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Problem Description
Capacitive touch sensing is an attractive alternative to mechanical buttons and switches. The
method allows electronics devices with user interfaces to be designed without moving parts,
reducing cost and improving durability. It also makes more interesting-looking devices, as the
iPod with its scroll-wheel possible.
For battery-powered devices, energy consumption is a big concern, so a low-power solution for
capacitive touch sensing is essential.
The student will evaluate different schemes of capacitive touch sensing with focus on low power
operation, and then implement a solution. The solution should consist of an analog external part,
consisting of the capacitor(s) to be sensed and supporting circuitry, and an internal part consisting
of digital logic written in verilog or VHDL that is responsible for automatically sensing the
capacitor(s) and reporting with digital values whether touch(es) are detected or not.
The focus of the task is low power operation, and a trade-off must most certainly be made
between response time and power consumption. The area of the digital logic should also be
minimized to make an implementation of the system on a microcontroller plausible. Challenges
include management of threshold values and noise rejection
The work can be split into three phases:
  • Litterature study
    o Evaluate existing methods for capacitive touch sensing
    o Is there room for improvement in the existing methods with respect to power consumption?
    o Select one or more methods to proceed with based on their potential for low power
consumption and implementation size.
  • Implementation and simulation
    o Implement the sensing scheme(s) in verilog/VHDL. The code should be synthesizable.
    o Simulate the system. Determine power consumption, noise rejection, reliability, etc.
  • Implementation on FPGA
    o Implement the external part of the system on a PCB/veroboard and run the internal part on an
FPGA. Report any findings. Did the system behave as expected?
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This thesis describes the process of designing a capacitive touch system
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has been rewarding to see the system grow and witness how the design choices
has had a positive a�ect on the power usage of the system.

I would like to thank my supervisor Associate Professor Bjørn B. Larsen for
guiding me while writing this report. I would also like to thank my supervisor
at Energy Micro AS, Øivind Loe, who has helped me with many technical
questions.

Trondheim, June 2009

Edgar L. Elden

i



ii



Abstract

This thesis will seek to design a capacitive touch sensor that uses as little
power as possible while still having decent performance. The study will start
by discussing oscillators and �nd that relaxation oscillators with a frequency
dependent on an RC-circuit is of greatest interest. Thorough simulations and
theory will show that it is power e�cient for the RC-circuit to oscillate between
two voltage levels close to the supply voltage. It will also show that it is
only the resistance that a�ect the power dissipation in the RC-circuit. A
Finite State Machine that monitors changes in the period of the oscillator
is described and designed. It uses two IIR �lters to reject noise from the
oscillator and provide an average over time the input can be compared to.
A prototype is built and tests establish that both the oscillator and FSM
behave as expected. It is found that the response time of the FSM can be
stated in sampling periods and that lower bit lengths give faster response time.
Power estimations are done and it is found that the FSM uses two orders of
magnitude less power than the oscillator. The full design is compared to a low
power capacitive touch system currently on the market. Power estimations
indicate that the design proposed uses an order of magnitude less power than
the commercial implementation it is compared with. The results also indicate
that the proposed design has a potential for even more power optimization.
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Introduction

In recent years there have been an increased use of capacitive touch sensing
in consumer products. These interfaces have some advantages over typical
buttons as they contain no mechanical parts. This gives higher durability and
enables sleeker user interfaces where buttons can be embedded in the product
itself. An example is the buttons on new stoves that are embedded in the
glass-ceramic layer of the cooktop. Embedding the button in the product like
this is also of great advantage in environments that needs to be keept clean,
e.g kitchens or medical equipment.

This thesis will seek to design a capacitive touch-system that is as power
e�cient as possible while keeping an acceptable level of performance. It will
look at implementations that are in use or have been proposed before, and seek
to optimize or tweak them for optimal power e�ciency. This focus will most
likely come at the expense of other characterisitcs of a speci�c design, such as
noise rejection, reliability or especially responsetime. The responsetime of the
system should be acceptable for a human operator.

Di�erent implementations of a capacitive touch system will be discussed
and one implemented for its capacity of improved power e�ciency. This will
be done either by modifying the design or make it operate in a special manner.

The main contributions from this thesis are:

• Chosen an oscillatordesign for use in the sensing scheme and chosen
components for it.

• Written a program in C that simulates the response of the RC-circuit in
such an oscillator.

• Designed hardware that monitors the oscillator and reports sudden changes
in frequency.
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• Designed a prototype of the oscillator on PCB and tested whether oscil-
lators with di�erent characteristics function according to theory.

• Implemented the digital hardware on an FPGA from Altera together
with a Nios II-based testbench that monitors the funcionality of the
hardware.
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Chapter 1

Theory and selection of oscillator

This chapter will discuss how capacitive touch sensing works and then look at
a few types of oscillators and how they operate. A choice will be made on what
oscillator to use in the �nal design. Finally the di�erent parts of the oscillator,
how they operate and how their power consumption can be minimized will be
discussed from a theoretical standpoint.

Capacitive touch sensing works by detecting the induced capacitance in a
node when a �nger touches that node. Most often this node is a pad of copper
on a PCB with some material with an electrical permitivity on top that the
�nger touches. Other design exist though, e.g. lamps that use their whole
exterior as a touch button thereby allowing operation by touching the lamp.
In Figure 1.1 on the following page a regular touch button can be seen. Here
the capacitance in the button is Cp when there is no �nger close to the button.
As soon as a �nger is close enough a capacitance, Cf , between the pad and
ground is induced through the �nger. This capacitance comes in parallell with
Cp resulting in a total capacitance in the node Ctot = Cp + Cf . This change
in capacitance needs to be detected by some system.

The capacitance between two conductive materials is given in Equation 1.1.
As can be seen the capacitance, C, is given as a relationship between the area
of the materials, A, the relative permeability of the material between the
conducting materials, εr, the permeability of free space, ε0 and the distance
between the conductive materials, d.

C =
ε0εrA

d
(1.1)
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Figure 1.1: Capacitive touch sensing illustration.[13]

1.1 Oscillator

The oscillators purpose in the circuit is to generate a frequency that will change
when the button area is touched by a �nger. In practice this means that the
frequency of the oscillator will have to be largely dependent on a capacitor.
Di�erent types of oscillators are abundant, and we will have to decide upon
one to discuss further in this project. In the preliminary work for this thesis
there has been found several potential oscillators that have been considered.
There are some important demands that the oscillators will have to ful�ll to be
usable in this project. They have to be as small as possible, the frequency must
be highly dependent on a capacitance and they have to have some potential
for optimizing energy consumption.

Below a representative few of the oscillators found during the preliminary
work are presented and discussed.

1.1.1 Harmonic Oscillators

Harmonic oscillators generate sine waves at a frequency determined by the
magnitude of either resistors, capacitors, inductors or a combination of these.
The basic premise of their function is an ampli�er with an electronic �lter
connected between its output and input. At startupt the ampli�er contains
mostly noise, but the signal gets �ltered and fed back into the ampli�er con-
tinuously reducing the noise until only frequencies that the �lter lets trough
is left.

The Wien Bridge oscillator is one of several types of harmonic oscillators.
Its design can be observed in Figure 1.2 and i has a frequency given in Formula
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Figure 1.2: Wien Bridge Oscillator.[15]

1.2.

f =
1

2πRC
(1.2)

This oscillator has several drawbacks. First, the frequency is determined
by two identical capacitors. Preferably the frequency should be dependent on
only one capacitor since changing one of several capacitors may have undesired
e�ects other than changing the frequency. In this speci�c oscillator the two
capacitors are listed as being of equal size. Simulations will have to be done to
determine the e�ect of changing only one of the capacitors if this oscillator is
chosen for further use in this project. Dependence on some sort of amplitude
stabilization as shown in the upper left corner of Figure 1.2 may also prove to
be a challenge. This complicates the design process beyond the scope of the
problem description.

Other harmonic oscillators are disquali�ed because they contain inductors.
These are too large to be practically implementet in a microcontroller, as this
projects seeks to achieve. They also store all their energy in a magnetic �eld.
This �eld can induce currents in other parts of the oscillator or the unit the
capacitive touch sensing scheme will be part of due to mutual inductance[9].
One �nal unwanted aspect of harmonic oscillators is their sine output. In this
design a square output is wanted as the frequency produces will be used as
the clock signal for a digital counter.

All the harmonic oscillators found in the preliminary work has had one
or more of the disadvantages discussed above and other solutions should be
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discussed in an e�ort to �nd a better alternative.

1.1.2 Relaxation oscillator

Relaxation oscillators are oscillators that depend on the charging and discharg-
ing of a single energy storage element. They rely on the nonlinear characteristic
of the storage element, in our case a capacitor, and are typically easy to imple-
ment as a single module in an integrated circuit[1]. Also according to [1] they
are prone to large random �uctuations in their period so thorough simulations
of a design must be done before a prototype is built. The protoype should also
be heavily tested to know what level of noise will most likely be present in a
�nal design.

Figure 1.3: Relaxation oscillator design proposed by Planet Analog.[6]

In Figure 1.3 a design proposed by Planet Analog for a relaxation oscillator
is shown on the left[6]. The digital logic and PWM on the right side are
not part of the oscillator and not interesting in this section. This design
functions by charging a capacitor until it reaches a speci�ed voltagelevel, VTH ,
at which point the comparator activates a transistor that quickly discharges
the capacitor to ground. In the pictured design there are several capacitors
(buttons) connected to the comparator through a mux. When the button is
touched, another capacitance is inferred in the node leading to longer charge
time. This will decrease the frequency of the oscillator.

This comparator is small and easy to implement, but it has a couple of ma-
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jor drawbacks though. Since the charge in the capacitor is dumped directly to
ground the discharge is nearly instantaneous. The capacitor is then charging
and drawing power nearly all the time, which is ine�cient. A better solution
would be one where the capacitor is slowly discharged, spending time discharg-
ing the energy it used while charging. The reason why this is more e�cient
is the fact that the RC-circuit does not consume energy during discharge, the
energy used to drive the current through the resistor is already stored in the
capacitor. Another drawback is that while the capacitor is discharging there
is a short from VDD to ground leading to an even higher powerdrain.

Figure 1.4: Relaxation oscillator design proposed by Microchip.[13]

The design proposed by Microchip in Figure 1.4 does not have the same
problems as the design by proposed by Planet Analog, yet it functions on much
the same way. In this design the voltagelevels that the capacitor oscillates
between can be independently set at the inputs of the comparators. This
gives more control over the power usage of the RC-part of the oscillator as
will be shown in Section 3.2. As in Planet Analog's design the capacitor,
Cs, is charged up until it reaches the voltage level at the positive input of
comparator C1. At this time C1 sets it output low which sets the SR-latch's
inverted output to zero. The RC-circuit then discharges into the output of the
SR-latch until the voltage across the capacitor is as low as the positive input
on C2. This gives a positive output from C2 which resets the inverted output
of the latch to one restarting the cycle.
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Since the RC-circuit is charged and discharged through the ouput of the
SR-latch it is important that the SR-latch in use can sustain the current levels
the RC-circuit demands or delivers.

Microchip's solution does not have the same shortcomings as Planet Ana-
log's design. There are no short circuits during its operation, neither from VDD

or V− to ground. When the capacitor is discharging the oscillator only con-
sumes quiescent current in the comparator and latch. Thus the oscillator will
not continuously draw power but spend some fraction of its time discharging.
The solution from Planet Analog will continuously charge its capacitor as the
discharge is done instantaneously.

1.1.3 Conclusion and choice

Due to the need for a square wave oscillator and the problems discussed in
the last part this report will not use an harmonic oscillator. The choice has
been settled on the design from Microchip in Figure 1.4 on the preceding page.
This oscillator is somewhat complex compared to the others discussed in this
chapter, but as will be shown in Chapter 3 the majority of power consumption
in the oscillator comes from the RC-circuit. The other parts contribution is
negligible compared to this so the added complexity is of no great concern.
The fact that the comparator levels can be individually set will also prove to
be a great asset in minimizing the energy consumption in the RC-circuit later
in the report.

1.2 RC-�lter

The RC-circuit is a vital part of the oscillator, and this section will look at
how it reacts to input. A series RC-circuit acts as a low-pass �lter with the
voltage across the capacitor as the output and input at the opposite side of the
resistor. A low-pass �lter will block out any high frequencies in a signal, and in
practice hinder any sudden changes in voltage at the output node. Figure 1.5
on the next page contains a schematic view of the circuit.

The de�nition of capacitance is the charge between two nodes divided by
the voltage across them, as shown in Equation 1.3 on the facing page. By
deriving the charge, Q, into the current needed to generate such a charge we
get Equation 1.4 on the next page which gives the voltage across a capacitor
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Figure 1.5: RC-circuit with input at the left hand side and output at the right.

as a function of time. As can be seen in Equation 1.4 the voltage across a
capacitor is then given as the integral of the current into it divided by its
capacitance. In the RC-circuit the current into the capacitor is given by the
the voltage across the resistor. The formula is given in Equation 1.5.

C =
Q

V
(1.3)

vC(t) =
1

C

∫ t

t0
iC(τ)dτ + vC(t0) (1.4)

iC =
vin(t)− vC(t)

R
(1.5)

These functons are the basis for deriving Vout as a function of Vin. The
result is given in Equation 1.6 for a sudden change from 0V to Vin and in 1.7
for a sudden fall from Vin to 0V , with τ given in Equation 1.8. In the left part
of Figure 1.6 on the following page the resulting output of the RC-circuit with
a sudden rise in the input is shown. Similarly the response to a sudden drop
on the input is shown at the right.

Vout = Vin(1− e
−t
τ ) (1.6)

Vout = Vine
−t
τ (1.7)

τ = RC (1.8)
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Figure 1.6: To the left the voltage across the capacitor in an RC-circuit is
shown with a sudden increase from 0V to 3.3V at the input. To the right the
same circuit experiences a sudden fall from 3.3V to 0V .

In Figure 1.6 the response of an RC-circuit is shown with the time scale
given in τ 's. As can be noted the response of the circuit is dependent on τ .
In fact, τ is the time needed for the capacitor to fall to 1/e of its initial value
as can be easily derived from Equation 1.7 if t is substituted with τ . As the
response of the RC-circuit is decided by τ it becomes apparent from Equation
1.8 that the frequency in the oscillator will be dependent on R and C.

In Figure 1.7 on the next page the response of two RC-circuits with the
same τ is shown. The power dissipated in the resistor is given as a red line in
Equation 1.9 on the facing page and is shown in the �gure together with the
output from the RC-circuit (blue line). The �gure on the left has a capacitor
half as large as the one to the right. Similarily, the RC-circuit on the right
has a resistor with half the resistance to the one on the left. As can be seen,
the response of the two circuits is exactly the same, due to the equal τ . The
important thing to observe in the �gure is how the amount of power being
dissipated in the resistor is halved in the one on the left compared to the one
with a larger capacitor. As the oscillator's frequency will be determined by the
response time of the RC-circuit this �gure shows that the power usage of the
oscillator is not dependent on the frequency in a one-to-one fashion. Power
consumption can then be optimized for a speci�c frequency.

Another thing to note from Figure 1.7 on the next page is that the power
dissipation depends on the time. From Equation 1.9 and 1.10 it can be seen
that the voltage across the resistor is dependent on the voltage across the ca-
pacitor, therefore the power dissipation in the resistor is also time dependent.
This can also be seen in Figure 1.7 on the facing page where the power dissipa-
tion falls exponentially with time. In the oscillator design proposed above the
comparator levels can be independently set. Thus it is possible to set these
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levels to values that minimizes the power dissipation in the resistor. How
the comparator levels and RC-circuit a�ect the power usage will be shown in
simulations in Section 3.2.

p(t) = iR(t)vR(t) =
vR(t)2

R
(1.9)

where

vR(t) = Vin − vC(t) (1.10)

Figure 1.7: Voltagelevel over a capacitor during charging of an RC-circuit
(blue). And the power dissipated in the resistor during the same time (red).
On the left R = 10Ω and C = 0.5F . On the right R = 5Ω and C = 1F .

1.3 Comparators

This report will not discuss how comparators operate but focus on their func-
tionality and characteristics. A comparator is an electronic unit with two
inputs that outputs a logic value depending on which of the inputs has the
highest voltage level connected to it. In Figure 1.8 on the next page a schematic
view of a basic comparator can be seen. The output of the comparator will
be VDD as long as the input at node + is larger than the input at node −. As
soon as the input at node − is larger than the input at + the output switches
to GND. Thus the output is dependent on whether the di�erence between
the + and − is negative or positive.

An aspect of comparators that needs to be considered is whether they
support rail-to-rail operation or not. If a comparator is said to have rail-to-
rail operation it is supposed to cope with inputs that vary between VDD and
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Figure 1.8: Schematic view of a basic comparator.

GND. If it does not support rail-to-rail it may be speci�ed to work only if the
inputs are smaller/larger than some speci�c value compared to VDD or GND.
E.g. the comparator may only guarantee correct operation if the inputs are at
least 1V smaller than VDD. If the comparator does not support rail-to-rail this
will put restrictions on which comparator levels can be used in the oscillator.

A �nal thing to note about comparators is that the output does not switch
momentarily when the inputs indicate change of the output. This small de-
lay will often be stated in the datasheet and will set an upper limit for the
frequency.
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Chapter 2

Theory of the digital counter

The need for a digital circuit that can monitor the frequency of the oscillator
will be discussed in this chapter together with ways to improve power usage
of such a circuit. A basic premise of its operation and that of its main com-
ponents will also be brie�y discussed. As with the rest of the design the main
goal will be to design the circuit to be as power e�cient as possible. The
problem description states that this will most likely come at the expense of
noise rejection, response time and reliability and this will have to come into
consideration. This chapter will discuss how the counter should work, what
characteristics it can or must have and theoretical implications of these choices
on the behaviour of the circuit.

For the counter to operate with as few problems as possible it is important
to design it with noise on the input in mind. As was discussed in Chapter
1.1.2 a relaxation oscillator has problems with large variations in its period.
Variations like these will lead to �uctuations in the frequency which will give
variations in the value from the counter. Since a button push will contain
other frequencies than noise some sort of �ltering can be applied to the signal
to seperate real from false button pushes. As with all else in this project the
design will have to be made with a focus on power consumption.

The counter must be able to count the number of periods of the oscillator
during a �xed time period and compare it with some known value. This way it
will be able to determine if the frequency has decreased due to a �nger touching
the button pad. What value the counter compares with can be decided in
several ways. One solution is to have a static number that it is compared to
for every sample. This solution demands little hardware and will have low

13



energy consumption, but this static value has to be preprogrammed in the
circuit and therefore have to be measured accurately before construction. In
mass production this would require a high level of consistency between each
item or testing and individual programming of each. Another problem is the
lack of dynamics in the system. The capacitance may change over time due to
athmospheric conditions, temperature and regular wear and tear. This may
cause the counter to report erronous button pushes or fail to sense real touches.
If the unit is resistant to change by the environment, and the variance in the
units produced in mass production is low, such a static comparison could be
usable. The unit would be small and easy-to-implement and most likely use
little energy. In Chapter 4 this thesis will look at the usability of such an
implementation.

If the level of noise is quite large and the frequency of the oscillator varies
over time an approach that dynamically responds to these changes will have to
be made. The unit could over time monitor the average number of periods each
sample and alter the comparison value to increase responsiveness and decrease
noise. This way it will dynamically respond to changes in the oscillator that
are not related to �ngerpresses. An easy way to calculate an average over
time is to use a low-pass �lter on the input. The �lter would hold a value
that would not change with the high frequencies of noise, but would over time
react to the low frequency changes of the environment or wear-and-tear. What
implementation of a low-pass �lter to use will be discussed and simulated in
Chapter 4.

2.1 Metastability

Metastability is a problem that can occur when the data on the input of a
register is not synchronized with the clock of the register. If the input changes
during the setup or hold time of the register the output from the register
may experience a pulse or may even oscillate[16]. A problem like this can
lead to unwanted states in the system and problems ranging from erronous
button pushes to hangups in the system. The hardware in this thesis will have
two digital logic blocks with di�erenct clock signal that will communicate.
Therefore this problem must be taken care of in the �nal design.

Metastability can be avoided by putting a chain of two or more registers
between the digital circuits that are not synchronous. This improves the re-
sistivity to metastability as the chance of metastability a�ecting the recieving
circuit through several registers and clock periods are substantially smaller
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than through a direct connection.

2.2 Dynamic Power

This section will discuss the power usage in a digital circuit, and look at ways
to minimize the di�erent factors that contribute to the power usage.

Dynamic power is the power dissipation that occurs in the circuit when the
logic state of the system changes. The power usage comes from the charging of
parasitic capacitances in the circuit when the input to the circuit changes[11].

W =
1

2
CV 2fα (2.1)

From Equation 2.1 the average dynamic power usage of a gate can be
calculated[11]. The power usage depends on four factors that is explained
below.

• C is the capacitance in the gate. It is a�ected by the gate size and trace
length.

• V is the supply voltage of the system.

• f is the frequency of the system.

• α is the switching activity in the gate. I.e. a number for how often the
gate switches. A value of 1 would indicate the gate swithces every clock
cycle.

2.2.1 Capacitance and Voltage

The powerusage in a node is highly dependent on the voltagesupply, as can be
noted in Equation 2.1 where the voltage is squared. The library used in the
power estimations has de�ned the voltage supply to be 1.62V. Even though
lowering the voltage supply is not a solution available to this project it is worth
noting as the most potent way to lower the powerusage in the system.
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The capacitance in the node is also something that is hard to a�ect from
the point of view of a system designer. This is more a characteristic of the
physical system.

2.2.2 Frequency

The frequency of the digital circuitry determines how often the system updates
its registers and is then obviously something that in�uences the dynamic power
usage in the system. After the system has been designed the lowest working
frequency should be found. A low frequency is just one simple way to a�ect
how the frequency in�uences the powerusage in the system. In the follow-
ing sections a few other approaches to minimize the frequencys impact on
powerusage will be discussed.

Clock gating is the process of only supplying a clock to a part of the
system when that system needs to update its registers. This will decrease
the powerusage in the registers, clock tree and gates in the fanout of the
registers[11]. In Figure 2.1 the process can be seen with and without clock
gating. The register on the left will only update its state if the signal control
is set high. The register on the right will be updated every clock period
consuming energy even when there is no change on the input. Clock gating
will have to be implemented manually on every part of the system where such
an approach may decrease the switching activity.
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Comparison
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output
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Figure 2.1: Clock gating of a register. The register on the left will only update
its state if the signal control is high.
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Another way to decrease the power usage in the system is to dynamically
change the frequency in the system. The goal here is to give the system a
frequency that is just high enough to make the system reach its deadlines. The
digital part of this system is supposed to poll the frequency of the oscillator
at regular intervals and calculate changes in frequency. Since most of the time
is spent waiting for the next time to sample, the frequency could be lowered
during this waiting period. While dynamically altering the frequency of the
system is a very e�ective way to minimize the powerusage in a system it is not
necessarily very applicable in this design though. The system in this thesis
does not have speci�c deadlines, and is only supposed to do a few calculations
everytime it samples the oscillator. The parts that samples the system can
just as easily be clock gated eliminating dynamic power usage all together.

2.2.3 Switching activity

The switching activity is a measure on how often a speci�c gate switches. The
best way to decrease this measure is algorithmic optimizations. In essence
doing a task the most e�cient way.

2.3 Leakage Power

While lower supply voltage decreases the dynamic power usage in a circuit it
increases the delay in gates in the system. To compensate for this the threshold
value of the transistor can be lowered too. This has the negative e�ect that
the leakage current through the transistor increases. The dominant leakage
current in transistors in current CMOS technologies is the leakage current
through the channel of a sub-threshold transistor that is o� [11]. In fact,
lowering the threshold voltage of a transistor 100mV increases the leakage
current tenfold[5]. To further complicate the problem the leakage current
increases with temperature. This is a problem that has to be given attention
when designing digital circuits.

Three approaches to lowering the leakage current is discussed in [11]. Two
of them, power-gating and body bias control are out of the scope of this project
as they require control over the hardware being used and this project will be
implemented on an FPGA for testing. Another approach that may be useful is
applying a minimum leakage vector to parts of the system while they are idle.
An MLV is a vector that minimzes the leakage current by applying input to
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a circuit that minimizes the current through the transistors. Applying MLV
will require hardware that uses both area and power and requires a great deal
of simulations of the circuit to �nd such a vector.
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Chapter 3

Design and simulations of

oscillator

This chapter will discuss the oscillator chosen in Chapter 1 and seek to �nd
optimal components and values for the RC-circuit and comparator levels.

3.1 Comparators

This section will look at the comparators and how they a�ect the oscillator.
It will seek to �nd a comparator that is as energy e�cient as possible, while
still being able to operate at the frequencies required for capacitive touch
sensing. In Table 3.1 a couple of potential comparators found at Farnell.com
are presented.

Model Quiescent Curr. Response Time Rail-to-rail Ref

Maxim MAX921-924 4µA 14µs/5µs No [7]
National S. LMC7211 7µA 11µs/4µs Yes [8]

TI TLC193 22µA 1.75µs/0.9µs Yes [12]

Table 3.1: Comparison of three comparators found on Farnell.com. All are
advertised as designed for low power applications. Responsetime is for high-to-
low output with 10mV and 100mV overdrive. Second overdrive of comparator
from TI is for 40mV overdrive.

In Table 3.1 the comparator from Texas Instruments can easily be excluded
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due to its high energy consumption compared to the others. Choosing between
the two others are not that apparent though. The comparator from Maxim
does use roughly 43% less power than the one from National Semiconductor,
but it has a responsetime that is 27% longer. It is worth noting that the
comparator from Maxim does not support rail-to-rail, it accepts inputs that
swing from the negative supply rail to within 1.3V of the positive supply.
What tips the scale in favor of Maxim in this project is the availability of
a Spice-model. With a Spice-model it is possible to accurately simulate the
behaviour of the oscillator. It also allows simulations of the comparator alone
to learn more of its behaviour before a prototype is built. The prototype will
use Maxim's comparator and all simulations in this documents will be based
on the Spice-model from Maxim.

Figure 3.1: The response of the oscillator. RC = 45.2µs is 10-100 times as high
as it will be in the �nal circuit, but is set unnaturally high in this simulation
to make the �gure is easier to comprehend.

In Figure 3.3 on page 22 the response and current consumption of the
comparator is shown using the Spice-model provided by Maxim. As voltage
at the negative input (green) increases beyond the voltage at the positive
input (black) the output switches from high to low (blue). The red line shows
the current that the comparator drains from the powersupply. The simulated
current of nearly 1mA with high output and 0.5mA while low is far from the
promised quiescent current of 4µA. This has been con�rmed by Maxim Support
as a fault in their Spice-model. The Spice-model is capable of modeling the
behaviour of the comparator, but does not model the power usage correctly.
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For that reason this thesis will assume the speci�ed current of 4µA as correct
and use the model to simulate delay and behaviour but not power.

Figure 3.2: The response of and current drawn by the MAX921.

The �nal behaviour of the oscillator will also be determined by the latency
of the comparator. As discussed above, the chosen comparator has a reported
latency of 14µs. According to the datasheet this is the typical response time
for a comparator in 3V operation and 10mV overdrive. Overdrive is the voltage
di�erence between the two inputs of the comparator. For 100mV overdrive the
latency decreases to 5µs.

The simulated results in Figure 3.3 on the next page shows some discrep-
ancy between the the data from the datasheet and the data obtained from
simulations on the spicemodel provided by Maxim. Some of this can be at-
tributed to the increased VDD in the simulated results, as this increases the
response time[7]. Even though the datasheet gives these values as typical, the
values may be overly pessimistic. As the Spice-model is presented as an exact
representation of the comparator it is likely that the response time is lower
than what the data sheet states. In Table 3.2 on page 24 values according to
both the datasheet and simulations are presented for comparison. Note that
there is noe di�erence between 1000mV and 100mV overdrive according to the
Spice-model.

In the �nal oscillator the input will grow exponentially, and will have an
overdrive that is lower than 100mV for a very short time. This can be seen in
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Figure 3.3: The response of the Maxim MAX921 comparator with 10mV, 100
mV and 1000mV overdrive. Note the di�erence in responsetime with di�erent
overdrives.

Figure 3.4 on the next page where the overdrive is over 100mV after roughly
0.5µs. As long as the oscillator reaches an overdrive in such a short time, it
can be assumed that the responsetime will be closer to the results for 100mV
than 10mV. From Figure 3.4 it can also be observed how the voltage across
the capacitor does not vary between the comparator levels at high frequencies.
Instead the latency in the comparator makes the RC-circuit oscillate between
values lower than compmin and higher than compmax. To get a more cor-
rect estimation of the power usage in a speci�c oscillator it will therefore be
important to measure the real voltages it oscillates between.

These simulations are useful for providing a pointer to what will most
likely be a maximum frequency from the oscillator. As shown in Figure 3.1 on
page 20 compared to Figure 3.4 on the next page the impact of the comparator
on the frequency is dependent on the RC-part of the circuit. But based on
the theoretical values from the datasheet it's impossible to achieve a frequency
above 100kHZ assuming 100mV overdrive. This is assuming there is no time
used to charging/discharging the RC-circuit. If we depend more on the results
from the simulations we will be able to achieve frequencies in the region of
0.5Mhz. If the comparators response time fast enough for such frequencies
we will have greater freedom in designing the RC-circuit to give a frequency
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Figure 3.4: The response of the oscillator with C = 15pF, C = 150kHz,
compmin = 2V and compmax = 2.3V.
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that �ts our needs for both response time and power usage. This report
assumes that the spice-model of the comparator designed by Maxim is correct
an that the maximum frequency is well beyond 100kHZ, if not as large as
nearly 0.6MHz as indicated by the simulations.

Theoretical 3V Simulated 3.3V
Overdrive Responstime Frequency Responsetime Frequency
10mV 14µs 35.7kHz 3.5µs 143kHz
100mV 5µs 100kHz 875ns 571.5kHz
1000mV N/A N/A 875ns 571.5kHz

Table 3.2: Theoretical and simulated response times and maximum frequencies
for the comparators with di�erent levels of overdrive.

3.2 RC-circuit

The RC-circuit is the part of the oscillator that will decide the frequency and it
is important to simulate this part thoroughly to obtain data on how it a�ects
power usage. How long it takes to charge the capacitor up to a certain voltage
level is dependent on the size of the capacitor and the current going into it.
The current into the capacitor is dependent on the resistance between the
capacitor and the output of the SR-latch. In Chapter 1.2 the charging and
discharging of an RC-circuit is explained thorougly and the relation between
the RC-circuit, frequency and powerusage is discussed.

In Chapter 1.2 it was found that for a given τ the power usage is reduced
inversely proportional to the size of the resistor. Hence the size of the resistor
should be maximised when a τ that gives a wanted frequency is found. A
smaller capacitance may lead to unwanted situations though. Since the voltage
across the capacitor is dependent on the current into it as given in Equation 1.4
on page 9 noise in the system will a�ect the response of the RC-circuit more
when the capacitance is small[2]. The size of the capacitor is also limited to
the size of availiable capacitors and the capcitance in the button itself. A small
capacitance is wanted as the capacitance inferred in the circuit with a button
push will be relatively larger and thus easier to detect.

To simulate the characteristics of an RC-circuit with speci�c voltage supply,
resistance, capacitance and comparator levels a computer program has been
written in C. The program can be reviewed in Appendix A. This program
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simulates the RC-circuit during one cycle of the oscillation. I.e. the charging
and discharging of the RC-circuit. It can then output frequency, duty cycle,
energy usage per cycle or energy usage per second for all combinations of
comparator levels.

It is of interest to know how changing the resistance and capacitance a�ects
the power usage and frequency of the oscillator. It has already been discussed
how the frequency depends on τ = RC and it is known that the frequency
changes with τ . It has also been discussed how increasing the resistance and
decreasing the capacitance so τ is constant decreases the power usage while
keeping the frequency stable. How the circuit is a�ected by changing only one
of the values is not known though.
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Figure 3.5: The response of the frequency and power usage as the resistance
goes from 10kΩ to 100kΩ. Compmin = 0.5V. Compmax = 2.5V. C = 50pF.

In Figure 3.5 the resistance is increased from 10kΩ to 100kΩ while the
other characteristics of the oscillator are kept constant. As can be noted
both frequency and power sinks with increasing resistance. The decreasing
frequency is obvious as increased resistance gives increased τ with constant
capacitance. As the resistance is increased the current into the capacitor is
also decreased leading to lower power dissipated in the resistor.

In Figure 3.6 on the following page the capacitance is increased from 10pF
to 100pF while the other characteristics are kept constant. As with the in-

25



10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

Capacitance [pF]

F
re

qu
en

cy
 [H

z]
 (

bl
ue

) 
/ P

ow
er

 [n
W

] (
gr

ee
n)

Figure 3.6: The response of the frequency and power usage as the capacitance
goes from 10pF to 100pF. Compmin = 0.5V. Compmax = 2.5V. R = 100kΩ.

creasing resistance in Figure 3.5 the frequency is decreasing with increasing
capacitance. The interesting di�erence between altering the capacitance as
opposed to the resistance is how the power usage remains constant. The rea-
son for this behaviour is how decreasing capacitance a�ects the response of
the RC-circuit. If the capacitance is decreased by 50% it will take 50% less
energy to charge the capacitor from one voltage level to another. At the same
time though, the frequency is doubled due to the 50% decrease in τ . As the
energy used per cycle is halved, the number of cycles per second is doubled
giving zero change in the power usage of the circuit.

On the following pages four simulations are shown. All these are simula-
tions on the behaviour of an RC-circuit with C = 44pF and R = 85kΩ. The
choice of τ are more or less arbitrary, the important thing is the comparison
between the �gures, and the general shape of them. These �gures will be used
to explain the comparator levels in�uence on energy usage per cycle, frequency,
power usage and duty cycle.

Figure 3.7 on the next page shows how much energy is consumed when
charging the RC-circuit from the low comparator level to the high. The cir-
cuit behaves as expected from the theory in Chapter 1.2, as the circuit con-
sumes most energy when charged from 0V to 3.3V. It is worth commenting the
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Figure 3.7: The energy usage for di�erent values of compmin and compmax.
C = 47pF R = 85kΩ

di�erence in how the energy consumptions falls depending on compmin and
compmax. As was shown in Figure 1.7 on page 11 the power dissipation falls
exponentially with rising voltage across the capacitor. Because of this it is
more energy e�cient per cycle to never discharge the capacitor completely. In
the �gure this can be observed as increased acceleration of energy consump-
tion when compmin is decreased. On the other hand, the growth in power
consumption slows down as compmax increases. These results are the same as
foretold in the theory part and stand to con�rm the theory. To summarize, the
simulations indicate that to achieve an energy consumption as low as possible
the RC-circuit should operate between voltage levels as high as possible. The
question is how this a�ects the frequency of the system.

In Figure 3.8 on the next page the frequency at di�erent comparator levels
are shown. The �gure is capped at 250kHZ to increase visibility as the fre-
quency approaches in�nty when the di�erence between compmin and compmax
approaches zero. There are no surprises in this �gure as it only shows that
closer gap between compmin and compmax gives higher frequency. One thing
to mention here is that a speci�c di�erence between comparator levels does
not give a speci�c frequency. This is not easily observed in Figure 3.8, but can
be seen in Table 3.3 on page 29. For instance the frequency while oscillating
between 0.5V and 1V is di�erent than between 2V and 2.5V. This comes from
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Figure 3.8: The frequency of the rc-circuit for di�erent values of compmin and
compmax. C = 47pF R = 85kΩ
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the non-linearity in the RC-circuits response.

min\max[V] 1 1,5 2 2,5 3 3,2

0,5 281 135 162 443 116 198 87 443 62 174 48 239
1,0 0 384 467 197 981 126 887 79 821 58 224
1,5 0 0 407 830 189 322 100 705 68 606
2,0 0 0 0 352 982 133 690 82 467
2,5 0 0 0 0 215 100 107 573
3,0 0 0 0 0 0 215 146

Table 3.3: Theoretical and simulated resposnsetimes and maximum frequen-
cies for the comparators with di�erent levels of overdrive.
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Figure 3.9: The powerusage of the RC-circuit for di�erent values of compmin
and compmax. C = 47pF R = 85kΩ

Figure 3.9 is the really interesting �gure when it comes to power usage of
the RC-circuit. It shows how much power the RC-circuit consumes, i.e. the
amount of Jules/second. The most important aspect here is that the power
usage is lowest when the comparator levels are set as high as possible. This is
because it takes much longer time for the circuit to go from e.g. 2.5V to 2.6V
than 0.0V to 0.1V with a 3.3V input. Even though the energy consumption to
increase the voltage across the capacitor a speci�c value is the same no matter
where in the voltage range you do the increase, the lower frequency gives a
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lower energy consumption per second. As can be observed from the �gure,
the di�erence between worst case power usage and best case for this speci�c
oscillator is in the order of two magnitudes. Thus optimizing the comparator
levels is a very e�cient way of optimizing the power consumed in the oscillator.
The most important deduction that can be made from the �gure is that all the
regions in the middle of the voltageregion give too high energy consumption.
The oscillator will most likely have to oscillate between two high voltage levels,
or two very low ones to achieve minimal power usage.
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Figure 3.10: The dutycycle of the rc-circuit for di�erent values of compmin
and compmax. C = 47pF R = 85kΩ

The �nal data from the simulations of the RC-circuit can be observed in
Figure 3.10. Here the duty cycle of the oscillator can be seen. Duty cycle is
the percentage of time that a system is in an active state. In this case it is a
number for how long the output of the oscillator is high, and how long it is low.
If the dutcy cycle is low or high for a too small fraction of time during a period
the digital circuit may have problems noticing the brief transition to this state.
The results from Figure 3.9 indicate that to use as little power as possible the
oscillator should operate between two very high voltages. According to Figure
3.10 this will lead to a very high duty cycle. Since the digital hardware will
be implemented on an FPGA that supports a clock speed of 50 MHZ, and the
oscillator will operate in the kHZ region duty cycle will probably not be of any
great concern though.
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3.3 SR-latch

In the design of the oscillator there is a SR-latch that holds the value from the
oscillator and sinks/sources the current to the RC-circuit. This latch could be
implemented in the hardware too if it is capable of coping with the current.
But in an e�ort to keep the oscillator separate from the digital hardware
it has been implemented on the PCB in this project. Since the latch can
be incorporated in the the digital hardware at little cost to area and power
consumption it has not been invested much time in �nding a unit that is small
and uses little power. The latch used in prototype is the MC14043B from On
Semiconductor[10]. According to the datasheet this latch is capable of sinking
or sourcing 10mA, more than enough to handle the current to and from the
RC-circuit.
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Chapter 4

Design and simulations of the

digital counter

This chapter will discuss the digital part of the system. The digital part is in
charge of counting the number of periods on the oscillator during a set time
period and deciding if a �nger is touching the button or not and signaling that
to the general system it is a part of. First this chapter will discuss the counter
and look at how long the sampling period should be. After that it will discuss
�ltering of the input signal and detection of change in frequency. Lastly, it
will discuss the FSM and simulate its behaviour.

Oscillator Period counter FSM System

zero

valuefreq data

Digital logic

Figure 4.1: Overview of the digital logic. The oscillator functions as a clock for
the Period Counter which sends it value to the FSM. The FSM monitors and
resets the Period Counter and reports data and button pushes to the general
system.
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In Figure 4.1 on the previous page an overview of the digital system is
shown. Since the design consists of two parts with di�erent clock signals the
design will be split into these two part. First there is a need for a counter that
counts the periods of the oscillator. This unit is shown to the left in Figure
4.1. Secondly there have to be a Finite State Machine that polls this counter
at regular intervals and monitors the change over time. This calls for some
sort of memory in the FSM that it can compare the current value with. To
avoid over�ow in the counter the bit length has to be large enough for the
counter to not over�ow during a sampling period. When the FSM reads a new
sample from the Period Counter it also resets the counter to zero.

4.1 Period Counter

Before the FSM is designed the Period Counter has to be discussed. As was
noted in [1] a relaxation oscillator usually has a large level of noise, or so called
jitter, in the duration of its period. It needs to be known to what degree
this a�ects the value out from the counter. In Figure 4.2 on the facing page
the coe�ecient of variation is shown for di�erent sample periods and di�erent
standard deviation on the period of the oscillator. The coe�ecient of variation
is shown in Equation 4.1 and as can be seen is de�ned as standard deviation,
σ, divided by the mean, µ, of a set of data. Due to this independency on
the mean, COV is a good way of comparing variance in systems with di�erent
mean.

COV =
σ

µ
(4.1)

The data used in the �gure has been generated with Matlab and the period
of the oscillator has gaussian noise with di�erent standard deviations applied.
The mean of the oscillators period has been 50 time units. Since the standard
deviation of the noise goes from 1 to 50 it becomes apparent that noise lev-
els with standard deviation in the high regions of those simulated are pretty
unlikely. As gaussian noise has roughly 95% of its values between µ± 2σ the
simulations with µ = 50 and σ = 50 would indicate that the period would be
between −50 and 150 95% percent of the time. Noise levels leading to negative
period is of course impossible and periods that are three times as long as the
mean is also unlikely.

In Figure 4.2 it can be observed that the COV is not particulary larger
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Figure 4.2: The coe�ecient of variation for di�erent sampling periods and
levels of noise in the system.

with σ = 25 than σ = 1 for the larger sampling periods. Thus the period of
sampling will itself be a sort of �lter on the period from the oscillator as noise
has µ = 0. In other words, over time the variations in period will exclude
each other leading to low level of noise. So a longer sampling period will give
less noise on the value from the Period Counter. A table with the standard
deviations in Figure 4.2 can be seen in Appendix G.

4.2 Detection of change in frequency

Detection of change in frequency is done through monitoring the value from
the Period Counter which counts the number of periods in the last sample
period. This detection is the main task of the FSM. This section will look at
FIR- and IIR-�lters and how good they are at �ltering simulated noisy input
from the Period Counter. As discussed in Chapter 2 the use of a dynamic
comparison value will be explored. A �lter will remove random �uctuations
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with high frequency but will keep the slow changes over time thus giving a
value that can be used as an average over time.

4.2.1 FIR-�lter

A FIR �lter is a digital �lter where there is no internal feedback. The output
depends on a �nite number of inputs time shifted trough the use of regis-
ters. If a FIR �lter is to be implemented it is possible to give the di�erent
inputs di�erent weight in the �nal results thereby making more recent samples
more dominant than older inputs. Alternatively, all the inputs can be equally
weighted so the output is merely an average of the k last inputs. The value
of k determines the memory usage as each sample will have to be stored in
registers. In Equation 4.2 the output from such a �lter can be seen with k

input.

y(n) = a0x(n) + a1x(n− 1) + a2x(n− 2) + ...+ akx(n− k) (4.2)

The coe�ecients a0..ak decide how much each of the last k values are
weighted. Since there is no way to know which samples are closer to the
real value it is impossible to weigh the samples according to expected levels of
noise. But since the signal might change over time due to temperature og at-
mospheric changes it might be of value to weigh the most recent values higher
than the older ones. Although, this depends on how many samples are stored
at a time as with fever samples all the samples will be within a small time
frame. It is important that the sum of the coe�ecients is 1, that is the equation∑k

i=1 ai = 1 has to hold. If not the output will either approach in�nty or zero
depending on whether the sum is larger or smaller than 1. In Figure 4.3 on the
facing page the �lters in Table 4.1 on page 38 have been applied to a signal.

Since this is a digital system the choice of coe�ecients has great impact
on the size and power consumption of the system. If a coe�ecient is set to
be a random rational number there would be a need for multipliers in the
system. If the coe�ecients are set to be any number n where n = 2k and k is
an integer it is possible to obtain the �nal result by shifting the signal. E.g.
24yn = y(n) << 4 which is free to implement in hardware. Every coe�ecient
should then be set to such a number to save power consumption.

A FIR �lter like the one in Equation 4.2 can also be seen in Figure 4.10.
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Figure 4.3: Input (top left) and outputs of di�erent FIR-�lters. Top right and
bottom left has wheigthed inputs while bottom right is normal average of last
16 inputs.
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Figure Coe�ecients k Registers Adders

Upper right ai = 2−i where ak = ak−1 4 3 3

Lower left ai = 2−i where ak = ak−1 16 15 15

Lower right ai = 1
16

16 15 15

Table 4.1: Comparison of the �lters in Figure 4.3.

Here it can easily be observed that the �lter needs k−1 storage elements with
a bit length equal to the bit length of the counter. It also needs k − 1 adders.
This will in the end add up to quite alot of hardware that drains energy. In
Figure 4.3 on the preceding page this kind of �lter has been applied three times
to a signal. The input consists of 1000 samples with µ = 1000 and σ = 20
followed by 1000 samples with µ = 900 and σ = 20 . This simulates inputs
from the Period Counter before and after a drop in the frequency by 10%. The
input is then �ltered by the �lters shown in Table 4.1.

In Figure 4.3 on the preceding page the input signal and the output from
the three FIR-�lters are shown. Note that there is no great di�erence between
the output from the upper right and the lower left �lters. This is because the
coe�ecients quickly make the inputs irrelevant. E.g. coe�ecient a3 = 2−3 = 1

8

while a16 = 2−16 = 1
65536

. In other words, the output is greatly dominated by
the �rst few inputs. In fact, the most recent input has a weight of 50% on
the output. In the �lter on the lower right every input is weighted equal. The
output from this �lter is then a normal average of the last 16 inputs.

In Figure 4.4 on the next page the response of four �lters where the inputs
are weighted equal are shown on the right. On the left the input is shown. As
can be seen in the �gure the more inputs the �lter has, the less noise there
is on the output and the slower response the �lter has. In the �gure the red
output has two inputs, green has four, blue has eight and black has sixteen.

4.2.2 IIR-�lter

Another approach is to use an IIR �lter. A IIR-�lter has internal feedback
that makes the response of the �lter last inde�netely. In Equation 4.3 on
the facing page the equation for a IIR-�lter is shown. Here the output y(n)
depends on a former value of y, y(n− 1). Since the output depends on former
outputs instant changes in the input will not a�ect the output instantaneously.
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Figure 4.4: Response of FIR-�lters with equal coe�ecients. Red output is
average over 2 last inputs. Green, 4 inputs. Blue, 8 inputs. Black, 16 inputs.

Instead, only changes to the input that last over time will a�ect the output.
Unlike the FIR-�lter discussed above this �lter does not need to store inputs
over time, it is only dependent on the current input and the old output in its
calculations. Since the input and output will be stored in a registers either
way the cost in hardware is only the calculation of bx(n) and ay(n − 1) and
an adder to sum the results.

The coe�ecients of the �lter should be discussed. In this project a > b
so the current input has less weight in the output than the last output. To
avoid the ouput growing larger and larger or slowly approaching zero the sum
of the coe�ecients would have to equal 1. In other words, a + b = 1. With
this relation between the coe�ecients the output would be a weighted average
of the former output and the current input.

y(n) = ay(n− 1) + bx(n) (4.3)

In Figure 4.5 on page 41 an input simulating the counts from the periodic
counter has been �ltered by three di�erent IIR-�lters on the form in Equation
4.3. The input can be seen on the upper left, it consists of 1000 samples with
µ = 1000 and σ = 20 simulating the counts from the period counter. After
1000 samples the frequency falls and the signal then consist of 1000 samples
with µ = 900 and σ = 20. Together this would be how the period counter
would react to a rather noisy signal from the oscillator if a �nger pushed it
reducing the frequency by 10%.
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The coe�ecients have to be set in way to make it as easy as possible to
compute the new output. As discussed above the coe�ecients should be on the
form 2k where k is an integer. For a IIR-�lter where the output only depends
on two values this would only allow the coe�ecient 1

2
. Since the former output

should be weighted higher than the input just shifting the signals will not be
su�cient in this case. The reason for setting A

B
y(n−1) = y(n−1)− 1

B
y(n−1)

where B−A = 1 is to avoid the need for a multiplier in the logic. This way the
fractions can be done by shifting and subtracting. The hardware needed to
�lter the signal is two adders assuming registers to hold the input and output
already exists in the circuit.

Figure Coe�. a Coe�. b Equation

Upper right 3
4

1
4

y(n) = y(n− 1)− 1
4
y(n− 1) + 1

4
x(n)

Lower left 1
8

7
8

y(n) = y(n− 1)− 1
8
y(n− 1) + 1

8
x(n)

Lower right 1
16

15
16

y(n) = y(n− 1)− 1
16
y(n− 1) + 1

16
x(n)

Table 4.2: Comparison of the �lters in Figure 4.5. Every �lter needs two
adders and two registers.

In Table 4.2 the coe�ecients and the �nal calculation needed to be done
is shown for three �lters. The resulting signals from the �lters can be seen in
Figure 4.5. The input is quite noisy and as can be seen the input before a
button push is sometimes lower than the highest values after a button push.
Thus the noise is too large to use a static value lower than 1000 as the threshold
value for detecting button pushes. Even though the signal goes below e.g. 900
only after the button push the signal is so full of noise that there would be
indicated several buttonpushes after eachother if a threshold of 900 was used.

After �ltering the signal though, it would be possible to detect button
pushes with a static value with all the �lters. E.g. the system could be set
to signal button push whenever the �ltered signal was lower than 950. As has
been discussed earlier a dynamic solution is desirable. The values from two
�lters with di�erent coe�ecients could be compared. In Figure 4.6 on page 42
the response of the three �lters from Table 4.2 can be compared to the input.
Here it can be observed how the �lter with b = 1

16
(green) has much slower

response and contains much less noise than the �lter with b = 1
4
(blue). It

could then be possible to compare the values from these two �lters to determine
button pushes thereby eliminating both the use of the noisy input signal and
static values in the comparison. This solution is more complex leading to
higher power usage and area. It is therefore important to do estimations of
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Figure 4.5: Input (top left) and outputs of di�erent IIR-�lters. Top right:
a = 3

4
. Bottom left: a = 7

8
. Bottom right: a = 15

16
. Ref. Equation 4.3.

a+ b = 1 for all �lters.

the power usage of both a static and a dynamic approach after the hardware
has been written in Verilog.

4.2.3 Final considerations regarding �lter

All the �lters simulated above managed to �lter the applied signal to a degree
that it would be possible to detect button pushes. The choice of which �lters to
use later in the project depends only on the amount of power and area used by
the di�erent implementations. In Table 4.3 on the following page a comparison
of all the �lters simlated in the last two sections are shown. The table focuses
on the hardware needed for the �lters and assumes that the current input and
last output are already stored in registers in the system.
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Figure 4.6: Response of di�erent IIR-�lters. Blue output has a = 3
4
. Red,

a = 7
8
. Green, a = 15

16
.

Filter # Type Figure Regs Adders Largest shift

1 FIR 4.3 UR 3 4 4
2 FIR 4.3 BL 15 15 16
3 FIR 4.3 BR 15 15 16

4 IIR 4.5 UR 0 2 2
5 IIR 4.5 BL 0 2 3
6 IIR 4.5 BR 0 2 4

Table 4.3: Comparison of the hardware needed in the �lters simulated above.
It is assumed that the system already has the current input and the last output
stored in a register. UR = upper right. BL = bottom left.

As can be seen the IIR-�lters generally need much less hardware. This
mainly comes from the fact that they calculate their outputs from only two
inputs. Another aspect that has yet to be discussed is the e�ect of shifting on
the signals. In Chapter 4.1 it was found that a sampling period that gave a
value from the Period Counter in the region of a few thousand would give a
low level of noise. As every added bit in the sampling increases the size and
power consumption it is in this projects interest to keep the bit length of the
counter as low as possible. A bit length of 12 would give a maximum value
from the counter of 4096. By setting the period of the FSM to such a value
that the counter is as close as possible to 4096 without experiencing over�ow
due to noise the level of noise from the counter will be held at a minimum
for that speci�c bit length. With a 12 bit signal �lter two and three in Table
4.3 are useless as they shift the signal 16 bits. Likewise, �lter six shifts the
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value 8 bits, that leaves only 4 bits left which will most likely give too low
resolution on the signal. If �lter one, four and �ve are compared in Figure 4.3
and 4.5 it can be seen that �lter one has a much higher level of noise. When
the increased size of FIR-�lters are taken into account the use of IIR-�lters
seems apparent. It is therefore assumed that IIR-�lters will be the most cost
e�cient and noise resistant solution and they will be used in the rest of the
thesis.

4.3 Design of FSM

Now that it is known how the length of the sample period a�ects noise from
the Period Counter choices can be made on the functionality of the FSM. This
section will start with a look at the sequence of tasks the FSM is supposed to
do. After that, it will discuss the size of the hardware with di�erent �lters. It
will then look at a design choice that has had to be made before it �nishes by
simulating four di�erent �ltering techniques to �nd the response time of the
system.

calc

wait

meta1

reset

meta2read

counter = period

[zero = 1]

counter < period

[zero = 0]

If(freq much lower than normal)

   button_push = 1

Else

   button_push = 0

Figure 4.7: Finite State Machine of the system.
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In Figure 4.7 on the previous page the Finite State Machine is shown. Once
a signal, counter, has signaled that the FSM has waited a speci�c time period
the FSM starts to do another sample of the period counter. As discussed in
Chapter 2.1 the value read from the counter has to go through a chain of two
registers to avoid metastability. This is done in state meta1 and meta2 and
requires two clockperiods. In the next state, read, the unit reads the data from
the registers and applies �lters to the signal if such an approach is used. In
the �nal state, calc, the signals are compared, and the unit will signal whether
the button has been pushed or not. Finally, it goes back to the state wait and
waits until it is time for a new sample. The reset state is the state the system
goes to after a reset or at startup, in this state the FSM's registers are set to
zero and the system prepared for operation.

The design of the FSM is more or less the same no matter what sort of
�ltering technique is used and whether the values are dynamically or statically
compared. In Figure 4.8 a block view of the FSM and the logic it controls are
shown with a generic �lter module.
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zero
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ystem

Clock GatingClock Gating Clock Gating

Filter

Metastability

Comparison

FSM

Figure 4.8: The Finite State Machine and the logic it controls.

The hardware required in this project is not very large as can be seen from
the �gure. There are in essence four seperate modules in the design. At the
bottom is the Finite State Machine that controls the system and counts the
time needed to wait between sampling periods. To the upper left in Figure 4.8
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the chain of registers that will handle metastability is shown. As the values
from these are only needed once during a sampling period a clock gate has
been applied so they only update their state when a new sample should be
read. In the middle the �lter is shown. As noted above only a generic version
is shown here. As the metastability module, the �lter has been clock gates
since it only needs to update its registers when a new sample is read. The �nal
module is the comparison module which will do a comparison between �ltered
signal(s) and/or the current input depending on the �ltering technique used.
Like the other modules it has been clock gated to only update its registers
when needed.

x(n)

y(n-1)

Adder

Adder

sr kinv

carry = 1

A

B

A

B

A + B + 1

A + B

Figure 4.9: An IIR-�lter with with output y(n) = 2k−1
2k

y(n− 1) + 1
2k
x(n). sr k

is a k -bit binary right shift, in other words division by a factor of 2k.

In Figure 4.9 the hardware of an IIR-�lter is shown. As can be seen there is
feedback from the output that makes the �lter have an in�nite input response.
For the special case k = 2 the inverter, shift operator and carry in may be
removed and the input on the topmost adder replaced by 1

2
y(n−1)+ 1

4
y(n−1) =

3
4
y(n−1). This would save the inverter and carry in in the circuit. For k other

than 2 this solution would require additional adders.

In Figure 4.10 on the following page the hardware of a FIR-�lter is shown.
As discussed in Chapter 4.2.1 this design uses k registers to store the last k
inputs. In addition it uses several adders that not only consume power and
area but give a very long critical path thus decreasing the maximum frequency
of the system. This is not necessarily a problem in this design as low frequency
is desirable, but it is worth noting.
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Figure 4.10: A FIR-�lter with output y(n) = 1
2
x(n)+ 1

4
x(n−1)+...+ 1

2k
x(n−k).

4.3.1 Erroneous button pushes due to �lter response

Before the results from the simulations are presented a design choice has to
be commented. In Figure 4.11 on the next page input and data from the �lter
of an implementation of the digital circuitry simulated in ModelSim is shown.
The input (blue) drives the two IIR-�lters, green and red. The detection of
button pushes in this design is done when the fast �lter is lower than slow
�lter. But as the �lters rise to their �nal values it can be seen that the the
slow �lter stabilizes at a value greater than the slow one. This leads to a
false button push at sample 45. Since the slow �lter is supposed to be an
average over time it should not be a�ected by button pushes. Therefore its
value will not be updated as long as a button push is detected. As the slow
�lter stabilizes above the fast �lter in Figure 4.11 this implementation will not
work as the �lter will continuously signal a button push after the �lters have
stabilized.

One way to recti�y this could be to demand that the fast �lter had to be a
certain value lower than the slow, not just lower. But this would add an adder
in the comparison module as can be seen in Equation 4.4.

fast < slow − value (4.4)

Instead the three LSB of the fast and slow �lter signal has been set to
constantly be zero for the slow �lter and one for the fast �lter. This ensures
that the fast �lter signal will stabilize at a higher value than the slow �lter.
This has the added bene�t of less switching in the circuit as three of the signals,
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Figure 4.11: Input to the �lter(blue) and response of two IIR-�lters. One
with b = 2−2 (green) and one with b =−3 (red). In this �lter the comparison
between the slow �lter and the fast �lter gives detection of button push when
the �lters stabilize. Frequency of oscillator: 80kHz. Sample period: 25.15ms.
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in this case, twelve bit are static. In Figure 4.12 the result can be seen for a
circuit and input that is the same as in Figure 4.11.
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Figure 4.12: Input to the �lter(blue) and response of two IIR-�lters. One with
b = 2−2 (green) and one with b =−3 (red). In this �lter the slow and fast �lters
stabilize at values that avoids false output. Frequency of oscillator: 80kHz.
Sample period: 25.15 ms.

As can be seen from the �gure the �lters stabilize at di�erent values now.
There are no erroneous button pushes detected. And the real button push is
detected in a few sampling periods.

The choice of setting three LSB static as opposed to perhaps the two LSB
must be decided experimentally for a particular design.

4.3.2 Response of the simulated hardware

The Verilog code for the FSM and the logic it controls can be viewed in Ap-
pendix B. The wave forms from ModelSim are not interesting themselves other
than to prove that the hardware operates as desired. Therefore simulations
can be reviewed in Appendix D How the digital �lters responds are more in-
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teresting, and the data from simulations in ModelSim will be discussed in this
section.

The response time of di�erent �lter designs are of interest as they give
insight into the delay from a button push occurs until the hardware detects
the decreased frequency. It is also of interest to know how the �lter responds
to button pushes at di�erent frequencies of the oscillator. In this section
four �ltering techniques will be compared for four di�erent frequencies in the
oscillator. As discussed earlier the sampling period will be tuned to give a
value from the Period Counter that lies as close to possible as the max value
of a 12 bit signal without risking over�ow.

A choice on which �lters to compare and what frequencies from the oscil-
lator to use must be made. Energy Micro AS has requested that the digital
logic operates at 32.768kHZ or any 2k division of that frequency. The reason
for this is the availability of this frequency to logic in their microcontrollers
while the microcontroller core is in sleep mode. In these simulations the digital
circuits will operate a 8.192kHZ. In Section 4.2.3 it was found that IIR-�lters
with b = 2−2 and b = 2−3 are of greatest interest. Thus combinations of these,
static comparison values and the un�ltered input will be tested with di�erent
frequencies.

Comparison \ kHz Freq. drop 50 100 150 250

IIRb=2−2 < IIRb=2−3
10% 368 82 40 35
20% 140 43 40 19

IIRb=2−2 < 3600
10% 297 208 118 99
20% 143 92 66 35

input < IIRb=2−2
10% 67 14 14 3
20% 67 14 14 3

input < 3600
10% 67 14 14 3
20% 67 14 14 3

Sampling Period 76 38 25 15

Table 4.4: Response time of di�erent �lter techniques to detect drop i fre-
quency. All numbers in ms. Digital clock is 8192Hz.

In Table 4.4 the response time of di�erent �ltering techniques are shown.
The coloumn on the left shows the requirement for the FSM to signal that
a button push has occured. For every combination of �lter technique and
frequency on the oscillator both a 10% drop and a 20% drop has been simu-
lated. The sampling period has been tuned so a regular sample will be roughly
3800 before button push. In ModelSim the circuit has run with the oscillator

49



at the speci�ed frequency for a time long enough for the �lters to stabilize.
The frequency has then suddenly dropped and the time between the frequency
droppes and the FSM signals a button push has been measured.

As can be seen there seems to be a strong correlation between frequency
of the oscillator and response time of the digital circuit. This comes at the
cost of increased switching activity in the circuit as a lower sampling period
increases the frequency of updating registers in the �lter. The results in the
bottom two rows needs to be commented. In these comparisons the input
value is compared to either an average over time (row three) or a static value
(row four). Since the input has immidiate response time to the frequency
change the module will signal that a button push has occured as soon as the
FSM updates its registers. If the drop in frequency happens close enough to
a sample the value from the counter may not drop enough to signal a button
push though. Either way, the response time will never be larger than two
sample periods, and usually shorter than one as long as the frequency change
is large enough.

A well known rule of thumb is that the perceived response time should
be less than 100 ms [4]. Recent research has found this to be too strict for
cases where the user is pushing a button and that 150ms is closer to the
average threshold of noticable delay[4]. Since the hardware described in this
report is connected to some larger system its response time should be low
enough for the general system to respond to the button push within reasonable
time. The oscillators frequency will have to be determined according to which
�ltering technique is used and the bit length. Especially the solutions with
�ltered input (top two) needs higher frequency on the oscillator to achieve a
responsetime that would not be perceived as delay by a human operator. In
Section 3.1 the maximum frequency of the system is found to be 571.5kHz
in the best simulated case, but might be lower than 100kHz according to the
datasheet of the comparator used in this design. The maximum frequency of
the oscillator will determine which of the implementations in Table 4.4 are
usable when it comes to response time.
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Chapter 5

Prototype and other hardware and

tools

The problem description calls for a prototype of the capacitive touch system
to be built and tested. Design of the prototype and the FPGA that is used
for the digital part is discussed in this chapter.

5.1 Prototype

There are several ways to build a prototype for this project. One simple
solution would be to build everything on a breadboard. A breadboard would
give good opportunity to alter the design on the �y, and try di�erent setups
(e.g. changing the RC-circuit or comparator levels) after the prototype is built.
A downside though, is the probability of errors as the system is constantly
changed.

The solution this thesis has gone for is to design the layout of the oscillator
and order a PCB from a supplier. As long as the layout is correct, the resulting
PCB should have less error sources as there is less risk of bad soldering, loops
in signal- or ground paths and better control over capacitance in signal paths.
Another good reason is the need for buttons that are supposed to sense the
button pushes, on a breadboard there is no way to make such surfaces unless
they are bought from a supplier. As the goal of this project is to build the
system from scratch store-bought sensors are unwanted.
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In Figure 5.1 the layout of the prototype is shown side-by-side of the �nal
PCB delivered from the supplier. On the card there are four oscillators that
operate independently of eachother. By having four oscillators on each card
an error in the design on one of them does not result in a useless PCB. By
ordering a few cards there is also possible to test several combinations of RC-
circuit and comparator levels. The whole card has a PATA-connector at the
bottom that is used to connect the card to the development board discussed in
Chapter 5.2. Connection between the PCB and prototype can then be more
direct and potentially avoid issues with crosstalk and capacitance in the paths
which could occur in a cable.

Figure 5.1: The layout of the PCB containing the prototype. It consists of
four seperate oscillators connected to the development board through a PATA
connector.

The four green squares in Figure 5.1 are the capacitive touch areas. These
are connected to the V− node in Figure 1.4 on page 7. Thus a �nger touching
the pad will induce a capacitance in that node increasing the τ of the RC-
circuit. On the backplane of the PCB there is a groundplane that is as large
as all four buttons. The reason for this is to give some capacitance in the pad
it self. Due to concern that the capacitance in the pad would be so large that
the �ngers induced capacitance would not reduce the frequency signi�cantly
the backplane was removed on some of the pads.
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Figure 5.2: A picture of Altera's DE2 Development Board with the Cyclone
II FPGA used to test the digital hardware.

5.2 Development board

The digital part of the problem description is supposed to be implemented on
an FPGA to test its functionality in practice. The FPGA used is a Cyclone
II EP2C35 on a DE2 Development Board as this is known to the author.
Together with the hardware designed in this project a soft-core CPU from
Altera, Nios II, has been used to monitor the circuit. Due to the much higher
clock frequency of the Nios II compared to the hardware designed in this
project it has been possible to program the Nios to poll the output from the
hardware and transmit every sample to a computer over RS-232. The program
running on the Nios II can be reviewed in Appendix F.

In the Figure 5.3 on the next page the hardware implemented on the FPGA
can be viewed. A larger image can be viewed in Appendix E The system
consists of the hardware designed in this project and a Nios II that monitors
the hardware and reports every sample to a computer.

5.3 Software

This section will give a brief description of the software used in this project.
It will also discuss the program developed to give simulations of the behaviour
of the RC-circuit depending on R, C and the comparator levels.
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Figure 5.3: The hardware programmed to the FPGA. It consists of the Period
Counter, FSM and Nios II.

5.3.1 Software

This section will list the software used in this project and brie�y describe their
uses.

• Verilog is a Hardware Description Language that has been used to de-
scribe all the hardware used in this project.

• ModelSim 6.3d from Mentor Graphics is a hardware simulation environ-
ment used to write and debug the digital hardware. ModelSim has also
been used to simulate the switching activity in the circuit which has later
been used to do power estimations in Design Vision.

• Design Vision Y2006.06 from Synopsys has been used to synthesize the
digital hardware and generate netlists that ModelSim can run simula-
tions on. The switching activity simulated in ModelSim has then been
used to estimate the power usage.

• AimSpice Student Version 5.3c has simulated the behaviour of the oscil-
lator and especially the comparator.

• Matlab R2009a by The Mathworks has been used to plot graphs from the
data generated from ModelSim, recieved from the hardware or generated
with the program written as part of this thesis.
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5.3.2 Program for calculation behaviour of the RC-circuit

Since it has been vital to know how R, C and the comparator levels a�ect
the power usage of the RC-circuit a program has been written in C that can
calculate the behaviour of the circuit. This program has used Equation 5.1
and 5.2 to calculate the response of the RC-�lter. This has been done by
calculating the voltage across the capacitor with 1ns increments of time both
when the capacitor is charged from compmin to compmax, and discharged.

VC = Vin(1− e
−t
τ ) (5.1)

VC = Vine
−t
τ (5.2)

The program is capable of calculating the energy used during one cycle
of the oscillator, frequency, duty cycle and average watt of an oscillator with
speci�c R, C and comparator levels. Or it can output those values for ev-
ery combination of compmin and compmax between ground and VDD for an
oscillator with speci�c R and C. The code can be reviewed in Appendix A.
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Chapter 6

Results and discussion

The previous chapters have simulated di�erent aspects of the system and given
results according to theory and simulations. This chapter will look at real
results from the actual prototype and hardware operating on an FPGA. It
will also contain power estimations of the digital circuit according to Design
Vision.

6.1 Resulting behaviour of the oscillator

This thesis has not measured the power consumption of the actual oscillator.
Instead the results presented in this chapter will be measured frequencies of
oscillators with and without button pushes. The power usage presented in this
section will be from the program described in Section 5.3.2.

Which RC-circuits and comparator levels to test must �rst be discussed.
Since the power usage of the circuit will not be measured on the prototype
there is no need to test di�erent circuits with power consumption in mind.
The tests are just be to see if the circuit operates as expected.

In Table 6.1 on the next page an oscillators response to button pushes
with di�erent materials between the pad and the �nger can be seen. The
oscillators characteristics is listed in Table 6.2 on the following page and the
characteristics of the mediums in Table 6.3 on page 59. The oscillator is tested
both with and without a ground plane at the opposite side of the pad. Table
6.1 also contains measured voltage levels the RC-circuit oscillates between
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Layer and Push Measured Theoretical
GP Layer Push Freq. Drop Vmin Vmax Freq. Power

Y - N 44.4kHz - 0.64V 2.44V 59.5kHz 20.8µW
Y - Y 26.7kHz 39.8% 0.64V 2.28V - -
Y Paper Y 36.7kHz 17.3% 0.64V 2.44V - -
Y Glass Y 42.5kHz 4.3% 0.64V 2.44V - -

N - N 46.8 kHz - 0.6V 2.5V 55.6kHz 20.6µW
N - Y 22.5 kHz 51.9% 0.64V 2.33V - -
N Paper Y 35.7 kHz 23.7% 0.6V 2.5V - -
N Glass Y 41.6 kHz 11.1% 0.6V 2.5V - -

Table 6.1: This table shows how an oscillator with and without ground plane
responds to button pushes with di�erent materials between the pad and the
�nger.

R C compmin compmax

100kΩ 68pF 0.72V 2.44V

Table 6.2: The oscillator used in Table 6.1.

and theoretical values for the frequency and power usage. As can be seen the
frequency is lower in real life than in the theoretic values from the program
discussed in Section 5.3.2. This can be attributed to the fact that the program
does not take into account the delay in the comparators. In Equation 6.1 these
values have been used to calculate the delay in the comparators. This value
is for this speci�c oscillator as di�erent comparator values will give di�erent
overdrives leading to a di�erent delay.

1
44400

− 1
59500

2
= 2.86µs (6.1)

In Chapter 3 the discrepancy between the simulated and theoretical (datasheet)
delay in the comparator was discussed. The result from Equation 6.1 con�rms
that the delay is less in real life than in the simulations, but still not as low
as the Spice-model implies. It is worth noting that the comparator delay will
depend on the comparator voltages as these decide how long time it takes the
voltage across the capacitor to reach 100 mV overdrive. As was also noted in
Section 3 the comparator does not support rail-to-rail operation, yet in the
results from Table 6.2 it can be seen that the limit in the input to 1.3V below
positive supply is not that strict.
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Material Thickness Relative Permeability

Glass 560µm 7 [14]
Paper 100µm 1.4[3]

Table 6.3: Characterisitcs of the glass and paper used between the pad and
the �nger.

When it comes to the resulting behaviour of the circuit to a �nger pushing
on the tab the response seems adequate. While touching directly on the pad
does reduce the frequency by 50% this is not a likely use of the button. In a real
product the pad will usually be covered by either glass or some sort of plastic
as Apple's iPod. Covering the pad with a 560µm thick piece of glass only
reduces the frequency by 4.3% and 11.1% for the oscillator with and without
a ground plane respectively. As the drop in frequency depends on the relative
change in capacitance due to the �nger this can most likely be improved by
using a smaller capacitance in the oscillator. This has the added bene�t of
improving power usage if the resistance is increased so τ stays constant. It is
also apparent that not having a ground plane behind the pads increases drop
in frequency. The reason for this is the increased capacitance in the pad when
a ground plane is present.

One �nal thing to note in Table 6.1 is the change in compmax when the
�nger touches the pad directly. The cause to this has not been found, but it is
of interest as the decrease in compmax further decreases the frequency beyond
the change due to the inferred capacitance.

It is also of interest to know the max frequency of the system since increased
frequency will give reduced sampling time for speci�c bit length. In Section 6.2
it is found that the response time of the IIR-�lters can be given in a number
of samples, independent of the sampling period. Thus the response time of
the system is closely related to the frequency of the system and the bit length
assuming the sampling period is tuned so the counter makes full use of the bit
length. As described in Section 3.1 the comparators limit the max frequency
of the system. The characteristics of the oscillator used to �nd fmax can be
viewed in Table 6.4 on the next page. In this case the comparator levels will
not a�ect the system as the input to the comparators will be either 0V or 3.3V
due to the absence of an RC-�lter between the output of the SR-latch and the
inputs of the comparators.

It was found in Section 3.2 that by increasing R the power usage in the RC-
circuit is decreased. If this is to be done while keeping the frequency constant
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R C compmin compmax fmax

0Ω 0F 1.27V 1.89V 121kHz

Table 6.4: The characteristics used to �nd maximum frequency of the oscillator
and the resulting frequency of the oscillator.

the capacitance needs to be decreased so τ remains constant. Decreasing the
capacitance has the negative e�ect of making the system less noise resistant,
as was also noted in Section 3.2. It is therefore of interest to �nd the di�erence
in noise from oscillators with the same τ . The three circuits tested can be seen
in Table 6.5.

Characteristics Theory Measured Values

C[pF] R[kΩ] τ [µs] Power Freq. Freq. Vmin Vmax COV
33 390 12.87 3.59µW 102 25 0.64V 2.32V 1.5× 10−4

47 270 12.69 5.18µW 103 26 0.64V 2.32V 2.6× 10−4

100 135 13.50 10.8µW 101 26 0.64V 2.32V 5.2× 10−4

Table 6.5: The three oscillators tested to �nd the di�erence in noise on os-
cillators with the same τ , but di�erent R and C. compmin = 0.64V and
compmax = 1.97V. All frequencies in kHz.

The oscillator has been connected to the digital hardware and the output
sent to a computer over UART. In Figure 6.1 on the next page the output
from the oscillator can be seen.

As can be seen the result has been the exact opposite of what should be
expected according to the theory. Increased capacitance in the RC-circuit
seems to give increased noise in the value from the Period Counter. No good
reason has been found for this. It goes against both theory (Equation 1.4 on
page 9) and sources[2]. If this behaviour is correct it would actually be posi-
tive though, as a lower capacitance gives better sensitvity to the capacitance
induced by a �nger.

This section will sum up what has been found on the power usage of the
oscillator. It was found in Section 3.2 that the oscillator should oscillate be-
tween voltage levels high in the available voltage domain. This is not possible
with the components chosen in this thesis. While using the comparator from
Maxim has been great for simulating the behaviour of the circuit its lack of
rail-to-rail operation severly limits the voltage levels available as comparator
voltages. This is not a big problem in this thesis though, as the goal has
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Figure 6.1: Di�erence in noise on the three oscillators in Table 6.5. Blue graph:
R = 390kΩ, green graph: R = 270kΩ and red graph: R = 135kΩ.

been to identify how di�erent parameters that a�ect power usage. Since com-
parator levels are such a parameter a unit built for production should choose
comparators that have this capability.

The other main method of decreasing power usage in the oscillator is to
maximize the resistance in the RC-circuit, with or without reducing the capac-
itance to keep the frequency constant. The power dissipated in the RC-circuit
was found in Section 1.2 and is repeated in Equation 6.2. As can be seen the
power is inversely dependent on the size of the resistor. The resistance should
then be minimized for a speci�c τ in an e�ort to minimze the power dissipated
in the resistor.

p(t) = iR(t)vR(t) =
vR(t)2

R
(6.2)

61



6.2 Resulting behaviour of the digital circuit

When it comes to results from the digital circuit implemented on an FPGA
the interesting data would be to see if the circuit responds similarily in real
life as in the simulations in Chapter 4. This section will therefore get the
output from the �lters found to be relevant in Chapter 4. While the results in
Chapter 4 where based on Verilog code simulated in ModelSim the results in
this section is from actual hardware running on an FPGA with the oscillator
as input to the Period Counter.

Throughout this section the digital hardware will be clocked at 8.192kHz.
The sampling period will be tuned to achieve a normal value from the Period
Counter that is close to the max allowed by the bit length. Since Chapter 4
found that the two IIR �lters with b = 2−2 and b = 2−3 are of greatest interest
only those two �lters will be tested in this section. All the results are with
the oscillator in Table 6.6 connected to the input of the Period Counter. The
oscillator has no ground plane on the back of the PCB. With a �nger pushed
against the pad with no medium between the pad and the �nger the frequency
of the oscillator drops from 67kHz to 31kHz.

R C compmin compmax Freq. Power

150kΩ 15pF 0.63V 1.97V 67kHz 9.7µW

Table 6.6: The characteristics of the oscillator used to test the hardware.
Comparator levels have been measured on actual circuit and power is according
to the measured frequency and the program described in Section 5.3.2.

Three di�erent con�gurations of the system have been tested. One with a
12 bit counter, one with 11 bit and one with 10 bit. The goal is to see if there
are any di�erences in number of samples used to detect the button pushes,
and also to see if there is any di�erence in noise from the Period Counter. In
this section only the data from the 12 bit counter will be presented in graphs,
data from the two other bit lengths can be viewed in Appendix C.

In Figure 6.2 on the next page the response of the �lters with 12 bit can
be observed. The fast �lter has stabilised after roughly 20 periods while the
slow �lter uses nearly 40 periods to stabilize. 20 periods is equal to 2124ms
according to the sampling period in Table 6.8 on page 65. The slow �lter uses
nearly twice that to stabilize after a reset or boot-up of the system. If this
is too slow depends on the boot-up time of the system the touch sensing is
part of. In Figure 6.2 it can also be observed how the slow �lter stabilizes at
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Figure 6.2: The response of the two 12 bit �lters. Input is red, IIRb=2−2 is
green and IIRb=2−3 is blue.

a much lower value than the fast �lter due to the three LSB of the fast and
slow �lters being set to logic one and zero respectably.
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Figure 6.3: The behaviour of the 12 bit �lters and input over long time.

Figure 6.3 shows the behaviour of the input and �lters over long time. Note
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that the �lters has stabilized and do not change even though the input varies.
This �gure shows that the �ltering is more than adequate at �ltering away the
noise in the input signal. This is mainly due to the low level of noise in the
input. It can therefore be assumed that a 12 bit counter will �lter away most
of the jitter in the oscillator.

0 10 20 30 40 50 60 70 80
0

500

1000

1500

2000

2500

3000

3500

4000

Sample

V
al

ue

Figure 6.4: The behaviour of the 12 bit �lters to button pushes. The light blue
graph is the ouput from the hardware noting the button has been pushed.

In Figure 6.4 the output and input of the �lters are shown when the button
is pushed three times. In this sensing scheme the circuit signals that the button
has been pushed when IIRb=2−2 is lower than IIRb=2−3 . Note how the slow
�lter does not change when the button has been signaled as touched. This
is done to �lter out the input from �nger pushes from the slow �lters output
as this should be an average over time. It also prevents the slow �lter from
falling below the fast one and signaling that the button push has enden before
it indeed has.

It is of intereset to know the average response time to button pushes for
the di�erent bit lengths. In Table 6.7 on the next page ten samples has been
taken on the response time of the systems. This has been done by touching
the pad ten times and viewing the output to determine how many samples it
takes the system to signal button push and release. The average response time
has been calculated, as has the coe�ecient of variation to the samples to know
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how stable the response time is.

Bit length Mean COV

10 bit
push 4 2 4 3 4 3 3 2 3 3 3.1 0.2380
release 12 11 11 10 10 10 10 10 10 9 10.3 0.0799

11 bit
push 3 2 2 3 2 2 2 2 2 2 2.2 0.1917
release 8 8 10 8 8 10 9 9 10 8 8.8 0.1049

12 bit
push 1 2 2 2 2 2 2 2 2 2 1.9 0.1664
release 9 8 8 9 9 9 10 7 8 8 8.5 0.1000

Table 6.7: The digital systems response time to button pushes.

In Table 6.8 a summary of the values found from the simulations in Figure
6.2 to 6.4 can be seen. The table gives the average response time to button
pushes and the level of noise on the �lters. The most important thing to
note her is how the average number of samples needed to notice pushes and
releases sinks with increasing bit length. But as can be noted by multiplying
the number of samples by the sample period the response time is shorter for
10 bit than 12 bit. E.g. the push response for 12 bit is 1.9 · 111.5 = 212ms,
while it is 3.1 · 27.94 = 86ms for 10 bit. All in all the numbers indicate that
reducing the bit length reduces the response time to button pushes.

When it comes to noise rejection all the �lters manages to completely �lter
out the noise on the input. In other words, due to the reduced response time
of the 10 bit �lter and good noise rejection there is no reason to pick the 12
bit �lter over the 10 bit version. Reducing the bit length will probably also
reduce power usage in the system. This will be discussed in Section 6.3.

COV Response Time
# bit input IIRb=2−2 IIRb=2−3 Push Release Sampling Period

10 0.4667 0 0 3.1 10.3 27.94ms
11 0.2513 0 0 2.2 8.8 55.76ms
12 0.1271 0 0 1.9 8.5 111.5ms

Table 6.8: Level of noise and response time of digital hardware with di�erent
bit length.

The results presented in this Section indicates that it is possible to decrease
the bit length of the digital hardware below 10 bit. This will give better
response time and a smaller circuit. As was discussed in Section 4.3.2 the
response time should be less than 150 ms from the button is pushed until the
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general system has responded. In the case of 12 bit this is not possible with
the oscillator used in this section. The systems response time can be improved
either by increasing the frequency of the oscillator or decreasing the bit length
of the digital hardware. Increasing the frequency of the oscillator will come at
the cost of increased power usage, while decreasing the bit length will decrease
size and power consumption. So the bit length should be set to the smallest
value that is resistant to the noise levels from the Period Counter.

6.3 Power estimation of the digital circuit

The power used by the digital circuit must be estimated. In an e�ort to make
data from this report comparable power has been estimated for hardware with
the same �ltering techniques as in Section 4.3.2. The hardware has also been
simulated with the same sampling period as in Section 6.2. The input has
been random values in an e�ort to make the switching activity in the circuit
worst-case.

Comparison \ Bit length Drain Type 10 11 12

IIRb=4 < IIRb=8
Dynamic 9.1204 9.0324 9.4493
Leakage 247.93 270.30 295.63

IIRb=4 < 3600
Dynamic 8.2925 8.7144 9.1420
Leakage 176.37 193.12 210.90

input < IIRb=4
Dynamic 8.2991 8.7190 9.1454
Leakage 183.03 200.04 217.21

input < 3600
Dynamic 7.9428 8.3892 8.8273
Leakage 100.46 108.52 117.71

Table 6.9: Power usage of di�erent �ltering techniques and bit length. All
numbers in nW.

In Table 6.9 the power estimated by Design Vision is shown. These values
give a leakage current that is between 92.7% and 96.9%, thus the leakage
current far outweighs the dynamic power consumption. This is due to the low
activity in the circuit. As the circuits are the same as in Section 6.2 the 12 bit
circuits have a period of 111ms resulting in the registers being updated less
than ten times per second.

In Figure 6.5 on the facing page the power usage of the Period Counter
can be seen for a few di�erent frequencies on the input, and either a 12, 11 or
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10 bit counter. As can be seen the power consumption of the Period Counter
increases linearly with the frequency. Higher bit levels also increase the power
consumption, but the di�erence is not large. It should be noted that the Period
Counter uses nearly the same amount of power as the FSM. This is due to the
increased frequency of the Period Counter as well as the increased switching
activity. The Period Counter updates its registers every clock period.
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Figure 6.5: The power usage of the Period Counter with di�erent frequency.
Red line is for a 10 bit counter, green 11 bit and blue line 12 bit.

The main �ndings in this section is how the power usage in the digital
hardware is dominated by leakage power. The di�erence in dynamic power
for the di�erent �ltering techniques is minimal, the main reason that power is
saved by switching �ltering technique is the lowered leakage. It is also worth
noting that the decrease in power consumption by lowering bit length is nearly
constant. E.g. for IIRb=2−2 < IIRb=2−3 the cost of adding one bit seems to
be rougly 25 nW.

One �nal comment on the power usage of the digital circuit is the level
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of di�erence between the power usage of the digital circuit and the oscillator.
All oscillators that have been discussed in this thesis has had a power usage
between 3 µW and 21 µW. This is two orders of magnitude larger than the
power consumption in the digital hardware. As the noise levels from the
oscillator has been small with the oscillators tested in this thesis the power
consumption can most likely be further lowered by increasing R with or without
keeping τ the same.

6.4 Comparison with a system already on the

market

In an e�ort to give an impression on the power usage of this module compared
to others on the market a comparable module has been found. The QT100A
from Quantum Research Group is a single capacitive touch button on an IC
and is marketed as using 128µA on average over time with a 3V power supply
resulting in a power usage of 384µW. When touched it sets its one bit output
low for the duration of the touch. Its internal threshold is adjusted over time
to compensate for changes from the environment. This units behaviour is then
the same as the one in this thesis and should be a good benchmark for the
power consumption.

Assuming the IIRb=2−2 < IIRb=2−3 �ltering is used the power consumption
from the digital hardware has been found to be 248 nW for a 10 bit imple-
mentation and being lineary dependent on the bit length. The results found
in Section 6.2 with regard to noise indicate that the bit length can be further
lowered reducing both response time and power usage. The oscillator used
together with the hardware simulated in Section 6.2 used 9.7µW and could
potentially be lowered by increasing R or choosing better comparator levels.
As can be noted from Table 6.5 on page 60 the comparator levels used are
pretty ine�cient with reference to Figure 3.9 on page 29. Finally the power
usage of the comparators must be mentioned, these are listed as using 4µA
resulting in a power drain of 13.2µW assuming 3.3V operation. This makes
the comparators tha largest contributors to the power usage. The net power
usage of the capacitive touch sensing scheme used in the last two sections is
then 0.248 + 9.7 + 2 · 13.2 = 36µW which is an order of magnitude less than
the solution from Quantum Research Group. As discussed in this paragraph
there is also a potential for lowering this further.
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Chapter 7

Conclusions and future work

The goal of this thesis has been to design a functional low power capacitive
touch sensing system with focus on identifying which design choices a�ect
response time, noise rejection and power usage. It has been found that the RC-
circuit uses far more power than the digital hardware. Thus the comparator
levels and RC-circuit in the oscillator are the characteristics that has the most
impact on power usage. In the digital circuit noise rejection can be improved
by applying the right �ltering technique and response time can be shortened
by reducing the bit length of the system. The results presented stands to
con�rm that the proposed design functions as speci�ed. It has a response time
that allows user interaction without perceived delay and the power usage is
more than competitive with designs currently on the market.

One important aspect is how much the di�erent parts of the sensing scheme
contribute to the �nal power usage. The comparators and oscillator have power
usage levels that are two orders of magnitude larger than the digital circuit.
In other words, how the digital circuit is designed does not a�ect power usage
to any signi�cant degree. The digital circuit should therefore be optimized for
response time and noise rejection while the oscillator is optimized with power
consumption in mind.

7.1 Future work

Future work on this design should focus on further optimizing the power con-
sumption of the oscillator. A good start would be to use comparators with
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rail-to-rail operation and test how the oscillator functions when it oscillates
between voltages high in the voltage domain. How low the capacitance in the
RC-circuit can be without experiencing large levels of noise could also be of
interest. This would allow the resistance to be set as high as possible for a
speci�c frequency. When an oscillator has been designed focus should shift to
reducing the bit length of the digital hardware to a level that operates with
acceptable noise rejection.
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Appendix A

C program describing the

RC-circuit

Listing A.1: C code of program for simulationg behaviour of RC-circuit.

1 #include <s t d l i b . h>
2 #include <s td i o . h>
3 #include <s t r i n g . h>
4 #include <math . h>
5
6
7
8 //Config
9 #define NSAMPLES 10000000

//Max number o f samples . Def ines l e n g t h o f arrays .
Should be l a r g e .

10 #define SUPPLYVOLTAGE 3.3 //
Vo l t a g e l e v e l o f powersupply

11
12
13 double samples ;
14 double Vdd ;
15 double R;
16 double C;
17 double tau ;
18 double Vmin ;
19 double Vmax;
20
21 double vt [NSAMPLES ] ;
22 double i t [NSAMPLES ] ;
23 double pt [NSAMPLES ] ;
24
25
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26 void i n i t ( ) // I n i t i a l i z e s the va l u e s accord ing to the con f i g
above

27 {
28 samples = NSAMPLES;
29 Vdd = SUPPLYVOLTAGE;
30 tau = R ∗ C / 1000000;
31 tau = tau / 1000000;
32
33
34 }
35
36
37 // Ca l cu l a t e s the v o l t a g e over the capac i t o r and current through

the r e s i s t o r during one per iod .
38 //Also c a l c u l a t e s the powerd i s s i pa t i on in the r e s i s t o r
39 void ca lcResponse (double min , double max)
40 {
41 double t = 0 ;
42 double exp = 0 ;
43 int turn = 0 ;
44 int i = 0 ;
45
46 double e = M_E;
47
48 // I t e r a t e s over the samples during charg ing o f the

capac i t o r
49 for ( i = 0 ; i < samples ; i++)
50 {
51 t = (double ) i /1000000000; //Time i s

incremented in s t e p s o f nanoseconds
52 exp = pow( e ,−( t / tau ) ) ;
53 vt [ i ] = Vdd + (min − Vdd) ∗ exp ;
54 pt [ i ] = (Vdd−vt [ i ] ) ∗(Vdd−vt [ i ] ) /R;
55 i f ( vt [ i ] > max) //We' ve reached the h igh l e v e l ,

c a l c u l a t e l a s t va l u e s and break
56 {
57 turn = i ;
58 break ;
59 }
60 }
61
62 // Ca l cu l a t e s the d i s cha r g in g o f the capac i t o r
63 for ( i = turn + 1 ; i < samples ; i++)
64 {
65 t = (double ) ( i−turn ) /1000000000; //Time i s

r e s e t to one and incremented in nanoseconds
66 exp = pow( e ,−( t / tau ) ) ;
67 vt [ i ] = max ∗ exp ;
68 pt [ i ] = 0 . 0 ;
69 i f ( vt [ i ] < min ) //

We' ve reached the low l e v e l , c a l c u l a t e l a s t
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va l u e s and break
70 {
71 vt [ i +1] = 0 . 0 ;
72 break ;
73 }
74
75 }
76
77 }
78
79 // Ca l cu l a t e s the energy needed when the capac i t o r i s charged and

decharged
80 //Returns the va lue in nanowatt
81 double calcEnergy ( ) {
82
83 double tmp = 0 ;
84
85 int i ;
86 for ( i = 0 ; i < samples ; i++)
87 {
88 tmp = tmp + pt [ i ] ;
89 i f ( pt [ i ] == 0 . 0 ) {break ; }
90 }
91
92 return tmp ; //Nanowatts ! ! !
93
94 }
95
96 //Outputs the energy needed f o r one c y c l e
97 void outputEnergy ( )
98 {
99 int i ;
100 int j ;
101 double low ;
102 double high ;
103 double energy = 0 ;
104 for ( i = 0 ; i−1 < 33 ; i++)
105 {
106 low = (double ) i ∗ (Vdd / 33 . 0 ) ;
107 for ( j = 0 ; j−1 < 33 ; j++)
108 {
109 i f ( i < j && i != 0 && j != 33)
110 {
111 high = (double ) j ∗ (Vdd / 33 . 0 ) ;
112 ca lcResponse ( low , high ) ;
113 energy = calcEnergy ( ) ;
114 p r i n t f ( "%f  " , energy ) ;
115 }
116 else

117 {
118 p r i n t f ( " 0 .000000  " ) ;
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119 }
120 }
121 p r i n t f ( "\n" ) ;
122 }
123 }
124 // Ca l cu l a t e s the duty c y c l e by i t e r a t i n g through the response and

f i n d i n g the turn ing and ending po in t
125 double calcDutyCycle ( )
126 {
127 int i ;
128 int turn = 0 ;
129 int s i z e ;
130 for ( i = 0 ; i < samples ; i++)
131 {
132 i f ( vt [ i +1] < vt [ i ] && turn == 0)
133 {
134 turn = i ;
135 }
136 i f ( vt [ i ] == 0 .0 && i > 5)
137 {
138 break ;
139 }
140 s i z e = i ;
141 }
142 return (double ) turn / (double ) s i z e ;
143 }
144
145 // Ca l cu l a t e s the duty c y c l e f o r a l l combinat ions o f compmin/

compmax and ou tpu t s them
146 void outputDutyCycle ( )
147 {
148 int i ;
149 int j ;
150 double low ;
151 double high ;
152 double dc ;
153 for ( i = 0 ; i−1 < 33 ; i++)
154 {
155 low = (double ) i ∗ (Vdd / 33 . 0 ) ;
156 for ( j = 0 ; j−1 < 33 ; j++)
157 {
158 i f ( i < j && i != 0 && j != 33)
159 {
160 high = (double ) j ∗ (Vdd / 33 . 0 ) ;
161 ca lcResponse ( low , high ) ;
162 dc = calcDutyCycle ( ) ;
163 p r i n t f ( "%f  " , dc ) ;
164 }
165 else

166 {
167 p r i n t f ( " 0 .000000  " ) ;
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168 }
169 }
170 p r i n t f ( "\n" ) ;
171 }
172 }
173
174 // Ca l cu l a t e s the f requency by count ing the number o f nanosecond

i t e r a t i o n s done by ca lcResponse ( )
175 double ca lcFrequency ( )
176 {
177 int i ;
178 for ( i = 0 ; i < samples ; i++)
179 {
180 i f ( vt [ i ] == 0 .0 && i > 5)
181 {
182 break ;
183 }
184 }
185 return 1000000000 / (double ) i ;
186 }
187
188 //Outputs the f requency f o r a s p e c i f i c RC−c i c r u i t and a l l

combinat ions o f compmin/compmax
189 void outputFrequency ( )
190 {
191 int i ;
192 int j ;
193 double low ;
194 double high ;
195 double f r e q ;
196 for ( i = 0 ; i−1 < 33 ; i++)
197 {
198 low = (double ) i ∗ (Vdd / 33 . 0 ) ;
199 for ( j = 0 ; j−1 < 33 ; j++)
200 {
201 i f ( i < j && i != 0 && j != 33)
202 {
203 high = (double ) j ∗ (Vdd / 33 . 0 ) ;
204 ca lcResponse ( low , high ) ;
205 f r e q = calcFrequency ( ) ;
206 i f ( f r e q < 250000)
207 {
208 p r i n t f ( "%f  " , f r e q ) ;
209 }
210 else

211 {
212 p r i n t f ( "250000 " ) ; //Cap

the output at 250000
to make more readab l e
graphs

213 }
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214 }
215 else

216 {
217 p r i n t f ( " 0 .000000  " ) ; //Output 0 f o r

o s c i l l a t i o n s when compmin >
compmax

218 }
219 }
220 p r i n t f ( "\n" ) ;
221 }
222 }
223
224 // Ca l cu l a t e power usage by mu l t i p l y i n g the f requency by the energy

used per o s c i l l a t i o n
225 double ca lcEnergySec ( )
226 {
227 return ca lcFrequency ( ) ∗ calcEnergy ( ) ; //Nanowatt ! !
228 }
229
230 //Outputs the power usage f o r a s p e c i f i c RC−c i c r u i t and a l l

combinat ions o f compmin/compmax
231 void outputEnergySec ( )
232 {
233 int i ;
234 int j ;
235 double low ;
236 double high ;
237 double energy ;
238 for ( i = 0 ; i−1 < 33 ; i++)
239 {
240 low = (double ) i ∗ (Vdd / 33 . 0 ) ;
241 for ( j = 0 ; j−1 < 33 ; j++)
242 {
243 i f ( i < j && i != 0 && j != 33)
244 {
245 high = (double ) j ∗ (Vdd / 33 . 0 ) ;
246 ca lcResponse ( low , high ) ;
247 energy = calcEnergySec ( ) ;
248 i f ( energy < 350000)
249 {
250 p r i n t f ( "%f  " , energy ) ;
251 }
252 else

253 {
254 p r i n t f ( "350000 " ) ;
255 }
256 }
257 else

258 {
259 p r i n t f ( " 0 .000000  " ) ;
260 }
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261 }
262 p r i n t f ( "\n" ) ;
263 }
264 }
265
266 //Outputs the f requency and power usage o f an RC−c i r c u i t as the

capac i tance inc r ea s e s
267 void outputFreqandWattCap (double low , double high , double startC ,

int steps , double startR )
268 {
269
270 C = startC ;
271 R = startR ;
272
273 int i ;
274 for ( i =0; i<s t ep s ; i++)
275 {
276 ca lcResponse ( low , high ) ;
277 i n i t ( ) ;
278 p r i n t f ( "%g %g\n" , ca lcFrequency ( ) , ca lcEnergySec ( ) ) ;
279 C = C++;
280 }
281
282
283 }
284
285 //Outputs the f requency and power usage o f an RC−c i r c u i t as the

r e s i s t a n c e inc r ea s e s
286 void outputFreqandWattRes (double low , double high , double startR ,

int steps , double startC )
287 {
288
289 C = startC ;
290 R = startR ;
291
292 int i ;
293 for ( i =0; i<s t ep s ; i++)
294 {
295 ca lcResponse ( low , high ) ;
296 i n i t ( ) ;
297 p r i n t f ( "%g %g\n" , ca lcFrequency ( ) , ca lcEnergySec ( ) ) ;
298 R = R + 1000 ;
299 }
300
301
302 }
303
304
305 int main ( int argc , char∗ argv )
306 {
307
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308 int type = 0 ;
309 char ord [ 2 0 ] ;
310 double min ;
311 double max ;
312 int s t ep s ;
313
314
315 p r i n t f ( " S ing l e  o s c i l l a t o r ,  a l l  comParator l e v e l s ,  sweep o f

 R or  sweep o f  C? ( s /p/ r /c ) \n" ) ;
316 while ( type == 0)
317 {
318 scan f ( "%s " , ord ) ;
319 i f ( ' s ' == ord [ 0 ] )
320 {
321 type = 1 ;
322 }
323 else i f ( 'p ' == ord [ 0 ] )
324 {
325 type = 2 ;
326 }
327 else i f ( ' r ' == ord [ 0 ] )
328 {
329 type = 3 ;
330 }
331 else i f ( ' c ' == ord [ 0 ] )
332 {
333 type = 4 ;
334 }
335 else

336 {
337 type = 0 ;
338 }
339 }
340
341 i f ( type == 1)
342 {
343 p r i n t f ( "Capacitance ? ( in  pF) \n" ) ;
344 s can f ( "%s " , ord ) ;
345 C = ato f ( ord ) ;
346
347 p r i n t f ( " Res i s tance ? ( in  kOhm)\n" ) ;
348 s can f ( "%s " , ord ) ;
349 R = 1000 ∗ a to f ( ord ) ;
350
351 i n i t ( ) ;
352
353 p r i n t f ( "compmin? ( in  Volt ) \n" ) ;
354 s can f ( "%s " , ord ) ;
355 min = ato f ( ord ) ;
356
357 p r i n t f ( "compmax? ( in  Volt ) \n" ) ;
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358 scan f ( "%s " , ord ) ;
359 max = ato f ( ord ) ;
360
361 ca lcResponse (min ,max) ;
362 p r i n t f ( "Min :  %g ,  Max:  %g\n" ,min ,max) ;
363 p r i n t f ( "C:  %g pF ,  R:  %g Ohm\n" ,C,R) ;
364 p r i n t f ( "Frequency        :  %f  \n" , ca lcFrequency ( ) )

;
365 p r i n t f ( "Dutycycle        :  %f  \n" , calcDutyCycle ( ) )

;
366 p r i n t f ( "Energy/ cy c l e     :  %f  \n" , ca lcEnergy ( ) ) ;
367 p r i n t f ( "Avg .  nwatt       :  %f  \n" , ca lcEnergySec ( ) )

;
368 }
369 else i f ( type == 2)
370 {
371 p r i n t f ( "Capacitance ? ( in  pF) \n" ) ;
372 s can f ( "%s " , ord ) ;
373 C = ato f ( ord ) ;
374
375 p r i n t f ( " Res i s tance ? ( in  kOhm)\n" ) ;
376 s can f ( "%s " , ord ) ;
377 R = 1000 ∗ a to f ( ord ) ;
378
379 i n i t ( ) ;
380
381 p r i n t f ( "1 − Output Energy\n" ) ;
382 p r i n t f ( "2 − Output Duty Cycle \n" ) ;
383 p r i n t f ( "3 − Output Frequency\n" ) ;
384 p r i n t f ( "4 − Output Energy pr Second\n" ) ;
385
386 scan f ( "%s " , ord ) ;
387
388 switch ( a t o i ( ord ) )
389 {
390 case 1 :
391 p r i n t f ( "Energy usage  pr cy c l e  f o r  

low/high  from 0V to  3 .3V:\ n" ) ;
392 outputEnergy ( ) ;
393 break ;
394 case 2 :
395 p r i n t f ( "Duty Cycle  f o r  low/high  

from 0V to  3 .3V: \ n" ) ;
396 outputDutyCycle ( ) ;
397 break ;
398 case 3 :
399 p r i n t f ( "Frequency f o r  low/high  

from 0V to  3 .3V: \ n" ) ;
400 outputFrequency ( ) ;
401 break ;
402 case 4 :
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403 p r i n t f ( "Energy usage  pr second f o r
 low/high  from 0V to  3 .3V:\ n" )
;

404 outputEnergySec ( ) ;
405 break ;
406 default : p r i n t f ( "You have to  choose  

1−4!\n" ) ;
407 }
408 }
409 else i f ( type == 3)
410 {
411 p r i n t f ( "Capacitance ? ( in  pF) \n" ) ;
412 s can f ( "%s " , ord ) ;
413 C = ato f ( ord ) ;
414
415 p r i n t f ( " S ta r t i ng  r e s i s t a n c e ? ( in  kOhm)\n" ) ;
416 s can f ( "%s " , ord ) ;
417 R = 1000 ∗ a to f ( ord ) ;
418
419 p r i n t f ( "Number o f  s t ep s  o f  1000kOhm to  s imulate \n"

) ;
420 s can f ( "%s " , ord ) ;
421 s t ep s = ato f ( ord ) ;
422
423 i n i t ( ) ;
424
425 p r i n t f ( "compmin? ( in  Volt ) \n" ) ;
426 s can f ( "%s " , ord ) ;
427 min = ato f ( ord ) ;
428
429 p r i n t f ( "compmax? ( in  Volt ) \n" ) ;
430 s can f ( "%s " , ord ) ;
431 max = ato f ( ord ) ;
432
433 p r i n t f ( "Frequency and power usage  o f  the  c i r c u i t \n

" ) ;
434 outputFreqandWattRes (min ,max ,R, steps ,C) ;
435
436 }
437 else i f ( type == 4)
438 {
439 p r i n t f ( " Res i s tance ? ( in  kOhm)\n" ) ;
440 s can f ( "%s " , ord ) ;
441 R = 1000 ∗ a to f ( ord ) ;
442
443 p r i n t f ( " S ta r t i ng  capac i tance ? ( in  pF) \n" ) ;
444 s can f ( "%s " , ord ) ;
445 C = ato f ( ord ) ;
446
447 p r i n t f ( "Number o f  s t ep s  o f  1pF to  s imulate \n" ) ;
448 s can f ( "%s " , ord ) ;
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449 s t ep s = ato f ( ord ) ;
450
451 i n i t ( ) ;
452
453 p r i n t f ( "compmin? ( in  Volt ) \n" ) ;
454 s can f ( "%s " , ord ) ;
455 min = ato f ( ord ) ;
456
457 p r i n t f ( "compmax? ( in  Volt ) \n" ) ;
458 s can f ( "%s " , ord ) ;
459 max = ato f ( ord ) ;
460
461 p r i n t f ( "Frequency and power usage  o f  the  c i r c u i t \n

" ) ;
462 outputFreqandWattCap (min ,max ,C, steps ,R) ;
463
464 }
465
466
467 return 0 ;
468 }
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Appendix B

Verilog code

Listing B.1: Verilog code of the period counter
1 module asynccounter ( in , r e s e t , zero , va lue ) ;
2 input in , r e s e t , ze ro ;
3 output [ 1 1 : 0 ] va lue ;
4 reg [ 1 1 : 0 ] va lue ;
5
6 always @(posedge in , negedge r e s e t , posedge zero )
7 begin

8 i f ( r e s e t == 0)
9 value = 0 ;
10 else i f ( ze ro == 1)
11 value = 0 ;
12 else

13 value = value + 1 ;
14 end

15 endmodule

Listing B.2: Verilog code of the period counter
1 module counter ( c lk , value , r e s e t , last_count , button_press , ze ro )

;
2 input c lk , r e s e t ;
3 input [ 1 1 : 0 ] va lue ;
4 output reg [ 1 1 : 0 ] avg_count ;
5 output reg [ 1 1 : 0 ] last_count_lowpass ;
6 output reg [ 1 1 : 0 ] last_count ;
7 output reg button_press , ze ro ;
8 reg [ 7 : 0 ] t e l l e r ;
9
10
11 parameter S_wait = 0 , S_setup1 = 1 , S_setup2 = 2 , S_read =

3 , S_calc = 4 , S_idle = 5 ;
12
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13 reg [ 3 : 0 ] State , StateNext ;
14 reg [ 1 1 : 0 ] tmp_meta_count ;
15
16
17 always @(∗ )
18 begin

19 StateNext = State ;
20 case ( State )
21 S_wait : begin

22 i f ( t e l l e r == 225) begin

23 StateNext = S_setup1 ;
24 end

25 end

26 S_setup1 : begin
27 StateNext = S_setup2 ;
28 end

29 S_setup2 : begin

30 StateNext = S_read ;
31 end

32 S_read : begin

33 StateNext = S_calc ;
34 end

35 S_calc : begin

36 StateNext = S_idle ;
37 end

38 S_idle : begin

39 StateNext = S_wait ;
40 end

41 default : begin

42 StateNext = S_idle ;
43 end

44 endcase

45 end

46
47
48 always @(posedge c lk , negedge r e s e t ) begin

49 i f ( r e s e t == 0) begin

50 State <= S_wait ;
51 last_count_lowpass <= 0 ;
52 avg_count <= 0 ;
53 button_press <= 0 ;
54 tmp_meta_count <= 0 ;
55 last_count <= 0 ;
56 t e l l e r <= 0 ;
57 zero <= 0 ;
58
59 end

60 else begin

61
62 case ( State )
63 S_wait : begin
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64 //Waits u n t i l next sampling per iod
65 end

66 S_idle : begin

67 t e l l e r <= 0 ; //Resets the counter
68 end

69
70 S_read : begin//Update the two f i l t e r s
71 last_count_lowpass <= ( ( last_count_lowpass

>> 2) + ( last_count_lowpass >> 1) ) + (
last_count >> 2) ;

72 last_count_lowpass [ 0 ] <= 1 ;
73 last_count_lowpass [ 1 ] <= 1 ;
74 last_count_lowpass [ 2 ] <= 1 ;
75
76 last_count_lowpass <= ( last_count >> 1) + (

tmp1 >> 1) + (tmp2 >> 2) + (tmp >> 2) +
(tmp3 >> 3) ;

77 i f ( button_press == 0)begin
78 avg_count <= ( avg_count − ( avg_count >>

3) ) + ( last_count >> 3) ;
79 avg_count [ 0 ] <= 0 ;
80 avg_count [ 1 ] <= 0 ;
81 avg_count [ 2 ] <= 0 ;
82
83 end

84 zero <= 1 ; //Resets the
per iod counter

85 end

86 S_calc : begin

87 i f ( last_count_lowpass < avg_count )
88 button_press <= 1 ;

//Button push
de t e c t e d

89 else

90 button_press <= 0 ;
//No but ton push

t h i s per iod
91 zero <= 0 ;
92 end

93 default : begin

94 end

95 endcase

96
97 t e l l e r <= t e l l e r + 1 ; //The counter i s

a lways updated
98
99 i f ( State == S_setup1 | | State == S_setup2 )begin //

To avoid me t a s t a b i l i t y
100 tmp_meta_count <= value ;
101 last_count <= tmp_meta_count ;
102 end
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103
104
105
106 State <= StateNext ; //Updates

the s t a t e
107 end

108 end

109
110 endmodule
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Appendix C

Resulting behaviour of �lters with

11 and 10 bit
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Figure C.1: The response of the two 11 bit �lters. Input is red, IIRb=2−2 is
green and IIRb=2−3 is blue.
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Figure C.2: The behaviour of the 11 bit �lters and input over long time.
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Figure C.3: The behaviour of the 11 bit �lters to button pushes. The light
blue graph is the ouput from the hardware noting the button has been pushed.
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Figure C.4: The response of the two 10 bit �lters. Input is red, IIRb=2−2 is
green and IIRb=2−3 is blue.
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Figure C.5: The behaviour of the 10 bit �lters and input over long time.
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Figure C.6: The behaviour of the 10 bit �lters to button pushes. The light
blue graph is the ouput from the hardware noting the button has been pushed.
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Appendix D

Simulations of the hardware from

ModelSim
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Appendix E

Design implemented on the FPGA
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Appendix F

Code running on Nios II

Listing F.1: Code running on Nios II
1 #include " sys / a l t_s td i o . h"
2 #include " s t d i o . h"
3 #include " time . h"
4 #include " system . h"
5 #include " i o . h"
6
7 int main ( )
8 {
9 int avg_count ;
10 int last_count_lowpass ;
11 int last_count ;
12 int button_press ;
13 int zero ;
14 while (1 ) {
15 zero = IORD(SAMPLE_BASE, 0 ) ; //Reads zero output from the

FSM
16 while ( ze ro == 0) { zero = IORD(SAMPLE_BASE, 0 ) ; }
17 while ( ze ro == 1) { zero = IORD(SAMPLE_BASE, 0 ) ; } //Waits u n t i l

a f t e r a p o s i t i v e edge
18 avg_count = IORD(AVG_COUNT_BASE, 0 ) ;
19 last_count_lowpass = IORD(LAST_COUNT_LOWPASS_BASE, 0 ) ;
20 last_count = IORD(VALUE_BASE, 0 ) ;
21 button_press = IORD(BUTTON_PRESS_BASE, 0 ) ; //Reads a l l

v a l u e s
22 p r i n t f ( "%d %d %d %d\ r \n" , avg_count , last_count_lowpass ,

last_count ,1000∗ button_press ) ;
23 }
24
25 return 0 ;
26 }
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Appendix G

Standard deviation of samples in

Figure 4.2
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