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Problem Description
Automatic speech recognition (ASR) is currently mainly formulated as a statistical pattern
recognition problem. In this formulation, hidden Markov models (HMM) has been the dominant
approach for acoustic modeling. The parameters of the HMM are estimated blindly from large
datasets of representative speech. This paradigm is commonly known as ignorance modeling. The
paradigm has been developed over several decades, with gradual improvements, but does now
appear to have reached a level where significant improvements are unattainable. Compared to
human capacity for speech recognition, the machines still have error rates that are at least an
order of magnitude higher.

Different speech sounds have varying duration and internal dynamics. In traditional ASR the
speech signal is analyzed based on short-time spectral analysis, where the type of analysis and
the analysis window is constant, independent of the duration and characteristics of the sounds. In
this study, we will base the work on an auditory model for signal representation. Specifically, a
model that simulates the manner in which the ear transforms a sound pressure wave to impulses
exciting the auditory nerve, i.e. a cochlear model is to be studied.

This signal representation is to be studied in order to assess whether it can serve as the basis for
a segmentation algorithm that can identify segments of the speech signal where the speech
characteristics exhibit little variation over short time intervals. The segmentation process will be
data driven, and result in segments that can be regarded as acoustic subwords that in turn can
serve as basis for a signal dependent analysis of the information content of the speech signal.

Relevant research questions in the work can be: what are the properties of the auditive signal
representation? Can segmentation based on an auditive model identify the significant acoustic
changes in the signal? How must the auditive representation be adapted in order to achieve a
segmentation that to a large extent will detect phoneme transitions? Will a segmentation based on
an auditive representation exhibit significant differences compared to segmentation based on a
traditional signal representation such as mel-frequency cepstral coefficients?
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Abstract

This work explores an alternative set of features to the frequently used mel-
frequency coefficients (MFCCs). The cochlea features simulate the nerve fibre
signal sent from the ear to the brain. In this study the usage of the cochlea
features for acoustic segmentation is of main interest. Both the cochlea fea-
tures and a variant of combining them with zero crossing with peak ampli-
tude (ZCPA) have been used as input to an acoustic segmentation algorithm.
Also experiments using the cochlea features as input to an artificial neural
network (ANN) for classifying each vector as boundary/non-boundary have
been performed. The results show that the features contain a great deal
of information regarding the speech signal. Especially the combination of
cochlea and ZCPA are giving good results.
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1 Introduction

1.1 Overview

Today computers have a huge impact on daily life. They are basically every-
where and used by nearly everyone. A big problem is that the interaction
with computers in some cases is ineffective and not available to everyone.
Humans use speech to communicate with each other, a way of communica-
tion that is natural and efficient. The ability to communicate with computer
systems in the same way would be very beneficial. Talking to a computer
would make nearly all humans able to use them and in addition give a highly
effective way of interaction.

Despite years of research the current state of the art speech recogniser per-
forms at best one order of magnitude below human performance. Since a
typical human is usually uncomfortable when speaking to a machine, too
many errors made by the machine will quickly result in the person giving
up. Hence, good performance is crucial for the usability of the entire sys-
tem. Therefore the need for a better large vocabulary recogniser system for
spontaneous speech is immediate.

An automatic speech recognition (ASR) system consists of several parts. This
project will concentrate on the first part of the system: the front end. This is
the part of the system that employs signal processing to extract all necessary
information for the task of discriminating sounds, words and utterances. Any
weaknesses in this part will therefore affect all the subsequent parts of the
system.

The standard ASR front end extracts a sequence of frequency properties
(features) from the signal using a short time spectral analysis. This approach
has some weaknesses:

1. The short time spectral analysis is performed with a fixed window
length, independent of the underlying signal. To be able to perform a
spectral analysis, the signal is assumed to be quasi-stationary within
this window. This is not correct if the window contains an abrupt
change in the signal, e.g the transition between closure and burst of
plosives.

2. Normally the features are used as input to a hidden Markov model
(HMM), which calculates the most probable class (phoneme, sub word
or similar). When using a HMM it is assumed that succeeding feature
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vectors are statistical independent. An assumption that is obviously
not correct.

3. The same short time spectral analysis is performed regardless of the
properties of the segment under consideration. This is clearly not op-
timal, as a segment with small changes in the frequency spectrum may
be analysed using a larger window, resulting in a better approximation.

By introducing a segmentation procedure which automatically divides the
signal into segments, these weaknesses may be improved. Firstly, information
about the stationarity of the signal can be exploited to choose the window
size. Secondly, by using one feature vector for each segment, the statistical
dependency can be reduced. Thirdly, any additional information gained in
the segmentation process might be employed to decide the size of the analysis
window.

Many approaches to speech segmentation have been proposed, see e.g. [1, 2,
3, 4, 5, 6, 7]. In this project the algorithm described in [4] and [5] will be
used.

The use of the mel-frequency cepstral coefficients (MFCCs) in speech tech-
nology is extensive. However, since the performance of speech recognisers
using MFCCs seems to have reached a limit, an alternative is needed. In this
project cochlea features presented in [8] will be explored.

1.2 The SIRKUS Project

This work is performed as a part of the SIRKUS (Spoken Information Re-
trieval by Knowledge Utilization in Statistical Speech Processing) project1.
In the SIRKUS project a new automatic speech recogniser is being devel-
oped. This system is described in section 2.1. The results of this work are
therefore intended to contribute to the SIRKUS project.

1.3 Preceding Work (Master Project)

This work is also strongly connected to the work performed as a part of the
master degree during the spring in 2008. In that project an acoustic segmen-
tation algorithm was investigated. In this work, the same algorithm will be
used, but the impact of using a different set of features will be explored.

1http://www.iet.ntnu.no/projects/sirkus/
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1.4 Project Goal

The goal of this work is to explore the cochlea features and their properties.
Especially, the use of the features for automatic segmentation is the main
focus. Further, it is of interest to investigate the usage of the cochlea features
in the SIRKUS project and the SIRKUS recogniser.

1.5 Report Structure

This report is structured using the standard report layout with 6 sections:

Introduction This section.

Theory Describes the most important theory needed for understanding the
experiments. Assumes basic knowledge in speech technology.

Experiments A description of the experiments performed.

Results A presentation of the most important results and observations from
the experiments.

Discussion A discussion of the results and their impact.

Conclusion The final conclusion of the work.
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2 Theory

This section gives a brief overview of the most important theoretical topics of
this work. Firstly, the speech recognition system which the resulting segmen-
tation algorithm is intended for, the SIRKUS recogniser, will be presented.
In section 2.2 TIMIT, the Speech corpus used, is introduced. Further, the
acoustic segmentation algorithm that is the main tool for segmentation is
explained in section 2.3. Then, the cochlea features, which are the main fo-
cus of this study, are described in section 2.4. In section 2.5 a variant of the
cochlea features is presented. Finally, artificial neural networks, which are
used as a secondary approach for segmentation, are explored in section 2.6.

2.1 The SIRKUS Speech Recogniser

The SIRKUS project is developing a detection based recogniser. An overview
of the recogniser is given in Figure 1. The idea is to detect different phono-
logical features (i.e. manner, place, voicing etc) in the speech signal by using
detectors that operate in parallel, and then merge the output from these
detectors to find the most likely phoneme sequence.

The recogniser has one branch per (phonological) feature. Each branch is
independent and performs four steps: feature extraction, segmentation, seg-
ment feature extraction and phonological feature detection. The first feature
extraction block extracts the features used in the segmentation block. This
should be done with the phonological feature in mind, to provide as much
information about the presence of this feature in the output of the segmen-
tation algorithm as possible. The segmentation block then uses the feature
vector sequence to divide the signal into segments, and possibly also pro-
vides some extra information about the segments. All the information from
the segmentation process is then used to perform a segment based feature
extraction. The segment features are in turn used by the detector for cal-
culating the probability that the phonological feature of interest is present.
These scores are basis for a lattice representation which performs time align-
ment. Finally, event decoding and linguistic decoding are done to extract
the linguistic meaning of the utterance.

Only the first two blocks of the system, the first feature extraction and the
segmentation process, are subjects for investigation in this work.
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Figure 1: The SIRKUS recogniser

6



2.2 The TIMIT Speech Corpus

The corpus chosen for the experiments was DARPA TIMIT acoustic-phonetic
continous speech corpus ([9]) because it includes a phonological transcription.
TIMIT is a corpus of read speech spoken by American English speakers.
There are speakers of both sexes and several different dialects. In total
there are 630 different speakers, each reading 10 sentences. The corpus is
divided into a training set and a test set consisting of 4620 sentences and
1680 sentences respectively.

The phonetic labelling has been valuable for evaluating the different segmen-
tations generated in the experiments.

2.3 The Acoustic Segmentation Algorithm

Automatic segmentation is the process of dividing a speech signal into several
segments. Depending on the intended usage of the generated segments, the
process uses different criteria. As described in section 2.1, in the SIRKUS
recogniser it is of interest to isolate segments containing a specific phonolog-
ical feature. The algorithm is the same as the one used in [4] and [5].

The goal of the algorithm is to find the set of segments that minimises a
distortion measure. The distortion measure used will be explained first,
before a description of the algorithm itself is given.

2.3.1 Distortion Calculation

The input to the segmentation algorithm is a sequence of feature vectors,
which are to be divided into segments. A segmentation of the vectors can
be evaluated by calculating a distortion which describes how good the seg-
mentation given is. If the segmentation is close to a segmentation we want,
the distortion should be low, and vice versa. Hence, the choice of how to
calculate the distortion will in a large degree decide the properties of the
final segmentation.

The distortion measure chosen in this work is found by first finding an approx-
imation of the segment, and then calculate the error made by representing
the segment with that approximation.

The mean vector is used as an approximation of the segments, because it
is wanted to represent each segment by a constant vector. The idea is that
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the features will change their statistical properties at a transition between
phonological features. Hence, by dividing the utterance into parts that have
a constant representation, the segmentation might describe the phonological
boundaries.

Let the input feature vectors belonging to segment i be denoted by xi[n].
Further, let the total number of vectors in segment i be Ni. Then the mean
vector of segment i is found by

x̄i = 1
Ni

Ni−1∑
n=0

xi[n] (1)

The Euclidean distance between each of the feature vectors and the mean
vector of the corresponding segment is used as a local distortion:

d(xi[n], x̄i) = (xi[n]− x̄i)T (xi[n]− x̄i) (2)

The total distortion is finally found by a summation of all the local distor-
tions:

D =
Ns−1∑
i=0

Ni−1∑
n=0

d(xi[n], x̄i) (3)

where Ns is the number of segments in the utterance.

This is a quite simple and efficient distortion measure which results in seg-
ments where the features have a roughly constant mean.

2.3.2 The Segmentation Algorithm

Now, with the distortion measure at hand, the algorithm can be explained. A
basic outline of the algorithm is shown in Figure 2. The goal of the segmenta-
tion process is to find the segmentation that minimises the total distortion.
Since the number of possible segmentations is huge, a simple brute force
technique trying them all would demand a good deal of time and resources.
Hence, a dynamic programming approach is used: the algorithm begins with
only two segments and then adds one segment at a time (level building),
until a segmentation that fulfils a certain stopping criterion is found. There
are several options for choosing a stopping criterion. A natural choice would
be to stop when the distortion reaches a given threshold. However, since the
properties of the features used in this work are varying, the threshold would
have to be adjusted all the time. Therefore the iteration was stopped when
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the number of segments was a fixed number of times the number of manual
labels from TIMIT. This is of course impossible to do later in a real situation
where the manual labelling is unavailable. However, at that time a specific
feature set has been chosen, and the threshold can be set accordingly. A
simple way of doing this, is to use the mean distortion when the number of
segments compared to the TIMIT labelling is fixed.

To decrease the total amount of possible segmentations, a minimum and max-
imum segment duration were defined. This constraint decreases the amount
of different segmentations that need to have their distortion calculated. Since
the duration of acoustic events in speech is in the range of a few milliseconds
to about 100 ms, the min/max segment duration can be set accordingly.
Hence, the segment length criterion can be inserted without doing any harm.
Unfortunately, depending on the choice for minimum and maximum segment
lengths and the length of the entire utterance, there is still a great amount
of different possible segmentations.

Before the level building, the algorithm initialises a distortion matrix con-
taining the distortion of all possible segments (not segmentations!). This is
to avoid calculating the distortions several times in the later process. Due to
the large amount of different possible segments much of the total CPU time
of the algorithm is spent in this step.

The level building step starts by using only two segments (levels), and for
every legal ending point (the interval from 2 times the minimum segment
duration to 2 times the maximum segment duration) it finds the optimal
point of transition between the two segments. The optimal distortion of the
two segments is stored along with the placement of the transition. Most
likely, the two segments are too short to cover the entire utterance, and the
distortion of the segmentation is set to a large value. If the stopping criterion
is not fulfilled, the algorithm increases the number of segments and continues
in the same manner. For each legal ending point of the last segment, it
finds the transition between the two last segments that minimises the total
distortion. The total distortion for a given transition point is calculated by
simply adding the distortion of the last segment and the distortion of all the
previous segments calculated at the previous step. Notice that the latter
value was stored together with the the previous optimal transition point.
Hence, the last step of the algorithm, after the stopping criterion is reached,
is simply to backtrace to find all the optimal transition points.
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2.4 Cochlea Features

With the segmentation algorithm explained, an overview of the input to the
algorithm and the main purpose of this work can be given. The cochlea
features are a feature set designed to simulate the nerve fiber signals which
are sent from the ear to the brain. The feature extractor is composed of two
main elements: an auditory filter bank composed with gammatone filters
proposed by Roy Patterson and John Holdsworth in [10], and a Hair Cell
Model proposed by Ray Meddis in [8]. Since these features are a simulation
of the signal transmitted from the ears to the brain, they should contain all
relevant information in the speech signal.

There are various toolkits available for extracting cochlea features. In this
work a toolkit called Auditory Toolbox2, developed by Malcom Slaney, was
used. An overview of the implementation of the filter bank and the Hair Cell
model is given next.

2.4.1 Auditory Filter Bank

The auditory filter bank converts the audio waveform into a simulation of the
response at different parts of the basilar membrane. The filter bank consists
of a set of bandpass filters defined in the time domain by their impulse
response on the form:

gt(t) = atn−1e−2πb cos(2πbfct+ Φ), (4)

where n is the order of the filter, b is the bandwidth, fc is the center fre-
quency and Φ is the phase. These filters are called gammatone filter because
the envelope of the impulse response is the gammafunction from statistics.
Patterson used filters of order 4, and a bandwidth of 1.019 of the Equivalent
Rectangular Bandwidth (ERB)

ERB(fc) = 24.7
(

4.37fc
1000 + 1

)
, (5)

where fc is the center frequency of the filter. This bandwidth gives an 3
dB bandwidth of 0.887ERB(fc). The filters are placed in equal distance in
frequency according to the ERB scale. Figure 3 shows a gammatone filter
bank with 10 filters on the frequency range 100-16000 Hz.

2http://cobweb.ecn.purdue.edu/∼malcolm/interval/1998-010/

11



10
2

10
3

10
4

−60

−50

−40

−30

−20

−10

0

Frequency (Hz)

F
ilt

er
 R

es
po

ns
e 

(d
B

)

Figure 3: A gammatone filter bank with 10 filters on the range from 100 Hz
to 16000 Hz

2.4.2 Meddis Hair Cell Model (MHC)

The Meddis Hair Cell modell takes the basilar membrane vibrations from the
gammatone filter bank as input and outputs an estimate of the firing rates
of the hair cells. I.e. one filter bank channel is input to one hair cell model.
The model is described in [8], where the implementation details are given.

The model describes the movement of something called transmitter substance
packages, which give rise to nerve fiber firings when they are located in the
pre-synaptic cleft. An overview of the model is depicted in Figure 4. The
transmitter substance is located in three reservoirs within the hair cell: a
transmitter pool, the cleft and a reprocessing store. In addition new trans-
mitter substance is generated by the factory.

The movement of the transmitter substance can be read out of Figure 4. In
the transmitter pool that lies close to the cell membrane, it is an amount
of q(t) packets of transmitter substance. These packets are released across
the membrane at a rate k(t), which depends on the stimulus of the basilar
membrane (the input to the model). The amount of transmitter substance
in the cleft determines the probability of nerve fiber firings. The transmitter
substance located in the cleft can either be lost by a rate l · c(t)Hz, where
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Figure 4: Summary of the operation of the hair cell model with differential
equations and parameters for a high spontaneous rate fiber. The figure is
copied from [8]

l is a constant, or returned to the cell and into the reprocessing store by a
rate r · c(t)Hz, where r is a constant. The amount of transmitter substance
packets w(t) in the reprocessing store are returned to the free transmitter
pool at a rate x · w(t)Hz, where x is a constant. New transmitter packets
are generated in the factory and compensate for the loss of packets by refilling
the transmitter pool by a rate of y(M − q(t))Hz, where M is the maximum
number of packets in the free pool.

The model is implemented by updating all the reservoir counts for each input
value. This is done according to the four equations:

dq

dt
= y(M − q(t)) + x · w(t)− k(t)q(t) (6)

dc

dt
= k(t)q(t)− l · c(t)− r · c(t) (7)

dw

dt
= r · c(t)− x · w(t) (8)

k(t) =
{
g · dt s(t)+A

s(t)+A+B s(t) + A > 0
0 s(t) + A < 0

(9)

where dt in practice is the sampling rate of the input s(t), and should be a
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value less than 0.1 ms3. The amount of transmitter substance in the cleft c(t)
gives the probability of a nerve fiber firing and is the output of the model.

An important observation is that the amount of transmitter packets in the
free pool is high at the onset of a sound, but decreases to a standby level
while the sound lasts. Figure 5 shows the response of the MHC (c(t)) when a
sequence of silence, a sine and silence is used as input, and is a good example
of this behaviour.
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Figure 5: Meddis Hair Cell response of a sine signal

The model has several parameters, which should be set with care. Mainly
the parameters suggested in [11] have been used, but also the parameters for
medium spontaneous rate fibers proposed in [8] have been tried.

3The notation of using t and dt is because the model simulates a continuous process,
and is the same as used in [8]
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2.5 Cochlea Zero Crossings with Peak Amplitude Fea-
tures

Zero crossings with peak amplitudes (ZCPA) described in [12] are a set of
features used for speech recognition. In this work another feature set based
on ZCPA was tried. They are generated by replacing the filter bank in
ZCPA with the cochlea feature extractor described in the previous section.
The resulting system is shown in Figure 6.

waveform //
Cochlea
Feature
Extractor

// Rectangular
window

��
Zero-crossing
and peak
Detector

fk,pkFeature Vector DCToo Histogram
construction

oo oo

Figure 6: Cochlea ZCPA

The cochlea feature extractor generates feature vectors at the same sampling
frequency as the input. All the feature vector sequences are then windowed
with a rectangular window before a zero-crossing detector detects the positive
zero crossings. Then, for each pair of zero crossings (zk, zk+1) the inverse of
the zero crossing interval is calculated

fk = 1
zk+1 − zk

, (10)

where zk denotes the time of the kth zero crossing. These frequencies are in-
put to a histogram construction together with the peak amplitude pk between
the two zero crossings. The histogram construction is performed by dividing
the frequency axis into frequency bins with equal width on the mel-frequency
scale. For each of the frequencies, fk, the corresponding bin (bj = bin(fk)) is
incremented by the natural logarithm of the peak amplitude

bnewj = boldj + ln (pk) (11)
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Finally, a discrete cosine transform4 (DCT) is performed on the histogram
for decorrelation purposes. Next, the window is shifted for the next ZCPA
vector.

2.6 Artificial Neural Networks (ANN)

An Artificial Neural Network (ANN), often called Neural Network, is a type
of classifier. The name comes from the similarity with biological neural
networks. An ANN also consists of a number of neurons or nodes connected in
a network. The neurons performs a processing of the input before sending the
result further on, to other neurons. There are several types of ANNs varying
in layout and type of processing units. In Figure 7 one of the simplest kinds
of ANNs, a feed-forward neural network, is depicted.
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Figure 7: A feed forward neural network with three input nodes, four hidden
nodes and two output nodes

In this type of ANNs the information is sent in one direction, forward, from
the input layer through hidden layers (if any) to the output layer. The feed-
forward neural network shown has three input nodes, one hidden layer with
four hidden nodes and two output nodes. The nodes in the input layer accepts
three input values, and passes them to the hidden layer, which performs
processing on the input values before sending them to the output layer which
performs the computations of the final stage.

4There are several definition of the DCT. Here the DCT-II is used.
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2.6.1 Perceptron Neurons

The neurons in the hidden layer(s) and output layer of a neural network
are processing nodes which perform calculations on the input. One of the
first neurons invented and the one used in this work was the Perceptron
[13], which performs a weighted sum of all the inputs before a threshold is
subtracted. To generate binary output the result is often sent through a
hard limiting non-linearity to ensure output to either 1/0 (or 1/-1). The
Perceptron neuron is shown in Figure 8.

x1

w1

$$HHHHHHHHHHHHHHHHHHHHH

x2
w2

))SSSSSSSSSSSSSSSSSS

... 76540123 // f(·) // y

w0

OO

xL

wL

::vvvvvvvvvvvvvvvvvvvvv

Figure 8: A Perceptron Node

The Perceptron neuron in itself is a two class linear classifier. It divides the
input space into two regions by a hyperplane defined by the weights. This
can be written as

f(x) = xTw − w0 < 0 Assign to class 1 (12)
f(x) = xTw − w0 > 0 Assign to class 2 (13)

where w = [w1 w2 . . . wL]T is the vector containing the weights, and x is
the input vector of the node. To compact the notation the threshold can
be moved into the first term by redefining; x′ = [1x1 x2 . . . xL]T , w′0 =
[w′0 w1 . . . wL]T and w′0 = −w0, which will be used from now on.

2.6.2 The Multi-Layer Perceptron (MLP)

By using several Perceptrons in parallel in the hidden layer, one can create
several hyperplanes. This divides the hyperspace into several regions, which
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are then mapped to one of the vertices in a Nh dimensional hypercube, where
Nh is the number of nodes in the hidden layer. Finally, each of the nodes
in the output layer divides these vertices into two classes by drawing hyper-
planes. By making sure that only one output node outputs 1 for any vector,
each of the output nodes corresponds to one output class. The resulting
neural network is a two-layer Perceptron5. It is possible to extend with more
hidden layers. This will give the ability to divide the vertices of the hyper-
cubes using several hyperplanes instead of one, which means that any union
of vertices can belong to a class, in contrast to only neighbouring vertices.
However, the ability to separate classes consisting of any union of regions is
not always necessary, and the increased complexity of adding another hidden
layer is usually not worth the payoff. Hence, a two-layer Perceptron was
chosen in this work.

x // W1 // f(·) Z // W2 // f(·) // y

Figure 9: Vectorised view of a two-layer Perceptron

If all the weights from one layer are put into one matrix with the weights from
each node as a column, each layer can be viewed as a matrix multiplication
combined with an non-linearity to ensure binary output. Hence, the two-
layer Perceptron viewed as in Figure 9, where the outputs of the layers are
given by

Z = f(xTW1) (14)
y = f(ZTW2) (15)

where f(·) denotes the non-linearity, and operates on each element. The
dimension of Z is given by the input dimension and number of nodes in the
hidden layer, while the output vector has a dimension equal to the output
nodes - one for each class.

5There is some disagreement in how to count the layers of a feed-forward neural net.
However, in this work a two-layer Perceptron means a Perceptron with two calculating
layers, including the output layer.
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2.6.3 Backpropagation Training of MLP

There are several approaches for training MLPs and according to [14], the
most popular training algorithm for non separable problems is the backprop-
agation algorithm. This algorithm belongs to the class of assisted training
algorithms, i.e. the data must be labelled. Based on this data it minimises
a cost function with respect to the weights in the structure.

The cost function that is most commonly used is the sum of squared error
at the output

J =
N∑
n=1
‖y(n)− ŷ(n)‖2 (16)

where N is the number of data vectors in the training set. The weights in
the neural net are found by minimising the cost function. There are several
ways of doing this, but a method called gradient descent is a popular choice.
The gradient descent is an iterative algorithm which uses all the data, before
updating the weights by an equation of the form

wnew = wold − α
∂ J

∂ wold
(17)

where α is a constant. Now, since the cost function J is a function of the
activation function f , we must be able differentiate f . This is not possible if
f is chosen to be the unit step function6

f(x) =
{

0 x < 0
1 x > 0 (18)

This problem is solved by using functions that approximate the unit step
function. A popular choice for such a function is the sigmoid function

f(x) = 1
1 + e−ax

(19)

which is displayed in Figure 10 for three choices of the constant a.

The training algorithm begins by updating the weights in the output layer
using equation (17), before the error is sent backward to the previous layer
using the weights. Hence, the name “Backpropagation algorithm”. By using

6A neuron that employs the unit step function as activation function is called a
McCulloch-Pitts neuron
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Figure 10: The sigmoid function for different values of a

the error sent back from the next layer, the algorithm continues to update
the weights and propagate the error further back.

When all the training data has been applied to the training algorithm a test
set is used to evaluate the weights. If the new weights perform better than
the best weights so far (highest average class accuracy), they are kept. If a
stopping criterion is not met, another iteration is performed. On the other
hand, if the criterion is met the weights from the best iteration are returned.

There are several criteria available for determine when to stop iterating. [15]
suggests to terminate the iterations either when the cost function J or its
gradient with regard to the weights becomes small. In this work however,
the training and testing have for simplicity been run 500 times.
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3 Experiments

In this section some of the experiments performed will be presented. Since
trial and error is the main ingredient in this work, it is impossible to present
all the experiments. Hence, only a selection of the experiments is mentioned.
The section is not a chronological presentation of the work, but is instead
divided into the main subjects: cochlea features in section 3.1, the cochlea
ZCPA features in section 3.2 and automatic segmentation in section 3.3.

3.1 Cochlea Features

The process of extracting the cochlea features contains many parameters
which need to be tuned. This is a big problem since one is basically forced
to perform a trial and error approach to optimise. To evaluate the impact
of the different parameters, various plots of the features and the resulting
segmentation were used.

3.1.1 Filter bank

An important parameter of the filter bank is the number of filters (also
called channels in this work). A large amount of filters will give narrow-band
analysis of the signal and produce more features, while fewer filters will result
in broader filters and fewer features. Values used in the experiments have
varied from 10 to 80.

Also, the outputs of the filters are normalised with regard to the response of
the center frequency of the filter, which is also the maximum response. Since
the bandwidth of the filters increase with increasing center frequency, the
filters with highest frequency will have an advantage. In speech most of the
important information is in the lower frequencies. Hence, a normalisation of
the filters with regard to the energy of the unit step response seems more
beneficial.

3.1.2 Meddis Hair Cell Parameters

The MHC module is definitively the part of the process using most parame-
ters. Fortunately Meddis presents two sets of parameters in [8], these are also
given in Table 1 (see Figure 4 on page 13 for explanation of the parameters).
Both parameter sets were tried.
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Parameter Set 1 Set2
A 5 10
B 300 3000
g release 2000 1000
y replenish 5.05 5.05
l loss 2580 2500
r recovery 6580 6580
x reprocessing 66.31 66.31

Table 1: Meddis Hair Cell Parameters from [8]

In addition to the parameters inside the model, the scaling of the input can
be varied. This will impact the amount of transmitter substance moving
from the free transmitter pool to the cleft, which in turn will change the
probability of a firing. From equation (9): it is apparent that an increase in
energy will give higher output activity.

3.1.3 Signal Processing of the Features

Before the features can be used by the acoustic segmentation algorithm,
the sampling frequency has to be reduced. Initially this is the same as the
sampling frequency of the input, which is normally 16 kHz. Such a high
sampling frequency leads to an unreasonable high number of possible different
segmentations, hence it has to be reduced. Two ways of doing this have been
tried: ordinary decimation and windowing. The first alternative is simply to
keep every D vector and remove the rest after a low-pass filtering, where D
is the decimation factor. Both 50 and 100 were tried as decimation factors.
This gives respectively a sampling frequency of 320 Hz and 160 Hz, or a frame
shift of 3.125 ms or 6.25 ms. This is a higher sampling frequency than what
is normal when using MFCCs, where a window shift of about 10 ms seems
to be typical. The other alternative of reducing the sampling frequency is
performed by first windowing the signal and then calculating the mean inside
the window. A Matlab code is given for this in Algorithm 1. The sampling
frequency of the output is in this way controlled by the size of the window
shifts.

A problem that emerged was the noisiness of the features. They contain a
great deal of abrupt changes in time, which results in a high distortion in
the acoustic segmentation algorithm. To reduce this the bandwidth of the
LP filter in the decimation process were decreased. Bandwidths as narrow
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Algorithm 1: Matlab code for windowing operation
% Assume data i s a matrix con ta in ing the f e a t u r e s .
% A row corresponds to a channel .
twin =0.010; % window s i z e ( seconds )
t s h i f t =0.00625; % window s h i f t ( seconds )
wsize=Fs∗ twin ;
wsh i f t=Fs∗ t s h i f t ;
w=hamming( ws ize ) ’ ; % Hamming window
Nfrms=f loor ( ( s ize ( data ,2)−wsize )/ wsh i f t ) ;
nChan=s ize ( data , 1 ) ;
h=zeros (nChan , Nfrms ) ;
for i =1:nChan

for j =0:Nfrms−1
h( i , j+1)=mean( data ( i , j ∗wsh i f t +1: j ∗wsh i f t+wsize ) . ∗w) ;

end
end

as 1/10th the sampling frequencies were tried. When using the windowing
function for reducing the sampling frequency, increased smoothing can be
achieved using a larger window.

After studying figures of the features, a hypothesis that most of the informa-
tion regarding segments is above the mean of the features was produced. To
test this, a subtraction of the mean succeeded by a half wave rectifier was
applied.

3.2 Cochlea ZCPA Features

The idea of combining cochlea features and ZCPA came in the end of the
work. Hence, it was not very much time for exploring the different parame-
ters.

When using the ZCPA algorithm there are four parameters that have to be
adjusted:

Window Size: window sizes in the range of 15 ms to 100 ms were used. 15
ms is in the usual range for MFCCs, but this gives small amount of
data for the histogram construction. Hence, as large as 100 ms windows
were tried.
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Window shift: the amount the window is moved between each feature vec-
tor. Because of the time consumption of the algorithm the experiments
were run with 10 ms window shift and not lower.

Max frequency: the maximum frequency in the histogram construction.
Since the sampling frequency of the features is 16000 Hz, the same as
the input waveform, the highest frequency is 8000 Hz. However, using
a lower value results in a low pass filtering, which might be beneficial
considering the noisy behaviour of the features. Thus both 4000 Hz
and 8000 Hz were tried.

Frequency bins: the number of the frequency bins in the histogram. A
high number of frequency bins gives a high frequency resolution, but
requires wider windows or more cochlea channels to get enough data
within each bin. Both 30 and 60 bins were used.

Input to the ZCPA were cochlea features with dimension of 10, 20 and 40.

3.3 Automatic Segmentation

In the beginning the features were intended to be used by the segmentation
algorithm. Hence, nearly all of the features extracted in the previous sections
were tried as input to the acoustic segmentation algorithm. Since the cochlea
features from section 4.1 did not give the expected performance with the
acoustic segmentation algorithm, another approach for segmentation using
ANN was tried.

3.3.1 Acoustic Segmentation

Because the main focus was on the features the acoustic segmentation al-
gorithm was not target for any parameter variation. Instead, the algorithm
was used only to evaluate the impact of the different parameters of the fea-
ture extraction process. This was done by performing segmentation on some
utterances from TIMIT. In previous work Praat7 has been used for this.
Unfortunately, it does not seem like there is an easy way of displaying the
cochlea features together with the segmentation in Praat. So to be able to
visualise the segmentation and the features a Python script was made.

7http://www.fon.hum.uva.nl/praat/
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3.3.2 ANN Segmentation

After the process of subtracting mean and half wave rectifying, the features
seem to have distinctive behaviour near the boundaries. In an effort to utilise
this, an MLP was used to classify the vectors as either a boundary vector
or not. The manual labeling was used to decide which vectors belong to the
boundary class in the training data. This was done by putting the vectors
describing a frame containing a manual boundary into the boundary class.
In the experiments with the MLP the TIMIT training set and test set were
used for training and testing.

A problem with the first experiments was that too few vectors were in the
boundary class. This means that a low cost can be achieved by classifying
only a few vectors as boundaries, since this results in a small number of
misclassifications. Hence, the result is too few segments in the final segmen-
tation. In an attempt to fix this, the cost function J (see section 2.6.3) in the
training step was scaled with the inverse of the priors for the classes. This
makes the class with the low prior count more in the error calculation. I.e.
a vector from the boundary class classified as non-boundary will result in a
larger error than before.

Since the manual labelling does not need to be the only correct segmentation,
and a transition between segments is continuous, the two vectors surrounding
the boundary vectors can also be put into the boundary class. This will
further reduce the problem with the skewed distribution of the classes and
therefore give more boundaries.

The amount of hidden nodes in the MLP had to be chosen. The only way to
do this is again by trial-and-error. Three values were tried: 20, 50 and 100.

Normally the output node giving the largest value is selected as the correct
class. However, since the output nodes give a value in the range [0, 1] it is also
possible to compare one of the two nodes with a threshold. In addition, by
weighting the output node with a cost function dependent on the amount of
frames since last boundary was detected, a problem with succeeding frames
being all detected as boundaries (see section 4.3) can be reduced. A weight
of the form

w = 1− e−an (20)

where n is the number of frames since last boundary, and a was set to about
0.1, was used.

Transitions between unvoiced-unvoiced, voiced-unvoiced, unvoiced-voiced and
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voiced-voiced (see Table 2) sounds8 will act differently, and perhaps distribute
the boundary class into several clusters, and therefore increase the need of
nodes in the hidden layer. Dividing the boundary vectors into four classes
(one for each of the cases) might reduce this problem. Of course, this will
again increase the problem with a skewed distribution of the classes.

Class Phonemes
Voiced b, bcl, d, dcl, g, gcl, dx, z, zh, jh, v, dh, m,

n, ng, em, en, eng, nx, l, r, w, y, hv, el, iy,
ih, eh, ey, ae, aa, aw, ay, ah, ao, oy, ow, uh,
uw, ux, er, ax, ix, axr, ax-h

Unvoiced p, pcl, t, tcl, k, kcl, q, qcl, ch, s, sh, f, th, hh
Others pau, epi, h#

Table 2: Voiced and unvoiced phonemes in TIMIT.

Since the boundaries seemed to give a onset of the features, the derivatives
should have a large peak. To try to utilise this in the classification also ∆
and ∆∆ features were added to the feature vectors. These were generated
by

∆ck = ck+1 − ck−1 (21)
∆∆ck = ∆ck+1 −∆ck−1 (22)

where ck is the cochlea feature vector at time k. This results in feature vectors
with dimension double (only ∆) or triple (both) the size of the original vector.
Because of the resource consumption both could not be used together with
40 channels.

8Labels from the “Other” class, i.e various pauses, were considered unvoiced.
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4 Results

During the experiments in this work, a great deal of results were generated.
In this section some of the figures and tables are shown, together with an
explanation of the most important observations. The section is divided into
subsections to match the subsections of section 3. One exception is the results
from the acoustic segmentation which are presented during section 4.1 and
4.2, since they are used as a criterion for evaluating the features.

4.1 Cochlea Features

In Figures 11 and 12 a basic setting of the features and the resulting segmen-
tation is shown. The features are generated with the use of 40 channels and a
decimation with a factor of 100. Notice how some parts of the utterance are
given a high portion of boundaries as close together as the minimum segment
duration given in the algorithm, while other parts are empty only given some
boundaries to fulfil the maximum segment duration.

Similarly, the Figures 13 and 14 shows features where each of the filters in the
filter bank have been normalised with the energy of its unit sample response.
Still the problem with very uneven distribution of the boundaries are present.
Also, notice that some of the information in the higher frequency areas have
been lost.

The features shown in Figures 15 and 16 have in addition a scaling of the
input to the MHC model by a factor of 500 instead of the original 80. In
Figure 17 the same features have been used, but the number of segments
has been set equal to the number of manual segments. These figures show
that the information in the higher frequency is back again. Also, the features
have a more natural distribution of the energy in the frequency domain. The
segments are now distributed a little bit more even across the utterance, but
the problem still needs improvements.

The Figures 18 and 19 shows a plot of 4 of the 40 channels when decimation
and windowing respectively are used. These figures shows that the windowing
alternative gave a more noisy result than the decimation operation.

In Figure 20 the same settings as in figure 18 are used except from that
parameter set 2 given in Table 1 on page 22 is employed. Although these
features look less noisy than the previous plots, they gave a segmentation
that had a much poorer distribution of the boundaries than the features
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generated with parameter set 1.

Another observation worth noting about the channel plots in the previous
mentioned figures is that the features seems to vary around a specific standby
value. Onsets in the channels give a large spike before the signal goes back
down and often below the standby value to recharge back up. Hence, it
seems like the information that is of interest in the segmentation process
is above this value. This observation gave the idea of half wave rectify-
ing around this standby value. Unfortunately, this did not improve the
segmentation output. However, by comparing the features with the man-
ual labelling like in Figure 21, it is evident that the features often either
have an onset or offset near a manual boundary. The figure was gener-
ated by taking the maximum of the channels corresponding to the subbands
[0-1000, 1000-2000, 2000-4000, 4000-8000] for each frame. These four signals
were then imported into Praat as two stereo wav files.

Although the figures given here are generated using 40 channels, several
other values in the range 10-80 were tried. However, it was hard to get an
impression of the impact of the parameter. In some cases a low value seemed
to give a slightly better match compared to the manual labelling than a
higher value, while in other cases the opposite seemed true.
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Figure 11: Cochlea features, 40 channels. The raw version on top, and the
decimated version below.
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Figure 12: Acoustic segmentation based on features from Figure 11.
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Figure 13: Cochlea features, 40 channels. Filter bank normalised with the
energy of the unit sample response.
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Figure 14: Acoustic segmentation based on features from Figure 13.
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Figure 15: Cochlea features, 40 channels. Filter bank normalised with regard
to energy of the unit sample response. Input to MHC scaled by 500.
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Figure 16: Acoustic segmentation based on features from Figure 15.
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Figure 17: Acoustic segmentation based on features from Figure 15 with
number of segments equal to the number of manual segments.
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Figure 18: Plot of channel 10, 20, 30 and 40, when 40 channels and decima-
tion with a stricter LP filter are used.
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Figure 19: Plot of channels 10, 20, 30 and 40 after windowing operation with
window size 5 ms and shift size 6.25 ms.
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Figure 20: Plot of channels 10, 20, 30 and 40 after MHC parameter set 2 in
Table 1 on page 22.
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Figure 21: The maximum value of the channels corresponding to [0-
1000,1000-2000,2000-4000,4000-8000] Hz after mean subtraction and half
wave rectifier compared with the manual labelling using Praat.
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4.2 Cochlea ZCPA Features

In Figure 22 the cochlea ZCPA features before the DCT are depicted. The
features are generated with 20 channels, max frequency 8000 Hz, 60 frequency
bins, window size of 30 ms and window shift of 10 ms. Figure 23 shows the
resulting segmentation (after the DCT has been applied). It is evident that
this result is much better than the results using the normal cochlea features.
The problem of segments with minimum and maximum duration is nearly
gone, and it seems that the boundaries have a high correspondence with the
manual boundaries.
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Figure 22: Cochlea ZCPA Features before DCT
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Figure 23: Segmentation using cochlea ZCPA as input. The numbered la-
bellings corresponds to features generated using (from the top) 10, 20 and
40 channels. The features are extracted with max frequency of 8000 Hz, 60
frequency bins, window size 100 ms and window shift 15 ms.
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4.3 ANN Segmentation

Figure 24 shows the values at the output node of the boundary class for
one utterance in the TIMIT test set. This is a great example of a common
problem with ANN: too many hidden nodes will result in large output values.
In fact the values input to the sigmoid function had magnitudes of the order
of 105 for the case of 100 hidden nodes.
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Figure 24: Values at output node using 100 hidden nodes (left) and 50 hidden
nodes (right).

The Figures 25 and 26 shows segmentation results for four data sets: 10
channels+∆+∆∆, 20 channels+∆, 20 channels+∆+∆∆, 40 channels+∆ all
with a decimation factor of 100. The classification is done by selecting the
class that had the maximum output value. The figures are good examples of
the problem with succeeding frames all being classified as boundaries. This is
of course expected and quite natural, as succeeding frames will be correlated.

In the Figures 27 and 28 the boundaries have been divided into 4 classes:
voiced-voiced (v-v), voiced-unvoiced (v-u), unvoiced-voiced (u-v) and unvoiced-
unvoiced (u-u). Also, the decision was performed by comparing the maxi-
mum of the four output nodes to a threshold, while the 5th output node
corresponding to the non-boundary (nb) was ignored. The number of seg-
ments could then be controlled by adjusting the threshold. Also a penalty
for succeeding boundaries was inserted, something that is shown clearly in
the figures.
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Figure 25: ANN Segmentation viewed in Praat. Data sets from top: man-
ual labeling, 10 channels+∆+∆∆, 20 channels+∆, 20 channels+∆+∆∆, 40
channels+∆ all with a decimation factor of 100. 20 hidden nodes. Maximum
of output nodes used for deciding.
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Figure 26: ANN Segmentation viewed in Praat. Data sets from top: man-
ual labeling, 10 channels+∆+∆∆, 20 channels+∆, 20 channels+∆+∆∆, 40
channels+∆ all with a decimation factor of 100. 50 hidden nodes. Maximum
of output nodes used for deciding.
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Figure 27: ANN Segmentation viewed in Praat. Data sets from top: man-
ual labeling, 10 channels+∆+∆∆, 20 channels+∆, 20 channels+∆+∆∆, 40
channels+∆. 50 hidden nodes. Output of boundary node larger than thresh-
old used for deciding. Penalty for succeeding boundaries added.
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Figure 28: ANN Segmentation viewed in Praat. Data sets from top: man-
ual labeling, 10 channels+∆+∆∆, 20 channels+∆, 20 channels+∆+∆∆, 40
channels+∆. 50 hidden nodes, 5 output nodes. Maximum of output nodes 2-
5 larger than threshold used for deciding. Penalty for succeeding boundaries
added. 45



One of the most interesting results in the experiments with 5 output nodes, is
the confusion matrices shown in Table 3. These show the portion of vectors
of a class (row) being classified as another class (column), i.e. element (i, j)
gives the share of vectors from class i being classified as class j. Especially
notice how well the classifier does for the (u-v) class. Although the rest of
the results are not very good.

- nb u-u v-u u-v v-v
nb 92.6 0.8 0.2 4.4 2.0
u-u 95.0 0.6 0.9 2.9 0.7
v-u 98.6 0.2 0.2 0.6 0.4
u-v 60.3 17.9 0.3 19.6 1.9
v-v 87.9 3.6 0.1 7.0 1.4

nb u-u v-u u-v v-v
nb 90.8 2.6 0.2 4.9 1.6
u-u 79.3 11.0 0.2 8.6 1.0
v-u 78.7 3.3 1.1 2.7 14.1
u-v 43.8 5.6 0.1 49.7 0.8
v-v 79.4 1.8 0.3 15.5 3.1

nb u-u v-u u-v v-v
nb 92.5 0.1 1.9 4.9 0.6
u-u 93.6 0.0 4.7 1.1 0.5
v-u 98.5 0.0 0.9 0.6 0.0
u-v 77.7 0.1 2.3 19.5 0.3
v-v 94.3 0.0 0.5 5.0 0.1

nb u-u v-u u-v v-v
nb 80.6 1.5 0.7 16.2 1.0
u-u 81.2 0.3 0.0 18.6 0.0
v-u 94.8 0.3 0.0 4.8 0.1
u-v 44.0 1.5 0.1 54.0 0.5
v-v 77.7 1.0 0.2 20.6 0.6

Table 3: Confusion matrix for (from left to right, top to bottom) 10
channels+∆ + ∆∆, 20 channels+∆, 20 channels+∆ + ∆∆,40 channels+∆.
The classes: No boundary (nb), unvoiced-unvoiced (u-u), voiced-unvoiced (v-
u), unvoiced-voiced (u-v) and voiced-voiced (v-v). For each manual boundary
three frames are said to be of that boundary class.
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5 Discussion

One of the largest difficulties when experimenting with automatic segmenta-
tion is how to evaluate the results. Both because there is no right solution
to the problem, and because a good segmentation for one task does not need
to be a good segmentation for another task. Hence, without knowing in
detail what kind of errors that are crucial for the next part of the system,
it is hard to tell if one segmentation is better than another. However, it is
possible to see if the resulting segmentation corresponds to the speech signal
at all. If the segmentation agrees with the manual labelling on many of the
boundaries, it is probably a good segmentation.

5.1 Cochlea Features

When trying to evaluate the results of a given set of parameters, three criteria
have been used: firstly, the features have a tendency to being noisy, a be-
haviour it is beneficial to suppress. Hence, features with less noisy behaviour
were desired. Secondly, a reasonable distribution of energy in the frequency
domain is important in order to avoid losing essential information. Finally
and most importantly, a subjective evaluation of the resulting segmentation
has been performed.

The first criterion has been a big problem, since a large degree of abrupt
changes gives a bad segmentation when using the acoustic algorithm. Hence,
much time and effort have been used to get smoother features. The main
reason for this being so difficult is because one of the main properties of
the features is in fact that they give a large spike for onsets. Of the two
approaches used to suppress this noisiness, the LP filtering seem to give
slightly better segmentation results than the windowing operation given in
Algorithm 1. This might be because the windowing operation was not as
accurate in removing the high frequencies of the features, or because the
right setting with window shift and window size was not found. Nevertheless,
the smoothing algorithm did not seem to give features with better properties
than a LP filtering. Hence, it is unlikely that the window operation can give
any better results than the LP filtering.

Another problem with the features was that the distribution of energy in the
frequency domain seemed strange in several of the experiments. Originally
it appeared to be too little energy both in the frequencies below 1000 Hz
and above 3500 Hz (see Figure 11 for an example). This was improved by
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normalising the filter bank and by increase the scaling of the input to MHC.
However, it is still a problem that higher frequencies are being ignored. A
good example of this is segment number 16 in Figure 17 on page 35. This is a
“k” followed by an “s”, which should be segmented into three segments (“k”-
closure, “k”-burst and “s”). However, there are none or very little energy in
frequencies below 7000 Hz (see decimated cochleagram in Figure 15 on page
33) during this part of the signal. This results in only one segment.

One parameter that was hard to see the actual impact of, was the number
of channels. However, it seems that the optimal value of this parameter is
dependent on the other parameters and operations performed on the features.
Hence, this parameter should be optimised after a given feature extraction
setting has been chosen.

Among all the different parameter setups for the feature extraction process it
is hard to tell which one that is the best for acoustic segmentation. Especially
since the knowledge of the details of the detectors is unknown. One of the
parameters with highest impact on the result, is the scaling of the input to
the MHC. When using the original 80 suggested in the Auditory Toolbox
documentation, the activity of the output was very low. However, a value
of about 500 gave much better results (compare Figure 13 and figure 15 on
page 31). Further, a normalisation of each channel with regard to the energy
of its unit sample response, gave somewhat better results than the original
normalisation. This can be explained by that the latter gives higher energy
in the channels with wide bandwidth and high frequency, while much of the
information in a speech signal is in the lower frequency channels. Hence,
by normalising with regard to unit step frequency response, the information
contained in the lower frequencies of the speech signal will have more impact
in the resulting segmentation than the information in the higher frequencies.
By looking at the Figures 11 and 15, it is evident that the latter is better.
It has a large degree of energy in the low frequencies, but still has some
information left in the higher frequencies. This is confirmed by investigating
Figure 17, which is a pretty good segmentation, in fact it is the best that were
produced using the cochlea features as input to the acoustic segmentation
algorithm (not including the ZCPA experiments).

5.2 Cochlea ZCPA Features

Because of time constraints, an optimising of the parameters of the cochlea
ZCPA feature extraction was not performed at all. The features were there-
fore only tried for a couple of chosen parameter settings. Hence, the results
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from these experiments can only be used as an indication for whether these
features are usable or not.

When looking at the resulting segmentations in Figure 23 on page 40 it seems
that a high degree of the manual segment boundaries are hit, meaning that
they have an automatically generated boundary close by. Also for these fea-
tures the number of channels seems to have a small impact on the resulting
segmentation. However, a pattern is hard to see other than that 20 and 40
channels gives results that are similar compared to the result for 10 chan-
nels. This is probably because 10 channels give less data for the frequency
histogram construction.

One thing is clear from these experiments: the results given by the cochlea
ZCPA are the best results generated in this work. It is definitively promising
results indicating that a more thorough research on these features are in
order.

5.3 ANN Segmentation

The idea of trying to use classification as an approach for segmentation came
from plots like those in Figure 21, where the boundaries seem to have char-
acteristic feature vectors. It gave some promising results but could not really
compare with the acoustic segmentation algorithm.

When looking at the segmentation based on the ANN, it seems like it does a
good job for some of the boundaries. However, it is very unstable in the way
that it leaves some parts of the utterance unsegmented, while other parts are
segmented into very small pieces. This indicates that it might be impossible
to utilise the information this kind of segmentation provides. Nevertheless,
when studying the confusion matrices (Table 3 on page 46) it does not look
all bad. First, remember that the resulting segmentation is only depended
on non-boundary/boundary, so a misclassification between the four boundary
classes (“u-u”, “u-v”, “v-u”, “v-v”) ends up being right. Hence, the unvoiced-
voiced boundary vectors are in reality only misclassified in 43.8% of the cases
for the data set with 20 channels+∆ + ∆∆. In addition, remember that for
each manual boundary there are three frames said to be a boundary. This
means that with only 33.3% correct, it is still possible to cover all, but very
unlikely though. Of course, it is possible that many of these boundaries are
from parts that are very rich on segments, but it does not seem that way
from the segmentation in Figure 28 on page 45.

A hypothesis from this might be that the ANN approach performs more sta-
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ble on some specific subword units than the acoustic variant. If that is true,
the ANN approach is something that is possible to utilise in the correspond-
ing detector in the SIRKUS recogniser. However, further experiments have
to be done in order to confirm this.

5.4 Future Work

The cochlea features contain one important peculiar property: They produce
a high spike to mark onsets. Since this results in high distortion in the
acoustic segmentation, it might be that the algorithm is not the optimal
approach for using the cochlea features to segment speech. It could however
be possible to change the algorithm to better handle the cochlea features.
Since the big problem is that the features are not stationary for a stationary
part of a signal (see Figure 5 on page 14), a better adapted approximation
trajectory could be beneficial.

The use of the cochlea ZCPA features seemed to give good results. A deeper
look into these features would certainly be of interest. First of all an optimi-
sation of the feature extraction process must be performed. Especially, the
window length, number of histogram bins and number of channels need to
be coordinated to ensure that each bin gets enough data.

A problem with the ANN approach is that succeeding frames are all being
detected as boundaries. In this work a penalty function has been inserted to
give some memory to the process. The problem with that solution is that
it might not always be the first boundary that is the right. Imagine as an
example 5 succeeding frames being detected as boundaries, and that only
the middle on in fact is a boundary. By inserting the penalty function, this
might result in frame number 1 and 5 being detected, instead of only number
3. Hence, if the approach is to be used for segmentation, a better solution
to the problem should be developed. For example a post processing step
finding the optimum segmentation based on some kind of cost function could
be utilised.

Something that might be worth trying is to perform an evaluation of how
each of the segmentation approaches are performing for different phonemes.
This can be done by comparing the segmentation result with the manual
labels and calculate the success rate of segments belonging to the phoneme
in question. These results can be valuable when deciding what approach that
is best for each of the detectors.
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6 Conclusion

It is evident from the results shown in this work, that the cochlea features
contain a great deal of usable information. The problem however, seems to
be how to utilise this information when performing automatic segmentation.
Of the approaches that have been presented, the cochlea ZCPA features
gave the best results. They are definitively a subject for further exploration.
The question is however if the features give any new information that is not
contained in the frequently used MFCCs. This is of course impossible to
answer based on the results from this work, since MFCCs have not been
used at all. Hence, a comparative study should be performed before any
conclusion regarding this question is made. Of course, the ZCPA features
need an optimisation before this is done.

Since the SIRKUS recogniser consists of several parallel detectors trying to
detect if a certain phonological feature is present, it might be that the cochlea
features are better than the MFCCs for some of the detectors. It is therefore
possible that the features can be used in the SIRKUS project, despite the
fact that they seem to perform slightly poorer than the MFCCs in general.

Further, the features seem to contain a great deal of information not only
needed for segmentation, but also for recognition in general. Much of the
information seems to be similar to that of the MFCCs. They are both con-
taining information regarding energy in different frequency bands. However,
the cochlea features are different in that they emphasise onsets in a frequency
band.

This work can not be used to reject the use of cochlea features in speech
recognition or automatic segmentation. Neither can it be used to argue that
they are better than alternative features. Hence, it is necessary to perform
more research before making a final conclusion. However, the features give
some promising results which indicates that they should be further explored.
Especially promising are the results from the cochlea ZCPA, which defini-
tively should be a subject of further investigation.
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