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Problem Description
At current there is great interest in the high North due to activities related to oil, gas and fisheries.
The U.S. geological survey has estimated that as much as 22 % of the worlds remaining oil and gas
resources might lay in the artic. Climate changes might also lead to an increase in ship traffic due
to the melting of the polar icecap. This would in turn open new transport routs such as the North-
east and North-west passage. With increasing activity the demand for reliable communications
systems is expected to increase.
   
New broadband services delivered via satellite now make use of millimeter wave frequencies such
as Ka-band (20/30 GHz) due to spectrum congestion. Limited works have been done to study the
propagation effects at theses frequencies in the Northern regions of Norway. In order to gain new
knowledge on system performance, propagation measurements are needed for characterization
of the various propagation effects. From these measurements, new models that predict
propagation impairments can be developed.

The task is to design and build a system suitable for studying propagation effects in Northern
parts Norway with focus on Ka-band frequencies. The system should also bee suitable for
maritime measurements.
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Abstract 
 
Due to increase in ship traffic and activities related to oil and gas there is currently 
grate interest in the northern regions of Norway.  Satellite communications to these 
areas i.e. north of the polar circle is however challenging due to low elevation angles 
and restricted visibility of geostationary satellites. Limited work has been done to 
study the propagation effects at theses latitudes and low elevation angles, especially 
at millimeter frequencies and for maritime communications. Some measurements 
have been conducted at Svalbard [5] and in Canada [5.1]. The studies from Svalbard 
were conducted at Ku-band frequencies whilst the Canadian measurements were 
conducted at 38 GHz. Non of the two did however include maritime measurements. 
Further measurements are therefore needed to characterize the propagation effects 
under these conditions.  
 
A beacon receiver is radio which is used to detect and measure the signal strength of 
a transmitted radio beacon signal. Beacon signals transmitted by satellites are often 
low power continuous wave signals intended for antenna steering and power control 
purposes. These signals are well suited for propagation measurement due to their 
constant transmits power and frequency. Propagation research often relies on 
beacon measurements along with other information such as weather data and 
radiometer readings.  
 
This thesis discusses the design and implementation of a low cost beacon receiver 
based on digital signal processing techniques and software defined radio. The 
intention was originally to design a Ka-band (20 GHz) receiver. This was however 
extended to a general purpose beacon receiver intended to operate at an L-band 
intermediate frequency. Different architectures and realizations are discussed with 
emphasis on costs and performance. It is shown that a 1.2 m antenna, receiving a 
Ka-band beacon with, 9 dBW EIRP would produce a signal level of about -130 dBm 
at its output. This would in turn yield a C/N0 ratio of about 46 dBHz at 76°North, 
assuming a receiver with overall noise figure of 1.5 dB and clear air conditions.  
 
Based on the link budget calculations two different beacon receiver designs are 
proposed. One based on the superheterodyne receiver architecture realized with 
standard RF-components such as mixers and amplifiers with coaxial connectors. The 
second design is based on the universal software radio peripheral, (USRP), which is 
a software radio, intended to allow personal computers function as radio transceivers. 
It was found that building a complete beacon receiver from standard RF-components 
would require about 100.000 NOK to achieve the wanted performance. This includes 
a complete system with antenna, front-end and baseband receiver. Due to the 
relatively inexpensive hardware (4900 NOK) of the USRP and the availability of front-
end plug inn boards in the required intermediate frequency range the USRP was 
chosen as the hardware portion of the receiver. 
 
Linearity measurments and observations of the USRP output spectrum shows a 
linear dynamic range of about 60 dB which is found sufficient for beacon 
measurements. A Ku-band antenna intended for television reception has been used 
to receive a 12.2 GHz beacon transmitted by Eutelsat W3A.  
 



   

Software code was developed based on the GNU radio framework in order to use the 
USRP as a beacon receiver. A number of issues were discovered during this work:  
 

• GNU radio does not contain filters for spectral averaging 
   

• Attempts to implement additional functionality in software proved challenging 
due to limitations in computational speed 

 
Both of the two issues affected the performance of the beacon receiver. Modifications 
and additions to the GNU radio software is therefore suggested for future work 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



   

Preface  
 
This is the master thesis for Eivind Mikkelsen, presented to the Norwegian University 
of Science and Technology as required to conclude the Master of Science study in 
Electronics and Telecommunications. This thesis has been written under the 
supervision of Dr. Lars Erling Bråten at the Norwegian Defense Research 
Establishment and Professor Odd Gutteberg at the Department of Electronics and 
Telecommunications, NTNU. The work has been carried out during the spring of 
2009 at the University Graduate Center at Kjeller Lillestøm, Norway.  
 
The assignment came about due to a faulty beacon receiver intended for use in an 
earlier project. This thesis is therefore concerned with the design and implementation 
of a low cost beacon receiver. Originally the intent was to design and build a beacon 
receiver for the Eutelsat W3A 21.4 GHz beacon. The cost of implementing such a 
receiver was however beyond the funds available to this project. The thesis was 
therefore focused on developing a beacon receiver operating at an L-band 
intermediate frequency. In this way the receiver could cover a range of frequency 
bands including Ka and Ku-band.             
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Chapter 1 
 

Introduction 
 

Norway has an economic zone covering 819,620 square kilometers of sea surface. 
With the fishing zone around Jan Mayen and the protected zone around Spitsbergen 
the total jurisdictional district covers 1,878,953 square kilometer. This amounts to an 
area almost six times greater then the Norwegian mainland [1], with most of these 
areas lying north of the polar circle. In addition, during the course of this thesis the 
boarders of the Norwegian continental shelf were extended even further.  
The Northern regions have also been found to contain vast recourses including oil, 
gas and fish. U.S. geological survey has estimated that as much as 22 % of the 
world’s remaining petroleum recourses might lay in the Artic [2].  
 

 
Figure 1.1 Political map of the Northern region [3] 

 
 
The Norwegian government has announced that the High North will be Norway’s 
most important strategic priority area in the years ahead, and that “We will be at the 
forefront of international efforts to develop knowledge in and about the High North” 
[4]. 
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1.1 Limitations for satellite communications in northern regions 

With increasing latitudes the elevation angle of geostationary satellites decreases. 
For geostationary satellites located at the same longitude as the receiver on the 
ground the elevation angle, not including ray bending is only 6.3° at 75°N and at 
about 81.3°N, geostationary satellites are no longer visible. The general decreases of 
the refractive index of the atmosphere with height will however lead to an apparent 
elevation angle which is slightly larger. Communications at such low elevation angles 
is challenging due to a number of propagation degradation effects. At low elevation 
angles radio waves propagate further through the atmosphere compared to higher 
elevation angles, thus giving the atmosphere a grater impact on the propagating 
radio waves. This leads to increased attenuation of the signal due to absorption by 
atmospheric gases and precipitation. Fading due to multipath, scintillations, refraction 
and reflections also tend to affect low elevation angle system more severely then at 
higher elevations. 
In ordered to achieve reliable communication from geostationary satellites to the 
northern regions theses effects must be known and accounted for in the system 
design. Some measurements of the propagation conditions have been done at Ku-
band (12/18 GHz) at Svalbard [5].  However, due to increased demand for high 
capacity data communications the lower bands are becoming increasingly more 
congested. This necessitates the utilization of higher frequency bands to cope with 
the increased traffic requirements of the future. Higher frequencies however suffer 
from increased attenuation trough the atmosphere which decrees the link margin 
even further.      
 

1.2 Demand for communications  

Effects of global warming are already noticeable in the High North and the Polar ice 
cap is melting [6]. If this continues the Northwest and Northeast Passage might be 
open for commercial ship traffic in the near future. With increase in ship traffic 
combined with activities related to oil, gas and fisheries we should expect an 
increased demand for communications services in the future. However, at present 
there are limited numbers of communication services available. At sea, and far from 
the coast satellite communications is the only viable alternative apart from HF radio, 
which does not offer broadband services. Maritime communication    
 

1.3 Beacon receivers and Propagation measurements  

In order to pave way for new satellite services in Northern regions more propagation 
research is needed. Beacon measurements along with weather data are central in 
such research. Radio beacons are often unmodulated continues wave carrier signals, 
transmitted by satellites for station keeping and antenna steering purposes. Some 
beacons also carry small amounts of information such as telemetry data. These 
signals are ideal for measuring propagation effects due to their constant transmit 
signal level [8]. Fluctuations in received signal strength can therefore be contributed 
to propagation phenomena. The purpose of a beacon receiver is thus to measure the 
received signal power and to store the values detected. The data can then be used in 
later propagation research. However the hardware needed is often expensive and is 
not currently available to many researchers. A low cost beacon receiver could 
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therefore help to improve data availability for future research, without exhausting the 
funds available to such activities.          
 

1.4 Software defined radio 

A Software Defined Radio (SDR) is radio where selected analog components have 
been replaced by software [9]. By digitizing radio signals, operations traditionally 
performed in hardware can be performed in software. Analog components such as 
filters, mixers and phase locked loops are implemented using digital signal 
processing techniques. In turn this creates new opportunities in the design of radio 
receiving equipment. By replacing fairly expensive analog components with free open 
source software code the cost of building a beacon receiver might be reduced. 
Changes and modifications can also be done to the receiver without the need to 
replace expensive hardware components. At the center of the software radio is the 
analog to digital converter (ADC). Modern ADC’s can digitize wide bandwidth signals 
at carrier frequencies up to several hundred MHz. As an example, Analog devices 
[10] provide A/D converters for less than 20 dollars that can digitize signals more 
than 30 MHz wide at a resolution of 12 bits. This is far from the frequencies used in 
satellite communications so an analog front-end is needed for frequency conversion 
and amplification. By digitizing at a moderate intermediate frequency, flexibility can 
be achieved by using digital signal processing techniques.  
 

1.5 Universal Software Radio Peripheral 

The universal software radio peripheral is a software radio intended to allow personal 
computers function as a radio transceiver. The device is made up from a mother 
board containing four A/D and D/A converters connected to a field programmable 
gateway array (FPGA). Each of the converters is also connected to a daughterboard 
slot, and a variety of different boards can be purchased. The daughterboards contain 
the analog front-end and different boards covers the range of frequencies from zero 
to 2.4 GHz. Figure 1.5.1 shows the layout of the device.          
  
 

 
Figure 1.5.1 The USRP 
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The FPGA is used to perform basic signal processing tasks such as digital down 
conversion, decimation and filtering thus lightening the load of the computer 
processor. Some daughterboard’s can also be controlled via the motherboard to 
adjust mixer frequency and channel filter. An USB 2.0 connection is used to connect 
the USRP to a pc, giving a maximum transfer rate of 480 Mbit/s or 60 MB/s.    
 

1.6 The GNU radio framework 

The gnu radio framework is a free open source software package for the 
development of software radios. Software code is divided into signal processing 
blocks, where several blocks can be combined to create a complete software radio. 
The signal processing blocks are written in the programming language C++ and 
Python is used to tie them together. GNU radio is thus made up by a combination of 
the two languages. In this way existing blocks can be used to realize the intended 
functionality. Although primarily developed for Linux platforms the GNU radio 
software can be run in most operating systems.        
GNU radio has an online community constantly improving and developing new code. 
The community also offers an extensive knowledge data base along with online 
forums for help and support.  
 

1.7 Outline of this thesis 

In this thesis the possibility of building a low cost beacon receiver using digital signal 
processing techniques is evaluated. First link budgets are derived and presented with 
focus on the High North and low elevation angles. Topics such as satellite visibility, 
propagation distance and link analysis is covered. A list of available Ka-band (20 
GHz) beacons along with their characteristic are then listed together with information 
about the respective satellites. Some Ku-band beacons are also listed. Different 
analog and digital RF-components are then evaluated in order to get an overview of 
the options available, with respect to building and implementing the receiver. The 
basic building blocks of the RF front-end are presented along with considerations 
about their function, characteristics, cost and availability. Based on the information 
gathered from these considerations different receiver designs are proposed. The cost 
of the different designs is then evaluated. The result of this evaluation leads to the 
decision to look for alternative methods to implement the hardware portion of the 
design. As a result the USRP is chosen as the hardware portion of the receiver. A 
description of the hardware and software related to this device is then given. The 
performance of the USRP is then tested with a signal generator and a Ku-band VSAT 
antenna.  Finally a conclusion is presented along with suggestions fore further work. 
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Chapter 2 
 

Link budget calculations 
 

As part of the design and planning of a beacon measurement system a link-budget is 
needed. This Section will deal with these calculations and the methods used to 
construct the link-budget. The results of these calculations are then used as a basis 
for deciding the design and requirements of the beacon receiver. In order to estimate 
the performance of the communication system the losses and gains between the 
transmitter and receiver are estimated for clear air conditions. 
 

2.1 Transmission theory 

At a distance R from an isotropic source radiating at Pt watts, the flux density at the 
surface of a sphere with radius R is given by:        
                                                           

24
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Any real antenna however will be directional, such that it radiates more power in 
some direction than the other.  The antennas ability to direct the power transmitted in 
some intended direction is referred to as gain.  The gain of the antenna G(θ) is 
defined as the ratio between the power radiated in a particular direction to the 
average power per unit solid angle.   
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Where P0 is the total power radiated by the antenna, and P(θ) is the power radiated 
per unit solid angle. 
 
It is common to refer to the antenna gain as simply the gain in the direction of 
maximum gain. Direction of maximum gain is also referred to as bore sight direction. 
The flux density F, in the direction of the bore sight can be expressed by Eq 2.3.  
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A receiving antenna at a distance R from the radiating antenna will thus experience a 
flux density of F watts per square meter. Assuming no propagation losses, the 
received power Pr at the antenna output is equal to: 
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Ae is the effective area of the antenna, given by Ae=ηA were A is the actual area of 

the aperture. The efficiency factor η thus gives information about how much power is 
lost compared to an ideal antenna with no losses. A fundamental relationship in 
antenna theory [11] is that the gain of an antenna is related to its area by:  

                          

2

4 eA
G

π
λ

=
 

 2.5 

 
By combining the equations above the power received by an antenna at a distance R 
from the transmitting antenna can now be expressed as: 
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2
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2
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4
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R
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All materials with a physical temperature above 0° emit radio magnetic radiation. At 
frequencies less then 300 GHz this radiation can be regarded as white Gaussian 
noise [12]. As attenuation increase the amount of noise seen by a receiver also 
increases [13]. For a given bandwidth B, the noise power introduced to a receiver can 
be calculated from Eq 2.7: 
 

n sP kT B=  [ ]W  2.7 

 
Where Pn is the noise power in watts, k is Boltzmann’s constant and Ts is the 
equivalent noise temperature given by Eq 2.8.  

                                  
/10(1 10 )A

s mT T −= −  [ ]K  2.8 

 
The atmospheric contribution to the antenna noise temperature Ts can therefore be 
estimated by Eq 2.8, where A is the path attenuation due to absorption and Tm is the 
effective temperature of the medium in Kelvin 
 
In addition to the atmospheric noise contribution, for elevation angles less than 10° 
the noise contribution from the ground should also be evaluated [14]. 
 

2.1.1 Propagation distance and elevation angle. 

Geostationary satellites are in an orbit proximately 36,000 km above the Earth’s 
equator. In order to estimate the attenuation of the signal the distance to the satellite 
and the elevation angle must be found.  The elevation angle and distance between a 
ground station and the satellite is calculated from basic geometry as expressed in Eq 
2.9 and 2.10. 
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Where γ is the latitude position in degrees of the ground station and re and rs is the 
Earth radius and distance from center of Earth to satellite respectively. Figure 2.1.1 
shows the related geometry.    
 

 
 

Figure 2.1.1: Geometry used for distance and elevation angle calculation. 

As seen in Table 2.1.1 increasing latitudes results in increased distance to the 
satellite and lowers the elevation angle. At 81.3°N the geometric elevation angle is 
zero if the satellite and ground station is at the same longitude. This means that the 
antenna is pointing directly at the horizon. Further north the elevation angle will be 
negative and thus line of sight communication with Geostationary satellites is no 
longer possible. However because of the ray bending effect of the atmosphere due to 
refraction in the atmosphere the apparent angle will be slightly larger.   
Communication links at latitudes north of about 75°N is therefore going to be affected 
by the problems related to low elevation angles (i.e. less then 5°).    
 

Satellite Longitude 0 0 0 0 0 0 

Ground Station Longitude 0 0 0 0 0 0 

Ground Station Latitude 60 65 70 75 80 81,3 

Elevation Angle 21,9 16,6 11,4 6,35 1,3 0 

Distance (km) 39364,5 39889,6 40429,3 40979,0 41534,2 41678,9 

Table 2.1.1 Elevation angle and distance at different latitudes 
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2.2 Link budget 

The link budget has been calculated for the Eutelsat W3A satellite located at 13 °E 
transmitting a 21.4 GHz beacon signal at horizontal polarization. Station height has 
been set to zero and an over all noise figure of 1.5 dB have been assumed. The 
three differnt columns (A,B,C) denote the receiver location listed below. The link-
budget shows C/N0 levels ranging from about 40 to 48 dBHz depending on the 
position of the receiver. For reference, the C/N0 calculated for Oslo was about 50 dB. 
 
 

 
A: Northern part of Svalbard 
B: Longyearbyen 
C: North Cape 

 
 
The link budget has been calculated with the methods presented earlier in this 
Section along with data files provided by CNES [15] for estimates of gaseous 
attenuation. For elevation angles less than five degrees the gaseous attenuation has 
been calculated according Annex 1 of ITU-R recommendation P.676-7 [17]       

 
 
 
 
 

Satellite parameters Units A B C 

Satellite longitude (°) 7,0 7,0 7,0 
EIRP (dBW) 9,0 9,0 9,0 
Frequency GHz 21,4 21,4 21,4 

 Reciver parameters         
Latitude (°) 80 78 71 
Longitude (°) 15,0 15,0 25,0 
Height (km) 0,0 0,0 0,0 
Antenna Diameter (m) 1,2 1,2 1,2 
Antenna Efficiency (%) 70,0 70,0 70,0 
Polarization (°) 0 0 0 
Elevation (°) 1,2 3,2 9,5 
 Propagation Losses       
Free Space Losses (dB) 211,4 211,4 211,2 
Atm. Gaz Attenuation (dB) 3,6 1,7 2,7 
Total Losses (dB) 215,0 214,4 212,8 
Receiving system       
Antenna gain (dBi) 47 47 47 
Feeder Losses (dB) 0,2 0,2 0,2 
Rx Noise Temperature (K) 331,0 313,5 261,3 
Rx Noise Figure (dB) 1,5 1,5 1,5 
Rx station Noise Figure : G/T (dBK) 21,8 22,1 22,9 
(C/N0) downlink (dBHz) 44,4 45,3 47,7 

Received power (dBm) -129,0 -128,3 -126,7 
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Chapter 3 
 

Beacons characteristics and availability 
 
Table 3.1 summarizes the specifications for two different satellites in orbital positions 
favorable for coverage in the High North. Both are Eutelsat satellites transmitting un-
modulated continues wave (CW) signals at Ka-band.     
 

Satellite Frequency EIRP Location Modulation Polarization 
Eutelsat 

W3A 
21.4 GHz 9 dBW 7°E CW Horizontal 

Eutelsat 
Hotbird 6 

19.7 GHz 9 dBW 13°E CW Horizontal 

Long term frequency stability +/- 120 kHz 
Table 3.1 Satellites transmitting Ka-beacon signals 

3.1 Eutelsat Hotbird 6 

The Hotbird 6 satellite was launched in the third quarter of 2004 and has an expected 
lifetime of 12 years. It carries 32 transponders at Ku and Ka-band and was designed 
to replace the earlier Hotbird 5 satellite. Ka-band downlink coverage is limited to a 
single beam covering most of Western Europe and Scandinavia. There is no explicit 
information given regarding EIRP levels of the Ka-Beacon beyond about 70°N. 
Further information about coverage should therefore be collected before planning 
measurement further north.  
   

3.2 Eutelsat W3A 

The Eutelsat W3A satellite was launched in the first quarter of 2003 and has an 
expected lifetime of 12 years. It carries 58 transponders at different frequencies and 
cover Europe and Africa with four beams. The Ka-beacon coverage includes most of 
Europe and should provide EIRP levels of 9 dBW for the Northern parts of Norway up 
to zero degree elevation. More information can be found in Appendix 2. 
       

3.3 Other Ka-band beacons 

In addition to the satellites mentioned above the following satellites also provide Ka-
band beacons which might cover the Northern regions. More information or 
measurements are however needed to verify their coverage area and EIRP level. 
 

• Syracuse-3B, 15.5° West, 20.249 GHz 
• Sicral 1-A/B, 16.1 / 13.3 °East, 20.250 GHz 
• Artemis,  inclined orbit, 23,5 GHz 
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3.4 Ku-band beacons  

At Ku-band there are several satellites transmitting beacon signals which has 
coverage in the Northern parts of Norway. Some of these satellites are given in the 
list below [39].    
 

• Thor 3/5, 1°W  
• Atlantic Bird 3,  5°W 
• Hotbird 1/3/8, 13 °E 
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Chapter 4 
 

Beacon receiver specifications 
 

Satellite beacons are low power signals transmitted for antenna steering, power 
control, telemetry and research [19]. Many beacons are also un-modulated carriers 
transmitted continuously at a constant EIRP level. This makes beacons well suited 
for propagation measurements due to their constant signal level and stable 
frequency. Since there normally is no data modulated onto these signals the beacon 
receiver needs only to measure the received signal strength or amplitude over a 
narrow bandwidth. Because the signal is transmitted at a constant level any 
variations in flux density at the ground can thus be attributed to propagation effects. 
The lack of modulation also means that the signal energy should be located inside a 
narrow bandwidth.  
In this Section the specifications for the receiver is derived based on information 
concerning available Ka-band beacons, link budgets and comparison to other beacon 
receivers.   
 

4.1 Dynamic range 

Signal impairments due to fading and attenuation are expected to produce 
considerable variations in the received signal power and carrier to noise ratio. 
Attenuation in excess of 30 dB should be expected fore small percentages of time in 
the Northern regions. Even higher values are expected at the lowest elevation angles 
where the signal trajectory is at grazing angle to the horizon. Different antenna sizes 
and receiver locations also affect the signal level presented to the receiver. In order 
to allow for some variations in signal level the receiver should have a dynamic range 
larger than the signal variations it is meant to measure. Calculations from the link 
budget in Section 2, indicate that a for antenna sizes in the range 1-3 m. The largest 
attenuation measurable will be set by the carrier to noise threshold of the receiver 
and not the dynamic range. A dynamic range of 50 dB should therefore be sufficient 
given that fades of at least 30 dB are to be measured.    
 

4.2 Noise 

In the link budget calculations it was shown that an antenna of 1.2 m diameter would 
provide about 47 dB gain at Ka-band (20 GHz). This will typically produce C/N0 levels 
at about 40 dBHz, assuming the receiver has an overall noise factor of 2 dB. Given 
that the receiver is to track signals during attenuation up to 30 dB a carrier to noise 
threshold of about 10 dBHz or better must be achieved. However the actual carrier to 
noise threshold that can be achieved is dependent on the techniques used in the 
power estimation and the overall noise factor of the receiver. An absolute 
requirement to the C/N threshold and noise factor might however be in conflict with 
the goal of constructing a low cost receiver. It might therefore be more constructive to 
have a 10 dB C/N threshold and 2 dB noise figure as a design goal rather than an 
absolute requirement.             
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4.3 Linearity 

The purpose of the beacon receiver is to measure variations in signal strength due to 
propagation effects. Unlinearity in the receiving system should therefore be kept low. 
Unlinearity in the receiver it self might degrade the measured data and might be 
considered as noise. Components with good linearity should therefore be used in 
order to minimize the unlinearity of the receiver. Furthermore the design should make 
sure that all components function inside their linear operating area. An overall 
variation in linearity of less than 10 % should be achieved. 
 

4.4 Sampling rate 

In order to record rapid amplitude fluctuations in signal strength the sampling rate of 
the receiver i.e. the number of measurements per second needs to be sufficient to 
track these changes accurately. It would be preferable if the sampling rate could be 
changed depending on the propagation conditions and measurement period. In this 
way one can reduce the amount of data being recorded under periods of little activity. 
Thus reducing the amount of storage space needed. Based on previous beacon 
receiver developments [8], the receiver should be able to sample at rates of at least 
two samples per second to record scintillations. An adjustable sampling rate between 
2 and 20 samples per second should therefore ensure that most propagation 
phenomena could be measured accurately.  
 

4.5 Operational characteristics 

In order to allow for long term measurements over several months, the receiver 
should be completely self sustaining. The system should automatically search and 
lock on to a beacon in the event of signal loss. Also a search for signals inside the 
bandwidth should be performed automatically at regular intervals to make sure the 
receiver is locked to the correct signal and not a spurious.  
 

4.6 Data handling 

Measurements made by the receivers must be stored digitally and in a suitable 
format. Simply dumping the recorded data to file will however lead to a continuously 
increasing file size. The recorded data should therefore be stored to file at regular 
time intervals. In this way individual files are at kept a reasonable size for later 
processing. This also provides a safety function, where only the data in the current 
file are lost in the event of malfunction or power loss.      
 
Recoded data should also be saved with a timestamp and information about 
frequency. This is necessary for comparing the recordings with other information 
such as weather data or other effects. 
 

4.7 Signal processing 

The receiver should only perform the signal processing absolutely necessary, where 
the ideal solution is to record the entire spectrum available. This is however 
unrealistic due to limitations in storage capacity. Some processing is therefore 
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necessary to reduce the amount of data to be stored. The receiver should therefore 
be capable of performing the following tasks:         
 

• Digital down conversion 
• Anti aliasing Filtering 
• Decimation 
• FFT calculations 

 

4.8 Flexibility 

Preferably the receiver should also be as flexible as possible and allow for future 
extension in functionality and measurements of different frequencies. Such future 
extensions might include diversity measurements, phase coherent measurements, 
addition of wheatear data and so on.                
 

4.9 Summary of specifications 

 
• 50 dB dynamic range  
• C/N0 threshold of 10 dBHz  
• Noise figure of less than 2 dB 
• linearity better than +/- 10 % 
• Selectable sampling rates of signal strength 
• Automatic re acquisition 
• Rejection of spurious signals 
• Low cost 
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Chapter 5 
 

Design considerations 
 
Several different hardware components and architectures can be used to implement 
a beacon receiver. The first step of the design process was therefore to get familiar 
with the hardware components available and their characteristics. Based on this 
information, different components and topologies were evaluated for the hardware 
implementation of the receiver. This Section is therefore concerned with the basic 
building blocks and topologies suitable for implementing a beacon receiver.               
 

5.1 Analog front-end components  

Most if not all software defined radios need some form of analog front-end. This is 
due to constraints imposed by the analog to digital converter (ADC). All ADC’s have 
limitations in frequency, voltage range and bandwidth. As a result the RF-signal at 
the output of the antenna needs to be adapted to the input of the ADC. The purpose 
of the analog front-end is therefore to amplify and frequency transform the incoming 
signal to a voltage level and frequency acceptable to the converter.  
The building blocks used to achieve this is described in this Section along with 
considerations of their effect on the overall system. Figure 5.1.1 show a typical 
receiving architecture of a software defined radio for easy reference.                
 
 

 IF 
RF 

LO 

 

LNA

ADC

Computer
or

DSP hardware

Analog front end

Filter

Mixer

 
Figure 5.1.1 RF Front-End 

5.1.1 Antennas 

Although the antenna system itself is outside the scope of this thesis, some basic 
understanding is needed in the design process. The choice of antenna will be critical 
for the performance of the overall system. Generally, larger antennas can capture 
more power and thus provides a better carrier to noise ratio. However, at higher 
frequencies large antennas have especially narrow beam widths or main lobes. This 
can cause problems for propagation experiments due to movement of satellites 
inside their orbital position. If the beam width of the antenna is to narrow one might 
observe fluctuations in power due to the satellite moving close to or in and out of the 
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edges of main lobe. On the other hand, if the antenna is too small the carrier to noise 
ratio might be too low for measuring during attenuation. The choice of antenna must 
therefore be based on a tradeoff between wanted carrier to noise level, beam width 
and the pointing stability of the antenna. For maritime communications this is 
especially important due to the constant rocking of ships. A highly accurate antenna 
steering system is thus needed if a large aperture antenna is to be used.  
Table 5.1.1 shows the estimated half power beam width (HPBW) and carrier to noise 
ratio at different frequencies for typical VSAT antennas. It can be seen that HPBW 
and C/N0 are affected by both antenna diameter and frequency. And that higher 
frequencies achieves poorer C/N levels than lower frequencies at a given antenna 
size. At Ka-band one should expect a 3 m antenna to have a HPBW of about 0.35°. 
This narrow beam width might not be a problem for stationary terminals but can be 
vulnerable to pointing errors from tracking antennas, especially in maritime 
communications.  
 
 
Frequency 20 GHz 12 GHz 4 GHz 
Diameter HPBW [°] C/N0 [dBHz] HPBW [°] C/N0 [dBHz] HPBW [°] C/N0 [dBHz] 
0,5m 2,1 41,1 3,5 42,4 10,5 42,6 
1m 1,1 47,7 1,75 48,4 5,3 48,6 
1,5m 0,7 50,6 1,67 51,9 3,5 52,1 
2m 0,53 53,1 0,88 54,4 2,63 54,6 
3m 0,35 56,6 0,58 57,9 1,75 58,1 

Table 5.1.1 HPBW vs. Frequency 

Table 5.1.1 has been calculated using the same link budget as presented in Section 
2.2 (location C). The results have been produced by varying the antenna size and 
frequency, where the half power beam width has bee calculated using Eq 5.1.2 [12].  
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5.1.2 Low noise block converters 

 

 IF 
RF 

LO 

  

 
Figure 5.1.2 Low noise block 

Low Noise Block converters (LNB’s) are commonly used in receiver front-ends. They 
are often mounted directly to the antenna feed and have two major functions; 
amplification and frequency conversion. Figure 5.1.2 show a functional block diagram 
of a LNB. Signals coming from the antenna is amplified by a Low Noise Amplifier 
(LNA) and filtered before being shifted in frequency. By having a high gain low noise 
amplifier directly at the antenna output the overall noise factor of the system can be 
kept low. Eq 5.1.3 [16] shows how important the first amplifying stage is for the over 
all noise factor (F) in a cascade of components. Where Fi and Gi is the noise factor 
and gain of the i’th component of the cascade. It can be seen that if G1 is large the 
contributions to the total noise factor from the subsequent components will be small.       
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LNB’s considered in this thesis have hade typical noise figure values of less than 1.5 
dB and about 50 dB gain. In order meet the design specification, which is an overall 
noise figure of less than 2 dB. The noise figure of the remaining system should be 
less than about 50 dB. This should be easily achievable with commercially available 
components. As will be shown later, noise figures of 3-5 dB and better have been 
estimated for the suggested designs. Noise added before the LNB will however be 
more severe and needs to be less than 0.5 dB to fulfill the design requirements. 
 
By using an LNB at the antenna coaxial cables can be used instead of waveguides. 
This makes for a more flexible system since cables can be more easily re arranged. 
The complexity of the design is also reduced since several components are housed 
in a single unit suitable for outside operation.      
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5.1.3 Mixers 

Mixers are used to perform frequency conversions. In a receiver the mixer is 
therefore normally used to down convert the incoming RF-frequency to a lower 
intermediate frequency (IF). Since this thesis focuses on receiver architectures the 
(IF) is referred to as the mixer output and the RF signal as the mixer input.  

 
 
 

  
 
 
                          

                          Local Oscillator 
 

Figure 5.1.3 Mixer symbol 

Figure 5.1.3 shows the schematic symbol for a mixer. Expressed mathematically the 
mixer multiplies an incoming signal with a locally generated sinusoid. Ideally the 
output would then be the sum and difference between its two inputs [16]. The output, 
IF, can then be described for an idealized mixer by Eq 5.1.5. Where Eq 5.1.5 is 
derived from Eq 5.1.6  
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Image frequency 
From Eq 5.1.5 it can be shown that if the term fRF+fLO is negative the resulting IF 
frequency will also be negative. However any real signal is symmetric about zero 
frequency and the Fourier spectrum will contain negative as well as positive 
frequencies [9]. The result is that two different RF frequencies can produce the same 
IF frequency. One of which is the wanted signal and the other is referred to as the 
image frequency. Since they are both located at the same frequency after conversion 
they are indistinguishable. Eq 5.1.7a and 5.1.7b describe the two frequencies that will 
result in the same IF frequency.   
 

                                                           fIF = fRF-fLO                                                       5.1.7a 

  fIF = fRF+fLO                                                       5.1.7b 
        
When designing the beacon receivers the frequency corresponding to fIM should 
therefore be filtered out before the mixing stage. Alternatively an image reject mixer 
should be used. Such mixers might however not provide enough attenuation if a 
strong signal is present at fIM. If this is the case the measured signal amplitude might 

IF RF 

 



 - 18 -   

be affected. Careful frequency planning is therefore needed to assure that the image 
frequency is kept outside the detection bandwidth or attenuated sufficiently.     . 
Figure 5.1.4 shows the output of an ideal mixer where the doted line indicates the 
image frequency.    
 

 
Figure 5.1.4 Ideal mixer output 

Spurious responses  
Eq 5.1.5 is based on an ideal mixer being perfectly linear. Mixers are however 
unlinear devices and signal leakage between LO, RF and IF ports can occur [9]. The 
output of a mixer is therefore composed of a variety of harmonics and other spurious 
responses. Eq 5.1.8 might therefore be more descriptive of the mixer output, where 
m and n can take on any real positive or negative value.      
          

IF m RF n LOf f f= −                                                          5.1.8 

 
Most of the harmonics produced are however small compared to the wanted signal 
and might end up outside the bandwidth of interest. In Table 5.1.3 a list of some of 
the most important response are shown. All of which can degrade system 
performance if they appear inside the detection bandwidth. The severity is dependent 
on the quality of the mixer, the power level of the signals introduced and the 
bandwidth of interest.   
 
 

m n Signal 

1 -1 Desired Signal 

-1 1 Image Frequency 

1 0 RF to IF leakage 

0 1 LO to IF Leakage 

2 -2 Second order harmonic 

-2 2 Second order harmonic 

Table 5.1.3 Spur Table 

Careful frequency planning and filtering is needed to assure that these responses do 
not appear inside the bandwidth of interest or are kept below the noise floor. If this is 
not the case the beacon receiver might lock onto one of this spurs.  
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Isolation 
Leakage of power between the different ports of mixer can produce unwanted 
frequency components at the mixer output. This can however be alleviated by filtering 
and selecting mixers with good isolation between its ports. Normally the RF power 
level is much lower than the LO drive so that only the LO to IF and RF leakage needs 
to be considered.  
 
Conversion loss 
The conversion loss of a mixer is defined as the ratio between the available input 
powers to the available output power [16] as can bee seen in Eq 5.1.9. The losses 
are due to impendence mismatch, resistive loads and energy lost to spurious 
responses.     

,

,
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=                                            5.1.9 

 
The conversion loss is an important figure of merit since it is related to noise figure of 
the mixer [18], which in turn affects the dynamic range.  A mixer with low conversion 
loss should therefore be used in the beacon receiver to improve dynamic range and 
reduce noise. 
   
LO drive 
Mixers are often specified to be a level N mixer where N is the recommended LO 
input power in dBm. Alternatively stated, the LO drive level indicate the amount of 
power (dBm) needed at the LO input to operate the mixer with the lowest distortion. 
When selecting a mixer one should therefore choose a mixer with a LO-drive 
matching the design requirements i.e. available LO and RF power. As a rule of thumb 
the LO-drive should be selected to be about 10 dB higher than the anticipated RF-
level for diode mixers [20]. For FET mixers (using field effect transistors) a drive of 3 
dB less than the RF-level is normally sufficient [20]. The design and choice of LO-
drive should also take into consideration that the lowest level mixer also would 
minimize the power leakage to the system.  
 

5.1.4 Frequency generators  

The local oscillator used in the mixing stages needs to deliver a stable and spectrally 
pure frequency. This can be achieved by frequency synthesizers which can produce 
precisely controlled frequencies derived from a stable source [16]. In this thesis two 
different ways of implementing a frequency synthesizer has been evaluated. Those 
are the phase locked loop and direct digital synthesizer.  
 
Direct digital synthesizes 
In Direct digital synthesizes (DDS) frequencies are generated using digital 
techniques. The digital sine wave is then converted in to the analog domain via a 
digital to analog converter [16]. The advantage of this technique is that a high degree 
of frequency accuracy can be achieved. Since the frequency and phase is 
determined numerically. High frequency stability can also bee attained because there 
is no frequency drift due to temperature changes or ageing of the components. The 
drawback however is that the output frequency is limited to half the clock source 
frequency and that the sine wave generated suffers from distortion due to clock jitter, 
especially at high frequencies [9].   
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PLL synthesizers 
An other way to implement a local oscillator is by using a PLL synthesizer, where a 
PLL synthesizer uses a phase locked loop to stabilize a voltage controlled oscillator. 
This is achieved by comparing the phase and frequency of a stable reference 
oscillator with the output of the VCO. The difference is the converted into a voltage 
that adjust the VCO frequency. The frequency stability of the system is now set by 
the reference whilst the amplitude and frequency range is set by the VCO and 
feedback circuitry. A crystal oscillators (XO) often is used as the stable source. For 
even greater frequency stability a temperature controlled XO (TCXO) can be used. A 
functional diagram of a PLL synthesizer  is shown in Figure 5.1.5.      
 
 

 
 

 

 Figure 5.1.5 PLL synthesizer functional diagram 

Commercially available PLL synthesizers on a single IC chip can produce 
frequencies up to several GHz. For a LO frequency at about 1-2 GHz this is more 
than adequate. Further examination also revealed that low phase noise and spurious 
responses could be achieved with these devices [21]. 

5.1.5 Frequency stability and phase noise 

Frequency stability is a figure of merit for signal generators and oscillators. When 
mixing incoming RF-signals with a locally generated signal it is desirable to have the 
two at a constant frequency. Some drift is however unavoidable due to temperature 
changes and ageing of components. Crystal oscillators and frequency generators 
therefore have a maximum frequency drift as a part of their specifications. The drift is 
often measured in parts per million (ppm) or parts per billion (ppb). An other figure of 
merit is the amount of phase noise generated by a signal source. Phase noise can be 
viewed as unwanted FM modulation [9]. Ideally a signal generator would produce a 
sinusoid which in the frequency domain would appear as spike in the spectrum. The 
addition of phase noise introduced from local oscialltors will however spread the 
signal energy out in frequency. As a result power is spread over some bandwidth. 
Figure 5.1.6 illustrates the effect. Where the dotted line represents the ideal single 
frequency output and the solid line represents the output with the addition of phase 
noise. 
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Figure 5.1.6 Phase Noise 

In a beacon receiver, phase noise will increase the bandwidth in which the signal 
energy is contained, thus reducing the carrier to noise ratio. The amount of phase 
noise introduced should therefore be kept low.    
 

5.1.6 Third order intercept point and 1 dB compression 

Figure 5.1.7 illustrates the concept of the 1 dB compression point P1 and the third 
order intercepts point. The 1 dB compression point is where the output value of a 
device differs from the linear response with 1 dB. 

 
Figure 5.1.7 Dynamic range [18] 

The third order intercept point, P3, denote the point where third order products would 
reach the same output level as the desired response under linear conditions [16]. 
Figure 5.1.7 also illustrates that the dynamic range can be defined in at least two 
ways. Either from the noise floor to the 1 dB compression point which is referred to 
as the linear dynamic rang. Or from where the first intermodulation products reach 
the noise floor to the linear output at this input level. The later of the two is also 
referred to as the Spurious Free Dynamic Range (SFDR). The linear and SFDR is 
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shown in Figure 5.1.7 as DRl and DRf respectively. Eq 5.1.10 expresses the SFDR 
mathematically [16], where SNRmin is the required signal to noise threshold and N0 is 
the noise floor (kTB).  
 

( )3 0 min
2

3
fDR P N SNR= − −  [dB]        5.1.10 

 
In a beacon receiver the SFDR is especially significant. Keeping spurious and other 
unwanted signals below or close to the noise floor insures that the detected signal is 
the wanted beacon and not a locally generated spur. This would also reduce the 
complexity of the algorithm needed for tracking and acquisition of the signal.  
 
 

 
Figure 5.1.8 SINAD / SFDR 

5.1.7 Minimum detectable signal  

The weakest signal that can be detected by a receiver is referred to as the minimum 
detectable signal (MDS). Eq 5.1.11 defines the MDS of a receiver [16]. Where k is 
Boltzmann’s constant, B is the bandwidth, TA is the antenna temperature, (F-1)T0 is 
the effective temperature of the receiver and (S0/NO)min is the signal to noise 
threshold.  
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                                        5.1.11 

 

5.1.8 Filtering 

Beacon signals are often transmitted with low power close to neighboring frequency 
components. By filtering unwanted signals either completely or partially the power 
presented to receiver components can be greatly reduced. Filtering is also needed to 
remove spurs, avoid aliasing after digitization and removal of the image frequency. 
Depending on the topology of the receiver filtering can be implemented at several 
stages. More gain and larger dynamic range can be achieved by band pass filtering 
at the RF-stage. This will increase sensitivity and dynamic range since the back off 
(relative to the beacon power) needed to operate devices inside the linear area is 
reduced. Having a narrow filter at the RF stage will however limit the flexibility of the 
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reviver since a change in frequency will necessitate replacing of the filter. 
Alternatively a tunable filter can be used. Either way, completely isolating the wanted 
beacon at the RF stage will require narrow filters which are costly and often not 
commonly available. The solution might therefore be to filter at both RF and IF 
frequency. In this way a larger area of the spectrum can be preserved and channel 
selection can be performed at IF where the relative bandwidth is smaller. This setup 
allows for a more flexible design which can operate over a wide bandwidth and can 
be built from less costly components. This will however require a tunable local 
oscillator if the receiver is to function at different frequencies. 
 

5.2 Digital hardware and architectures 

 

5.2.1 Analog to digital converter 

The purpose of the A/D converter is to digitize the incoming IF signal so that it can be 
processed further in software or by dedicated signal processors. The sampling rate 
and number of bits of the A/D converter defines the range of frequency and signal 
levels that can be digitized with acceptable quality. Generally higher sampling rates 
and more bits allow for higher frequencies and lower signal levels (i.e. greater 
dynamic range). However the amount of data generated must be balanced with the 
limitations in computational power and limitations in data transfer rates. 
 

5.2.2 Quantization noise and dynamic range  

The dynamic range of the ADC decides the sensitivity of the receiver and defines the 
range of voltages that can be digitized with acceptable quality. The dynamic range is 
related to the number bits used in the conversion and can be expressed by Eq 5.2.1 
[22]: 
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Where n is the number of bits, Fs is the sampling rate, Fb is the bandwidth and the 
term Fs/Fb signify an eventual over sampling ratio. It can be seen from Eq 5.2.1 that 
the dynamic range can be approximated to be six times the number of bits, if 
measured in dB, assuming Nyquist sampling. Alternatively stated, an increase of one 
bit would yield about 6 dB increase in dynamic range. By sampling faster then the 
Nyquist rate the dynamic range can be improved even further. This is due to 
quantization noise being related to the number of bits and not the sampling rate. By 
over-sampling, the quantization noise as defined in Eq 5.2.2 [22] is therefore spread 
over a wider bandwidth.             
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Figure 5.2.2 illustrates how the quantization noise is spread over the digitized 
bandwidth. By filtering the output of the ADC the signal to quantization noise ratio 
inside the selected bandwidth can thus be improved.  
 

 
Figure 5.2.1 Sampling Noise 

From Eq 5.2.1 and 5.2.2 it is clear that an A/D converter of 9 bits is needed to 
achieve a dynamic range of 50 dB. However, 12 to 14 bit converters have been 
considered in this thesis since they are available in the same price range. The 
dynamic range of these converters should therefore be sufficient for measurments.     
 

5.2.3 Jitter 

The quantization noise described above is due to the mapping of continues values 
into discreet values. This however assumes an ideal sampling clock. Jitter in the 
sampling clock will however lead to uncertainties in the sampling instant and thus an 
error in the sampled signal [9]. The amount of noise added is dependent on the 
quality of the clock source used and is also more severe at higher sampling rates. A 
stable cock source should therefore be used to control the ADC.     
 

5.2.4 Sampling rate 

The Nyquist-Shannon theorem state that a signal with finite bandwidth can be 
reconstructed only if the sample rate is at least twice the bandwidth [23]. This yields 
two possibilities for sampling the beacon signal. Either sample at the twice the 
highest frequency component introduced to the ADC, known as Nyquist sampling. Or 
sample at twice the bandwidth of the signal, known as band pass sampling. The 
required sampling rate is thus determined either by the intermediate frequency where 
the sampling takes place or by the bandwidth of the anti-aliasing filter. Nyquist 
sampling can be achieved by placing a low pass filter wit cutoff frequency less than 
half the sampling rate in front of the ADC. This requires a lower IF frequency i.e. 
typically less than 50 MHz due to limitations in ADC sampling rates. Bandpass 
sampling evades this limitation by band-pass filtering prior to the ADC. The sampling 
rate needed is thus reduced to the bandwidth of the preceding filter. Since the 
spectrum of a digitized signal repeats itself at regular intervals this will result in a form 
of frequency down conversion. As long as the signal lie completely within a Nyquist 
band, aliasing can be avoided [9]. 
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Figure 5.2.2 Bandpass sampling 

Figure 5.2.2 show how frequency conversion is achieved by bandpass sampling. By 
sampling at twice the filter bandwidth, images of the spectrum will appear in Nyquist 
zones throughout the spectrum. Digital low pass filtering can then be used to select 
the Nyquist zone closest to baseband. In this way the highest IF frequencies that can 
be used are limited by the A/D converters frequency range, which again is related to 
input circuitry of the ADC. This does however require that all other parts of the 
spectra are removed so that no other frequency components will appear in any of the 
Nyquist zones.  
 
Selection of ADC sampling rate for the beacon receiver must thus be based on the 
bandwidth and frequency of the intermediate frequency to be digitized. Although both 
bandpass and Nyquist sampling have been considered the later approach was 
chouse to avoid jitter. This effectively limits the final IF frequency to less than 40 MHz 
due to limitations in ADC sampling rates.       
 

5.2.5 Computer interface 

An A/D converter operating at 65 MSPS with a resolution of 12 bits produce data at a 
rate of about 770 Mbps. This is in excesses of what a 480 Mbps USB 2.0 
connections can handle. Even at 480 Mbps the amount of data needed to be 
processed by a computer might be too great.  However the full set of data generated 
in the sampling process might not be needed to perform power estimates. The data 
rate can therefore be reduced before transferring the samples to PC. This can be 
achieved either by using a buffer which transfers a reduced number of samples and 
discards the rest or via signal processing hardware such as digital down converters 
and decimators.  
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5.3 Receiver architectures 

At current the frequency range of commercially available and reasonable priced 
analog to digital converts are limited to about 100 MHz. A Radio frequency front-end 
is therefore unavoidable prior to digitizing satellite beacons. In this thesis two different 
architectures have been evaluated. Those are the direct conversion receiver and 
super heterodyne receiver. A brief overview of the two is presented here for the 
reader’s convenience.      
 

5.3.1 Direct conversion 

The direct conversion receiver uses a mixer stage to achieve frequency down 
conversion to a zero IF frequency. This is achieved by setting the local oscillator to 
the same frequency as the incoming RF signal. Figure 5.3.1 show the design of a 
direct conversion receiver.  
 
  

 IF 
RF 

LO 

 

LNB

 

LPF

fIF = 0

 
Figure 5.3.1 Direct Conversion Architecture  

By converting directly to base band the IF can be digitized by low speed A/D 
converters and commonly available hardware such as sound cards can be used. The 
receiver also has no image frequency since the mixer difference frequency is zero 
[16]. This design however demands highly accurate signal generators for generating 
the LO frequency. As an example a 1 GHz LO with a drift in frequency of 10 ppm 
would relate to an offset of 10 kHz. Some form of constant frequency stabilization 
might therefore be needed in order to maintain zero IF. It is also difficult to obtain 
stable high gain at low frequencies [16].           
 

5.3.2 Superheterodyne receiver 

A Superheterodyne receiver is shown in Figure 5.3.2. The main difference from the 
direct conversion receiver is that the IF frequency is non zero. As a result more gain 
can be added at the IF stage and there is an increased availability of low cost RF 
components such as amplifiers and filters. Filtering at a moderate IF frequency also 
relaxes the demand for sharp cutoff filters since the relative bandwidth is higher at 
this frequency compared to RF.  
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 IF 
RF 

LO 

  

 
Figure 5.3.2 Superheterodyne receiver 

Having a non zero IF frequency also means that the requirements of LO stability can 
be relaxed, given that the drift is small relative to the IF frequency. As long as the 
signal stays inside the receiver bandwidth the frequency drift can be dealt with in the 
digital domain. This design will however require A/D converters with higher sampling 
rates and image reject filters. 
 

5.4 Other design considerations  

The purpose of this thesis is to develop a low cost beacon receiver. A tradeoff 
between performance and cost must thus be found. To achieve this, the prices of 
individual components were considered prior to the development of the design. A 
number of manufactures and resellers were examined to find economical 
components and to assure the receiver could be realized using easily available 
equipment. As a result a list of companies supplying RF and other relevant 
equipment was made. This list was used to find the individual components of the 
receiver and their price. The list is shown in Table 5.4.1.  
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Company 
Name 

Webiste Products 

Analog Devices www.analog.com 
Mostly integrated Circuits, ADC's, 

frequency synthesizers, 

Minicircuits www.minicircuits.com 
Analog RF components, Mixers, filters, 

amplifiers, Frequency synthesizers, coaxial cables, 
power supplies 

Hittite www.hittite.com RF components both analog and digital 

Farnell www.farnell.no 
Norwegian supplier of Integrated circuits from different 

manufacturers 

K&L Microwave www.klmicrowave.com 
Analog filters, can produce a wide range of both of-the-

shelf and tailored components 

GE Satcom www.gesatcom.com Antennas and RF equipment 

Komplett.no www.komplett.no Computer Hardware 

Ettus Resarch www.ettus.com USRP and daughterboard 

Table 5.4.1 List of Suppliers  

Price quotes from additional companies were also collected for some components, 
especially antennas and antenna-feeds.      
 

5.4.1 Limitations due to available equipment 

The equipment available to build the receiver also needs to be considered. Lack of 
capability to produce circuit boards was found to be especially important. Due to this 
limitation integrated circuit chips and other components requiring special equipment 
or manufacturing techniques was avoided. This is also why components with coaxial 
connectors have been preferred.       
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Chapter 6 
 

Beacon receiver designs 
 

In this section the developed beacon receiver designs are presented along with 
considerations of the cost of implementation. The first designs are complete systems 
tailored for the Eutelsat W3A beacon. Attempts to reduce costs are then reviewed 
along with alternative hardware implementations.        

6.1 Front-end design 

The first beacon receiver design was developed exclusively for the 21.4 GHz beacon 
transmitted by Eutelsat W3A. The design was intended as a complete system 
including antenna, RF-front-end and A/D converter with interface to PC. A block 
diagram of the design is shown in Figure 6.1. A more detailed block diagram can be 
found in Annex 1.   
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Figure 6.1.1 Front-end design 

 
6.1.1 Antenna and LNB 
A 1.2 m parabolic antenna from General Dynamics [24] was chosen in this design 
along with a LNB from Norsat Internation Inc [36]. Technical data sheet for the 
antenna and LNB can be found Appendix 1. At the output of the 1.2 m antenna 
looking at a 9 dBW Ka-band beacon; the signal level is typically about – 130 dBm 
(clear air). To minimize losses and noise contributions from waveguides and coaxial 
cables the LNB is mounted directly on the antenna feed output. This LNB provide 
about 55 dB gain, has a noise figure of 1.3 dB, and a phase noise of less than 65 
dBc/Hz at 1 kHz. The unit is phase locked using an external 10 MHz sine wave and 
shifts the beacon to an intermediate frequency of 1154 MHz.  
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 6.1.2 Filtering 
A band pass filter with 3 dB bandwidth of 3 MHz follows the LNB. This ensures that 
most of the energy from neighboring frequency components is attenuated, thus 
allowing fore more amplification without saturation. The use of narrow filters also 
allows for a lower second IF frequency. After amplification the same filter is used 
again to remove any harmonics from the amplification stage and attenuate 
neighboring frequency components further.  
A band pass filter with pass band between 9.5-11.5 MHz is used at the second IF to 
remove mixer products and avoid aliasing. The filtering in at the first IF frequency 
limits this receiver to the W3A beacon due to the narrow bandwidth. If other beacons 
are to be measured the two filters need to be replaced.   
 
6.1.3 IF frequency 
The first IF frequency is determined by the LNB. In this case the beacon frequency is 
converted to a first IF of 1.1154 GHz. This is an L-band (800-1500 MHz) frequency 
which seems to be a common intermediate frequency provided by many LNB’s. The 
second IF can be controlled by the local oscillator. A 10.7 MHz second IF was 
chosen due to the availability of low cost RF components and to avoid image 
frequency issues. The 10.7 MHz IF is a common FM radio frequency. Filters and 
amplifiers are therefore commonly available at this frequency.      
 
6.1.4. Amplification 
At first IF two low noise amplifiers from Minicircuits [37] are used. Both provide about 
25 dB gain and have a noise figure of less than 2 dB. Low noise amplifiers are used 
to minimize the degradation of the signal to noise ratio and because they where 
found to be reasonable priced compared to other alternatives with higher noise 
figures. This first amplification stage brings the beacon signal power from -76 to -26 
dBm. At the second IF frequency an additional amplifier from Minicircuits is used in 
order to utilize the full dynamic range of the ADC.     
 
6.1.5 Local Oscillator 
Most off-the-shelf signal generators are expensive and quite bulky. To reduce costs 
and size a PLL synthesizer IC (ADF-4360) from Analog devices [38] mounted on an 
evaluation board is used. The ADF-4360 is a single chip PLL-synthesizer containing 
both VCO and a PLL. The device can generate frequencies from 300 to 1500 MHz. 
More information about the evaluation board and the design of the local oscillator can 
be found in Annex 2. The LO generates a frequency of 1143.3 MHz to achieve the 
10.7 MHz IF. Design simulations performed in ADIsimPLL [25] show a phase noise of 
less than 80 dB at 1 kHz can be achieved. This is better than the performance of the 
LNB and was therefore demand adequate.  
 
6.1.6 Digitization  
Digitization is performed by an A/D converter form Analog devices (AD9235 [32]) 
mounted on an evaluation board. The board contains all the support circuitry needed 
to operate the ADC. The sampling rate is 65 MSPS at 12 bits resolution. This gives a 
signal to noise ratio of about 70 dB and a bandwidth of more than 30 MHz.  A FIFO 
based interface card [33] connected to the ADC board reduces the data rate and 
allows the sampled signal to be transferred to a computer via USB cable.  
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6.1.7 Summary 
The performance of the receiver has been evaluated using link budgets and 
specifications given in the individual components data sheets. Table 6.1.1 shows a 
summary of the results. It was estimated that with the 1.2 m antenna the receiver 
would have a carrier to no noise ratio of about 48 dBHz and a spurious free dynamic 
range of about 40 dB.  
 

 

Frequency 21,404 GHz 

Elevation 9,5 ° 

EIRP 9 dBW 

Cleair air loss 212,8 dB 

Antenna diameter 1,2 m 

Antenna Gain 47 dB 

Feeder losses 0,2 dB 

Receiver noise temp 261 K 

C @ Rf -126,7 dBm 

N0 @ Rf -174,4 dBm 

C/N0 @ Rf 47,7 dB 

Total Gain 119 dB 

Noise Figure 1,3 dB 

Input IP3 .-103 dBm 

Input P1 -116 dBm 

SFDR 40,6 dB 

Fade margin @ FFT size 20 Hz 37,7 dB 

Table 6.1.1 Receiver parameters 

The estimated cost of implementing this receiver is shown in Table 6.1.2. As seen the 
total cost would amount to about 100.000 NOK. This was considered to be too costly, 
especially since the design is limited to a single beacon i.e. 21.404 GHz. If other 
beacons are to be measured the two filters at first IF needs to be replaced. The price 
of theses filters however made this an unattractive option. Ways to modify the design 
to reduce costs and increase flexibility was therefore examined, and is shown in the 
next sections.       
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Component Manufacturer / Provider Model.nr Appendix Quantity Price  

       

Antenna with feed General Dynamics 3120 2 1,0 775 $ 

LNB Norsat 900XD 2 1,0 3620 $ 

Filter IF1 K&L Microwave 4cp-120 2 2,0 2690 $ 

LNA Minicircuits ZRL-1200 2 2,0 238 $ 

Mixer Minicircuits ZFM-2 2 1,0 67 $ 

Filter IF2 Minicircuits  2 1,0 200 $ 

Amplifier IF2 Minicircuits  2 1,0 150 $ 

Frequency synthesizer Analog devices  2 1,0 460 $ 

OCXO Franell   2,0 155 $ 

ADC-Board Analog Devices  2 1,0 708 $ 

Misc and Coax cables Minicircuits    1000 $ 

PC     2000 $ 

Shipping and handling         1000 $ 

       

Sum Ink MVA $     16328,75 $ 

Sum ink MVA (NOK)         114301,25 NOK 

1 $ = 7 NOK 

Table 6.1.2 Estimated costs 

The estimated costs can be divided into four sections: 
 

• Outdoor section, Antenna and LNB,  30.700 NOK 
• Down-conversion stage, Filters mixers and amplifiers, 31500 NOK   
• Baseband section, ADC and computer interface 5000 NOK 
• Other components such as PC, cables, TCXO and connectors 21000 NOK 
 
The estimated costs shown in NOK here and else were in this thesis have been 
calculated using an exchange rate of 1 $ = 7 NOK       
 

6.2 Reduction of costs & alternative hardware implementations 

The cost of implementing the receiver as described above was found to be in excess 
100.000 NOK. This was found to be too costly; ways to reduce costs was therefore 
investigated. A variety of different designs and alternative hardware implementation 
approaches was evaluated. A list of some of the alternatives considered is listed 
below.  
   

6.2.1 Approach 1 

As a first approach to reduce cost the design presented in Section 6.1 was 
reevaluated and the number of components was reduced. This resulted in the design 
shown in figure 7.2.1 where antenna, LNB and digital hardware is unchanged and not 
shown. The primary changes are the use of wider filters which results in a higher 
second intermediate frequency. The amount of amplification in the first IF stage has 
also been reduced by removing one of the two amplifiers. This was also a 
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precautionary step to avoid overloading the amplification stages due to wider filters 
introducing more power to the system.      
 

 

 

  
IF 1 

LO 

  

 
Figure 6.2.1 Second Front-end Design 

The total cost reduction achieved with theses modifications was estimated to about 
2800 dollars or about 20.000 NOK. The main reason why the cost of the design could 
not be reduced further is related to the Antenna, LNB and filters. However a thorough 
search and collection of price quotes from different suppliers did not return any 
substantial price reduction. It was found that the beacon frequency of 21.4 GHz was 
outside the frequency range of standard commercial Ka-band equipment (19.2-21.2 
GHz). As a result the cost of the LNB increased form about 1.750 NOK to 25.300 
NOK. Also the antenna feed proved difficult to attain at this frequency and only one of 
several supplier reported to provide antenna feeds at this frequency.  
         

6.2.2 Approach 2, L-band receiver 

As a second approach focus was shifted from a complete Ka-band system to an L-
band (0.8-1.5 GHz) receiver. This was done because most commercial LNB’s and 
many satellite receiving systems use an L-band intermediate frequency. As an 
example tuners used for satellite television in Norway operate at L-band. A beacon 
receiver operating at this intermediate frequency can thus be connected to a variety 
existing systems operating at different RF-frequencies. This includes both Ka and Ku-
band (20 / 11GHz).                 
   

Soundcards 
Sound cards are included in most computers and are also widely available as plug-in 
boards. Modern sound cards provide sampling rates of up to 192 kHz with a 
resolution of up to 24 bits [30]. A sound card could therefore serve as high resolution 
digitizer with bandwidth up to 96 kHz. With the low bandwidth requirements of this 
thesis these specifications would be adequate. Such an approach would however 
impose strict requirements on the analog front-end filtering and frequency control due 
to the low bandwidth. This might in turn drive costs and complicate the design. The 
increase in complexity is due to the untraditional use of the soundcard hardware 
where some form of feedback system must be devised in order to control the RF-
front end from software.             
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Wi-Spy 2.4x 
Wi-spy 2.4x  is a spectrum analyzer intended for locating and detecting WiFi activity 
and can be acquired from www.metageek.com. The device has the following 
specifications [26]  

• Bandwidth: 2400 to 2495 MHz 
• Frequency Resolution: 328 KHz 
• Amplitude Range: -110 dBm to -6.5 dBm 
• Amplitude Resolution: 0.5 dBm 
• Sweep Time: 165 millisecond 

The challenge of using this device for a beacon receiver is the operating frequency. 
Most satellite LNB’s output an intermediate frequency in L-band. In order to use this 
device at L-band a frequency conversion stage is thus needed.   
 
Universal software radio peripheral 
The USRP is a dedicated software defined radio developed by Ettus Research LLC 
[31], with the following selected specifications [27] 
 

• ADC: 12 bits 64MS/s  x 4 
• DAC 14 bits 128MS/s x 4 
• Bandwidth: 32 MHz 
• FPGA: Altera Cyclone  
• Interface: 32MB/s USB 2.0  
• Interchangeable RF front-end insert boards    

 
The interchangeable RF front-end insert boards made this device particularly 
interesting compared to other software radio alternatives. Especially a board known 
as DBSRX proved to cover the IF frequency range of interest in this thesis i.e. L-band 
(800-1500 MHz). Some of the key specifications of this board are listed below. 
 

• Frequency range: 800 to 2400 MHz 
• Noise Figure: 3-5 dB 
• Software controllable channel filter 
• Bandwidth 1 to 60 MHz 
    

 

By using the USRP together with DBSRX an L-band beacon receiver could be built 
from only two parts and at a price of about 5000 NOK1. As a result this device was 
selected for the hardware implementation of the beacon receiver. Although the price 
of the USRP is somewhat higher than that of both soundcards and WiSpy the total 
price tag is significantly reduced due to the 1000 NOK RF front-end board. The new 
design can be seen in Figure 6.2.1  
 

                                                 
1
 Hardware only, MVA not included   
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Figure 6.2.1 Beacon Receiver Design (USRP) 

The design as presented above is estimated to cost about 15.000 NOK excluding 
antenna and LNB. The estimated costs of the different components are listed below.    
 

• USRP                                          4.900 NOK 
• DBSRX                                       1.000 NOK 
• Computer                                    7.000 NOK 
• 1 TB Hard drive                          1.000 NOK 
• Coaxial cable & Connectors       1.400 NOK 

  
Including antenna and LNB for the W3A beacon this design would cost about 57.500 
NOK Inc VAT, shipping and handling not included. Compared to the baseband and 
down-conversion stage presented in Section 6.1 this amounts to a cost reduction of 
about 30500 NOK. However, at Ku-band or at a Ka-band frequency in the range 
19.2-21.2 GHZ this design can be realized at en even lower cost. 
     
Due to the low cost and relative ease of implementation the decision was made to 
use the USRP as a basis for realising the hardware portion of this thesis. 
 
A more thorough description of the USRP hardware and the design is given in the 
following Sections.    
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Chapter 7 

 

Hardware description 
 

In this Section the hardware of the USRP is explored along with the software used to 
control it.   
 

7.1 Universal software radio peripheral  

The USRP is a relatively low cost (750$) software radio developed especially for 
GNU radio software. The device has been used around the world in various projects 
ranging from simple FM receivers to more advanced functions such as MIMO 
systems, radars and radio astronomy. The hardware consists of a mother board 
containing A/D and D/A converters, an FPGA for signal processing and USB 
interface for connection to a host computer. There are also four slots for connecting 
daughterboard’s. The daughterboard’s contain the analog front-end and different 
boards can be purchased. Combined the daughterboard’s covers the frequency 
range form a few kHz up to several GHz. Figure 7.1 shows a picture of the 
daughterboard where the FPGA can bee seen in the center. The connections for the 
daughterboards can also bee seen and are labeled TX/RX A/B. The USRP is 
designed especially for the GNU radio framework and is available form Ettus 
Research (www.ettus.com). Both the hardware and software of the USRP is under 
constant development and the schematics and source code can be found at GNU 
radio website [34]. 
 
For this thesis the USRP 1 has been used, the device was borrowed form Jørn 
Kårstad, FFI.  
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Figure 8.1 Universal Software Radio Peripheral [34] 

7.1.1 Analog to digital converter 

There are four analog to digital converts on the USRP, situated in a chip form Analog 
Devices (AD9862). The AD9862 is a single chip mixed signal front-end for broadband 
communications [28]. The device includes a differential input and holds both 
programmable gain amplifiers and decimation filters. With a sampling rate of 64M 
samples per second, it can digitize signals up to 32 MHz wide at frequencies up to 
about 200 MHz. The recommended frequency limit is however 100 MHz due to noise 
considerations [34]. The full range of the ADC is 2V peak-to-peak which relates to16 
dBm with a 50 ohm matched load.  

7.1.2 Programmable gain amplifier 

The receive paths also includes PGA’s prior to the ADC for amplification. The gain 
can be set in software in a range of 0 to 20 dB. With the amplifier set to maximum the 
input range is reduced to 0.02 V p-p or -4 dBm.    

7.1.3 Oscillator 

The USRP uses a single 64 MHz crystal oscillator for generating all the clock and 
frequency components on the board which control the A/D converter, FPGA and 
mixer stages in the daughterboard’s. The oscillator has a frequency stability of 20 
ppm and typical tolerance of 5 ppm at room temperature [27]. This means that a 
frequency of 64 MHz ± 1.3 kHz should bee excepted. It is also possible to either 
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replace the onboard oscillator or to use an external oscillator if better performance is 
needed. 
 

7.1.4 Field Programmable Gateway Array 

The FPGA connects all the components of the USRP together and is used to perform 
the onboard signal processing. The FPGA implements digital down conversion (DDC) 
stages, decimation and filtering. The DDC brings the desired IF frequency down to 
baseband. Four stages cascaded integrated comb filters then provide decimation. 
CIC filters are high performance filters implemented using only adds and delays [27]. 
The decimation stage reduces the data rate to an acceptable rate for the USB 2.0 
connection so that data can be streamed to a host computer. In addition to the CIC 
filters the FPGA also provide optional half band filters.  
 

7.1.5 Daughterboards 

The USRP motherboard has connections for two RX and two TX daughterboard’s. A 
daughterboard contains an analog front-end which makes it possible to use the 
USRP at frequencies beyond that of the frequency limit of the ADC. A range of 
different boards are available to cover the RF spectrum from 30 MHz to 2.4 GHz. 
Only the boards of interest to this thesis will be described here.  
 
Basic RX  
On this board the ADC input is directly transformer coupled to an SMA connection 
with load impedance of 50 ohms. There are no mixer, filter or amplification stages, so 
only the frequency range of the ADC is available.      
 
DBSRX 
This board covers the frequency range from 800 MHz to 2.4 GHz and is based on the 
Maxim max2118 direct conversion IC [41]. It has a noise figure of 3-5 dB [27] and a 
software controlled channel filter. The filter bandwidth can be set to a minimum of 1 
MHz or as wide as 60 MHz [27]. The DBSRX is also capable of powering an LNB i.e. 
it can provide DC power through centre lead of a coaxial cable. Originally 6 V can be 
provided by installing a jumper. Connections are also provided if other voltages are 
required. This will however necessitate an external power supply. The LO used in the 
mixer is derived from the 64 MHz XO on the motherboard. A tolerance of 5 kHz 
should therefore be expected at room temperature.         
 
7.1.6 Computer interface 
The USRP uses a USB 2.0 interface for data transmission to and from a host 
computer. The USB interface can transfer data at a rate up to about 256 Mb/s or 32 
MB/s. All samples are sent in 16 bit signed integer IQ format [27] i.e. 16 bit I and 16 
bit Q complex data. This results in a maximum transfer rate of 8 M complex samples 
per second yielding a spectral bandwidth of 8 MHz. By decimating in the FPGA, the 
data rate can be reduced. With the maximum decimation rate of 256 the transfer rate 
is reduced to 64 MSPS / 256 = 250 kSPS.   
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7.2 GNU radio framework 

GNU radio is a free software toolkit for signal processing and development of 
software radio. It is available from the GNU radio website [34]. This webpage also 
contains a vast amount documentation and links to support forums where one can 
ask for help and discuss the software code. The online community continuously 
improves and develops new code which is added to the current release at arbitrary 
intervals. The radio software contains signal processing blocks written in the 
programming language c++ [27]. These blocks perform different operations such as 
filtering, decimation and FFT. By “tying” the blocks together a complete signal 
processing system can be built in a fairly short time. This is achieved by 
programming in Python [35]. In the Python code GNU radio signal processing blocks 
are called and connected to other blocks. In this way one can simulate different 
signal processing schemes and build complete radio systems. GNU radio also 
contains the drivers and firmware needed to operate the USRP board. In fact USRP 
has been developed especially for GNU radio.   
         

7.2.1 Gnu radio companion 

The gnu radio companion is a graphical tool for developing basic software code for 
the GNU radio framework. In this program a set of boxes indicating different signal 
blocks can be put together by drag and drop. This simple user interface can be used 
to create basic software radio functions in a few minutes. This program therefore 
proved valuable to explore the functionality of both the USRP and GNU radio 
software.    
 

7.2.2 GNU radio installation 

GNU radio has been installed on two computers, one laptop and one desktop. The 
desktop is running on Fedora 11 whilst the laptop is running Ubuntu 9.04. Installation 
of GNU radio in Ubuntu is described below: 
 

• Install Ubuntu 9.04. Can be acquired from www.ubuntu.com 
• Open the Software sources program located under the menu “System” → 

“Administration”  → “Software sources”  
• Navigate to the tab “Third-Party Software” and click “Add” and enter the 

following two lines in the “ATP line” box, one at the time. 
 
 deb http://gnuradio.org/ubuntu stable main  

       deb-src http://gnuradio.org/ubuntu stable main 

  
• Open Terminal and enter the following statements 

 

         $ sudo apt-get update 

   
• Go to System → Administration → Synaptic Package Manager 
• In the Quick search box enter gnuradio an click search 
• Select the package named gnuradio version 3.2 and click apply 
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GNU radio should now be installed, the package manager insures that all 
dependencies are met and if necessary downloads and installs missing 
components.  
 
To install GNU radio companion (GRC) perform the following steps.  
 

• Open Synaptic Package Manager  
• Search for gnuradio companion 
• Select the package named gnuradio-companion and click apply  

 
 
Installing GNU-radio in Fedora proved to be slightly more difficult and a solution for 
installing the latest version of GRC was not found. The instructions below will 
however install GNU radio in Fedora without GRC. 
 

• With Fedora Installed enter the following into terminal 
      

   $ yum groupinstall "Engineering and Scientific"       
      "Development Tools"  
   $ yum install fftw-devel cppunit-devel wxPython-devel    

        libusb-devel \ guile boost-devel alsa-lib-devel numpy   
        gsl-devel python-devel pygsl \ python-cheetah python-    
        lxml 

 

• To get the latest stable release enter the following into terminal 
 
$ svn co ttp://gnuradio.org/svn/gnuradio/branches/releases/3.2     
  gnuradio 

 
 

• Now enter the following lines, one at the time 
 

$ ./bootstrap          
$ ./configure 
$ make 
$ make check 
$ sudo make install 
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Chapter 8  
 

Results 
In this section the results of hardware testing and software code development are 
presented. The USRP has first been tested in a lab setting where a signal generator 
was used to measure linearity and dynamic range. Observations of noise and other 
characteristics of the USRP are also presented. Following the lab test a parabolic TV 
antenna was used to receive Ku-band bacons and the resulting FFT plots are 
evaluated. Finally, software code developed for bacon measurements are presented. 
Originally the intent was to estimate the power of the beacon signal and store the 
values detected at a rate of 5-20 samples per second. Due to limitations in GNU 
radio and the computers used this was however not achieved. An option to store time 
samples from the USRP directly was therefore added.         
 

8.1 Test setup 

A temporary LAB was set up at UNIK in order to test the USRP hardware and the 
software code being developed. At first a signal generator was used to provide a 
signal of varying frequency and amplitude. The USRP was then connected to a PC 
with GNU radio. Functions such as a graphical FFT sink and oscilloscope was then 
used to evaluate the spectrum. This setup was also used to test the software code 
during development.    
 

 
Figure 8.1.1 Test setup 

 
Two different computers were used in the test setup, one laptop and one stationary 
computer. Some key parameters of the equipment used are listed next:  
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Stationary computer 
 

• Processor: Intel Pentium 4, 2.8 GHz 
• RAM: 512 MB 
• Hard drive 80 GB 
• Operating system: Fedora 11 
• Gnuradio version: 3.13   

 
Laptop, Amilo Pro  
 

• Processor: Intel Core Duo, 2.8 GHz 
• RAM: 1024 MB 
• Hard drive 120 GB 
• Operating system: Ubuntu 9.04 
• Gnuradio version: 3.2  

 
Signal generator, Rhode & Schwartz SMR 20 
 

• Frequency range: 10 Mhz – 20 GHz 
• Output power: -130 dBm to +12 dBm 
• Phase noise: -83 dBc @ 10 kHz from carrier 
• Frequency stability: < 1 ppm  

 

8.2 Observations 

In this section the initial observations of the output spectrum is presented. The 
spectrum has been evaluated using FFT plots generated by a program developed in 
GNU radio companion which can graphically display an arbitrary bandwidth up to 8 
MHz wide. A FIR filter is used to filter and decimated the time samples form the 
USRP and a Blackman Harris window is applied to the samples prior to FFT 
calculations. The squared magnitude or PSD (power spectral density) of the FFT’s 
are than plotted. The software code used to plot the figures in this section can be 
found in Appendix 3.         

8.2.1 DC-offset 

One of the first things which were noticed when displaying an FFT of the USRP 
output spectrum was a DC-offset. This can bee seen in Figure 8.2.1 where a 2048 
point FFT of a 40 kHz spectral bandwidth is displayed. This plot has been generated 
with no input signal and gain set to zero. The DC- offset is assumed to be introduced 
by the A/D converter since all ADCs have “some natural DC-offset” [40]. The offset is 
shown to be about 20 dB above the noise floor. However, increasing the gain and 
introducing a signal to the input revealed that the offset quickly approached the noise 
floor. As will be shown later, the addition of noise from a receiving front-end and at 
about 20 dB gain the DC-offset is completely submerged in noise. This result is 
however dependent on bin size used; if the size is reduced the DC-offset might again 
breach the noise floor. This must therefore be considered when writing the software 
code where the offset can either be removed mathematically or an intermediate 
frequency away from DC can be used.               
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Figure 8.2.1 DC-offset with no input signal, BW 20 KHz 

8.2.2 Spectral estimation 

When viewing an FFT plot of the USRP output it is clear that the power in each bin 
fluctuates substantially in both time and frequency. This is seen because the PSD is 
plotted from a single block of data which produces a random spectrum [40]. The 
noise power across the bandwidth varies typically about 20 dB.  This variation is also 
seen in time for the same bin location. Fluctuations in PSD also apply to the peak bin 
or bins when viewing an FFT plot of an actual signal. The variations are however 
much less i.e. typically about 1 dB. For low C/N levels i.e. less than 10 dB the signal 
is seen to fluctuate by several dB and it can be difficult to distinguish the signal from 
the noise. For beacon measurements to be reliable these fluctuations should be 
significantly reduced. It is therefore clear that some form of spectral estimation or 
averaging is needed if an accurate estimation of the beacon power is to be obtained.   
   

8.3 Linearity measurements  

Using the signal generator described in Section 8.1 the linearity and dynamic range 
of the USRP was measured. This was achieved by introducing a 1.154 GHz sine 
wave to the DBSRX daughterboard. The power of the generated signal was set to a 
level below the noise and increased at increments of 2 dBm until the LNA of the 
DBSRX went into saturation. Figure 8.3.1 shows the resulting output plotted relative 
to the normalized input power. The result shows a dynamic range of about 70 dB and 
a linear dynamic range of about 60 dB. A +/- 1 % deviation was used to define the 
linear DR. Due to the variations in power spectral density as discussed in Section 
8.2.3 a time average over 10 samples was used to determine the mean value of the 
detected power level.         
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Figure 8.3.1 Linearity measurements 

The linearity measurements also revealed a considerable amount of distortion at high 
gain settings. This can bee seen in figure 8.3.2. This plot was generated by applying 
a -70 dBm sine wave with the gain of the USRP set to 52 dB. A single pole FIR filter 
was used to average the PSD values to smooth the plot. 
 
 

 
Figure 8.3.2 LNA distortion 

Several spurious could bee seen around the signal. Due to this distortion the linearity 
measurements were performed with the LNA gain is set to less than 20 dB. The 
cause of these spurs has not been verified due to lack of alternative ways to view the 
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output spectrum of the signal generator. However a similar result is reported in a 
project where the same hardware was used [45] and distortion was found to be 
generated by the LNA of the USRP.       
 

8.4 Ku-band reception  

After the initial lab test the USRP was connected to a 0.45 m parabolic antenna with 
a Ku-band LNB. The antenna intended for television reception was acquired as a 
package consisting of antenna dish, LNB, wall-mount, coaxial cable and connectors. 
The package did not contain any documentation so all the specifications are not fully 
known. The flowing key specifications for the antenna have therefore been 
estimated:           
 

Parabolic Antenna  
 

• Diameter: 0.45 m 
• HPBW: Approximately 4.6 °  
• Gain: Approximately 32 dB 
 

 
LNB, Triax TQD 002 quad [44] 
 

• Gain: 50-60 dB 
• Noise figure:  0.3 dB 
• Frequency range: 10.7 - 11.7 / 11.7 -12.75 GHz 
• IF frequency: 0.95 -1.95 / 1.1 – 2.15  GHz 
• LO frequency: 9.75 / 10.6 GHz 
• Polarization: Adjustable, Horizontal / Vertical   
• Outputs: 4   
• Operating voltage: 12 / 14 V  
 

 
The LNB is powered and controlled via the same coaxial cable used to transfer the 
signal. By applying 12 / 14 V DC to the center lead the polarization can be set to 
horizontal or vertical respectively. The LO frequency is changed from 9.75 GHz to 
10.6 GHz by applying a 22 kHz signal. Although the USRP can be used to deliver a 
DC voltage the 22 kHz switching tone is not supported. A television tuner was 
therefore connected between the LNB and the DBSRX daughterboard. The 
frequency and polarization was then controlled by changing the channel selected on 
the TV tuner. 
 

8.4.1 Eutelsat W3A beacon  

After setting up the antenna and connections the USRP was tuned to the Eutelsat 
W3A Ku-band beacon of 11.2 GHz. The resulting FFT plot is shown in Figure 8.4.1. 
This shows the beacon in a 60 KHz bandwidth and at a resolution of 30 Hz per bin. 
The beacon is shown to be about 20 dB above the noise which is in reasonable 
agreement with the 26 dB value estimated for clear air conditions in the link budget. It 
should be mentioned that there is an impedance mismatch which results in additional 
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losses between the antenna USRP where the Ku-band equipment and USRP is 
matched to 50 and 75 Ohm receptively. It can also bee seen that the DC-offset 
shown in figure 8.2.1 has disappeared outside the detection bandwidth of 60 kHz. 
This has been achieved by setting the DDC frequency to an offset 220 kHz. The 
frequency reference scale use in Figure 8.4.1 shows the relative IF frequency of the 
signal. The plot does however show the baseband spectrum.     
 

 
 

Figure 8.4.1 Eutelsat W3A 11.2 GHz beacon 

The code used to generate Figure 8.4.1 can be found in Appendix 3. The program is 
a modified version of usrp_fft.py where decimation filters and control of the DBSRX 
channel filter has been added. The beacon appears to occupy a rather large 
bandwidth. This is however mostly caused by the IIR averaging filter and poor 
frequency stability of the Triax LNB. The beacon was observed to drift more than 20 
KHz in less than five minutes and several hundred kHz on a daily basis. During the 
one hour observation interval the temperature was fairly stable. It has been verified 
that this drift is not caused by the USRP by injecting a generated signal at the same 
frequency. This showed a drift of less than 500 Hz in period of one hour at room 
temperature.             
  

8.5 Beacon receiver code 

Software code has been developed in python in order to use the USRP as a beacon 
receiver. The code is based on the GNU radio framework and can be found in 
Appendix 3. This code tunes the USRP to an optional frequency and sets the 
bandwidth of the DBSRX channel filter. The samples produce by the USRP are then 
decimated and filtered. This data is then stored to file and an FFT based frequency 
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tracking algorithm insures that the beacon is maintained inside 2/3 of the final 
receiver bandwidth. The algorithm has been found to function accurately down to C/N 
ratios of about 10 dB. However, the algorithm should be improved since it will track 
random noise if used below the C/N threshold which is currently found 
experimentally.  

8.5.1 Data processing considerations  

The amount of processing performed on the received signal and spectrum should be 
kept to a minimum. This will assure that the data stored is as representative of the 
received spectrum as possible. Ideally the receiver should only tune onto the beacon 
signal and then save the received samples to file. Any processing altering the data 
can then be performed later from the stored file. Limitations in storage space and 
requirements on file size and format do however necessitate some processing. 
 
The maximum amount of data that can be produced with USRP is 32MB/s with an 8 
MHz bandwidth. Storing this directly to file would fill a 1 terra byte disc in abut 30 
hours. Even if the maximum decimation of the FPGA is used the data generated 
would fill a 1 TB disc in about 11 days. Storing raw data continuously without further 
filtering or processing in software is therefore not an option if long term 
measurements are to be acquired.  
 

8.5.2 Decimation and FFT size 

In order to find the beacon signal inside the final bandwidth an FFT is performed on 
the incoming samples. The FFT size and decimation rate used dictates the bandwidth 
and frequency resolution available to the beacon receiver. In the FPGA the 
decimation rate d is set to the maximum decimation value of 256. The throughput 
over the USB cable is then reduced to: 
 

6
3
samples/sec

64 10
250 10

256

×
= ×                                           8.5.1 

 
This equals 1 MB/s at 16 bits complex IQ data per sample. The bandwidth available 
from the USRP is consequently reduced to 250 kHz. If a bin size of 20 Hz is to be 
achieved a 12 k FFT must be performed at this sample rate and bandwidth. This is 
beyond the computational power of the computers used and can therefore not be 
implemented in real time.  Additional decimation of 6 is therefore performed in 
software. This yields a spectral bandwidth of about 40 kHz and a data rate of 41.7 k 
samples per second. An FFT size of 2048 is used which relates to a bin size of about 
20 Hz. This should yield an increase in C/N ratio of about 33 dB compared to the 40 
kHz bandwidth. According to previous beacon receiver developments [8] one should 
typically expect to find 95 % of the beacon energy inside a 100 Hz bandwidth. As a 
result the sum of several bins must be evaluated in order to estimate the received 
power. The exact number is however dependent on the amount phase noise from the 
beacon, LNB oscillator and the intermediate frequency used.   
 

8.5.3 Filtering 

The DBSRX daughterboard contains a software controllable channel filter. The 
bandwidth of this filter has been set to 1 MHz which is the lowest available option. 
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Due to much narrower decimation filters implemented in both FPGA and software this 
filter does not improve the final C/N ratio significantly. The filter does however limit 
the amount power introduced to the system and thus allow for more amplification 
without distortion from the LNA on the DBSRX board. 
In the software portion a FIR filter is used to perform a combined low pass filter and 
decimation stage. This filter has a pass-band bandwidth of 20 kHz and a stop-band 
attenuation of 60 dB at 22 kHz. The pass-band ripple is set 0.01 dB where the taps 
for this filter is calculated by a function in GNU radio.  
 

8.5.4 Signal flow in the beacon software 

In GNU radio, signal processing blocks are connected in a “flow graph”. The flow 
graph of the beacon receiver code is shown in Figure 8.5.1.This illustrates how the 
samples from the USRP are processed before being analyzed and stored. The 
information outputted by the flow graph is one vector of length 2048 where the values 
are the magnitude squared of the original FFT.  
 

 
 

Figure 8.5.1 Flow graph 

With the decimation and FFT size as described in 8.5.1 this code generates 20 FFT 
frames per second. A frequency tracking algorithm then uses these frames to keep 
the beacon inside 2/3 of the final bandwidth. The operations performed by the beaco 
code flow graph are listed below: 
 

• When the program is started the FPGA firmware is loaded into the USRP via 
USB cable. Setting such as frequency and decimation rate is then transferred 
to the FPGA which tunes to the desired frequency. This is a two step process 
where the mixer of the DBSRX is used to tune as close to the desired 
frequency as possible. Fine tuning is achieved with the DDC which tunes the 
desired centre frequency to base band. Samples from the ADC is then filtered 
and decimated in the FPGA before being transferred to a PC via USB cable.   

 
• The samples from the USRP are imported to the flow graph of the beacon 

code. The samples are filtered by a low-pass FIR filter and decimated by a 
factor of 6.  

 
• The decimated time samples are then sent to a “file sink” which stores the 

samples as 32 bit complex floating point numbers.  
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• A Blackman-Harries widow is applied to time samples to reduce spectral 
leakage and a 2048 point FFT is calculated from one set of samples. This 
does not affect the samples stored to file 

 
• The FFT’s are filtered by a single pole IIR filter in order to smooth the spectral 

estimation.   
 

• The PSD of the FFT is calculated by computing the squared magnitude 
 

• Base 10 logarithms of the PSD values are calculated with correction for FFT 
size and windowing loss. These values are then sent to a “message sink” 
which allows the information in that sink to be accessed in other parts of the 
code i.e. peak detection algorithm.  

 
 
Peak detection 
For each new FFT frame generated by the flow graph the largest bin is found along 
with the index of the bin position. The mean value of the FFT frame is then 
subtracted from the peak bin in order to estimate a carrier to noise ratio. If this value 
is above a certain threshold the corresponding frequency of the peak bin is 
calculated and used to track the beacon. This is achieved by re tuning the USRP if 
the beacon is located outside 2/3 of the receiver bandwidth or ± 13 kHz from the 
centre frequency. 
 

8.6 Testing of the beacon receiver code 

When evaluating the FFT frames generated by the beacon receiver code it is clear 
that the spectral averaging achieved with the IIR filter is insufficient. As a result the 
estimated beacon power varies with up to 1 dB from one sample to the next. Further 
averaging of spectrum is therefore needed in order to increase the detection 
threshold which is currently at about 10 dB C/N ratio. Below this value the frequency 
tracking algorithm therefore fails.  
 
In order to reduce the fluctuations in power of the measured data a time average of 
the FFT frame should be computed. This will however require more FFT frames per 
second in order to maintain resolution in time and frequency. This can be achieved 
with the periodogram method by calculating a new N point FFT for every N/k set of 
new samples, where k is a base 2 number. In this way N/k FFT’s can be applied to 
each sample. Zero-padding of the time series can also be used to generate more 
FFT frames per second, where a number of zeros is added to the time series [40]. 
 
Previous beacon receiver developments [24] have shown that video filtering can be 
used to perform spectral estimation. Video filters and other spectral averaging filters 
are however not available in the GNU radio software. The processing power of the 
computers used is also not sufficient to implement such operations in Python, at least 
not in real time. The solution might therefore be to implement an FFT algorithm in the 
FPGA of the USRP which uses the periodogram method to average the spectral 
estimate. This would reduce the load on the host computer and preserve more CPU 
power for the remaining tasks such as peak detection and automatic frequency 
control. 
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Originally the intent was to estimate the beacon level in real time and then store 
these estimates to file. This was however not achieved due to the imitations in 
spectral averaging. As a temporarily solution an option to store the decimated time 
samples form the USRP was added. In this way spectral estimation and averaging 
can be performed post measurements when the speed of calculations is less crucial. 
The FFT frames calculated in real time is therefore only used for frequency tracking 
and peak detection.  
 
The decimated time samples form the USRP is stored continually as 32 bit complex 
I,Q values. As a result the beacon receiver can be operated for about 70 days with a 
1 terra byte hard drive. The samples are stored independently of the peak detection 
algorithm i.e. the receiver continues to record at the same frequency if the signal is 
lost. During this period frequency tracking is disabled. If the signal returns above the 
threshold and inside the bandwidth, frequency tracking is restored.  
 
 

8.7 Discussion 

                               

8.7.1 Limitations of GNU radio 

During development and testing of the beacon receiver code a number of GNU radio 
limitations was discovered. The signal processing blocks included in the software is 
not intended for measurements and this is reflected in the functionality of the 
individual blocks. As a result additional operations such as automatic frequency 
tracking and peak detection algorithms was implemented in Python. The addition of 
these operations in real time was on several occasions found to exceed the 
computational capacity of the computers used. The amount of additional 
computations was therefore reduced to a minimum. This imposed limitations which 
affected the overall performance of the beacon receiver. Most importantly, only one 
FFT is generated from a set of time samples. In turn this means that spectral 
averaging would result in decreased resolution in time and frequency. As an example 
a doubling of the FFT rate would relate to a 3 dB reduction in C/N ratio due to 
increased bin size. Variations in signal and noise due to insufficient spectral 
averaging do however require a higher FFT rate then what is currently achieved in 
the beacon receiver code. In order to avoid these problems the beacon code stores 
the raw samples from the USRP directly to file. In this way the computational 
intensive operations can be performed non real time when the speed of processing is 
not as critical.     
 

8.7.2 Beacon receiver code   

As discussed in Section 8.7.1 the limitations of the GNU radio software has imposed 
several restrictions on the software developed. Originally the code was intended to 
perform all calculations needed to estimate the beacon power level in real time. The 
detected levels were then written to file accompanied by a time-stamp and frequency 
position. An example of the resulting output is shown next: 
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Frequency 
Time-stamp 
Signal power 

 
1450260539 
2009-07-13 11:36:10.337044 
35.6251 
 
1450260540 
2009-07-13 11:36:10.381925 
34.4289 
 
1450260560  
2009-07-13 11:36:10.430570 
34.7375 
 
1450260541 
2009-07-13 11:36:10.491413 
34.888 
 

The samples presented above are measurements of the W3A 12.2 GHz beacon at a 
carrier to noise ratio of about 25 dB. The actual value of the estimated beacon power 
is an arbitrary number which depends on the amount of amplification applied. The 
samples are however relative to the signal power so that a 3 dB attenuation of the 
received signal relates to a 3 dB decrease in the measured value. It can be seen that 
the samples varies with more than one dB from one sample to the next due 
insufficient averaging as previously discussed.  
 
In order to avoid some of the issues discussed in Section 8.7.1 the time samples 
from the USRP is stored directly to file. This function should however be improved so 
that time stamps and additional information such as frequency could be added to the 
stored samples. 
 
In total the code developed in this thesis does not perform satisfactory with respect to 
the specification derived in Section 4. Improvement of the developed code would 
therefore be an interesting topic for future work.  
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9 Conclusion 
 
In this thesis the design of a low cost beacon receiver using digital signal processing 
techniques have been proposed, evaluated and tested. As a basis for the design a 
link budget was produced with focus on Ka-band beacons covering the Northern 
regions of Norway. It was found that the Eutelsat W3A satellite is transmitting a 
continues wave 21.4 GHz radio beacon which covers area of interest i.e. Norwegian 
areas north of the polar circle. The beacon has an EIRP level specified to be at least 
9 dBW at edge of coverage. A map of the coverage area can be found in Appendix 2. 
North of the Norwegian mainland this would result in a signal level of about -130 dBm 
at the output of a 1.2 m diameter antenna, or about 47 dB above the background 
noise. It was found that by using a commercially available LNB a receiver noise figure 
of less than 1.5 dB could be achieved. This would result in a carrier to noise ratio of 
about 45 dBHz. 
 
The costs of  manufacturing a complete beacon receiver system for the W3A 21.4 
GHz satellite beacon was found to be in excess of 100.000 NOK, where three 
components are affecting the overall cost of the receiver considerably. Those 
components are the Antenna, LNB and filters. Limitations in available fabrication 
equipment also lead to increased costs due the use of RF components with coaxial 
connections. It was also found that the Ka-band beacon selected for measurements 
in this thesis was unsuited for building a low cost beacon receiver. This is due to the 
frequency of 21.4 GHz which is about 200 MHz outside the frequency range of most 
commercial Ka-band equipment. This in turn made it difficult to find low cost 
components for the antenna and LNB.   
 
Attempts to reduce costs lead to the discovery of the universal software radio 
peripheral (USRP) which is a software defined radio developed for GNU radio 
software. By using an available plug-in board (DBSRX) containing an analog front-
end the device could cover the L-band (800-1500 MHz) intermediate frequency often 
used in satellite receiving equipment. This allows the USRP to be used as an L-band 
receiver which can be connected to any front-end utilizing this intermediate 
frequency.  
 
The USRP was tested in a lab setting where an L-band signal of 1.45 GHz produced 
by a signal generator was injected into the DBSRX front-end. The spectrum was then 
evaluated using GNU radio software. Measurements showed that the USRP has a 
linear dynamic range of about 60 dB. This in excess of the 50 dB requirement of this 
thesis and was therefore deemed adequate for beacon measurements. Reception of 
the Eutelsat W3A 12.2 GHz beacon with a 0.45 m antenna also revealed that an 
adequate signal to noise ratio can be achieved with this device.  
 
A beacon receiver algorithm was developed and implemented in Python. The code 
tunes the USRP to an optional L-band IF frequency. Decimation and filtering is then 
carried out and a 2k FFT is performed on the incoming data. A total decimation of 
1536 allows for 20 FFT’s to be generated each second with a bin size of 20 Hz in a 
40 kHz bandwidth. The code has been tested on a sine wave produced by a signal 
generator and reception of a Ku-band beacon. The results show that additional 
spectral averaging is needed to reduce variations in the estimated beacon power 
level. This could however not be achieved with current functions in GNU radio since 
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only one FFT frame is produced per sample in real time. It is therefore suggested that 
a new FFT algorithm capable of producing an increased number of FFT’s per sample   
should be added to GNU radio. Either in the FPGA of the USRP or in a C++ signal 
processing block. 
 
 

9.1 Suggestions for further work 

 

9.1.1 Limitations of GNU radio software 

GNU radio contains a variety of different functions and signal processing blocks. The 
functionality is however not intended for propagation measurements and this is 
reflected in the signal processing blocks on which GNU radio operates. As a result, a 
lot of additional programming in Python is needed in order to use the existing blocks. 
This is not ideal since computational intensive operations should be implemented in 
C++ blocks rather than Python [27]. Over runs i.e. failure to perform computations at 
the same rate as the incoming data has been observed frequently during this thesis. 
It is therefore suggested that new signal processing blocks should be created. 
Especially, an FFT algorithm capable of generating several frames per sample 
should be devised, either in C++ or in the FPGA of the USRP. This would allow for 
FFT’s and spectral averaging to be performed in real time. 
 

9.1.2 Improvements to the beacon receiver code 

The software code developed in this thesis should bee improved in several ways:  
 

• Addition of time-stamps and logging of frequency to the recorded data 
 

• Scaling of the beacon power estimate to correspond with the actual dBm 
value 

 
• Improvements to the user interface  

 
• Improvements to frequency tracking algorithm 

 
  

9.1.3 Extended functionality 

In propagation research the measurements of attenuation, scintillation and sea 
surface reflections are considered along with the climatic conditions. It is therefore 
suggested that weather data should be stored along with beacon measurements. 
This might include rain rates, wind velocity, temperature and barometric pressure.                
 

In this thesis a beacon receiver for measurement of amplitude fluctuations have been 
considered. The USRP is however also capable of performing phase coherent   
measurements [45]. It might therefore be possible to extend the functionality of the 
receiver to also measure effects such as frequency selective fading and group delay.  
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9.1.4 Maritime measurements 

If maritime measurements are to be collected an antenna with tracking capabilities 
must be integrated with the beacon receiver. The use of such antennas is however 
not ideal for beacon measurements since variations in signal power will be caused by 
the antenna. A study of the effects of maritime tracking antennas on beacon 
measurements should therefore be conducted.   
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Annex 1. Beacon receiver block diagrams 
 
Figure A.1 show a block diagram of the first design developed during this thesis. This 
design was later modified to that in Figure A.2 in order to reduce costs. The block 
diagrams show the components along with their part number. The estimated signal 
level of the beacon is shown to the left. More information about the individual 
components can be found in Appendix 1.     
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Figure A.1 Beacon receiver design nr.1 
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Figure A.2 show the modified beacon receiver design where a wider filter of 20 MHz 
is used. The final IF frequency has also been increased to 20 MHz 
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Figure A.2 Beacon receiver design nr.2 
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Appendix 1 Data sheets 
 

 
Figure Ap.1 Datasheet for 1.2 m Ka-band antenna 
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Figure Ap.2 Datasheet for Norsat 9000X LNB 
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Figure Ap.3 Specification for 3 MHz filter used in design 1 
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Ap.4 Data sheet for ZRL-1200 
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Figure Ap.5 Datasheet for ADF4360-7  
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Figure Ap.6 Datasheet for ZFL-500  
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Figure Ap.7 Price quote and specifications for filters used in design 1  
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 Figure Ap.8 Price quote and specifications for filters used in design 2  
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Figure Ap.9 Data sheet for ZKL-1R5  
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Appendix 2. Ka-band Coverage maps  
 

 

 
Figure Ap2 Eutelsat W3A Ka-band beacon coverage  
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Appendix 3. Software code  

 

Ap.2.1 FFT plotting code 

 
 
#!/usr/bin/env python 
################################################## 
# Gnuradio Python Flow Graph 
# Title: Top Block 
# Generated: Tue Jul 14 12:55:04 2009 
################################################## 
 
from gnuradio import gr 
from gnuradio import optfir 
from gnuradio.eng_option import eng_option 
from gnuradio.gr import firdes 
from gnuradio.wxgui import fftsink2 
from gnuradio.wxgui import forms 
from grc_gnuradio import usrp as grc_usrp 
from grc_gnuradio import wxgui as grc_wxgui 
from optparse import OptionParser 
import wx 
 
class top_block(grc_wxgui.top_block_gui): 
 
 def __init__(self): 
  grc_wxgui.top_block_gui.__init__(self, title="Top Block") 
 
  ################################################## 
  # Variables 
  ################################################## 
  self.samp_rate = samp_rate = 250000 
  self.gain = gain = 20 
 
  ################################################## 
  # Controls 
  ################################################## 
  _gain_sizer = wx.BoxSizer(wx.VERTICAL) 
  self._gain_text_box = forms.text_box( 
   parent=self.GetWin(), 
   sizer=_gain_sizer, 
   value=self.gain, 
   callback=self.set_gain, 
   label="gain", 
   converter=forms.float_converter(), 
   proportion=0, 
  ) 
  self._gain_slider = forms.slider( 
   parent=self.GetWin(), 
   sizer=_gain_sizer, 
   value=self.gain, 
   callback=self.set_gain, 
   minimum=0, 
   maximum=70, 
   num_steps=100, 
   style=wx.SL_HORIZONTAL, 
   cast=float, 
   proportion=1, 
  ) 
  self.Add(_gain_sizer) 
 
  ################################################## 
  # Blocks 
  ################################################## 
  self.gr_fir_filter_xxx_0 = gr.fir_filter_ccc(6, 
(optfir.low_pass(1,samp_rate,20e3,22e3,0.01,60))) 
  self.usrp_simple_source_x_0 = grc_usrp.simple_source_c(which=0, side="A", 
rx_ant="RXA") 
  self.usrp_simple_source_x_0.set_decim_rate(256) 
  self.usrp_simple_source_x_0.set_frequency(1.45005e9, verbose=True) 
  self.usrp_simple_source_x_0.set_gain(gain) 
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  self.wxgui_fftsink2_0 = fftsink2.fft_sink_c( 
   self.GetWin(), 
   baseband_freq=0, 
   y_per_div=10, 
   y_divs=10, 
   ref_level=50, 
   sample_rate=samp_rate/6, 
   fft_size=2048, 
   fft_rate=30, 
   average=False, 
   avg_alpha=None, 
   title="FFT Plot", 
   peak_hold=False, 
  ) 
  self.Add(self.wxgui_fftsink2_0.win) 
 
  ################################################## 
  # Connections 
  ################################################## 
  self.connect((self.gr_fir_filter_xxx_0, 0), (self.wxgui_fftsink2_0, 0)) 
  self.connect((self.usrp_simple_source_x_0, 0), (self.gr_fir_filter_xxx_0, 0)) 
 
 def set_samp_rate(self, samp_rate): 
  self.samp_rate = samp_rate 
 
 self.gr_fir_filter_xxx_0.set_taps((optfir.low_pass(1,self.samp_rate,20e3,22e3,0.01,60))
) 
  self.wxgui_fftsink2_0.set_sample_rate(self.samp_rate/6) 
 
 def set_gain(self, gain): 
  self.gain = gain 
  self._gain_slider.set_value(self.gain) 
  self._gain_text_box.set_value(self.gain) 
  self.usrp_simple_source_x_0.set_gain(self.gain) 
 
if __name__ == '__main__': 
 parser = OptionParser(option_class=eng_option, usage="%prog: [options]") 
 (options, args) = parser.parse_args() 
 tb = top_block() 
 tb.Run(True) 
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Ap.2.2 Beacon receiver code  

 

 
#!/usr/bin/env python 
# 
# Copyright 2005,2006,2007 Free Software Foundation, Inc. 
#  
# This file is part of GNU Radio 
#  
# GNU Radio is free software; you can redistribute it and/or modify 
# it under the terms of the GNU General Public License as published by 
# the Free Software Foundation; either version 3, or (at your option) 
# any later version. 
#  
# GNU Radio is distributed in the hope that it will be useful, 
# but WITHOUT ANY WARRANTY; without even the implied warranty of 
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
# GNU General Public License for more details. 
#  
# You should have received a copy of the GNU General Public License 
# along with GNU Radio; see the file COPYING.  If not, write to 
# the Free Software Foundation, Inc., 51 Franklin Street, 
# Boston, MA 02110-1301, USA. 
#  
 
from gnuradio import gr, gru, eng_notation, optfir, window 
from gnuradio import audio 
from gnuradio import usrp 
from gnuradio import blks2 
from gnuradio.eng_option import eng_option 
from gnuradio.wxgui import slider, powermate 
from gnuradio.wxgui import stdgui2, fftsink2, form 
from optparse import OptionParser 
from usrpm import usrp_dbid 
import sys 
import math 
import wx 
import numpy 
import threading 
import pylab 
import datetime 
 
def pick_subdevice(u): 
    """ 
    The user didn't specify a subdevice on the command line. 
    If there's a daughterboard on A, select A. 
    If there's a daughterboard on B, select B. 
    Otherwise, select A. 
    """ 
    if u.db[0][0].dbid() >= 0:       # dbid is < 0 if there's no d'board or a 
problem 
        return (0, 0) 
    if u.db[1][0].dbid() >= 0: 
        return (1, 0) 
    return (0, 0) 
 
 
class top(gr.top_block): 
        def __init__(self): 
                gr.top_block.__init__(self) 
   
 
  parser = OptionParser(option_class=eng_option) 
                parser.add_option("-R", "--rx-subdev-spec", type="subdev", 
default=(0,0), 
                                   help="select USRP Rx side A or B (default=first 
one with a daughterboard)") 
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  parser.add_option("-g", "--gain", type="eng_float", default=30, 
                                 help="set gain in dB (default is midpoint)") 
  parser.add_option("-F", "--fft-size", type="int", default=2048, 
                                 help="specify number of FFT bins 
[default=%default]") 
  parser.add_option("-d", "--decim", type="intx", default=256, 
                                 help="set decimation to DECIM [default=%default]") 
  parser.add_option("-f", "--freq", type="eng_float", default=1.20008e9, 
                                 help="set frequency to FREQ", metavar="FREQ") 
  parser.add_option("-S", "--scope", action="store_true", default=False, 
                                 help="Enable scope display") 
  parser.add_option("", "--avg-alpha", type="eng_float", default=1e-1, 
            help="Set fftsink averaging factor, 
default=[%default]") 
 
  (options, args) = parser.parse_args() 
                if len(args) != 0: 
                   parser.print_help() 
                   sys.exit(1) 
         self.options = options 
                self.show_debug_info = True 
        
                #Settings 
   
  decim = options.decim 
                self.freq = options.freq 
                gain = options.gain 
 
  # USRP is source 
  self.u = usrp.source_c(0, decim_rate=decim) 
                                 
                # determine the daughterboard subdevice we're using 
                self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) 
   
  # Set DBSRX channel filter 1MHz 
  self.subdev.set_bw(1e6) 
   
                # FFT Parameters 
                fftsize = options.fft_size 
                
                 
 
  # set data rates   
  adc_rate = self.u.adc_rate()                # 64 MS/s 
         usrp_decim = options.decim 
         chanfilt_decim = 6 
         usrp_rate = self.u.adc_freq() / self.u.decim_rate() 
   
  # Channel filter taps 
  chan_filt_coeffs = optfir.low_pass (1,           # gain 
                                                 usrp_rate,   # sampling rate 
                                                18e3,        # passband cutoff 
                                                20e3,       # stopband cutoff 
                                                0.01,         # passband ripple 
                                                60)          # stopband attenuation 
   
  self.chan_filt = gr.fir_filter_ccc (chanfilt_decim, chan_filt_coeffs) 
  ss2v = gr.stream_to_vector(gr.sizeof_gr_complex, fftsize) 
   
  mywin = window.blackmanharris(fftsize) 
  fft = gr.fft_vcc(fftsize, True, mywin) 
   
  power = 0 
         for tap in mywin: 
              power += tap*tap 
   
  c2m = gr.complex_to_mag_squared(fftsize) 
  avg = gr.single_pole_iir_filter_ff(0.1, fftsize) 
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  filesink = gr.file_sink(gr.sizeof_gr_complex, "otput.dat") 
                   
                 
                log = gr.nlog10_ff(10,fftsize,  
      -20*math.log10(fftsize)            # Adjust for number of 
bins 
       -10*math.log10(power/fftsize)+20)     # Adjust for 
windowing loss 
 
  # Message Settings 
                self.qsize = 1 
                self.msgq0 = gr.msg_queue(self.qsize)  
 
                m_sink0 = gr.message_sink(gr.sizeof_float*fftsize, self.msgq0, 
True) 
 
  self.connect(self.u, self.chan_filt, ss2v, fft, c2m,avg,  log, 
m_sink0)  
  self.connect(self.chan_filt, filesink) 
   
 
  
  self.set_freq(options.freq) 
  self.set_gain(gain) 
 
    
 
        def set_freq(self, target_freq): 
                
            r = self.u.tune(0, self.subdev, target_freq) 
     print "ok" 
    
            return False 
  
        def set_gain(self, gain): 
            self.subdev.set_gain(gain) 
 
         
def shift(x,size=2048): # This fuction is no longer used due to overrun 
        """ 
  Shifts indexes so that the first half corresponds to FS-FS/2 
        and the second half to FS+FS/2. 
                @ x: index number 
        """ 
        if x <= (size/2): 
                return x+(size/2)-1 
        elif x > (size/2): 
                return x-(size/2)-1 
 
 
def main (): 
         
        # Start Top Block 
        tb = top() 
 
        #Start Flowgraph 
        tb.start() 
 
         
        # Fix me, Make decimation and FFT size an option by using values from 
TopBlock  
        fft_size=2048 
 freq = tb.freq 
 usrp_rate = 250000 
 input_rate = usrp_rate / 6 
 cycles_per_bin = (250000/6)/fft_size 
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       # Loop for reading FFT frames and AFC 
        while(True): 
   
  freq = tb.freq 
   
                msg = tb.msgq0.delete_head() # get first frequency message 
                 
                s = msg.to_string() # raw frequency data 
               
  itemsize = int(msg.arg1()) 
                nitems = int(msg.arg2()) 
     
  # Que should contain only one vecttor, if not delete the old ones 
  if nitems > 1: 
   start = itemsize * (nitems -1) 
   s = s[start:start + itemsize] 
 
  complex_data = numpy.fromstring(s, numpy.float32)                 
  # Fi me, removal of DC offset should be made independent of gain  
settings 
             complex_data[0]=complex_data[1]-20 
  complex_data[1]=complex_data[1]-20 
  complex_data[-1]=complex_data[-1]-20                
                
  # Find peak and location of bin 
  maxval = max(complex_data) 
  binmax = numpy.argmax(complex_data) 
  avgval = numpy.mean(complex_data) # mean value of FFT 
   
  #maxval2=[complex_data[binmax-3], complex_data[binmax-2] , 
complex_data[binmax+1],complex_data[binmax] , complex_data[binmax+1]   
                #complex_data[binmax+2],complex_data[binmax+3] , 
complex_data[binmax+100]] 
   
  # calculates power of max bin + side bins 
  if binmax < 2042:  
   wavg= (complex_data[binmax-1] + complex_data[binmax] + 
complex_data[binmax+1])/3 
  else:  
   wavg=maxval # aviod suming out of vector 
   
  pk_bin = numpy.argmax(complex_data) 
   
       if (maxval - (avgval-wavg) > 10): # Fix me, Treshold should be 
independent of gain 
                  
          if  pk_bin > 0: 
              left_bin = pk_bin - 1 
          else: 
              left_bin = (fft_size - 1) 
          if pk_bin < (fft_size - 2): 
              right_bin = pk_bin + 1 
          else: 
              right_bin = 0 
          left_val = complex_data[left_bin] 
          right_val = complex_data[right_bin] 
          # Calculate a weighted average bin location starting with 
          # the fraction of a bin to offset the center. 
          wtd_sum = (right_val - left_val) / (left_val + right_val) 
          pk_bin += wtd_sum 
          # Adjust for bottom wraparound 
          if (pk_bin < 0): pk_bin += (nitems - 1) 
          # Adjust for top wraparound 
          if (pk_bin > (fft_size - 1)): 
              pk_bin += (1 - fft_size)  
    
          # Calculate equivalent freq of bin, accounting for spectral 
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          # folding around center. 
           
   if pk_bin < fft_size / 2: 
              pk_freq = int(freq + 
                                 (pk_bin * cycles_per_bin)) 
          else: 
              pk_freq = int(freq + 
                                 ((pk_bin - (fft_size - 1))* 
                                  cycles_per_bin))  
   
          #print  wavg, avgval, pk_freq,freq, pk_bin 
    
   # Sves the the mag squared of peak bin to fil along with beacon 
#frequency and time stamp 
   s = str(maxval) 
          ff = str(pk_freq) 
      t = str(datetime.datetime.utcnow())  
      f = open('workfile', 'a') 
     
      f.write(ff + '\n' + t + '\n' + s + '\n\n') 
     
   # AFC 
   if abs(pk_freq-freq) > 10000: 
    target_freq = pk_freq+100 
    print "re tune", tb.freq, target_freq 
    tb.freq=pk_freq 
    tb.options.freq = pk_freq+100 
    tb.set_freq(target_freq) 
     
     
     
               
 
if __name__ == '__main__': 
    main ()  
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Ap.2.3 Modified version of usrp_fft.py 
 
 
#!/usr/bin/env python 
# 
# Copyright 2004,2005,2007,2008 Free Software Foundation, Inc. 
#  
# This file is part of GNU Radio 
#  
# GNU Radio is free software; you can redistribute it and/or modify 
# it under the terms of the GNU General Public License as published by 
# the Free Software Foundation; either version 3, or (at your option) 
# any later version. 
#  
# GNU Radio is distributed in the hope that it will be useful, 
# but WITHOUT ANY WARRANTY; without even the implied warranty of 
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
# GNU General Public License for more details. 
#  
# You should have received a copy of the GNU General Public License 
# along with GNU Radio; see the file COPYING.  If not, write to 
# the Free Software Foundation, Inc., 51 Franklin Street, 
# Boston, MA 02110-1301, USA. 
#  
 
from gnuradio import gr, gru, optfir 
from gnuradio import usrp 
from gnuradio import eng_notation 
from gnuradio.eng_option import eng_option 
from gnuradio.wxgui import stdgui2, fftsink2, waterfallsink2, scopesink2, form, 
slider 
from optparse import OptionParser 
import wx 
import sys 
import numpy 
 
def pick_subdevice(u): 
    """ 
    The user didn't specify a subdevice on the command line. 
    If there's a daughterboard on A, select A. 
    If there's a daughterboard on B, select B. 
    Otherwise, select A. 
    """ 
    if u.db[0][0].dbid() >= 0:       # dbid is < 0 if there's no d'board or a 
problem 
        return (0, 0) 
    if u.db[1][0].dbid() >= 0: 
        return (1, 0) 
    return (0, 0) 
 
 
class app_top_block(stdgui2.std_top_block): 
    def __init__(self, frame, panel, vbox, argv): 
        stdgui2.std_top_block.__init__(self, frame, panel, vbox, argv) 
 
        self.frame = frame 
        self.panel = panel 
         
        parser = OptionParser(option_class=eng_option) 
        parser.add_option("-w", "--which", type="int", default=0, 
                          help="select which USRP (0, 1, ...) default is %default", 
     metavar="NUM") 
        parser.add_option("-R", "--rx-subdev-spec", type="subdev", default=None, 
                          help="select USRP Rx side A or B (default=first one with 
a daughterboard)") 
        parser.add_option("-A", "--antenna", default=None, 
                          help="select Rx Antenna (only on RFX-series boards)") 
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        parser.add_option("-d", "--decim", type="int", default=256, 
                          help="set fgpa decimation rate to DECIM 
[default=%default]") 
        parser.add_option("-f", "--freq", type="eng_float", default=1.45031e9, 
                          help="set frequency to FREQ", metavar="FREQ") 
        parser.add_option("-g", "--gain", type="eng_float", default=20, 
                          help="set gain in dB (default is midpoint)") 
        parser.add_option("-W", "--waterfall", action="store_true", default=False, 
                          help="Enable waterfall display") 
        parser.add_option("-8", "--width-8", action="store_true", default=False, 
                          help="Enable 8-bit samples across USB") 
        parser.add_option( "--no-hb", action="store_true", default=False, 
                          help="don't use halfband filter in usrp") 
        parser.add_option("-S", "--oscilloscope", action="store_true", 
default=False, 
                          help="Enable oscilloscope display") 
 parser.add_option("", "--ref-scale", type="eng_float", default=13490.0, 
     help="Set dBFS=0dB input value, default=[%default]") 
 parser.add_option("", "--avg-alpha", type="eng_float", default=1e-1, 
     help="Set fftsink averaging factor, default=[%default]") 
        (options, args) = parser.parse_args() 
        if len(args) != 0: 
            parser.print_help() 
            sys.exit(1) 
 self.options = options 
        self.show_debug_info = True 
         
 options.freq = options.freq #- 9.75e9 
 
        # build the graph 
        if options.no_hb or (options.decim<8): 
          #Min decimation of this firmware is 4.  
          #contains 4 Rx paths without halfbands and 0 tx paths. 
          self.fpga_filename="std_4rx_0tx.rbf" 
          self.u = usrp.source_c(which=options.which, decim_rate=options.decim, 
fpga_filename=self.fpga_filename) 
        else: 
          #Min decimation of standard firmware is 8.  
          #standard fpga firmware "std_2rxhb_2tx.rbf"  
          #contains 2 Rx paths with halfband filters and 2 tx paths (the default) 
          self.u = usrp.source_c(which=options.which, decim_rate=options.decim) 
 
        if options.rx_subdev_spec is None: 
            options.rx_subdev_spec = pick_subdevice(self.u) 
        self.u.set_mux(usrp.determine_rx_mux_value(self.u, options.rx_subdev_spec)) 
 
        if options.width_8: 
            width = 8 
            shift = 8 
            format = self.u.make_format(width, shift) 
            print "format =", hex(format) 
            r = self.u.set_format(format) 
            print "set_format =", r 
             
        # determine the daughterboard subdevice we're using 
        #self.subdev = usrp.selected_subdev(self.u, options.rx_subdev_spec) 
 
 
 self.u.set_bw(1e6) 
 print "BW = 1MHZ" 
 
 #fft_size = 16384 
 adc_rate = self.u.adc_rate()                # 64 MS/s 
        usrp_decim = options.decim 
        self.u.set_decim_rate(usrp_decim) 
 chanfilt_decim = 0 
        #input_rate = adc_rate / (usrp_decim + chanfilt_decim) 
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        usrp_rate = self.u.adc_freq() / (self.u.decim_rate() + chanfilt_decim) 
 input_rate = adc_rate / (usrp_decim + chanfilt_decim) 
 
        if options.waterfall: 
            self.scope = \ 
              waterfallsink2.waterfall_sink_c (panel, fft_size=options.fft_size, 
sample_rate=input_rate) 
        elif options.oscilloscope: 
            self.scope = scopesink2.scope_sink_c(panel, sample_rate=input_rate) 
        else: 
            self.scope = fftsink2.fft_sink_c (panel, fft_size=options.fft_size, 
sample_rate=input_rate,  
           ref_scale=options.ref_scale, ref_level=0.0, 
y_divs = 10, 
           avg_alpha=options.avg_alpha) 
 
 chan_filt_coeffs = optfir.low_pass (1,           # gain 
                                            usrp_rate,   # sampling rate 
                                           25e3,        # passband cutoff 
                                           30e3,       # stopband cutoff 
                                           0.01,         # passband ripple 
                                           60)          # stopband attenuation 
        #self.chan_filt = gr.freq_xlating_fir_filter_ccf (chanfilt_decim, 
chan_filt_coeffs, self.IF_freq, usrp_rate) 
 self.chan_filt = gr.fir_filter_ccf (chanfilt_decim, chan_filt_coeffs) 
 
 self.avg = gr.single_pole_iir_filter_ff(1,2) 
 
        self.connect(self.u, self.avg, self.scope) 
 
        self._build_gui(vbox) 
 self._setup_events() 
  
        # set initial values 
 
        if options.gain is None: 
            # if no gain was specified, use the mid-point in dB 
            g = self.subdev.gain_range() 
            options.gain = float(g[0]+g[1])/2 
 
        if options.freq is None: 
            # if no freq was specified, use the mid-point 
            r = self.subdev.freq_range() 
            options.freq = float(r[0]+r[1])/2 
 
        self.set_gain(options.gain) 
 
 if options.antenna is not None: 
            print "Selecting antenna %s" % (options.antenna,) 
            self.subdev.select_rx_antenna(options.antenna) 
 
        if self.show_debug_info: 
            self.myform['decim'].set_value(self.u.decim_rate()) 
            self.myform['fs@usb'].set_value(self.u.adc_freq() / 
self.u.decim_rate()) 
            self.myform['dbname'].set_value(self.subdev.name()) 
            self.myform['baseband'].set_value(0) 
            self.myform['ddc'].set_value(0) 
 
        if not(self.set_freq(options.freq)): 
            self._set_status_msg("Failed to set initial frequency") 
 
    def _set_status_msg(self, msg): 
        self.frame.GetStatusBar().SetStatusText(msg, 0) 
 
    def _build_gui(self, vbox): 
 
        def _form_set_freq(kv): 
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            return self.set_freq(kv['freq']) 
             
        vbox.Add(self.scope.win, 10, wx.EXPAND) 
         
        # add control area at the bottom 
        self.myform = myform = form.form() 
        hbox = wx.BoxSizer(wx.HORIZONTAL) 
        hbox.Add((5,0), 0, 0) 
        myform['freq'] = form.float_field( 
            parent=self.panel, sizer=hbox, label="Center freq", weight=1, 
            callback=myform.check_input_and_call(_form_set_freq, 
self._set_status_msg)) 
 
        hbox.Add((5,0), 0, 0) 
        g = self.subdev.gain_range() 
        myform['gain'] = form.slider_field(parent=self.panel, sizer=hbox, 
label="Gain", 
                                           weight=3, 
                                           min=int(g[0]), max=int(g[1]), 
                                           callback=self.set_gain) 
 
        hbox.Add((5,0), 0, 0) 
        vbox.Add(hbox, 0, wx.EXPAND) 
 
        self._build_subpanel(vbox) 
 
    def _build_subpanel(self, vbox_arg): 
        # build a secondary information panel (sometimes hidden) 
 
        # FIXME figure out how to have this be a subpanel that is always 
        # created, but has its visibility controlled by foo.Show(True/False) 
         
        def _form_set_decim(kv): 
            return self.set_decim(kv['decim']) 
 
        if not(self.show_debug_info): 
            return 
 
        panel = self.panel 
        vbox = vbox_arg 
        myform = self.myform 
 
        #panel = wx.Panel(self.panel, -1) 
        #vbox = wx.BoxSizer(wx.VERTICAL) 
 
        hbox = wx.BoxSizer(wx.HORIZONTAL) 
        hbox.Add((5,0), 0) 
 
        myform['decim'] = form.int_field( 
            parent=panel, sizer=hbox, label="Decim", 
            callback=myform.check_input_and_call(_form_set_decim, 
self._set_status_msg)) 
 
        hbox.Add((5,0), 1) 
        myform['fs@usb'] = form.static_float_field( 
            parent=panel, sizer=hbox, label="Fs@USB") 
 
        hbox.Add((5,0), 1) 
        myform['dbname'] = form.static_text_field( 
            parent=panel, sizer=hbox) 
 
        hbox.Add((5,0), 1) 
        myform['baseband'] = form.static_float_field( 
            parent=panel, sizer=hbox, label="Analog BB") 
 
        hbox.Add((5,0), 1) 
        myform['ddc'] = form.static_float_field( 
            parent=panel, sizer=hbox, label="DDC") 
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        hbox.Add((5,0), 0) 
        vbox.Add(hbox, 0, wx.EXPAND) 
 
         
    def set_freq(self, target_freq): 
        """ 
        Set the center frequency we're interested in. 
 
        @param target_freq: frequency in Hz 
        @rypte: bool 
 
        Tuning is a two step process.  First we ask the front-end to 
        tune as close to the desired frequency as it can.  Then we use 
        the result of that operation and our target_frequency to 
        determine the value for the digital down converter. 
        """ 
        r = self.u.tune(0, self.subdev, target_freq) 
         
        if r: 
            self.myform['freq'].set_value(target_freq)     # update displayed value 
            if self.show_debug_info: 
                self.myform['baseband'].set_value(r.baseband_freq) 
                self.myform['ddc'].set_value(r.dxc_freq) 
     if not self.options.waterfall and not self.options.oscilloscope: 
  self.scope.win.set_baseband_freq(target_freq) 
         return True 
 
        return False 
 
    def set_gain(self, gain): 
        self.myform['gain'].set_value(gain)     # update displayed value 
        self.subdev.set_gain(gain) 
 
    def set_decim(self, decim): 
        ok = self.u.set_decim_rate(decim) 
        if not ok: 
            print "set_decim failed" 
        input_rate = self.u.adc_freq() / self.u.decim_rate() 
        self.scope.set_sample_rate(input_rate) 
        if self.show_debug_info:  # update displayed values 
            self.myform['decim'].set_value(self.u.decim_rate()) 
            self.myform['fs@usb'].set_value(self.u.adc_freq() / 
self.u.decim_rate()) 
        return ok 
 
    def _setup_events(self): 
 if not self.options.waterfall and not self.options.oscilloscope: 
     self.scope.win.Bind(wx.EVT_LEFT_DCLICK, self.evt_left_dclick) 
      
    def evt_left_dclick(self, event): 
 (ux, uy) = self.scope.win.GetXY(event) 
 if event.CmdDown(): 
     # Re-center on maximum power 
     points = self.scope.win._points 
     if self.scope.win.peak_hold: 
  if self.scope.win.peak_vals is not None: 
      ind = numpy.argmax(self.scope.win.peak_vals) 
  else: 
      ind = int(points.shape()[0]/2) 
     else: 
         ind = numpy.argmax(points[:,1]) 
            (freq, pwr) = points[ind] 
     target_freq = freq/self.scope.win._scale_factor 
     print ind, freq, pwr 
            self.set_freq(target_freq)             
 else: 
     # Re-center on clicked frequency 
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     target_freq = ux/self.scope.win._scale_factor 
     self.set_freq(target_freq) 
      
  
def main (): 
    app = stdgui2.stdapp(app_top_block, "USRP FFT", nstatus=1) 
    app.MainLoop() 
 
if __name__ == '__main__': 
    main () 
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