
June 2009
Per Gunnar Kjeldsberg, IET
Johnny Pihl, Atmel Norway

Master of Science in Electronics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Switching in multipliers

Jakub Jerzy Kalis

Problem Description
An inherent characteristic of a multiplier implementation is that most of its power consumption is
caused by spurious toggling on internal nodes (up to 75% have been cited). This master thesis
assignment builds on results from a project assignment and aims at developing techniques for
estimation of the functional and spurious switching in multipliers. A number of different candidate
multiplier implementations will be provided. It involves work at the gate and layout levels using
advanced circuit layout and simulation tools.

Assignment given: 15. January 2009
Supervisor: Per Gunnar Kjeldsberg, IET

Abstract

Digital multipliers are an important part of most of digital computation systems,
such as microcontrollers and microprocessors. Multiplication operation is a quite
complex task, thus there is many different solution varying in area, speed and power
consumption. An important notice is that multipliers often are a part of critical path
of a system which makes them especially important for these factors. During last
decade, power efficiency has become an important issue in digital design and a lot of
design methods has been created and investigated to meet this subject.

It is a known fact that most of power consumed by arithmetic circuit is dissipated
by hazards and toggles (up to 75%), that do not bring any information to final result.
The method of evaluating the amount of spurious switching and its effect on power
dissipation is investigated here.

This thesis aims to find a method to estimate switching characteristics and its
effect on power dissipation of eight supplied multipliers given in form of HDL net-list
with some software overhead. As switching generally stands for majority of power
consumption in digital CMOS circuits, this effect gives also good indication of overall
power dissipation. One of the difficulties in estimating average power and transition
density is pattern dependency problem. The method based on Monte Carlo technique
is used where an adequate accuracy is obtained within moderate time and resource
usage.

Three of investigated multipliers are net-lists created by using methodology de-
veloped in [21]. These are synthesized and laid out in the technology used by Atmel
Norway. The amount of logical state changes is compared from pre- and post- syn-
thesis net-lists. The technology mapped net-lists are also examined for power con-
sumption to see the connection between switching and dynamic power dissipation.
The fan-out delay model used to estimate total toggling gives a good approximation
of circuit properties; it is however too simple to give a good estimate of spurious
toggling inside the circuit and its effect on power consumption.

The same estimation technique is used to investigate a DesignWare circuit (DW02)
which is an industrial approach of building fast and power efficient multipliers. The
results show that this is the most power effective solution among the examined circuits

i

ii

(45-47% less than the most power efficient circuit from [21]) It is also a solution with
smallest amount of hazards during a multiplication operation (38-52%).

A circuit generated by module generation software (ModGen) is also investigated.
This solution is quite power efficient, it has however largest amount of power dissi-
pated by the spurious toggling (62-68%).

It is also noticed that transition density and what follows the power dissipation
in strongly dependent on the process, temperature and voltage variation. In fact the
higher temperature gives reduction in power consumption.

Preface

This thesis is submitted as a result of my work done in the period from January to
June 2009 as the last step of my master degree studies at The Norwegian University
of Science and Technology (NTNU). The main supervisor of this work was Professor
Per Gunnar Kjeldsberg at the Department of Electronics and Telecommunications.
The co supervisor and a company representative was Johnny Phil from Atmel Norway
who supported the data necessary for the experiments.

The assignment was originally created for two students. The scope of the task
had to be limited because I was the only one who accepted this assignment.

Acknowlegments

I want to thank my supervisor Per Gunnar Kjeldsberg for his help and comments
on my work. I am also thankful to Johnny Phil for the support and information
necessary to carry out this assignment. For help with the diverse software problems I
want also to thank Saeeid Tamasbi Oskuii. I am grateful for all help from my friends
and teachers here at the Department of Electronics and Telecommunications.

Jakub Kalis
Trondheim, 18. June 2009

iii

iv PREFACE

Contents

Abstract i

Preface iii

List of Tables vii

List of Figures ix

List of Abbreviations xiii

1 Introduction 1

1.1 Problem Description . 2

1.2 Outline of the Thesis . 3

1.3 Contributions . 3

2 Multiplication 5

2.1 Multiplier . 5

2.1.1 Microcontroller . 5

2.1.2 Data Representation . 6

2.2 Multiplication Schemes . 7

2.2.1 Partial Products Generation . 9

2.2.2 Partial Product Accumulation 10

3 Power Dissipation 15

3.0.3 Sources of Power Dissipation 15

3.1 Switching Power . 16

3.1.1 Transition Density Factor . 17

3.1.2 Spurious Switching . 18

3.2 Power Estimation . 19

3.2.1 Simulation based estimates . 20

3.2.2 Probabilistic methods . 20

v

vi CONTENTS

3.2.3 Monte Carlo Techniques . 21
3.3 Alternative Ways of Power Measurement 22
3.4 Statistical Method . 23
3.5 Simulation . 23

3.5.1 Levels of modeling . 23
3.5.2 Logic simulation . 23
3.5.3 Type of Simulation . 23
3.5.4 Delay models . 24

4 Tools and Methods 29
4.1 Choice of Estimation Method . 29
4.2 Measuring Method . 30
4.3 Logic Simulation . 31

4.3.1 Stimulus . 33
4.3.2 Toggle Count . 33

4.4 Power Measurement Tool . 35
4.5 Script Development . 36

5 Results 37
5.1 Circuits Under Test . 38
5.2 Simulation Length . 39
5.3 Switching Characteristics . 41
5.4 Power Consumption . 45

6 Disscutions and Conclusions 49
6.1 Counting Method . 49
6.2 Switching Characteristics . 49
6.3 Power Dissipation . 51
6.4 Future Work . 51

Appendix 53

A Tables 53
A.1 Switching . 53
A.2 Power . 58

B Tutorial 61
B.1 Switching Activity . 61
B.2 Power dissipation . 61
B.3 Device Under Test . 62
B.4 Simulations . 62

CONTENTS vii

B.4.1 Timing Simulation . 62
B.4.2 Zero Delay . 63

B.5 Spurious Toggling . 64
B.6 Reporting Power . 64

C Code 67
C.1 Testbench . 67

C.1.1 VHDL . 67
C.1.2 Verilog . 68

C.2 Script: Timing Simulation . 68
C.3 Script: Zero Time Simulation . 69
C.4 Python Scripts . 70

C.4.1 Random Number Generator . 70
C.4.2 Toggle Count from TSSI List File 70
C.4.3 Toggle Count from Power Report 72

Bibliography 73

viii CONTENTS

List of Tables

2.1 Notation used to discus multiplication algorithms 7
2.2 Addition of binary numbers . 10
2.3 Truth-table of half-adder . 11
2.4 Truth-table of full-adder . 11

3.1 Truth table of at NAND gate . 19

5.1 Abbreviations used in result presentation 39
5.2 Average toggling per multiplication - TM 41
5.3 Average toggling per multiplication - MM (PVT MIN) 42
5.4 Average Toggling per multiplication - MM (PVT MAX) 42
5.5 The proportion between PVT MIN and MAX 43
5.6 Difference in switching activity . 44
5.7 Power consumed by the multipliers (PVT MIN) 45
5.8 Power consumed by the multipliers (PVT MAX) 45
5.9 The proportion between PVT MIN and PVT MAX 46
5.10 Multipliers area information . 47

A.1 Simulation length . 53
A.2 Total toggling measured during experiments on TM multipliers 54
A.3 Toggling measured in zero-time mode in the MM multipliers 54
A.4 Total toggling of TM multipliers in opposite PVT corners 55
A.5 Toggling per operation of TM multiplier 56
A.6 Toggles per operation of MM multipliers in zero-time model 56
A.7 Toggling per operation of MM multiplier 57
A.8 Power dissipated in PVT MAX . 58
A.9 Power dissipated in PVT MIN . 59

ix

x LIST OF TABLES

List of Figures

2.1 Microcontroller Architecture . 6
2.2 Multiplication of binary numbers . 7
2.3 Block diagram of shift-and-add multiplier 8
2.4 A dot-diagram representation of a 8x8 multiplier 8
2.5 8× 8 Radix-4 multiplication . 9
2.6 Gate-level implementation of full-adder (a) and half-adder (b) 12
2.7 Relationship between ripple-carry adder (a) and carry-save adder (b) . 12
2.8 Possible CSA tree for a 7× 7 multiplier 13

3.1 Components of power dissipation . 16
3.2 Glitch is generated and filtered or propagated 19
3.3 Block-diagram overview of a Monte Carlo technique 22
3.4 Delay models . 26
3.5 Fan-out model of a FA gate . 27

4.1 Block diagram of the measuring methodology 32
4.2 Obtaining switching properties . 33

5.1 Number of consecutive operations in Zero Time mode 39
5.2 Number of consecutive operations in Real Time mode 40
5.3 The average toggle count of all the MM multipliers 41

xi

xii LIST OF FIGURES

List of Abbreviations

CLA Carry Look-Ahead Adder
CMOS Complementary Metal Oxide Semiconductor
CPA Carry Propagate Adder
FA Full Adder
HA Half Adder
I/O Input/Output
PP Partial Product
PPRT Partial Product Reduction Tree
RCA Ripple Carry Adder
SAIF Switching Activity Interchange Format
SDF Standard Delay Format
VCD Value Change Dump
VMA Vector Merge Adder
- -

xiii

xiv LIST OF ABBREVIATIONS

Chapter 1

Introduction

Recent trend in portable computing and wireless communication makes power con-
sumption a critical concern in VLSI circuit and system design. The decreasing size of
electronic devices makes it possible to place several units with different tasks on one
chip. This leads to larger power density [30]. These devices must meet demands of
high speed computation and complex functionality with low battery power consump-
tion. All these factors are taken into consideration while designing various digital
signal processing chips or microcontrollers.

Traditionally, the main priority has been given to area and speed, while the latest
trends exhibit more consideration on parameters like flexibility, testability, reliability.
Power optimization is also presented as a design goal in its own right in digital circuit
design [21]. There are a lot of reasons for that. High-speed circuits consume a lot
of energy in a short amount of time, generating a great deal of heat. This is an
undesired bi-product which has to be removed by otherwise unnecessary hardware
overhead. Another consideration is battery driven products. Batteries must last
longer for devices with higher and faster computation possibility.

One of the main considerations in power aware design is constriction and exam-
ination of a basic arithmetic circuit where multipliers are the dominating building
blocks. Literature studies show that multiplication has been an important research
area in the recent years [11], [21], [22].

The multiplication process occurs in most of digital computation systems like
microprocessors and microcontrollers. Multipliers are in fact among the main contri-
butions of area and power consumption in digital signal processing systems [22]. An
important fact is that they are usually placed in critical paths of such systems. This
makes the multiplication a significant process with regard to design possibilities.

Calculating a product of two input data require a lot of switching activities in
CMOS designed multipliers due to many partial products accumulation operations.
As the switching activities in a multiplier account for the majority of its power con-

1

2 CHAPTER 1. INTRODUCTION

sumption, minimization of this activity can effectively reduce the power dissipation
of the whole circuit [24]. The way in which some circuits are built makes it sensitive
to problem of spurious glitching. This switching activity can stand for up to 75% of
power consumption in a digital circuit [11], [14].

To minimize the power consumption a good estimation technique of switching
activities is needed.

1.1 Problem Description

An inherent characteristic of a multiplier implementation is that most of its power
consumption is caused by spurious toggling on internal nodes. This thesis aims at
estimating the functional and spurious switching in multipliers and its effect on power
dissipation.

The objectives of the thesis are to investigate 32 bit combinatorial multiplier given
in form of a HDL net-list together with the necessary overhead like delay models, post
synthesis information etc.

Three of these are generated by software created as a work behind the Ph.D
thesis by Saeeid T. Oskuii [21]. This software is used to create a HDL net-lists which
represent three different power optimization levels. One is a maximally optimized
structure for lowest power dissipation, one represents worst-case power characteristic,
while the last one is a random generated multiplier net-list. All three multipliers are
supplied with a delay model created for the purposes of the above named thesis.

A model of a multiplier used by Atmel Norway is also supplied. The circuit is
representative for the layout and synthesis outcomes commercially used for 32 bit
multipliers in the digital IC industry. The delay model of synthesized net-list is also
provided.

The three multipliers from [21] are synthesized and laid out in a synthesis tools
used by Atmel Norway. They are laid out with the same technology constrains as
the multipliers supplied by Atmel Norway. This way they can be compared with
attention to power and switching characteristic

Last multiplier type, inspected in this thesis is a net-list generated by Arithmetic
Module Generator (ModGen) available at http://modgen.dnsalias.com. The net-list
generated there is then laid out in the same way technology as previews multipliers.
This is done to verify how good the ModGen tool produces compared to the other
circuits results.

The goals of this thesis are:

• Get better understanding of power aware design of digital integrated circuits.

1.2. OUTLINE OF THE THESIS 3

• Develop a methodology for obtaining switching activity from HDL simulation
on the net-list level.

• Compute the spurious switching in the supplied circuits.

• Compare the amount of switching in for different cases, both the theoretical
and technology dependent cases.

• Compare the amount of power consumed by the supplied multipliers in the
given technology.

• Propose an eventual improvement of the fan-out delay model used in [21].

• Produce a tutorial which describes step-by-step methodology of obtaining the
switching characteristics of the circuit.

1.2 Outline of the Thesis

Chapter 1 has introduced the significance of low power design and importance of good
estimate of this power during the design phase. The mail goals and contributions are
mentioned here as well.

In Chapter 2 the main idea behind multiplication process is discussed together
with the relevant information about creating the low power digital multipliers.

Chapter 3 presents the sources of power dissipation in digital circuits. The power
estimation methods with special emphasis on the switching power dissipation are
discussed here as well.

Proposition of a switching measuring technique is given in Chapter 4. Also a
method of measuring the average power is described in this chapter.

Results of the experiments carried out in this thesis are described in Chapter 5.
Results are then discuss in Chapter 6 together with conclusions drawn by the author.

Tables with more detailed result presentation are presented in Appendix A. Tu-
torial on toggling and power measurement method is presented in Appendix B. Ap-
pendix C contains scripts and parts of code that are developed and used to obtain
presented results.

1.3 Contributions

This thesis has led to some interesting results where the main contributions are listed
below:

4 CHAPTER 1. INTRODUCTION

• Method for recording the switching activity in a net-list of combinational arith-
metic circuit with both timing and the zero-delay model to find the spurious
toggling density of the circuit.

• Collection of the switching activity of supplied multipliers in terms of average
toggling per executed operation.

• Collection of average power used by the multipliers during their operational
mode.

• Comparison of power dissipation together with the switching characteristics of
the given multipliers to find out the improvement in the different optimization
mode of the circuits.

• Comparison of switching characteristics for the technology independent low-
power reduction-tree multipliers before and after mapping into technology li-
brary used by Atmel Norway.

• Developing a step-by-step tutorial on measuring total glitching characteristics
of a combinational circuit together with a technique of extracting the spurious
glitches of internal nodes.

• Discussion on how the results can be used by designers and developers of digital
integrated circuits.

Chapter 2

Multiplication

This chapter presents the theory behind digital multiplication process. The main
problems regarding low power multiplication are presented here together with the
most common solution for low power digital multipliers.

2.1 Multiplier

A multiplier is a digital logic circuit built with a purpose of computing the result
of multiplying two data inputs. Like every other digital component, it manipulates
digital signals in some hardware components and have a capability of operating on a
mathematical data represented by these signals.

There are several ways to obtain the desired result inside a logic circuit. Output
of a combinational circuit at any time depends only on the present inputs, with
total disregard to the past state of the circuit [15]. The function of this circuit type
is fully defined by a set of Boolean expressions. Another type of logic circuit are
the sequential circuits which includes also memory elements, such as flip-flops and
latches. This makes the output of such circuit dependent on past states as well as
input values. In this thesis just the combinational circuits will be considered.

2.1.1 Microcontroller

The digital multiplier is a core component of computation circuits like microprocessors
or microcontrollers. A microcontroller is a small microcomputer system fitted on a
single integrated circuit. It has a quite simple processing unit combined with some
support functions like oscillators, timers, I/O support etc. They have a program
memory often based on flash or Masked ROM [32]. In contrast to microprocessors
used in personal computers, the simplicity is an important factor. They are usually
designed for small applications like automatically controlled devices, but there are

5

6 CHAPTER 2. MULTIPLICATION

Figure 2.1: Microcontroller Architecture (after AVR ATmega32 datasheet p. 6)

also multipurpose microcontroller designs available.
A heart of a microcomputer system is a programmable device which accepts bi-

nary data from some kind of an input device and processes this data to produce a
desired output. This way the microcontroller executes programs stored in the memory
registers and transfers data to and from I/O ports in the central bus.

An example of microcontroller structure is shown on Figure 2.1 in form of a block
diagram. A core component of most microcontrollers is an arithmetic logic unit
(ALU) which performs the entire integer arithmetic and bit-wise logical operations.
It includes logical addition and subtraction and some may also perform multiplication
or even the division operations. Fixed-point multiplication is an important issue in
the arithmetic circuit.

The other blocks are often support units that store the results or help to determine
the next step of computation. The control unit and instruction register governs and
coordinates the activities of different processor sections and I/O devices. The register
file comprises different registers used to store data, addresses and other information
during the program execution.

2.1.2 Data Representation

Digital circuits have to work on data represented in binary number system in several
ways. Fixed-point binary number system is based on radix-2 with the digit set {0,
1} where the number consists of a fixed number of fractional and whole part digits.
Natural numbers also referred to as the unsigned integers can be viewed as the fixed-

2.2. MULTIPLICATION SCHEMES 7

point numbers without the fractional part.
The sign-and-magnitude format is used to represent both positive and negative

numbers by letting the first bit represent the sign extension (usually 1 denote negative
sign while 0 a positive sign). A two’s complement number system encodes positive
and negative numbers in a binary number representation in such what that the ad-
dition and subtraction circuitry do not need to examine the signs of the operands
to determine whether to add or subtract the number [23]. Although there are many
advantages of signed-magnitude representation, like simplicity and intuitive appeal,
the main drawback is that arithmetic operations of numbers with unlike sign must
be handled differently than the same-sign operations, while the two’s complement
numbers needs to be decoded to obtain the final result.

Different multiplier architecture operates with binary data represented in many
different ways dependent on specifications and design constrains.

2.2 Multiplication Schemes

A multiplier computes by manipulating two input data to generate the result. This
is done by generating many partial products (PP) for successive accumulation oper-
ations. The accumulation, often implemented as addition, require many switching
activities in the functional units of multipliers and that is why they account for most
of the power dissipation in a multiplier.

Figure 2.2: Multiplication of binary numbers

Binary representation
Multiplicand A =

∑M−1
i=0 ai2i (aM−1aM−2 · · · a1a0)2

Multiplier B =
∑N−1

j=0 bj2j (bN−1bN−2 · · · b1b0)2
Product P = A ·B =

∑M+N−1
k=0 pk2k (pM+N−1pM+N−2 · · · p1p0)2

Table 2.1: Notation used to discus multiplication algorithms

Generation and summing of PPs for an unsigned M×N -bit multiplier is illustrated
on Figure 2.2. This is in fact one of the simplest multiplication schemes, known as
shift-and-add method which consists of cycles of shifting and adding inside a control
loop. The block diagram of shift-and-add multiplier is presented on Figure 2.3. The

8 CHAPTER 2. MULTIPLICATION

Figure 2.3: Block diagram of shift-and-add multiplier

PPs reduction can be implemented using multiplexer or logical AND gates. After N
cycles the product is determined as shown in Equation 2.1.

P =
M+N−1∑

k=0

pk2k = (
M−1∑
i=0

ai2i)(
N−1∑
j=0

bj2j) =
M−1∑
i=0

N−1∑
j=0

aibj2i+j (2.1)

In other words the multiplication is performed by simply multiplying (or taking
a logical AND) the multiplicand A with each single bit of multiplier B. Thus, the
multiplication can be considered as an adding of set of numbers, all-zero vector or a
shifted version of multiplicand A [23]. PPs can be viewed as either a sum of previously
accumulated PPs or a shifted version of A.

The more convenient method of illustrating the PPs is a dot-diagram as shown
on Figure 2.4. This representation shows just the position and alignment of bits and
not their values.

Figure 2.4: A dot-diagram representation of a 8x8 multiplier [21]
.

Thus the multiplication of two fixed-point numbers can be divided into two basic
steps, generation and accumulation of partial. To get the desired characteristic of
multiplier, these two steps need to be investigated. The accumulation procedure

2.2. MULTIPLICATION SCHEMES 9

Figure 2.5: 8× 8 Radix-4 multiplication, a dot-diagram and its possible structure

is often narrowed down to a process of successive multi-operand addition with the
number of PP being equal to the number of bits in the multiplicand. These additions
require many switching activities and that is why they account for most of the power
dissipation in a multiplier.

The multiplication schemes can be classified in three general types [21]. The
sequential multipliers successively add the generated PPs to the previous accumulated
sum. Multipliers of this type are very slow devices used only in applications where
the speed is not a critical factor. Shift-and-Add is an example of this multiplication
method.

Array multipliers generate and accumulate PPs simultaneously. Therefore the
same circuit is used to both PPs generation and accumulation. This way the overhead
caused by separate control of these steps is avoided.

Parallel multipliers are preferred in high speed applications where all PPs are
generated in parallel and then accumulated by fast multi-operand adders. They are
often implemented as combinational circuits.

In next Sections the PPs generation and accumulation methods are presented.
The most efficient ways of PPs handling are tree structures that consist of carefully
design addition chains. The way in which they are built is presented here as well.

2.2.1 Partial Products Generation

Different ways of representing data makes slight differences in the PP generation
process. Multiplexers and AND gates are used in an unsigned radix-2 shift-and-
add multiplication. For sign-magnitude numbers the circuitry may be more complex
because of the overhead managing the sign extension bits. The one way is to comple-
ment the negative operands, multiply the unsigned values and complement the result
if needed. It is however quite complicate technique for the 2’s complement numbers.
For these the sign extension to the width of the final product is needed [23].

Reducing the number of generated PP reduce the complexity of the accumulation

10 CHAPTER 2. MULTIPLICATION

step. Higher radix representation leads to fewer digits by examination of two or more
bits at the time. For example the radix-4 multiplication assumes digits of values 0,
1 2 and 3, therefore A, 2A and 3A are needed, where A is multiplicand. This is
illustrated in Figure 2.5. This gives reduction in number of PPs by a factor of 2.
However the complexity of the PP accumulation can be moved to generation step
where the 3A multiple requires some additional overhead [21].

Many different methods of PP generating procedures has been introduced and
developed. A way of dealing with binary multiplication is to use Booth recoding
technique [3]. When a zero vector is to be added and shifted the addition step can
be skipped. Shifting along is much faster than addition followed by shifting, which
makes the multiplication process faster. Booth observed that multiplication will be
faster whenever there is a large number of consecutive 1’s. This is done by replacing
the equivalent addition sequence with one subtraction and one addition. This way
process became faster and more efficient.

2.2.2 Partial Product Accumulation

After the PPs are generated they must be accumulated (summed) to achieve the final
result. This reduction process can be performed either by rows using adders or by
columns using counters [21].

The simplest method is reduction by rows with use of numerous two-operand
Carry-Propagate Adders (CPA). Addition circuit is the primary building block of
arithmetic operation but the addition operation is also the most time consuming
process in parallel multipliers [21]. The carry propagation is the main cause of speed
restriction in arithmetic circuits.

A B Sum
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Table 2.2: Addition of binary numbers

Adding binary numbers is a straightforward operation as shown in Table 2.2. This
operation can be viewed as Boolean function and presented in form of half-adder
(HA) boolean function with a truth-table illustrated in Table 2.3. When addition
is performed on larger numbers, the carry have to be propagated, thus the full-
adder (FA) function is develop as shown in Table 2.4. Half and full adders can be
implemented in many ways, the most common gate level implementation is shown in
Figure 2.6.

2.2. MULTIPLICATION SCHEMES 11

One of simplest adder circuits to understand is a ripple-carry adder (RCA) which
is build of a number of full and half-adders connected in chain as in Figure 2.7 (a). The
latency of k-bit RCA is O(k) thus accumulation of n words would use computation
time equal to [21]:

TRCA = O(n + logk) (2.2)

This makes the RCA undesirable for high speed arithmetic units.
When analyzing the carry propagation it has been notice that the key to fast

addition is a low-latency carry network [23]. Instead of propagating, Carry Look-
Ahead Adder (CLA) calculates, for each position, whether that position is going to
propagate a carry if one comes in from the right. Doing that the speed of addition
gets severely improved (O(logk)) and that is why CLA is most widely used design
for high speed solutions. However it is usually expensive and unaffordable solution.

There is also many alternative designs that have some other advantages over CLA
like Carry-Skip Adders or Carry-Select Adder, wider described in [23].

A B Cout S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

S = A⊕B
Cin = A ·B

Table 2.3: Truth-table of half-adder

A B Cin Cout S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = A⊕B ⊕ Cin

Cin = A ·B + B ·Cin + Cin ·A

Table 2.4: Truth-table of full-adder

Carry-Save Adder

In cases that involve addition of three or more operands, such as PP accumulation
in multipliers, the carry propagation is not necessary in each cycle. Carries can be
instead saved and added in some next operand cycle. This is the idea behind a
Carry-Save Adder (CSA).

12 CHAPTER 2. MULTIPLICATION

(a) (b)

Figure 2.6: Gate-level implementation of full-adder (a) and half-adder (b)

(a)

(b)

Figure 2.7: Relationship between ripple-carry adder (a) and carry-save adder (b)

The CSA is made with the same building blocks as RCA, full- and half-adders.
The difference is that carry is saved and not propagated through the addition chain
(Figure 2.7). The row of FAs reduces three numbers (Cin, A and B) into two numbers
(Cout and S), hence CSA is often referred to as a [3 : 2] adder.

If X, Y and Z are considered inputs to a three-operand CSA then the output can
be viewed as a partial sum and shifted carry vector, S and C respectively.

X + Y + Z = S + 2C1 (2.3)

Producing a partial sum and partial carry makes the bits in the same row independent
of each other, and the addition may be carried out in parallel, thus it makes the whole
multiplication process faster.

The total PPs reduction can be perform performed as a [p : 2] adder where the p

bit-vectors is reduced to 2 vectors, partial carry and partial sum. Nevertheless, the
partial sum and carry have to be merged together to give correct final result. This
final addition is described in Section 2.2.2

CSA can be implemented serially, using one CSA and some sum and carry reg-
isters, more preferable way is however tree structure which makes addition faster

1Multiplying radix-2 number with two corresponds to binary left shift.

2.2. MULTIPLICATION SCHEMES 13

[23].

Tree Multipliers

Multipliers using high performance CSA trees followed by a fast final adder, make
logarithmic time multiplications possible. Various multiples of the multiplicand is
formed at the top and the added in a combinational partial product tree. They
produce sums in a redundant way to be converted to standard binary output at the
bottom.

Figure 2.8: Possible CSA tree for a 7 × 7 multiplier with the corresponding dot-
diagram [23]

In [37] a partial product reduction tree (PPRT) called Wallace tree has been
proposed. In each stage of reduction, Wallace tree performs a preliminary grouping
of rows into sets, which reduces the number of operand by a factor of 1.5 [23]. Figure
2.8 present a possible outcome of a tree structured multiplier.

The Dadda Tree is a similar method introduced by Dadda [8] but reducing PPs
by columns. By combining these two methods the faster and more power efficient
multipliers can be built.

The benefit of the tree structures that the logic depth is reduced as well as the
propagation delay. The multiplication latency is only O(logk), not much slower than
addition. Adding PP with regular carry propagate adders would require O(logk)2

time. On the other hand, PPRT can have irregular structure making its design
and layout difficult. Variation in signal path length gives and connections may have
implications on both performance and power consumption.

14 CHAPTER 2. MULTIPLICATION

The Final Adder

At the last step of addition the partial carry and sum have to be merged together
to give correct result, thus the final adder is often referred to as the Vector Merge
Adder (VMA) [21]. There are several different alternatives to construct the final
CPA varying in speed, area and complexity. RCA or a Manchester adder is an
example of worst-case delay proportional to the length, while the CLA can offer
the logarithmic delay growth. The CPA must be carefully investigated for optimal
solution possibilities [23].

Such adders must be designed with special consideration since the inputs (output
of the reduction tree) not always arrive at the same time. In fact the timing charac-
teristic of the reduction stage can be used to optimize the VMA. The bits that come
last can be merged by a fast but larger adder while the parts of input that comes
first can be computed by slower but smaller device.

Careful design of the final adder can save power consumption of the circuit as
well as its area. Use of structural components which compute as late as possible may
reduce spurious toggling.

Chapter 3

Power Dissipation

Power estimation is an important part of digital circuit design. Nowadays, it is impor-
tant to construct integrated circuits that are able to perform in portable computing
and communication devices. They demand combining high-speed computation and
complex functionality with low power consumption. That is why power estimation is
essential on every step of digital IC design. Power estimation is especially important
in arithmetic circuit design, since they stands for major of power dissipation in digital
systems [22].

3.0.3 Sources of Power Dissipation

There are four different sources of power consumption in digital CMOS circuits [24].
Leakage current is determined by fabrication process and consists of two types cur-
rents, reverse biased diode current and the subthreshold current (see Figure 3.1).
The first sort occurs when the transistor is turned off and another active transistor
charges the drain with respect to formers bulk potential. Subthreshold leakage is due
to the carrier inversion charge that exists at the gate voltages below the threshold
voltage. Next type of power consuming effect is given by standby current which is a
direct current (DC) drawn continuously from voltage supply to the ground.

The sum of these two power sources is often referred to as the static power dis-
sipation. Leakage currents can be minimized with proper device technology choice.
Standby currents are an important issue in design styles like memory cores or pseudo-
NMOS, but they are insignificant in pure CMOS technology. Gate and subthreshold
leakage currents becomes however more and more important in modern circuit pro-
duction technologies (60 and 45 nm). In technologies below 0,13um static power
dissipation becomes an important element of total power dissipation [27].

The short circuit current also called rush-through current comes about due to the
DC path between supply voltages during the output transitions. It is often a case that

15

16 CHAPTER 3. POWER DISSIPATION

Figure 3.1: Components of power dissipation [31]

both PMOS and NMOS transistors are simultaneously active during a state change.
Then the current is conducted directly between supplies. This effect is proportional to
the input ramp time and the load and transistor gate size. The most important part
of power characteristics is the capacitance current flowing to charge and discharge
capacitive loads while logical changes occurs. This is closer described in Section 3.1.

The term dynamic power dissipation refers to the sum of short circuit and ca-
pacitive dissipations. The short circuit current can be made small by right designs
techniques. That is why the capacitive dissipation is the dominant source of power
dissipation in CMOS circuits.

3.1 Switching Power

Switching power element of total power dissipation is the most important aspect of
power-awareness in digital circuits design. It is established that the switching power
comprises 70% or even up to 90% of the power consumption of an active CMOS
circuit [11], [14].

Dynamic power dissipation is when the load capacitance Ci of a CMOS gate is
charged through the PMOS transistor during voltage transition from 0 to higher
voltage level (Vdd). A zero to one transition draws CiV

2
dd energy from voltage supply

in a CMOS circuit such as the inverter on Figure 3.1. This energy is equally divided
between PMOS transistor and an output capacitor. On the other hand the output
transition from Vdd to zero does not draw any charge from voltage supply, but the
energy stored in the capacitor goes to the pull-down NMOS transistor (See Equation
3.1).

3.1. SWITCHING POWER 17

Energy per transition =
1
2
V 2

ddCi (3.1)

The transitions at the node i may happened at a clock rate, fclk, in most cases
however switching occurs at some other rate. This can be described probabilistically
by a transition density factor Di.

P sw
i =

1
2
V 2

ddDiCi (3.2)

The Di is defined as average number of times in each clock cycle that node with
the physical capacitance, Ci will make a transition. The notation of transition density
is introduced in [18]. For a circuit consisting of N nodes the total power dissipation
can be defined as in Equation 3.3.

P sw
total =

N∑
i=1

P sw
i =

1
2
V 2

dd

N∑
i=1

DiCi (3.3)

3.1.1 Transition Density Factor

The transition density factor shows the average switching rate of the gate per unit of
time. As Equation 3.3 shows, the dynamic power consumption of a gate is directly
proportional to this factor. [18] defines transition density factor as shown on Equation
3.4 where the ni(T) is the number of transitions at node in a time interval T.

Di = lim
T→∞

ni(T)
T

(3.4)

When the circuit is working at some frequency, the average numbers of transitions in
one clock cycle can be defined as:

ni =
Di

fclk
(3.5)

Equation 3.6 shows an alternative way of calculating the average power consumed by
a combinational circuit of N nodes when knowing the average number of transitions
of all the nodes of the circuit.

P sw
total =

1
2
V 2

dd

N∑
i=1

Cini (3.6)

In combinatorial circuits it is sometimes desirable to extract the activity factor as a
number of all transitions that happens during the circuit operation. Since this kind
of circuit carries out a previously defined function, it is desired to extract the total
amount of switching needed to execute this operation. This way several circuits with

18 CHAPTER 3. POWER DISSIPATION

the same function can be coopered in terms of switching activity. Since switching is
the main contributor of circuit power usage, its amount is a good indicator for total
power dissipation of the circuit.

The switching activity factor is difficult to calculate because it is strongly de-
pendent on a number of circuit parameters and technology factors. The activity at
the output of a gate is strongly dependent on the inputs activity as well. It is also
strongly dependent on Boolean function of the circuit, as well as the logic style used
to implement the circuit. The working conditions influence it as well. This makes
the straight-forward technique of estimating power in a logic simulator a very com-
plicated task due to dependence problem. The activity factor can however be found
by direct simulation of the circuit. All this has to be taken into consideration when
computing the power usage of a digital circuit.

3.1.2 Spurious Switching

Not all the signal transitions at a gate output in a combinational circuit are useful
for overall result. Gates and other circuit elements introduce some kind of delay to
signals they propagate. In complex circuits with a lot of fan-out and fan-in signal
paths the signal arrival times to internal gates can vary. Such nodes can have multiple
transitions in one clock cycle before they settle to the correct logical value.

The undesired transitions, which do not bring any information, are called glitches
or hazards [29]. They cause only unnecessary switching and short-circuit power dis-
sipation. Glitches can have to origins; they are either generated or propagated in the
circuit. In the worst case the level of glitching transitions can grow as O(N2), where
N is the logic depth of the circuit [14].

A glitch is generated when arrival times of different signals into a gate are greater
than the internal delay of the gate itself. More about gate delay is presented in
Section 3.5.4. In addition glitches can occur only when an input pattern makes
glitching possible. When this two conditions meet, a probability of glitch generation
is given in Equation 3.7.

P (G) = Ppattern ·Pprop (3.7)

The pattern probability Ppatt is a fixed value of a gate. As an example we can
look at 2 input NAND gate. From the truth table (Table 3.1) it can be concluded
that a glitch is generated only when the transition of input goes through the 11 input
vector, for example transition from 10 to 01, presented on left side of Figure 3.2.

The value of factor Pprop is a dependent on the circuit architecture, it is a number
of possible pair of paths that may cause a glitch, compared to all possible path pairs
leading to the gate input.

3.2. POWER ESTIMATION 19

A B C
0 0 1
0 1 1
1 0 1
1 1 0

Table 3.1: Truth table of at NAND gate

Figure 3.2: Glitch is generated and filtered or propagated

A glitch is propagated when the characteristic of glitch arriving at the gate makes
it possible to change the output state. Otherwise glitch arriving at the input is sup-
pressed or filtered at the output as shown on Figure 3.2. Glitches can be also filtered
when the delay through the gate is greater that the length of a glitch, even thou the
gate function make propagation possible. All this makes the glitching estimation a
difficult task.

Glitching cause unnecessary power consumption and that is why estimating and
reducing this phenomenon is an important factor in digital design.

3.2 Power Estimation

Power estimation is defined as the process of calculating power and energy dissipated
at the different phases of the circuit design process. This is mostly referred to as a
problem of estimating the average power dissipation of a digital circuit [19]. In other
cases we can talk about estimating worst case power, so called voltage drop problem.
A lot of work about the average power estimation is devoted to, so called logic-level
methods for CMOS circuits.

As mentioned in Section 3.1 it can be assumed that the digital chip components
draw power only during the logical transitions. As shown in Equation 3.3 the power
dissipation is highly dependent on the switching activity inside the circuit. Because
of that the power estimation problem becomes more complicated due to the pattern
dependency problem. That is why the good method of power usage and switching
activity factor computation is an important issue in digital design.

20 CHAPTER 3. POWER DISSIPATION

3.2.1 Simulation based estimates

The most straight-forward method of reporting power is to simulate a circuit in some
kind of circuit simulator, compute and report the power dissipation for a given set
of inputs or all possible input values [19]. However, circuits are very complicated
nowadays, with large amount of gates and inputs, so it is practically impossible to
simulate circuit for all the input patterns.

Simulation with typical input pattern can also be difficult due to the fact that
the input signals are generally unknown during the design phase [30]. They depend
on the variety of factors like application specifications and the system in which the
circuit will be used. Some circuits, like microcontroller cores are designed to work in
variety types of systems and for diverse applications. Often the different parts of a
system are designed separately or for different purposes. All this makes the complete
and specific information about the inputs almost impossible to obtain.

Simulation based technique can be quite expensive and in order to improve the
efficiency many different simulation-based methods were proposed on different level of
design [28]. Their main advantage is that they are capable of handling various device
models, different design styles, multi-phase clocking etc. The results are however
strongly dependent on input signals used in the simulation. Due to the memory and
execution time constrains, they are not suitable for large cell-based designs.

3.2.2 Probabilistic methods

To overcome the problem of pattern dependency the probabilistic techniques has
been proposed ([2], [10], [12]). When based on the zero delay model symbolic simu-
lation, they offers a fast solution of power dissipation estimation [30]. They relies on
the probabilistic information about the circuit, like signal and activity probabilities,
directly propagated through the circuit.

For different logical functions the different static probabilities yields. Looking at
the NAND gate from section 3.1.2 we can assume that input has uniform distribution.
The truth table (Table 3.1) shows that the probability of the output being 0 is 1

4 while
the probability of 1 is 3

4 . The probability of a 0 to 1 transition which actually is a
power consuming transition for a 2 input NAND gate is as shown in Equation 3.8

p(0→ 1) = p(0) · p(1) =
1
4
· 3
4

=
3
16

= 0, 19 (3.8)

When the probability of each node in the circuit is calculated, the average power
consumption can be obtained using the Equation 3.3.

Calculating of the symbolic probability is however NP-hard and grows exponen-
tially with the number of inputs [30]. The probabilistic methods suffer from the

3.2. POWER ESTIMATION 21

speed/accuracy trade off due to correlations between the internal circuit nodes. These
methods are quite accurate but computationally very expensive, when the correla-
tions are taken into account. The main estimation error in the probabilistic power
estimation methods is the glitch filtering and the dependency issues inside the circuits.

In [20] the concept of probability waveforms is introduced. This proposal consists
of a compact signal probability and a sequence of events happening in different time
instances. The simple waveform set is used in estimating power of tree multipliers in
[21].

3.2.3 Monte Carlo Techniques

Another way to estimate power is by using statistical methods which try to combine
the speed of probabilistic techniques with the accuracy of simulative methods. Es-
timating power by using the Monte Carlo approach is widely used since it has been
introduced in [4]

Idea behind this approach is to simulate the circuit repeatedly for some typical
or random input streams. The result will eventually converge to the average power
dissipation of the circuit.

P sw
total =

N∑
i=1

Pi
sw =

1
2
V 2

dd

N∑
i=1

Ci lim
T→∞

ni(T)
T

(3.9)

The main problem is that it is desired that the power is estimated for an infinite
time period T . This can be done by calculating power corresponding to infinite T

as a mean of several measurements of power dissipated in the circuit in a finite time
interval. This is a well known mean estimation problem [36]

By considering a random representation of logic signals the stochastic process xi(t)
can be constructed. Then the power sample PT corresponding to random power of
xi(t) over the time interval of T . When the xi(t) is stationary the expected average
number of transitions per second is a constant [4].

Figure 3.3 shows the overview of the technique. The setup region is an important
part of this method. In the beginning of simulation run, the circuits does not work at
its typical rate. Thus the circuit should be simulated until all the nets are switching
at the stable rate. Main purpose of this phase is to make sure that the typical values
are measured.

There are two main issues with this method; how to select right patterns to be
applied in the simulation and how to choose when the power is converges close enough
to the actual average power.

In order to guarantee that the length T of the sampling region is correct two
factors is considered. This value can affect the error in normality approximation and

22 CHAPTER 3. POWER DISSIPATION

Figure 3.3: Block-diagram overview of a Monte Carlo technique

is heavily dependent on upon the circuit. Another factor is the simulation time is
also dependent on circuit parameters as well as on simulation hardware. These two
factors point to the conclusion that there are no optimal solutions for choosing of
interval T . Best way is to decide it experimentally for the given hardware set [4].

In [4] two distinct advantages of Monte Carlo approach are described. It achieves
desired accuracy in reasonable amount of time. The speed/accuracy trade off known
from probabilistic techniques is avoided. The algorithm is simple to implement and
use with existing logic or timing simulation environment.

3.3 Alternative Ways of Power Measurement

One of the most accurate way of estimating power consumption by direct circuit
simulation is by using circuit simulators like SPICE [28]. They are also the most
computationally expensive with long execution times. That is why they are most
suitable for small but critical parts of the design.

PowerMill is a transistor level simulator from Synopsys that uses an event driven
algorithm to increase the speed by to or three orders of SPICE magnitude [6].

When the Monte Carlo technique is to be used a McPower tool may be applied
[28].

3.4. STATISTICAL METHOD 23

3.4 Statistical Method

The output of a statistical experiment is recorded as a numerical value. This values,
or so called random samples are expected to vary somehow from sample to sample
[36]. If X1, X2 ... Xn represent a random sample of size n, then the sample mean is
defined by Equation 3.10.

X =
∑n

i=1 Xi

n
(3.10)

The variability in the sample displays also how the observations are spread out
from the average. Two different observations can have the same mean but it is quite
possible that they differ considerably in the variability of their measurements. To
determine this, sample variance is defined in Equation 3.11

S2 =
∑n

i=1(Xi −X)2

n− 1
(3.11)

The results from experiments are treated as the samples of a statistic process,
where several samples are gathered as independent measurements.

3.5 Simulation

3.5.1 Levels of modeling

The type of primitive components used in a model of digital circuit decides the level of
modeling. Model which contains only gates is called gate-level model. The register-
transfer level provides models for systems at the register and instruction set level
[1]. Usually at the lowest level we have components which cannot be decomposed
into simpler components like gates and transistors. Non-primitive components, often
referred to as modules or functional blocks, are described using functional operators.

3.5.2 Logic simulation

Logic simulation is a part of design verification that uses a model of designed system.
The simulation program takes the representation of input stimuli and determinate
the time evolution of the signals in the model [1]. The logical simulation ascertains
that the expected results are obtained as well as that the circuit works as designed
in term of power, speed, accuracy etc.

3.5.3 Type of Simulation

Simulators are classified after the type of internal model of the circuit as well as the
level of abstraction. A simulator that executes the compiled HDL code, generated

24 CHAPTER 3. POWER DISSIPATION

from the RTL model is often referred to as the compiler-driven simulator. It is mainly
oriented toward functional verification and the timing information is not considered.
A simulator that takes a model based on data structures and event activity is said to
be table-driven.

An event-driven simulator uses a structural model of a circuit to propagate events
where the values of the input signals are defined in a stimulus file. This is usually a
table-driven simulator. When an event takes place, the simulation time-flow mech-
anism manipulates the events in a way that its visibility will occur at the internal
signals in the right time. This is an important feature because it allows accurate
simulation of non-synchronized events, such as interrupts or internal hazards. This
way values of certain signals can be checked and the time behavior of the circuit can
be observed as well as the time skew of different signals and its effect on final result.

Several types of simulation are often combined to get more accurate results.
The event driven algorithm propagates events through the components described
by compiled-code models.

3.5.4 Delay models

Signals get delayed while propagating through CMOS gates inside a circuit. By
modeling the delay value, we can get more accurate simulation results that show
time dependencies inside the circuit. Delay is introduced by every gate to the signal
propagated through this gate and it is dependent on a logic function of the gate as
well as the technological aspects.

CMOS transistors are the main building blocks of logic gates in a digital cir-
cuit. Transistors together with other physical components introduce time delay when
propagating signals through the digital circuit.

Problem of physical delay is illustrated on Figure 3.1. When an input signal is
applied to the inverter, it does not make an abrupt transition from 0 to 1 but rather
changing its value in time period tr. The output do not change its value rapidly
either, but falls with the time tf . The relationship between these two time periods is
called fall time delay. If an opposite situation arises (1 to 0 transition at the input)
the rise time delay is introduced [35]. These delays are due to the parasitic resistance
and capacitance of the transistors, for example the load capacitance Ci. In a logic
chain, every logic gate drives another gate or number of gates, called gate fan-out.
The size of Ci is dependent on number of gate fan-out, while its charging/discharging
time are closely related to rise and fall delays. On the other hand if the input pulse is
too short, the gate load capacitor would not reach to charge/discharge fast enough.
These way short pulses can neither be propagated nor created inside such gate.

In real networks the perturbations of circuit parameters due to process or tem-

3.5. SIMULATION 25

perature variation may change the propagation delays. That is why it is assumed
that component of power dissipation crated by signal delay effects is strongly depen-
dent on the parameter fluctuations. Hence the information about layout constrains
and technology helps to create better and more genuine delay models to use in logic
simulation.

Exact calculation of each gate delay is a quite complex task. That is why a good
gate delay model is needed for simulation purposes. When modeling a gate behavior
the function of a gate is evaluated, then the delay computation can be performed.

Process, Voltage and Temperature

The properties of a CMOS gate are strongly dependent on its working conditions. Its
performance characterizations can be represented by the technology library. Temper-
ature influences both internal and load capacitances as well as the carrier mobility
inside the circuits [9]. Both threshold voltage and carrier mobility decreases with
increasing temperature, which again makes the current and speed of a CMOS gate
dependent on these factors. To model the delay of a gate all this factors has to be
considered. This way, the simulation of the circuit at the gate level with the delay
model supplied by the technology library gives quite accurate results.

Gate Delay Model

Transport delay is a basic delay model of a gate. It specifies the interval d separating
the input and output change. This is usually simplified in such manner that delay
values are integers with common divider. Depending on the type of delay value several
types delay models were developed [1].

The most simple delay model is so called zero-delay model (Figure 3.4a), where all
the delay values are set to zero. In this model all the events happens simultaneously.
This way it can be quickly evaluated if the circuit produces the correct result.

Under the assumption that all the gate delays are know we have a nominal delay
models. When all the transport delays are considered equal, they can be all scaled to 1
unit, thus this model is called a unit-delay model (Figure 3.4b). While the zero-delay
model can be enormously effective in diagnosing and fixing design problems, the unit-
delay model allows one to detect unbalanced paths and hazards. It is more accurate
than the zero-delay model but still fairly simple without suffering from performance
issues.

For devices like MOS gates, the output signal rise and fall transition delay are
greatly different [1]. To imitate this fact the different rise and fall delays may be
used in the simulation creating a transition-dependent delay model. The result of

26 CHAPTER 3. POWER DISSIPATION

Figure 3.4: Delay models (a) Zero delay model, (b) Nominal transition-independent
unit delay, (c) Rise and fall model with drise = 1 and dfall = 2 (d) Ambiguous delay
with dmin = 1 and dmax = 2.

this phenomenon is change in pulse width of signals propagating through the gates
(Figure 3.4c).

Often the exact delay of a gate is unknown or specified to vary between two
values depending on the conditions the circuit is working in or some other factors.
To model this uncertainty in simulation an ambiguity interval is defined by minimum
and maximum delays for every gate, creating an ambiguous delay model (Figure
3.4d). This model may be combined with the transition-dependent models.

Circuits use energy to switch states and produce results. The energy which a
signal transfers is a function of its duration and amplitude. The signal will not force
a gate to switch if its energy is too low. The minimum pulse width on the input,
necessary to switch the gate output, is called the input inertial delay. Pulse shorter
than the inertial delay are filtered (or suppressed) by the gate while the wider pulses
propagate according to nominal transport model of the gate. Sometimes gates cannot
generate pulses that are too short and an output inertial delay model is defined.

Delays introduced by the signal propagation along the wires become a significant
part of delay modeling in modern high speed circuits. This may also be taken into
consideration while simulating with timing models.

3.5. SIMULATION 27

Figure 3.5: Fan-out model of a FA gate

Fan-out Delay Model

The full adder based PPRT shows unique properties of glitch generation and filtra-
tion. The FA and HA for this structures are connected in such way that they input
capacitance is similar. The maximal fan-out of such nodes is two and only gates that
can generate glitch are two NAND gates of the FA with unit delay [21].

The delay model proposed by [21] is called a fan-out model. Figure 3.5 shows
a FA circuit with the corresponding delay unit marked for each gate. It is a fairly
simple way of delay representation in a net-list of a digital circuit. Every gate is
assumed to have a delay and the rejection limit equal to the number of its fan-outs.
For example if a gate has 2 fan-outs, the propagation delay is assumed to be equal
to 2 time units. The rejection limit is also sat up to 2 making all the pulses that
are shorter than rejection limit will not appear at the output of the gate. In other
words they will be filtered. The gates at the output have delay of 2 because they it
is assumed that S and Cout will be connected to inputs of a similar adder in the next
stage of reduction tree.

This model suffers however from some drawbacks due to its simplicity. In real
networks the delay would not be of nominal values. Type of gate, type of inputs and
outputs are not taken into consideration in this model. The layout information in
terms of wire length or internal construction is not considered either. This way the
XOR with two fan-outs gate has the same delay properties as for example NAND
gate with two fan-outs. Process and technology information is not considered either.

This way of representing gate delay gives simple but fast way of dealing with
glitch filtering and generation inside the circuit.

28 CHAPTER 3. POWER DISSIPATION

Chapter 4

Tools and Methods

This chapter presents the methodology developed and used in the thesis to measure
toggle characteristics together with average power dissipation of a combinational
circuit. This method gives total switching properties of the simulated circuit including
spurious toggles and hazards. To get the most accurate results first the minimal
period of simulation time at which the power and toggle count per multiplication are
approximate at their average value, is decided. Then the exact average value within
some error margin is computed by repetitive simulating and annotating the result
from both simulation and power measuring tool.

The described method is possible under certain circumstances. First the supplied
net-list have to come with some kind of delay model. To measure power technology
library and parasitic information has to be given.

4.1 Choice of Estimation Method

High speed and accuracy is main concern while estimating circuit parameters. Among
the large number of existing methods of gate level power estimations, the method
based on Monte Carlo technique is chosen.

Simulated circuits have two 32 bit wide inputs and consist of over 5000 nets.
This makes it virtually impossible to simulate for all possible inputs. To overcome
this problem the technique where several shorter simulations are carried out is de-
veloped. Results from these simulations are then used as observations in a statistical
experiment. This makes it possible to find average power consumption and switching
activity per operation in terms of mean and standard deviation factor.

It is said that Monte Carlo based techniques are generally better than the proba-
bilistic methods because they achieve greater accuracy with equivalent speed [4]. The
pattern dependency that simulation techniques suffer from is avoided as well. The
most important drawback noticed in work on this thesis was that the measurements

29

30 CHAPTER 4. TOOLS AND METHODS

cannot be totally atomized. The simulation length has to be decided individually for
a circuit type and the measurements obtained from software tool has to be adapt to
extract the final value. That is why a noticeable part of this thesis is script develop-
ment to edit and adapt simulation results.

Simulation method is chosen on basis of format the data is delivered in. The
synthesized Verilog and VHDL net-lists may be simulated in programs such as Mentor
Graphics ModelSim or Adlec ActiveHDL Simulator. The challenge is to create a high-
quality testbench and input vector set to use under a simulation shift.

4.2 Measuring Method

To measure switching characteristic and its power consumption method shown on
Figure 4.1 is developed. This method flow is suitable for circuits given as a HDL net-
list with some kind of delay model. When the specified net-list is made technology
dependent, power dissipated can be measured.

Two sets of simulations of one circuit net-list are performed, one using the zero
delay model, and one with a fixed delay model. The zero delay models make all the
signal transitions happened simultaneously without any delay through the internal
gates. Assumption is made that the unnecessary switches are not taken into con-
sideration under this type of simulation and only the productive transitions of the
circuit nets are annotated.

Internal gate delay can be modeled in several ways, as a continuous time model,
unify delay model etc. To obtain the accurate results the Standard Delay Data Format
(SDF) is used. This contains the representation and interpretation of timing data
such as path and interconnection delays, timing constrains and technology parameters
for use in simulation process [33]. Since the switching characteristics depend on the
external conditions as well as the technological aspects of design, the SDF file is
created on the basis of technology library of the circuit.

The gate level net-list is simulated in some kind of simulation tool as described in
Section 4.3. Chosen tool have to be able to report switching activities in some way.
En example is a Value Change Dump file (VCD) used to carry out the switching
information. This file contains header information, variable definitions, and value
changes for the user specified variables. There is also a Switching Activity Interchange
Format (SAIF) which has the same purpose as the VCD file. They save information
about transition changes to use in some other software environment, or to save the
waveform as a simple text file.

The net-state information can be also saved in a TSSI list file. TSSI format
consist of a text list file and signal definition file. The list file contains the net values
at the value change time periods, where each line of a file represents a time when one

4.3. LOGIC SIMULATION 31

or more signals changed value. It can include state change values at user specified
times.

To report power a power measuring tool is needed. This tool has to be able
to read the design together with the technology library information. Annotating
the switching activity from the simulation tool is also necessary. Information about
parasitic in the given technology is needed as well. This way the accurate power
consumption can be reported by the power tool.

By comparing circuit switching and power characteristics of those two models,
the power dissipated by spurious switching can be computed. The exact results are
collected when the zero time and the timing simulation are carried out under same
conditions. That involves simulation with the same input set, as well as under the
same process, voltage and temperature situation.

In the following Sections, the experiment techniques developed during this thesis
work are presented.

4.3 Logic Simulation

The simulation of digital circuits is an important tool in the design process. It is used
to avoid serious design errors and to verify whether the design fulfills its specifications
[16]. On each level of design, the outcome is tested and checked for errors and faults.
A good simulation tool can help to create high-quality and reliable circuit.

Time behavior of a logic circuit can be modeled in many ways as described in
Section 3.5.4. To run a complete simulation the proper data input have to be supplied,
either randomly generated or obtained from the circuit specifications. The simulation
tool can captures the state- and path dependent- switching in form of dump files or
waveform formats

Mentor Graphics ModelSim is a GUI based simulation and debug environment
for HDL designers. The tool provides simulation support for latest standards of
SystemC, SystemVerilog, Verilog 2001 standard and VHDL [17]. It is a complete
environment for circuit simulation and verification.

ModelSim has some built in functions which can count the switching of each net in
the design. Switching activity is closely related to estimating the power consumption
the power functions are used to monitor the nets or signals activities.

Another software tool considered is Adlec Active-HDL software. It is a completely
integrated HDL design and verification solution that gives verification and debugging
tools for design of digital circuits. However the ModelSim environment is preferred
because this tool is well known by the author of this thesis.

32 CHAPTER 4. TOOLS AND METHODS

Figure 4.1: Block diagram of the methodology used to measure toggle characteristics
and power dissipation of a gate level design

4.3. LOGIC SIMULATION 33

Figure 4.2: Obtaining switching properties

4.3.1 Stimulus

To estimate the average switching activity of the circuits a good stimulus is needed.
The circuits are designed to manage a variety of tasks in different situations in a
microcontroller. This means that the random generated stimulus is a good choice
when finding the average power a multiplier.

To generate numbers to be multiplied by the circuits, a python script is developed
(see Section C.4.1). The random function implements a pseudo-random number
generator in which the 0 and 1 are uniformly selected to create a sequences consisted
of 32 bits. The arbitrary number of these vectors can be created and saved in stimulus
files. This way the different circuits can be simulated with the same vector set which
make it easier to compare the switching characteristics of the circuits obtained during
the logic simulation.

4.3.2 Toggle Count

The circuits are simulated under two modes; a zero delay model, and a time model.
The difference between results of these two simulation sets gives the unnecessary
transition count (See Figure 4.2).

When timing information is annotated in the simulation tool, the number of state
changes (0 to 1 and 1 to 0) may be extracted for each node inside the circuit. To do
that the power report function is invoked in ModelSim. This function annotates the
number of transitions of an arbitrary node or nodes in the circuit under test. When
summing the transition number of all circuit nodes the total toggle count is achieved
(Power report on Figure 4.1). A Python script is created to extract the total count
from the power report file as shown in Section C.4.3.

There are a lot of methods of counting the net state changes in the simulation

34 CHAPTER 4. TOOLS AND METHODS

with time modeled in any way. The introduced here way of using the power command
in ModelSim is just one of them. There are many ways in which toggle information is
passed by simulation tools, like VCD dump files, SAIF or TSSI list format. They can
be evoked when using some other HDL simulator that does not support the power
commands of ModelSim. An extraction script can be created to extract the switching
information in form of total toggle count.

Method of straightforward state change counting gives however incorrect results
when simulating with the zero delay model. The reason of that is due to the way
in HDL languages handles the circuits without explicitly prescribed delay. VHDL
simulator deals with concurrent assignments by using an infinite short time unit
called delta delay. In Verilog simulation a similar concept exists in terms of Non-
Blocking Assignment with infinite short delay unit [7]. This way the simulators make
sure that all the parallel statement will be able to produce the correct result, hence
signals toggle with zero width time pulses before settling to the final value. In zero
delay model those toggles seems to happen simultaneously but are counted as a usual
time transitions by both dumping procedure and the power report tool.

To overcome this problem, the counting in the zero time model simulations is
carried out in a different way. Many solutions of this problem have been examined.
It is among others possible to export the simulation waveforms and analyze them
externally to extract the zero time switching information. One of inspected solution
required a software script development that would count the state changes only once
in a time period, thus just the necessary transitions. The information of state of each
net can be however annotated by the simulation tool at selected points in time as
and dump the information into a TSSI list file. This way the state of each node is
measured after it gains it stable value and just the necessary transitions are measured
and accounted for. This solution of the problem is chosen because it gives the desired
result without unnecessary software overhead.

To count the total number of signal transitions a simple Python script is devel-
oped. It reads a list file in TSSI format and returns the total number of transitions
recorded in this file (See Section C.4.2).

The zero-time delay method is also applicable to the time modeled circuit and
gives the same results as power report function. To verify that a simple experiment
have been carried out. For a short input vector sequence the circuit toggle informa-
tion, simulated under time model was gathered by these two methods. It showed
that they give same total toggle count for each simulation. The zero delay method
produces however, far too huge list files for the timing simulations, since there is
thousands transition in different points of time, each given own line it the file. Script
executing time would decrease the need for both hardware power and time.

4.4. POWER MEASUREMENT TOOL 35

4.4 Power Measurement Tool

Estimation and measurement of power dissipation of a design is important on every
level of digital circuit construction. Synopsys DesignPower tools are a complete set
of methodology for low power design [31]. They can analyze the design for switching
power, internal cell power and leakage power dissipation. Power analysis of gate-
level design is done by looking on activity of nets in the design. Design Power has a
dedicated command-line interface called dc shell which allows the user to access the
DesignPower’s power analysis features.

The switching activity can originate either from Register-Transfer Level (RTL)
or Gate-Level simulation of the design, performed in some kind of HDL simulator.
Some or all of the nets of a design can annotate their switching activity from full-
timing gate-level simulation. To facilitate the exchange of information between the
simulators and Synopsys Power an ASCI format is applied. The SAIF format is used
in representing the forward- and/or back-annotation file (See bottom part of Figure
4.1)

Design Power calculates switching power for each gate, as shown on Equation
3.3, using the switching activity information from the simulation flow. The Ci of
each net is obtained from a wire load model, parasitic file and from the technology
library information for the gates connected to the net. Technology library charac-
terizes also the information needed to compute the internal power of each cell. Cells
consumes different amount of power depending on transistor input or state of the cell.
Based on the input toggle rates, input transition times and output load capacitances,
DesignPower access the lookup table for deriving the consumed power.

Sum of switching power consumed by each net, together with internal power of
every net (power dissipated by internal capacitances of a gate [31]), is reported as
dynamic power dissipation. The report gives power consumption expressed in mW
(milli Watt).

As shown on Figure 4.1, the simulation tool dumps the data generated under each
logic simulation into a VCD file. Synopsys Power cannot however read VCD files,
just the SAIF files. Because these two file formats are equivalent, VCD files can be
converted to SAIF in dc shell using a utility called vcd2saif. The SAIF files are then
used in the power analysis of the net list in the Synopsys Power.

Design Power is able to read the technology library, the net-list, the wire loads
and annotation files and report the power consumption by evoking the power report
command. Power is reported as the cell internal power and net switching power.
These two numbers stands for the dynamic power dissipation of the simulated and
annotated circuit.

36 CHAPTER 4. TOOLS AND METHODS

4.5 Script Development

Simulation results gathered during the experiments had to be adapted to extract the
wanted information. To do that some scripts were developed. Python was chosen
because it has its own built-in memory management and good facilities for cooperat-
ing with other programs. It is quite simple syntax makes script development en easy
task with no place for errors.

Programming scripts in C language has been considered as well. However it is
more complicated language and Python is preferred. Scripts developed in this thesis
work are presented in Appendix C.

Chapter 5

Results

Results of the experiments executed for purposes of this thesis are presented in this
chapter. The experiments are carried out in sequences to fulfill the general principles
of the Monte Carlo technique as described in Section 3.2.3. Abbreviations used in
the tables of this chapter and later in the discussion, are presented in Table 5.1.

Each circuit presented in next section is simulated eight times under each PVT
condition with input vector sets of different size. The stimulus sets are identical for
all simulations and all the input vectors used in the experiments are random.

The average switching characteristics and power consumption of the circuits are
dependent on the process, voltage and temperature parameters (PVT). Measurements
are carried out under two different PVT circumstances, called PVT-MIN and PVT-
MAX.

The PVT-MIN corner presents faster process with working temperature of -40◦C
and supply voltage of 1.95V while the PVT-MAX corner stands for 100◦C with supply
voltage of 1.6V. This are the parameter settings used when the technology library
and timing characteristics were created.

The theoretical multipliers (TM-) are simulated with the zero-delay model and
with the fan-out delay model. The technology dependent multipliers (MM-) are
simulated with zero-delay models and with real-delay model. The real-delay model
is supplied by Atmel Norway in form of a SDF files, one for each PVT corner.

The total number of switches on the internal nets of the circuit, under both
delay modes, is recorded by the simulation tool. The extracted outcome of these
experiments is shown in Tables A.2, A.3 and A.4 in Appendix A.

The more interesting information is however how many times a net shifts its value
during the execution of multiplier operation under given circumstances. Results are
shown in Table A.5, A.6 and A.7 in Appendix A.

For each simulation the power dissipated by circuit is recorded. Results are ex-
posed in the Table A.8 and A.9 in Appendix A

37

38 CHAPTER 5. RESULTS

Tables in this chapter show the mean values experiments outcome, together with
the standard deviation. It is assumed that these values represent the average power
and toggle count of each of the investigated circuit in the given PVT corner. The
standard deviation indicate the accuracy of the presented result.

5.1 Circuits Under Test

The circuits investigated in this thesis are 32-bit multipliers. All the circuits have tree
structure which is considered the most power efficient kind for construction for this
type arithmetic circuit [21]. Totally 8 different circuit candidates are studied here.
The abbreviations used in the experiment presentation and discussion are presented
in Table 5.1.

Three of the investigated multipliers are supplied by Saeeid T. Oskuii who has
been working with low power multiplier design in his Ph.D. thesis Design of Low-
Power Reduction-Tree in Parallel Multipliers [21]. His method produces parallel
multiplier with power optimized partial product reduction tree (PPRT). These multi-
pliers are represented by technology independent net-lists with a fan-out delay model.
Three candidates are represented in this thesis, a power optimized circuit built to con-
sume least possible power, random generated circuit and a circuit that correspond to
worst case power scenario.

Another set consist of five multipliers supplied by Atmel Norway. All of the
circuits are mapped into technology used by Atmel Norway, a 0,18/0,15u CMOS
process. One of multipliers is a Synopsys DesignWare (DW02) multiplier with a
pparch tree structure, investigated in [13]. This multiplier represents the industrial
approach of arithmetic circuit design for the given technology. It is tested for the
same premises as all the other multipliers to compare the research outcomes with the
industrial approach.

Three of above mentioned multipliers are built on the basis of theoretical mul-
tipliers from [21]. They are synthesized and laid in the same process as the DW02
multiplier from [13]. Same component library is used here as well to make the com-
petition of experimental results easier to comprehend.

Last candidate is represented by a multiplier generated by Module Generator.
This is software that generates HDL net-lists of high performance digital arithmetic
circuits. It has been developed by a Master’s student, Espen Sand under supervision
of Johnny Pihl. The net-list is generated and then mapped to the same technology
as the other multipliers.

All the circuits supplied by Atmel Norway are represented by a Verilog net-list
with corresponding technology library. Wire loads and all the parasitic needed for the
power estimation are provided to make computation of dynamic power dissipation

5.2. SIMULATION LENGTH 39

1 TM-MIN Power optimized multiplier
2 TM-MAX Worst case power optimization
3 TM-RAND Random built multiplier
4 MM-MIN Power optimized multiplier synthesized by Atmel Norway
5 MM-MAX Worst case power optimization synthesized by Atmel Norway
6 MM-RAND Random built multiplier synthesized by Atmel Norway
7 SMP Multiplier used by Atmel Norway in the industry
8 MG Multiplier built by ModGen software tool

Table 5.1: Abbreviations used in result presentation

possible. All the circuits are also equipped with the matching timing characteristics
corresponding to each PVT for timing simulation requirements.

5.2 Simulation Length

Measurement of the power and switching characteristics are very sensitive to the
input pattern of the simulation, despite the delay model. Regardless of this, when
working for some amount of time the average power and toggling characteristics are
obtained.

Figure 5.1: Number of consecutive operations in Zero Time mode

Figures 5.1 and 5.2 show how the switching activity in terms of toggles per mul-
tiplication operation, depends on the length of work period. The X-axes shows the
number of consecutive operations of the circuit while the Y-axes represent the mea-
sured total toggling per operation. This way the length of simulation period that
gives the average result, can be decided. The figures are based on measurements of
the SMP multiplier presented in Table A.1 in Appendix A.

As given on the figures, when simulating with random vector sequences the circuit
switching activity decreases, if sequence length increase, for the zero time simulation.

40 CHAPTER 5. RESULTS

Figure 5.2: Number of consecutive operations in Real Time mode

In case of time modeled simulation the toggling activity per multiplication is much
lower than the average, and converges to the average toggle count when sequence
length decreases. In both cases the line flattens out when length of simulation over-
comes 200 consecutive vectors. This shows that when simulating for too short amount
of time, the toggling count would be fault and give too low number of toggles per
operation in zero time delay, and too high in timing simulation.

Knowing the minimal length sampling region is an important result for Monte
Carlo technique requirement. The further experiment can be carried out with simu-
lation time above this limit. This way the average toggle count can be obtain within
approvable error limit.

The experiment shows that it is adequate to simulate the circuits with sequence of
about 200 or more vectors. This way the simulation time as well as the computation
requirement is reduced, while the result lies within acceptable discrepancy.

To do the further experiments the lengths of individual samples, as well as number
of these samples, have to be chosen. It has been decided that sample lengths would
be 100, 200, 400 and 600 samples to see if there is difference in power and toggling
activities for different lengths, as well as four samples of 300 vectors to investigate
the pattern variation problem. Totally, each circuit is simulated eight times under
each PVT condition, both in real delay mode and in zero delay mode. Set with 100
vectors is used to ensure that the sampling limit is correct for all the circuits, the
measurements are however not taken into consideration when reporting the circuit
characteristic in terms of average switching and power. As shown on Figure 5.3 the
outcome of these eight simulations of all the given multipliers gives a steady toggle
count per multiplication.

Another effect visible on these figures is that the input sequence influence on the
number of toggling despite the delay model or even the circuit. Curves on all the
figures in this section follow the change in the amount of toggling. That proves that

5.3. SWITCHING CHARACTERISTICS 41

Figure 5.3: The average toggle count of all the MM multipliers in proportion to
simulation order based on Table A.7 (PVT-MAX)

the amount of spurious toggling is in fact dependent on the input sequence, but the
percentage of unnecessary transitions is assumed to be a quite constant number.

5.3 Switching Characteristics

TM- multipliers

Table 5.2 shows switching of theoretical circuits (TM) supplied by Saeeid T. Oskuii.
Circuits are simulated with the fan-out timing model to estimate the total switching
of internal circuit nets.

TM-MIN TM-MAX TM-RAND

Timing model
Mean. 8579.22 9773.5 9689.07

Std. Dev. 59.01 63.52 81.79

Zero-Time model
mean 2161.89 2206.66 2189.5

Std. Dev. 13.80 10.38 12.61

Spurious Toggling
Mean. 6417.33 7566.84 7499.57

Std. Dev. 45.21 53.43 70.49
% Spurious Toggling 74.8% 77.4% 77.4%

Table 5.2: Average toggling per multiplication in theoretic multipliers

This simulation results in Table 5.2 shows that the gain of proposed power opti-
mization is about 12.12% comparing the best case circuit (TM-MIN) with the worst
case multiplier (TM-MAX) and 11.49% when comparing with the random generated
circuit (TM-RAND).

The given delay model shows however that the spurious switching stands for well
over 70% of overall switching activity in the circuits. As expected the TM-MIN

42 CHAPTER 5. RESULTS

has the best switching properties, including the spurious toggling, while in the other
multipliers this effect is a constant number.

The fan-out model gives the approximate indication of the timing properties of the
circuit. The next section presents the resulting the switching activity after mapping
these circuits into industrial technology and how this stands comparing to the fan-out
model.

MM-multipliers

Tables in this section show the switching activity of technology dependent multipliers
supplied by Atmel Norway. Table 5.4 shows the results of the experiments performed
for the MAX PVT corner, while the 5.3 shows the MIN PVT corner.

MM-MAXMM-MINMM-RAND SMP MG

Timing model
Mean 5777.07 5440.68 5943.84 3495.54 6095.57

Std. Dev. 30.56 33.32 33.95 21.44 21.94

Zero-Time model
Mean 2064.04 1967.55 2057.64 1685.49 1519.64

Std. Dev. 10.61 10.55 9.92 8.74 3.92

Spurious Toggling
Mean 3713.03 3473.13 3886.20 1810.04 4575.93

Std. Dev. 21.54 23.07 24.83 14.25 18.65
% Spurious Toggling 64.27% 63.84% 65.38% 51.78% 75.07%

Table 5.3: Average toggling per multiplication of technology mapped multipliers
(PVT MIN)

MM-MAXMM-MINMM-RAND SMP MG

Timing model
Mean 4760.14 4440.39 4994.47 2707.44 5022.73

Std. Dev. 27.06 25.24 27.44 13.88 24.87

Zero-Time model
Mean 2064.04 1967.55 2057.64 1685.49 1519.64

Std. Dev. 10.61 10.55 9.92 8.74 3.92

Spurious Toggling
Mean 2696.10 2472.84 2936.83 1021.94 3503.09

Std. Dev. 17.36 14.90 18.32 6.97 21.58
% Spurious Toggling 56.64% 55.69% 58.80% 37.75% 69.74%

Table 5.4: Average toggling per multiplication of technology mapped multipliers
(PVT MAX)

The effect of different PVT corners is visible when comparing these two tables.
All the circuits both switch least and have the best spurious toggling properties in
the PVT MAX corner. This corner represents much higher temperature (100◦C)
but at the lower supply voltage (V=1.6V). Comparing with the other corner which

5.3. SWITCHING CHARACTERISTICS 43

represents much lower temperature (-40◦C) the total switching is around 16-18%
higher for the MIN conditions, thus the spurious toggling also.

As the circuits built in the CMOS technology work slower at the high tempera-
tures, the signals travel time is slower. The charging/discharging times of the capac-
itive loads increase in higher temperature. This may cause that several glitches are
filtered and less is generated, hence less unnecessary transitions is present during the
working period. As the result, the lower switching activity is recorded in this PVT
corner.

This means that the spurious switching is in fact reduced in higher working tem-
perature for the same circuit. This is an important observation because even thou
high temperature makes CMOS circuit work at slower ratios, the switching activity
is clearly reduced.

The difference between the corners is not a fast number for all the investigated
multipliers (See Table 5.5). This means that the way in which the circuit is con-
structed makes switching more or less fragile to the parameters like temperature
differences. This is especially visible when comparing the MM multipliers with the
SMP candidate. The three MM circuits are built in the same way, while the SMP
multipliers have some different construction approach.

MM-MAXMM-MINMM-RANDSMPMG
PV TMAX
PV TMIN 0.82 0.82 0.84 0.78 0.83

Table 5.5: The proportion between PVT MIN and MAX

When comparing the circuit versions with each other, it is clear that the MM-MIN
multiplier switches least among MM circuits. It records also best spurious switching
characteristic. This is an expected result since it is built on a base of the multiplier
which has been constructed to be power efficient.

The switching reduction gain in building circuit by method given in [21] before
technology mapping, lie in around 11% (PVT MAX) and 8,5% (PVT MIN) comparing
to the MM-RAND. Again the higher temperature gives better switching properties of
the same circuit. The amount of spurious toggling is also reduced for the MM-MIN
multiplier. The power optimized circuit have 5% (PVT MAX) to 2% (PVT MIN)
decrease in amount of spurious toggling.

Results show that the power optimization proposed by [21] gives in fact reduction
in switching activity and amount of unwanted hazards, compared to non-optimized
circuit. Experiments show that this technique gives promising results but still more
research are needed.

The circuit that stands out is multiplier supplied by Atmel Norway (SMP). Reason

44 CHAPTER 5. RESULTS

for that is that this circuit net-list is built by a different tool than the rest of the
circuits. It is possible that it takes parameters such as temperature into consideration
when synthesizing the circuit, while the other net-lists do not take these factors
into consideration. SMP circuit has also the best toggle characteristics among the
investigated circuits. The amount of spurious toggling lies in the range of 38% (PVT
MAX) and 52% (PVT MIN) of the total toggling needed to execute the multiplication
operation, much less that for the other candidates. Several things can lead to this.
The multiplier supplied by Atmel might have a different partial product generation
method. It can use some kind of Booth recoding or similar method. The number of
partial product generation steps is significantly smaller for Booth based multipliers
(up to 50%). The difference in PP reduction technique have also influence on power
consumption and switching characteristics. Unfortunately the documentation of the
DW2 multiplier does not go into details of circuit construction. It is however steel
desirable to scale down the amount of transitions without any useful application to
make this circuit switch even less.

Last investigated circuit is the MG multiplier. It has the poorest switching proper-
ties in timing simulation among the investigated gate-level designs. It switches about
11% more than the MM-MIN multiplier despite the PVT corner. This shows that
the amount of its switching is more dependent on the internal construction rather
than the PVT fluctuations.

When looking at the results from circuit simulations with the zero delay model,
the switching activity per operation is a quite constant number, ling within a ten
percent range for both technology depended (Table 5.4 and 5.3) and independent
case (Table 5.2). The difference between the MM- and TM- versions of multipliers
simulated in zero delay mode, are shown in Table 5.6.

MIN MAX RAND
MM- vs TM- 8.99% 6.46% 6.02%

Table 5.6: Difference in switching activity between the technology dependent and
independent version in zero delay mode

This is an expected result since the most of toggling happens due to unbalance
paths inside the circuit. This is not a case in zero delay mode since all the signals go
through the nets in the same time and all the paths have same length, thou there is
no difference in arrival times.

The interesting result is given by the MG multiplier in the zero delay simulation.
The experiments show that it needs least logic state changes necessary to produce
the multiplication result. This means that the ModGen software is able to create
circuits that has very good switching characteristics when timing dependencies are

5.4. POWER CONSUMPTION 45

not taken into consideration.

Differences between the amount of switching in TM- and MM- are mostly due
to the different timing models used under timing simulation, but also the way in
which the MM circuit were synthesized. To make the circuits better suited for the
technological circumstances, some registers have been introduced on the input and
output of the circuits. Although these registers are bypassed during the simulations,
their presents can still have some effect on the final result. The registers consist of
gates switching together with other nets and are an integral part of the circuit, hence
they can introduce some different path delay.

Net activity is strongly dependent on the model used to represent the timing
properties of the circuit. Fan-out model is quite simple and it does not take all the
timing properties of the circuit elements into consideration. This is main reason of
the difference between the same type TM and MM multiplier versions, the technology
mapped circuits use much more complicated and advanced circuit timing model.

5.4 Power Consumption

MM-MAXMM-MINMM-RAND SMP MG
Timing Model mean 21.28 20.07 21.76 10.96 18.65

std.dev. 0.11 0.12 0.12 0.06 0.06
Zero Time Model mean 7.38 7.6 7.57 6.12 5.98

std.dev. 0.03 0.04 0.03 0.03 0.02
Spurious Toggling mean 13.9 12.48 14.19 4.84 12.67

std.dev. 0.08 0.09 0.09 0.04 0.04
% Spurious Toggling 65.32% 62.16% 65.20% 44.19% 67.95%

Table 5.7: Power consumed by the multipliers (PVT MIN)

MM-MAXMM-MINMM-RAND SMP MG
Timing Model mean 11.63 10.93 12.15 5.84 10.37

std.dev. 0.06 0.06 0.06 0.03 0.04
Zero Time Model mean 5.00 4.87 5.00 4.06 3.92

std.dev. 0.02 0.02 0.02 0.02 0.01
Spurious Toggling mean 6.63 6.06 7.15 1.78 6.45

std.dev. 0.04 0.04 0.04 0.01 0.04
% Spurious Toggling 56.99% 55.47% 58.87% 30.44% 62.22%

Table 5.8: Power consumed by the multipliers (PVT MAX)

The analysis of power dissipation confirms that the power consumption is consid-
erably different for the zero delay and real delay simulation model. This difference is

46 CHAPTER 5. RESULTS

in fact the power consumed by unnecessary transitions discussed in previews section.

Table 5.7 and 5.8 show the average power consumption of the circuits in different
PVT corners. The power collected in the both corners is measured with the switching
activity annotated during the gate level simulations. In fact, toggling characteristics
from the previews section are used to report power dissipated by the investigated
multipliers. As expected, power dissipated by unnecessary transitions is a significant
part of total dynamic power consumption inside the circuits.

Power dissipated by each circuit is strongly dependent on internal and external
circumstance. Equation 3.3 shows that the power is proportional to the square of sup-
ply voltage and the net activity. So these two factors influence the power dissipation
of the circuits, thus the differences between corners. As shown in previews section
the net-activity is strongly dependent on the PVT factors, which also influences the
power dissipation.

The difference between the corners is much bigger than the switching activity
implies as shown in Table 5.9. The difference is in fact quite a constant number when
looking at power usage.

MM-MAXMM-MINMM-RANDSMPMG
PV TMAX
PV TMIN 0.55 0.54 0.56 0.53 0.56

Table 5.9: The proportion between PVT MIN and PVT MAX

Table A.4 shows that power consumption is different for different vector sets at
the input of the circuit. Standard deviation in the experiments lies within 1% off
the mean value of the power consumed by the circuit. In consequence the result
of combining the sufficient number of vectors (over 200 in this case) with several
different approaches shows a good approximation of average power consumption.

The circuit that uses least power is the SMP multiplier. It dissipates considerably
less power than the others multipliers, in fact almost half the amount. This is an
expected result since this circuit has the smallest amount of toggles, shown in previous
section.

The number of internal nets is actually smallest in the power optimized multiplier
(MM-MIN) as shown in Table 5.10. It is in fact smaller than in the industrial multi-
plier from Atmel. This shows that power dissipation is dependent on how the circuit
is built rather than number of cells and nets. Most power reduction is obtained by
carefully designing the circuit rather than making it smaller.

Most of the power properties are preserved in the technology dependent version of
the multipliers (MM) comparing to the theoretical assumptions as well as the switch-
ing characteristics. There is about 10% (PVT MAX) and 7,5% (PVT MIN) less power

5.4. POWER CONSUMPTION 47

MINMAXRANDMGSMP
Number of ports: 128 128 128 129 316
Number of nets: 5052 5236 5227 3663 5086
Number of cells: 4988 5172 5163 3597 4083

Table 5.10: Multipliers area information

dissipated by the power optimized multiplier (MM-MIN) that by the random gener-
ated version (MM-RAND). This is a significant improvement in power consumption
attributes for the given design method.

This result corresponds to the switching characteristics of the circuits. In fact the
percentage of spurious toggling corresponds with the power consumed by this effect,
with exception of SMP and MG multiplier. This shows that the most dynamic power
dissipated in these circuits comes from internal switching.

Power dissipation is strongly dependent on external factors like process and supply
voltage, and the percentage of glitching power is closely related to the switching
properties of the circuit despite some small differences. (Comparing Tables 5.4 and
5.3 with 5.8 and 5.7)

Nevertheless, the multiplier that has worst switching properties (MG) according
to previews section dissipates less power than MM circuits. It has however more
power dissipated in the spurious switching. These differences may be due to that not
all the annotated transitions consumes same amount of power. The diverse gate types
consume different amount of energy during a switch, thus differences in amount of
gate types can also have influence on the overall result. Some of the dynamic power
usage may be because of the circuit layout. Dynamic power is strongly dependent on
the switching activities of the circuit. But the amount of the power may vary because
of the technological aspects, as well as the way in which circuit is constructed. The
layout and interconnection of the circuit can vary the result considerably as well as
the fan-out characteristics of internal nets.

As expected the ModGen generated net-list uses least power to compute the result
of multiplication, when the spurious toggling effects are not taken into consideration.
One of reasons may be that it is the circuit with smallest amount of internal cells and
nets as shown in Table 5.10. This tool has potential of creating multiplier net-lists
that are in the same area of the total power properties as the TM circuits. To achieve
that the spurious switching and its effect on power consumption has to be reduced,
probably on expense of area of the design.

48 CHAPTER 5. RESULTS

Chapter 6

Disscutions and Conclusions

6.1 Counting Method

The work of this thesis involves development of a method that performs character-
ization of toggling properties of a digital circuit given as a gate-level net-list. The
developed method gives the total toggle count from timing logic simulation. When
the counting of just the necessary transitions is performed as well, the amount of
spurious toggling can be extracted.

The developed method can be used to get the total switching characteristic of
an arbitrary circuit net-list, thus it became a practical tool for hardware engineers
who want to decide the switching characteristics of their design. The software tools
used for purposes of this thesis work are a commonly use in digital design, hence it
is easy to implement purposed method. The attached step-by-step tutorial together
with the counting scripts can be used to carry out a set of experiments, similar to
these presented in Chapter 5.

6.2 Switching Characteristics

The goal of this thesis was to simulate and observe the effect of switching activities in
a digital arithmetic circuit. In almost every digital circuit some amount of switching
activity is considered unnecessary because it does not have any logical or functional
purpose.

This report shows that theoretic model of circuit delay introduced in [21] can give a
quite good indication of circuit switching characteristics. The experiment illustrates
that the theoretical optimization does not necessarily mean that the outcome of
technology mapping has the same properties. The way in which the circuit toggles
depends on the timing model used in the simulation, thus the fan-out model is too
simple to give the exact approximation of final switching properties. The outcome of

49

50 CHAPTER 6. DISSCUTIONS AND CONCLUSIONS

experiments executed in this thesis shows that more research is needed in that field.

The switching activity is also dependent on factors like temperature or supply
voltage. That is why it is difficult to estimate the timing properties of a circuit
when the final production technology is unknown. As some of the circuits, such as
multipliers used in microcontrollers, are created before the final design application
area is known, the model of timing is virtually impossible to approximate.

The results show that well over 60% of total dynamic power consumption in multi-
pliers goes to this type of state transition called glitching. Amount of useful transition
is independent on the external conditions, while the total toggling more influence by
such factors. Thus the glitching effect is also dependent on PVT conditions. This
means that these factors also must be taken into consideration when designing an
arithmetic circuits.

The experiments show also that the multipliers have poor characteristic of avoid-
ing spurious switching. This is partly explained by a structure of this kind of circuit.
Much partial product calculation that are dependent on each other makes the inter-
nal nodes toggle couple of times before settling on the final value. The different path
leading signals to the outputs makes the switching an unavoidable effect, thus it can
be decreased by careful deign. The effects of lay-out influence has should also be
included when designing digital multipliers.

The net-lists of theoretical multipliers from [21] are created to be technology
independent. By making the reduction tree generator sensitive to the technological
aspects can grant better post-synthesis results. The multiplier could also be created
to aim at a previously defined technology library, thus measurements would not give
so big differences in post and pre synthesis activity.

The experiment shows that digital IC industry has access to tools that give much
better outcome in terms of general switching properties as well as spurious toggling.
The synthesis tools used by Atmel Norway produce very good circuit net-lists with
excellent switching characteristics. The example given in this thesis shows almost half
as many switching as the other candidates. It is partially explained by the different
construction and partial product generation method (like Both recoding).

It has been noticed that the multiplier generated by the ModGen tool uses much
less necessary necessary necessary logical state changes then the other multipliers to
compute the result. It suffers however from effect of spurious switching. This tool is
clearly able to produce good quality net-lists, but more study is needed on its toggling
characteristics handling.

6.3. POWER DISSIPATION 51

6.3 Power Dissipation

Power consumed in the digital circuit is a strong function of its switching activity.
This makes this area of research an important part of circuit design.

In the circuits built on basis of method from [21] the power consumed by tran-
sitions that do not bring any information to the computation, is about 60% of total
power dissipation. Method of reducing this effect is an important part of research in
low power circuit design. The results illustrates that the amount of power dissipated
by this effect is very closely related to the switching characteristic.

As expected the SMP multiplier uses least power to perform a multiplication
operation. The circuit that is switching most during the experiments (MG), uses
however considerably less power in the proportion to other circuits. It uses also least
power to compute the result in zero delay mode, as the switching characteristic imply.
This means that the ModGen software is able to produce a good quality and power
efficient multipliers, yet the amount of spurious switching should be deceased. Since
it is the circuit that consists of fewest gates, thus it gives possibility of balancing the
spurious toggling by increasing the circuit area. More research is needed in this area.

Method of creating a low power multipliers introduced in [21] gives decrease in
overall power consumption. However, the circuit design tools used in the IC industry
give more power efficient solutions. Models introduced in this thesis do not take all
the circuit layout effects into account. Some of the problems may be avoided by
proper path balancing on the physical level of the design.

The percentage of power dissipated by glitching is in accordance with the amount
of spurious switching. This shows that circuit hazards are in fact main contributor
to the overall dynamic power consumption. Clearly reducing internal glitching would
reduce the overall power consumption of a digital circuit.

Reduction tree models (TM) consider only the effect of cell delay. On the layout
level the paths can be balanced by proper place and route algorithms to avoid differ-
ent signal arriving times. The interconnection length is important when minimizing
the total physical capacitance of the circuit. The differences between physical and
switching capacitances have to be considered. The wiring geometries and layer assign-
ments are an important issue as well. Various optimization techniques can be used
to partition, place, resize and route the design depending on design style, technology
etc [26]. This can reduce glitching and its effect on power consumption.

6.4 Future Work

Delay model used in [21] shows the approximate value of internal switching. The
more complex method of estimating how internal signals are propagated through

52 CHAPTER 6. DISSCUTIONS AND CONCLUSIONS

the circuit is needed. As the results show the zero-delay mode gives approximately
the same amount of switching activities inside the theoretical as well as synthesized
circuit. Difference in the timing mode indicates that the fan-out model is too simple.

Elaborating more realistic model of delay through the circuit is an important task
for future work. This model would have to include more complex representation of
gate delay that includes ambiguity model or a transition dependent model. This may
give better approximation of switching activities in these circuits.

More research is also needed in gathering information about the synthesis tool
used to create the technology dependent net-lists. Understanding of the aspect of
optimization during synthesis is an important task when exploring possibilities of
modeling the delay in complex arithmetic circuits.

ModGen software produces quite good results in comparing to the other solutions
in terms of power efficient arithmetic circuit. The further development of ModGen
software can however give even better results in terms of avoiding hazards and spu-
rious switching.

Appendix A

Tables

A.1 Switching

Zero time Real Time

Vectors Total Per Operation Total Per Operation

8 11330 1416.25 28341 20.01

18 26620 1478.89 60493 40.9

28 41529 1483.18 92490 62.36

48 75224 1567.17 164504 104.97

98 148013 1510.34 319791 211.73

198 302221 1526.37 660902 432.99

398 609404 1531.17 1315522 859.16

598 930962 1556.79 2017466 1295.91

998 1529434 1532.5 3298194 2152.17

1498 2307558 1540.43 4996025 3243.28

Table A.1: Simulation length

53

54 APPENDIX A. TABLES

Real time TM-MINTM-MAXTM-RAND
98 845341 953950 957358
198 1678129 1909986 1889656
398 3435287 3927451 3889238
598 5134964 5846766 5792245
298 2537698 2884939 2861284
298 2573222 2930523 2917869
298 2544909 2911692 2872316
298 2583711 2931474 2917426

Zero timeTM-MINTM-MAXTM-RAND
98 210128 214876 213176
198 421947 432054 428335
398 866553 884228 877372
598 1296144 1322106 1312064
298 639576 654074 647864
298 648502 659422 656806
298 643708 657744 651727
298 648140 660683 655463

Table A.2: Total toggling measured during experiments on TM multipliers

vectorsMM-MAXMM-MINMM-RAND SMP MM-MG
98 202033 191731 200256 164099 148315
198 404644 385029 402570 330082 301711
398 827976 788703 824590 674870 605468
598 1236639 1176766 1234067 1011167 910836
298 611018 582165 610119 499130 451681
298 617912 590278 614723 504274 453016
298 614159 586559 614013 501795 454011
298 617303 588870 615117 504755 449939

Table A.3: Toggling measured in zero-time mode in the MM multipliers

A.1. SWITCHING 55

PVT MAX
vectors MM-MAXMM-MINMM-RAND SMP MG

98 466805 439556 490395 266149 493495
198 932346 871232 980044 531072 1000218
398 1914373 1773814 2000687 1081509 1995948
598 2848281 2656564 2993544 1614916 3020764
298 1405875 1309600 1477782 802182 1484436
298 1424605 1333988 1495075 811598 1496353
298 1418237 1322535 1483633 806565 1505559
298 1424955 1333305 1497182 813552 1485911

PVT MIN
vectors

98 567027 539944 587205 344240 599665
198 1134112 1069728 1164088 685744 1211400
398 2320185 2177832 2381761 1397988 2425946
598 3455553 3249974 3563836 2085595 3662726
298 1704369 1604860 1759106 1032867 1806060
298 1727449 1633534 1781583 1052011 1812663
298 1723377 1616131 1767267 1040062 1823871
298 1729663 1634555 1779596 1048626 1807907

Table A.4: Total toggling of TM multipliers in opposite PVT corners

56 APPENDIX A. TABLES

Real time TM-MINTM-MAXTM-RAND
98 8625.93 9734.18 9768.96
198 8475.40 9646.39 9543.72
398 8631.37 9867.97 9771.95
598 8586.90 9777.20 9686.03
298 8515.77 9681.00 9601.62
298 8634.97 9833.97 9791.51
298 8539.96 9770.78 9638.64
298 8670.17 9837.16 9790.02

Mean 8579.22 9773.50 9689.07
std.dev. 59.01 63.52 81.79

Zero timeTM-MINTM-MAXTM-RAND
98 2144.16 2192.61 2175.27
198 2131.05 2182.09 2163.31
398 2177.27 2221.68 2204.45
598 2167.46 2210.88 2194.09
298 2146.23 2194.88 2174.04
298 2176.18 2212.83 2204.05
298 2160.09 2207.19 2187.00
298 2174.97 2217.06 2199.54

Mean 2161.89 2206.66 2189.50
std.dev. 13.80 10.38 12.61

Table A.5: Toggling per operation of TM multiplier

vectors MM-MAXMM-MINMM-RAND SMP MG
98 2061.56 1956.44 2043.43 1674.48 1513.42
198 2043.66 1944.59 2033.18 1667.08 1523.79
398 2080.34 1981.67 2071.83 1695.65 1521.28
598 2067.96 1967.84 2063.66 1690.91 1523.14
298 2050.4 1953.57 2047.38 1674.93 1515.71
298 2073.53 1980.8 2062.83 1692.19 1520.19
298 2060.94 1968.32 2060.45 1683.88 1523.53
298 2071.49 1976.07 2064.15 1693.81 1509.86

mean 2064.04 1967.55 2057.64 1685.49 1519.64
std.dev. 10.61 10.55 9.92 8.74 3.92

Table A.6: Toggles per operation of MM multipliers in zero-time model

A.1. SWITCHING 57

PVT MAX
vectors MM-MAXMM-MINMM-RAND SMP MM-MG

98 4763.32 4485.27 5004.03 2715.81 5035.66
198 4708.82 4400.16 4949.72 2682.18 5051.61
398 4809.98 4456.82 5026.85 2717.36 5014.94
598 4763.01 4442.41 5005.93 2700.53 5051.44
298 4717.7 4394.63 4959 2691.89 4981.33
298 4780.55 4476.47 5017.03 2723.48 5021.32
298 4759.18 4438.04 4978.63 2706.59 5052.21
298 4781.73 4474.18 5024.1 2730.04 4986.28

mean 4760.14 4440.39 4994.47 2707.44 5022.73
std.dev. 27.06 25.24 27.44 13.88 24.87

PVT MIN
98 5785.99 5509.63 5991.89 3512.65 6119.03
198 5727.84 5402.67 5879.23 3463.35 6118.18
398 5829.61 5471.94 5984.32 3512.53 6095.34
598 5778.52 5434.74 5959.59 3487.62 6124.96
298 5719.36 5385.44 5903.04 3466 6060.6
298 5796.81 5481.66 5978.47 3530.24 6082.76
298 5783.14 5423.26 5930.43 3490.14 6120.37
298 5804.24 5485.08 5971.8 3518.88 6066.8

mean 5777.07 5440.68 5943.84 3495.54 6095.57
std.dev. 30.56 33.32 33.95 21.44 21.94

Table A.7: Toggling per operation of MM multiplier

58 APPENDIX A. TABLES

A.2 Power

Real Time mW

vectors MM-MAXMM-MINMM-RANDSMPMM-MG

98 11.64 11.03 12.18 5.87 10.42

198 11.51 10.83 12.04 5.78 10.41

398 11.75 10.96 12.22 5.86 10.36

598 11.65 10.93 12.18 5.83 10.42

298 11.53 10.82 12.07 5.80 10.29

298 11.68 11.01 12.19 5.87 10.37

298 11.64 10.92 12.11 5.84 10.43

298 11.68 11.00 12.21 5.88 10.30

mean 11.63 10.93 12.15 5.84 10.37

std.dev 0.06 0.06 0.06 0.03 0.04

Zero Time mW

vectors MM-MAXMM-MINMM-RANDSMPMM-MG

98 5.00 4.84 4.97 4.05 3.92

198 4.96 4.82 4.94 4.02 3.92

398 5.04 4.90 5.03 4.09 3.92

598 5.02 4.87 5.01 4.07 3.93

298 4.97 4.84 4.97 4.03 3.90

298 5.03 4.89 5.00 4.07 3.92

298 5.00 4.87 5.00 4.07 3.93

298 5.02 4.88 5.01 4.08 3.90

mean 5.00 4.87 5.00 4.06 3.92

std.dev 0.02 0.02 0.02 0.02 0.01

Table A.8: Power dissipated in PVT MAX

A.2. POWER 59

PVT MIN
Real Time mW
vectors MM-MAXMM-MINMM-RAND SMP MM-MG

98 21.32 20.32 21.95 11.03 18.75
198 21.09 19.93 21.55 10.85 18.69
398 21.46 20.18 21.90 11.02 18.66
598 21.29 20.05 21.83 10.94 18.74
298 21.08 19.89 21.62 10.86 18.56
298 21.35 20.21 21.88 11.06 18.62
298 21.31 20.01 21.72 10.96 18.72
298 21.36 20.24 21.86 11.02 18.57

mean 21.28 20.07 21.76 10.96 18.65
std.dev 0.11 0.12 0.12 0.06 0.06

Zero Time mW
vectors MM-MAXMM-MINMM-RAND SMP MM-MG

98 7.34 7.59 7.53 6.10 5.98
198 7.30 7.52 7.49 6.05 5.98
398 7.43 7.65 7.62 6.15 5.99
598 7.38 7.62 7.60 6.14 5.99
298 7.33 7.55 7.54 6.07 5.95
298 7.41 7.63 7.58 6.13 5.98
298 7.39 7.59 7.58 6.12 6.00
298 7.40 7.62 7.59 6.14 5.94

mean 7.38 7.6 7.57 6.12 5.98
std.dev 0.03 0.04 0.03 0.03 0.02

Table A.9: Power dissipated in PVT MIN

60 APPENDIX A. TABLES

Appendix B

Tutorial

B.1 Switching Activity

Switching activity is an important factor in power estimation of digital CMOS circuit.
Power consumed by spurious switching is a magnificent part of power consumption
inside these circuits. That is why this method of measuring amount of spurious
toggling is developed.

Spurious toggling is may be found by comparing switching activity obtained from
simulations of the circuit under two delay models. When simulating with zero-delay
model all signals propagate instantaneously through the internal gates and every
gate will get its final logical value right away. This way the only transitions that are
present are so called useful transitions.

When some kind of delay model is used in the simulation the unbalanced paths
and other factor makes signal toggle before settling to final value. If the model
represents a real component library the total amount of switching is achieved.

The difference of the toggling obtained from these two simulations stands for
spurious switching of the circuit. Most representative results are gathered when the
circuit is simulated with same stimulus under both delay models.

B.2 Power dissipation

The power consumed by the unnecessary transitions can be found in the same way. By
annotation the activity under both delays the power dissipated by spurious toggling
can be computed. In order to measure the power in Synopsys Power Tools some more
information about design is needed.

The target library representing the conditions under which circuit work must be
supplied. This is often referred to as a PVT (process, voltage and temperature)
corner. Information about parasitic of the circuit or some other RC information is

61

62 APPENDIX B. TUTORIAL

also required.

B.3 Device Under Test

In this tutorial we operate on a Verlilog net-list of a digital combinatorial circuit.
The net-list includes a library of components together with their delay characteristics
contained in a standard delay file (SDF). The SDF may include max:typ:min delay
modes. The target library in DB format together with SPEF (Standard Parasitic
Extraction Format) file used to report power. The flow of toggle count purposed in
this tutorial may be used to count state changes in a VHDL net-list as well.

A good testbench is required as well. Testbench examples that read input data
from a file are given in Section C.1. A script that creates file with random data input
is presented in Section C.4.1

B.4 Simulations

B.4.1 Timing Simulation

In the simulation with timing model defined by SDF file a vsim command has a
extension that allows to include delay file into the simulation flow. The -sdfmax is
used here, but the -sdftyp or -sdfmin can be used if SDF include this.

vsim

-sdfmax {instance_path/circuit_instance = file.sdf}

work.your_testbench

This can be done in the Simulation menu, Start Simulation, SDF mark.
It is desirable to run circuit for some time to make all the signals toggle couple of

times. This way we are shore that circuit is running at the typical rate.

#F.ex two clock periods

run 40ns

ModelSim has some built in functions which can count the switching of each net in
the design. Switching activity is closely related to estimating the power consumption
the power add (CR-184) is used to specify the nets or signals to track.

power add sim:/test_bench/circuit_instance/nets_or_signals_to_track

We need to annotate the circuit activity needed by Synopsys Power Tools to report
the power consumption of the circuit. This is done by invoking a VCD file in the
ModelSim environment and adding the user decided signals to be accounted for. This
way the power dissipated by chosen nets or signals may be estimated and reported.

B.4. SIMULATIONS 63

vcd file dump.vcd

vcd add sim:/sim:/test_bench/circuit_instance/nets_or_signals

Next step is to run the simulation for some amount of time. After it finish the
number of transitions of each signal may be extracted by the power report command
(CR-185). This can be either displayed in the main window or saved to a text file.

#extract to power_report file

power report -all -noheader -file power_report.log

To save the dump information to a VCD file we need to notice the tool that simulation
is over

vcd checkpoint

After executing the simulation in this order the two files are saved. The power report
format shows the name of the gate, toggle count, hazard count and the times spent
at each state. They are described inside the file when the -noheader command in
not used. By creating a script or pasting the report into a spreadsheet program the
total toggle count is obtained.

The VCD file needs to be saved for the power measurement process.

B.4.2 Zero Delay

To simulate a circuit under zero delay conditions it is sufficient to use a straight
foreword vsim command (CR-298):

vsim work.your_testbench

The method described in previews section shows to be insufficient when dealing with
zero delay model. The reason is the way in which logic simulations deal with concur-
rent expressions.

VHDL simulators use an infinite short delay called delta delay unit. This makes
the simulated signal toggle with zero times pulses. Even though all signals gets it
final value in after zero time, the signal toggles are taken into account by the power
function in ModelSim.

In Verilog simulation a similar concept exists in terms of Non-Blocking Assignment
infinitesimally short delays and Blocking Assignments where the assignments are
immediate. All this makes the toggle count commands I ModelSim deliver incorrect
results

To overcome this counting problem the methods of saving waveforms are used.
ModelSim can produce a list of all signal values and changes by adding the selected
signals or nets to the list.

64 APPENDIX B. TUTORIAL

The useful option is that the signal value can be measure with the probe at the
user chosen rate. If this rate is set to be the clock period just the useful toggles
are showed in the list window. This can be done in the List menu by setting Strobe
Period to the clock rate, First Strobe to 0, uncheck Signal Change and check the
Strobe Box, uncheck Signal Change and check the Strobe Box.

This can be also done using list config list command (CR-110) in the command
line:

config list -strobeperiod {clock_periode_in_ns}

-strobestart {0 ns}

-usesignaltriggers 0

-usestrobe 1

Then the selected signals can be added to list

add list sim:/test_bench /circuit_instance/nets_or_signals

After the simulation is ready the list can be exported to a TSSI format, either by
item Export in file menu or by command:

write tssi file_name.lst

The TSSI format saves signal changes at different time marks in columns of the file.
To get toggle count a script which counts each time the signal changed its value has
to be developed.

B.5 Spurious Toggling

After extracting toggle count with the time delay model and zero delay model these
two numbers can be compared. The difference between these two numbers is the not
useful transitions, also called spurious toggling.

B.6 Reporting Power

Power dissipation can be measured by Synopsys DesignPower tool. It computes
average power consumption based on net activity of the gate level design. Synopsys
tool has a graphical interface called Design Vision (DV) which can be used instead
of command line.

First we have to create a working directory for example MyFolder. In this di-
rectory an empty text file is created with name .synopsys dc.setup. The file can be
edited with a simple text editor and it should consist of following lines

B.6. REPORTING POWER 65

set search_path /path/to_library/directory

set link_library name_of_library.db

This way when the Synopsys DesignVision is started, the right technology library
setup is created. The library represents a process, voltage and temperature corner of
circuit working conditions.

It is recommended that the design net-list file (netlist.v) together with the corre-
sponding parasitic file (netlist.spef.gz) is saved into source directory as well.

The VCD files obtained in simulation tool have to be copied to the source directory
as well, for example to a VCD folder. Synopsys PowerCompiler cannot read VCD
files but uses another file format called SAIF (This Switching Activity Interchange
Format). Because these two file formats are equivalent, vcd files can be converted to
saif in dc_shell (command line interface of DesignVision) by following command

dc_shell

vcd2saif -input VCD/vcd_file.vcd -output SAIF/saif_file.saif

This way the corresponding SAIF file is saved in SAIF folder in source directory. All
the VCD files from simulations have to be converted to SAIF format to be used by
power analysis tool.

When all the files are in place the power analysis can be started. First the program
has to be started in the source directory. By typing following in the Linux command
line the graphical environment is opened.

design_vision

Then the design file can be red into software environment. It is done either in menu
File, Read or by command

read_file - format verilog {path/netlist.v}

The parasitic information has to be read as well.

read_parasitics path/netlist.spef.gz

Next step is to annotate the switching activity in form of SAIF file

read_saif -input path/SAIF/saif_file.saif

-instance_name path/test_bench/circuit_instance/nets_or_signals

Where the circuit instance is the same as in the test-bench used to simulate the
design. This instant name is saved in the SAIF annotation file.

Last step is to report measured power either in menu Design or by following
command

66 APPENDIX B. TUTORIAL

report_power >path/Power_report/power_report_file.rpt

The power report is saved and can be opened by an arbitrary text editor. It consist
of some design information as well as the dynamic and static power measurements.

References:
ModelSim SE Command Reference, Software Version 5.6d, August 1992
ModelSim SE User’s Manual, Software Version 6.2a, June 2006
Synopsys Power Products Reference Manual, v1999.10, October 1999

Appendix C

Code

C.1 Testbench

C.1.1 VHDL

VHDL testbench that reads input values generated by the random number generator
in Section C.4.1.

process (clk)

FILE file_in : TEXT IS IN "stimuli300\300_vectors1.txt";

VARIABLE line_in : LINE;

VARIABLE inputA, inputB : bit_vector(31 downto 0);

if (clk’event and clk=’1’) then

IF NOT (ENDFILE(file_in)) THEN

READLINE(file_in, line_in);

READ(line_in, inputA);

READ (line_in, inputB);

inA <= inputA;

inB <= inputB;

A <= to_stdlogicvector(inputA);

B <= to_stdlogicvector(inputB);

ELSE

ASSERT FALSE

REPORT "End of file!"

SEVERITY NOTE;

END IF;

67

68 APPENDIX C. CODE

end if;

C.1.2 Verilog

Verilog testbench that reads input values generated by the random number generator in
Section C.4.1.

file = $fopen("stimuli300/300_vectors3.txt","r");

// If error opening file

if (file == 0)

begin

// Just quit and display

$display("Error file open");

end

//when not end of file

while(!$feof(file)) begin

@(posedge clock)

//scan file for two bit vectors with white space between

c = $fscanf(file,"%b %b\n",line_A, line_B);

A = line_A;

B = line_B;

end //while not EOF

$fclose(file);

C.2 Script: Timing Simulation

Script to be used in ModelSim to report all the transitions of the circuit nets.

#timing_som.do

vsim

-sdfmax {/multmax_ins=D:/Documents and Settings/Jakub/Mine dokumenter/MASTER/Atmel/max/ex_mul_layout_maxPVT.sdf}

work.tb_mul_max

#Circuit is going into working mode (2 vectors)

run 60ns

#Create the VCD file

vcd file vcd/rt3_298vec.vcd

#Add signals and nets to the VCD dump

vcd add sim:/tb_mul_max/multmax_ins/U_MUL/*

C.3. SCRIPT: ZERO TIME SIMULATION 69

#Add signals to report logic state changes

power add sim:/tb_mul_max/multmax_ins/U_MUL/*

#run rest of vectors (#vectors-2 * 20ns)

run 5960 ns

#dump values to file

vcd checkpoint

#report power consuming state changes

power report -all -noheader -file power_report/rt3_298vec.log

#end simulation

quit -sim

C.3 Script: Zero Time Simulation

Script to be used in ModelSim to report just the necessary transitions.

#zero_time.do

vsim work.tb_mul_max

#to count the switching without delta delay strobe is used

#strobeperiod is a clock period

config list -strobeperiod {20 ns} -strobestart {0 ns} -usesignaltriggers 0 -usestrobe 1

#add signals to annotate the switching

add list sim:/tb_mul_max/multmax_ins/U_MUL/*

#Circuit is going into working mode (2 vectors)

run 60ns

vcd file vcd/zt3_298vec.vcd

vcd add sim:/tb_mul_max/multmax_ins/U_MUL/*

#run rest of vectors (#vectors-2 * 20ns)

run 5960 ns

#dump values to file

vcd checkpoint

#save the switching into tssi file

write tssi tssi/zt3_298vec.lst

70 APPENDIX C. CODE

quit -sim

C.4 Python Scripts

C.4.1 Random Number Generator

Python script that generates the random stimulus.

#generate a (vec_nr) pair of random numbers

for i in range(0, vec_nr):

for j in range(0, 32):

#sets either 1 or 0 into a 32-bit vector

ran = random.randint(0, 1)

f.write("%d" %(ran))

#makes space between vectors

f.write(" ")

#makes second vector in the same line

for j in range(0, 32):

ran = random.randint(0, 1)

f.write("%d" %(ran))

#jumps to next line

f.write("\n")

Example of a stimulus file:

11000100010000100000000100001111 00001010100000000000110001000011

11000000111011100111010111011101 11001110001100011001000101100001

00000111000101100111001100000010 00001011010000010100100010010000

11001000010010111000101000000000 01000110000111110000001000101101

01100001110010000001001000001110 01000110010000011010010000001101

(...)

C.4.2 Toggle Count from TSSI List File

Counts the transitions in a TSSI list file

file1=open(’try.lst’, ’r’)

#reads first three lines

file1.readline()

file1.readline()

file1.readline()

#Decide how many characters there is in one line

C.4. PYTHON SCRIPTS 71

for line in file1.readline():

Splits the line into characters

char = line.split(’ ’)

makes an array with each character of the line

tmp1.append(char)

tg.append(0)

#number of character in one line

i=i+1

#go through the file (max 1500 lines)

for k in range(1500):

#read line next line

i=0

for line in file1.readline():

char = line.split(’ ’)

tmp2.append(char)

i=i+1

#checks if line has changed

for j in range(i):

#print j

#checks if the number in same column are same.

#if so, the number in this column is marked

if tmp1[j]==tmp2[j]:

tg[j] = tg[j]

else:

tg[j] = tg[j]+1

tmp1 = tmp2

tmp2 = []

#sums the signal changes for each node

#first 20 lines stands for input values

sum = 0

if len(tg) > 20:

for cnt in range(20, len(tg)-1):

sum = sum + tg[cnt]

#Prints total number of logic state transitions

print "sum = %d" % sum

file1.close()

72 APPENDIX C. CODE

C.4.3 Toggle Count from Power Report

Reads and sums the logic state changes in the power report from ModelSim

num = 0

#Opens file

file=open(’min98vec.log’, ’r’)

#first line is bypassed

file.readline()

sum=0

for line in file.readlines():

#splits line into array

line_str = line.split()

#if not end of file

if line_str != []:

num = int(line_str[1])

#sums the switching

sum = sum + num

print sum

file.close()

Bibliography

[1] Abramovici M., Breuer M. A., Friedman A. D. (1990) Digital Systems Testing And
Testable Design, New York. IEEE Press.

[2] Bahanja S., Raghunatan A. (2003) Switching Activity Estimation of VLSI Circuits
Using Bayesian Networks, IEEE Trans. Very Large Scale Integr. Syst., 11(4), 558-567

[3] Booth A. D., (1951) A signed binary multiplication technoique, Quarterly J. of Me-
chanics and Applied Mathematics, 4(2), 236-240

[4] Burch R., Najm F., Yang P. and Trick T. (1993), A Monte Carlo Approach for POwer
Estimation, IEEE Trans. Very Large Scale Integr. Syst., 1(1) 63-71

[5] Chandrakasan A. P. and Brodersen R. W. (1995), Low Power Digital CMOS Design
Boston: Kluwer Academic Publishers

[6] Chandrakasan A. P. and Brodersen R. W. (1995), Minimizing Power Consumption in
Digital CMOS Circuits. Proceedings of the IEEE, 83(4), 498-523

[7] Churiwala S. (2009) Delta Delay, Clock Data Race, avalible at http://knol.google.com
(http://knol.google.com/k/sanjay-churiwala/delta-delay/2h67vjqmw58bp/5#)

[8] Dadda L. (1965) Some shemes for parallal multipliers, Alta Frequenza, 45, 574-850

[9] Daga, J.M. Ottaviano E. Auvergne, D, (1998) Temperature effect on delay for low
voltage applications [CMOS ICs], Design, Automation and Test in Europe 680-685

[10] Ding C., Tsui C. and Pedram M. (1998), Gate-Level Power Estimation Using Tagged
Probabilistic Simulation, IEEE Trans. Computer-Aided Design of Integrated Circuits
and Systems 17(11) 1099-1107

[11] Ericsson H. Larsson-Edefors P. (2004) Glitch-Conscious Low-Power Design of
Arithemtic circuit, IEEE International Symposium on Circuits and Systems 281-284

[12] Hu F. and Agrawal V. D., (2005), Dual Transition Glitch Filtrering in Probabilistic
Waveform Power Estimation, Proc. 15th Grat Lakes Symp on VLSI, 357-360

[13] Kalis J. (2008) Switching in Multipliers, project report in TFE 4520, Depertament
of Electronics And Telecomunication, Norwegian University of Sience and Technology
(NTNU), Trondheim, Norway

[14] Leijten J., van Meerbergen J. and Jess J. (1995). Analysis and Reduction of Glitches in
Synchronous Networks, Proceedings og the 1995 European Design and Test Conference.

73

74 BIBLIOGRAPHY

[15] Maini A. K. (2007). Digital Electronics: Principles, Devices and Applications, New
York, John Wiley & Sons, Inc.

[16] Meister G. (1993), A Survey on Parallel Logic Simulation, University of Saarland,
Department of Computer Science, Misra J

[17] ModelSim SE User’s Manual, Software Version 6.2a, June 2006

[18] Najm F. (1990) Transition density: A new measure if activity in digital circuits, IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, 12(2), 310-323

[19] Najm F. (1995) Power Estimation Techniques For Integrated Circuits, IEEE/ACM
International Conference on Computer Aided Design, 492-499

[20] Najm F., Burch R., Yang P. and Hajj I. (1990) Probabilistic Simulation for Reliability
Analysis of CMOS VLSI Circuits, IEEE Trans. Computer-Aided Design of Integrated
Circuits and Sytsems, 9(4), 439-450

[21] Oskuii S. T. (2008) Design of Low-Power Reduction-Trees in Parallel Multipliers, De-
pertament of Electronics And Telecomunication, Norwegian University of Sience and
Technology (NTNU), Trondheim, Norway

[22] Chen O. T.-C., Wang S., and Wu Y.-W. (2003) Minimization of Switching Activities of
Partial Products for Designing Low-Power Multipliers, IEEE Trans. Very Large Scale
Integr. Syst., 11(3), 2003

[23] Parhami B. (2000), Computer Arithmetic, Algorithms and Hardware Design, New York,
Oxford University Press

[24] Pedram M. (1996). Power Minimization in IC Design: Principles and Applications,
ACM Transactions on Design Automation of Electronic Systems (TODAES), 1(1), 3-
56

[25] Pedram M. (1999). Power Simulation and estimation in VLSI circuits W-K. Chen ed.,
CRC Press and IEEE Press, 18-1–18-27

[26] Massoud Pedram and Hirendu Vaishnav (1997). Power optimization in VLSI layout:
A survey, Journal of VLSI Signal Processing Systems for Signal, Image, and Video
Technology, 15, 221-232

[27] Piguet C. (2007) Low Power Design in Deep Submicron 65 & 45 nm Technologies, Elec-
tronics, Circuits and Systems, 2007. ICECS 2007. 14th IEEE International Conference,
915-918

[28] Raghunatan A., Dey S. and Jha N. K. (2003) High-Level Modeling and Estimation
Techniues for Switching Activity and Power Consumption, IEEE Transactions on VLSI
Systems, 11(4), 538-557

[29] Sayed A., Al-Asaad H. (2007) A New Statistical Approach for Glitch Estimation in
Combinational Circuits, Circuits and Systems, 2007. ISCAS 2007. IEEE International
Symposium on, 1641-1644

BIBLIOGRAPHY 75

[30] Soeleman H., Roy K. and Chou T. (2000). Estimating Circuit Activity in Combinational
CMOS Digital Circuits. IEEE Design & Test of Computers, 17(2), 112-119

[31] Synpopsys (2008) Power Products Reference Manual Downloaded 20. October, 2008.,
from www.synopsys.com

[32] Svendsli O. J. (2003) Atmel’s Self Programming Flash Microcontrollers, Atmel Corpo-
ration, San Jose, from www.atmel.com

[33] Standard Delay Format Specification, Version 3.0, May 1995

[34] ASIC World, (1998-2009) Deepak Kumar Tala, http://www.asic-world.com/

[35] Uyemura John P. (2002) Introduction to VLSI Circuits and Systems, New York, John
Wiley & Sons, Inc.

[36] Walpole R. E., Myers H. R., Myers S. L., Ye K. (2002) Probability & Statistisc for
Engenieers & Scientists, New York, Prientice Hall

[37] Wallace C. S. (1964) A suggestion for fast multiplyer. IEEE Transactions on Electronioc
Computers, 12-17

	Title Page
	Problem Description
	masteroppgave.pdf

