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Problem Description
As difference in elasticity of tissue give rise to different tissue displacements, and hence different
time shifts in the recorded radio frequency (RF) signals, these time shifts can be estimated and
hence produce an ultrasound image of tissue with different elastic properties, also known as an
elastogram. When estimating the tissue displacement, a window around the sample in range is
used to improve the estimate. Most methods assume a constant displacement over this window
while in fact the degree of local stretching and compression can be substantial and can degrade
the estimates. An estimator for estimating locally variable delays has been developed which is a
phase based approach and makes no assumption on the local delay variation. The method uses
the phase difference and an estimate of the instantaneous frequency of the IQ demodulated signal,
and has then the advantage of being able to locally represent delays in terms of phase difference.
Any parametric model may be used to model the local delay variations, and for this thesis the first
step has been in adapting the time-delay algorithm for elastography purposes, and examine the
effects different parametric models have on the final image quality.

Secondly, multiple reflections, also known as reverberations, greatly impair the contrast
resolution of the final image, as they appear as additive noise at deeper depths than their true
originals are located. Also the estimation of time delays, which is critical for elastography, may be
greatly reduced by these reverberations. The SURF Imaging method may be used to suppress
these strong reflections. For this thesis it has been the main goal of using the phase based time
delay algorithm, combined with SURF imaging with reverberation suppression, and prove the
quality this approach has in reducing the effects of reverberations on the recorded RF signal, and
then increase the quality of elastography recordings compared to other methods available at the
time. This purpose then give the name of the paper as "Improving Elastography using SURF
Imaging for Suppression of Reverberations".
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Abstract

For some of the applications of the Second-order UltRasound Field (SURF) imaging technique, a
real-time delay-estimation algorithm has been developed for estimating spatially range-varying
delays in RF signals. This algorithm is a phase-based approach for subsample delay estima-
tion, and makes no assumption on the local delay variation. Any parametric model can be
used for modeling the local delay variation. The phase-based delay estimator uses estimates of
the instantaneous frequency and the phase difference and the relationship between the two to
estimate the delay. The estimated delay may be used to calculate an improved estimate of the
instantaneous frequency, which in turn may be used to calculate new, updated values for the
delay using an iterative scheme. Although an iterative scheme introduces a larger bias, the esti-
mated delay values have a significantly lowered standard deviation in comparison to the original
method. The delay estimator originally developed for estimating propagation delays for SURF
imaging, can also be used for elastography purposes. By not being restricted to locally constant
delays, the delay estimator is able to more robustly estimate sharp changes in tissue stiffness,
and in estimating small differences in strain more closely. Two different parametric models for
the local delay have been tried, one linear, and one polynomial of the first degree. The two var-
ious models have been tested on an elastography recording provided by the Ultrasonix company
(Ultrasonix Medical Corporation, Vancouver, Canada), and in vitro. Using a polynomial of the
second degree as parametric model for the delay is better than a linear model in detecting edges
of inclusions located at a depth where the strain is lower than closer to the transducer surface.
The differences may be further emphasized by performing spatial filtering with a median filter.
The downside of updating the model is an increased computational time of ∼ 50%.

Multiple reflections, also known as reverberations, appear as acoustic noise in ultrasound images
and may greatly impair time-delay estimation, particularly in elastography. Today reverberation
suppression is achieved by second harmonic imaging, but this method has the disadvantage of
low penetration, and little or no signal in the near field. The SURF imaging technique has the
advantages of reverberation suppression in addition to imaging in the fundamental frequency.
A reverberation model has been established, and the effect reverberations have on estimated
elastography images is studied. When using a layered silicon plate as reverberation model,
and imaging through this initial reverberation model placed on top of the imaging phantom,
elastography images were not obtained as the quality of the recording was degraded as a re-
sult of power loss. By adding reverberations by computer simulations after a recording with
a SURF probe with reverberation suppression was performed, a markedly difference between
elastography estimates done on the image with reverberations, and the image with reverbera-
tions and reverberation suppression was observed. Estimating on a signal with reverberations,
the phase-based time-delay algorithm was unable to distinguish any differences in elasticity at
all. Estimating time delays on a signal with reverberations and SURF reverberation suppres-
sion however, the algorithm was able to clearly estimate differences in strain, and display the
presence of an inclusion.
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Chapter 1

Introduction

1.1 Background

According to naval terms, "to sound" means to measure the depth of water at sea. The ancient
Greeks probed the depths of seas with a "sounding machine", which was a long rope knotted on
regular intervals with a lead weight at the end. Recalling his experiences working on Mississippi
riverboats as a young man, American author and humorist Samuel Clemens chose his pseudonym
Mark Twain from the second knot on such a line, where two fathoms, a depth indicating safe
water for passage of boats, was measured on the sounding line. These lines were widely used
in navigation until the development of echo sounding, from which the words "to sound" set the
basis for the use of actual sound for the same purpose.

A young, healthy human is capable of hearing sounds over the frequency range of 20 Hz to
20 kHz, with this upper frequency limit for humans caused by the middle ear, which acts as
a low-pass filter. An ultrasound wave describes an acoustic wave with a frequency above this
threshold of human hearing, and ultrasonics have already been in use for thousands of years in
the natural world by animals such as bats and dolphins. Bats are for instance known to emit
pulses in the 30 kHz to 120 kHz range, and it has been hypothesized that they judge range by
sensing the time delay between an emitted ultrasound pulse and the echo. This principle of
detecting objects based on the time delay and strength of the echo would first be exploited by
humans after the sinking of the Titanic in 1913. Within a month of the accident a patent to
detect icebergs with underwater echo ranging was filed, and the development of sound navigation
and ranging (SONAR), which is the basis for ultrasound for medical purposes, can be traced
back to this incident. In the late 1940s and early 1950s new emerging technological advances
paved way for the use of ultrasound applied to the human body, and a new world of possibilities
for medical diagnosis was born. In Sweden in 1953, Dr. I. Edler and Professor C. H. Hertz
detected heart motions, and began what later was called "echocardiography", the application of
ultrasound to characterize and image the heart [7]. In 1955 experiments with Doppler-shifted
ultrasound signals produced by heart motion were reported, and by 1966 pulsed spectral Doppler
was possible. In the early 1980s color flow imaging techniques for visualizing the flow of blood
in real time were developed [8], and many other signal processing methods for imaging and
calculation became available. During the 1980s transducer technology underwent tremendous
growth, and concurrently sonar systems evolved to such a point that the Titanic was discovered
at the bottom of the sea with sonar and video equipment in 1986 [9]. Around this period a
technique which injects the blood with gas filled micro bubbles with a typical diameter of a
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few microns, so called contrast agents, were introduced to enhance the ultrasound images. As
the nonlinear nature of bubble dynamics introduces nonlinear distortion, this also produces
harmonic (and subharmonic) energy in the propagating signal. This effect was then exploited
by filtering out the second harmonic component of the received pulse, which is narrower and
has lower sidelobe levels than the fundamental beam, making it ideal for imaging purposes.
An interesting discovery was made when it turned out that ordinary ultrasound images also
experienced a vastly improved image contrast when imaging in the harmonic frequency, and a
new technique known as tissue harmonic imaging (THI), or simply harmonic imaging, was born
[10, 11]. By the late 1990s, near real-time three-dimensional imaging became possible due to
the emergence of special image-processing techniques and the advances in computer processing
capabilities. With further development in computer science and electronics, miniaturization of
ultrasound equipment has become a reality, and the first hand-held ultrasound device weighing
in at just 390 grams was made commercially available at the start of 2010. Due to the advantages
of being cheap, fast, relatively low-tech, non-invasive, harmless and more portable than other
techniques, it is likely that medical ultrasound technology will continue to have an impact in
the future.

Since the early beginnings of medical practice, the estimation of tissue hardness has been prac-
ticed through palpation, i.e. the act of feeling or pushing on various parts of a patient’s body
to determine medical conditions. Palpation has been an important tool to detect abnormalities
in the body, mainly because the mechanical properties of diseased tissue are typically different
than that of the healthy tissue surrounding it. A tumor or a suspicious cancerous growth is
normally much stiffer than the background of normal soft tissue [12]. The basic relationship
between tissue elasticity and hardness to palpability then follows the relationship that in order
to be palpable, the object must be harder than the tissue surrounding it. However in many
cases despite the differences in stiffness, the small size of a pathological lesion makes it harder
to detect, and lesions located at deeper depths than the fingers are able to to sense preclude
its detection and characterization. Palpation is then limited to the detection of abnormalities
and tumors which are close to the skin. Ordinary ultrasound has the advantage of imaging
deep inside the body, but is virtually unable to differ between tissue of various hardness and
elasticity, and there has been a consistent interest in tissue hardness, motion and vibration over
the years.

As early as 1952 Oestreicher et. al. studied the physics of vibration in soft tissue, showing that
impedance of tissue increases with frequency over audio frequencies [13]. Initial experiments in
differentiating between normal soft tissues and hard lesions using ultrasound were conducted
around 1986, but it was not until Lerner et. al. presented a method named "sonoelasticity
imaging" in 1989 the concept had any practical implications [14, 15]. The method consisted
of mechanical inducing tissue with low frequency (20 - 1000 Hz) acoustic vibrations in the
audible range, and measure and display the corresponding Doppler spectrum of various regions
within the tissue. Since the velocity of propagation is a function of the elastic properties of
tissue, measurement of the velocity of a propagating mechanical vibration in tissue will yield the
differences in elasticity. The concept is that stiff tissues will respond differently to an applied
mechanical vibration than normal tissue. Areas, or tissue, of increased stiffness will experience
less or decreased vibrations which can be seen as a "void" in the Doppler sonoelasticity image.
The main advantage of this technique is the ability to view the in vivo results in real time,
as the signal processing involved is basically equivalent to already well established Doppler
methods.

The term "elastography" was coined by Ophir et. al. in 1991 as a quantitative method of imaging
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the elasticity of biological tissue by direct imaging of the strain and the Young’s modulus of tissue
[16]. Up until this point displacement of tissue were analyzed by doppler velocity measurements,
cross-correlation techniques to quantify motions in tissues, and visual inspection of M-mode and
B-mode images. One of the main difficulties in these methods was the lack of definition of
the magnitude and direction of the driving force, which limited the ability of the methods to
provide quantitative information about the elastic properties of the tissue under investigation.
The elastography method is based on external tissue compression, with subsequent computation
of the strain profile along the transducer axis, and differs in other methods in several important
aspects. The force applied to the tissue is not vibratory, but rather considered quasi-static,
thus reducing the complexity of the generalized viscoelastic equation of forced motion to the
much simpler Hook’s equation. The average levels of strain evoked in the tissue are very small,
and perhaps most importantly, elastography is capable of producing high resolution images [17].
The strain is derived by analysis of pre-compression and post-compression A-line pairs, and
several techniques are available for estimating the displacement in tissues. It is for instance
possible to estimate displacement in soft tissues by analyzing the degree of correlation that
remains between the pre-compression and post-compression signals after the displacement has
occurred. A second similar approach is to estimate the actual time delay by estimating the
shift of the peak of the cross-correlation function. However when the signal-to-noise ratio (SNR)
is low, the probability of making errors in the estimation of the peak increases dramatically.
Also another disadvantage using cross-correlation techniques include the sensitivity of cross-
correlations to amplitude variations in the presence of small signal distortions. A different
approach is to use the phase of the two signals to compute the delay. Wilson and Robinson
described a method for phase tracking of wideband ultrasonic signals as early as 1982, and were
able to measure displacement and deformation waveforms for displacements less than 0.1 cm [18].
At the start of 2008, Lindop et. al. presented a theoretical analysis and experimental results
from an investigation of phase-based ultrasonic deformation estimators [19]. They were able
to demonstrate their application to in vivo freehand strain imaging, and showed quantitatively
that the approach offered a wider range of scanning conditions than adaptive methods based on
correlation coefficients or sum of absolute differences.

A different approach called transient elastography was presented by Sandir et. al. in 1999
[20]. This method relies on the observation of the propagation of a transient, i.e. pulsed, shear
wave to determine the elastic properties of tissue. The local shear wave speed is directly linked
to the local Young’s modulus of the medium, and a shear elasticity map of the medium may
be computed using an inversion algorithm. Because the shear waves propagate through the
medium in less than 0.1 s, the displacements induced by the shear wave are measured with
an ultrasonic array connected to an ultrafast imaging system able to reach frame rates up to
6000 Hz. Transient elastography then has the advantages of being insensitive to patient motion
and boundary condition artifacts because of its real-time capabilities with an acquisition time
in less than 20 ms [21]. Bercoff et. al. demonstrated in vivo breast tumor detection using
transient elastography in 2002 [22], thus reporting the first in vivo validation of the method.
However, the patients chosen had tumors that were palpable (usually more than 15 mm in
diameter) and visible on echographic scans. A different technique with close resemblance to
transient elastography known as supersonic shear imaging (SSI) was presented by Bercoff et.
al in 2004 [23]. In SSI the source radiates low-frequency shear waves inside the tissue, but
makes the shear source move with supersonic speed to create quasiplane shear waves of stronger
amplitude. Such a shear source which moves faster than the shear waves can be created by
successively focusing the ultrasonic "pushing" beam at different depths. All resulting shear
waves will interfere constructively along a Mach cone, creating two intense quasiplane shear
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waves propagating in opposite directions.

1.2 Motivation

Malignant tumors are generally present as hard nodules, e.g. scirrhous carcinoma of the breast
[12]. Although this type of lesion constitutes about three fourths of all breast cancer, other type
of breast cancers are soft, and may not be detected by palpation alone, which suggests a need
for other quantitative methods such as elastography. Since the echogenicity and the stiffness of
tissue are generally uncorrelated, it is expected that imaging tissue stiffness will provide new
information that is related to tissue structure and pathology. Elasticity imaging has for instance
been reported to be useful for the diagnosis and characterization of various tumors, which are
usually stiffer than normal tissue [24]. For example, tumors of the prostate or the breast may
be invisible or barely visible in standard ultrasound examinations, yet are much stiffer than the
surrounding tissue [25]. However, ultrasound elastography as a potential new imaging technology
for breast cancer detection has been classified by the American cancer society as "preclinical
data suggest possible promise, but clinical data are sparse or nonexistent, and more study is
needed" [26]. This may suggest that taking the leap from the laboratories into the physical world
for elastography imaging modalities still presents a great challenge. It is likely that one of the
main obstacles is the added complexity of the irregular mixtures of muscles, fat and connective
tissue of the body wall, which presents a source of image artifacts known as multiple scattering
or reverberations. Reverberations are especially visible in the near field and imaging through
the body wall due to the layered structure of the tissue close to the skin, and the presence of
these reverberations is a source of artifacts that can hinder the correct analysis of ultrasound
signals and images. Besides adding additive noise to the final image, they can also introduce
errors in quantitative parameter estimation in fields such as biological tissue characterization
by shadowing or enhancing existing biological structures. The problem of reverberations in
acoustics has been known from back in the 1940s, in the area of sea bottom mapping, and a
lot of work has been done on the subject. Despite the number of papers on the reverberation
problem, not much seems to have been done in the biomedical field for its identification and
removal [27]. A method that is able to reduce or remove these reflections could improve the
quality of ultrasound images, as well as the precision and accuracy in quantitative results such
as the estimation of tissue elasticity. Although tissue harmonic imaging has proved to be very
effective in reducing reverberations when the first scattering takes place within the near field
[10, 11], the method has the disadvantage of having a lower amplitude than than the fundamental
beam. This makes the SNR lower and may limit the benefits of the modality, e.g. because of
penetration depth decrease.

1.3 Purpose of this study

As difference in elasticity of tissue give rise to different tissue displacements, and hence different
time shifts in the recorded radio frequency (RF) signals, these time shifts can be estimated and
hence produce an ultrasound image of tissue with different elastic properties, also known as an
elastogram. When estimating the tissue displacement, a window around the sample in range is
used to improve the estimate. Most methods assume a constant displacement over this window
while in fact the degree of local stretching and compression can be substantial and can degrade
the estimates. An estimator for estimating locally variable delays has been developed which is a
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phase based approach and makes no assumption on the local delay variation [28]. The method
uses the phase difference and an estimate of the instantaneous frequency of the IQ demodulated
signal, and has then the advantage of being able to locally represent delays in terms of phase
difference. Any parametric model may be used to model the local delay variations, and for this
thesis the first step has been in adapting the time-delay algorithm for elastography purposes,
and examine the effects different parametric models have on the final image quality.

Secondly, multiple reflections, also known as reverberations, greatly impair the contrast reso-
lution of the final image, as they appear as additive noise at deeper depths than their true
originals are located. Also the estimation of time delays, which is critical for elastography, may
be greatly reduced by these reverberations. The SURF Imaging method may be used to suppress
these strong reflections [4]. For this thesis it has been the main goal of using the phase-based
time-delay algorithm, combined with SURF imaging with reverberation suppression, and prove
the quality this approach has in reducing the effects of reverberations on the recorded RF signal,
and then increase the quality of elastography recordings compared to other methods available
at the time. This purpose then give the name of the paper as

Improving Elastography using SURF Imaging for Suppression of Reverberations

1.4 Structure of this paper

Chapter 2 gives a mathematical description of the time delay algorithm developed at the de-
partment, including an iterative scheme to update the estimates of the instantaneous frequency
and the estimated time delays. Also this iterative scheme is characterized analytically. Chapter
3 gives an introduction to the principles of estimating tissue displacement and tissue elasticity.
Chapter 4 displays the impact choosing different models for the estimation of the local delay
has on the final image quality. Chapter 5 explains the concept of nonlinear propagation, its ap-
plications to the SURF imaging method, and the generation of time delays in the RF signal as
a consequence of nonlinear wave propagation. Chapter 6 gives a theory on multiple scattering,
and describes attempts of mimicking a multiple layered tissue in order to create reverberations
and how this can be performed. Chapter 7 gives a mathematical, and theoretical description
of the reverberation suppression capabilities of the SURF imaging method. Chapter 8 displays
the effect both reverberations and the SURF reverberation suppression technique have on the
quality of estimated elastography images. Process and results are discussed in Chapter 9, and
some general conclusions are given in Chapter 10.
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Chapter 2

Estimation and tracking of locally
variable delays

Time delay estimation (TDE) has plenty of applications as diverse as radar, sonar, seismology,
ultrasonics and communications. When the delay is varying with time it is also often known as
delay tracking [29]. In medical imaging it is important for several ultrasound imaging methods,
such as doppler, elastography and SURF imaging. In this paper it is the problem of estimating
the range varying delays between two signals sent in the same direction which is of interest, and
a phase based approach for estimating this delay is presented.

2.1 Phase-based time-delay estimation

The method to be presented is originally developed by Øyvind Standal [28] at the Department
of Circulation and Medical Imaging (ISB) at NTNU. In the method a phase based approach
which makes no assumption on the local delay variation is used, and the relationship between
the instantaneous frequency of two signals and their phase difference is used to determine the
delay. The method assumes a complex analytic signal, which can be computed by passing the
real signal through the Hilbert transform.

2.1.1 Signal model

A complex band-limited 1D signal with real positive amplitude, a, centre frequency, ωc, and
modulating phase, ϕ, may be described as

s(t) = a(t) exp {i[ϕ(t) + ωct]} (2.1)

The instantaneous frequency θ(t) of the signal s(t) is defined as the time derivative of the
argument, i.e. θ(t) = d

dt arg{s(t)}. Then considering the definition of our signal from Eq. (2.1),
we may state the instantaneous frequency as

θ(t) =
d
dt
{ϕ(t) + ωct} = ϕ′(t) + ωc (2.2)
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where ϕ′(t) is the derivate of the modulating phase. Now, defining a time varying subsample
delay, τ(t), without loss of generality we assume symmetric delay and discretely sampled signals
as

x(k) = s(k +
1
2
τ(k)) = a(k +

1
2
τ(k)) exp

{
i

[
ϕ(k +

1
2
τ(k)) + ωck +

1
2
ωcτ(k)

]}
(2.3)

y(k) = s(k − 1
2
τ(k)) = a(k − 1

2
τ(k)) exp

{
i

[
ϕ(k − 1

2
τ(k)) + ωck −

1
2
ωcτ(k)

]}
(2.4)

That is x(k) has a positive delay of half a sample, and y(k) has a negative delay of half a sample
in respect to the original non-delayed signal s(k).

2.1.2 Estimation of the phase difference ψ

Calculating the cross multiplication of x(k) and y(k) we get

x(k)y∗(k) = a(k +
1
2
τ)a(k − 1

2
τ) exp

{
i

[
ϕ(k +

1
2
τ) + ωck +

1
2
ωcτ

]
− i
[
ϕ(k − 1

2
τ) + ωck −

1
2
ωcτ

]}
(2.5)

= a(k +
1
2
τ)a(k − 1

2
τ) exp

{
i

[
ϕ(k +

1
2
τ)− ϕ(k − 1

2
τ) + ωcτ

]}
(2.6)

where y∗ denotes the complex conjugate of y and the dependence on k for τ(k) is dropped for
notational convenience. The phase difference between the two signals can then be estimated as
the argument of the cross multiplication as

ψ(k) = arg{x(k)y∗(k)} = ϕ(k +
1
2
τ(k))− ϕ(k − 1

2
τ(k)) + ωcτ(k) (2.7)

For narrowband signals ϕ is usually much smaller than ωc, and an estimate of τ could be found
by dividing Eq. (2.7) by ωc. But in ultrasound a bandwidth of 50%-100% is common, so this
narrowband approximation is seldom good enough [30]. Now, remembering the definition for
derivation as

f ′(x) = lim
∆x→0

f(x+ 1
2∆x)− f(x− 1

2∆x)
∆x

(2.8)

we can approximate the first two parts in the last expression of Eq. (2.7) in the same manner,
such that they can be stated as τ(k)ϕ′(k), and use the approximation that phase difference and
delay is linearly related through the instantaneous frequency θ(k) as

ψ(k) ≈ τ(k)ϕ′(k) + ωcτ(k) = [ϕ′(k) + ωc]τ(k) = θ(k)τ(k) (2.9)

The value of ωc is relatively known, but we can’t really say much of the phase ϕ. Instead
we can try to estimate the instantaneous frequency, stated in Eq. (2.2), and for discretely
sampled signals given as θ(k) = ϕ′(k) + ωc, and we need an approximation for this expression
as well.
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2.1.3 Estimation of the instantaneous frequency θ

First calculating the phase of x(k) we get

arg{x(k + 1)x∗(k − 1)}

= ϕ

(
k + 1 +

1
2
τ(k + 1)

)
− ϕ

(
k − 1 +

1
2
τ(k − 1)

)
+ 2ωc +

1
2
ωcτ(k + 1)− 1

2
ωcτ(k − 1)

(2.10)

This result may be simplified by using the same derivation approximation as in Eq. (2.9) such
that the first two parts of Eq. (2.10) may be stated as 2ϕ′(k), and the phase of x(k) is

arg{x(k + 1)x∗(k − 1)} ≈ 2ϕ′(k) + 2ωc +
1
2
ωcτ(k + 1)− 1

2
ωcτ(k − 1) (2.11)

Likewise the expression for the phase of y(k) may be derived in the same way yielding the
result

arg{y(k + 1)y∗(k − 1)} ≈ 2ϕ′(k) + 2ωc −
1
2
ωcτ(k + 1) +

1
2
ωcτ(k − 1) (2.12)

Then we can finally estimate the instantaneous frequency as

θ(k) =
1
4

[arg{x(k + 1)x∗(k − 1)}+ arg{y(k + 1)y∗(k − 1)}] (2.13)

≈ 1
4

[
2ϕ′(k) + 2ωc +

1
2
ωcτ(k + 1)− 1

2
ωcτ(k − 1) + 2ϕ′(k) + 2ωc −

1
2
ωcτ(k + 1) +

1
2
ωcτ(k − 1)

]
(2.14)

=
1
4
[
2ϕ′(k) + 2ωc + 2ϕ′(k) + 2ωc

]
(2.15)

= ϕ′(k) + ωc (2.16)

which is the discretely sampled equivalent of Eq. (2.2).

2.1.4 Modeling and finding the delay τ

We can estimate the phase difference ψ(k) and the instantaneous frequency θ(k) through the
equations

ψ(k) = arg{x(k)y∗(k)} ≈ [ϕ′(k) + ωc]τ(k) (2.17)

θ(k) =
1
4

[arg{x(k + 1)x∗(k − 1)}+ arg{y(k + 1)y∗(k − 1)}] ≈ ϕ′(k) + ωc (2.18)

and we have the relationship that phase difference and delay is linearly related through the
instantaneous frequency as ψ(k) ≈ θ(k)τ(k). Thus an intuitive approach would be to divide the
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phase difference by the instantaneous frequency to find the delay, but since both θ and τ are
corrupted by noise, and θ has zero crossings, this would lead to inaccurate estimates as shown
in Figure 2.1.

Figure 2.1: Inaccurate estimate of the time delay τ found by dividing the phase difference ψ by
the instantaneous frequency θ

The challenge will be to find an adaption of θ(k)τ(k) to ψ(k) which is optimal in some sense.
We choose a model for τ̂(k) and try to minimize the difference between θ(k)τ̂(k) and ψ(k) to
find the optimal values of the model. That is we need to find the values that minimize

Q([τk(n)] =
∑
n

|ψ(n)− θ(n)τk(n))|2c(n)w(k) (2.19)

where c is a weight function equal to the magnitude of the cross product of the two signals, w
is a window function and k represents the depth of space. Finding the values that minimize Eq.
(2.19) is a well known problem known as Weighted Least Squares (WLS).

2.2 Linear least squares

Least squares can be interpreted as a method of fitting data. The best fit, between modeled
and observed data, in the least-squares sense is that instance of the model for which the sum of
squared residuals has its least value. A residual being the difference between an observed value
and the value given by the model.

10



2.2.1 The general case

A model f(xk, β) should be fitted through the given points (x1, y1), ..., (xn, yn) so that the sum
of the squares of the distances of those points from the line of the model is minimum, where the
distance is measured in the vertical direction (the y-direction), and β are the parameters of the
model. The sum of squares is expressed as

Q =
n∑
k=1

(yk − f(xk, β))2 (2.20)

The least squares method defines best as when the sum, Q, of squared residuals is a minimum.
This is obtained by setting the partial derivates of Q with respect to the model parameters β
equal zero.

minQ =
∂Q

∂β
= −2

n∑
k=1

(yk − f(xk, β))
∂f(xk, β)

∂β
= 0 (2.21)

Writing in vector notation the above expression for the sum of squares as stated in Eq. (2.20)
may be expressed as

Q = (Y −Xβ)2 = (Y −Xβ)(Y −Xβ)T (2.22)

and we may find the minimum values by setting the partial derivates of Q equal to zero

∂Q

∂β
= −2(Y −Xβ)XT = 0 (2.23)

XTY −XTXβ = 0 (2.24)

XTXβ = XTY (2.25)

β̂ = (XTX)−1XTY (2.26)

The caret above β̂ is to denote that it is a least squares estimate of the parameters in β, rather
than its true value.

2.2.2 Weighted least squares

The expressions given above are based on the implicit assumption that the errors are uncorrelated
with each other and with the independent variables and have equal variance. If, however, the
measurements are uncorrelated but have different uncertainties, a modified approach might be
adopted. The observations may be weighted, if for example they are not equally reliable, to give
us the weighted sum of squares as

Q =
n∑
k=1

wk(yk − f(xk, β))2 (2.27)
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where wk > 0. The diagonal weight matrix is most common the inverse of the variance-covariance
matrix, but can also have any values as seen fit for the problem at hand.

W =


w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wn

 (2.28)

The weighted sum of squares may then be stated in vector notation as

Q = W (Y −Xβ)2 = W (Y −Xβ)(Y −Xβ)T (2.29)

and the minimum values can be found by setting the partial derivate equal to zero.

∂Q

∂β
= −2W (Y −Xβ)XT = 0 (2.30)

XTWY −XTWXβ = 0 (2.31)

XTWXβ = XTWY (2.32)

β̂ = (XTWX)−1XTWY (2.33)

2.2.3 f(xk, β) as a linear model

Now choosing a model as a first order polynomial, ie. a straight line

f(xk, β) = a+ bxk (2.34)

the sum of squares can be expressed as

Q =
n∑
k=1

(yk − (a+ bxk))
2 =

n∑
k=1

(yk − a− bxk)2 (2.35)

Finding the minimum values consists of first taking the partial derivates of Q with respect to
a and b, and setting each partial derivative to zero, then solving the resulting system of two
equations with two unknowns

∂Q

∂a
= −2

n∑
k=1

(yk − a− bxk) = 0 (2.36)

∂Q

∂b
= −2

n∑
k=1

(yk − a− bxk)xk = 0 (2.37)

Writing each sum as three sums will lead to the normal equations of the problem as
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an+ b
n∑
k=1

xk =
n∑
k=1

yk (2.38)

a
n∑
k=1

xk + b
n∑
k=1

x2
k =

n∑
k=1

xkyk (2.39)

or in vector notation as

(
n

∑n
k=1 xk∑n

k=1 xk
∑n

k=1 x
2
k

)(
a
b

)
=
( ∑n

k=1 yk∑n
k=1 xkyk

)
(2.40)

Figure 2.2: Fitting data points by the linear least squares method with a linear model

This result can also be expressed by defining the different matrices

X =


1 x1

1 x2
...

...
1 xn

 , Y =


y1

y2
...
yn

 , β =
[
a
b

]
(2.41)

Comparing with Eq. (2.20), the sum of squares may be expressed in vector notation as in Eq.
(2.22). Setting the partial derivate of Q to zero will yield the minimum values as in Eq. (2.26).
Comparing Eq. (2.40) and Eq. (2.25) we see that the first matrix on the left hand side of Eq.
(2.40) equals the matrix XTX.

2.2.4 f(xk, β) as a polynomial of second order

Now trying to fit the data points with a second order polynomial as

f(xk, β) = a+ bxk + cx2
k (2.42)
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yields the following expression for the sum of squares.

Q =
n∑
k=1

(yk − (a+ bxk + cx2
k))

2 =
n∑
k=1

(yk − a− bxk − cx2
k)

2 (2.43)

Figure 2.3: Fitting data points by the linear least squares method with a non-linear model

Writing in vector notation we have the following matrices for the computations

A =


1 x1 x2

1

1 x2 x2
2

...
...

...
1 xn x2

n

 , Y =


y1

y2
...
yn

 , β =

ab
c

 (2.44)

which has the same solution as Eq. (2.26).

2.3 Linear least squares for phase-based time-delay estimator

2.3.1 The general case

When estimating time delays, a window around the sample in range is used to improve the
estimates. Most methods assume a constant displacement over this window, while in fact the
degree of local stretching and compression can be substantial and can degrade the estimates.
For the phase based approach any model of the delay τ̂k,n can be chosen, where k marks the
depth in space of the signal, and n marks a sample within the sample window.

For the phase-based time-delay estimator two complex analytical signals are said to have a phase
difference, ψ, and varying subsample delay, τ , that is linearly related through the instantaneous
frequency θ. The phase difference can hence be stated as ψ ≈ θτ , and the challenge is to find an
adaption of θτ to ψ which is optimal in some sense. This can also be seen on as a least squares
problem where the sum of squares is expressed as

14



Q =
k+N

2∑
n=k−N

2

(ψn − θnτ̂k,n)2 (2.45)

A window of N number of samples is used, and k marks the depth of the window where the
delay is to be computed. Writing in vector notation the above expression may be stated as

Q = (Ψ−Θβ)2 = (Ψ−Θβ)(Ψ−Θβ)T (2.46)

which will give the optimum parameter values β̂ in the least squares sense of the model τ̂k,n
as

β̂ = (ΘTΘ)−1ΘTΨ (2.47)

2.3.2 Weighted least squares

Now adding a certain weight to each observation the sum of squares can be expanded to the
weighted least squares case as

Q =
k+N

2∑
n=k−N

2

wn(ψn − θnτ̂k,n)2 (2.48)

The weight matrix in the phase based time delay estimation case is equal to the magnitude of
the cross product of the two signals to be compared, i.e.

w = |x(k)y∗(k)| (2.49)

Writing in vector notation the weight matrix is expressed as

W =


wk−N

2
0 . . . 0

0 wk−N
2

+1 . . . 0
...

...
. . .

...
0 0 . . . wk+N

2

 (2.50)

and the weighted sum of squares may be stated as

Q = W (Ψ−Θβ)2 = W (Ψ−Θβ)(Ψ−Θβ)T (2.51)

which has its minimum solution as

β̂ = (ΘTWΘ)−1ΘTWΨ (2.52)

where W is a weight matrix, Θ is the instantaneous frequency matrix, and Ψ is the phase
difference matrix.
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2.3.3 τ̂ as a linear model

First we may choose a locally linear model of the delay as τ̂k,n = ak + bkn, where k marks the
depth in space of the signal, and n a sample within the sample window. The goal is hence to
model the delay τ not as constant within the sample window, but rather as a straight line τ̂ ,
determined by the values of ak and bk which for the linear model will be constant within the
sample range at depth k.

Although we are using N samples centered around the point at depth k to compute the values
of ak and bk, i.e. N is the number of samples in the sample window, we are only interested in
the value at the specific point k. Choosing to multiply bk with (n − k), rather than n, in the
expression for τ̂k,n, and making sure the of number of samples N used in the sample window
is odd numbered, ensures that our running variable (n − k) goes from −N

2 to N
2 to cover the

entire window length, and at the same time have a center point of k. The sum of squares for
the phase-based time-delay estimator with the linear model can then be stated as

τ̂k,n = ak + bk(n− k) (2.53)

Q =
k+N

2∑
n=k−N

2

wn(ψn − θnτ̂k,n)2 (2.54)

=
k+N

2∑
n=k−N

2

wn(ψn − θn(ak + bk(n− k)))2 (2.55)

=
k+N

2∑
n=k−N

2

wn(ψn − θnak − θnbk(n− k))2 (2.56)

where N marks the total number of samples in the sample window, and k the depth of space
where the delay is to be computed.

The different matrices used in the computations are expressed as

Θ =



θk−N
2

(−N
2 )θk−N

2

θk−N
2

+1 (−N
2 + 1)θk−N

2
+1

θk−N
2

+2 (−N
2 + 2)θk−N

2
+2

...
...

θk+N
2
−1 (N2 − 1)θk+N

2
−1

θk+N
2

(N2 )θk+N
2


, β =

[
ak
bk

]
,Ψ =



ψk−N
2

ψk−N
2

+1

ψk−N
2

+2

...
ψk+N

2
−1

ψk+N
2


(2.57)

and W is the same as in Eq. (2.50). The sum of squares may then be noted in vector notation
as in Eq. (2.51) with the solution for the minimum values as in Eq. (2.52). As β equals the
solution matrix, the solution for the time delays may be stated as
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Figure 2.4: Correct estimate of the time delay τ found from the phase based approach choosing
a linear model of τ̂ within a window of length 3.4 mm

τ̂(k) = ak (2.58)
∂τ̂

∂k
(k) = bk (2.59)

That is ak equals the smoothed estimate, and bk equals the local rate of change of the model.

2.3.4 τ̂ as a polynomial of second order

Now, choosing to model the delay as a non-linear function, τ̂k,n = ak + bkn + ckn
2, we get

the following weighted least squares expression for the phase-based time-delay estimation algo-
rithm

τ̂k,n = ak + bk(n− k) + ck(n− k)2 (2.60)

Q =
k+N

2∑
n=k−N

2

wk(ψn − θnτ̂k,n)2 (2.61)

=
k+N

2∑
n=k−N

2

wk(ψn − θn(ak + bk(n− k) + ck(n− k)2))2 (2.62)

=
k+N

2∑
n=k−N

2

wk(ψn − θnak − θnbk(n− k)− θnck(n− k)2)2 (2.63)
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The implication this alteration from a linear to a non-linear model of τ̂ has, is the shape of the
instantaneous frequency matrix Θ, and the parameter matrix β now defined as

Θ =



θk−N
2

(−N
2 )θk−N

2
(−N

2 )2θk−N
2

θk−N
2

+1 (−N
2 + 1)θk−N

2
+1 (−N

2 + 1)2θk−N
2

+1

θk−N
2

+2 (−N
2 + 2)θk−N

2
+2 (−N

2 + 2)2θk−N
2

+2

...
...

...
θk+N

2
−1 (N2 − 1)θk+N

2
−1 (N2 − 1)2θk+N

2
−1

θk+N
2

(N2 )θk+N
2

(N2 )2θk+N
2


, β =

akbk
ck

 (2.64)

while the weight matrix W is the same as in Eq. (2.50), and the phase difference matrix Ψ is
the same as Eq. (2.57). The solution for the parameters is expressed in Eq. (2.52).

2.4 Differences in modulating phase when estimating θ and ψ

When relating the phase difference ψ(k) and the instantaneous frequency θ(k), we have used
various approximations, especially regarding the modulating phase ϕ(k) and the derivative of
this ϕ′(k). Throughout we are stating that ϕ′(k) is equal both when estimating ψ(k) and when
estimating θ(k). The question remains however if this is a valid assumption. When estimating
the phase difference we are using the approximation as stated in Section 2.1.2 for ϕ′(k) as

arg{x(k)y∗(k)} = ϕ(k +
1
2
τ(k))− ϕ(k − 1

2
τ(k))︸ ︷︷ ︸

τ(k)ϕ′(k)

+ωcτ(k) (2.65)

and when estimating the instantaneous frequency, the approximation as stated in Section 2.1.3
for ϕ′(k) becomes

arg{x(k + 1)x∗(k − 1)} = ϕ

(
k + 1 +

1
2
τ(k + 1)

)
− ϕ

(
k − 1 +

1
2
τ(k − 1)

)
︸ ︷︷ ︸

2ϕ′(k)

+ · · · (2.66)

which in turn give us the relationships

ψ(k) = arg{x(k)y∗(k)} ≈ ϕ′(k)τ(k) + ωcτ(k) (2.67)

θ(k) =
1
4

[arg{x(k + 1)x∗(k − 1)}+ arg{y(k + 1)y∗(k − 1)}] ≈ ϕ′(k) + ωc (2.68)

Now expressing the two different derivates of ϕ(k) as ϕ′1(k) and ϕ′2(k) respectively, we have the
following relationships
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ψ(k) = ϕ′1(k)τ(k) + ωcτ(k)⇒ ϕ′1(k) =
ψ(k)
τ(k)

− ωc (2.69)

θ(k) = ϕ′2(k) + ωc ⇒ ϕ′2(k) = θ(k)− ωc (2.70)

Now calculating the values of ϕ′1(k) and ϕ′2(k) for a given signal, the two derivatives of the
modulating phase can be plotted as seen on the top row of Figure 2.5 within a certain signal
segment. As seen from the figure the two plots do indeed vary on several occasions. This may
indicate that the generalization of the parameter ϕ′(k) is somewhat inaccurate.

Figure 2.5: Difference of the derivate of the modulating phase ϕ′1(k) and ϕ′2(k) when estimating
phase difference and the instantaneous frequency

Plotted on the bottom row of Figure 2.5 is the value of the weight matrix within the same signal
segment. As stated in Section 2.3.2 the weight matrix is equal to the magnitude of the cross
product of the two signals to be compared, i.e. w = |x(k)y∗(k)|. As seen from the figure there
exists a strong correlation between the magnitude of the cross product and the similarity of
the two modulating phase derivates ϕ′1(k) and ϕ′2(k). When the difference is large, the value
of the weights are close or equal to zero, and when the signals are close to similar, the weights
are large. This relationship is exploited in the weighted lest squares method by assigning a low
weight to observations which are unreliable, as illustrated by Figure 2.5, thus minimizing the
overall error.
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2.5 Iterative scheme to find optimal values of the instantaneous
frequency

Although the time delay is a part of the analytical model when estimating the instantaneous
frequency as given in Eq. (2.10), it is omitted when approximating the derivate of the modulating
phase as stated in Eq. (2.66). As discussed in Section 2.4 this introduces an error in the estimate.
A different approach when estimating the instantaneous frequency would be in not spacing the
two signals by one sample as k + 1, but rather some other parameter to make the expression
for the modulating phase as equal to that stated in Eq. (2.65). We begin by spacing the two
delayed signals by two constants α1 and α2, and omit the dependence of k for τ for notational
convenience

θ̂(k) = arg{x(k)x∗(k + α1)}+ arg{y(k + α2)y∗(k)} (2.71)

= ϕ
(
k +

τ

2

)
+ ωc

[
k +

τ

2

]
− ϕ

(
k +

τ

2
+ α1

)
− ωc

[
k +

τ

2
+ α1

]
+ ϕ

(
k − τ

2
+ α2

)
+ ωc

[
k − τ

2
+ α2

]
− ϕ

(
k − τ

2

)
− ωc

[
k − τ

2

]
(2.72)

= ϕ
(
k +

τ

2

)
− ϕ

(
k +

τ

2
+ α1

)
− ωcα1 + ϕ

(
k − τ

2
+ α2

)
− ϕ

(
k − τ

2

)
+ ωcα2 (2.73)

Now by separating the phase of the signal that has a positive delay of half a sample and comparing
with the expression for phase difference as given in Eq. (2.65), it is quite easy to deduce the
value of the factor α1

arg{x(k)x∗(k + α1)} = ϕ
(
k +

τ

2

)
− ϕ

(
k +

τ

2
+ α1

)
︸ ︷︷ ︸

α1=−τ

−ωcα1 (2.74)

And likewise for the signal that has a negative delay of half a sample one can deduce the value
of the factor α2

arg{y(k + α2)y∗(k)} = ϕ
(
k − τ

2
+ α2

)
− ϕ

(
k − τ

2

)
︸ ︷︷ ︸

α2=τ

+ωcα2 (2.75)

The result means that in order to minimize the difference of the modulating phase when calculat-
ing the phase difference and the instantaneous frequency, the correct approach when estimating
the instantaneous frequency would be in not spacing the two signals by one sample as k + 1,
but rather by the delay itself. As the delay is unknown, an approach to this problem is to use
the estimated delay τ̂ , to space the signals by k + τ̂ . The expression for the updated estimate
of the instantaneous frequency then becomes

θ̂(k) = arg{x(k)x∗(k − τ̂)}+ arg{y(k + τ̂)y∗(k)} (2.76)

= ϕ
(
k +

τ

2

)
− ϕ

(
k +

τ

2
− τ̂
)

+ ϕ
(
k − τ

2
+ τ̂
)
− ϕ

(
k − τ

2

)
+ 2ωcτ̂ (2.77)

Now if we assume the estimated delay τ̂ is equal to the original delay τ , the expression be-
comes
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θ̂(k) = ϕ

(
k +

τ̂

2

)
− ϕ

(
k − τ̂

2

)
︸ ︷︷ ︸

τ̂ϕ′(k)

+ϕ

(
k +

τ̂

2

)
− ϕ

(
k − τ̂

2

)
︸ ︷︷ ︸

τ̂ϕ′(k)

+2ωcτ̂ (2.78)

= 2τ̂ϕ′(k) + 2ωcτ̂ (2.79)

= 2τ̂ [ϕ′(k) + ωc] = 2τ̂ θ(k)⇒ θ(k) =
1
2τ̂
θ̂(k) (2.80)

This means that an optimal estimator for the instantaneous frequency can be expressed as

θ̂(k) =
1
2τ̂

arg{x(k)x∗(k − τ̂)}+ arg{y(k + τ̂)y∗(k)} (2.81)

or by again introducing the dependence of k for the delay, the estimator may be stated as

θ̂(k) =
1

2τ̂(k)
arg{x(k)x∗(k − τ̂(k))}+ arg{y(k + τ̂(k))y∗(k)} (2.82)

This can be implemented in an iterative scheme, which updates the values for the instantaneous
frequency θn+1 based on the estimated delays τ̂n. First an initial estimate of the instantaneous
frequency as described by Eq. (2.68) must be made, and the initial values for the estimated
delay may be computed through Eq. (2.52). This initial estimate for the delay may again be
used to calculate an updated estimate of the instantaneous frequency as given in Eq. (2.82),
which again can be used to calculate a new updated estimate of the delay. The entire procedure
may also be described in pseudocode as

M ← number of iterations
L← number of samples
θ̂1 ← 1

4 [arg{x(k + 1)x∗(k − 1)}+ arg{y(k + 1)y∗(k − 1)}]
for n = 1 to M do
for k = 1 to L do
β̂ ← (Θ̂T

nW Θ̂n)−1Θ̂T
nWΨ

τ̂n(k)← β̂1

end for
θ̂n+1 ← 1

2τ̂n
[arg{x(k)x∗(k − τ̂n)}+ arg{y(k + τ̂n)y∗(k)}]

end for

As stated in Section 2.3.3 a window of N number of samples is used to improve the estimate,
and the delay is calculated over this window. This introduces some problems however, as the
estimated delay values will be set to zero over a range of N/2, or half the window length, at the
start and the end of the estimated delay values. This again will introduce errors in the updated
values for the instantaneous frequency using the iteration scheme. One solution to this problem
is to assume zero delay at the start of the signal, and interpolate the values from this starting
point up to the value of the first estimated delay τ̂s, and assume the delay is linear over those
samples as seen in Figure 2.6. The second assumption deals with the values at the end of the
estimated delay signal, and these values are assumed to be constant equal to the value of the
last estimated delay τ̂e. A third problem arises if some of the estimated instantaneous frequency
values after iteration are non-existent. Since these values are used to calculate the delay τ̂n a
solution is to use existing calculated values.
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Figure 2.6: Interpolation scheme to determine non-existing values at the start of the estimated
time delay

The entire procedure may again be described in pseudocode as

M ← number of iterations
L← number of samples
N ← window length
θ̂1 ← 1

4 [arg{x(k + 1)x∗(k − 1)}+ arg{y(k + 1)y∗(k − 1)}]
for n = 1 to M do
for k = N/2 to L−N/2 do
β̂ ← (Θ̂T

nW Θ̂n)−1Θ̂T
nWΨ

τ̂n(k)← β̂1

end for
for k = 1 to N/2 do
τ̂(k)← 2τ̂n(N/2)k/N

end for
for k = L−N/2 to L do
τ̂(k)← τ̂n(L−N/2)

end for
θ̂n+1 ← 1

2τ̂n
[arg{x(k)x∗(k − τ̂n)}+ arg{y(k + τ̂n)y∗(k)}]

if θ̂n+1(k) is non-existent then
θ̂n+1(k)← θ̂n(k)

end if
end for

2.6 Analytical characterization of instantaneous frequency iter-
ation algorithm

Now using the same signal as in Section 2.4, again we can plot the two derivates of the modulating
phase. As seen from Figure 2.7, the effect of using the estimated delay values τ̂ to estimate an
updated value for the instantaneous frequency as described by Eq. (2.82) becomes quite clear.
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The two derivates follow each other much more closely as opposed to the situation seen in
Figure 2.5 when the method described by Eq. (2.68) to estimate the instantaneous frequency is
utilized.

Figure 2.7: Difference of the derivate of the modulating phase ϕ′1(k) and ϕ′2(k) when estimating
phase difference and the instantaneous frequency after one iteration of the minimum phase
difference algorithm

As the time-delay estimator is a phase based estimator, this introduces some limitations on the
maximum delay we are able to detect. As the phase by definition varies from minus π to π, i.e.
∠ = [−π, π], this means that the maximum phase difference between two signals equals π. This
can again be related to the maximum time-delay we are able to detect as

ψmax = ωcτmax = π (2.83)
2πfcτmax = π (2.84)

τmax =
1

2fc
(2.85)

or in number of samples as

τmax =
fs
2fc

=
1

2fcTs
(2.86)

where fc equals the center frequency and Ts the sampling period. A larger center frequency will
in turn lower the maximum detectable delay in seconds as seen in Figure 2.8.
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Figure 2.8: Maximum detectable delay in nanoseconds as a function of center frequency when
estimating with the phase-based time-delay estimator

To characterize the impact of the instantaneous frequency iteration scheme we start by simulating
a random signal s(k) with center frequency fc = 7 MHz, sampling frequency fs = 40 MHz and
a relative bandwidth of 50% of the center frequency, or a drop in intensity of 6 dB from its
maximum value, i.e. Bw = 3.5 MHz. Now by defining two signals delayed in respect to s(k) as
x(k) and y(k), described in detail by Eq. (2.3) and Eq. (2.4), respectively, we get

x(k) = s(k +
τ(k)

2
) (2.87)

y(k) = s(k − τ(k)
2

) (2.88)

The delay is assumed to be linear so it increases with depth up to a certain maximum value
decided by Eq. (2.86), which for fc = 7 MHz and fs = 40 MHz equals 71 nanoseconds or 2.8
samples. The two delayed RF signals may for instance look something like displayed in Figure
2.9.

Figure 2.9: Two RF signals delayed in respect to each other with linearly increasing delay and
center frequency fc = 7 MHz, sampling frequency fs = 40 MHz and 50% relative bandwidth
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Figure 2.10: Maximum estimated delay by the phase-based time-delay estimator as a function
of the actual delay for linear and polynomial model. Simulated with center frequency fc = 7
MHz, sampling frequency fs = 40 MHz, 50% relative bandwidth and n = 1000.

Figure 2.11: Bias and standard deviation for linear and polynomial model when estimated by
the phase-based time-delay estimator as a function of the actual delay. Simulated with center
frequency fc = 7 MHz, sampling frequency fs = 40 MHz, 50% relative bandwidth and n = 1000.
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Seen in Figure 2.10 is the maximum delay which the phase-based algorithm is able to detect when
simulating with a center frequency fc = 7 MHz, sampling frequency fs = 40 MHz, 50% relative
bandwidth and number of simulations n = 1000. The actual delay between x(k) and y(k) is
plotted in the dashed black line as seen on the top row of the figure, and is as already stated
linearly increasing from zero to a maximum value as described by Eq. (2.86). The estimated
values when using the linear model are plotted on the left hand side of the figure, while the
estimated values when using the polynomial model of the second degree are plotted on the right
hand side. Inspecting the estimated delay values as seen in Figure 2.10 it seems that both the
linear and the polynomial model implemented using the iteration scheme described in Section 2.5
are able to detect a delay up until around two samples, or 50 nanoseconds using these parameters,
before gradually deviating from the actual delay value. Although there exist slight differences
between the estimated delay with and without the iteration scheme, using the parameters for
fs and fc, they are almost negligible judging from the estimated delay alone.

To be able to see the impact the iteration scheme has on the estimated delay, the mean and
standard deviation in number of samples are plotted for both models and all iterations as seen in
Figure 2.11. The effect of using an iteration scheme for estimating the values of the instantaneous
frequency is markedly clear. Although the iterations introduce a larger bias for the estimated
delay values, it lowers the standard deviation significantly. As seen from the figure the iteration
scheme works best for constant delays of around one sample, for which the bias is zero and the
standard deviation is the lowest. Also interesting to notice is the increased magnitude of the
standard deviation without iterations when comparing the linear and the polynomial model.
This variation has all but been eliminated when using the iteration scheme as seen on the lower
part of Figure 2.11.

For a sufficient sampling rate it seems that a single iteration of the instantaneous frequency
iteration algorithm is adequate to lower the variance, but what is the impact if the sampling
rate is lowered? The Nyquist rate is defined as the minimum sampling rate required to avoid
aliasing, and for bandpass signals the Nyquist rate equals two times the highest frequency
component of the signal, and an interesting observation occurs when sampling the signal below
the Nyquist rate without filtering the signal with an anti-aliasing filter.

Figure 2.12: One sided normalized frequency spectrum of a band limited signal with Nyquist
limits fN and various minimum sampling frequencies fs,min for various bandwidths. Simulated
with center frequency fc = 7 MHz, sampling frequency fs = 40 MHz, 50% relative bandwidth.

Seen in Figure 2.12 is the one sided frequency spectrum of the band limited signal having a
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center frequency of 7 MHz. By sampling with a sampling frequency fs = 40 MHz, we are clearly
above this limit. Plotted in the figure are three different scenarios for Nyquist limit fN and
minimum sampling frequency fs,min = 2fN which are described in detail in Table 2.1

Relative Bw Bw

Drop in signal
strength fN fs,min

50% 3.5 MHz -6 dB 8.75 MHz 17.5 MHz
100% 7 MHz -24 dB 10.5 MHz 21 MHz
130% 9 MHz -40 dB 11.5 MHz 23 MHz

Table 2.1: Various bandwidth parameters when simulating with a center frequency fc = 7 MHz

As given from the table, the bandwidth of the signal is related to the drop in signal strength
of the one sided normalized frequency spectrum from its maximum value. A drop of 6 dB then
corresponds to a relative bandwidth of 50%, or 3.5 MHz when simulating with a center frequency
of 7 MHz. And a drop of of 24 dB and 40 dB corresponds to a relative bandwidth of 100% and
130%, or a bandwidth of 7 MHz and 9 MHz respectively. By sampling the signal with the lowest
possible sampling frequencies fs,min as given in the fifth column of Table 2.1, we can plot the
impact both the lowered sampling frequency and the iteration scheme has on the estimated delay
values as plotted in Figure 2.13.

Figure 2.13: Maximum estimated delay by the phase-based time-delay estimator using a linear
model as a function of the actual delay for different bandwidths and sampling frequencies.
Simulated with center frequency fc = 7 MHz and 50% relative bandwidth.

For the simulations a linear model was used as parametric model of the delay. The right hand
side of the figure is a region of interest from the estimated delay values plotted on the left hand
side. The first row displays the estimated values when using the parameters stated in the first
row of Table 2.1, the second row displays the estimated values when using the parameters stated
in the second row of Table 2.1, and the last row of the figure displays the estimated delay values
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when using the parameters stated in the third row of Table 2.1.

As already stated the maximum delay possible to detect is a function of the sampling frequency
as given by Eq. (2.86). This in turn means that the three different situations plotted on the
three different rows of Figure 2.13 are scaled differently up to a maximum value. For the top
row this corresponds to about 1.2 samples, for the second row 1.4 samples, and 1.6 samples for
the third row. No anti-aliasing filter is used on the signal, and aliasing is bound to occur as
the sampling rate is lowered. What is intuitively seen is that the estimated delay values when
using the ordinary method for estimating the instantaneous frequency as stated in Eq. (2.68)
and plotted in blue of Figure 2.13, completely fails to estimate the correct delay. This even
goes for the highest sampling frequency as seen on the left hand side of the bottom row of the
figure. Although the ordinary method is able to detect and estimate the correct delay when the
sampling rate is sufficient as seen in Figure 2.10, it fails to do the corresponding correct delay
estimation when sampling the signal at a much lower sampling rate. When using the iteration
scheme on the other hand, the curve of estimated delay values follows the correct delay much
more closely. When inspecting the top row of the figure it is clear that even at this low sampling
rate the iteration algorithm manages to some degree to follow the correct delay curve, and as
the iteration number increases, so increases the maximum detected delay. This might suggest
the feasibility of the algorithm to iterate closer and closer to the correct value even when the
sampling rate is low and beneath the Nyquist limit. To characterize the impact further, again
it is possible to plot the bias and standard deviation given in samples for the three different
situations as seen in Figure 2.14.

Figure 2.14: Bias and standard deviation in samples by the phase-based time-delay estimator
using a linear model as a function of the actual delay for different bandwidths and sampling
frequencies. Simulated with center frequency fc = 7 MHz and 50% relative bandwidth.

Again the iteration scheme manages to lower the standard deviation, and an increased number
of iterations will also lead to increased lowering of the standard deviation.
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Chapter 3

Estimating tissue elasticity

Since the early beginnings of medical practice, the estimation of tissue hardness has been prac-
ticed through palpation, i.e. the act of feeling or pushing on various parts of a patient’s body
to determine medical conditions. Palpation has been an important tool to detect abnormalities
in the body, mainly because the mechanical properties of diseased tissue are typically different
than that of the healthy tissue surrounding it. A tumor or a suspicious cancerous growth is
normally much stiffer than the background of normal soft tissue [12]. The basic relationship
between tissue elasticity and hardness to palpability then follows the relationship that in order
to be palpable, the object must be harder than the tissue surrounding it. However in many
cases despite the differences in stiffness, the small size of a pathological lesion makes it harder
to detect, and lesions located at deeper depths than the fingers are able to to sense preclude
its detection and characterization. Palpation is then limited to the detection of abnormalities
and tumors which are close to the skin. Ordinary ultrasound has the advantage of imaging deep
inside the body, but is virtually unable to differ between tissue of various hardness and elasticity,
and there has been a consistent interest in tissue hardness, motion and vibration over the years.
Tissue elasticity is characterized by the amount of tissue displacement or distortion in response
to the application of an external force. There are several ways of estimating tissue elasticity by
ultrasound, but basically the various methods fall into three main categories.

3.1 Sonoelasticity imaging

Initial experiments in differentiating between normal soft tissues and hard lesions using ultra-
sound were conducted around 1986, but it was not until Lerner et. al. presented a method
named "sonoelasticity imaging" in 1989 the concept had any practical implications [14, 15]. So-
noelasticity imaging, or sonoelastography, involves the application of a low-frequency vibrational
energy to the tissue, and the simultaneous motion detection by Doppler technique to detect the
ultrasonic waves that have been influenced by the vibrations. In sonoelasticity imaging the
acoustic vibration is in the audible range (30-200Hz), and is transmitted in the tissue of inter-
est. Color Doppler imaging is then used to detect the resulting tissue stiffness. Since the velocity
of propagation is a function of the elastic properties of tissue, measurement of the velocity of a
propagating mechanical vibration in tissue will yield the differences in elasticity. The concept is
that stiff tissues will respond differently to an applied mechanical vibration than normal tissue.
Areas, or tissue, of increased stiffness will experience less or decreased vibrations which can be
seen as a "void" in the Doppler sonoelasticity image. The main advantage of this technique is
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the ability to view the in-vivo results in real time, as the signal processing involved is basically
equivalent to well established Doppler methods. [31, 32].

3.2 Transient elastography

A different approach called transient elastography was presented by Sandir et. al. in 1999 [20].
The method relies on the observation of the propagation of a pulsed shear wave, i.e. a wave
where the oscillations occur perpendicular to the direction of energy transfer, to determine the
elastic properties of tissue, also known as transient elastography. The shear wave propagating
in the tissue has a very low-frequency (v 60 Hz), and the local velocity (typically from 1 to 10
m/s) of the wave is directly related to the Young’s modulus, E. The Young’s modulus is also
known as the modulus of elasticity, and can be calculated by dividing the tensile stress by the
tensile strain as given by Eq. (3.1)

E =
tensile stress
tensile strain

=
σ

ε
=

F/A0

∆L/L0
=

FL0

A0∆L
(3.1)

where E is the Young’s modulus (modulus of elasticity), F is the force applied to the object,
A0 is the original cross-sectional area through which the force is applied, ∆L is the amount by
which the length of the object changes, and L0 is the original length of the object. A shear
elasticity map of the medium may be computed using an inversion algorithm. Because the
shear waves propagate through the medium in less than 0.1 s, the displacements induced by
the shear wave are measured with an ultrasonic array connected to an ultrafast imaging system
able to reach frame rates up to 6000 Hz. Transient elastography then has the advantages of
being insensitive to patient motion and boundary condition artifacts because of its real-time
capabilities with an acquisition time in less than 20 ms [21]. A different technique with close
resemblance to transient elastography known as supersonic shear imaging (SSI) was presented
by Bercoff et. al in 2004 [23]. In SSI the source radiates low-frequency shear waves inside the
tissue, but makes the shear source move with supersonic speed to create quasiplane shear waves
of stronger amplitude. Such a shear source which moves faster than the shear waves can be
created by successively focusing the ultrasonic "pushing" beam at different depths. All resulting
shear waves will interfere constructively along a Mach cone, creating two intense quasiplane
shear waves propagating in opposite directions.

3.3 Elastography

The term "elastography" was coined by Ophir et. al. in 1991 as a quantitative method of imaging
the elasticity of biological tissue by direct imaging of the strain and the Young’s modulus of tissue
[16]. Elastography involves quasi-static compression of tissue and the analysis of the echoes
returned to the transducer before they are converted into B-mode images. The elastography
method is based on external tissue compression, with subsequent computation of the strain
profile along the transducer axis, and differs in other methods in several important aspects. The
force applied to the tissue is not vibratory, but rather considered quasi-static, thus reducing the
complexity of the generalized viscoelastic equation of forced motion to the much simpler Hook’s
equation. The average levels of strain evoked in the tissue are very small, and perhaps most
importantly, elastography is capable of producing high resolution images [17]. In ultrasound
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elastography two different sets of RF data from the same region of interest (ROI) are collected
and stored. First a conventional scan is made, then the tissue is compressed slightly, and
another set of RF signals is collected. Two frames of ultrasound data are then recorded, one
before and one after a section of tissue is compressed by a small amount (e.g. with the ultrasound
transducer) as shown in Figure 3.1. The strain is derived by analysis of pre-compression and
post-compression profile of the axial displacement along the RF signal, and several techniques are
available for estimating the displacement in tissues. The resulting tissue displacement between
the two sets of RF data is usually tracked by speckle tracking techniques, e.g cross-correlation
methods. Despite the fact that the original concept of elastography involves applying an external
load to the tissue, the inherent motion of organs and deformation of tissue can be utilized,
which in turn has lead to new inventions in the fields of intravascular and cardiac elastography
[25].

Figure 3.1: Basic principle behind elastography [1]

When a stress is applied to the tissue, it is being displaced and compressed. The local displace-
ment of each particle along the direction of propagation of the ultrasonic beam, induces a shift in
the time domain of the corresponding echo in the backscattered signal, due to changes in the time
of flight. Assuming a constant speed of sound, the induced time shift is directly proportional to
the local displacement. The relative displacement of tissue will be incremental and hence give
rise to time shifts in the time delays of corresponding sections in the recorded ultrasound signals.
Tracking and estimation of these time shifts will hence produce the corresponding displacement.
The amount of shift in the signal equals the amount of tissue displacement at that point in the
image frame, and this process is done for all points in the image. Ultrasound is an excellent
imaging modality for elastography, whereas each image obtained from an ultrasound transducer
has a unique speckle pattern. Speckle is an interference pattern visible in ultrasound images
produced by the mutual interference of a set of wavefronts, and is dependent on the frequency
of the transmitted pulse and its shape. Thanks to the distinct speckle pattern of the ultrasound
images, time delay estimation can produce highly accurate estimates of the actual tissue motion
[33]. When estimating the tissue displacement a window around the sample range is used to
improve the estimate. The similarity within the sample window between a frame before and
after pressure is applied, will tell us how much the signal, i.e. the tissue, has shifted for that
range in the image. The most common way of finding this similarity is by using speckle tracking
and cross-correlation techniques. The estimate of the actual time delay may then be found by
estimating the shift of the peak of the cross-correlation function as displayed in Fig 3.2. Finding
the maximum value of the cross-correlation function as lmax, and knowing the sampling period
Ts, the corresponding time delay may be found as

31



lmax · Ts = t̂ (3.2)

However when the signal-to-noise ratio (SNR) is low, the probability of making errors in the
estimation of the peak increases dramatically. Also another disadvantage using cross-correlation
techniques include the sensitivity of cross-correlations to amplitude variations in the presence of
small signal distortions. A different approach is to use the phase of the two signals to compute
the delay. Wilson and Robinson described a method for phase tracking of wideband ultrasonic
signals as early as 1982, and were able to measure displacement and deformation waveforms for
displacements less than 0.1 cm [18]. At the start of 2008, Lindop et. al. presented a theoretical
analysis and experimental results from an investigation of phase-based ultrasonic deformation
estimators [19]. They were able to demonstrate their application to in vivo freehand strain imag-
ing, and showed quantitatively that the approach offered a wider range of scanning conditions
than adaptive methods based on correlation coefficients or sum of absolute differences.

Figure 3.2: Cross-correlation within a sample window between two different frames . The peak
of the function will yield the corresponding time delay

3.4 Relations of tissue displacement and tissue elasticity

The recorded displacement estimates are sometimes displayed directly as displacement images,
but it is more common to take the spatial derivative of the displacement to produce the resulting
strain between the acquired RF data before and after the applied compression. This resulting
strain image is known as an elastogram, and the imaging technique is known as elastography.
Each pixel in the elastogram, i.e. the elastography images, denotes the estimated amount of
strain, ε, which the tissue experienced during the applied compression defined by

ε̂ =
t̂1 − t̂2

∆t
(3.3)

where t̂1 and t̂2 denotes the estimates of the local tissue displacements spaced apart by the
window shift ∆t which is typically in the order of 0.1-0.2 mm [34]. The major disadvantage
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of this method is the the noise induced by the gradient operation, and various methods have
been proposed to decrease the noise using filtering. Also, using cross-correlation techniques for
estimating time delays is based on the assumption of a constant displacement over the window
range, while in fact the degree of local stretching and compression can be substantial and can
degrade the estimates. The method presented in Section 2.1 is a phase based approach for
subsample delay and displacement estimation, and makes no assumption on the local delay
variation. Any parametric model can be used for the local delay variation, for instance a non-
linear model as described by Eq. (2.60). The parameters of the model can be used to find the
displacement ak, and the gradient of the displacement bk. The gradient of the displacement
is connected to the mechanical properties of tissue, a small gradient is a sign of stiff tissue,
and a large gradient is a sign of soft tissue. The tissue stiffness values are not quantitative but
qualitative; only the relative tissue stiffness is visualized. As opposed to Eq. (3.3), the estimated
strain, ε, by using the phase-based time-delay algorithm is given directly by the local rate of
change of the model τ̂(k), i.e.

ε̂ =
∂τ̂

∂k
(k) = bk (3.4)

As seen in Figure 3.3 the method is quite effective in displaying spheres that will appear isoechoic
to the background using standard B-mode imaging. For this specific situation a non-linear model
was chosen within a window length of 3.4 mm with a 10 MHz probe and a demodulation frequency
of 6 MHz.

Figure 3.3: Elastogram made by using the phase-based time-delay algorithm with a non-linear
model of τ̂(k) as described by Eq. (2.60) within a window of size 3.4 mm. Recording made with
a 10 MHz probe and a demodulation frequency of 6 MHz
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Chapter 4

Impacts on elastogram quality for
linear and nonlinear model of τ̂

For the results to be presented two different recorded data-sets are used. The first elastography
recording is made by the Ultrasonix Medical Company, Vancouver, Canada, with a 10 MHz
probe and a demodulation frequency of 6 MHz. The data-set consists of 30 frames, with each
frame being made up of 192 scan lines and 1032 samples in the range direction. Each frame
then has a total of 132 096 data points. The second recording is done at the Department of
Circulation and Medical Imaging (ISB) with the Ultrasonix SonixRP system with a 10 MHz
probe and a demodulation frequency of 4 MHz. The recordings were performed on a basic
elasticity phantom as seen in Fig. 4.1 [2]. The model contains two sizes of spheres positioned at
two different depths, and the spheres in the phantom will appear isoechoic to the background
using conventional B-mode imaging. The recorded data-set consists of 50 frames, with each
frame being made of 256 scan lines and 902 samples in the range direction, giving each frame a
total of 231 424 data points. The elastography images are made by using the real-time delay-
tracking algorithm developed for estimating spatially varying delays in RF signals, as described
in Eq. (2.19), to track and estimate the local tissue compression based on the time shifts raised
in the signal.

Figure 4.1: CIRS Model 049 ultrasound phantom used for elasticity imaging [2]. The phantom
contains several spheres of different sizes and elasticity. The spheres will appear isoechoic to the
background using conventional B-mode imaging

For post-processing adjustments of the strain values to be displayed, there are several possibili-
ties. In order to avoid that very large negative or positive values from the estimated strain values
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impair the dynamic of the final image, thresholding of the data is used. Also smoothing in the
time and spatial domain is implemented to increase the smoothness of the sequence of frames
to be displayed in the final movie, and to suppress noise. These results are already presented
and discussed in [35], and will not be explored further. The two parameters to be tuned for the
phase-based time-delay estimation algorithm, before any post-processing is performed, is the
length of the sample window and the choice of model of the delay τ̂(k).

All simulations, calculations and images were created using Matlab version R2008a by the Math-
works company [36], unless otherwise stated.

4.1 Choice of window length for phase based estimator

The window length is the number of samples N of the sample window for which the minimum
values of the model τ̂(k) is to be found. A too long sample volume could lead to too much
smoothing of the final image, whereas a too short sample volume could lead to too close tracking
of the noise in the image. There is hence a tradeoff between contrast and resolution. With fixed
values for time and spatial domain smoothing the effects of the choice of window length for the
elastography recording made by the Ultrasonix Medical Company can be seen in Figure 4.2,
with window lengths ranging from 2.2 mm to 4.4 mm, which is the sample range in which the
parameters β̂ of the model τ̂(k) is estimated. The strain values are in this case estimated by a
linear model of τ̂(k).

Figure 4.2: Elastogram made with different window lengths ranging from 2.2 mm to 4.4 mm.
Recorded with a 10 MHz probe and a demodulation frequency of fd = 6 MHz. Strain values
estimated with a linear model for τ̂(k)

From Figure 4.2 it seems that a window length of 2.2 mm closely tracks the inclusions, but the
final image will also contain a larger degree of noise as perceived by the observer. In contrast, a
window size of 4.4 mm and above would seem to smear the resolution of the image too much. A
compromise must then be established, and the best perceived image is found to be with a window
length of 3.4 mm for this specific recording having a demodulation frequency of 6 MHz.

Focusing on the recording done at ISB, it is again possible to view the differences in choice
of window length. The images displayed in Figure 4.3 have window lengths ranging from 3.8
mm to 6.0 mm, which is the sample range in which the parameters β̂ of the linear model
τ̂(k) is estimated. Again a compromise between contrast and resolution has to be made, and
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the optimal value for window length is found perceptibly at 5.0 mm for this specific recording
having a demodulation frequency of 4 MHz.

Figure 4.3: Elastogram made with window lengths ranging from 3.8 mm to 6.0 mm. Recorded
with a 10 MHz probe and a demodulation frequency of fd = 4 MHz. Strain values estimated
with a linear model for τ̂(k)

It is clear that the two recordings have different optimal values for window length, and the
challenge will be in finding a fixed, globally valid parameter to be used as window length.
Instinctively, what seems to vary between the two recordings are the demodulation frequencies
fd. Now noting that the wavelength λ is related to the center frequency fc, or in the case where
the signal is demodulated the demodulation frequency fd, as

λ =
c

fd
(4.1)

where c represents the propagation speed, which for soft tissue is approximately 1540 m/s. Seen
on the left hand side of Figure 4.4 is a plot of the sample window in number of wavelengths as a
function of window length in millimeter. Two lines are plotted representing two fixed frequencies
of 6 MHz and 4 MHz respectively, with a fixed speed of sound of 1540 m/s. The 6 MHz line
being the top blue line, and the 4 MHz line being the bottom blue.

Figure 4.4: Number of wavelengths as a function of window length in millimeter for fixed fre-
quency of 6 MHz and 4 MHz, and window length in millimeter as a function of demodulation
frequency, both with fixed speed of sound as 1540 m/s
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The best perceived image quality is obtained for a window length of 3.4 millimeter with a
demodulation frequency of 6 MHz, and 5.0 millimeter for a demodulation frequency of 4 MHz.
Converting these two window lengths into number of wavelengths, we get approximately 13 for
both recordings, as represented by the horizontal red line in the plot on the left hand side of
Figure 4.4. By setting the sample range, i.e. the size of the sample window, for a fixed number
of wavelengths of approximately 13, we can plot the various window lengths as a function of
demodulation frequency as seen on the right hand side of Figure 4.4. The results are intuitively
seen, a lower demodulation frequency will give a larger window length in millimeter, whereas a
higher demodulation frequency will give a smaller sample window in millimeter when operating
with a fixed value for number of wavelengths.

This will have some implications on the computational time for the finished processed elastog-
raphy images as a larger window length will lead to increased computational time. Displayed
in Figure 4.5 is the computational time for the two different data-sets as a function of window
length in millimeter. As the two data-sets vary both in frames, and number of data points in
each frame, the computational time will also differ. The general trend is that an increase in win-
dow length gives an increased computational time, which is displayed by the two monotonically
increasing graphs of Figure 4.5.

Figure 4.5: Computational time as a function of window length for the phase-based time-delay
algorithm with a linear model. The first data-set consists of 30 frames with a demodulation
frequency fd = 6 MHz, whereas the second data-set consists of 50 frames with a demodulation
frequency fd = 4 MHz

4.2 Comparison of linear and non-linear model of τ̂ used on elas-
tography data

Two models, one linear and one polynomial of the second degree, have been tested for the
phase-based time-delay estimation algorithm as model of τ(k) described as

τ̂k,n = ak + bk(n− k) (4.2)

τ̂k,n = ak + bk(n− k) + ck(n− k)2 (4.3)

Both models can be stated in a minimum least squares sense, where the sum of squares is
expressed as
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Q =
k+N

2∑
n=k−N

2

wn(ψn − θnτ̂k,n)2 (4.4)

which has its solution matrix, i.e. the parameters, computed through Eq. (2.52) as

β̂ =
[
ak
bk

]
(4.5)

where ak equals the smoothed estimate τ̂(k), and bk the local rate of change of the model, which
can be seen on as the strain value ε. It is hence bk, or the strain values, which are displayed in
the final elastogram.

Displayed in Figure 4.6 is a series of frames from an elastography sequence computed from the
data-set provided by Ultrasonix. The top row displays the sequence when estimated by a locally
linear model of τ̂(k) as stated in Eq. (4.2), while the bottom row displays the same sequence of
frames computed from a locally polynomial model of the first degree as stated in Eq. (4.3). Both
sequences are computed with the same window length, and the same parameters for thresholding
and spatial and time domain smoothing.

Figure 4.6: Sequence of frames from estimated elastogram with a linear model of τ̂(k) (top row),
and a polynomial model of τ̂(k) (bottom row)

Initially the two sequences look virtually the same, especially when focusing on the areas close
to the transducer surface. But what seems to be the main difference is observable at the bottom
of the frames. It may seem that the frames computed from the linear model have a larger
degree of noise present in this area than what is observable for the sequence at the bottom row
computed by the non-linear model. As pressure applied on the phantom by the transducer is
highest closest to the transducer surface, it will lose some of its impact as it propagates further
down the tissue, as elastic tissue not only experiences compression in the range direction, but
in all directions simultaneously. As elastograms are computed by the difference in strain from
frame to frame, the estimations will be degraded if there is little or no strain present. This is
observable at the very bottom of the top sequence of frames in Figure 4.6, where edge detection
of the inclusions become increasingly difficult.
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Focusing closer on various region of interests (ROI) of one frame computed by the linear and the
non-linear model of τ̂(k), it is possible to see the differences even clearer. Displayed in Figure
4.7 are three different ROIs of the elastogram, with the elastogram computed by a linear model
at the top, and the elastogram computed by a polynomial model at the bottom. The frame at
the left hand side of the figure displays the estimated elastography image, which is the same
as the second image from the left in Figure 4.6, i.e. frame 24. The second frame of Figure 4.7
displays an ROI of the model’s adaption to noise in the elastogram where there are no inclusions
present. The last two frames display ROIs of the model’s ability to detect edges in the image,
i.e. detect the size and shape of the inclusions present.

Figure 4.7: Various region of interests for elastogram estimated by a linear model (top row), and
a polynomial model (bottom row). The first ROI displays how the two different models adapt
to noise, whereas the last two ROIs displays edge detection for the two models

As seen from the second frame from the left for the top and bottom row, the polynomial model
to a greater extent adapts to the noise in the image. This is the case where there are no
differences in strain present, as the tissue hardness for this ROI is pretty uniformly distributed.
As the polynomial model has a higher complexity than the linear, it is expected that it also will
track small differences more closely. The unfortunate effect is that it also experiences a greater
adaption to noise.

Turning attention to the the last two frames on the right hand side of Figure 4.7, the ability
to detect edges is displayed more clearly. As seen in the third frame from the left, i.e. the
second ROI, the bright area between the top and bottom inclusion of the elastogram is slimmer
for the polynomial model than what is the case for the linear. This result can also be seen
clearly in the sequence displayed in Figure 4.6. It may also seem that the polynomial model
is better in detecting a clear difference between an inclusion and the surrounding tissue. This
result is especially visible in the third ROI displayed on the right hand side of the figure, being
the inclusion at the bottom right of the elastogram. For the linear model there is a lot of noise
present, both inside the area of the inclusion, and in the surrounding tissue. This makes it more
difficult to clearly distinguish the size and edges. Estimating the elastogram by a polynomial
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model on the other hand is better in detecting these edges located at a depth where the strain
is lower than closer to the transducer surface. Comparing the inclusion estimated by the two
models one can clearly see an improvement by updating to a polynomial model. This result is
also visible by again turning attention to the sequence of frames displayed in Figure 4.6 and
focusing on the lower part of each frame.

Figure 4.8: Estimated time delay τ(k), local rate of change ε, and final elastogram values for a
single line through the image from top to bottom for the two different models of τ̂(k)

Seen in Figure 4.8 is a plot of single line going from top to bottom of the elastogram for the
two various models. The estimated values from the linear model are plotted in blue, and the
values from the polynomial model are plotted in green. The top row displays the estimated
time difference τ(k), or the value of ak from the model being used. The center row displays
the local rate of change, i.e. the strain or the value of bk of the model, and the bottom row
displays the values after time and spatial domain smoothing, in addition to thresholding of data
and individual normalization, has been performed. The final plot is hence the grayscale values
that are displayed in the final elastogram. The line goes straight through the two inclusions
on the right hand side of the image displayed in the left frame in Figure 4.7. This can also be
seen from the bottom row of Figure 4.8, as a small gradient is a sign of stiff tissue, and a large
gradient a sign of soft tissue. It is clear that the regions between 5-13 mm and 22-28 mm have
small gradients, which is a sign of stiff tissue, which in turn is a sign of an object that is harder
than the tissue surrounding it. As can be seen from the the plots of ak and bk on the top and
middle row of the figure, the differences between the two various models of τ̂(k) are especially
distinguishable at a depth of around 30 mm and beyond.
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The most interesting observation is even clearer when focusing on an ROI further down in the
tissue as displayed on the bottom row of Figure 4.9, where the two delay models are clearly
different. For this specific frame, and this specific line in the image, the largest difference occurs
at a depth of around 3.2 cm, where the maximum difference is around 2.3 dB. Also the dynamic
area, i.e. the difference between the maximum and minimum value of the signal, is different for
the two models. The polynomial model has in this example a dynamic area of about 5.3 dB,
and the linear model a dynamic area of 2.8 dB. This in turn yields that the polynomial model
has a dynamic area being 2.4 dB higher than the linear model. This might suggest that the
contrast of the displayed values is further improved by the use of a polynomial model. Although
the corresponding dB values are for a single line within a specific frame, the main results are
generally valid.

Figure 4.9: Final elastogram values for a single line through the image from top to bottom for
the two different models of τ̂(k)
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4.3 Improved noise suppression and edge detection by use of me-
dian filter for spatial filtering

As already discussed the quality of the elastogram is dependent on the presence of strain, and
it seems the polynomial model is better in estimating small differences more closely compared
to the linear model. As already seen, this also has the unfortunate effect of simultaneously
adapting to the noise in the image. One way to overcome this problem, and simultaneously keep
hold of the desired effect of improved edge detection when the pressure is low, i.e., when there is
little strain present in the tissue, is by implementing a different approach when filtering in the
spatial domain. The images displayed so far have been made using a gaussian weight matrix
for the spatial averaging function. To observe the differences even clearer between the linear
and non-linear model of τ̂(k), the same series of frames as in Figure 4.6 are computed, but this
time using a median filter for spatial filtering, which is a filter that calculates the median of
neighboring pixels’ values. The algorithm works by first storing the neighboring pixels in and
array. The neighboring pixels are chosen to be within a window function of a certain size and
shape, also known as a kernel. The next step is sorting the pixel values numerical, and the final
step is picking the median from the sorted list as the pixel value. This process is done for all
points in the image. Although the median filter has an algorithmic complexity of O(r) in the
kernel radius, it can be shown that a simple yet much faster algorithm exhibiting O(1) runtime
complexity can be achieved [37]. Seen in Figure 4.10 are the same frames as displayed in Figure
4.6, but this time median filtering is implemented. The main impact this has on the frames is
that it increases the noise reduction by filtering out the so called salt and pepper noise. Salt
and pepper noise is a form of noise typically seen in images appearing as randomly occurring
white and black pixels.

Figure 4.10: Sequence of frames from estimated elastogram with a linear model of τ̂(k) (top
row), and a polynomial model of τ̂(k) (bottom row) and both sequences filtered by a median
filter

Going into detail of the elastogram using the same ROIs as in Figure 4.7, it is easier to observe
the differences between the two estimation models as displayed in Figure 4.11. The median filter
has all but removed the problem with noise adaption for the polynomial model as seen in the
first ROI of the figure. Once again the edge detection by using a polynomial model for τ̂(k) is
better than what is the case for the linear model. This can especially be observed by focusing on
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the two inclusions on the bottom of each frame of Figure 4.10. The main difference however is
the edge detection and contrast resolution of the inclusion displayed in the lower right corner of
the elastogram. As already mentioned this area of the image experiences less strain than closer
to the transducer surface. This means that time delay estimation from frame to frame, which
also gives us the strain estimation, is increasingly difficult. This is especially clear for the linear
model where both the edges and the contrast of the inclusion is corrupted by noise as seen from
the frame on the right hand side on the top row of Figure 4.11. However the inclusion estimated
by the non-linear model and displayed in the frame on the right hand side on the bottom row
of the figure, is quite clear in both resolution and contrast. It would then seem that when there
is little strain present, the polynomial model is much better in estimating differences in tissue
stiffness than what is the case for a linear model.

Figure 4.11: Various region of interests for median filtered elastogram estimated by a linear
model (top row), and a polynomial model (bottom row). The first ROI displays how the two
different models adapt to noise, whereas the last two ROIs displays edge detection for the two
models

By selecting a single frame and focusing on the inclusions alone, as seen in Figure 4.12, the
feasibility of the phase-based elastography estimator is quite evident. Although the recordings
are done in vitro, thus making it an ideal imaging situation, an ultrasound imaging phantom
usually has an attenuation coefficient of around 0.5 dB/MHz/cm which will have an impact on
the signal strength. For a center frequency of 6 MHz, and a depth of 3 cm this corresponds to a
drop in signal strength of around 10 dB. Nevertheless the two inclusions on the bottom left and
bottom right of the first frame of Figure 4.12 are clearly distinguishable from the surrounding
tissue.
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Figure 4.12: Various regions of interest for median filtered elastogram estimated by a polynomial
model. The first ROI displays the inclusion on the top right, the second ROI displays the
inclusion on the bottom left, and the third ROI displays the inclusion on the bottom right

Although updating the model of τ̂(k) from a linear to a polynomial has great implications on
the final quality of the elastogram, it also increases the computational time. Seen in Figure 4.13
is a plot of the computational time for a single frame as a function of window length for the two
different models. As discussed in Section 4.1 a wider window length will also lead to an increased
computational time. But also interesting is that updating to a non-linear model increases the
computational time by a factor of 1.5, regardless of the window size. This means that the
computational time by using a polynomial model of the first degree takes on average 50% times
longer than what is the case when using a linear model as displayed in Figure 4.13.

Figure 4.13: Computational time as a function of window length for the same data-set and
for two models of τ̂(k). The computational time for a polynomial model of the first degree is
displayed in red, and the computational time for the linear model is displayed in blue

45



46



Chapter 5

SURF imaging

5.1 Principles of SURF imaging

The Second-order UltRasound Field imaging (SURF) technique is based on transmission of
dual-frequency band pulses from the same acoustic source, and each SURF-pulse complex is
composed of a high-frequency (HF) imaging and a low-frequency (LF) manipulation pulse. The
pulses typically have a frequency separation greater than 1:7 in order to ensure approximately
constant manipulation pressure over the imaging pulse length. The purpose of the LF pulse is
to manipulate the scattering and propagation of the HF imaging pulse, and the HF pulse is then
used to image tissue or nonlinear scatterers under the influence of the manipulation pulse. The
LF content is removed by filtering, and the LF pulse is thus only transmitted and not received.
The name SURF also indicates that the propagating pulse complex can be seen as a HF wave
surfing on top of a LF wave [4, 38].

Figure 5.1: Illustration of two different SURF-pulse complexes with the high-frequency imaging
pulse first placed in a compression phase of the low-frequency manipulation pulse, and then in
a rarefaction phase

The most basic pulsing scheme is a two-pulse setting where the imaging pulse is first placed in
a compression phase of the manipulation pulse, and then in a rarefaction phase as illustrated
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in Figure 5.1. By combining the received signals and using adapted signal processing, such a
pulsing scheme may be used as an ultrasound contrast detection method. Another approach
is to compose a synthetic SURF transmit beam generated from the difference between two
propagated pulse complexes fired in the same direction on different manipulation pressures
and filtered around the imaging HF frequency. This method may be used for reverberation
suppression.

5.2 Homogeneous linear wave equation

Wave propagation is derived from the cyclic exchange between dynamic (kinetic) energy given
as the acoustic vibration velocity, and potential energy given as elastic energy stored when the
material is compressed. The acoustic vibration velocity, i.e. the dynamic energy, may be written
from the Newton acceleration law as

−∇p(r, t) = ρ
∂u(r, t)
∂t

(5.1)

where u equals the particle velocity, p the pressure and ρ the mass density of the unstrained
material. The potential energy is given as

−∇u(r, t) = κ
∂p(r, t)
∂t

(5.2)

where κ equals the bulk compressibility which is the local compression of the fluid. Dropping
the dependence on space r and time t for notational convenience, together these two equations
give us the linear homogenous wave equation for the evolution of acoustic pressure p as

−∇p = ρ
∂u

∂t
(5.3)

∇(−∇p) = ∇(ρ
∂u

∂t
) (5.4)

∇2p = −ρ ∂
∂t
∇u (5.5)

∇2p = −ρ ∂
∂t

(−κ∂p
∂t

) (5.6)

∇2p = ρκ
∂2

∂t2
p (5.7)

∇2p− ρκ ∂
2

∂t2
p = 0 (5.8)

∇2p− 1
c2

∂2p

∂t2
= 0 (5.9)

where the speed of sound is given as c = 1/
√
κρ, and the expression for the particle velocity, u,

may be derived in the same manner.
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5.3 Nonlinear wave propagation

The propagation of ultrasound waves is nonlinear, and different phenomenon that arise when
diagnostic ultrasound waves propagate can not be explained on the basis of linear assumptions
alone. These effects include a gradually progressive distortion of the acoustic waveform, the
associated generation of components at harmonic frequencies of the fundamental, attenuation
and acoustic shock formation. The local nonlinearity is small, but is accumulated during forward
propagation due to variations in propagation speed over the waveform, causing distortion to
develop with distance as seen in Figure 5.2. The effects appear most strongly in fluids with low
acoustic attenuation, such as water, amniotic fluid or urine. Similar effects also appear in soft
tissue, but are limited by absorption and scattering [39].

Figure 5.2: Effects of nonlinear propagation; distortion of the acoustic waveform, and the gen-
eration of components at harmonic frequencies of the fundamental [3]

In the literature, isentropic nonlinear elasticity is usually described by a Taylor-series expansion
of the acoustic pressure p as a function of the mass density ρ. The entropy s is assumed constant,
so that there exist no extrinsic or intrinsic heat conduction or viscous friction. The Taylor-
development expresses the variations in pressure as a function of mass density in a medium, and
represents the fact that mass density does not change linearly as the applied pressure is altered.
In the physical world the nonlinear terms of elasticity have the implication that the medium
gets stiffer, i.e. less compressible, as compression is applied. A second order expansion of the
Taylor-development give us an expression for the isentropic nonlinear elasticity as

p =
[
∂p

∂ρ

]
0,s

(ρ− ρ0) +
1
2

[
∂2p

∂ρ2

]
0,s

(ρ− ρ0)2 (5.10)

where ρ0 is the mass density of the unstrained material. By introducing the variable change
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ρ1 = ρ− ρ0, the pressure, p, may be written as

p = ρ1

[
∂p

∂ρ

]
0,s

+
ρ2

1

2

[
∂2p

∂ρ2

]
0,s

(5.11)

= ρ0
ρ1

ρ0

[
∂p

∂ρ

]
0,s

+
ρ2

0

2

(
ρ1

ρ0

)2 [∂2p

∂ρ2

]
0,s

(5.12)

= A
ρ1

ρ0
+
B

2

(
ρ1

ρ0

)2

(5.13)

where the A and B parameters are defined as

A = ρ0

[
∂p

∂ρ

]
0,s

(5.14)

B = ρ2
0

[
∂2p

∂ρ2

]
0,s

(5.15)

and the derivations are performed in unstrained material and with constant entropy. The con-
tinuity equation for mass in the Lagrange regime may be stated as

ρ ≈ ρ0

1 +∇ψ
⇒ ρ

ρ0
=

1
1 +∇ψ

(5.16)

where ψ is the particle displacement vector, i.e., displacement of a particle from its equilibrium
position. The relationship ρ1/ρ0 may then be written as

ρ1

ρ0
=
ρ− ρ0

ρ0
=

ρ

ρ0
− 1 =

1
1 +∇ψ

− 1 =
1− 1 +∇ψ

1 +∇ψ
=

∇ψ
1 +∇ψ

≈ −∇ψ(1−∇ψ) (5.17)

where the last approximation is valid for ∇ψ � 1. Combining this last result with Eq. (5.13)
we get

p = −A∇ψ(1−∇ψ) +
B

2
(−∇ψ(1−∇ψ))2 (5.18)

= −A∇ψ +A(∇ψ)2 +
B

2
(∇ψ)2(1−∇ψ)2 (5.19)

= −A∇ψ + (A+
B

2
)(∇ψ)2(1−∇ψ)2 (5.20)

≈ −A∇ψ +A(1 +
B

2A
)(∇ψ)2 (5.21)

= −A∇ψ +Aβn(∇ψ)2 (5.22)

= −1
κ
∇ψ +

1
κ
βn(∇ψ)2 (5.23)
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where the approximation in Eq. (5.21) is valid when neglecting terms with a higher order than
two. By solving Eq. (5.23) with regards to ∇ψ, we get the material equation for nonlinear tissue
elasticity as

−∇ψ = κp− βn(κp)2 (5.24)

The compressibility κ is defined as the inverse of A, and the parameter βn decides the size of
the nonlinear effect. βn can be found experimentally for various materials [40], and is defined
as

βn = 1 +
B

2A
(5.25)

Typical values of βn and other acoustic parameters for typical soft tissue are given in Table 5.1
[6].

Material βn κ [10−12Pa−1] ρ [kg/m3] c [m/s] Temp [◦C]
Blood 4 396 1025 1570 26
Fat 5.8-6.2 508 950 1440 37
Liver 4.34 385 1060 1560 37
Muscle 4.7 380 1070 1560 30
Spleen 4.9 385 1060 1560 30

Table 5.1: Nonlinearity parameter βn and other acoustic parameters for typical soft tissues [6]

5.4 Homogeneous nonlinear wave equation

Now expanding the wave equation to the nonlinear case, the relation between the relative volume
compression and the applied acoustic pressure p is given by the material or constitutive equation
for nonlinear tissue elasticity as

δV

∆V
= −∇ψ = κp− βn(κp)2 (5.26)

where ψ is the displacement of a particle from its equilibrium position, V represents the volume,
and βn = 1 + B

2A is the tissue nonlinearity parameter given as the first and second coefficient of
the Taylor development of the non-linear wave equation. Hence the relative change in volume
equals the derivative in multi-dimensional space of a particle from its equilibrium position, i.e.
the particle velocity u equals ∇ψ

Defining the momentum potential φ as

ρu = −∇φ (5.27)

will in turn give from Eq. (5.1) that the pressure may be related to the momentum potential
as
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p =
∂φ

∂t
(5.28)

Now, starting with the material equation for nonlinear tissue elasticity Eq. (5.26), and using
the definition of the momentum potential Eq. (5.27) and the relation between pressure and
momentum potential Eq. (5.28) and noting that u = ∆ψ we get

−∇ψ = κp− βn(κp)2 (5.29)

−∇u = κ
∂p

∂t
− βnκ2∂p

2

∂t
(5.30)

−∇
(
−1
ρ
∇φ
)

= κ
∂

∂t

(
∂φ

∂t

)
− βnκ2 ∂

∂t

(
∂φ

∂t

)2

(5.31)

Comparing equations Eq. (5.2) and Eq. (5.30), we see that Eq. (5.30) is the nonlinear equivalent
of Eq. (5.2). The last term on the right hand side of Eq. (5.31) is the nonlinear term of the
homogeneous nonlinear wave equation, which we can derive as

∂

∂t

(
∂φ

∂t

)2

= 2
∂φ

∂t

∂2φ

∂t2
(5.32)

Substituting this result in Eq. (5.31), and rearranging, we get

∇
(

1
ρ
∇φ
)
− κ∂

2φ

∂t2
+ 2βnκ2∂φ

∂t

∂2φ

∂t2
= 0 (5.33)

∇
(

1
ρ
∇φ
)
− κ

(
1− 2βnκ

∂φ

∂t

)
∂2φ

∂t2
= 0 (5.34)

∇
(

1
ρ
∇φ
)
− κ (1− 2βnκp)

∂2φ

∂t2
= 0 (5.35)

Usually the mass density ρ varies with distance as ρ(z) due to spatial variances of tissue. Imag-
ining a situation without absorption, the mass density is uniform over the sample length, and
the nonlinear wave equation may be expressed as

∇2φ− κρ (1− 2κβnp)
∂2φ

∂t2
= 0 (5.36)

The speed of sound may then be expressed as a function of pressure as

c(p) =
1√

κρ(1− 2κβnp)
(5.37)

which gives us the momentum potential for nonlinear propagation as

∆2φ− 1
c(p)2

∂2φ

∂t2
= 0 (5.38)

where p is the total acoustic pressure.

52



5.5 Sound propagation and time delays as a function of acoustic
pressure

Due to the nonlinear relationship between relative volume compression and applied acoustic
pressure for tissue, the speed of sound for tissue is pressure dependent. For SURF imaging this
means that if the imaging pulse travels close to a peak (or a through) on the manipulation pulse
it experiences a nearly constant positive (or negative) manipulation pressure over its duration,
resulting in an increased (or decreased) sound velocity. The LF manipulation pulse therefore
generates a local change in the speed of sound experienced by the HF imaging pulse [41]. The
propagation velocity as a function of pressure may be expressed as

c(p) =
1√

κρ(1− 2βnκp)
=

c0√
1− 2βnκp

≈ c0(1 + βnκp) (5.39)

where κ is the bulk compressibility, ρ is the mass density, βn = 1 + B
2A is the tissue nonlinearity

parameter given as the first and second coefficient of the Taylor development of the non-linear
wave equation, and c0 = 1/

√
κρ. The last approximation is valid when κρ � 1, which is the

case for diagnostic ultrasound imaging [38].

For SURF imaging it is convenient to analyze the propagation velocity c(p) by separating the
total acoustic pressure p into two components

p = pm + pi (5.40)

where pm represents the LF manipulation pulse pressure, and pi the HF imaging pulse pressure.
Using the approximation in Eq. (5.39) and inserting the pressures gives

c(p) = c0(1 + βnκp) = c0(1 + βnκpm + βnκpi) (5.41)

If the the frequency separation between the HF imaging pulse and the LF imaging pulse is large
enough, i.e. the ratio fi/fm is high, the manipulation pressure experienced by the imaging pulse
is approximately constant. The imaging pulse will then experience a speed of sound proportional
to the manipulation pressure

ci(pm) ≈ c0(1 + βnκpm) (5.42)

An imaging pulse traveling in a compression phase of the manipulation pulse will thus propagate
faster than if it was traveling in a rarefaction phase. This generates a time delay in the received
HF signals from the two transmitted pulse complexes. The two signals transmitted under dif-
ferent manipulation pressures will thus be delayed with respect to each other, and the delay will
be varying with depth. This relative time shift between them will be small at shallow depths,
but is accumulated during forward propagation. Figure 5.3 displays the estimated delay from
the transmission of two pulses with the HF pulse located on either a high or low pressure of the
LF pulse. As seen from the figure these delays are small close to the transducer surface, and
accumulate during forward propagation.
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Figure 5.3: Estimated time-delay by the phase-based time-delay estimation algorithm from the
most basic SURF pulsing scheme; a two-pulse setting with the imaging pulse first placed in a
compression phase of the manipulation pulse, and then in a rarefaction phase

Now trying to develop an expression for the variable delays between the two pulses, we first
begin by expressing the relationship between distance z, speed of sound c, and time t, and using
the fact that the speed of sound varies with pressure and distance as in Eq. (5.39), we get

z = ct = c(z0, p)t =
∫ t

0
c(zo, p) dt0 (5.43)

=
∫ t

0
c0[1 + βnκp(z0)] dt0 (5.44)

= c0

∫ t

0
dt0 + c0

∫ t

0
βnκp(z0)] dt0 (5.45)

= z0 + ∆z (5.46)

∆z is then a change of perceived depth from where the echoes are originated as result of the
imaging pulse being placed on a manipulation pulse with a different manipulation pressure. By
performing the following variable change dt0 = dz0/c0 we can rewrite Eq. (5.45) as

z = z0 +
∫ z

0
βnκp(z0) dz0 (5.47)

= z0 + ∆z (5.48)

This result states that if an imaging pulse experiences a manipulation pressure switched from p(z)
to −p(z) between the two shots needed to form the SURF beam, the propagation difference will
be an added factor which is dependent on the manipulation pressure, the local compression of the
medium and the tissue nonlinearity parameter. Due to amplitude reduction of the reflected or
scattered LF pulse, the imaging HF pulse experiences negligible sound speed manipulation after
scattering. We can therefore derive an expression for the time-delay between the two pulses
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considering how the delays only occur at half the total length of the pulse-echo propagation
distance

τ(z) =
2∆z
c0

=
2
c0

∫ z

0
βnκp(z0) dz0 (5.49)

A different approach is to compute the time-delay between the two pulses propagating with
different sound velocity directly. This is done by finding the difference in pulse travel-time,
where t− and t+ denotes the time of flight for a traveling pulse with negative and positive
manipulation pressure respectively. The time difference as a function of distance and pressure
may then be established

τ(z) = t− − t+ =
z

c−
− z

c+
=
∫ z

0

1
c−(z0)

− 1
c+(z0)

dz0 (5.50)

where c− and c+ denotes the speed of sound for a low and high manipulation pressure respec-
tively. Again using the relation of speed of sound and pressure as given in Eq. (5.39) the above
expression may be written as

τ(z) =
∫ z

0

1
c0[1− βnκp(z0)]

− 1
c0[1 + βnκp(z0)]

dz0 (5.51)

=
∫ z

0

c0[1 + βnκp(z0)]− c0[1− βnκp(z0)]
c2

0[1− βnκp(z0)][1 + βnκp(z0)]
dz0 (5.52)

=
1
c0

∫ z

0

1 + βnκp(z0)− 1 + βnκp(z0)
1 + βnκp(z0)− βnκp(z0)− [βnκp(z0)]2

dz0 (5.53)

≈ 2
c0

∫ z

0
βnκp(z0) dz0 (5.54)

where the last approximation is valid for small βnκp. Typical values of the tissue nonlinearity
parameter, βn, in human tissue are 6 for fat and 4.7 for skeletal muscle, while the bulk compress-
ibility, κ, typically is 508 · 10−12 and 380 · 10−12 Pa−1 respectively. Thus βnκ in fat and skeletal
muscle is around 3 · 10−9 and 1.8 · 10−9 Pa−1 [6]. Assuming βn v 5, κ v 450 · 10−12 Pa−1 and
a constant sound velocity of c = 1540 m/s, we get the typical delays for various manipulation
pressures given as

P [MPa] 0.1 0.5 1 1.5 2
∆τ
z [ nscm ] 2.9 14.6 29.2 43.8 58.4

Table 5.2: Theoretical values of time delays in nanoseconds per centimeter as a function of
manipulation pressure assuming βn v 5, κ v 450 · 10−12 Pa−1 and a constant sound velocity of
c = 1540 m/s

where the delays are given in nanoseconds per centimeter, and the manipulation pressure is in
MPa. Typically for a constant epxerienced pressure p = 1 MPa the sound speed change is ∆c ≈
0.2 to 0.3 % of c0. If c0 = 1540 m/s the delay between two pulses after 2 cm of propagation is
v 50 to 60 ns.

The time delays are crucial for several aspects of SURF imaging. For SURF contrast imaging
this delay has to be estimated and corrected for, which also improves the tissue suppression of
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the SURF imaging method. Also if the delay τ(z) can be estimated, the signal can be corrected
and used to extract the nonlinear signal. Estimates of new imaging parameters like βnκ, which
is a measure of the compressibility and stiffness of the medium, may then be established. Quan-
tification of tissue is then possible by assuming a relation between delay and tissue parameters
as ∆τ = f(p, βnκ). Since the time delays are accumulative as a function of depth, this allows for
the generation of a synthetic transmit beam by subtraction of the delayed pulses without doing
any time-delay corrections. This beam has the same type of characteristics as a harmonic beam
and may be used for suppression of nearfield reflectors and sidelobe reduction. In addition the
estimation of nonlinear scattering, temperature change, aberration and density (e.g. in oil or
gas) is possible.
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Chapter 6

Reverberations

6.1 Theory of multiple scattering

Ultrasound assumes that an echo returns to the transducer after a single reflection, and that
the depth of an object is related to the time it takes the traveling pulse to hit the reflective
surface of the object and return to the transducer surface. However, due to the inherent nature
of wave propagation, ultrasound imaging may present some features, i.e. artifacts, that may lead
to misinterpretation of the collected data. For instance, heterogeneities in the tissue produce
multiple scattering of the propagating pulse as part of the wave is reflected back and forth
several times between tissue layers before returning to the transducer. This is due to differences
in acoustical impedances of the different tissue layers, and the detected echo does not run the
shortest sound path because it bounces back and forth between the object and the transducer.
The sequential echoes will take longer to return to the transducer, and the ultrasound processor
will erroneously place the delayed echoes at an increased distance from the surface of the skin.
These echoes infer with the main received signal which is scattered only once, and may greatly
impair the contrast resolution of the final image, as they appear as additive noise at deeper depths
than their true originals are located. A variety of artifacts can occur due to reverberations, where
the most common is a severe loss of image contrast.

Figure 6.1: Physical structure of the body wall consisting of layered tissue close to the skin, and
irregular mixtures of muscles, fat and connective tissue.
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Multiple scattering is also known as reverberations, and are especially visible in the near field
and imaging through the body wall due to the layered structure of the tissue close to the skin,
and the irregular mixtures of muscles, fat and connective tissue of the body wall as displayed
in Figure 6.1. Reverberations may then be viewed as acoustic noise or distortion introduced
in the image by the inherent inhomogeneous structure of soft tissue. Due to its appearance,
the artifact is also referred to as ring-down artifact and comet tail artifact. The presence of
these reverberations is a source of artifacts that can hinder the correct analysis of ultrasound
signals and images. Besides adding additive noise to the final image, they can also introduce
errors in the quantitative parameter estimation in fields such as biological tissue characterization
[27, 42].

6.2 Reverberation classes

As already stated, most reverberations are especially visible in the near field near the body
wall, but reflections, or multiple scattering, may also occur when the first reflection takes place
within the imaging region. To categorize the various reverberation types, the reverberation
propagating paths can roughly be divided into three different classes depending on where the
first scattering or reflection takes place, and related to how the components are suppressed in
2nd harmonic imaging. The amplitude of the 2nd harmonic components increase with depth,
and is very low close to the transducer. Hence if the first scatterer is so close to the transducer
that the 2nd harmonic component of the transmitted pulse is still low, harmonic imaging will
suppress multiple scattering of this type. The propagation path examples are given in Fig. 6.2,
and all paths have a total length of 2zi, so the corresponding image artifacts will appear at the
imaging depth zi.

Figure 6.2: Direct wave propagation (upmost path) and reverberations of class 1, 2, and 3 (2nd
to 4th path). Figure adapted from [4]

As seen from the figure the upmost path is based on the assumption that the propagating pulse
returns to the transducer after a single reflection within the imaging region. This is the ideal
imaging situation without any multiple scattering artifacts appearing in the final ultrasound
image.

The first class of reverberations, as seen from the second path on the figure, experiences a
reflection close to surface of the skin in the near field, causing it to be reflected back to the
transducer surface. The propagating pulse is then reflected from the transducer surface down
to the imaging region, before it returns to the transducer. The object within the imaging region
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could for example be the carotid artery, and Class 1 reverberations are often found as noise
inside the artery.

The second class of reverberation is seen from the third path on the figure. Here the pulse is
first reflected from a structure in front of the object, like the body wall. But in addition the
propagation is followed by a second reflection from a structure close to the transducer, often
caused by the transducer array itself, followed by at least a third reflection from a second layer
within the near field. With carotid imaging, Class 2 reverberations can be found as noise inside
the artery, similar to Class 1 reverberations.

The final class describes a pulse that never propagates down to the imaging region, but rather
is reflected back and forth between a strong reflective layer situated at half the distance to the
imaging region zi. The class includes a first scattering from a structure in front of the object
(like in the body wall), followed by a reflection of this back scattered signal from a strong near
field structure (for example the transducer array), followed by at least a third scattering from a
second structure in the region on front of the object. The basis for this class of reverberations
are that both the first and the third scatterers are so close to the transducer that limited 2nd
harmonic component of the transmitted field is developed. Class 3 reverberations are for example
the noise found in the apical region in cardiac imaging.

The different reverberation classes are described in detail in Table 6.1

Propagation path First scattering Second scattering
Direct wave zi -
Class 1 reverberation z1 z2 = zi − 3z3/2
Class 2 reverberation z2 z1

Class 3 reverberation z3 = zi/2 z3

Table 6.1: Reverberation classes with total path length 2zi in all cases. Adapted from [4]

6.3 Mimicking multiple reflections

6.3.1 Bacon as reverberation model

An attempt of mimicking a situation in which multiple reflections occur can been done by adding
a tissue mimicking layered structure between the transducer and an ultrasound phantom before
recording. As seen in figure 6.3 this structure consists of tissue from a pig, commonly known as
bacon.

Figure 6.3: Tissue from a pig as reverberation model

By cutting the piece of bacon in appropriate sizes, it is possible to use one of those slices as a
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form of reverberation model as seen in figure 6.4. The transmitted ultrasound signal will hence
have to travel through this initial layered tissue of muscle and fat, before it enters the phantom.
This again will produce reverberations which are visible in the final ultrasound image.

Figure 6.4: Imaging on phantom with bacon as reverberation model

6.3.2 Water and silicon plate as reverberation model

A downside when using biological tissue, or in this case pig bacon, as reverberation model, is
the presence of fat in the tissue. Fat attenuates the signal to a large extent, and may introduce
problems with keeping the signal-to-noise ratio high enough in order to collect valuable results.
An attempt to circumvent this unwanted effect, is to use a silicon plate as reverberation model
as seen in Figure 6.5. The silicon plate lies in water on top of the phantom to create the
reverberations. A downside is the fact that we are less likely to encounter the three different
types of reverberations as described in Section 6.2.

Figure 6.5: Silicon plate as reverberation model

6.3.3 Computer simulations of reverberations

A third option is to simulate the reverberations after the recorded RF signal has been obtained as
seen in Figure 6.6. The reverberations are simulated as a replica of the signal over a certain depth
as seen on the right hand side of the figure. The advantage of simulating the reverberations on
the computer is that we are ensured not to loose signal power, as opposed to when the ultrasound
wave has to pass through an initial reverberation layer. In addition the reverberations can easily
be tailored to match perfectly on top, and not above, the region of interest.
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Figure 6.6: Simulating reverberations in Matlab

6.4 Effects of reverberations on recorded B-mode images

B-mode images from the CIRS model 050 nearfield phantom [5] with and without a reverber-
ation model between the transducer and the phantom are recorded. Especially the effect the
reverberations have on a 10 mm cyst-like volume situated with its center at a depth of approx-
imately 10 mm from the phantom surface is studied. Seen in figure 6.7 are the two different
imaging situations. On the left hand side is a B-mode image where the reverberation model is
not applied. For this situation one can clearly see the contrast between the cyst-like volume and
its surroundings. On the right hand side the layered tissue structure between the transducer
and the phantom is applied. For this situation, where the reverberation model is used, one
can clearly se how a ghost image of the layered structure on the surface is appearing at deeper
depths, and for this situation, ruining the resolution of the 10 mm volume in the middle of the
phantom.

Figure 6.7: B-mode image of phantom with and without reverberation model

6.5 Effects of reverberations on estimated elastography images

By applying the reverberation model on top of the CIRS elastography phantom, it is possible
to witness the effect reverberations have for impairing time delay estimates and then also the
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final elastogram. All recordings are done with the Ultrasonix SonixRP system with a 10 MHz
transducer. Seen in figure 6.8 is a recording with the Ultrasonix elastography mode turned on
on the scanner.

Figure 6.8: Elastography recordings with Ultrasonix method with reverberations

As seen on the right hand side of the figure one can catch a slight glimpse of the inclusion being a
tad darker than the surrounding tissue in the middle of the figure. Also the reverberation model
can be easily spotted on top of the figure. The elastography image, seen on the left hand side
of the figure, on the other hand does not show this inclusion at all. Clearly the reverberations
greatly impair the contrast resolution of the final image, and ghost echoes appearing at deeper
depths, as seen in figure 6.7, ensure that the estimated time delays are false and the inclusion
in the phantom is indistinguishable from the surrounding tissue.
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Chapter 7

Reverberation suppression capabilities
of SURF

7.1 Signal model without reverberation suppression

When scatterers in the tissue being analyzed by an ultrasound pulse are moving, we get a
Doppler delay between pulses in slow time with constant beam direction as

τd =
2vrTs
c

(7.1)

where Ts is the pulse repetition frequency (PRF) period, and vr is the radial velocity component
of the scatterers. This delay may also be viewed on in an elastography sense as the delay
originating due to applied pressure to the skin, and the elasticity of tissue. The signal with
reverberations may then be expressed as

y(t) = xl(t− τd(zi)) + r1(t− τd(z1)) + r2(t− τd(z2)) + r3(t− τd(z3)) + n(t) (7.2)

where xl represents linear 1st order scattering, r1, r2 , and r3 are the reverberations of Class
1-3 of the linear scattering, and n(t) represents noise that is uncorrelated in the slow time. As
described by the equation the Doppler delay is a function of distance from the transducer surface,
where the distances zi, z1, z2, z3 are the same as seen in Figure 6.2 and described in Table 6.1.
This also means that the delay due to elasticity is different for various regions of the tissue. We
assume that the elasticity delay is low close to the transducer surface, which leads to the delay
at this depth, τd(z3), being zero. Also the Doppler delays may be stated as a function of time
rather than distance, and Eq. (7.2) may be stated as

y(t) = xl(t− τd(ti)) + r1(t− τd(t1)) + r2(t− τd(t2)) + r3(t) + n(t) (7.3)

7.2 Reverberation suppression method of SURF imaging

The SURF pulse complexes, composed of a HF imaging and a LF manipulation pulse, are utilized
for reverberation suppression by taking advantage of a sound speed change introduced by the
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LF pulse. As stated in section 5.5 and equation (5.49), two HF pulses which are transmitted
on respectively the compression and rarefaction phase of the LF pulse will be delayed in respect
to each other, and this delay will be varying with depth. This relative time shift between them
will be small at shallow depths, but is accumulated during forward propagation.

The two received band-limited pulses with different time delays may then be described in the
1D case without loss of generality as

x(t) = s
(
t+

τ

2

)
(7.4)

y(t) = s
(
t− τ

2

)
(7.5)

where s(t) is the original non shifted signal. Taking the fourier transform of the two signals they
can be stated in the frequency domain as

X(ω) = S(ω)eiω
τ
2 (7.6)

Y (ω) = S(ω)e−iω
τ
2 (7.7)

where ω is the center angular frequency. For SURF imaging with reverberation suppression,
the synthetic SURF pulse is composed of the difference between two pulses sent on different
manipulation pressures, thus producing different time delays. The synthetic SURF pulse may
then be stated in the frequency domain as

Sd(ω) = X(ω)− Y (ω) (7.8)

= S(ω)
[
eiω

τ
2 − eiω

τ
2

]
(7.9)

= S(ω)i2sin
(
ω
τ

2

)
(7.10)

where the relation ex − e−x = 2isin(x) comes from Eulers formula. Taking this result back in
the time domain, the final SURF signal with reverberation suppression can be stated as

sd(ω, t, τ) = 2sin
(
ω
τ

2

)
︸ ︷︷ ︸

G(ω,τ)

Im
{
x(t)eiωt

}
(7.11)

That is we have an additional gain factor G(ω, τ) regulating the amplitude of sd(ω, t, τ) relative
to the original non-shifted signal s(t). The maximum and minimum absolute values of this gain
factor are 2 for ωτ = π and 0 for ωτ = 0.

For an imaging situation the LF manipulation experienced by the HF pulse depends on both the
spatial coordinate ~r and the time t. The propagation time difference τ(~r) accumulated between
the two HF pulses is thus a space-dependent field. To generate a difference HF field sd(~r, t) being
suppressed at shallow depths and amplified within the imaging region, the LF pulse transmission
should be tailored to make τ(~r) small at shallow depths, and ∼ π

ω within the imaging region
[4]. A simulation of the pressure from the SURF pulse alongside the pressure from an ordinary
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ultrasound wave being focused at 10 mm is displayed in fig 7.1. It is clearly shown how the
pressure close to the transducer, and the region in which reverberations are likely to occur, is
suppressed by as much as up to 40 dB for the synthetic SURF transmit beam in comparison to
an ordinary ultrasound pulse.

Figure 7.1: On axis pressure field from SURF and ordinary ultrasound pulse

7.3 Signal model with reverberation suppression

We assume a LF manipulation pressure of the form akp0(r), where ak is an amplitude parameter
that varies between pulses (k is the slow time pulse number coordinate) and r is the range
coordinate. The pulse number then varies as

ak = (−1)k+1 (7.12)

which again gives a nonlinear propagation delay as akτn, where the delay due to the synthetic
SURF beam may be expressed as

τn(t) =
1
c0

∫ c0t
2

0
βn(s)κa(s)p0(s) ds (7.13)

The complete SURF signal model including reverberations with stationary reverberation scat-
terers and moving object scatterers is then

yk(t) = xl(t− akτn(ti)− kτd(ti)) + akxn(t− akτn(ti)− kτd(ti))
+ r2(t− akτn(t2)− kτd(t2)) + r1(t− kτd(t1)) + r3(t) + nk(t) (7.14)
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where xl represents linear 1st order scattering, akxn represents 1st order nonlinear scattering,
r1, r2 , and r3 are the reverberations of Class 1-3 of the linear scattering, and nk represents
noise that is uncorrelated in the slow time, for example through exchange of scatterers within
the beam. We note that r2 has the same variation with the nonlinear and Doppler delays as the
1st order linear scattering, and can hence not in general be descriminated from the 1st order
scattering with the SURF method. However, one can obtain r1(t) = r2(t) by selecting the same
receive and transmit beams.

Today, reverberation suppression is achieved by second harmonic imaging. But this has the
disadvantage of low penetration, and little or no signal in the near field. SURF pulses on the
other hand images in the fundamental frequency, but has also the added effect of low signal level
in the near field. This is due to the increasing nature of the nonlinear delay τ(~r).
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Chapter 8

Effects of reverberations and
reverberation suppression in
elastography images

All results presented in this chapter are made as a result of recordings made with a Sonix RP
ultrasound device [43] by the Ultrasonix company (Ultrasonix Medical Corporation, Vancouver,
Canada). The Sonix RP is an ultrasound research interface used in over 100 universities and
institutions world-wide, and offers a wide variety of imaging possibilities and is a flexible research
tool that can be used to capture raw data and generate new technologies. The elastography
recordings were performed on a basic CIRS Model 049 elasticity phantom [2] as seen in Figure
4.1. The phantom model has an attenuation factor of 0.5 dB/MHz/cm and contains two sizes
of spheres positioned at two different depths, The spheres in the phantom will appear isoechoic
to the background using conventional B-mode imaging. All recordings were done on one of the
smallest spheres located at a depth of around 15 mm from the phantom surface, and has an
elasticity being harder than the tissue surrounding it. The recordings done on the SonixRP
system are recorded without any form of filtering and are stored as RF values. Any filtering,
demodulation and time-delay estimation is hence performed on the raw recorded RF data.

All simulations, calculations and images were created using Matlab version R2008a by the Math-
works company [36], unless otherwise stated.

8.1 Elastography recordings made with a 7.5 MHz Ultrasonix
transducer

A data set recorded with the 7.5 MHz Ultrasonix probe was performed to demonstrate the
feasibility of the phase-based time-delay estimation algorithm. Seen in Figure 8.1 is the frequency
spectrum of the recorded RF data in blue, the filter used to filter the data in the dashed red
line, and the filtered RF data in green. The filter used to filter the data is a bandpass Finite
Impulse Response (FIR) filter with cut-off frequencies of 2.5 and 9 MHz.
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Figure 8.1: Frequency spectrum of RF data recorded with a 10 MHz Ultrasonix probe and a
sampling frequency fs = 40 MHz. FIR bandpass filter with cut-off frequencies of 2.5 and 9 MHz
is plotted in red, and the filtered spectrum of the RF signal is plotted in green

Seen in the first frame of Figure 8.2 is the ordinary B-mode image as displayed on the scanner
after filtering with a bandpass filter has been performed. Frames two and three display time
delay and strain values as estimated by the phase-based time-delay estimation algorithm as
described in Chapter 2. As seen the strain rate values will give the differences in elasticity,
although the frame to a great extent is corrupted by noise. Finally, the last frame displays the
final elastogram after thresholding and time and spatial domain smoothing has been performed
as described in [35]. Comparing with the unprocessed strain values in the third frame, smoothing
and thresholding of frames have a massive impact. As seen from the B-mode image in the first
frame of the figure, one can catch a glimpse of the overall structure of the sphere, although it is
quite hard to differ from the surroundings, and knowledge of the exact location of the sphere is
prerequisite in order to be able to detect it.

Figure 8.2: Ordinary B-mode image, estimated time delay values, strain rate values, and elas-
togram made with a 7.5 MHz Ultrasonix probe, a frame rate of 27 Hz and a demodulation
frequency fd = 5 MHz. Time delay values were estimated by a linear model of τ̂ within a
window size of 4.1 mm

Seen in Figure 8.3 is an image of a single line running from the top to the bottom of a single
frame. The top row is a line taken from the second frame of Figure 8.2, the second row is the
same line taken from the third frame of Figure 8.2, and the bottom row is the same line taken
from the elastogram displayed in the fourth frame of Figure 8.2. By comparing the unprocessed
strain data on the second row with that of the final grayscale values which are displayed on the
bottom row, the impact the time and spatial domain smoothing has on the final elastogram is
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Figure 8.3: Estimated time delay values in nanoseconds, local rate of change, i.e. strain rate
values, and final elastogram values for a single line running from top to bottom of a single frame
as seen in the second, third an fourth frame of Figure 8.2

quite evident. Also interesting to notice is the value of both the strain data and elastogram
values from a depth of around 10 mm to 20 mm. As a small gradient is a sign of stiff tissue, and
a large gradient is sign of soft tissue, it is clear that the line goes straight through the inclusion
seen clearly in the fourth frame of Figure 8.2. Also interesting to notice is the fact that the values
at the start and end of the frame displaying the strain rate values, and the frame displaying
the elastogram values, are equal to zero. This is due to the fact that a window of N number of
samples is used to improve the estimate, and the delay is calculated over this window, which in
turn gives that the estimated delay values will be set to zero over a range of N/2, or half the
window length, at the start and end of the estimated delay. For this demodulation frequency
the window size is 4.1 mm, and as seen from Figure 8.3, the start and end values for the middle
and bottom row are equal to zero at half this sample size.

8.2 Elastography recordings made with 6.5 MHz SURF trans-
ducer "Viglen"

Now, turning attention to the SURF probe and imaging in ordinary B-mode, again it is possible
to display the frequency content of the RF spectrum in blue, the frequency spectrum of the
FIR bandpass filter in the dashed red line, and the frequency content of the filtered RF data
in green as seen in Figure 8.4. Comparing with Figure 8.2 the cut-off frequencies of the FIR
bandpass filter are the same. The frequency content of the RF values however are different, as
the ultrasound probe used to record the data is different.

Seen in the first frame of Figure 8.2 is the ordinary B-mode image as displayed on the scanner
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Figure 8.4: Frequency spectrum of RF data recorded with a 6.5 MHz SURF probe "Viglen" and
a sampling frequency fs = 40 MHz. FIR bandpass filter with cut-off frequencies of 3 and 9 MHz
is plotted in red, and the filtered spectrum of the RF signal is plotted in green

after filtering with a bandpass filter has been performed. Frames two and three display time delay
and strain values respectively, whereas frame four display the final elastogram. As this recording
was demodulated with a demodulation frequency of 6 MHz, the window size for which the delay
is calculated over is smaller than the case for the recording done with the Ultrasonix probe,
and is equal to 3.4 mm. Comparing Figure 8.5 with Figure 8.2 there is clearly a difference. It
seems that the recording done with the SURF probe is much more corrupted by noise, although
all parameters involved in making the elastogram are equal as before, besides the window size
which is smaller due to a change in demodulation frequency.

Figure 8.5: Ordinary B-mode image, estimated time delay values, strain rate values, and elas-
togram made with a 6,5 MHz SURF probe "Viglen", a frame rate of 26 Hz and a demodulation
frequency fd = 6 MHz. Time delay values were estimated by a linear model of τ̂ within a window
size of 3.4 mm

Seen in Figure 8.6 is an image of a single line running from the top to the bottom of a single
frame. The top row is a line taken from the estimated delay values seen in the second frame of
Figure 8.5, the second row is the same line taken from the strain data seen in the third frame of
Figure 8.5, and the bottom row is the same line taken from the elastogram displayed in the fourth
frame of Figure 8.5. Comparing the figure with Figure 8.3 it is clear that the signal displayed in
Figure 8.6 is more influenced by noise as opposed to the case displayed in Figure 8.3. Especially
the estimates of the strain before any form of smoothing or thresholding is performed as seen
in the center row of Figure 8.6 are to an extent more noisy than what is the case for the values
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seen in the middle row of Figure 8.3. This may again indicate that the feasibility of obtaining
high quality RF data, which in turn is processed by the phase-based time-delay estimator, may
be somewhat diminished when using the SURF probe.

Figure 8.6: Estimated time delay values in nanoseconds, local rate of change, i.e. strain rate
values, and final elastogram values for a single line running from top to bottom of a single frame
as seen in the second, third an fourth frame of Figure 8.5

8.3 Elastography recordings made with 6.5 MHz SURF trans-
ducer "Viglen" with reverberation suppression

As discussed in Chapter 5 a SURF pulse complex is composed of both a LF manipulation pulse,
and a HF imaging pulse. The purpose of the LF pulse is to manipulate the scattering and
propagation of the HF imaging pulse, and the HF pulse is then used to image tissue or nonlinear
scatterers under the influence of the manipulations pulse. As seen from the frequency content
of the unfiltered RF data plotted in blue in Figure 8.7, there exist a large LF peak around 1.9
MHz. This LF content is removed by filtering, and the LF pulse is then only transmitted and
not received. Comparing with the frequency spectrum when imaging without a dual pulse SURF
setting as seen in Figure 8.4 the difference is quite clear. Not only is there an introduction of
the LF content, but the HF spectrum is altered as well.

Seen in the first frame of Figure 8.8 is the ordinary B-mode image as displayed on the scanner
after filtering with a bandpass filter with cut-off frequencies of 3 MHz and 9 MHz has been
performed. Frames two and three display estimated time delay and strain values as estimated by
the phase-based time-delay estimation algorithm, whereas frame four display the final elastogram
after thresholding and smoothing to suppress noise. As this recording was demodulated with a
demodulation frequency of 6 MHz, the window size for which the delay is calculated over is set
to 3.4 mm. Comparing Figure 8.5 with Figure 8.8 there is not much difference, although the
quality of the final elastogram is clearly diminished as opposed to the recording done with the
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Figure 8.7: Frequency spectrum of RF data recorded with a 6.5 MHz SURF probe "Viglen" and
a sampling frequency fs = 40 MHz. FIR bandpass filter with cut-off frequencies of 3 and 9 MHz
is plotted in red, and the filtered spectrum of the RF signal is plotted in green

Ultrasonix probe seen in the fourth frame of Figure 8.2. Nevertheless, this results proves that it
is possible to combine the phase-based time-delay estimation algorithm, and the SURF imaging
reverberation suppression technique, to produce elastography images.

Figure 8.8: Ordinary B-mode image, estimated time delay values, strain rate values, and elas-
togram made with a 6.5 MHz SURF probe "Viglen", a frame rate of 26 Hz and a demodulation
frequency fd = 6 MHz. Time delay values were estimated by a linear model of τ̂ within a window
size of 3.4 mm
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8.4 Introducing reverberations in the signal, and the effect of
reverberation suppression for B-mode and elastography im-
ages

To validate the correctness of the reverberations when applying a reverberation model, and
ensuring the reverberations lie on top of, and not above or beneath the inclusion, a recording
made with the 6.5 MHz SURF probe "Viglen" was made on the CIRS model 050 near field
phantom. The reverberation model to be applied on top of the phantom is an approximately
1 cm thick soft silicon plate, and the reverberations will occur at twice this thickness, i.e.
approximately 2 cm from the transducer surface. Figure 8.9 displays two screenshots taken from
the Ultrasonix scanner. Seen on the left hand side of figure is the ordinary B-mode imaging
situation, and on the right hand side is the same situation when SURF reverberation suppression
is utilized.

Figure 8.9: B-mode image of CIRS model 050 near field phantom [5] with reverberation model
applied. Ordinary B-mode image on the left hand side, and reverberation suppression processed
image on the right hand side

As seen from the figure the CIRS model 050 near field phantom gives an instant and quantifiable
assessment on the impact of both the introduction of reverberations, and the effectiveness of the
SURF reverberations suppression technique. As the sphere in the middle of both frames is a cyst
with approximately a 10 dB difference in backscattering properties in respect to the surrounding
tissue, it is quite easy to spot both its location and the impact of reverberations. This is
opposed to the CIRS model 049 elasticity phantom where the sphere is virtually indistinguishable
from the surrounding tissue, as the difference lies in the elasticity and not the backscattering
properties. As seen from the frame on the right hand side of Figure 8.9, the reverberation
suppression technique is able to reduce the reverberations to such an extent that they have
almost disappeared. The unfortunate effect is that much of the signal power is suppressed as
well, and there is less penetration at the depths where the sphere is located. This loss of signal
power will then have an impact on the resulting SNR of the signal in that area, and lead to a
decreased quality of the recording, and hence the obtained RF values. As discussed in Section
7.2 the reverberation suppression technique of SURF imaging should be tailored in order to make
the gain factor as high as possible within the imaging area, and the maximum and minimum
absolute values of this gain factor are 2 for ωτ = π and 0 for ωτ = 0. As this expression depends
on the achieved delay between the two shots fired to compose the synthetic SURF pulse, it is
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likely that for this situation this delay is not high enough in order to maximize the gain factor,
which in turn results in a decrease in signal strength.

Now, turning attention back to the CIRS model 049 elasticity phantom, and applying the rever-
beration model, it is possible to examine the frequency spectrum of both the obtained RF values,
the filtered data, and the FIR bandpass filter plotted in blue, green and red respectively as seen
in Figure 8.10. Once again it is clear how the LF pulse is filtered out by the FIR bandpass filter,
and is then only transmitted and not received.

Figure 8.10: Frequency spectrum of RF data recorded with a 6.5 MHz SURF probe "Viglen"
and a sampling frequency fs = 40 MHz. FIR bandpass filter with cut-off frequencies of 3 and 9
MHz is plotted in red, and the filtered spectrum of the RF signal is plotted in green. Recording
made with reverberation model applied to the phantom

Converting the filtered and demodulated RF-data into estimated time-delay values by the phase-
based time-delay estimation algorithm, it is possible to examine the result as seen in Figure 8.11.
The recording was done with a frame rate of 26 Hz, and the time-delays were estimated by a
linear model within a window length of 3.4 mm.

Figure 8.11: Ordinary B-mode image, estimated time delay values, strain rate values, and elas-
togram made with a 6.5 MHz SURF probe "Viglen", a frame rate of 26 Hz and a demodulation
frequency fd = 6 MHz. Time delay values were estimated by a linear model of τ̂ within a window
size of 3.4 mm. Recording done with both reverberation model and reverberation suppression

Judging from Figure 8.11 alone, it is difficult to make any general remarks. The inclusion present
in the phantom is not visible neither in the B-mode image, or from the estimated time-delay,
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strain values, and final elastogram. As seen in Section 8.2 and Section 8.3, the feasibility of the
SURF probe "Viglen" to obtain high quality RF data is diminished compared to the Ultrasonix
probe. This may suggest that an added reverberation layer will further decrease the quality of
the RF signals obtained, as the SNR is further lowered. In addition as seen from Figure 8.9 an
additional loss of signal power occurs when the time delay between two SURF pulse complexes
is not high enough to be able to generate a maximum value of the gain factor. This again will
have an impact on the RF data. Finally, and most importantly, the reverberation model which
is used is not optimal. As the main goal of adding a reverberation model to the phantom is to
mimic real life situations, and specifically the three different types of reverberations as discussed
in Section 6.2, the need for a correct and improved model is apparent. It is likely that all
these three factors concerning the SURF probe, loss of signal power when using reverberation
suppression, and the reverberation model that is used combined have a negative impact on the
quality of the obtained RF data, and hence the correctness of the estimated time delays and the
final elastogram.

In order to ensure that the reverberations added to the signal are on top of the inclusion, and
that the reverberation model does not ensure a severe loss of signal power of the propagating
ultrasound wave, a different approach is to use a SURF recording as that in Section 8.3, and add
the reverberations to the signal directly in Matlab after the recording has been done. Seen in
Figure 8.12 is a recording done on the CIRS model 050 near field phantom with reverberations
applied after the recording has been obtained, in order to easily quantify and adjust the position
of the reverberations. The recording was done with the SURF probe "Viglen" with reverberation
suppression, such that the frame on the right hand side of the figure represents the situation
with reverberations and reverberation suppression.

Figure 8.12: Ordinary B-mode image, image with simulated reverberations, image with simu-
lated reverberations and reverberation suppression.

As seen from the second frame of the figure, the reverberations are simulated as replicas of
the signal over a certain depth, and the simulated reverberations occur at twice this depth.
Comparing the third frame of Figure 8.12 with the second frame of Figure 8.9, it is clear that
reverberation suppression is achieved in this situation as well, but without the heavy loss of
signal power lost by imaging through an initial reverberation model layer.

Now turning attention to the same recording as described in Section 8.3, we are able to add
reverberations to the signal without the undesired effect of loosing signal power further down
the propagating path. As the recording is performed on the CIRS 040 elastography phantom,
it is also possible to convert the recordings into estimated time delays, and hence also into
elastography images. Seen in Figure 8.13 is the same recording as described in Section 8.3, i.e.
a SURF recording with reverberation suppression, only in this case reverberations are added in
Matlab before any time delays are estimated. The top row of the figure displays the B-mode
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images as seen on the ultrasound scanner, whereas the bottom row displays the corresponding
elastogram as estimated by the phase-based time-delay estimation algorithm. Most interesting is
the second and third frame of the figure, i.e. the frame where reverberations are added, and the
frame where the recording with added reverberations are processed with SURF reverberation
suppression. Inspecting the second elastogram with added reverberations, it is clear how the
phase-based algorithm completely fails to estimate any differences in strain, as the inclusion
is corrupted by noise. The frame processed with SURF reverberation suppression however is
able to remove the reverberations appearing on top of the inclusion, and the difference in strain
is once again detectable. Although the images displayed are taken from one frame only, the
conclusions are generally valid.

Figure 8.13: Ordinary B-mode image and corresponding elastogram, same frame with simulated
reverberations and elastogram with reverberations, and same frame with simulated reverbera-
tions and reverberation suppression and corresponding elastogram. Recorded with a 6.5 MHz
SURF probe "Viglen". FIR bandpass filtered with cut-off frequencies of 3 and 9 MHz. Frame
rate 26 Hz, and demodulation frequency fd = 6 MHz. Time delay values were estimated by a
linear model of τ̂ within a window size of 3.4 mm
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8.5 Elastography images computed from in vivo recordings of the
lower arm

A recording has been done transversally on the lower arm to prove the feasibility of the phase-
based time-delay estimation algorithm for in vivo situations. The recording was done with the
6.5 MHz Ultrasonix transducer as described in Section 8.1, and filtered with a FIR bandpass
filter with cut off frequencies of 3 MHz and 9 MHz. The data set was demodulated with a
demodulation frequency fd = 6 MHz, which in turn gives a window size of 3.4 mm for which
the delay values are calculated over with a linear model of τ̂ . As seen from the left frame of
Figure 8.14, the estimated strain values are overlaid the ordinary B-mode image with an opacity
of 25%, which enables us to see both the structure and the elasticity of the tissue of interest.
Comparing the left and right frame of the figure, it is clear how elasticity can not be judged
based on the ordinary B-mode image alone. The structure going from the top right corner of
the left frame of the figure and across the center of the frame is for instance not visible at all on
the B-mode image. It is likely that this is a muscle fiber of some sort, having elastic properties
being harder than the connective tissue surrounding it.

Figure 8.14: Transversal recording on the lower arm with estimated strain values on the left
hand side, and the ordinary B-mode image on the right hand side. Recording made with a 7.5
MHz Ultrasonix transducer, and filtered by a FIR bandpass filter with cut off frequencies of 3
MHz and 9 MHz. Data demodulated with a demodulation frequency fd = 6 MHz. Time delay
values were estimated by a linear model of τ̂ within a window size of 3.4 mm
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Chapter 9

Discussion

An iterative scheme to update the values of the instantaneous frequency estimates, and the
estimated time-delay values has been implemented for the phase-based time-delay estimation
algorithm. Although conclusions regarding the statistical properties of such a scheme has been
made, only general observations have been made when lowering the sampling frequency. The
observations suggest how an iterative scheme may be an important tool for lowering the standard
deviation when the sampling frequency is low, but no general conclusion relating the three
parameters bandwidth, sampling frequency and number of iterations have been made.

When estimating time delays the delay is calculated over a window of N number of samples to
improve the estimate, and the length of this window will have an impact on the final elastogram.
A too short sample volume will lead to too close tracking of the noise in the image, whereas a
too long sample volume will lead to too much smoothing of the final image. The optimal value
is found to be with a window length of approximately 13 wavelengths. The question remains
however if this is a valid assumption. As the value is found experimentally, the hypothesis should
be tested on several different data-sets as well. Also trying to relate this window size with one
or more quantifiable factors regarding the quality of the final elastogram could even further lead
to a globally valid value..

Two models, one linear and one polynomial, have been tested for the phase-based time-delay
estimation algorithm as parametric models of the local delay variation. However, it is not a
given fact that either of these are the best fit to real life situations, and other parametric models
should be tested out as well. The main drawback of using a more complex model however, is the
increased computational time. The observations and conclusions drawn from the experiments
regarding the two parametric models have mainly been conducted on one specific data-set. It
would also be interesting to see if the observations and conclusions given in this paper are
universally valid when testing the different models on several other data-sets as well.

Performing in vitro recordings with a reverberation model proved difficult. The 6.5 MHz SURF
transducer "Viglen" is not yet optimal compared to an ordinary transducer, and the recorded RF-
data is also diminished, which in turn suggests a lowered SNR. Also the reverberation suppression
technique implemented as to date not only suppresses reverberations, but also results in a
decreased SNR. The reverberation suppression technique of SURF imaging should be tailored in
order to make the gain factor as high as possible within the imaging area, and the maximum and
minimum absolute values of this gain factor are 2 for ωτ = π and 0 for ωτ = 0. As this expression
depends on the achieved delay between the two shots fired to compose the synthetic SURF pulse,
it is likely that for the reverberation situation in this thesis this delay was not high enough in
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order to maximize the gain factor, which in turn resulted in a decrease in signal strength. Also,
for the SURF mode with reverberation suppression the most basic setting was used, i.e. the
synthetic SURF beam with reverberation suppression consists of the difference between a HF
pulse transmitted in a compression phase of the LF pulse, and a HF pulse transmitted in a
rarefaction phase of the LF pulse. Although this approach works, different settings may be tried
as well, and may prove to further increase the reverberation suppression capabilities and the
final quality of the obtained ultrasound image.

More importantly, the reverberation model that was used was not optimal, and was not able to
reproduce reverberations adequately. Much of the signal strength was lost when having to pass
through this initial layer of reverberation model, and a great challenge is in keeping the SNR
high while at the same time producing reverberations. Also the reverberation model should be
able to mimic a real life situation as close as possible, in addition to achieve the three different
kinds of reverberations which are present.
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Chapter 10

Conclusion

The phase-based time-delay estimation algorithm works very well for estimating delays. As
the algorithm uses approximations to the phase difference and the instantaneous frequency to
calculate the delay, these approximations will also have an impact on the correctness of the delay
estimates. The assumption that the modulating phase is equal for both the approximations
is somewhat inaccurate, as there indeed does exist differences of the modulating phase when
comparing the instantaneous frequency and the phase difference. However, this difference can
be minimized by using the estimated delay to obtain updated values for the instantaneous
frequency. These updated values may again be used to find new improved values for the delay
estimate in an iterative fashion. By implementing an iterative scheme it is possible to lower
the standard deviation significantly, although on the cost of an increased bias. An interesting
feature is the situation when the sampling frequency is low, or even beneath the Nyquist rate.
In such a situation an iterative scheme may help to calculate delays up to a larger delay value
than what is the case for the ordinary method. This may indicate that the iterative scheme may
be an important tool when the acquired signal is corrupted by noise.

As the estimation of tissue stiffness is basically a time-delay estimation problem when it comes to
elastography, the phase-based time-delay estimation algorithm may also be used for elastography
purposes which is proved both in vitro and in vivo. As the delay is calculated over a window of
N number of samples to improve the estimate, the length of this window will have an impact
on the final elastogram. A too short sample volume will lead to too close tracking of the noise
in the image, whereas a too long sample volume will lead to too much smoothing of the final
image. There is hence a tradeoff between contrast and resolution, and the optimal situation is
found to be with a window length of approximately 13 wavelengths.

The phase-based time-delay estimation algorithm makes no assumption on the local delay vari-
ation, and any parametric model can be used for the local delay variation within the sample
volume of size N . By comparing a linear and a polynomial model as parametric models, and
improvement in the image quality of the elastography images is observed when using a polyno-
mial model of the second degree. As a polynomial model has a higher complexity than a linear,
it is better in detecting edges and differences located at a depth where the strain is lower than
closer to the transducer surface, which in turn improves the resolution of the elastogram. In
addition, an improvement of the dynamic area of the image when using a polynomial model
is observed, implying and improvement also in contrast. These differences may be further em-
phasized when performing spatial filtering with a median filter. Although a polynomial model
is superior to a linear as parametric model of the local delay variations, it comes at a cost of
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increased computational time which is on average 50% longer.

RF-data recorded with the 6.5 MHz prototype SURF probe "Viglen", which in turn are converted
to elastography images, indicate that the probe is not yet optimal as opposed to an ordinary
7.5 MHz Ultrasonix probe. Especially the estimated strain data before any thresholding or
smoothing has been performed are to an extent much more corrupted by noise than what is the
case for strain values estimated from RF-data recorded with the Ultrasonix probe. This may
indicate that the feasibility of obtaining high quality RF data is somewhat diminished when
imaging with the SURF probe "Viglen".

Reverberations impair the contrast resolution of ultrasound images, and greatly reduces the va-
lidity of the estimated time delays. When these reverberations appear on top of an inclusion, the
estimated elastography images are unable to distinguish differences in elasticity, and no inclusion
is visible in the final elastogram. The SURF reverberation suppression technique is able to re-
duce reverberations, and have an impact on the final image quality when the image is corrupted
by reverberating noise. Elastography images with computer simulated reverberations display a
markedly improved elasticity estimate when the SURF reverberation suppression technique is
used. Estimating time-delays on a signal with reverberations, the phase-based time-delay algo-
rithm was unable to distinguish any differences in elasticity at all. Estimating time delays on
a signal with reverberations and SURF reverberation suppression however, the algorithm was
able to clearly estimate differences in strain, and display the presence of an inclusion.
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Chapter 11

Further work

As elastic tissue not only experiences compression in the range direction, but in all directions
simultaneously, the estimation and imaging of tissue strains is by definition a three dimensional
problem. Estimating displacement in lateral and axial directions besides just range may greatly
improve the estimates and should be further investigated. The main obstacle will be in keeping
the computation time fast enough for the implementation to be done in real time.

Further studies of the effect of reverberations on the estimated elastography images should be
conducted. A great challenge is in not loosing too much signal power when imaging through
a reverberation model. Emphasis should be put on creating a suitable reverberation model
which does not attenuate the signal too much, but also mimics the real life situations as close
as possible, in addition to achieving the three kinds of reverberations which are present.

The technique of which the compression is applied greatly affects the quality of the elastography
images. By implementing the phase-based timed-delay algorithm on an ultrasound scanner one
is able to get real time feedback and hence adjust the compression technique accordingly.

By having the phase-based elastography algorithm implemented on an ultrasound scanner, the
next step will be in conducting in vivo experiments and clinical studies. This purpose will most
likely give rise to new challenges not easily detected from simulations or when performing in
vitro experiments in the laboratory.
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Appendix A

Matlab code for phase-based
time-delay estimator

1 function [tau, dtau] = phase_based_time_delay_estimation(iqdata,fs_iq,fdemod,method,iterations)
2 % function [tau, dtau] = phase_based_time_delay_estimation(iqdata,fs_iq,fc,fdemod,method,iterations)
3 %
4 % Estimates phase delays between corresponding columns of the two complex images
5 % contained in iqdata. This function finds either a 'running line' estimate, or a
6 % polynomial estimate of the delay for each time sample using a weighted least
7 % mean squares method within a window of 13.2 wavelengths. The estimator
8 % uses the phase difference and the instantaneous frequency to estimate the
9 % delay. An updated value for the instantaneous frequency can be found

10 % through an iterative scheme.
11 %
12 % Inputs
13 % iqdata 3D−array of two complex images
14 % fs_iq sampling frequency fast time
15 % fdemod demodulation frequency in fast time
16 % method 'lin' for linear model, 'poly' for polynomial model
17 % iterations number of iterations for iterative scheme
18 %
19 % Outputs
20 % tau matrix of estimated phase delays
21 % dtau matrix of estimated delay slopes (strain data)
22

23

24 %Setting variables
25 if nargin < 5
26 iterations = 1;
27 end
28 if nargin < 4
29 method = 'lin';
30 end
31 [samples, lines, frames] = size(iqdata);
32 t_interp = (0:samples−1)';
33 c = 1540;
34

35 %Fixed nr of wavelengths for window size
36 win_length_lambda = 13.2;
37 win_length_m = win_length_lambda*c/fdemod;
38 win_length_samples = floor(win_length_m*2*fs_iq/c);
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39

40 %Make sure number of samples for window length is odd
41 win_length_samples = win_length_samples + 1 − mod(win_length_samples,2);
42

43 %Buffering for speed
44 frames = frames−1;
45 tau = zeros(samples,lines,frames,iterations);
46 dtau = zeros(samples,lines,frames,iterations);
47

48 for frame = 1:frames
49

50 %Using two consecutive frames for calculating the delay
51 iq1 = iqdata(:,:,frame);
52 iq2 = iqdata(:,:,frame+1);
53

54 %Compute phase difference psi
55 psi = angle(iq1.*conj(iq2));
56

57 %Compute weight
58 w = abs(iq1.*conj(iq2));
59

60 %Compute instantaneous frequency theta
61 fdemod_phase = fdemod/fs_iq;
62 theta = zeros(samples,lines);
63 theta(2:end−1,:) = 0.25*sum(angle(iqdata(3:end,:,[frame, frame+1])...
64 .*conj(iqdata(1:end−2,:,[frame, frame+1]))),3) + 2*pi*fdemod_phase;
65 theta(1,:)=theta(2,:); theta(end,:)=theta(end−1,:);
66

67 %Half window length
68 win_h = (win_length_samples−1)/2;
69

70 %Window centered around zero
71 n = (−win_h:win_h)';
72

73 %Linear model for the delay
74 if strcmp(method,'lin')
75

76 for line = 1:lines
77

78 theta_new = theta(:,line);
79

80 for iteration = 1:iterations
81

82 for k = (win_h+1):(samples−win_h)
83

84 ix = k+n;
85

86 Theta(:,2) = n.*theta_new(ix);
87 Theta(:,1) = theta_new(ix);
88

89 Psi = psi(ix,line);
90 W = diag(w(ix,line));
91

92 %Weighted least squares estimate with linear model
93 beta = inv(Theta'*W*Theta)*Theta'*W*Psi;
94

95 tau(k,line,frame,iteration) = beta(1);
96 dtau(k,line,frame,iteration) = beta(2);
97

98 end
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99

100 %Assume small or zero delay at the start, interpolate ax+b = (tau_s/win_h)*k
101 tau(1,line,frame,iteration) = 0.001;
102 tau(2:win_h,line,frame,iteration) = tau(win_h+1,line,frame,iteration)...
103 *(2:win_h)/(win_h−1);
104

105 %Assume last values equal last known value
106 tau(samples−win_h:samples,line,frame,iteration) = ...
107 tau(samples−win_h−1,line,frame,iteration);
108

109 %Update theta values with estimated delay, use an offset of one delay
110 offset = tau(:,line,frame,iteration);
111 xi1 = interp1(t_interp,iq1(:,line),t_interp−offset);
112 yi1 = interp1(t_interp,iq2(:,line),t_interp+offset);
113 theta_new = ((angle(iq1(:,line).*conj(xi1))+angle(yi1.*conj(iq2(:,line))))...
114 ./(2*offset))+2*pi*fdemod_phase;
115

116 %If theta values are non−existent, use old values
117 theta_new(isnan(theta_new)) = theta(isnan(theta_new),line);
118

119 end
120 end
121

122 %Polynomial model for the delay
123 elseif strcmp(method,'poly')
124

125 order = 2;
126 A = repmat(n,1,order+1).^repmat(0:order,length(n),1);
127

128 for beam=1:lines
129

130 theta_new = theta(:,beam);
131

132 for iteration = 1:iterations
133

134 for ii=(win_h+1):(samples−win_h)
135 ix = ii + n;
136

137 theta_z = theta_new(ix);
138

139 psi_z = psi(ix,beam);
140 w_z = w(ix,beam);
141

142 Theta = A.*repmat(theta_z,1,order+1);
143 D = diag(w_z);
144

145 %Weighted least squares estimate with polynomial model
146 B = Theta'*D*Theta;
147 y = Theta'*D*psi_z;
148

149 alpha = B\y;
150

151 tau(ii,beam,frame,iteration) = alpha(1);
152 dtau(ii,beam,frame,iteration) = alpha(2);
153 end
154

155 %Assume small or zero delay at the start, interpolate ax+b = (tau_s/win_h)*k
156 tau(1,beam,frame,iteration) = 0.001;
157 tau(2:win_h,beam,frame,iteration) = tau(win_h+1,beam,frame,iteration)...
158 *(2:win_h)/(win_h−1);
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159

160 %Assume last values equal last known value
161 tau(samples−win_h:samples,beam,frame,iteration) = ...
162 tau(samples−win_h−1,beam,frame,iteration);
163

164 %Update theta values with estimated delay, use an offset of one delay
165 offset = tau(:,beam,frame,iteration);
166 xi1 = interp1(t_interp,iq1(:,beam),t_interp−offset);
167 yi1 = interp1(t_interp,iq2(:,beam),t_interp+offset);
168 theta_new = ((angle(iq1(:,beam).*conj(xi1))+angle(yi1.*conj(iq2(:,beam))))...
169 ./(2*offset))+2*pi*fdemod_phase;
170

171 %If theta values are non−existent, use old values
172 theta_new(isnan(theta_new)) = theta(isnan(theta_new),beam);
173

174 end
175 end
176 end
177 end
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Appendix B

Matlab code for making elastogram

1 function [elastodata, alfa] = make_elastography(dtau,threshold,nframes,smoothweight,kernel,order)
2 % function [elastodata, alfa] = make_elastography(dtau,threshold,nframes,smoothweight,kernel,order)
3 %
4 % Computes thresholded and smoothed outputs of the strain data which gives
5 % an elastogram. Thresholding is done on individual frames to maximize the
6 % dynamic area of each frame. Smoothing is performed both in the time and
7 % the spatial domain to suppress noise.
8 %
9 % Inputs

10 % dtau: 3D matrix of strain values
11 % threshold: 1x2 matrix of initial threshold values
12 % nframes: Number of frames for time domain smoothing
13 % weight: Weight of frames for time domain smoothing, gauss or average
14 % kernel: Mask for spatial smoothing, uniform, gauss or median
15 % order: Size of the kernel matrix
16 %
17 % Outputs
18 % elastodata: 3D matrix of elastography data
19 % alfa: Threshold values for individual frames
20

21

22 if nargin < 6
23 order = 5;
24 end
25

26 if nargin < 5
27 kernel = 'median';
28 end
29

30 if nargin < 4
31 smoothweight = 'average';
32 end
33

34 if nargin < 3
35 nframes = 5;
36 end
37

38 if nargin < 2
39 threshold = [−5e−3 5e−3];
40 end
41
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42 elastodata = dtau;
43 [samples,lines,frames,iterations] = size(elastodata);
44

45 %Change the dynamic area of the data by thresholding values
46 min_threshold = threshold(1);
47 max_threshold = threshold(2);
48

49 %Initially threshold entire dataset before individual thresholding of frames
50 elastodata(elastodata > max_threshold) = max_threshold;
51 elastodata(elastodata < min_threshold) = min_threshold;
52

53

54 %Number of bars for computing individual histogram
55 bars = 400;
56

57 %Alpha−low and alpha−high for each frame is saved in variable alfa
58 alfa = zeros(frames,iterations,2);
59

60 %Individual thresholding of frames
61 for frame = 1:frames
62

63 for iteration = 1:iterations
64

65 frame1 = elastodata(:,:,frame,iteration);
66

67 %Calculate histogram of individual frames
68 [N x_out] = hist(frame1(:),bars);
69 N(N==max(N)) = max_threshold;
70

71 %Computing new histogram leaving out already thresholded values
72 N = N(2:end−1);x_out=x_out(2:end−1);
73

74 %Find max value and standard deviation
75 maxVal = max(N);
76 stdVal = std(N);
77

78 %Define threshold value as max value plus/minus 3*standard deviation
79 tVal = maxVal−3*stdVal;
80

81 %Find all values above threshold value
82 aboveThreshold = find(N>tVal);
83

84 %Define alfaLow and alfaHigh
85 alfaLow = x_out(aboveThreshold(1));
86 alfaHigh = x_out(aboveThreshold(end));
87

88 %Threshold values that are above or below alpha values
89 frame1(frame1 < alfaLow) = alfaLow;
90 frame1(frame1 > alfaHigh) = alfaHigh;
91

92 %Replace original frame with thresholded frame
93 elastodata(:,:,frame,iteration) = frame1;
94

95 %Save alpha values
96 alfa(frame,iteration,:) = [alfaLow alfaHigh];
97

98 end
99 end

100

101 %Computing filter mask
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102 if strcmp(kernel,'gauss')
103 zfactor = round(samples/lines);
104 mask = gausswin(order*zfactor)*gausswin(order)';
105 mask = mask/sum(mask(:));
106

107 elseif strcmp(kernel,'uniform')
108 zfactor = round(samples/lines);
109 mask = ones(order*zfactor,1)*ones(1,order);
110 mask = mask/sum(mask(:));
111

112 elseif strcmp(kernel,'median')
113 zfactor = round(samples/lines);
114 medsize = [order*zfactor order];
115

116 else
117 error('Use gauss, uniform or median for kernel')
118 end
119

120 %Compute middle value of number of frames
121 middleVal = floor(nframes/2);
122

123 %Make time−smoothing statement to be executed based on numFramesSmooth
124 timeSmooth = 'img = ';
125 for l=1:nframes
126 timeSmooth = [timeSmooth 'weight(' num2str(l)...
127 ')*elastodata(:,:,k−(' num2str(middleVal−l+1) '))+'];
128 end
129 timeSmooth = [timeSmooth(1:end−1) ';'];
130

131 %Compute gaussian or average weight for frames
132 if strcmp(smoothweight,'gauss')
133 weight = gausswin(nframes)/sum(gausswin(nframes));
134 elseif strcmp(smoothweight,'average')
135 weight = ones(nframes)/sum(ones(nframes));
136 else
137 error('Use gauss or average for smoothing weight of frames')
138 end
139

140 %Persistence value for frames at the very beginning or very end of sequence
141 perVal = 0.35;
142

143 for k=1:frames
144

145 for iteration=1:iterations
146

147 %Assign value to first frame of sequence
148 if k==1
149 img = elastodata(:,:,k,iteration);
150

151 %Time smoothing over several frams
152 elseif k > middleVal
153 %Frames at very end of sequence
154 if k > frames−middleVal
155 img_k_1 = elastodata(:,:,k−1,iteration);
156 img = (1−perVal)*img + perVal*img_k_1;
157

158 %Execute time smoothing statement for all other frames
159 else
160 eval(timeSmooth)
161 end
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162

163 %Frames at very beginning of sequence
164 else
165 img_k_1 = elastodata(:,:,k−1,iteration);
166 img = (1−perVal)*img + perVal*img_k_1;
167 end
168

169 %Spatial smoothing
170 if strcmp(kernel,'median')
171 img = medfilt2(img,medsize);
172 else
173 img = conv2(img,mask,'same');
174 end
175

176 %Store result
177 elastodata(:,:,k,iteration) = img;
178

179 end
180 end
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