.6.17) would still apply. The derivation would only have been
slightly different. For example equation (4.6.11) would have been used instead of
equation (4.6.12) and η0 would be in the nominator instead of the denominator
as in equation (4.6.15). In the simulations this relation has been used to form the
reference for the individual simulations. For each simulation series and polariza-
tion, the only necessary reference simulation was the one with θ = 0. The other
reference spectra were calculated using equation (4.6.16).
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Chapter 5

Software

5.1 MEEP

5.1.1 Background

The simulation software which has been used to perform the simulations pre-
sented here is called MEEP, and was developed at MIT. The properties of the
software are described in detail by Oskooi in [17]. This chapter will not explain
the details of MEEP nor the details of how to use it. Only a brief overview
will be given so that it is possible to understand the simulations that have been
performed. As mentioned in section 4.2.2, MEEP uses the FDTD method to
simulate electromagnetic wave propagation.

5.1.2 Usage

MEEP runs in a Linux command window where all the input and output to and
from the program is performed through command line parameters, script files and
output files. There isn’t any graphical user interface to either construct the sim-
ulation model or to visualize the results. MEEP must therefore be set to output
data to files which can be loaded by another tool which has visualizing properties.
For all the work presented here MATLAB has been used both to visualize the
results and to do post processing on outputs from the simulations. The typical
way of starting MEEP is from the command line to invoke it with a control file as
an argument. An arbitrary number of arguments of the form “parameter=value”
can be added before the command file to specify certain parameters defined in
the control file. An example of such an invocation is shown in Listing 5.1.

Listing 5.1: Invoking MEEP from a Linux command window
meep HoleDepth=0.35 C t r l F i l e . txt
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The contents of the control file defines the conditions of the simulations. The
number of dimensions, the geometry, the sources, the recording planes/lines/-
points, the placement of the output files etc. The succeeding parameters define
parameter values which are valid for that single execution. Typically the variable
parameters are defined in this way, while the constant parameters are defined
inside the control file. The control file is really a script that is executed when
MEEP starts. The scripting language is called Scheme, and is described in its
definition [13]. The next section will give a short introduction into the parts of
this language which have been used in the work presented in this thesis.

5.1.3 Scheme

Variables

Variables are in Scheme defined and assigned through the define-statement. It
should immediately be followed by the variable name and the value to assign to
the newly created variable. All this, including the define-statement itself, must
be encapsulated in parentheses. Later the variable can be reassigned to another
value using the set!-statement in a similar manner. Listing 5.2 shows an example
where a variable first is defined and assigned the number 5, and then reassigned
the number -1.1.

Listing 5.2: Example of variable definition and reassigning
( d e f i n e varName 5)
( set ! varName −1 .1)

As mentioned in section 5.1.2, variables can be set through the command line. To
allow this the variable must be defined with the define-param-statement instead
of the define-statement. The value assigned in the control file with the define-

param-statement will then act as a default if the variable is not assigned through
the Linux command line. Variables do not need to be numbers, but are in general
objects of any type.

Calling functions

Functions are in Scheme called using the function name followed by a list of all
input parameters. All of this must be encapsulated inside a pair of parentheses.
Listing 5.3 gives such an example.

Listing 5.3: Calling a function with 3 input parameters
( FunctionName var1 var2 var3 )
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If a variable is to be set to the output value of a function, the define or set!-
statement must be used with the content of Listing 5.3 in the place of the value.
Listing 5.4 gives such an example.

Listing 5.4: Assigning the output value from FunctionName to the variable varName
( set ! varName (FunctionName var1 var2 var3 ) )

Operators

Operators such as + - / and * are available in Scheme as functions. This
means that the function calling syntax must be used instead of the more usual
<operand> <operator> <operand>-syntax. Predefined functions with the names
“+”, “-”, “/”, and “*” exists. These take any number of parameters, but two is the
most common. As can bee seen in Listing 5.5, the syntax is not a big problem for
simple calculations, but easily becomes difficult with slightly more complicated
arithmetics.

Listing 5.5: Two examples of operator usage
; Ca l cu l a t ing 2 + 3
(+ 2 3)

; Ca l cu l a t ing (2 + 4∗7.6)/2
(/ (+ 2 (∗ 4 7 . 6 ) ) 2)

Outputs

The outputs from the simulations are handled by dedicated functions, but if
outputs from the control file script is wanted, the Scheme output functions must
be used. Two simple ways of doing this is to save text to a file or to print the
text to the screen making it appear in the Linux command window. Printing to
the screen can be performed using the display-function as shown in Listing 5.6.

Listing 5.6: Print to the screen
; Pr in t ing t e x t
( d i sp l ay ”He l lo World ”)

; Pr in t ing the va lue o f a v a r i a b l e
( d i sp l ay varName)

To save text to a file, it is necessary to first open the file using the open-output-

file-function. The function outputs an object that must be used as a reference
to that file. Writing text to the file can subsequently be done using the display-
function with the file reference as the second argument. The display-function
can then be called an arbitrary number of times to append more text to the
file. Before the script ends the file must be closed by calling the function close-

output-port. Listing 5.7 gives an example of this process.
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Listing 5.7: Writing text to a file
; Opening (and c rea t ing ) an output f i l e
( d e f i n e f i l e R e f ( open−output− f i l e ”FileName . txt ” ) )

; Writing t e x t to the f i l e
( d i sp l ay ”Star t o f f i l e \n” , f i l e R e f )
( d i sp l ay ”Hole radu i s = ” , f i l e R e f )
( d i sp l ay HoleRaduis , f i l e R e f )

; C los ing the f i l e
( c lose−output−port f i l e R e f )

Defining functions

New functions can also be defined in Scheme. As when defining new variables,
the define-statment is used, but the name of the function and its arguments
must be encapsulated inside a pair of parentheses. The body of the function then
follows, and the last statements are regarded the output. Listing 5.8 states the
syntax for defining functions, and Listing 5.9 shows an example of a function
that calculates the square of its input, prints the result to the screen and finally
returns the result.

Listing 5.8: Syntax for defining a function
( d e f i n e ( FunctionName arg1 arg2 arg3 )

( Line 1)
( Line 2)
( Line 3)
( Line 4)

)

Listing 5.9: Function for calculating the square of a number
( d e f i n e ( ca l cSquare number )

( d e f i n e r e s u l t (∗ number number ) )
( d i sp l ay ”The Result i s : ”)
( d i sp l ay r e s u l t )
( r e s u l t )

)

Objects

As mentioned earlier, not only numeric variables are allowed. Examples of strings
have been shown, and many other types are also possible. In particular it is
possible to define new types of variables that are not part of the Scheme language.
Such types are generally called objects, and are defined by a class which specifies
the object properties. These properties are usually a list of variables with a given
name that are of a certain type. These variables can both be primitive types like
numbers or they can be objects themselves. Class definition will not be discussed
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here as it was not used in the simulations, only object creation based on predefined
classes will be mentioned. To create an object, the make-statement must be used
followed by the class name and a list of properties and their corresponding values.
The order of these property-value pairs can be arbitrary. Listing 5.10 states the
general syntax for creating an object from a certain class.

Listing 5.10: Syntax for making an object
(make ClassName ( PropertyName1 value1 ) ( PropertyName2 value2 ) )

If the object is to be used later in the program, it must be assigned to a variable.
Listing 5.11 states the general syntax for this.

Listing 5.11: Syntax for making an object and assigning it to a variable
( d e f i n e varName (make ClassName ( PropertyName1 value1 ) ( PropertyName2 value2 ) ) )

Listing 5.12 shows an example from the actual simulations. Here an object is
created from the dielectric-class and assigned to the variable GaSb. The only
parameter necessary is named epsilon, and its value is set to the square of the
variable refrIndex. This variable must have been defined before the line in
Listing 5.12.

Listing 5.12: Creating an object from the dielectric-class and assigning it to the
variable GaSb

( d e f i n e GaSb (make d i e l e c t r i c ( e p s i l o n (∗ r e f r I ndex r e f r I ndex ) ) ) )

Lists

Lists or arrays of numbers or objects are very common in programming. In
Scheme a list of any type of variable can be created using the list-function.
Calling it with any number of input parameters returns a list containing all these
parameters. Listing 5.13 shows an example where a list containing the number
from 0 to 5 is assigned to the variable myList.

Listing 5.13: List of all numbers from 0 to 5
( d e f i n e myList ( l i s t 0 1 2 3 4 5) )

5.1.4 Configuring MEEP

MEEP is configured through a set of predefined variables. For example the spatial
resolution is set by assigning the number to the predefined variable resolution

using the set!-statement. Other variables are more complicated as they consist
of more than a single number. Because the number of such variables is very high,
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not all will be explained. Only the ones used to define the geometry and the
source will be presented here. These are the most complicated as they involve
many parameters. In addition the functions for starting the simulations and
saving the results will be presented. For the rest of the parameters the reader is
referred to the control file for square gratings of holes in Appendix A and to the
MEEP Reference [16].

Defining Geometry

The geometry illustrated in Figure 4.3.1 is defined through a single variable named
geometry. This is a variable that holds a list of objects from the predefined
geometry-objects-class. These objects are typically geometric shapes such as
blocks, spheres, cylinders and cones. When constructing them it is always neces-
sary with parameters defining the material they consist of and three coordinates
that define their center position. Depending on the actual shape, it is also neces-
sary with parameters defining their sizes and directions. For example the radius
is the only necessary additional parameter for a sphere, while a cylinder must
be specified by the radius, the height and the direction of its axis. Geometric
shapes can also be specified by a user defined function. Such a function must
take a point in three dimensions as input, and return the corresponding dielectric
constant. The geometry in the simulations is set as in Listing 5.14.

Listing 5.14: Geometry in simulations
( set ! geometry ( i f r e f ? ( l i s t a l lSemiconductor ) ( l i s t semiConductorSlab ho le ) ) )

The if-function returns the second input argument if the first is true, or it re-
turns the third if the first one is false. In the simulations ref? is used to
determine if it is a reference simulation or not. If this is the case, the geome-
try will be defined by the object allSemiconductor which fills the entire cell
with semiconductor material. If it is not a reference, then the two objects semi-
ConductorSlab and hole determine the outcome, and will make the simulation
model shown in Figure 4.3.1. The object allSemiconductor is a block placed
in the center of the simulation cell and which is slightly bigger than it to make
sure it is completely filled. Also semiConductorSlab is a block, but it is cen-
tered further down in the model and does not extend to the top. This only fills
some of the model with semiconductor, and makes a plane interface between the
semiconductor and air which is the default material. The holes making the pho-
tonic crystal are introduced by the object hole which is made of air and extends
into the mentioned semiConductorSlab-object. Because hole is last in the list
in Listing 5.14, it has priority over semiConductorSlab. Listing 5.15 shows the
construction of all of these objects. The positions and sizes of the different ob-
jects have previously been defined based on the variables discussed in sections
4.5.2 and 4.5.3.
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Listing 5.15: Definitions of geometric objects
1 ( d e f i n e semiConductorSlab
2 (make block
3 ( cent e r 0 0 (− cSemiConductor 1) )
4 ( s i z e 1 .1 1 .1 (+ dSemiConductor 2 ) )
5 ( mate r i a l (make d i e l e c t r i c ( e p s i l o n (∗ r e f r I ndex r e f r I ndex ) ) ) )
6 )
7 )
8
9 ( d e f i n e ho le

10 (make cy l i nd e r
11 ( c ente r 0 0 cDitch )
12 ( rad iu s holeR )
13 ( he ight (∗ 2 holeDepth ) )
14 ( mate r i a l a i r )
15 )
16 )
17
18 ( d e f i n e a l lSemiconductor
19 (make block
20 ( c ente r 0 0 0)
21 ( s i z e 1 . 1 1 .1 (+ geomHeight 2 ) )
22 ( mate r i a l (make d i e l e c t r i c ( e p s i l o n (∗ r e f r I ndex r e f r I ndex ) ) ) )
23 )
24 )

Defining the source

The source is set through the predefined variable sources which is a list of an
arbitrary number of source-objects. The bottom line of Listing 5.16 sets this
variable to the output of the function defSource which is the rest of Listing
5.16. The function returns a list with two elements. This is necessary because
the source must be able to have an arbitrary polarization within its plane, and
each source element can only be polarized in either the x, y or z direction. The
two sources are therefore polarized in the y and x direction respectively, and
their amplitudes AmY and AmX determine the effective polarization. The top of
the defSource-function is concerned with setting these amplitudes such that the
polarization fits the direction of the kTs-vector. The last parameter used when
making the source-objects has the name amp-func, and is set to a function called
sourcePhaseFunction. This function is used to specify the source’s spatial de-
pendence. It must have a position in three dimensions as the input, and the
output must be the amplitude in that point. This amplitude will be multiplied
with the AmX or AmY to form a final amplitude. This is used to phase modulate
the source as a function of position to implement the specified kTs-vector. As
indicated in Listing 5.16, there are several other parameters involved in the cre-
ation of a source-object as well. These will however not be explained in more
detail here, and the reader is instead referred to the MEEP Reference [16].

Listing 5.16: Defining the source
1 ( d e f i n e ( sourcePhaseFunction P)
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2 ( make−polar 1 (+ (∗ 2 p i ( vector3−x P) kxSource ) (∗ 2 p i ( vector3−y P)
kySource ) ) )

3 )
4
5 ( d e f i n e ( de fSource )
6 ( d e f i n e AmX 0 . 0 )
7 ( d e f i n e AmY 1 . 0 )
8 ( d e f i n e ADenom ( sqrt (+ (∗ kxSource kxSource ) (∗ kySource kySource ) ) ) )
9 ( i f (not (= ADenom 0 . 0 ) )

10 ( begin
11 ( set ! AmX (/ (∗ −1.0 kySource ) ADenom) )
12 ( set ! AmY (/ (∗ 1 .0 kxSource ) ADenom) )
13 )
14 )
15
16 ( l i s t
17 (make source
18 ( s r c (make gaus s i an− s r c ( f requency Fcenter ) ( fwidth Fwidth ) ( c u t o f f

sourceCuto f f ) ) )
19 ( component ( i f TE? Ey Hy) )
20 ( c ente r 0 0 cSource )
21 ( s i z e 1 1 0)
22 ( amplitude AmY)
23 ( amp−func sourcePhaseFunction )
24 )
25 (make source
26 ( s r c (make gaus s i an− s r c ( f requency Fcenter ) ( fwidth Fwidth ) ( c u t o f f

sourceCuto f f ) ) )
27 ( component ( i f TE? Ex Hx) )
28 ( c ente r 0 0 cSource )
29 ( s i z e 1 1 0)
30 ( amplitude AmX)
31 ( amp−func sourcePhaseFunction )
32 )
33 )
34 )
35
36 ( set ! s ou r c e s ( de fSource ) )

Starting the simulation

When all settings have been configured the simulation can be started by running
one of five available run-functions. They differ mainly in how the simulation is
terminated. The run-function used in the simulations described in this thesis is
called run-sources+, and the execution of it is shown in Listing 5.17. First it
runs the simulation until all sources have shut down. Then it relies on the out-
put of the function which is given as the first input parameter to run-sources+,
namely the function stop-when-fields-decayed. For every timestep in the sim-
ulation this function is called to determine if the simulation is to be terminated.
A specific field component at a given point is checked and compared to its max-
imum value. A return value signaling termination is given if the field component
has decayed to a given fraction of its maximum value. More precisely, the max-
imum value within a given time block is compared to the maximum value since
simulation startup. If it has not decayed enough, the simulation continues for
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another equally sized time block. Evaluating the maximum value within a time
block instead of continuously evaluating it avoids termination of the simulation
if the field is below the threshold only for a short time before increasing again.
As shown in Listing 5.17, the function stop-when-fields-decayed takes four
input parameters. These respectively set the time block length to 5 time units,
specifies that the z-component of the Poyntings vector is the field to consider,
defines the point at which to check the field, and specifies the fraction the field
must have decayed. The latter is also mentioned in section 4.5.3.

Subsequent to the first input parameter to run-sources+, an arbitrary num-
ber of step functions can be entered. These are functions that will be called for
every or some of the timesteps in the simulation. The ones that are used as input
parameter to the run-sources+-function will be called for every time step. De-
pending on the actual step function used, it might also take an arbitrary number
of step functions as input parameters. In such a way a chain of step functions
can be constructed. The last function in the chain typically performs an action
or returns a particular value. The intermediate step functions typically either
control the execution of the consecutive step functions by calling them only at
certain timesteps, or they manipulate the data returned from the consecutive
step functions before they return it themselves. Two such chains are used in the
simulations presented here, and both are shown in Listing 5.17. The first one
consists of two step functions, where the first is called at-beginning. It will be
called every timestep, but it will only call its consecutive step functions on the
first timestep. Its only consecutive step function is output-epsilon which saves
the ε(r)-grid to a file with a predefined name. The second chain is concerned with
saving the fields in the recording layer. The first function called to-appended

saves the output it gets from its consecutive step functions. The second function
in the chain called at-every calls its consecutive functions and relays the out-
put with a certain time interval. This is how the actual sampling frequency is
realised. The third function called in-volume expects its consecutive functions
to return data for each voxel in the simulation grid. It relays only the part of
the grid which lies within a given “volume”. This “volume” can actually also be a
plane, line, or even a point, and is here used to specify the recording layer. The
forth link in the chain is two step functions which return the actual electric and
magnetic fields for the entire volume. Together this chain saves the fields in the
recording plane with a certain sampling frequency, such that they can be loaded
for post processing.

Listing 5.17: Starting simulation
1 ( run−sources+
2 ( stop−when− f ie lds−decayed 5 Sz ( vector3 0 0 cTrans ) stopTh )
3 ( at−beginning output−eps i lon )
4 ( to−appended ( str ing−append f i l e P r e f i x ” T Rxi ” (number−>string Rxi ) ” Ryi

” (number−>string Ryi ) )
5 ( at−every (/ 1 Fs )
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6 ( in−volume
7 ( volume ( cent e r 0 0 cTrans ) ( s i z e 1 1 0) )
8 ou tpu t− e f i e l d output−h f i e ld
9 )

10 )
11 )
12 )

5.2 Execution

5.2.1 Simulation groups

Section 5.1.4 described how MEEP is configured and how a simulation is started.
This section will describe how the execution of all the different simulations was
organized. As explained in section 4.2.1, a separate simulation must be run for
every kT-vector of the source (kTs) that is to be simulated. To achieve adequate
resolution in the kTs-space, it was necessary with a rather high number of simu-
lations. To be able to form a radiation pattern from the results it was necessary
that for every kTs that was simulated, a simulation was also necessary for all the
kTs-vectors which have the same point in the Brillouin zone (kB). This is most
easily accomplished by generating a grid of points to simulate in the Brillouin
zone, and for each of these points run a simulation for all kTs that corresponds
to the current kB-point. More precisely it means that for all the points in the
Brillouin zone, a simulation must be run with kTs equal to kB added an arbitrary
number of reciprocal lattice vectors while limiting the length of kTs to less than
the wave number. All these simulations which share a common kB-point will for
the rest of this chapter be denoted as a simulation group. The control file which
was used and is shown in Appendix A performed a simulation for all simulations
in such a simulation group. This means it was only necessary to start MEEP
from the command line once for every kB-point. The actual kB-point then had
to be given as an argument as described in section 5.1.2. Simulating the entire
group in one MEEP startup reduced the influence of the overhead running time
caused by the initiation process, while allowing external applications to control
the resolution in kTs-space.

5.2.2 Parallel computing

The amount of simulations which had to be executed was very large, meaning a
single computer would not be able to complete the task within reasonable time.
It was therefore necessary to split up the task into smaller pieces and distribute
the load on a large amount of computers. A total of 76 computers in a student
computer room were used to perform these calculations. As the simulations were
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performed during the summer holiday most of these rooms were vacant, and could
be used for this purpose. This section will focus on how the simulation task was
split up between these computers and how this was organized.

Splitting up a simulation series

The term simulation series was introduced in section 4.3.5, and denote all sim-
ulations for a certain type of grating. That is all the simulation groups in the
kTs-space for all combinations of the geometry parameters that are to be scanned.
Each simulation series had approximately 100 combinations of geometry param-
eters which each consisted of about 100 simulation groups. Keeping in mind
that both polarizations must be simulated this means that each simulation series
consists of approximately 20000 simulation groups. Although the results must be
combined in the end, the different simulation groups do not depend on each other
during the simulation phase. This means that the simulation task can easily be
split up and shared by multiple computers. The same control file was used for all
simulations groups in a simulation series, and the differences in geometry and kB
were specified through parameters as described in section 5.1.2. The simulation
series could then be represented by a list of Linux commands which all would
invoke MEEP with different parameters. Each line in such a list would then cor-
respond to a simulation group with a particular polarization. For each simulation
series such a list was made using MATLAB, and saved to a text file. These files
will be denoted as command files in the following sections. Listing 5.18 shows an
example of a single line in such a command file.

Listing 5.18: One line of the command file for square grating of holes
1 #meep Fcenter =0.85 Fwidth=1.8 Fs=5 sourceCuto f f=10 dSourceSurf =0.9 r e f ?= f a l s e TE

?=true kx=0 ky=0 holeDepth=0.05 holeR=0.05 outputDir=\” . . / r e s / Sur f d 0 .05
R 0 .05 TE\” f i l e P r e f i x =\”x i 1 y i 1 \” . . / 3 DLed f irstEd . c t l

Load distribution

The easiest way of distributing the different simulation groups between the differ-
ent computers, or nodes, would be to give each of them a subset of the command
file and let them go through it individually. Such a process could probably be
automated, but it would be difficult to make adjustments after the process was
initiated. Instead the entire command file was placed on a computer with a
shared disk. In this way all individual nodes would have access to this single file.
It would then be easier to make modifications as only that single file would have
to be edited or replaced.
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Node simulation loop

To automate the load distribution all nodes were running a simulation loop which
is shown in the flow chart in Figure 5.2.1. The main simulation loop ran in a
Python script located on a shared disk. Python is a programming language
which has a C-like syntax and has code that is easy to read, and is easy to edit.
More information about the programming language can be found in the Python
documentation [18]. In the simulation loop the nodes would first fetch a command
from the shared command file, execute it, save the result on the same shared disk,
and then fetch a new command. The first character in each line of the command
file was used to indicate whether the command had been executed and completed,
was currently being executed or if it had not yet been fetched. In Listing 5.18
the first character is # which was used to indicate that the command had not yet
been used by any of the nodes. When a node fetched the command the character
was changed to @, and when it was completed it was changed to %. Although
the system was rather primitive it was very resilient. If a single node failed or was
intentionally stopped, only the single simulation group it was currently simulating
would fail. All the other nodes would carry on unnoticed. The single simulation
group that failed could then easily be recognized by inspecting the command file.
The lines where the first character had not been replaced to % had to be simulated
again. This was most easily done by manually changing the first character back
to #. In addition new nodes could be added while the simulation was in progress,
and without disturbing the simulation process. The communication between the
nodes did in this way go through a shared file. To make sure that two or more
nodes did not modify this command file simultaneously, each node had to lock
it before using it. A file can only be locked by one node simultaneously, and an
error is returned if a second node tried to lock it. If such an error was returned
the node would wait a few seconds before trying again. This waiting time was
set to increase if several attempts to lock it failed.

As shown in Figure 5.2.1, parts of the post processing were also distributed. This
was essential in order to sufficiently reduce the amount of data generated to fit
it on a regular hard drive. Also the process of loading the files generated by
MEEP into MATLAB was slightly tedious. Saving the data after post processing
in MATLAB’s data format therefore significantly reduced the loading time for
the next processing step.

Not all the program execution was performed in the Python script or in the
MATLAB post processing code. Figure 5.2.1 also show that parts of it was
performed in a Linux batch script. This is a script that runs regular Linux
commands in the command window. This was in the form of another loop of
which the only purpose was to execute the Python simulation loop, and when it
had finished it performed a time delay before starting the simulation loop again.
Having two nested loop like this had mainly three purposes. The first was to
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ease the initiation of a new simulation series. When the command file no longer
contained any unstarted commands, the Python script would finish. Since the
batch script constantly tried to restart it, a new simulation series could be started
simply by replacing the command file. It was not necessary to manually restart
the nodes. The second purpose was increased resiliency against errors. If an
error occurred in the Python script, MEEP or the MATLAB post processing
script, the program execution would fall back to the batch script. It would
then automatically restart the Python script, meaning the manual intervention
would not be necessary. The third reason was that since the Python script was
constantly called when the system was not running simulations, it was possible to
change the content of the Python script effectively changing the entire simulation
process. This flexibility was used a few times to optimize the simulation loop,
and to eliminate some sources of errors.
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Figure 5.2.1: Flowchart for program running on each simulation node

102



SOFTWARE 5.3 Post processing

5.3 Post processing

As mentioned in section 5.2.2, parts of the post processing in MATLAB was
carried out directly after MEEP had completed a simulation on the individual
nodes. The program performing the calculations was compiled MATLAB code.
This is MATLAB code that can run without having MATLAB installed. It was
started by invoking an executable file as an ordinary program. The actual code
will not be presented here as it is too extensive. It can however be found on
the enclosed disc. Although the mathematics can be expressed compactly, the
actual details concerned with finding files, determining resolutions, keeping track
of matrix indices etc. are rather substantial.

MEEP produced one result file per simulation, meaning each simulation group
contained about 10-20 files. The MATLAB code first loaded these and put all
the data in the same data structure. Secondly the data was Fourier transformed
producing the transmitted power spectrum. This spectrum consisted of all fre-
quencies from zero to the sampling frequency. To reduce the amount of data, only
the interval where the source had been emitting was kept, the rest was rejected.
Next the Poyntings vector and the total transmitted power flux was calculated.
This is the denominator of equation (4.4.3), and was done at this time to ease
the calculation of the surface transmission efficiency in later processing steps.
Next the spatial Fourier transform of the fields was calculated. This was done as
described in section 4.4.3 by removing the Bloch wave vector to make the fields
periodic. As mentioned in section 4.4.3 it is possible to reduce the needed storage
space about 100 times by removing the points in the spatial Fourier transform
that lie outside the light cone. This was utilized here and was definitively the
most storage space saving technique utilized. Finally the spatial and temporal
Fourier transformed fields and the total power flux were saved to a shared disk.
The calculated Poyntings vector was rejected since it was redundant, and since
storage space constraints were a concern. The data from the simulation of one
simulation group was saved as a 2D array of structures to a MATLAB data file.
Each element in the 2D array corresponded to a certain kTs, and the axes in the
2D system was kxs and kys. The size in the two directions varied depending on
where in the Brillouin zone the simulation group belonged, but for square gratings
it was approximately 5 elements in the kxs-direction and 3 in the kys-direction.
Each array element was as mentioned, a structure containing the fields shown in
Listing 5.19.

Listing 5.19: One element in the saved 2D array
params : [ 1 x1 s t r u c t ]

Pf : [ 93 x1 s i n g l e ]
f : [ 1 x93 double ]

Efk : [4−D s i n g l e ]
Hfk : [4−D s i n g l e ]
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Here Pf is the power spectrum , f is the corresponding frequency array, and
Efk and Hfk are the fields. The fields are a 4D array where the dimensions are
kxa, kya, frequency, and since its a vector a fourth dimension must be used to
list the three elements. The field params is itself a structure with many fields.
This is supposed to be all the parameters used in the actual simulation. At
least all parameters listed in Tables 4.5.2 and 4.5.3 can be found. Appendix A
has a complete list starting at line 172. Here all these parameters are saved by
calling the function outputVar for each of them. One such file was created for
each simulation group with a certain polarization. All the files from one certain
grating geometry and a certain polarization were placed in the same folder. The
results from the entire simulation series therefore consisted of a set of such folders
covering all the simulated geometry settings and both polarizations.

5.4 Surface transmission efficiency

5.4.1 Step one

The most important parameter for the grating which the simulations are supposed
to give, is the surface transmission efficiency ηs which is described in sections 3.4
and 4.4.2. It specifies how much of the optical power incident on the surface is
transmitted through to air, and is calculated as described in section 4.4.2. The
calculation of this parameter was done in two steps where the intermediate result
was saved to a file. The code for both these steps is shown in Appendix B. The
calculation was divided into two steps to ease the programming and debugging
of the software. The amounts of data which were to be processed were very
large, meaning it was a time consuming process to complete the calculations.
Debugging code that requires much time to run is very tedious as it typically is
necessary to run it several times. Dividing the calculation into steps therefore
makes the programming more efficient. After the simulations, the data was saved
in files which covered a simulation group. This kind of data organization is suited
for calculating the radiation pattern, but not for calculating ηs. The first step
therefore loaded all files for a certain geometry and extracted the transmitted
power spectra. These were then organized in a regular three dimensional array
with kxs, kxa and frequency as the axes. Although this is the same as organization
as the saved files, there is a difference because the different simulation groups are
no longer separated. Everything is instead gathered in the same array which is
saved to a single file. This step takes care of the rather lengthy process of loading
all the result files. The next step can therefore load only one file per geometry
setting. Listing B.1 in Appendix B shows the Matlab-function for performing
the first step to the result of a single geometry setting and polarization. Another
function was therefore used to run it for all these settings and polarizations.

104



SOFTWARE 5.4 Surface transmission efficiency

5.4.2 Step two

The second step loaded the files created by the first and then calculated ηs. This
process involved four Matlab functions which all are listed in Table 5.4.1 and
which can be found in Appendix B. The function extractEtaS is the top level
function and is responsible for processing all geometry settings for a simulation
series. The root folder of the simulation series and the pathname of a data file
with the incident radiation in Figure 3.3.14 or 3.3.15 are the only input parame-
ters. The function will automatically find the results from all geometry settings
using the dir-function. It also knows the location of the appropriate reference
simulation with normal incidence. The reference for all angles can then be found
using the theory from section 4.6. This information is partly used by the function
itself and partly used as input to lower level functions. The final result is a three
dimensional array of surface transmission efficiency values. The axes of this array
are optical frequency and depth and radius of the photonic crystal holes. This
structure and vectors defining the axes were saved to a single file which rapidly
could be loaded for plotting purposes.
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Table 5.4.1: Matlab functions involved in step two

Function name Description

extractEtaS This is the top level function for a simulation series.

• Loads all data for a simulation series

• Loads the reference with normal incidence.

• Calls artificialRef for each simulation and cal-
culates transmission spectra

• Calls calcEtaS to get the ηs for each geometry
setting. The path name of a data file containing
the incident light in Figure 3.3.14 or 3.3.15 are
given as a input.

• Sorts the results after the geometry parameters
and saves them to a single file

calcEtaS The function calculates ηs based on the transmission
spectra and the incident radiation. The integral in equa-
tion (4.4.4) is calculated using trapezint2D

trapezint2D The function calculates the 2D integral of a function
defined by a matrix and two vectors that define the axes.
The spacing between the rows and columns does not
need to be constant.

artificialRef Function that calculates the reference for light emitted
at a given angle based on a simulation with light emitted
in the forward direction.

5.5 Radiation pattern

The most advanced results from the simulations are the radiation patterns de-
scribed in section 4.4.3. The overall procedure was to first calculate the coupling
coefficients Γ in equation (4.1.11) for all simulations. This requires the spa-
tially Fourier transformed fields and the reference. Secondly these coefficients
are weighted by the incident power from Figures 3.3.14 and 3.3.15 to find the
power that is coupled by Γ. Thirdly the combined radiation pattern can be be
formed by summing the contribution from all simulations in the same simula-
tion group. This is what equation (4.1.11) states. The Matlab code performing
this is not included in this thesis, but can be found on the enclosed disc. For a
given simulation series, the calculation starts with the top level function find-

RadPatsAndSave. The enumerated list below goes through the main steps in the
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calculation and is recommended to read prior to looking at the actual Matlab
code. The Matlab-function responsible for performing each item in the list is
stated in parentheses.

1. Function findRadPatsAndSave is called with the root folder of the simula-
tion series as input.

2. Find the geometry settings (radius and depth) for which a simulation has
been performed (getSimmedRandd)

3. For each geometry setting, run the function calcTransRadPat to calculate
the radiation pattern (findRadPatsAndSave)

(a) Load reference with normal incidence. (calcTransRadPat)

(b) Find all simulated simulation groups. (calcTransRadPat)

(c) Organize the simulation groups in a matrix with kBx and kBy as axes.
(calcTransRadPat)

(d) Load simulation data from all simulation groups (calcTransRadPat)

(e) Load files with incident power from Figures 3.3.14 and 3.3.15. (getPinc)

(f) For each simulation group:

i. For each simulation in group:

A. Calculate Poyntings vector from simulated fields. (calcTransmissionCoeff)

B. Calculate reference (artificialRef)

C. Calculate coupling coefficient, Γ, which defines the coupling
kTs -> kTa for all kTa in simulation group. (calcTransmissionCoeff)

D. Scale by incident power to find transmitted power from current
kTs. (calcTransmissionCoeff)

E. Add contribution from current simulation (kTs) to the com-
bined transmitted power from all simulations (kTs) in the group.
(calcTransmissionCoeff)

ii. Generate matrices defining kxa and kya valid for the calculated
transmitted powers. This means to combine kB of the simulation
group with the correct number of reciprocal lattice vectors. For
reference see Figure 4.4.2. (calcTransmissionCoeff)

iii. Reorganize the transmitted power in a single three dimensional
array. The axis of the matrix is kxa and kya and optical frequency.
(formRadPattern)

iv. Unwrap diagonal mirror symmetry if present

v. Unwrap mirror symmetry along x and y axis

(g) Save the radiation pattern for the current geometry setting. (calcTransRadPat)
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4. Save all the radiation patterns for all geometry settings to a single file.
(findRadPatsAndSave)
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Chapter 6

Results

6.1 Surface transmission efficiency

The surface transmission efficiency ηs is defined in section 3.4, and is the ratio of
the power transmitted through the surface to the total incident power. In this
section ηs is plotted for the simulated gratings. Instead of showing the actual
ηs, the plots show the improvement over ηs for a plane surface which is shown
in Table 3.4.1. Because ηs is dependent on the three variables hole depth, d,
radius R and frequency, it is not possible to show the results for all possible
combinations. Instead the average over all frequencies is shown for each d,R-
combination. In addition the spectra of a few d,R-points are plotted. Since the
physical frequency is pinned by a photon energy of either 0.65eV or 0.7eV, the
frequency axis is translated to a lattice constant axis according to the principles
established in section 2.4. Other physical lengths, for example hole depth and
radius, are originally denoted in MEEP units described in section 4.5.1. Since the
lattice constant, a, always has the length of unity, this means that all lengths are
effectively fractions of the physical a in µm. Because of this, the axes measuring
lengths other than the lattice constant are labeled as having the unit of one
lattice constant a. In addition to the ηs-results, some of the simulated gratings
are also shown in this section. The plots are based on the ε(r)-grid output from
the simulation software. The grids are replicated some times in each direction,
and are illustrated as iso-surfaces of the ε(r)-functions. As mentioned in section
4.3.5, the three grating structures presented in section 4.3.4 each have a normal
frequency and normal resolution simulation series. Sections 6.1.1, 6.1.2 and 6.1.3
show the ηs-results from these series. Section 6.1.4 shows the results form the
low frequency simulation of the square grating of holes, and sections 6.1.5 and
6.1.6 show the results from the high resolution simulations with normal and low
frequency respectively.
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6.1.1 Square grating of holes

The ηs-results from the normal frequency, normal resolution simulation series of
the square grating of holes are plotted in this section. Figure 6.1.1(a) shows
that the maximum average improvement for light with photon energy of 0.65eV
is 58.2%, and that this can be acheived when R = 0.5a and d = 0.4a which
is the structure shown in Figure 6.1.3(a). Figure 6.1.1(b) likewise shows that
the maximum average improvement for light with photon energy of 0.7eV is
52.8%, and that this can be achieved when R = 0.5a and d = 0.35a. Figure
6.1.2 shows four transmission spectra for each of the photon energies. These
are for the structures with highest average improvement, one with smaller, and
one with larger hole radius, and one which is close to a plane surface. The
peak improvement for 0.65eV is 73.3%, and can be achieved when a = 1.02µm,
R = 0.5a = 0.512µm, and d = 0.4a = 0.41µm. The peak improvement for 0.7eV
is 68.6%, and can be achieved when a = 0.97µm, R = 0.5a = 0.48µm, and d =

0.35a = 0.34µm. Figure 6.1.3 shows two of the simulated structures, where the
on in Figure 6.1.3(a) caused maximum average improvement for light at 0.65eV.
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Figure 6.1.1: Improvement in ηs with a square grating of holes compared to a plane surface. The
plotted values are averages over the simulated spectrum.

110



RESULTS 6.1 Surface transmission efficiency

1 1.5 2

0

10

20

30

40

50

60

70

Lattice constant, a [µm]

Im
pr

ov
em

en
t i

n 
 η

s (
η s/η

s0
−

1)
 [%

]

 

 

d=0.4a R=0.45a

d=0.4a R=0.5a

d=0.4a R=0.55a

d=0.05a R=0.05a

(a) 0.65eV

1 1.5 2

0

10

20

30

40

50

60

70

Lattice constant, a [µm]
Im

pr
ov

em
en

t i
n 

 η
s (

η s/η
s0

−
1)

 [%
]

 

 

d=0.35a R=0.45a

d=0.35a R=0.5a

d=0.35a R=0.55a

d=0.05a R=0.05a

(b) 0.7eV
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Figure 6.1.3: ε(r) iso-surface of two square gratings of holes
.

111



6.1 Surface transmission efficiency RESULTS

6.1.2 Hexagonal grating of holes

The ηs-results from the normal frequency, normal resolution simulation series
of the hexagonal grating of holes are plotted in this section. Figure 6.1.4(a)
shows that the maximum average improvement for light with photon energy of
0.65eV is 53.21%, and that this can be acheived when R = 0.35a and d = 0.53a
which is the structure shown in Figure 6.1.6(a). Figure 6.1.4(b) likewise shows
that the maximum average improvement for light with photon energy of 0.7eV
is 47.1%, and that this can be achieved when R = 0.4a and d = 0.53a. Figure
6.1.5 shows four transmission spectra for each of the photon energies. These
are for the structures with highest average improvement, one with smaller, and
one with larger hole radius, and one which is close to a plane surface. The
peak improvement for 0.65eV is 70.1%, and can be achieved when a = 1.81µm,
R = 0.35a = 0.63µm, and d = 0.53a = 0.96µm. The peak improvement for
0.7eV is 60.2%, and can be achieved when a = 1.68µm, R = 0.35a = 0.59µm,
and d = 0.53a = 0.89µm. Figure 6.1.6 shows two of the simulated structures,
where the on in Figure 6.1.6(a) caused maximum average improvement for light
at 0.65eV.
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Figure 6.1.4: Improvement in ηs with a hexagonal grating of holes compared to a plane surface.
The plotted values are averages over the simulated spectrum.
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Figure 6.1.6: ε(r) iso-surface of two square gratings of holes
.
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6.1.3 Square grating of isotropically etched holes

The ηs-results from the normal frequency, normal resolution simulation series of
the square grating of isotropically etched holes holes are plotted in this section.
Figure 6.1.7(a) shows that the maximum average improvement for light with pho-
ton energy of 0.65eV is 62.8%, and that this can be acheived when R = 0.05a and
d = 0.45a which is the structure shown in Figure 6.1.9(a). Figure 6.1.7(b) likewise
shows that the maximum average improvement for light with photon energy of
0.7eV is 57.8%, and that this can be achieved when R = 0.05a and d = 0.45a.
Figure 6.1.8 shows four transmission spectra for each of the photon energies.
These are for the structures with highest average improvement, one with smaller,
and one with larger hole depth, and one which is close to a plane surface. The
peak improvement for 0.65eV is 66.7%, and can be achieved when a = 2.37µm,
R = 0.05a = 0.118µm, and d = 0.45a = 1.06µm. The peak improvement for
0.7eV is 61.6%, and can be achieved when a = 2.20µm, R = 0.05a = 0.110µm,
and d = 0.53a = 1.16µm. Figure 6.1.9 shows two of the simulated structures,
where the on in Figure 6.1.9(a) caused maximum average improvement for light
at 0.65eV.
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Figure 6.1.7: Improvement in ηs with a square grating of isotropically etched holes compared to a
plane surface. The plotted values are averages over the simulated spectrum.
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Figure 6.1.8: Spectra showing the improvement in ηs with a square grating of isotropically etched
holes compared to a plane surface. The figures show the spectra for four points in
Figure 6.1.7
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Figure 6.1.9: ε(r) iso-surface of two square gratings of holes
.
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6.1.4 Square grating of holes, low frequency

The ηs-results from the low frequency, normal resolution simulation series of the
square grating of holes are plotted in this section. Figure 6.1.10(a) shows that the
maximum average improvement for light with photon energy of 0.65eV is 46.5%,
and that this can be acheived when R = 0.5a and d = 0.45a which is the structure
shown in Figure 6.1.12(a). Figure 6.1.4(b) likewise shows that the maximum
average improvement for light with photon energy of 0.7eV is 44.1%, and that
this can be achieved when R = 0.5a and d = 0.45a. Figure 6.1.11 shows four
transmission spectra for each of the photon energies. These are for the structures
with highest average improvement, one with smaller, and one with larger hole
radius, and one which is close to a plane surface. The peak improvement for
0.65eV is 64.7%, and can be achieved when a = 0.93µm, R = 0.5a = 0.47µm,
and d = 0.45a = 0.42µm. The peak improvement for 0.7eV is 61.0%, and can be
achieved when a = 0.86µm, R = 0.5a = 0.43µm, and d = 0.45a = 0.39µm. Figure
6.1.12 shows two of the simulated structures, where the on in Figure 6.1.12(a)
caused maximum average improvement for light at 0.65eV.
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Figure 6.1.10: Improvement in ηs with a square grating of holes compared to a plane surface. The
plotted values are averages over the simulated spectrum. Low frequency simulation
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Figure 6.1.11: Spectra showing the improvement in ηs with a square grating of holes compared to
a plane surface. The figures show the spectra for four points in Figure 6.1.10. Low
frequency simulation

(a) d=0.45, R=0.5 (b) d=1.05, R=0.3

Figure 6.1.12: ε(r) iso-surface of two square gratings of holes. Low frequency simulation
.
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6.1.5 Square grating of holes. High resolution

The ηs-results from the normal frequency, high resolution simulation series of the
square grating of holes are plotted in this section. Figure 6.1.13 plots three spectra
showing the improvement in ηs for each of the two photon energies 0.65eV and
0.7eV. The solid lines are the results from the high resolution simulation series,
while the stippled lines are from normal resolution simulations of the exact same
structure. Figure 6.1.2(b) also shows the ηs improvement spectra for 0.7eV for the
same structures. Figure 6.1.14 shows the relative difference between ηs calculated
with normal and high resolution. If the high resolution simulations were assumed
to be exact, this would be the error in the results from the normal resolution
simulations.
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Figure 6.1.13: Spectrum showing the improvement in ηs with a square grating of holes compared to
a plane surface. The solid line is for the high resolution simulation, and the stippled
lines if for the normal resolution simulations.
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Figure 6.1.14: Spectrum showing the relative difference in ηs between the high resolution and the
normal resolution simulations with normal frequency
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6.1.6 Square grating of holes. Low frequency, high reso-
lution

The ηs-results from the low frequency, high resolution simulation series of the
square grating of holes are plotted in this section. Figure 6.1.15 plots three spectra
showing the improvement in ηs for each of the two photon energies 0.65eV and
0.7eV. The solid lines are the results from the high resolution simulation series,
while the stippled lines are from normal resolution simulations of the exact same
structure. Figure 6.1.16 shows the relative difference between ηs calculated with
normal and high resolution. If the high resolution simulations were assumed
to be exact, this would be the error in the results from the normal resolution
simulations.
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Figure 6.1.15: Spectrum showing the improvement in ηs with a square grating of holes compared
to a plane surface. The solid line is for the high resolution low frequency simulation,
and the stippled lines if for the normal resolution low frequency simulations.
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Figure 6.1.16: Spectrum showing the relative difference in ηs between the high resolution and the
normal resolution simulations with low frequency
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6.2 Radiation patterns

In this section a selection of radiation patterns for the light with photon energy
of 0.7eV are plotted. Data for all radiation patterns for both the photon energies
of 0.65eV and 0.7eV can be found on the enclosed disc. The radiation patterns
plot the power density per unit area in the kx/k0 − ky/k0-plane. The applied inci-
dent power distribution function has a total power of unity, meaning integrating
the radiation patterns over the kx/k0 − ky/k0-plane, should give the surface trans-
mission efficiency ηs. This ensures that the absolute amplitudes in the plots are
directly comparable, even for different frequencies. Because the figures illustrate
power densities over a plane with normalized axes (e.g. kx/k0), and since they
show the transmitted power per unit incident power, the power density axes are
unitless. The plots are all linearly interpolated to make them smooth. Figure
6.2.1 shows six radiation patterns from various configurations of the normal fre-
quency simulation of the square grating of holes, Figure 6.2.2 shows the same
for the hexagonal grating of holes, Figure 6.2.3 shows it for the square grating
of isotropically etched holes, and Figure 6.2.4 shows six patterns from the low
frequency simulation of the square grating of holes. With the exception of Figure
6.2.3, sub figure (a) of the radiation pattern Figures 6.2.1 to 6.2.4 are for the
configuration with highest improvement in ηs. Figure 6.2.3(a) shows the radia-
tion pattern for a configuration which has very near to maximum improvement
in ηs for the square grating of isotropically etched holes. This configuration was
chosen as it lies closer to the center of the simulated spectrum, where the accu-
racy is believed to be somewhat better. For all four Figures 6.2.1 to 6.2.4, the
sub figure (f) is from a grating configuration that is very close to a plane surface,
and is meant as a reference. The other four sub figures (b)-(e) of Figures 6.2.1 to
6.2.4 are for various grating configurations which all have ηs improvement spectra
which are plotted in Figures 6.1.2(b), 6.1.5(b), 6.1.8(b), or 6.1.11(b).
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(a) d = 0.35a, R = 0.5a, a = 0.968µm
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(b) d = 0.35a, R = 0.5a, a = 1.45µm
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(c) d = 0.35a, R = 0.45a, a = 1.94µm
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(d) d = 0.35a, R = 0.55a, a = 1.3µm
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(e) d = 0.55a, R = 0.5a, a = 1.56µm
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(f) d = 0.05a, R = 0.05a, a = 1.76µm

Figure 6.2.1: Radiation patterns for the square grating of holes at an electron energy of 0.7eV
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(a) d = 0.53a, R = 0.35a, a = 1.68µm
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(b) d = 0.53a, R = 0.4a, a = 1.87µm
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(c) d = 0.53a, R = 0.4a, a = 1.37µm
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(d) d = 0.53a, R = 0.45a, a = 1.3µm
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(e) d = 0.53a, R = 0.45a, a = 1.97µm
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(f) d = 0.05a, R = 0.55a, a = 1.76µm

Figure 6.2.2: Radiation patterns for the hexagonal grating of holes at an electron energy of 0.7eV
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(a) d = 0.45a, R = 0.05a, a = 1.31µm
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(b) d = 0.53a, R = 0.05a, a = 1.31µm
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(c) d = 0.37a, R = 0.05a, a = 1.31µm
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(d) d = 0.45a, R = 0.05a, a = 1.83µm
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(e) d = 0.53a, R = 0.05a, a = 1.83µm
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(f) d = 0.05a, R = 0.05a, a = 1.76µm

Figure 6.2.3: Radiation patterns for the square grating of isotropically etched holes at an electron
energy of 0.7eV
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(a) d = 0.45a, R = 0.5a, a = 0.864µm
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(b) d = 0.45a, R = 0.55a, a = 0.949µm
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(c) d = 0.45a, R = 0.45a, a = 0.482µm
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(d) d = 0.45a, R = 0.45a, a = 0.899µm

 k
x
/k

0

 k
y/k

0

 

 

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

P
ow

er
 d

en
si

ty

0

5

10

15

x 10
−3

(e) d = 0.45a, R = 0.5a, a = 0.623µm
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(f) d = 0.15a, R = 0.1a, a = 0.354µm

Figure 6.2.4: Radiation patterns for the square grating of holes at an electron energy of 0.7eV Low
frequency simulation
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Chapter 7

Discussion

7.1 Improvement in surface transmission effi-

ciency

The results clearly indicate that the transmission properties of the LED surface
can be improved by etching out a 2D photonic crystal into the top layer. Although
the specific geometry is highly influential, most of the simulated geometries seem
to feature an improvement as opposed to a deterioration. Most of the results
also indicate that ηs is improved more for the light at a photon energy of 0.65eV
compared to that of 0.7eV. This is most probably because ηs for a plane surface,
according to Table 3.4.1 is less for light at 0.65eV than for light at 0.7eV. This
is in turn because light at 0.65eV has a greater amount of its power at large
angles as shown in Figure 3.3.13. The grating with the largest spectral average
improvement in ηs is the square grating of isotropically etched holes illustrated in
Figure 6.1.9(a). The spectra in Figure 6.1.8 however indicate a very flat response,
and other gratings have greater improvements for narrow spectral regions. Figure
6.1.2 shows an improvement around 70% for both photon energies for the square
grating of holes with a lattice constant of approximately 1µm. According to Fig-
ure 6.1.8(a), also one of the hexagonal gratings of holes shows an improvement of
70% for light at 0.65eV. As shown in Figure 6.1.8(b), the improvement is however
only arround 60% for the light at 0.7eV. This peak is however still competetive
with the grating of isotropically etched holes for both photon energies.

The actual geometry settings, hole depth d and hole radius R, that give max-
imum ηs vary somewhat between the three different gratings. From Figures 6.1.1
and 6.1.4, it seems as if the grating depths for the square and hexagonal gratings
need to only be large enough. Although the square grating has a local maximum,
ηs does not decrease much with increasing depth. For both gratings it seems as if
a depth greater than 0.3 gives close to maximum ηs. The hole radius is however
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much more critical in order to maximize ηs. As shown in Figure 6.1.3(a), the
optimum radius for the square grating is so large that the grating really is com-
posed of rods rather than holes. The optimum radius for the hexagonal grating
is significantly smaller. One explanation might be that the hexagonal grating re-
quires smaller holes to achieve the same fill factor, but it does not fully justify the
difference. It should be noted that the results from the low frequency simulation
of the square grating of holes shown in Figure 6.1.10 show a different depen-
dence on the depth. This might be because the simulations cover gratings that
are much deeper measured in wavelengths. It might also be because the lattice
constant is significantly smaller than the wavelength. This can cause the light
to see the grating as a homogeneous material with an average refractive index.
The improvement might then be caused by the grating acting more as a quarter
wave transformer than a perturbation that reduces total internal reflection. In
this case an optimal depth should resemble a quarter wavelength. Although not
fully in agreement, both the normal and low frequency simulations indicate that
the square grating of holes with (d,R) ≈ (0.4, 0.5) has highest ηs around a grating
constant of 1µm. This might be because these dimensions allow both a quarter
wave transformer like behavior and still cause adequate diffraction to reduce to-
tal internal reflection. Such effects can however not be observed with the results
from the hexagonal grating.

The dependence on d and R for the square grating of isotropically etched holes
is quite different from the other two gratings. This should be expected as the
parameters influence the physical structure quite differently as shown in Figure
4.3.3. The optimum geometry for this grating seems to be when R is as small as
possible, and when the depth is such that the holes barely touch each other at the
top. This can be seen in Figure 6.1.9. A striking feature of the spectra in Figure
6.1.8 is the very broadband improvement in ηs which this grating causes. Al-
though it climbs slightly with increasing lattice constant, it is significantly more
flat than the spectra for the other grating types. This might be because the
grating partially acts as a tapered adaptation between the semiconductor and
air.

7.2 Accuracy assessment

7.2.1 High resolution simulations

Without experimental measurements it is not possible to validate the results
obtained by the simulations described in this thesis. Until such measurements are
available the only method is to consider the realism and consistency of the results.
For this purpose it is reasonable to turn to the high resolution simulations. The
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consistency between these simulations and those of the regular simulation series
indicates whether the spatial resolution was sufficient. The spectra in Figures
6.1.13 and 6.1.14 show a very good consistency at low frequencies (small lattice
constant) for the simulations with normal frequency. The consistency deteriorates
with increasing frequency as should be expected from the discussion around the
spatial resolution in section 4.5.3. The difference is however not too large, and
never gets larger than 5%, indicating that the spatial resolution, to a reasonable
degree, was sufficient for this kind of simulation. The comparison between high
and low spatial resolution with low frequency shown in Figure 6.1.15 and 6.1.16
show somewhat worse consistency. In particular the region with a lattice constant
larger than 0.9µm has a rather large difference. The rest of the spectrum is
generally worse than the results with normal frequency, but the error is rarely
above 5%.

7.2.2 Simulation of weak gratings

Another comparison that is worth bringing up is that between the ηs spectra
which show a significant improvement and those of very weak gratings. Weak
gratings meaning those that have a near to plane surface. One such spectrum
is included for all full simulation series shown in Chapter 6. For the square and
hexagonal gratings of holes Figures 6.1.2 and 6.1.5 show that these gratings have
near no improvement in ηs. This is as expected and indicates that the simulations
are able to replicate the result obtained for plane surfaces in section 3.4. It is
however important to note that these results mainly confirm the behavior of light
with a kTs-vector that is within the light cone in air. The simulations can still
introduce errors for light that has a kTs-vector outside the light cone, as this light
is only transmitted for strong gratings. It should also be noted that the grating
of isotropically etched holes has a higher ηs for its weak grating than the other
two. This might be because the effective hole radius is larger, making the grating
stronger, or it might be because as explained in section 4.5.3, the ε-smoothing
was turned off for this simulation series. If this is the case, then similar errors
must be expected from the results from stronger gratings in this simulation series
as well.

7.2.3 Oscillations in the surface transmission efficiency
spectra

A noticeable feature of ηs-spectra from all the simulations with normal frequency
is the oscillating tendency most clearly shown in Figure 6.1.8. Since the effect
is consistent between different kinds of gratings which one would not expect to
have equal properties, the oscillations are not believed to be real. The effect can
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however not be caused by the discretization of space since Figure 6.1.13 show very
good consistency with the high resolution simulations. Another possible explana-
tion could be interference effects with delayed light. Such light could be caused
by for example unintentional reflections at the PML boundaries, or insufficient
attenuation in the PML layers. Using MEEP units, the period of one oscillation
in the spectra is typically 0.22 inverse time units which for a light velocity of
unity corresponds to an increased optical path length of almost 8. Even taking
into account the high index semiconductor, this is longer than any dimension
achievable in the simulation cell, and is therefore not a very likely source for such
an error. Although not presented here, the spectra for the square grating of holes
with maximum hole size have been examined to investigate whether interference
could be the cause. These grating holes cover almost the entire surface, and the
different depths really mean a different semiconductor thickness. If interference
was the cause the periodicity in the ηs spectra for different depths should be dif-
ferent since the effective optical path length most likely would be altered. These
spectra generally showed small differences, but the periodicity of the oscillations
was near to identical making interference seem a highly unlikely cause. A third
cause could be the finite resolution in kT-space. Even for plane surfaces there
are abrupt variations in the Fresnel equations which conceivably could distort
the calculated total transmittance depending on how good the sampling points
match the transmission peaks. Since the resolution is defined by a certain grid
in kT-space, the actual propagation angles varies for different frequencies, and
consequently the match should be expected to vary with frequency. The fact
that the oscillations seem to be strongest for low frequencies also support this
theory. This is the region where the least kT-points are within the light cone, and
consequently the resolution in propagation angle is at its lowest. How well the
simulated points match the transmission function should therefore be a greater
issue for these frequencies compared to higher frequencies. To further investigate
this possible explanation it would be necessary to look at the calculated coupling
coefficients Γ from equation (4.1.11). These can be calculated from the simulation
results, and are in fact intermediate results to the radiation patterns.

7.2.4 Radiation patterns

The primary reason to calculate radiation patterns was to get a distinct finger-
print of the simulations which later could be measured to verify the simulations
for certain gratings. The limited subset of simulated radiation patterns that is
shown in section are however surprisingly uniform which is not the best for such
a task. Note that a flat radiation pattern corresponds to a cos(θ)-distribution
for the power per unit solid angle. The radiation patterns can however be used
to estimate certain aspects of the quality of the simulations. The fact that the
radiation outside the circle of unity radius is very near zero means that there is

130



DISCUSSION 7.3 Future work

not any significant light outside the light cone in air. This means that the dis-
tance from the surface to the recording plane was most probably long enough for
evanescent fields to decay sufficiently. The radiation patterns from the hexagonal
grating can also be used to assess the accuracy of the simulations. While the
three mirror symmetry axis of the square gratings was imposed by the simulation
method, only two mirror axis was imposed on the hexagonal grating. The three
fold rotational symmetry was not utilized in the same way. It could therefore
be used to assess the consistency of the results. Figure 6.2.2 shows six radiation
patterns where five are from non weak gratings. All of these five except Figure
6.2.2(c) show a rather clear three fold rotational symmetry, and therefore indicate
good consistency. The reason Figure 6.2.2(c) does not show such good symmetry
properties is not known. One reason might be that the resolution in the radiation
patterns is insufficient to resolve the needed details to see the symmetry. Note
that the resolution in these gratings is very low as discussed in section 4.4.4. If
this is the case, then it is also possible that the simulated ηs-value for this grating
is faulty. Another reason might be the spatial discretization of ε(r). Taking this
into account, the grating does not actually have any rotational symmetry prop-
erties. If this is the reason, it implies that the spatial resolution might have been
too low.

7.3 Future work

7.3.1 Increasing efficiency

There is much more work which can be be performed with the light extraction
method described here. The most obvious one being to further increase the
light extraction. Although the simulations indicate an increase up to 70%, the
actual value of ηs is still less than 5%, meaning there is potential for a much
larger increase. One method which probably would work would be to etch the
substrate very thin near the active LED area. Then the downwards propagating
and reflected light can be reflected from the back side and have another attempt
at being transmittet through the surface instead of being absorbed.

7.3.2 Detailed analysis of the results

In this thesis the results are presented in the form of ηs and a few radiation pat-
terns. More insight into the properties of the gratings could probably be achieved
with a more thorough study of the radiation patterns. They might also become
a better basis for comparison against measurements if they were split up into
two polarizations. This would be the case if the radiation patterns for each po-
larization separately has more variations than the combined patterns presented
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here. It should be noted that such a split must be between the polarizations of the
transmitted light, not the two polarizations used for the source in the simulations.

Another way of gaining more insight into the mode of operation of the pho-
tonic crystal based on the achieved results is to directly examine the coupling
coefficients Γ from equation (4.1.11). These have only been very lightly studied
in the work this thesis is based on, and are not presented themselves. They can
for example indicate the transmission of different plane waves, which for example
can show the transmission of light that otherwise would be completely reflected
from the surface. They can also be used for comparing the results from the simu-
lations with high and normal spatial resolution to look for specific discrepancies.
As mentioned in section 7.2.3 these might also give the reason for the observed
oscillations in the ηs spectra in section 6.1.

7.3.3 Distribution of incident light

In Chapter 3 the angular distribution of the light incident on the photonic crys-
tal surface was calculated. The lack of precise material parameters made these
calculations difficult, and might very well be a significant source of error. Direct
measurements of the optical properties of the materials in the LED could there-
fore improve the accuracy of the simulation results. If a new and more precise
distribution function for the incident light were to be obtained, it could be uti-
lized without running the simulations again. Only the post processing steps for
calculating ηs and the radiation patterns would have to be repeated.

7.3.4 Measurements

Measuring the effects of a photonic crystal grating an actual LED must be re-
garded as highly desirable for this work. Measuring ηs is not directly possible, but
the improvement in ηs can be found by measuring a LED with and one without
a patterned surface. This can for example be done by using either an integrating
sphere or preferably by measuring the light at different angles and constructing
a radiation pattern. The latter would also allow comparisons with the simulated
radiation patterns.
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Chapter 8

Conclusion

The simulations presented in this thesis indicate that it is possible to increase the
total light transmission through the surface of gallium antimonide LED by up to
70% by patterning the the surface with a 2D photonic crystal grating. Although
there are concerns about the exact number of this increase, the consistency of the
the results quite clearly indicate a notable improvement. The three simulated
gratings types, square and hexagonal graitngs of holes and square grating of
isotropically etched holes, are all able to achieve an improvement of approximately
60-70%. The square grating of isotropically etched holes stand somewhat out
because the improvement seems to have low sensitivity to the lattice constant.
Any value between 1 and 2.4µm can give approximately 60% improvement. The
hole radius should be as small as possible and the hole depth and undercut should
be such that the undercuts from neighbouring holes barily meet. The other
two gratings show improvements up to 70%. The optimum hole depth, hole
radius and lattice cosntant is, for the square grating of holes, 0.4, 0.5 and 1µm
respectively. Here the depth and radius are fractions of the lattice constant. The
configuration does according the simulations cause an increased transmission of
approximately 70% for both the simulated photon energies, 0.65eV and 0.7eV. For
the hexagonal grating, the optimum hole depth, hole radius and lattice cosntant
are 0.53, 0.35 and 1.78µm respectively. The improvement is approximately 70%
for the light with photon energy og 0.65eV, and 60% for the light with photon
energy at 0.7eV. The accuracy of the results is not beilieved to be very good, but
certain conclusions can be made. The optimum hole radius is, because of good
consistency between many simulations, beilieved to be true. The optimum hole
depth and lattice constant are less certain. It is however very likely that if the
depth is chosen sufficiently large, the improvement will be very notable and near
optimum if a corresponding optimum lattice constant can be found.
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Appendix A

Control file

Listing A.1: Control file for square grating of cylindrical holes
1 ; Transversa le k−vek torer er 2 p i− k o r r i g e r t e . Behandles som f , i k k e w. Som i meep
2 ; Transversa l geometr i− l engde er 1 . Resiprok g i t t e r v e k t o r Kx er der f o r l i k 1 (

t r an s v e r s a l romlig f r e kvens )
3 ( d e f i n e Kx 1)
4 ( d e f i n e Ky 1)
5 ( define−param r e f ? f a l s e ) ; i f true , the en t i r e geometry w i l l be f i l l e d with

semiconcuctor
6
7 ( define−param dPMLTop 0 . 4 )
8 ( define−param dTransPML 0 . 2 )
9 ( define−param dSurfTrans 0 . 6 )

10 ( define−param dSourceSurf 0 . 6 )
11 ( define−param dRef lSource 0 . 1 )
12 ( define−param dPMLRefl 0 . 05 )
13 ( define−param dPMLBot 0 . 2 )
14
15 ( define−param holeDepth 0 . 3 )
16 ( define−param holeR 0 . 35 )
17
18 ( d e f i n e geomHeight (+ dPMLBot dPMLRefl dRef lSource dSourceSurf dSurfTrans

dTransPML dPMLTop) )
19 ( d e f i n e bot (/ geomHeight −2) ) ; Bottom z−coordinate
20 ( d e f i n e top (/ geomHeight 2) ) ; Top z−coordinate
21 ( d e f i n e dSemiConductor (+ dPMLBot dPMLRefl dRef lSource dSourceSurf ) )
22
23 ( d e f i n e cRe f l (+ bot dPMLBot dPMLRefl ) )
24 ( d e f i n e cSource (+ cRe f l dRef lSource ) )
25 ( d e f i n e cDitch (+ cSource dSourceSurf ) ) ; Ditch center i s on semiconductor

sur face . The he i gh t must t h e r e f o r e be doub led .
26 ( d e f i n e cTrans (+ cDitch dSurfTrans ) )
27 ( d e f i n e cSemiConductor (+ bot (/ dSemiConductor 2) ) )
28
29 ( define−param sourceCuto f f 5)
30 ( define−param stopTh 1e−4 )
31 ( define−param TPMLSt 6)
32 ( define−param BPMLSt 1)
33 ( define−param outputDir ” r e s u l t s ”)
34 ( define−param f i l e P r e f i x ”standard ”)
35 ( define−param re f r I ndex 3 . 8 )
36 ( define−param Fs 2 . 5 ) ; time sampel ing frequency
37 ( define−param Fcenter 0 . 85 ) ; Center f requency
38 ( define−param Fwidth 1 . 8 ) ; Frequency width
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39 ( define−param animer ? f a l s e ) ; Output data f o r animation or not
40 ( define−param re s 30)
41 ( define−param TE? true )
42
43 ( define−param kx 0) ; t r an s v e r s a l k with noe added r e c i p r o ca l l a t t i c e v e c t o r s .

This i s done by the s c r i p t
44 ( define−param ky 0)
45
46 ( d e f i n e Rxi 0)
47 ( d e f i n e Ryi 0)
48
49 ( d e f i n e kxSource (+ kx (∗ Rxi Kx) ) )
50 ( d e f i n e kySource (+ ky (∗ Ryi Ky) ) )
51
52 ( d e f i n e Fmax (+ Fcenter (/ Fwidth 4) ) ) ;Fmax i s Fs+Fwidth/4 ( a l s o equa l to k0 ,

max)
53 ( d e f i n e Nx ( inexact−>exact ( f loor (∗ r e f r I nd ex (/ Fmax Kx) ) ) ) )
54 ( d e f i n e Ny ( inexact−>exact ( f loor (∗ r e f r I nd ex (/ Fmax Ky) ) ) ) ) ; Maximum number

o f added r e c i p r o c a l l a t t i c e v e c t o r s ( zero means one s imulat ion , no adding )
55
56
57 ( i f (not ( a c c e s s ? outputDir F OK) )
58 ( mkdir outputDir )
59 )
60
61 ( d e f i n e outputF i l e ( open−output− f i l e ( str ing−append outputDir ”/ ” f i l e P r e f i x ” .

out ”) ) )
62
63 ( d e f i n e ( sourcePhaseFunction P)
64 ( make−polar 1 (+ (∗ 2 p i ( vector3−x P) kxSource ) (∗ 2 p i ( vector3−y P)

kySource ) ) )
65 )
66
67 ( d e f i n e ( outputVar string var )
68 ( d i sp l ay ( str ing−append ” : Var Rxi ” (number−>string Rxi ) ” Ryi ” (number−>

string Ryi ) ” ” string ” = ” ) outputF i l e )
69 ( d i sp l ay var outputF i l e )
70 ( d i sp l ay ”\n” outputF i l e )
71 )
72
73 ( d e f i n e ( s e qL i s t length ) ; Procedure t ha t makes a l i s t wi th inc rea s ing numbers

(0 1 2 3 4 . . . l ength−1 )
74 ( d e f i n e count 0)
75 ( d e f i n e v ( make− l i s t length 0) )
76 ( for−each ( lambda (x ) ( begin ( l i s t − s e t ! v count count ) ( set ! count (+ count

1) ) ) ) v )
77 v
78 )
79
80 ( d e f i n e ( SqkTotSource )
81 (+ (∗ kxSource kxSource ) (∗ kySource kySource ) )
82 )
83
84 ( d e f i n e ( de fSource )
85 ( d e f i n e AmX 0 . 0 )
86 ( d e f i n e AmY 1 . 0 )
87 ( d e f i n e ADenom ( sqrt (+ (∗ kxSource kxSource ) (∗ kySource kySource ) ) ) )
88 ( i f (not (= ADenom 0 . 0 ) )
89 ( begin
90 ( set ! AmX (/ (∗ −1.0 kySource ) ADenom) )
91 ( set ! AmY (/ (∗ 1 .0 kxSource ) ADenom) )
92 )
93 )
94
95 ( l i s t
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96 (make source
97 ( s r c (make gaus s i an− s r c ( f requency Fcenter ) ( fwidth Fwidth ) ( c u t o f f

sourceCuto f f ) ) )
98 ( component ( i f TE? Ey Hy) )
99 ( c ente r 0 0 cSource )

100 ( s i z e 1 1 0)
101 ( amplitude AmY)
102 ( amp−func sourcePhaseFunction )
103 )
104 (make source
105 ( s r c (make gaus s i an− s r c ( f requency Fcenter ) ( fwidth Fwidth ) ( c u t o f f

sourceCuto f f ) ) )
106 ( component ( i f TE? Ex Hx) )
107 ( cen te r 0 0 cSource )
108 ( s i z e 1 1 0)
109 ( amplitude AmX)
110 ( amp−func sourcePhaseFunction )
111 )
112 )
113 )
114
115 ( d e f i n e semiConductorSlab
116 (make block
117 ( cente r 0 0 (− cSemiConductor 1) ) ; moves the semiconductor 1 down and

extends i t by 2 . The only e f f e c t i s t ha t i t i s extended by 2 ou t s i d e
the c e l l . This avo ids unwanted s u b p i x e l averag ing

118 ( s i z e 1 . 1 1 .1 (+ dSemiConductor 2 ) )
119 ( mate r i a l (make d i e l e c t r i c ( e p s i l o n (∗ r e f r I ndex r e f r I ndex ) ) ) )
120 )
121 )
122
123 ( d e f i n e ho le
124 (make cy l i nd e r
125 ( cente r 0 0 cDitch )
126 ( rad iu s holeR )
127 ( he ight (∗ 2 holeDepth ) )
128 ; ( s i z e ditchWidth i n f i n i t y (∗ 2 di tchDepth ) )
129 ( mate r i a l a i r )
130 )
131 )
132
133 ( d e f i n e a l lSemiconductor
134 (make block
135 ( cente r 0 0 0)
136 ( s i z e 1 . 1 1 .1 (+ geomHeight 2 ) )
137 ( mate r i a l (make d i e l e c t r i c ( e p s i l o n (∗ r e f r I ndex r e f r I ndex ) ) ) )
138 )
139 )
140
141
142 ( use−output−di rectory outputDir )
143 ( set ! ou tpu t− s i ng l e−pr e c i s i on ? t rue )
144 ( set ! e n su r e−pe r i od i c i t y f a l s e )
145 ( set ! g eomet ry− l a t t i c e (make l a t t i c e ( s i z e 1 1 geomHeight ) ) )
146 ( set ! f o r c e− comp l ex− f i e l d s ? t rue )
147 ( set ! geometry ( i f r e f ? ( l i s t a l lSemiconductor ) ( l i s t semiConductorSlab ho le ) ) )
148 ( set ! r e s o l u t i o n r e s )
149 ( set ! s ou r c e s ( de fSource ) )
150 ( set ! pml− layers
151 ( l i s t
152 (make pml ( d i r e c t i o n Z) ( s i d e Low) ( th i c kne s s dPMLBot) ( s t r ength BPMLSt

) )
153 (make pml ( d i r e c t i o n Z) ( s i d e High ) ( th i c kne s s dPMLTop) ( s t r ength TPMLSt

) )
154 )
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155 )
156 ( set ! k−point ( vector3 kx ky 0) )
157
158 ; Ca l cu l a t ing r e a l Fs ( compensates f o r rounding error )
159 ( d e f i n e dN (round (/ r e s o l u t i o n (∗ Courant Fs ) ) ) ) ; Timesteps between samepl ing
160 ( d e f i n e Fsr (/ r e s o l u t i o n (∗ Courant dN) ) )
161
162
163 ( d e f i n e ( runFunction ) ; ”Rxi og Ryi ” b e s k r i v e r hvor mange r e s i p roke

g i t t e r v e k t o r e r som ska l l e g g e s t i l kx og ky
164 ( r e s t a r t− f i e l d s )
165
166 ( set ! kxSource (+ kx (∗ Rxi Kx) ) )
167 ( set ! kySource (+ ky (∗ Ryi Ky) ) )
168
169 ( change−sources ! ( de fSource ) )
170
171
172 ( outputVar ”Kx” Kx)
173 ( outputVar ”Ky” Ky)
174 ( outputVar ”Rxi ” Rxi )
175 ( outputVar ”Ryi ” Ryi )
176 ( outputVar ”dPMLTop” dPMLTop)
177 ( outputVar ”dTransPML” dTransPML)
178 ( outputVar ”dSurfTrans ” dSurfTrans )
179 ( outputVar ”dSourceSurf ” dSourceSurf )
180 ( outputVar ”dRef lSource ” dRef lSource )
181 ( outputVar ”dPMLRefl ” dPMLRefl )
182 ( outputVar ”dPMLBot” dPMLBot)
183 ( outputVar ”holeDepth ” holeDepth )
184 ( outputVar ”holeR ” holeR )
185 ( outputVar ”geomHeight ” geomHeight )
186 ( outputVar ”bot ” bot )
187 ( outputVar ”top ” top )
188 ( outputVar ”dSemiConductor ” dSemiConductor )
189 ( outputVar ”cRe f l ” cRe f l )
190 ( outputVar ”cSource ” cSource )
191 ( outputVar ”cDitch ” cDitch )
192 ( outputVar ”cTrans ” cTrans )
193 ( outputVar ”cSemiConductor ” cSemiConductor )
194 ( outputVar ”Nx” Nx)
195 ( outputVar ”Ny” Ny)
196 ( outputVar ”kx ” kx )
197 ( outputVar ”ky ” ky )
198 ( outputVar ”n” r e f r I ndex )
199 ( outputVar ”Fs ” Fsr )
200 ( outputVar ”FsInput ” Fs )
201 ( outputVar ”Courant ” Courant )
202 ( outputVar ”dN” dN)
203 ( outputVar ”Fcenter ” Fcenter )
204 ( outputVar ”Fwidth ” Fwidth )
205 ( outputVar ”animer ” animer ?)
206 ( outputVar ” r e s ” r e s )
207 ( outputVar ”TE” TE?)
208 ( outputVar ”kxSource ” kxSource )
209 ( outputVar ”kySource ” kySource )
210 ( outputVar ”k po int ” k−point )
211 ( outputVar ” r e s o l u t i o n ” r e s o l u t i o n )
212 ( outputVar ” f i l e P r e f i x ” f i l e P r e f i x )
213 ( outputVar ” r e f ” r e f ?)
214 ( outputVar ”outputDir ” outputDir )
215 ( outputVar ”eps ave rag ing ” eps−averag ing ?)
216 ( outputVar ”BPMLSt” BPMLSt)
217 ( outputVar ”TPMLSt” TPMLSt)
218 ( outputVar ”stopTh ” stopTh )
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219 ( outputVar ”sourceCuto f f ” sourceCuto f f )
220
221
222 ( run−sources+
223 ( stop−when− f ie lds−decayed 5 Sz ( vector3 0 0 cTrans ) stopTh )
224 ( at−beginning output−eps i l on )
225 ( to−appended ( str ing−append f i l e P r e f i x ” T Rxi ” (number−>string Rxi ) ”

Ryi ” (number−>string Ryi ) )
226 ( at−every (/ 1 Fs )
227 ( in−volume
228 ( volume ( cente r 0 0 cTrans ) ( s i z e 1 1 0) )
229 ou tpu t− e f i e l d output−h f i e ld
230 )
231 )
232 )
233 ( i f animer ?
234 ( to−appended ( str ing−append f i l e P r e f i x ” Animation Rxi ” (number−>

string Rxi ) ” Ryi ” (number−>string Ryi ) )
235 ( at−every (/ 1 Fs )
236 ( in−volume ( volume ( cente r 0 0 0) ( s i z e 1 0 geomHeight ) )
237 ( i f TE? output−e f i e ld−y output−hf ie ld−y )
238 )
239 )
240 )
241 ( to−appended ”nothing ”
242 ( at−every i n f i n i t y
243 ( in−volume ( volume ( cente r 0 0 0) ( s i z e 0 0 0) )
244 ( i f TE? output−e f i e ld−y output−hf ie ld−y )
245 )
246 )
247 )
248 )
249 )
250
251 )
252
253 ( d e f i n e ( te s tFunct ion )
254 ( set ! kxSource (+ kx (∗ Rxi Kx) ) )
255 ( set ! kySource (+ ky (∗ Ryi Ky) ) )
256 ( d i sp l ay ( str ing−append ”kxSource : ” (number−>string kxSource ) ” kySource :

” (number−>string kySource ) ) )
257
258 ( i f (and (<= kySource kxSource ) (<= ( SqkTotSource ) (∗ r e f r I nd ex Fmax

r e f r I ndex Fmax) ) )
259 ( begin
260 ( d i sp l ay ” GO! ”)
261 ( d i sp l ay ( SqkTotSource ) )
262 ( d i sp l ay ”\n”)
263 ( runFunction )
264 )
265 ( begin
266 ( d i sp l ay ” Skip \n”)
267 ( d i sp l ay ( SqkTotSource ) )
268 )
269 )
270
271 )
272
273 ( d e f i n e ( runLoop )
274 ( d e f i n e RxiL i s t ( s e qL i s t (+ Nx 1) ) )
275 ( d e f i n e RyiL i s t ( s e qL i s t (+ Ny 1) ) )
276 ( for−each
277 ( lambda ( RxiElement )
278 ( set ! Rxi RxiElement )
279 ( for−each
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280 ( lambda ( RyiElement )
281 ( set ! Ryi RyiElement )
282 ( te s tFunct ion )
283 )
284 RyiL i s t
285 )
286 )
287 RxiL i s t
288 )
289 )
290
291
292
293 ( runLoop )
294
295 ( c lose−output−port outputF i l e )
296 ( qu i t )
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Surface transmission efficiency

Listing B.1: Step 1: Reorganizing power spectra
1 function extractPower ( f o l d e r )
2
3 try
4 load ( [ f o l d e r ’ / x i 1 y i 1 . mat ’ ] ) ; clear data ;
5 Pdata . e p s i l o n = ep s i l o n ;
6 catch
7 Pdata . e p s i l o n = [ ] ;
8 end
9

10
11 %i f NBy == 12 % This i s a hack . remove fo r genera l purpouse
12 % NBy = 6;
13 %end
14
15 try
16 NBx = length ( dir ( [ f o l d e r ’ / x i ∗ y i 1 P f . mat ’ ] ) ) ;
17 NBy = length ( dir ( [ f o l d e r ’ / x i 1 y i ∗ Pf . mat ’ ] ) ) ;
18 load ( [ f o l d e r ’ / x i 1 y i 1 P f . mat ’ ] ) ; testData = PfData ;
19 postFix = ’ Pf ’ ;
20 catch
21 NBx = length ( dir ( [ f o l d e r ’ / x i ∗ y i 1 . mat ’ ] ) ) ;
22 NBy = length ( dir ( [ f o l d e r ’ / x i 1 y i ∗ .mat ’ ] ) ) ;
23 load ( [ f o l d e r ’ / x i 1 y i 1 . mat ’ ] ) ; testData = data ;
24 postFix = ’ ’ ;
25 end
26
27
28 [Nx, Ny ] = s ize ( testData ) ; %Maximum number o f added r e c i p r o c a l l a t t i c e v e c t o r s

f o r x and y
29 %Nx = max(Nx , Ny) ;
30 %Ny = max(Nx , Ny) ;
31
32 pointsX = Nx ∗ NBx; %The t o t a l number o f s imula ted plane waves
33 pointsY = Ny ∗ NBy; %
34
35 nF = 101 ;
36
37 f s t a r t = testData (1 , 1 ) . params . Fcenter − testData (1 , 1 ) . params . Fwidth /4 ;
38 f s t op = testData (1 , 1 ) . params . Fcenter + testData (1 , 1 ) . params . Fwidth /4 ;
39 Pdata . f = ( 0 : ( nF−1) ) /(nF−1) ∗( f s t op − f s t a r t ) + f s t a r t ;
40
41 Pdata .P = NaN( pointsX , pointsY , nF) ;
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42 Pdata . kxSource = NaN( pointsX , pointsY ) ;
43 Pdata . kySource = NaN( pointsX , pointsY ) ;
44
45 for bx = 1 :NBx
46 for by = 1 :NBy
47
48 f i l ename = sprintf ( ’%s / x i %i y i %i%s . mat ’ , f o l d e r , bx , by , postFix ) ;
49 load ( f i l ename ) ;
50 t ry
51 Br i lPo in t = PfData ;
52 catch
53 Br i lPo in t = data ;
54 end
55 for px = 1 :Nx
56 for py = 1 :Ny
57
58 %This unwraps the d iagona l symmetry l i n e . Must be removed
59 %for hexagonal g r a t i n g s (Only v a l i d f o r square g r a t i n g s ! ! ! )
60 %i f ( py > px )
61 % pxS = py ;
62 % pyS = px ;
63 %e l s e
64 pxS = px ;
65 pyS = py ;
66 %end
67
68 i f (prod ( double ( ( s ize ( Br i lPo in t ) >= [ pxS pyS ] ) ) ) && Br i lPo in t (

pxS , pyS ) . params . e x i s t s )
69
70 i f ˜ i s e qu a l ( Br i lPo in t (pxS , pyS ) . f , Pdata . f )
71 %warning ( ’Non equa l f requency array , expec ted l eng t h : %i

, a c tua l l en g t h : %i , I n t e r p o l a t i n g . . ’ , l en g t h (Pdata .
f ) , l en g t h ( Br i lPo in t ( pxS , pyS ) . f ) ) ;

72 Br i lPo in t (pxS , pyS ) . Pf = interp1 ( Br i lPo in t (pxS , pyS ) . f ,
Br i lPo in t (pxS , pyS ) . Pf , Pdata . f ) ;

73 end
74 Pdata .P( bx + (px−1)∗NBx , by + (py−1)∗NBy , : ) = Br i lPo in t

(pxS , pyS ) . Pf ;
75 Pdata . kxSource ( bx + (px−1)∗NBx , by + (py−1)∗NBy) =

Br i lPo in t (pxS , pyS ) . params . kxSource ;
76 Pdata . kySource ( bx + (px−1)∗NBx , by + (py−1)∗NBy) =

Br i lPo in t (pxS , pyS ) . params . kySource ;
77 end
78 end
79 end
80
81 end
82 end
83
84 Pdata . params = testData (1 , 1 ) . params ;
85 save ( [ f o l d e r ’ /PowerData . mat ’ ] , ’ Pdata ’ )
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Listing B.2: Step 2: extractEtaS

1 function f i l e = extractEtaS ( f o l d e r , IncRadFi le )
2
3
4 TEfolders = dir ( [ f o l d e r ’ / Sur f ∗TE’ ] ) ;
5 %TMfolders = d i r ( [ f o l d e r ’/ Surf ∗TM’ ] ) ;
6 RefTE = load ( [ f o l d e r ’ /Ref TE/PowerData ’ ] ) ;
7 RefTM = load ( [ f o l d e r ’ /Ref TM/PowerData ’ ] ) ;
8
9 nf = length (RefTE . Pdata . f ) ;

10 nsims = length ( TEfolders ) ;
11 d = zeros (1 , nsims ) ;
12 R = zeros (1 , nsims ) ;
13
14 etaS = zeros ( nf , nsims ) ;
15
16 clear PrTE
17 clear PrTM
18 %For each geometry ( f o l d e r )
19 for p = 1 : nsims
20 p
21 TED = load ( [ f o l d e r ’ / ’ TEfolders (p) . name ’ /PowerData ’ ] ) ;
22 TMD = load ( [ f o l d e r ’ / ’ strrep ( TEfolders (p) . name , ’ TE ’ , ’ TM ’ ) ’ /PowerData ’

] ) ;
23 TED. Pdata
24
25 i f isnan (TED. Pdata .P(1 , 2 , 1 ) )
26 disp ( ’ Unwrapping d iagona l symmetry ’ )
27 TED. Pdata = unwrapDiagSymP(TED. Pdata ) ;
28 TMD. Pdata = unwrapDiagSymP(TMD. Pdata ) ;
29 else
30 disp ( ’ There i s no d iagona l symmetry ’ )
31 end
32
33 %Ca lcu l a t ing re f e r ence power
34 i f (˜ exist ( ’PrTE ’ , ’ var ’ ) | | ˜exist ( ’PrTM’ , ’ var ’ ) )
35 PrTE = a r t i f i c i a l R e f ( squeeze (RefTE . Pdata .P( 1 , 1 , : ) ) , RefTE . Pdata . f , TED.

Pdata . kxSource , TED. Pdata . kySource ) ;
36 PrTM = a r t i f i c i a l R e f ( squeeze (RefTM. Pdata .P( 1 , 1 , : ) ) , RefTM. Pdata . f , TMD.

Pdata . kxSource , TMD. Pdata . kySource ) ;
37 end
38 TED. Pdata .T = TED. Pdata .P . / PrTE ;
39 TMD. Pdata .T = TMD. Pdata .P . / PrTM;
40
41 i f ( length (TED. Pdata . f ) ˜=nf ) | ( length (TMD. Pdata . f ) ˜=nf )
42 error ( sprintf ( ’Wrong length o f frequency −array ’ ) )
43 end
44
45 %for each frequency
46 for pf = 1 : nf
47 etaS TE = calcEtaS (TED. Pdata .T( : , : , p f ) , TED. Pdata . f ( pf ) , TED. Pdata .

kxSource , TED. Pdata . kySource , IncRadFi le ) ;
48 etaS TM = calcEtaS (TMD. Pdata .T( : , : , p f ) , TMD. Pdata . f ( pf ) , TMD. Pdata .

kxSource , TMD. Pdata . kySource , IncRadFi le ) ;
49 etaS ( pf , p ) = 0 .5∗ ( etaS TE + etaS TM) ;
50
51 end
52
53 d(p) = TED. Pdata . params . holeDepth ;
54 R(p) = TED. Pdata . params . holeR ;
55
56 end
57
58 %sor t i n g a d−R matrix f i s 1 s t dim , d i s second , R i s t h i r d
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59 [ dax , a , nd ] = unique (d) ;
60 [ Rax , a , nR] = unique (R) ;
61 d= dax ;
62 R = Rax ;
63
64 etaSMtx = zeros ( nf , length ( dax ) , length (Rax) ) ;
65 for p = 1 : nsims
66 etaSMtx ( : , nd (p) , nR(p) ) = etaS ( : , p ) ;
67 end
68
69
70 %dec id ing where to save the r e s u l t s
71 i f ˜isempty ( f indstr ( IncRadFile , ’ 07 ’ ) )
72 elEn = 0 . 7 ;
73 f i l e = [ f o l d e r ’ / etaS07 ’ ] ;
74 e l s e i f ˜isempty ( f indstr ( IncRadFile , ’ 65 ’ ) )
75 elEn = 0 . 6 5 ;
76 f i l e = [ f o l d e r ’ / etaS065 ’ ] ;
77 else
78 f i l e = ’ bacup ’ ;
79 error ( ’ r e s u l t i s not saved ! ’ )
80 end
81
82 save ( f i l e , ’ etaSMtx ’ , ’ etaS ’ , ’ d ’ , ’R ’ , ’ elEn ’ ) ;
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Listing B.3: Step 2: calcEtaS
1 %Ca lcu l a t e s etaS fo r ONE frequency
2 function etaS = calcEtaS (P, f , kx , ky , radPattDataFi le )
3
4 r e s = 400 ;
5 n = 3 . 8 ;
6
7 k = n∗ f ;
8
9 kxAx = ( 0 : res −1) /( res −1)∗k ;

10 kyAx = ( 0 : res −1) /( res −1)∗k ;
11
12
13 kx ( isnan ( kx ) ) = −1;
14 ky ( isnan ( ky ) ) = −1;
15 P( isnan (P) ) = 0 ;
16
17 %In t e r p o l a t i n g transmiss ion c o e f f i c i e n t s
18 T = griddata ( kx , ky , P, kxAx , kyAx ’ ) ;
19
20 global IncRad
21 i f isempty ( IncRad ) | | ˜strcmp ( IncRad . f i l e , radPattDataFi le )
22 disp ( ’ Loading F i l e ’ ) ;
23 IncRad = load ( radPattDataFi le ) ;
24 IncRad . f i l e = radPattDataFi le ;
25 end
26
27 [kxM, kyM] = meshgrid (kxAx , kyAx) ;
28
29 ktM = sqrt (kxM.ˆ2 + kyM.ˆ2 ) ;
30 ktMVect = reshape (ktM , s ize (ktM , 1 ) ∗ s ize (ktM , 2 ) , 1) ;
31
32 %In t e r p o l a t i n g inc i d en t power
33 PincMVect = interp1 ( k∗ IncRad . kt , IncRad . radkt /kˆ2 , ktMVect ) ;
34 PincM = reshape (PincMVect , res , r e s ) ;
35
36 T( isnan (T) ) = 0 ;
37 PincM( isnan (PincM) ) = 0 ;
38
39 %In t e g r a t i n g . Mu l t i p l y ing by 4 because only one quadrant i s used
40 etaS = 4∗ trapez int2D (kxAx , kyAx , T.∗PincM) ;
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Listing B.4: Step 2: trapezint2D
1 function r e s = trapez int2D (x , y , Z)
2
3 temp = zeros (1 , length ( y ) ) ;
4
5 for p = 1 : length ( y )
6 temp(p) = t r ap e z i n t (x , squeeze (Z ( : , p ) ) . ’ ) ;
7 end
8
9 r e s = t r ap e z i n t (y , temp) ;
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Listing B.5: Step 2: artificialRef
1 %kx , and ky are matrices , f v e c and PnormalInc are vec tors ,
2 %Part i s a 3d s t r u c t u r e with r e s p e c t i v e ax i s ( kx , ky , f )
3 function Part = a r t i f i c i a l R e f ( PnormalInc , fvec , kx , ky )
4
5 n = 3 . 8 ;
6 kvec = n∗ f v e c ;
7
8 [ a , a , k ] = ndgrid ( 1 : s ize ( kx , 1 ) , 1 : s ize ( ky , 2 ) , kvec ) ;
9 clear a

10 [ a , a , P ] = ndgrid ( 1 : s ize ( kx , 1 ) , 1 : s ize ( ky , 2 ) , PnormalInc ) ;
11 clear a
12
13 %Creating anf ex t rud ing 3d kt − s t r u c t u r e
14 kt = sqrt ( kx .ˆ2 + ky . ˆ 2 ) ;
15 ktV = reshape ( kt , [ numel ( kt ) , 1 ] ) ;
16 ktextV = ndgrid ( kt , kvec ) ;
17 kt = reshape ( ktextV , [ s ize ( kt ) , length ( kvec ) ] ) ;
18
19 Part = P .∗ k . / sqrt ( k .ˆ2 − kt . ˆ 2 ) ;
20 Part ( imag( Part ) ˜=0) = NaN;
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