
June 2009
Per Gunnar Kjeldsberg, IET
Jos Hulzink, IMEC-NL
Jos Huisken, IMEC-NL

Master of Science in Electronics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

ULTRA LOW POWER
APPLICATION SPECIFIC
INSTRUCTION-SET
PROCESSOR DESIGN
for a cardiac beat detector algorithm

Yahya H. Yassin

Problem Description
Topic: Application Specic Instruction-set Processor (ASIP) design and application mapping of a
biomedical application.

Focus: Computer architecture/arithmetic, Processor design, Continuous wavelet transform (CWT)

IMEC-NL researches and develops wireless autonomous transducer solutions for Wireless Sensor
Nodes (WSN) of which each component (radio, digital signal processors (DSPs), sensors, and
actuators) is tailored to meet the tight power and performance constraints. The DSPs developed at
IMEC-NL process the sensor node data locally, hence reducing power costly wireless data
communication in order to minimize energy dissipation of the entire WSN. For this reason, the
DSPs must be designed to run a specific application as efficient as possible.

The assignment targets the design of an ASIP with Target processor design tools, and the
research and mapping of a biomedical application on this processor. This task includes conversion
of Matlab and/or generic C-code to platform related code, mapping it on a generic DSP, and re-
target the DSP for the biomedical application.

Assignment given: 12. January 2009
Supervisor: Per Gunnar Kjeldsberg, IET

Abstract

High efficiency and low power consumption are among the main topics in embedded systems
today. For complex applications, off-the-shelf processor cores might not provide the desired
goals in terms of power consumption.

By optimizing the processor for the application, or a set of applications, one could improve
the computing power by introducing special purpose hardware units. The execution cycle
count of the application would in this case be reduced significantly, and the resulting processor
would consume less power.

In this thesis, some research is done in how to optimize a software and hardware devel-
opment for ultra low power consumption. A cardiac beat detector algorithm is implemented
in ANSI C, and optimized for low power consumption, by using several software power opti-
mization techniques. The resulting application is mapped on a basic processor architecture
provided by Target Compiler Technologies. This processor is optimized further for ultra low
power consumption by applying application specific hardware, and by using several hardware
power optimization techniques.

A general processor and the optimized processor has been mapped on a chip, using a
90 nm low power TSMC process. Information about power dissipation is extracted through
netlist simulation, and the results of both processors have been compared. The optimized
processor consume 55% less average power, and the duty cycle of the processor, i.e., the time
in which the processor executes its task with respect to the time budget available, has been
reduced from 14% to 2.8%. The reduction in the total execution cycle count is 81%.

The possibilities of applying power gating, or voltage and frequency scaling are discussed,
and it is concluded that further reduction in power consumption is possible by applying these
power optimization techniques. For a given case, the average leakage power dissipation is
estimated to be reduced by 97.2%.

v

Preface

During the work in this project, I got the opportunity to work with IMEC-NL, where I met
very talented engineers and researchers. They gave me the freedom to use state of the art
development tools, and to be involved in one of their research projects.

First of all, I want to thank my professor, Per Gunnar Kjeldsberg, for recommending me
to some of the master thesis projects from IMEC-NL. I would also like to thank him for an
inspirational guidance throughout the project, which resulted in two articles submitted to
different conferences.

Further, I would like to thank Jos Hulzink, MSc, and Serdar Yildirim, BSc, for giving me
very good guidance throughout this project, and for providing me the necessary training in
order to quickly start using the development tools. I also want to thank them for reviewing
my thesis, and for giving me good feedbacks.

I would also like to thank

– Iñaki Romero Legarreta, PhD, for the helping me understand his algorithm, and for
the help he provided during the Matlab to C conversion process.

– Bernard Grundlehner, MSc, for the help in understanding some specific details related
to the provided Matlab model.

– Marjam Ashouei, PhD, for some help related to the software development.

– Filipa Duarte, PhD, for the help she gave me in the creation of low power memories.

– Michael De Nil, MSc, for providing me with a memory wrapper template that I used
in order to create the memories in the ASIP design.

– Ben Busze, PhD, for all the help related to synthesis, place and route, and netlist
generation.

– Ashoka Sathanur, PhD, and Frank Bouwens, MSc, for the help related to power gating,
and voltage scaling analysis.

– Jos Huisken, MSc, for the ideas he shared with me and for reviewing my thesis.

I want to thank Target Compiler Technologies as well for providing superb support services,
and for making development tools that makes our lives easier.

In general, I want to thank the DSP team and IMEC-NL for the warm welcome and all
the efforts they made to make this master thesis assignment a pleasurable experience. They
definitely inspired me to continue with research in the future.

vii

Contents

Abstract v

Preface vii

List of abbreviations xix

1 Introduction 1
1.1 The goal of ASIP design . 2
1.2 Motivation and goal of work . 4
1.3 Outline . 5
1.4 Main contributions . 5

2 The cardiac beat detection algorithm 7
2.1 The heart and ECG . 7
2.2 The wavelet transform . 9
2.3 The beat detection algorithm . 11
2.4 Optimization of the algorithm . 13
2.5 The test databases . 15

2.5.1 The MIT/BIH database . 15
2.5.2 The database recorded by IMEC-NL 16

3 Energy-efficient SW and HW development 19
3.1 Software code optimization techniques . 20
3.2 Hardware optimization techniques . 22
3.3 Power management techniques . 24

3.3.1 Dynamic power management (DPM) 24
3.3.2 Component-level power management 24

3.4 Converting floating point to fixed point . 25
3.5 Profiling . 27
3.6 The energy model . 27

4 Matlab to C conversion 31
4.1 The flow of work . 31
4.2 Matlab code analysis . 32

4.2.1 The CWT function . 34
4.2.2 The QRSDet3 function . 34
4.2.3 The QRSDet function . 34

4.3 The Matlab prototype . 35
4.4 Simulation interface and validation . 35
4.5 The floating point application . 36

ix

x CONTENTS

4.5.1 Implementation of the floating point application 37
4.5.2 Optimization of the floating point application 38

4.6 The fixed point application . 39
4.6.1 Changes to the floating point application 40
4.6.2 Optimization of the fixed point application 43
4.6.3 Validation of the fixed point application 48

4.7 Results . 48
4.7.1 Simulation results . 48
4.7.2 Profiling results . 50
4.7.3 Application specifications for processor implementation 53

4.8 Discussion of the results and conclusions . 54

5 The Target Development tools 57
5.1 Introduction to the HW/SW Co-design methodology 57
5.2 ASIP design with Target . 58

5.2.1 About Target . 59
5.2.2 ASIP design with Target . 59

5.3 The nML language . 61

6 Application mapping and ASIP design 63
6.1 The embedded environment of the processor 63
6.2 Platform architecture of the BASE core . 64
6.3 Implementation strategy . 67
6.4 Validation strategy . 67

6.4.1 Self-checking simulation . 67
6.4.2 Simulation interface with TCL . 68

6.5 Processor core modifications and optimizations 69
6.6 Target profiling results . 75
6.7 VHDL generation . 77
6.8 Place and route . 80
6.9 Extraction of power numbers . 81
6.10 Simulation and power consumption results . 81

6.10.1 Register transfer level (RTL) and netlist simulation results 81
6.10.2 Power numbers . 82

6.11 Discussion of the results and conclusions . 84

7 Conclusions 87

8 Future work 89

Appendices

A Analysis of the original Matlab model 91
A.1 The CWT function . 91
A.2 The QRSDet3 function . 93

B Detailed description of the Matlab prototype 101
B.1 Changes to the CWT step and modulus maxima step 101
B.2 Changes to the step for finding clusters of beats 101
B.3 Changes to the classification of beats . 102

CONTENTS xi

C Calculation of convolution iteration times 105

D Solving issues related to low threshold values 109

Bibliography 111

List of Tables

2.1 Chosen signals from the MIT/BIH database 16
2.2 IMEC ECG database, [RLG08a] . 16

4.1 Memory usage and cycle count with different frequencies of the ECG signal. . 53
4.2 Application specifications for processor implementation. 54

6.1 Truth table for the memory enable signal of DM. 78

xiii

List of Figures

1.1 General ASIP design flow. 3

2.1 The heart . 8
2.2 Beat demonstration . 8
2.3 P,Q,R,S and T waves . 9
2.4 QRS complex morphologies . 9
2.5 The Mexican hat wavelet . 11
2.6 The first algorithm, [RLAR+05]. 12
2.7 The overlap window . 13
2.8 The optimized algorithm. 15

3.1 Dominant power sources for a processor. 28

4.1 An overview of the steps in the conversion process. 32
4.2 The Matlab model structure. 33
4.3 The C code structure. 36
4.4 Special case of an ECG sample. 38
4.5 Memory usage with respect to FACTOR and ECG_FS = 1000. 46
4.6 Memory usage with respect to ECG_FS and FACTOR = 15. 47
4.7 The MIT/BIH test over all thresholds. 49
4.8 The IMEC test over all thresholds. 49
4.9 Noise tests for th=30%. 50
4.10 The sample of an ECG signal used for profiling. 50
4.11 The second beat detected by the sample in Figure 4.10. 51
4.12 The call graph with the focus on the convC function. 53

5.1 An outline of the Chess/Checkers environment. 60

6.1 Processing interval of the processor in a real-time environment. 64
6.2 The BASE processor core architecture. 65
6.3 Instruction pipeline. 66
6.4 ASIP implementation strategy. 68
6.5 Initial instruction-set of the 32-bit processor. 70
6.6 Initial simulation without the MAC unit. 71
6.7 Simulation with the resulting MAC unit. 71
6.8 The new parallel instruction assembly code. 72
6.9 The new parallel instruction. 73
6.10 The new parallel load and MAC instruction. 73
6.11 The new parallel load, equal and select instruction. 74
6.12 The optimized BASE architecture. 76
6.13 Improvement in execution cycles after every optimization step. 76

xv

xvi LIST OF FIGURES

6.14 A memory block from VLC. 77
6.15 The memory wrapper of DM. 78
6.16 The top module. 79
6.17 How the memory blocks were placed on the chip. 80
6.18 How the delay of the circuit varies with different supply voltages. 81
6.19 Results from the netlist simulation with ncsim. 82
6.20 Total average power consumption of the processors. 82
6.21 Average leakage power consumption of the processors. 83
6.22 Average dynamic power consumption of the processors. 83
6.23 Total average power consumption of the processors compared together. 83
6.24 Total average power consumption of the processors. 84

A.1 Illustration of the cwt2 function. 92
A.2 Creation of the modulus maxima matrices. 94
A.3 Modulus maxima above the threshold. 94
A.4 Finding clusters of beats. 95
A.5 Matlab indexing of matrices. 96
A.6 Classification of beats. 97
A.7 The hanning window by definition. 98
A.8 The modified hanning window. 98

B.1 Finding clusters of beats in the prototype. 102
B.2 Finding valid clusters of beats in the prototype. 103

Source code

4.1 Code before optimization . 39
4.2 Code after optimization . 39
4.3 Code consideration of fixed point addition in a loop 41
4.4 Code before fixed point conversion . 41
4.5 Code using solution 1 based on Code Snippet 4.7 41
4.6 Code using solution 2 based on Code Snippet 4.7 42
4.7 Code before fixed point conversion . 42
4.8 Fixed point round operations. 42
4.9 Floating point elimination . 43
4.10 Floating point cosine calculation. 43
4.11 Fixed point cosine calculation. 43
4.12 Calculating the alternative lookup table in Matlab 44
4.13 Optimization of the assignment of _psi_scale.array. 44
4.14 Fixed point cosine calculation. 45
4.15 Global define parameters in global.h. 47
4.16 Pre-processor macro optimization of the abs function in C. 47
4.17 Call graph results from gprof. 52
5.1 AND-rule . 61
5.2 OR-rule . 61
5.3 A basic ALU instruction . 62
6.1 32-bit MAC unit . 71
6.2 32-bit MAC unit after modification. 71
6.3 Direct assignment to CM. 72
6.4 Parallel load instruction. 72
6.5 Parallel load and MAC instruction. 74
6.6 Parallel load, equal and select instruction. 75
6.7 A nop and select instruction. 75
C.1 Matlab code for convolution by the original definition. 105
C.2 C code for convolution by the Matlab definition. 107
D.1 The code before inserting the memory protection. 109
D.2 Memory out of bounds protection . 109

xvii

List of abbreviations

ADC Analogue to Digital Converter

ADL Architecture Description Language

ALU Arithmetic-Logic Unit

ASA Application Specific Architectures

ASIC Application Specific Integrated Circuits

ASIP Application Specific Instruction-set Processor

AV Atrio-Ventricular

CCU Coronary Care Unit

CM Coefficient Memory

CPU Central Processing Unit

CWT Continuous Wavelet Transform

CWTMM Continuous Wavelet Transform Modulus Maxima

DM Data Memory

DPM Dynamic Power Management

DSP Digital Signal Processor

DTSE Data Transfer and Storage Exploration

DVFS Dynamic Voltage and Frequency Scaling

ECG Electrocardiogram

EMG Electromyography

GCC GNU C Compiler

GNU Gnu’s Not Unix

HDL Hardware Description Language

HW/SW Co-design Hardware/Software Co-design

IC Integrated Circuit

xix

xx LIST OF ABBREVIATIONS

IMEC-NL Interuniversity Microelectronics Centre Netherlands

ISA Instruction-Set Architecture

ISP Instruction-Set Processor

ISS Instruction-Set Simulator

MAC Multiply-Accumulate

MSB Most Significant Bit

PC Program Counter

PCU Program Control Unit

PDG Primitives Definition and Generation

PM Program Memory

RAM Random Access Memory

RPM Rounds Per Minute

RTL Register Transfer Level

SA Sino-Atrial

SNR Signal-to-Noise Ratio

SoC System on Chip

SP Stack Pointer

SPEF Standard Parasitic Exchange Format

TCL Tool Command Language

TSMC Taiwan Semiconductor Manufacturing Company Limited

ULP Ultra Low Power

VCD Value Change Dump

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLC Virage Logic Corporation

WSN Wireless Sensor Nodes

Chapter 1

Introduction

Cardiovascular disease is one of the most common cause of death in Western society, [LRW+03].
A Cardiovascular disease refers to the class of diseases that involve the heart or blood vessels
(arteries and veins), [Wik09a] and [MHM+93]. In order to diagnose such diseases, an analysis
of the heart rate is necessary, and the physiologic signal used to determine the heart rate is the
electrocardiogram (ECG). By processing the ECG signal, it is possible to detect heart beats,
and one can also analyze the ECG in order to classify cardiovascular diseases. Therefore, the
algorithm processing the ECG signal must be as accurate as possible. Many approaches have
been proposed for automatic beat detection algorithms, i.e., ECG beat detection using filter
banks [ATNL99], zero-crossing [KHO03], signal derivatives [FN06], digital filters [KKA97],
algorithms from the field of artificial neural networks [BFDVS+98], and algorithms using
wavelet transforms [LZT95], [RLAR+05].

The requirements for an embedded device implementing applications with such algo-
rithms, introduce several challenges that have to be solved. This is specially the case for
ambulatory monitoring. Afonso et al. [ATNL99] points out that the ECG is prone to various
types of noise, and it is important to reduce the noise without distorting the morphology
of the ECG. However, the task is not easy, because the appearance of heartbeats varies
considerably [BFDVS+98]. This variation is not only limited to different patients, but
also appears as the consequences of movement, modifications of electrical characteristics
of the body, etc. For such applications, embedded devices usually need processors with high
performance.

According to Kucukcakar et al. [Kuc99], the use of off-the-shelf processors and memories is
a common way to achieve the best time-to-market and the lowest cost. In addition, it is easy
for designers to find the right processor with average performance and power consumption
for an application. However, if the performance bottlenecks of the application can not be
avoided through software re-organization, then a more complex processor is needed. This
usually means upgrading to a higher performance processor, which most often result in higher
cost and energy consumption. For applications implementing advanced heart beat detectors,
this is usually the case. Instead of upgrading to a higher performance processor, one could
design an Application Specific Architecture (ASA), specialized for the application. ASA refers
to instruction-set processors (ISP), digital signal processors (DSPs) and integrated circuits
(ICs) designed for a specific application. What kind of architecture is needed depends on
the application. The use of an Application Specific Integrated Circuit (ASIC) gives the best
solution for an application. However, if a newer version of the application is designed, then a
complete new ASIC must be made. A more flexible solution is the use of Application Specific
Instruction-set Processors (ASIP).

In embedded systems design today, there is need for high efficiency, as well as low

1

2 CHAPTER 1. INTRODUCTION

power consumption [KAFK+05], [GM01]. In recent years, ASIPs have been popular because
they offer efficiency and short design cycles at the same time. In contrast to off-the-shelf
processor cores, ASIPs show dedicated functional units and machine instructions that speed
up execution of the "hot spots" in a given application [KAFK+05].

In this thesis, an Ultra Low Power (ULP) ASIP will be designed for a biomedical appli-
cation, using an algorithm developed by Romero et al., [RLAR+05]. In this algorithm, the
problem of automatic beat recognition in the ECG is tackled using a mathematical method
called Continuous Wavelet Transform Modulus Maxima (CWTMM), [RLAR+05].

In a simulation environment, this algorithm produced very good results with world-wide
known databases such as the MIT/BIH database. The algorithm has been further optimized
to work in real time for implementation in an ambulatory ECG monitor by the Interuniversity
Microelectronics Centre Netherlands (IMEC-NL), [RLG08a]. IMEC-NL is an independent
micro- and nanoelectronics research center located in Eindhoven, Netherlands. This research
center focuses on next generation electronics research, three to ten years ahead of industrial
needs.

The purpose of this chapter is to provide the reader with the necessary background
information for ASIP design in order to understand the work done in this master thesis.

1.1 The goal of ASIP design
According to [RAP08], an ASIP is a microprocessor specialized for an application. Its
instruction set is designed from scratch or extended from a known microprocessor, in order to
optimize the performance of the application. Application Specific Architectures (ASA) like
ASIPs are able to reach a better cost and performance ratio by exploiting the characteristics
of the application they are dedicated to [DGF90], using design methodologies like hardware/-
software co-design (HW/SW Co-design). The computing power is improved by introducing
special purpose hardware units, exploiting the parallelism available in the application. They
can also be cost effective by saving hardware resources. This is done by only implementing
the resources needed by the application.

The concept of ASIPs is to fill the gap between Application Specific Integrated Circuits
(ASIC) and Digital Signal Processors (DSP), [RAP08]. ASICs are highly efficient, but
they lack the flexibility. On the other hand, DSPs provide software reusability with less
performance and energy efficiency as compared to ASICs, [RAP08].

In general, the design of an ASA is not an easy task, and requires the scanning of the
architectural space to discover the most useful choices which could efficiently support the
applications features. In addition, the development requires complex tools to evaluate and
provide analysis of the ASA development, and hence guide the designer towards correct design
choices.

Power and performance optimization could be applied at the logic level, register transfer
level (RTL), in the ASIP software, and also at system level [GM01]. De Gloria et al. [DGF90]
defines some main requirements for the design of an ASA, and in [JBK01], five general
steps in ASIP synthesis are presented. Different design flows for ASIP design exists, such
as the methodology presented in [Kuc99], and the ASSIST methodology [KJBK04]. Those
methodologies differ from one another on a detailed level. However, they are all similar to
the design flow presented in [JBK01]. The rest of this section will present this design flow.

The application is first provided with its design constraints. In order to design an ASIP, it
is necessary to understand the behavior of the application. The application must be analyzed
statically and dynamically to get the desired characteristics and requirements which can guide
the hardware synthesis as well as instruction-set generation.

1.1. THE GOAL OF ASIP DESIGN 3

The next step is to identify possible architectures that meet the application constraints.
In addition, the performance of possible architectures is estimated, and the architectures
satisfying the performance and power constraints are chosen.

In the third step, the instruction set is generated for that particular application, and for
the architectures selected. This is needed for the synthesis steps. A compiler generator or a
re-targetable code generator is used in the fourth step to synthesize code for the particular
application, or for a set of applications. The re-targetable compiler includes the steps of
instruction mapping, resource allocation, and scheduling of the application.

In the final step, the hardware is synthesized using the ASIP architectural template and
instruction set architecture starting from a description in VHDL or Verilog. Figure 1.1
summarizes the general design flow presented in [JBK01].

Figure 1.1: General ASIP design flow based on the one presented in [JBK01].

All these steps are more or less guidelines for the development of an ASIP. If all time
constraints are fulfilled, then additional optimizations can be introduced to increase power
efficiency. Glokler et al. [GM01] distinguish the energy required to execute a given algorithm
in hardware in three parts; intrinsic energy, routing energy, and overhead energy.

The intrinsic energy refers to the minimum required processing energy to execute a
computational part, i.e., an arithmetic operation. This energy only depends on the operations

4 CHAPTER 1. INTRODUCTION

of an algorithm and the process technology. The energy is constant as long as the algorithm
remains the same.

Routing energy is the energy needed to move data in the chip. For instance, memory
accesses requires energy to transfer the data to local registers. As long as changes to the
architecture have a limited impact on data routing, the routing energy does not change
significantly.

The remaining energy is referred to as the overhead energy, i.e., caused by wasteful logic
activity, control activity, etc. Performance optimization for Instruction-Set Architectures
(ISA) typically also reduce overhead energy due to the decrease of the processor runtime,
because the overhead power remains nearly constant.

The ASIP design flow presented in this section will be used as a guideline for the ASIP
design done in this thesis.

1.2 Motivation and goal of work

The purpose of this project is to develop knowledge and experience on how to design an ASIP
for ultra low power (ULP), and map a specific application into it. In this case the application
is a heart beat detector designed by Romero et al. [RLAR+05], based on the CWTMM. This
application process the ECG signal by analyzing every 2 seconds at a time. In a real-time
environment, every 2 seconds of an ECG signal must be sampled, and buffered before the
signals are processed. The real-time requirement for this application is to finish processing
this 2 second buffer before the next buffer is ready. This gives a processing deadline of 2
seconds.

Before an algorithm can be mapped into a processor one has to go through several design
steps, as presented in Section 1.1. In this case, the algorithm is modeled in Matlab, using
built-in Matlab functions which do not exist in programming languages like C. Therefore, the
first step would be to convert the code into an embedded software. In this thesis the program
language C will be used, because it is a common language used by many processor developers.
In addition, C is supported among various development tools for processor design. During
the conversion, the algorithm must be tested using good test benches, i.e., with test signals
from known databases. In order to increase efficiency, all floating point signals should be
converted into fixed point, and heavy computational parts of the code like square roots and
divisions must be optimized away if possible. By doing so, one can eliminate the need for a
floating point emulator on the processor, in addition to complex logic. This would result in
less power consumption. After the embedded software is optimized, the memory resources
can be determined. This will be done by profiling.

After finishing the software optimizations, the work on an energy efficient processor
architecture will start. Based on the constraints and optimizations made from the embeddable
software application, an ASIP will be designed. This step involves architecture exploration
and mapping of the software application through an iterative process. In this thesis the
development tools from Target will be used. An existing basic processor architecture will be
used as a base, and this architecture will be modified in order to optimize the biomedical
application for ultra low power. The work on this project will include research on how to
design the software and an ASIP for ULP. Design methodologies like hardware/software
co-design (HW/SW Co-design) will also be used.

1.3. OUTLINE 5

1.3 Outline
Previous work associated with the biomedical application is presented in Chapter 2, in order
to understand the given Matlab model. Theory related to the development of energy-efficient
software and hardware is presented in Chapter 3, as well as some hardware and software
optimization techniques that could be applied to reduce the power consumption of a processor.
In the Chapter 4, the analysis of this Matlab model will be presented, including the work
done to convert and optimize the application for an embedded environment. The results
from the profiling and from the databases will be presented and discussed. In Chapter 5,
the development tools used in this project will be introduced, before the work on the ASIP
is presented in Chapter 6. The conclusions of this project is given in Chapter 7, before
presenting future work objectives in Chapter 8.

1.4 Main contributions
· Converted the Matlab model of the algorithm, designed by Romero et al. [RLAR+05],

into a floating point C application.

· Converted the floating point C application to a fixed point application.

· Optimized the application further by using lookup tables, inline functions, reducing
read and write operations to global memories, eliminating divisions with constant values
where it is possible, combining loops, implementing software division for usage outside
the critical loop, implementing a special cosine function using a small lookup table,
insertion of pre-processor macros, and re-usage of variables.

· Reduced the run-time memory usage of the application significantly, to only 150 KB
for an ECG sample frequency of 198 Hz.

· Converted a 16-bit general purpose instruction-set processor into a 32-bit application
specific instruction-set processor (ASIP).

· Designed a customized MAC instruction in the processor.

· Designed parallel custom instructions in the processor, i.e., parallel load and store
instructions, and parallel load, equal/greater than, and select instructions.

· Implemented additional functional units, and divided the data memory of the processor
in two smaller memories, in order to access two data memories within the same clock
cycle, in parallel.

· Added instruction level parallelism with two load and one multiply-accumulate opera-
tion, reducing the main critical loop to one single clock cycle.

· Changed the factor registers of the multiplier unit, such that they could be loaded by
the load operations directly. Similarly was done to the product register of the multiplier,
in order to read from that register directly. Otherwise, the data would have been copied
to other registers before the information could be used.

· Reduced the total execution cycle count by 81%.

· Generated VHDL code for the processor using the development tools from Target
Compiler Technologies.

6 CHAPTER 1. INTRODUCTION

· Synthesized the design, using 90 nm TSMC low power memories, from Virage Logic
Corporation.

· Extracted timing information and power numbers after a place and route step on a
chip, using 90 nm TSMC.

· Reduced the total average power consumption by 55%.

· Suggested future work objectives for further reduction in total average power consump-
tion.

Chapter 2

The cardiac beat detection
algorithm

In order to understand how the application works, and in order to optimize it further for
ultra low power (ULP), it is necessary to have an understanding of the theory behind the
application itself and how the application works. Since the biomedical application is a
heart beat detector, a general introduction of the heart, how it works, and ECG is given
in Section 2.1. The theory related to the continuous wavelet transform is presented in
Section 2.2, before presenting previous work in Section 2.3 and 2.4. Section 2.5 presents
the test databases used in this thesis.

2.1 The heart and ECG

The heart of a human being is a muscle that could be viewed as a pumping machine. It has
four different blood-filled areas called chambers. The two upper chambers, the atria (left
and right atrium), returns the blood from the body and lungs, and the two lower chambers,
the ventricles (left and right ventricle), squirts the blood back to the body and lungs. The
circulation is referred to as the movement of blood through the heart and around the body.
By this circulation, the blood transports important supplies for the body like oxygen and
carbon dioxide. This movement is caused by a pumping action, which is triggered by electric
impulses generated from within the heart. All the information regarded to the basic theory
of the heart and how a heartbeat is created was taken from [HRS] and [Abd], and the reader
is referred there for further detail about the heart.

In order to create a pulse, the heart has a mechanism that generates electrical signals.
These electrical signals goes through the heart, causing the muscle cells to contract. This
mechanism tells the heart when to beat, and it works similarly as a spark plug of an
automobile, where each "spark" travels across a specialized electrical pathway, and stimulates
the muscle wall of the four chambers of the heart to contract in a certain sequence or pattern.
A picture of the electrical system of the heart can be viewed in Figure 2.1. There are mainly
one electrical node that generates those electrical impulses. This node sits in the upper
portion of the right atrium, and is a collection of specialized electrical cells known as the
sinus or sino-atrial (SA) node. The upper chambers, the atria, are first stimulated. Between
the ventricles and the atria, a node known as the atrio-ventricular (AV) node, holds the
electrical impulse for a brief period. This delay allows the right and left atrium to continue
emptying its blood contents into the two ventricles. Therefore, the AV node acts like a "relay
station", re-generating and delaying stimulation of the ventricles long enough to allow the

7

8 CHAPTER 2. THE CARDIAC BEAT DETECTION ALGORITHM

two atria to finish emptying. A structure called the bundle of His emerges from the AV node
and divides into thin, wire-like structures called bundle branches that extend into the right
and left ventricles. The electrical signal travels down the bundle branches to thin filaments
known as Purkinje fibers. These fibers distribute the electrical impulse to the muscles of the
ventricles, causing them to contract and pump blood into the arteries. This whole process is
referred to as a heart beat, and those beats are generated several times per minute.

Figure 2.1: The heart, showing the electrical system of the heart [HRS].

Figure 2.2 shows how the electrical signal is generated, as well as the electrical wave which
can be detected from the surface of the body by an ECG monitor. When the SA node fires a
signal and causes the upper chambers to contract, the wave recorded on an ECG is known as
the P-wave. The delay of the electrical impulse generated when the electrical impulse moves
to the AV node, is recorded as the PQ-segment. When the electrical impulse travels through
the ventricles and stimulates them to contract and pump blood into the body and lungs, it
generates a wave known as the QRS complex. Then, the ventricles recover from this electrical
stimulation and generates the T-wave, which is recorded by the ECG.

Figure 2.2: A demonstration of a heart beat [Abd].

Heart beat detection algorithms usually try to detect the QRS complex, because of its high
amplitude. Figure 2.3 shows how the P,Q,R,S and T waves are displayed on an ECG monitor,
using one standard electrode position. There exist different morphologies (different shapes

2.2. THE WAVELET TRANSFORM 9

and amplitude) of the QRS complex, and Figure 2.4 demonstrates various QRS complexes.

Figure 2.3: P,Q,R,S and T waves on an ECG monitor [RLG08a].

Figure 2.4: Various QRS complex morphologies [RLG08a].

The algorithm developed by Romero et al. [RLAR+05] has a high performance and
is robust against sensible levels of noise or different morphologies of the QRS complex,
according to [RLG08a] and [RLAR+05]. Since this algorithm is based on the continuous
wavelet transform (CWT), the next section will describe the CWT in detail as well as the
modulus maxima and the Mexican hat wavelet (which is used in the CWT as a reference
wavelet), before describing the algorithm in Section 2.3.

2.2 Continuous and discrete wavelet transform, modulus max-
ima and the Mexican hat wavelet

In this section, the theories presented are taken from [Sch05] , [RLAR+05] and [RLG08a].
The wavelet transform of a continuous time signal, x(t), is defined as

T (a, b) = 1√
a

∫ +∞

−∞
x(t)ψ∗(t− b

a
)δt, (2.1)

where ψ∗(t) is the complex conjugate of a wavelet function ψ(t), a is the dilation parameter
of the wavelet (also called the scale), and b is the location parameter of the wavelet.

Certain mathematical criteria has to be satisfied in order to be classified as a wavelet:

10 CHAPTER 2. THE CARDIAC BEAT DETECTION ALGORITHM

1 A wavelet must have a finite energy: E =
∫+∞
−∞ |ψ(t)|2 δt <∞

2 If φ̂(f) is the Fourier transform of ψ(t), i.e., φ̂(f) =
∫+∞
−∞ ψ(t)e−iωtδt, then the following

condition must hold: the admissibility condition.

Cg =
∫ +∞

0

∣∣∣φ̂(ω)
∣∣∣2

ω
δω <∞, (2.2)

where the wavelet has no zero frequency component. Cg is called the admissibility
constant, and the value depends on the chosen wavelet.

3 For complex (or analytic) wavelets, the Fourier transform must both be real and vanish
for negative frequencies.

The contribution to the signal energy at the specific scale a and location b is given by the
two-dimensional wavelet energy density function known as the scalogram:

E(a, b) = |T (a, b)|2 (2.3)

The contribution to the total energy distribution contained within the signal at a specific
scale a is given by the integral of E(a, b) with respect to b. This is known as the wavelet
variance, and can be used to find dominant scales associated with the signals. The total
energy in the signal may be found from its wavelet transform as follows:

E = 1
Cg

∫ +∞

−∞

∫ ∞

0

1
a2 |T (a, b)|2 δaδb (2.4)

The Fourier transform is based on a continuous sinus signal as the reference signal. On the
other hand, the wavelet transform implies, from the conditions above, that the reference signal
(the mother wavelet) has a finite size. In addition, it is possible to use different reference
signals as mother wavelets, i.e., the Mexican hat wavelet. The frequency parameter of the
Fourier transform determines how the sinus signal is stretched over different frequencies, and
in the wavelet transform, the stretching of the mother wavelet is done by changing the dilation
parameter (the scale).

Wavelet modulus maxima is defined as:

δ |T (a, b)|2
δb

= 0, (2.5)

and it is used for locating and characterizing singularities in the signal. The CWT allows
arbitrary high resolution in the time frequency plane, allowing each modulus maxima line to
be followed with certainty across different scales.

The Mexican hat wavelet is used as the mother wavelet (ψ(t) related to Equation 2.1)
in the algorithm developed by Romero et al., and this wavelet is defined as the normalized
(where b = 0 and a, c = 0 in Equation 2.7) negative of the second derivative of the Gaussian
function. The equation is shown in Equation 2.6, and the shape is illustrated in Figure 2.5.

ψ(t) = (1− t2)e
−t2

2 , (2.6)

where the Gaussian function is the following:

f(t) = a e
−(t−b)2

2C2 (2.7)

2.3. THE BEAT DETECTION ALGORITHM 11

Figure 2.5: The Mexican hat wavelet.

Another reason for using the Mexican hat wavelet is that the Mexican hat maxima lines
are guarantied continuous across scales for singularities in the signal. The conversion from
wavelet scale to wavelet frequency is given by:

f = fc
a· � t

, (2.8)

where a is the wavelet scale, fc is a characteristic frequency of the wavelet, �t is the sampling
period (�t = 1

fs , where fs is the sample frequency).
For the Mexican hat wavelet, the characteristic frequency employed is the standard

deviation of the power spectrum, given by fc =
√

5
2

2π ≈ 0,251.

2.3 The beat detection algorithm
The CWT, as described in 2.2, is one of the building blocks in the algorithm developed by
Romero et al. According to [RLAR+05], the QRS complex is part of the ECG signal that
represents the greatest deflection from the baseline of the signal. Within the QRS complex,
the R-wave ideally represents the positive peak. Therefore, many QRS detection algorithms
try to detect the R-peak within the QRS complex. And the use of continuous maxima
lines, from the modulus maxima described in Section 2.2, allows the R-wave to be followed
much more accurately across frequencies in the time-frequency plane. The algorithm which
will shortly be described, does not require pre-filtering, and is robust against interference
signals such as electromyography (EMG) noise or movement artifacts. EMG is a technique
for evaluating and recording the activation signal of muscles, and is performed using an
instrument called an electromyograph, [Wik09b] and [RHY06]. The technique used in this
algorithm could also be used to detect P and T waves within the ECG signal.

The schematic diagram of the algorithm is shown in Figure 2.6, and is described in [RLAR+05]
as follows:

1 The ECG signal is analyzed within a two second window, as longer segments did not
give satisfactory results. First, the CWT is calculated over this two second interval.
It was then proved to work with the best performance when it operates within the
frequency interval of 15-18 Hz. This frequency interval relates to the wavelet scales
domain in Equation 2.8. Right after the computation of the CWT, a mask is applied

12 CHAPTER 2. THE CARDIAC BEAT DETECTION ALGORITHM

ECG (2 seconds)

> Threshold No IGNORE

Yes

QRS

Mask

Compute CWT

Extract Modulus

Maxima

Square

Find further value

from the mean within

0.20 seconds

C
W

T
M

O
D

U
L

U
S

 M
A

X
IM

A
T

IM
E

Find higher

Coefficient within

0.25 seconds

Figure 2.6: The algorithm developed by Romero et al., [RLAR+05].

to remove edge components of the result, which is set to be four times scale a of the
wavelet. This mask has been found through trial and error.

2 In the second step, the modulus maxima of the CWT are extracted. The square of
the the modulus is taken in order to emphasize the differences between coefficients. In
addition, the maxima lines below a chosen threshold are ignored. The best threshold
was found to be 30%.

3 The result from the previous step are taken to be possible R wave peaks. In order
to separate the different peaks from each other, all modulus maxima points within an
interval of 0.25 seconds of each other are analyzed in turn as search intervals. In every
search interval, the point with the maximum coefficient value is selected as the R wave
peak. The assumption in this step is that all the coefficients within each search interval
of 0.25 seconds are due to the same QRS complex. Therefore, only the maximum point
is chosen.

4 Finally, the algorithm finds the exact location of the peak in time-domain, based on the
results from previous step. This is done by calculating the mean value of 0.10 seconds
before and after the point detected in the wavelet domain. Then the point within the
same interval of 0.2 seconds is located, where the signal is furthest from the mean. This
step is necessary, because the modulus maxima line does not necessarily point to the
exact location of the R wave peak in time domain.

2.4. OPTIMIZATION OF THE ALGORITHM 13

This algorithm was tested for both positive and negative QRS complexes. In addition, the
algorithm could cope with significant signal noise. Two comprehensive databases were used
to test this algorithm. The MIT/BIH database and an in-house database recorded by Romero
et al. within the Coronary Care Unit (CCU) at the Royal Infirmary of Edinburgh. How the
sensitivity and the positive predictivity are calculated, as well as a description of the databases
used in this thesis are given in Section 2.5. The results from the MIT/BIH database showed
that the algorithm had a sensitivity 99.7% and a positive predictivity of 99.68%. The in-house
database from the CCU resulted in 99.53% and 99.73%, respectively. However, these results
were achieved from tests based on recordings done in hospitals. According to Romero et
al. [RLG08a], the levels of noise and artefacts are therefore significantly lower than the levels
recorded during ambulatory monitoring. For this reason, the algorithm is further optimized
following the scheme as described above, but taking into account that the final application
will be an ambulatory device. During the optimization of the algorithm, some changes were
introduced, as described in [RLG08a]. These changes are presented in the next section.

2.4 Optimization of the algorithm
In [RLAR+05], the time window of input data to the algorithm is two seconds. During the
implementation mentioned in [RLG08a], some preliminary tests resulted in some changes. It
was determined that using windows of three seconds, and shifting the windows two seconds
gave better results. In this case, the shifting would give a 0.5 second overlap with the previous
window and again 0.5 second overlap with the next window. In order to avoid mismatches
in the overlap sections, the detection in the first 0.5 seconds and the last 0.5 seconds within
the window are ignored. Figure 2.7 illustrates this clearly. This was done in order to avoid
boundary effects in the CWT computation. The optimization was mainly done in order to

0 1 2 3 4 5 6
Time / s

Figure 2.7: Illustration of the overlap solution of the input to the algorithm, [RLG08a].

improve robustness to noise which is encountered under ambulatory monitoring conditions.
This resulted in four optimizations of the original algorithm.

The first optimization was done in order to achieve better refinement in time domain,
when searching for a specific point within the QRS complex. In theory, the general idea was
to search around the detected beat to the nearest maximum. However, the unfiltered signal
in time domain contains the full range of noise and artifacts. Five possible solutions were
proposed in [RLG08a] to improve this issue. The chosen optimal solution was to search for the
absolute maximum, and chose peaks close to the detected beat. This is done by multiplying
the signal within the search interval with a Hanning window, given by Equation 2.9, [Wik08]
and [CL93].

ω(n) = 0.5 (1− cos(2πn
N − 1)), (2.9)

where N is the total length of the signal and n is an integer with values from 0 to N−1. With
this solution, the algorithm is able to detect the right peak, even if the negative component
of the QRS complex is bigger than the positive peak. If a person suffers from premature

14 CHAPTER 2. THE CARDIAC BEAT DETECTION ALGORITHM

ventricular contractions, the QRS complex might have opposite polarization. This is tackled
well by the chosen solution.

The second optimization to the algorithm was done in the calculation of the threshold.
Since the modulus maxima relates the peak detection to the maximum value within a search
interval, it would be very sensitive to peaks in the CWT domain. From diseases or noise,
peaks can occur easily. Therefore, a more robust threshold detection is desired. In [RLG08a],
this is done by running average threshold, where the new threshold is partly determined as
a percentage of the current maximum and partly on previous thresholds. This is identical
to implementing a threshold feedback to the algorithm, in order to adjust the threshold.
From [RLG08a], the formula for the threshold is given in Equation 2.10.

T = (1− μ)Told + μTnew, (2.10)

where Tnew is defined as

Tnew = Cargmax
w,s

|ws| (2.11)

Here, μ represents the "forget rate", a value which could, according to Romero et al. [RLG08a],
be equal to the constant 1/8 or 1/4. The vector ws represents the wavelet coefficients on a
chosen scale s, and C is a constant fraction that relates the absolute maximum coefficient
value to a threshold value. Told is the previous threshold value. Different values for μ was
tested in [RLG08a], and resulted in a trade-off between two considerations. For high values of
μ, the algorithm is sensitive to impulsive noise, and too low values of μ will lead to smearing
of artifacts over a long period of time. Based on these considerations, the value of μ was
decided to be 0.5.

The third optimization was the removal of the squaring of the modulus maxima of the
CWT. The squaring turned out not to give any actual improvements in the signals tested.

According to Romero et al. [RLG08a], if the threshold is exceeded in one scale in the
initial algorithm, then this beat will be analyzed further, and there is only one threshold for
all scales (see Equation 2.11). This solution will increase the probability of false detections if
the number of scales is increased. The solution to this problem was to require the threshold
to be exceeded in at least N out of K scales. In addition, the threshold is determined
individually in each scale, giving a new equation for calculating Tnew. This is given in
Equation 2.12, [RLG08a].

T (s)new = Cargmax
w
|ws| (2.12)

The implementation of this new threshold is described as follows (from [RLG08a]):

1 From all detected beats in all scales, clusters of beats are defined. This is done by
clustering all beats within a 0.02 second time frame.

2 For each cluster, it is verified whether or not the beats have been detected in N out of
K scales. If not, then the cluster is not analyzed any further.

From the conditions, the best results were given with N = 2 and K = 4, at a threshold of
30%.

The testing of this optimized algorithm resulted in a sensitivity of 99.68% and a positive
predictivity of 99.75% on the MIT/BIH database. The results from the database created by
IMEC-NL gave a sensitivity and a positive predictivity over 99.5% in most of the signals.
The noise tests from the IMEC database gave satisfactory results for SNRs from 0 dB and
above. Romero et al. [RLG08a] concluded from the noise tests that a key system requirement

2.5. THE TEST DATABASES 15

for robust ECG beat detection is that monitoring hardware (mainly the amplification and
signal conditioning stages of the system) shall provide a signal characterized by a SNR of 0
dB or above. As long as this condition is met, the optimized algorithm would achieve reliable
beat detection.

The updated schematic diagram of the algorithm after the optimizations is shown in
Figure 2.8.

ECG 3 seconds

Compute CWT

Remove offset

Extract Modulus

Maxima

> Threshold
(over several

scales)

No IGNORE

Yes

Find higher coefficient within 0.25

seconds

Find peak within 0.20

seconds

QRS

Figure 2.8: The algorithm after the optimization done in [RLG08a].

2.5 The test databases
In this section, the test databases used for the validation of the application in this project are
described. The databases used are the MIT/BIH database and a recorded database done by
IMEC-NL. Section 2.5.1 describes the MIT/BIH database, and in Section 2.5.2, the database
recorded by IMEC-NL is presented.

2.5.1 The MIT/BIH database

One of the most common databases used for testing beat detection algorithms is the MIT/BIH
database. According to Goldberger et al. [GAG+13] and Romero et al. [RLG08a], the
MIT/BIH database contains recordings of ECG signals done in laboratories at Boston’s Beth

16 CHAPTER 2. THE CARDIAC BEAT DETECTION ALGORITHM

Israel Hospital with the support from MIT since 1975. These recordings include several
datasets for different test purposes, e.g., the Arrhythmia database which is among the
test signals used in this thesis. As mentioned in [GAG+13] and [RLG08a], the MIT/BIH
Arrhythmia Database contains several half-hour excepts of two-channel ambulatory ECG
recordings, obtained from 47 subjects studied by the BIH Arrhythmia Laboratory between
1975 and 1979. 23 recordings were chosen at random from a set of 4000 24-hour ambulatory
ECG recordings collected from patients at Boston’s Beth Israel Hospital. 25 other signals
were selected to include a variety of clinically relevant phenomena. All signals are numbered
and the signals from the ambulatory recordings are labeled with numbers below 125, while
the rest of the signals are labeled with the number 200 and higher. All signals used from
this database are listed in Table 2.1. All signals have been digitalized at 360 Hz. For more
information about the database, the reader is referred to [pyn], where the database is publicly
available.

MIT/BIH
database

100 202
101 203
102 205
103 208
104 209
105 210
106 212
107 213
118 214
119 215
200 217
201 219

Table 2.1: Chosen signals from the MIT/BIH database.

2.5.2 The database recorded by IMEC-NL

IMEC-NL also recorded a set of ECG signals in order to test the algorithm under different
levels of activity that produce noise and motion artifacts. The database consisted of record-
ings from ten volunteers, with three levels of activity; low, medium and high level of activity.
The low level consisted of work, sitting at a desk, the medium level was performed by riding
a static bike at 70 RPM and 100 Watts. The high level of activity was recorded by running
on a treadmill at 7.5 Km/h. For these recordings, a belt and a textile patch was used. The
number of recordings used in each case of activity are listed in Table 2.2. These signals were
sampled with 198 samples per second.

Belt Textile Patch
Work 10 10
Bike 10 4
Run 8 3

Table 2.2: Number of recordings in the IMEC ECG database, [RLG08a].

2.5. THE TEST DATABASES 17

In addition, signal 100 from the MIT/BIH database was selected as the base signal for
the noise test. It has a clean ECG signal, and noise was added gradually to that signal for
different SNRs, from 10 dB to -10 dB (in steps of one). This test is similar to the MIT-BIH
Noise Stress Test Database, which could also be found in [pyn].

In order to test accuracy, an exact peak test was also created. This test contained three
ECG signals, with two different sampling frequencies (198 Hz and 1000 Hz). The output
from this test is the percentage of correctly detected beats at its peak, the average distance
from the accurate beat, standard deviation from the average distance, and total number of
beats which was wrongly detected.

The MIT/BIH and IMEC databases were embedded in a Matlab script using Matlab
binaries. Usually, the parameters used to compare beat detection algorithms are sensitivity
and positive predictivity of the result for each test signal. The sensitivity is defined as shown
in Equation 2.13.

Se = TP

TP + FN
, (2.13)

where TP stands for true positives (correctly detected beats), and FN stands for false
negatives (missed beats).

The positive predictivity is shown in Equation 2.14.

+P = TP

TP + FP
, (2.14)

where FP are false positives (wrongly detected beats). All database signals are annotated,
compared to the result of the algorithm. A beat is in this case defined to be correctly
detected if there is an annotated beat within a certain time window around the detected
beat. This time window is set to be +/- 100 ms. These values are percentages in the range
between 0% and 100%. An ideal algorithm would maximize these two parameters. Therefore
the sensitivity and positive predictivity are summed together in a unique parameter to be
maximized (Se + +P), where the range is from 0% to 200%. The results of the evaluation
tests are stored in a text file produced by the matlab script.

Chapter 3

Energy-efficient software and
hardware development

This chapter will provide some background theory related to energy-efficient software and
hardware development in embedded systems.

In recent years, power consumption has been an important topic in embedded systems
design. According to Russell et al. [RJ98], the power consumption places requirements on
heat dissipation, which directly affect unit cost. Furthermore, in portable systems, the
minimization of energy consumption, and the time integral of power, is critical to extending
battery lifetime.

Since battery power density is increasing only at a rate of approximately 5% per year, any
significant extension of battery lifetime must come from a thorough improvement of energy
efficiency for each power-hungry component in a system, [CHC06].

Ultra low power or energy-efficient design refers to, in this thesis, the minimization/re-
duction of power and/or energy dissipation in the design, resulting in an optimal solution for
a specific application.

An electronic system usually consist of a hardware platform, executing system, and a
software application. In energy-efficient design, the reduction of power dissipation must be
done in all parts of the design. Three major constituents consuming significant energy in
hardware platforms are mentioned in [BDM00]. These are computational units, commu-
nication units, and storage units. The choices for software implementation also affect the
energy consumption in those hardware components. Compilation of the software affects
the instructions used by computing elements. Moreover, software storage and data accesses
in memory affect energy balance, and data representation (i.e., special variables, encoding)
affects power dissipation of communication resources (e.g., buses). Tackling power dissipation
in every design stage is therefore important since both software and hardware platforms affect
the power consumption.

In Chapter 4 and 6, several design techniques are used to optimize both the software
application and the hardware platform, in order to achieve lower power consumption. In
Section 3.1 and 3.2, the focus will be on presenting software and hardware design techniques,
where some of them are used in this thesis. These techniques are described in [BDM00], and
are only summarized here. In addition, some power management techniques will be presented
in Section 3.3. Since floating point to fixed point conversion is used in Chapter 4, the theory
behind fixed point conversion is given in Section 3.4. A general introduction to profiling and
tools used to extract profiling information is given in Section 3.5. Section 3.6 presents an
energy model used to calculate the average power consumption of a system. This model is
based on the model presented in [RJ98] and [DNYB+07].

19

20 CHAPTER 3. ENERGY-EFFICIENT SW AND HW DEVELOPMENT

3.1 Software code optimization techniques

Application software is typically written in high level programming languages (e.g., C, C++,
Java) and then compiled into machine code for specific instruction-set micro-architectures.

Metrics for power consumption are the energy required by a program to perform a batch
(one-time) job, in addition to average power consumption for interactive applications.

It is the execution and storage of software that requires energy consumption by the
underlying hardware. Performing operations on hardware, as well as reading and writing
data to memory, corresponds to the software execution. The software execution therefore
involves power dissipation for computation, storage, and communication.

The energy budget for storing programs is typically small (with the choice of appropriate
components) and predictable at design time. It is important to remember that reducing the
size of programs, which is the usual goal in compilation, correlates with reducing their energy
storage costs. Additional reduction of code size can be achieved by means of compression
techniques, described in [BDM00].

It is often the case that programs that properly emulate the system functionality display
poor performance and/or low energy efficiency. Therefore, such programs need to be re-
written. The difficulty comes from the fact that procedural languages allow designers to
represent functions in many different ways, and software programs are sometimes written (or
ported) without the knowledge of the target processor or of its specifications.

The use of complex operations such as square roots, exponential functions, and divisions
usually rely on a floating point unit in hardware, and floating point variables in software. Op-
timizing away such functions with the use of lookup tables, code simplification and alternative
implementations result in a more energy-efficient software. In the rest of this section, some
techniques for code optimization are briefly described. Several other optimization techniques
are described in [BDM00].

Usage of lookup tables

If a complex function could be pre-calculated and stored in a lookup table, the computational
energy would be reduced to only memory accesses. Even though memory accesses are
expensive, by generating a lookup table, some complex operations could be removed and
thus save the requirement for floating point hardware units on a processor.

Variable types

Usually, the most energy-efficient variable type in processors are their native datatype of
the datapath. Some compilers by default use 32 bits in each assignment, so when either
16-bit or 8-bit variables are used, sign or zero extension is needed, costing at most two extra
instructions as compared to their native datatype. Some architectures, like the x86 intel
architecture, support multiple datatypes. However, most DSPs and ASIPs do not have that
support for various reasons, i.e., power, area, etc.

Floating point to fixed point conversion

A widely known optimization technique is floating point to fixed point conversion. This
optimization involves the process of eliminating all floating point variables by the cost of loss
in accuracy. The theory behind fixed point conversion and fixed point numbers is described
in Section 3.4.

3.1. SOFTWARE CODE OPTIMIZATION TECHNIQUES 21

Register allocation

If global control variables are used, it is beneficial to make them local instead so that they
can be assigned to registers instead of placing them in memory. This saves load and store
operations, and allows the compiler to generate more efficient loops in terms of cycle counts
and memory accesses.

Conditional execution

Conditionalizing in a processor is usually done in two steps. First a few compare instructions
set the compare codes. These instructions are then followed by the standard instructions
with their flag fields set, so that their execution proceeds only if the preset condition is true.
A more energy-efficient way to check if a variable is within some range is to use the ability
of the compiler to conditionalize the arithmetic function.

Function design

By far the largest savings are possible with good function design, according to Benini et
al. [BDM00]. In a processor, function arguments are usually placed on the stack, but when
there are fewer arguments than the function overhead of the processor, they can be placed in
registers instead. Upon return from a function, structures can be passed through registers to
the caller. When the return from one function calls another, the compiler can convert that
call to branch to another function.

Re-usage of variables

If an array or variable is only used during a part of the execution, the re-use of the memory
for other purposes would reduce the memory footprint.

Loop elimination

If some loops could be combined, the execution time of the application could be optimized
further by saving unnecessary loop iterations.

Memory optimization

Memory performance and power are now the key challenges in system design. Since a simple
algorithm may require large storage, the efficiency of realization can not simply be related to
computational energy. This is especially the case when the energy cost of storage and data
transfer is significant. Lack of locality in a highly sequential control flow implies that results
computed very early are needed much later in time. Data variables that have a long lifetime,
would increase the storage requirements.

According to Lidsky et al. [LR94] and Catthoor et al. [CDGS98], memory power and access
time usually dominate total power and performance for computations with large storage
requirements in simple memories like the flat memory. The memory could in these cases
become the main bottleneck for the application.

One obvious solution to the memory bottleneck problem is to reduce the storage re-
quirements of the target applications. During algorithmic design, the principle of temporal
locality [EM89] can be very helpful in reducing memory requirements. If the value of an array
element, stored in memory, is accumulated inside a loop, then a temporary local variable could
be applied in order to reduce memory accesses in the loop. The array element could then be
updated by the temporary variable after the loop.

22 CHAPTER 3. ENERGY-EFFICIENT SW AND HW DEVELOPMENT

Other memory-reduction techniques strive to find efficient data representations that re-
duce the amount of inessential information stored in memory. Data compression is probably
the best-known example of this approach. Unfortunately, storage reduction techniques can-
not completely remove memory bottlenecks because they also try to optimize power and
performance indirectly by reducing memory size.

3.2 Hardware optimization techniques
Three main limitations for processors, in an energy-efficient viewpoint, are described in [BDM00].
First, they have an intrinsic power overhead for instruction fetch and decoding, which is not
a major issue for computation units with hardwired control. Second, they tend to perform
computations as a sequence of instruction executions, and cannot take full advantage of
algorithmic parallelism. Finally, they can perform only a limited number of elementary
operations, as specified by their instruction-set architecture (ISA). Therefore, they must
reduce any complex computation to a sequence of elementary operations. These limitations do
not only increase power consumption, but they also decrease performance. The optimization
of all complex computations in the software application is vital in this case.

When designing a processor for a specific application, it is possible to obtain a highly
optimized specialized processor if energy (and performance) optimizations are made based
on the knowledge of the target application. According to Goossens et al. [GVPL+97], this
observation has lead to the development of a number of techniques for application-specific
instruction-set processor (ASIP) synthesis.

The rest of this section will briefly summarize some hardware optimization techniques
described in [BDM00].

Insertion of application-specific units

By inserting application-specific units, power efficiency could be achieved at the price of
reduced flexibility. Typically, the design starts from an initial specification that is executable
and given in a high-level language, with constraints on performance, power, and area. The
outcome is a circuit that can perform only the specified function.

Exploiting profiling information

Profiling information could be exploited to tailor a parameterized super scalar processor
architecture to a single application. Parameters such as number and type of functional
units and register file size can be explored and optimized. The optimization loop is based
on iterative simulation of a microarchitecture model under the expected workload. In the
profiling reports, the critical parts of the code are identified, and hence the designer could
find the corresponding critical part in the assembly code of the application. By studying the
different instructions performed, it is possible to optimize the critical parts, e.g., by combining
some instructions together in order to reduce the cycle count. Alternatively, one could create
new custom instructions. It is worth noting that the software can be optimized by hardware
profiling, since hardware profiling usually give a more useful information, i.e. execution cycle
counts. It is also possible to do software profiling, but the information achieved is usually
related to the number of function calls, cache hits and misses, etc. Some software profiling
tools are presented in Section 3.5.

A linear relationship between power and frequency is shown in [RJ98] for the behavior
of power consumption versus frequency for a few representative instructions of a processor.

3.2. HARDWARE OPTIMIZATION TECHNIQUES 23

Russel et al. [RJ98] conclude that, for the general class of embedded systems, the energy
consumption would be minimized by minimizing the software execution time.

Instruction subsetting

Reducing instruction decoding and micro-architectural complexity by reducing the number
of instructions supported by an ASIP, is done by instruction subsetting. The basic procedure
for instruction subsetting, proposed by Dougherty et al. [DPT98], can be summarized as
follows: The target application is first compiled for a complete ISA, then the executable code
is profiled. Instructions that are never used or instructions that can be substituted by others
with a small performance impact are dropped from the application-specific ISA. Then, the
processor with a reduced ISA is synthesized.

Custom instructions

Specialized instructions are often proposed as a power and performance enhancement tech-
nique. The basic idea is to provide a few specialized instructions and the required archi-
tectural supports that allow the processor to execute very efficiently under some specific
workload. Domain-specific instructions can reduce power and increase performance when the
processor is executing data-dominated applications. Examples of such instructions are sub-
word parallel instructions [IY98], special addressing modes [KI97], and multiply-accumulate
instructions [LR02].

Pipelining and parallel instructions

By exploiting the pipeline stages of the processor, one could reduce the cycle count of the
application by combining two or more instructions in the critical loop, to run within the same
clock cycle. For instance, if two memory loads are done after each other, one could initially
store the data of the load operations in two different memories. Extra functional units could
then be applied in order to perform these load operations in parallel. If those load operations
are done before, e.g., a multiply operation, then they could be combined by creating a custom
instruction that does these operations in different steps of the pipeline. However, the clock
cycle would be longer, making the processor slower. In most cases, this trade-off usually pays
off on power efficiency, because making the processor slower reduces the power consumption,
according to Russel et al. [RJ98].

Memory optimization

Some memory optimization techniques are discussed in [BDM00], where synergistic memory
and computation optimization is concluded as the technique that gives the best memory
optimization results. This technique consist of synergistically optimizing the structure of a
computation and the memory architecture that supports it.

A methodology called data transfer and storage exploration (DTSE), developed by Catthoor
et al. [CDGS98], [CFW+94], is based upon the fact that in data-dominated applications, the
power consumption related to memory transfer and storage dominates the overall system
power. This methodology consists of optimizing the memory in every step of the design
flow. The main purpose of that methodology is to provide a specification that is very energy
efficient, when synthesized into silicon.

24 CHAPTER 3. ENERGY-EFFICIENT SW AND HW DEVELOPMENT

3.3 Power management techniques

The total power in system on chip (SoC) design consist of dynamic power and static power [KFA+07].
Dynamic power is the power consumed when the device is active, while static power is the
power consumed when the device is powered up and idle. In CMOS devices, the primary
source of dynamic power consumption is switching power, which is the power required to
charge and discharge the output capacitance on a gate. The static power is mainly due to
leakage.

In the following subsections, a methodology called dynamic power management (DPM) is
described and some circuit-level power management techniques are briefly presented. These
management techniques contribute to lower the dynamic and leakage power of the system.

3.3.1 Dynamic power management (DPM)

Dynamic power management (DPM) refers to a selective, shut-off or slow-down of system
components that are idle or underutilized [Ped02]. DPM has proven to be a particularly
effective technique for reducing power dissipation in portable electronic systems. It is how-
ever a difficult process that may require many design iterations and careful debugging and
validation.

For DPM, it is required that the system has at least two power states, ACTIVE and
STANDBY. In the ACTIVE state, the system runs normally. When the system is in the
STANDBY state, it does not perform any useful computation or service. Events or interrupts
are used to wake the system up from STANDBY to ACTIVE state. Since the ACTIVE state
typically consumes much more power than the STANDBY state, putting components of a
system in different power states, could save power.

Pedram et al. [Ped02] presents several techniques for system-level power management,
based on DPM.

3.3.2 Component-level power management

Component-level management techniques can be divided in two categories: dynamic power
minimization techniques, and leakage power minimization techniques. This section will briefly
present some of those techniques that could be applied in order to reduce the dynamic and
leakage power of an embedded system.

Dynamic power minimization

Dynamic power is consumed every time the output of a transistor gate is changed, and by
using Equation 3.1, its average value can be computed.

P = 1
2CV

2fα , (3.1)

where C is the capacitive load of the gate, V is the voltage supply, f is the clock frequency,
and α is the switching activity. In order to reduce the dynamic power, any of the parameters
in Equation 3.1 may be reduced.

In [Ped02], some techniques that reduces the dynamic power are described. Among them
are clock gating, and dynamic voltage and frequency scaling (DVFS).

Clock gating involves disabling the clock of a system component whenever its output
values are not used.

3.4. CONVERTING FLOATING POINT TO FIXED POINT 25

In DVFS the key idea is to vary the voltage supply and the clock frequency of the system
to provide only the necessary circuit speed to process the workload while meeting the total
computation time and/or throughput constraints, and thereby reduce the energy dissipation.

If the delay related to the change of the voltage supply is known, in addition to the voltage,
and frequency, then it is possible to estimate the power ratio, Pwithout_DV FS/Pwith_DV FS ,
that could be reduced in the power consumption by applying DVFS, assuming that the other
parameters in Equation 3.1 are constant.

Leakage power minimization

Leakage power dissipation grows with every generation of CMOS process technology [KFA+07].
In current CMOS technologies, the cause of leakage power is due to the leakage current that
appears in transistors, independent of switching activities.

To reduce overall leakage power of an embedded system, it is desirable to shut down
components that are not being used. Power gating is a technique that uses two power modes;
low power mode and active mode. When the system does not use a specific component, it
switches the component from the active mode to a low power mode. The leakage power could
then be neglected when the processor is in low power mode. The only leakage present would
come from the switch transistor of the power gating. More information about power gating,
and a description of other techniques that reduce leakage power, can be found in [Ped02].

3.4 Converting floating point to fixed point
For embedded systems, the use of floating point hardware is usually not preferred, because it
increases power consumption and complexity. Using a fixed point version of the algorithm is
more attractive, in order to satisfy the cost and power consumption constraints of embedded
systems, [CC99] and [MCCS02]. There is always a trade-off between power efficiency and
accuracy. Designers often have to consider if a little loss of accuracy is worth the reduction
in power consumption.

According to [Obe07], a significant improvement in execution speed could be observed
with the use of fixed point conversion. However, this speed improvement comes at the cost
of reduced range and accuracy of the algorithms variables.

The idea behind fixed point conversion is to represent all floating point variables as
numbers encoded as integer values, with minimum loss of accuracy.

A floating point number could be represented as shown in Equation 3.2.

f = g· 2n, −1 ≤ g < 1, (3.2)

where f is the floating point value represented by g, multiplied by 2 in the power of n. In
this case, n represents the number of bits needed to represent the range of the integer part
of the number. This could be found by counting how many bits one has to shift f in order
to put the most significant bit (MSB) of f in the first fractional position. [Obe07] presents
the Q-point notion for a fixed-point number. This notation is shown in Equation 3.3

Q[QI].[QF], (3.3)

where QI represents the number of integer bits, and QF represents the number of fractional
bits, which is used to represent the floating point number. For instance, Q3.5 would represent
a 8-bit number with 3 bits to represent the integer part and 5 bits to represent the fractional
part. If this number is signed, then only 2 of the QI bits are used to represent the number.

26 CHAPTER 3. ENERGY-EFFICIENT SW AND HW DEVELOPMENT

The integer range of a floating point variable in an algorithm determines the number of bits
required to represent the integer portion of the number. If the value is unsigned, according
to Equation 3.2, n equals to 3 because the Q3.5 value must only be shifted three times to the
right in order to place the MSB in the first fractional point. However, if the value is signed,
then n would be equal to 2.

For instance, if a 16-bit signed integer number is used to represent a floating point number
g, where −1 ≤ g ≤ 1, then the fixed point representation is

i = g· 216−1, (3.4)

where g is taken from Equation 3.2, and i is the fixed point representation, shifted 15 times
to the left. It is only shifted 15 times because the MSB bit of the 16-bit integer value is
reserved as a sign bit. From Equation 3.2 and 3.4, the fixed point 16-bit integer could be
calculated using Equation 3.5.

i = f · 2−n · 215 = f · 215−n, (3.5)

where n is the number of bits needed to represent the integer part of the number. QI is in
this case n+ 1 because n bits are used for the integer range, and a sign bit is added using 2’s
complement notation. This leaves 15− n bits for the fractional (QF) range.

The range of the integer and fractional parts are discussed in [Obe07], and the full range
of the fixed-point number was found to be as shown in Equation 3.6.

−2QI−1 ≤ α ≤ (2QI−1 − 2−QF), (3.6)

where α is the range of a signed fixed-point number (the signed bit is included in QI). The
resolution of this number is given by Equation 3.7.

ε = 1
2QF

, (3.7)

where ε is the resolution of the fixed-point variable. From this equation, the required number
of bits for a given resolution could be found by calculating QF from Equation 3.8.

QF = ceiling(log2(1
ε

)) (3.8)

When working with mathematical operations using fixed point numbers, one has to be careful
not to forget the number of bits the numbers are shifted at all times. When an addition
operation is performed between two numbers, the number of bits needed to represent the
answer and handle overflows is determined by the QI of the largest number and a possible
carry bit. If a multiplication is performed, then the number of bits in the answer is the sum
of the number of bits of the operands. This means if two 8-bit numbers are multiplied, then
the result requires 16-bit. The 16-bit result could then be scaled back to 8-bit.

When an addition is performed in a loop, then ceil(log_2(N)) number of extra bits are
needed in the resulting answer in order to handle overflows from possible carry bits. This
could be easily seen by splitting up a loop of additions and assume one carry is achieved from
each sub-addition.

One should also note that the property shown in Equation 3.9 holds for multiplications
and not for additions.

s· (c << b)⇐⇒ (s· c) << b, (3.9)

3.5. PROFILING 27

3.5 Profiling
Profiling is a method of gathering performance data at the execution phase of an applica-
tion, [Bra]. For performance measurement, there exist different metrics, i.e., CPU time per
routine, number of times a function executes, cache hits and misses, etc. The most known
profiler for C and C++ development is the open source profiler gprof, using the GNU compiler.
The output of this profiler is a file containing two tables, a call graph and the flat profile.
The call graph shows for each function, how many times it was called, how many times it
called other functions, and which functions it was called from. The flat profile on the other
hand contains information on how many cycles the processor spent in each function of the
program, and how many times each function was called.

There are two ways of analyzing code through profiling, static and dynamic. In static
profiling, the code is analyzed without executing the program. Dynamic profiling is done while
executing the program, and by doing so, one could derive runtime performance information
of the program. Since the results are depending on the input signals, one could risk the fact
that the input signal used during profiling did not give the worst case information.

Valgrind is another well known tool where one could get memory usage information,
cache usage and other useful information. It uses a graphical representation of data, which
is useful for identifying the most used functions. This tool could be used together with a
graphical tool called kcachegrind in order to graphically present the profiling results. Valgrind
is known for being the most complete profiling tool under UNIX, with several sub-tools such
as Memcheck, and Callgrind. Memcheck provides information about the memory usage like
uninitialized memory, reading or writing to memory, memory leaks and mismatched use of
memory allocations. Callgrind performs detailed simulation of the I1, D1 and L2 caches in
the CPU, and can accurately pinpoint the sources of cache misses in the code. In addition,
it produces call graph information which could be viewed graphically using kcachegrind.

3.6 The energy model
In this section, the energy model used to estimate the power consumption of the processor
designed in Chapter 6 is presented.

According to Russel et al. [RJ98], the energy, E, consumed by a processor running a
program is

E =
∫ t0+T

t0
P (t)dt, (3.10)

where T is the software execution time, and P (t) is the instantaneous power. Average power,
Pave, is defined as

Pave = 1
T

∫ t0+T

t0
P (t)dt (3.11)

By combining Equation 3.10 and 3.11, the energy can be written as

E = T ·Pave (3.12)

The instantaneous power mainly consist of dynamic power, and leakage power, as described
in Section 3.3. The dynamic power can be split in two parts, active power, and idle power.
The active power is consumed when the processor is in an active state, processing the set of
input samples received. After the processor is finished with the processing of data, it goes to

28 CHAPTER 3. ENERGY-EFFICIENT SW AND HW DEVELOPMENT

an idle state, where it waits for new input samples to arrive (when it is clocked). Therefore,
the power, P (t), mainly consist of those three power sources, as shown in Equation 3.13.

P (t) = Pactive(t) + Pidle(t) + Pleak(t) , (3.13)
where Pactive is the active power, Pidle is the idle power, and Pleak is the leakage power.

As Figure 3.1 illustrates, the processor is usually idle until it receives the input samples.
While the processor is processing the information, it uses more power, as indicated by the
active power. As soon as the processor is finished with processing the data, it waits for the
next set of input samples by going to the idle state. The average time in which the processor
consumes the active power is indicated by Tactive in the figure. The idle time, Tidle is the
average time that the processor waits until the next set of samples arrive. The sample time,
Tsample, is defined to be the average time period in which a set of input samples are received,
until the next set of input samples arrive.

Figure 3.1: Dominant power sources for a processor.

The total average power, according to De Nil et al. [DNYB+07], is calculated by Equa-
tion 3.14.

Pave = Pave_leak + 1
Tsample

(Pactive ·Tactive + Pidle ·Tidle) , (3.14)

where Pave_leak is the average leakage power calculated by Equation 3.11, Pactive is the total
active power, and Pidle is the total idle power.

In order to estimate the software energy, there exist a more convenient way of calculating
the average power. The total time, T , is related to N , the total number of execution cycles,
and τ , the clock period, by T = Nτ . The average power, Pave , is the sum of the average
power during each clock period, Pτ,ave(i), where i = 1...N . This is given by Equation 3.15.

Pave = 1
N

N∑
i=1

Pτ,ave(i) (3.15)

The value Pτ,ave(i) is the average power consumed during one cycle of the instruction. As
described in [RJ98], each Pτ,ave(i) is dependent on the present and past states of the processor,
and thus measuring an instruction in isolation is a biased estimate of the power consumed
by an instruction in a typical application.

3.6. THE ENERGY MODEL 29

Execution time depends significantly on runtime conditions such as cache misses, data
dependent pipeline stalls, and operand dependent instruction execution times. Several accu-
rate ways to measure execution time are also mentioned in [RJ98]: cycle accurate simulation,
instrumentation of the actual system, or software based timers inside the processor. The
instruction-set simulator (ISS) used in Chapter 6, simulates the ASIP through cycle accurate
simulation.

If clock gating, as described in Section 3.3, is applied, then it is possible to neglect the
idle power from Equation 3.14. The resulting equation is given in Equation 3.16.

Pave = Pave_leak + Tactive

Tsample
·Pactive (3.16)

If power gating is applied in addition, the average leakage power would be reduced signifi-
cantly.

In this thesis, the duty cycle, α, which refers to the time the processor is active, is given
by the relation of Tactive and Tsample, as shown in Equation 3.17.

α = Tactive

Tsample
(3.17)

For energy efficiency in ASIPs, the software and hardware are usually optimized in order
to make the active power time, Tactive, as short as possible. When clock gating and power
gating are applied in addition, the processor would be switched off for a longer time. The
average active power per cycle might increase by adding application specific hardware, but
compared to the saved execution time, the total average power is reduced significantly.

Chapter 4

Matlab to C conversion

In this chapter, the conversion process of the algorithm developed by Romero et al., [RLAR+05],
is described, analyzed and discussed. This process is divided into four activities. In each step,
the code is validated using a Matlab testbench. This testbench integrates the test databases
presented in Chapter 2.5. Some implementation challenges are discussed, and the results of
the C application are presented. In addition, the information gathered from profiling are
shown. How these results were found is also discussed.

The flow of work, describing the activities in the conversion process, is presented in
Section 4.1. The following sections describe each step in the conversion process, before
presenting the results. Finally, the results are discussed and some conclusions are made in
Section 4.8.

4.1 The flow of work

As discussed in Chapter 1.2, a fixed point C version of the application is desired. Conversion
from Matlab code to C code is not a simple task, and one could not simply convert a
Matlab code optimized with built in Matlab functions without changing the algorithm. One
possibility is to create a prototype version of the Matlab code, and for every built-in function,
one could find the optimal algorithm that would do the same thing using only for-loops,
while-loops and if-statements. This could be just as time consuming as starting from scratch
in C. However, the advantage of this prototype is that it would be easier to simulate the test
signals within the same environment to verify the correctness of the prototype. Because of
the Matlab prototype, the conversion should be straight forward. In theory, the only thing
one has to consider is the conversion of Matlab’s one-indexing to zero-indexing in C. Instead
of starting by scratch in C, and try to design the algorithm by the description in Chapter 2, a
Matlab prototype is created in this project. In this prototype, the functionality of the Matlab
code is re-written without the use of built-in Matlab functions. By making a prototype, it
was possible to split the code in several parts, and convert one part at a time. Every part
could then be validated by interfacing each part directly into the original Matlab code. Before
that was done, the Matlab code had to be analyzed.

The conversion process was divided into four steps, where the application was validated
in each step. An overview of the conversion process is shown in Figure 4.1.

The first step consist of analyzing the original Matlab code, in addition to the initial
simulation of the model.

In the second step, a prototype is made, based on the considerations taken during the
analysis. All built-in Matlab functions are interpreted by studying their Matlab documenta-

31

32 CHAPTER 4. MATLAB TO C CONVERSION

Figure 4.1: An overview of the steps in the conversion process.

tion, and they are implemented using only for-loops, while-loops and if-statements. In the
case where a direct conversion is very inefficient, a more optimized solution is chosen.

In the third step, the Matlab prototype is translated into a floating point C application.
After creating the first running version of the C code, the optimization process can start.

All memory usage must be optimized, and unnecessary code must be removed. In addition
all complex functions must be optimized away.

This optimization step is followed by a fixed point conversion, where all floating point
values are converted to integer values. If possible, some further optimizations are done.

After the conversion steps, the resulting application is run through profiling in order to
find possible bottlenecks and memory leaks. Further, the application is simulated using an
instruction-set simulator from Target, using a 32 bit processor, in order to determine the
memory usage and estimate the cycle counts for the execution of the application.

The following sections describe how the conversion was done.

4.2 Matlab code analysis
Matlab is a development tool provided from MathWorks, optimized for using vector and
matrix operations. It is possible to program algorithms fast and test functionality easier than
standard programming languages like ANSI C. However, there is no need to take memory
usage into account, and the programmer can focus on making the program model compact
and fast using the built-in vector and matrix functions. Therefore, the provided model of the
algorithm developed by Romero et al. [RLAR+05] was designed using the built-in Matlab
functions when possible in order to keep the program as compact as possible.

The original Matlab model of the algorithm was done precisely as described in Section 2.3,
with the optimizations described in 2.4.

4.2. MATLAB CODE ANALYSIS 33

This Matlab model could be viewed like a hierarchy, consisting of three functions (3
separate files). The functions are called QRSDet, QRSDet3, and cwt2. An illustration on
how those functions are connected together is shown in Figure 4.2.

In Appendix A, the CWT function and the QRSDet3 function of the original Matlab
model are described, analyzed and discussed, step by step. This is done in a bottom-up
fashion, starting with the CWT function. In some of the steps, alternative implementations
are suggested.

In the rest of this section, a summary of the changes suggested, based on the analysis, is
given.

Figure 4.2: The Matlab model structure.

34 CHAPTER 4. MATLAB TO C CONVERSION

4.2.1 The CWT function

This function basically calculates the reference mother wavelet for all desired scales, and
performs a convolution between the input ECG samples and a scaled mother wavelet. Then
some calculations on the result of each convolution is done to obtain the desired coefficients,
before the coefficients for all scales are returned in a huge matrix.

A detailed analysis of this function is done in Appendix A, and the analysis resulted
in suggesting some lookup tables for the reference wavelet used in the wavelet transform,
instead of calculating the values at runtime. This would reduce complex computations such as
exponential functions and square roots. Further, the convolution is assumed to be in the main
critical loop of the application. Two possibilities for the implementation of the convolution
was discussed. One could either implement the convolution by its definition, or by converting
the built in Matlab convolution function. An analysis of the running time is performed on
both solutions in Appendix C. The conclusion is to convert the Matlab convolution function
directly, because its running time is significantly faster than the convolution by the definition.

It was also observed that the maximum ECG sample frequency used in the test databases
is 1000 Hz, and therefore the matrix containing all coefficients for all the different scales has
to be big enough to contain the coefficients calculated using the largest scale.

4.2.2 The QRSDet3 function

This function is the largest function, containing all steps in Figure 2.8. It is called for one
3-second ECG input signal at a time.

In Appendix A, every step in this function is analyzed in detail, and therefore this section
will only summarize the suggestions made for the conversion process.

In the step where the modulus maxima is calculated, some matrices were duplicated.
Re-usage of matrices is suggested in this step, resulting in less memory requirements.

The step where the clusters of beats are identified, and the step related to the classification
of beats, used matrix indexing in Matlab with only one parameter. Matrix indexing in ANSI
C requires two parameters, unless an array is made out of the matrix. Several calculations
were performed on index positions where the one-value Matlab indexing was used. The
decision based on the analysis, is to use matrix indexing in C normally, but use the Matlab
way of indexing in the calculations performed. This is the easiest solution.

The other steps in the QRSDet3 function required some minor changes, and the reader
is referred to Appendix A for the analysis on those steps.

4.2.3 The QRSDet function

Since the QRSDet3 function, as described in Section 4.2.2, only analyzes 3 seconds at a
time, the QRSDet is the function that takes an array of ECG signals of one length, divides
it into several 3 second intervals and computes them with the QRSDet3 function for every
interval. The answers from the QRSDet3 function are then shifted into the right time slot
in the QRSDet function, and then stored in a big array. This resulting array contains the
times in seconds where every QRS-beats are detected for the complete test signal, which is
returned at the end. It is also in this function each 3-second interval is overlapped with the
next 3-second sample, as described in Section 2.4.

The application must be able to detect QRS complexes and classify beats in real-time.
Therefore, only the QRSDet3 and the cwt2 functions are chosen to be converted.

4.3. THE MATLAB PROTOTYPE 35

4.3 The Matlab prototype

The Matlab prototype was re-written step by step. Mainly all steps are modeled with slight
changes, e.g., reading elements one at a time instead of a vector at a time. Other changes
include dividing some calculations into several sub steps in order to simplify the code. For
every built-in function, the Matlab documentation was studied, and the functionality was
emulated using only for-loops, while-loops and if-statements. However, there were some
steps that required alternative implementations of the code in the original Matlab model.
These steps are implemented as suggested in Section 4.2 and Appendix A. The changes were
mainly done in the cwt2 function, in the step where clusters of beat are created, and in the
step where the clusters of beats are classified.

The resulting prototype contained several nested loops, making the application slower.
This could be explained by looking into the simulation environment in Matlab. In general,
Matlab is an interpreted language, and looping through a vector using for-loops is very slow.
Since this code is meant to be implemented on an embedded platform, the built-in Matlab
functions can not be used. It is worth noting that the alternative implementation in the
Matlab prototype could be optimized further. Since the aim of this project is ASIP design,
no further optimizations are done in this prototype.

This new Matlab model was simulated by interfacing the new QRSDet3 function to the
QRSDet function. The prototype generated the exact same results as the Matlab code, but
the simulation time was significantly longer.

All steps that required alternative implementations of the original Matlab code, i.e., the
suggestions made in the previous section, are described in detail in Appendix B.

Before introducing the C application, the simulation interface between the test databases
in Matlab and the C application is described.

4.4 Simulation interface and validation

In order to simulate the compiled executable of the C program, an interface must be made
with the databases and test scripts in Matlab. This would save time since no test benches
in C has to be created. There are two possible ways of creating this interface. For instance,
one could implement the C code directly in Matlab and use its built-in GCC compiler, or
one could use the method of reading and writing to a text file. One advantage of doing the
latter alternative is that the C executable would be independent of any Matlab interference.
However, the simulation time would be time consuming, since for every 3-second interval, the
code reads from and writes to file many times. Since this program is going to be implemented
on a processor at the end, the file I/O operations in C did not matter, only for simulation
purposes. Therefore, the easiest solution is chosen, which is to interface the C code to the
Matlab code by reading the inputs from file and write the results to a new file. Three files
are needed for this interface. One file is used where the names of the files to read from and
write to are written, and another file is used for some parameters like the size of the ECG
signal, thresholds, frequencies, etc. The last file is meant for the ECG signal itself. First,
the interfacing Matlab script writes all parameters to file before issuing a command to start
execution of the C program. In the C program, the C interface reads those parameters from
file, and generates the input arrays and variables. This C interface is the main function of
the C code. When the C code has finished execution, it writes the outputs to file. The
Matlab script interface then reads the answers from the output file of the C program, before
continuing the execution of the test.

36 CHAPTER 4. MATLAB TO C CONVERSION

4.5 The floating point application

In the design of the C application, the cwt2 function was first converted, and validated,
before the conversion of the QRSDet3 function. Therefore, these functions were coded in
two separate files, cwt2.c and QRSDet3.c. Some input/output (I/O) libraries, and read and
write functions in C are also included in order to interface the C application to the Matlab
test environment, as described in Section 4.4. In the embedded platform architecture this
application is mapped into in Chapter 6, these I/O libraries and functions are not supported.
Therefore, they are placed in a separate file, global.c, such that they could easily be removed
without major changes to the code. In addition, all define parameters and structure definitions
are placed in the global header file, global.h. An illustration of how the C code is organized
through the different files is shown in Figure 4.3. The global header file is included in cwt2.h
and QRSDet3.h as indicated by the arrows in the figure. In addition, the cwt2 header file
is included in the QRSDet3 header file in order to include the cwt2 function calls into the
QRSDet3 function. Different define parameters in the global.h header file are created to
easily disable or enable the I/O libraries and operations, the cwt2 test interface, and/or
the QRSDet3 test interface. In a processor implementation, the global variables would be
placed in the data memory, and the local variables would be assigned to the local registers.
Therefore, large arrays and matrices are placed globally, and intermediate control variables
for each function calls are allocated locally within their function.

The conversion of the Matlab prototype to a floating point application was done very
quick, as expected. However, the implementation required some changes before the applica-
tion worked correctly. When the floating point application produced the exact same results
as the original Matlab code, some optimizations were done. The changes applied to make the
Matlab prototype work in a C environment are presented in Section 4.5.1. In Section 4.5.2,
the optimizations of the floating point application are described.

4.5.1 Implementation of the floating point application

The difference between the floating point application and the Matlab prototype, is that the C
application required the creation of some structures containing information about the actual
used sizes of large arrays and matrices. Without this information, the loops in the application
would iterate through all elements of an array, even if the whole array is not used at run-time.
Since the C language uses 0-indexing of arrays, and Matlab uses 1-indexing, a conversion of
the accessing of elements had to be done as well. In addition, some issues related to the
run-time memory usage occurred. These issues did not occur when simulating the Matlab
prototype, because Matlab automatically adds more elements to an array or matrix if needed.
This is not possible in C. If there is an attempt to write to, or access an array or matrix
location that is larger than what is pre-allocated, the application will fail. Three changes
were made to the code before the floating point application produced the exact same results
as the original Matlab model. These changes are described in the rest of this section.

Creation of special complex data structures

In order to represent several arrays in the code and keep track of the needed length, a special
complex data structure is created. This C structure contains a size parameter and a list
of a fixed size of the maximum input interval, times the maximum sample frequency. The
list is made big enough to contain the result of the convolution step for an ECG sample
frequency of 1000 Hz. A similar complex data structure is also created for the coefficient

4.5. THE FLOATING POINT APPLICATION 37

Figure 4.3: The C code structure.

matrix, containing one integer for the number of rows and one for the number of columns
that are used in that matrix.

Run-time memory challenges

The simulation of the QRSDet3 C code showed that for some special ECG samples, i.e.,
the one displayed in Figure 4.4, there were many clusters detected around the beats. This
required much more memory in specific matrices than what was pre-allocated in the Matlab
prototype, resulting in a failure of the application. This problem was also studied in the
Matlab prototype, and it turned out that Matlab automatically increased the size of the
matrices and arrays without giving any warnings.

In addition, some column sizes assigned to some matrices were not big enough to handle
all the elements of the clusters. To correct this issue, the these column sizes are set to the
same size as the column size of the clusters. A new define parameter, called FACTOR, is
also introduced. This parameter is multiplied with all array sizes of all arrays which are
dependent on the calculation of clusters. This parameter is set to the value of 50, giving
more than enough memory for the arrays and matrices. This over-dimension is done to make
sure that special cases of the ECG signal, i.e., the one in Figure 4.4, are covered.

38 CHAPTER 4. MATLAB TO C CONVERSION

0 0.5 1 1.5 2 2.5 3
−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time in seconds

E
C

G
 s

am
pl

ed
 a

t 3
60

 H
z

(in
 m

ic
ro

 v
ol

t)

Figure 4.4: Special case of an ECG sample, where the red circles indicate the beats detected
by the original Matlab model.

Initialization of arrays and matrices

Some minor issues related to the assignment of some temporary arrays and matrices were also
detected in the validation process. Those issues occurred because these arrays and matrices
were not reset before they were re-used from previous iteration rounds in some of the for-loops.

Finally, after correcting all issues, the simulation gave the exact same results as the
original Matlab model.

4.5.2 Optimization of the floating point application
After running the initial version of the C application, and the correctness with regards to the
Matlab model was verified, the optimization work could start. Optimizations like the ones
described in Chapter 3 were applied, and the application was validated again. In the rest of
this section, the applied optimizations are described.

Insertion of lookup tables

In the cwt2 function, the calculation of the reference mother wavelet is pre-calculated and
stored in a lookup table. This lookup table is loaded into memory at the startup of the
program. A lookup table for a square root calculation, containing 20 elements is also made.
Some other lookup tables are created as well for some intermediate steps.

An index array which is used in order to select the elements for the scaled reference
wavelet is also stored in a lookup table. This lookup table was created by making a matrix
with the longest scale the default row size, and for every scale under this size, zeros are added
at the end. This matrix is simplified into a long array, so that the first row is placed at the
beginning of the array, while the last row is placed at the end of the long array. However,

4.6. THE FIXED POINT APPLICATION 39

this table is very large since it is different for every scale. Therefore, this lookup table has
6420 elements, where most of them are zeros because of the difference of the scale sizes.

These optimizations resulted in a CWT function without any complex computational
parts. The only complex things to consider here (except from the cosine function in the
Hanning window step, which is optimized in Section 4.6) are a few multiplications and some
memory accesses.

Inline function definition

In the QRSDet3 file, some functions are declared inline in order to force the compiler to
optimize them away.

Reduction of read and write operations to global memories

Code portions like the one in Code Snippet 4.1 are re-designed to code like the one shown in
Code Snippet 4.2. This is done based on the principle of temporal locality, as described in
Chapter 3, in order to optimize the program for processor implementation.

1 f o r (m = m_min; m ≤ m_max; m++){
2 _convrs . array [n−1] = _convrs . array [n−1] + (_x . array [n−m] ∗_h. array [m−1]) ;
3 }
4
5 // Divide r e s u l t with the root o f s
6 _convrs . array [n−1] = sqrt_lookup [_s−1] ∗ _convrs . array [n−1] ;

Code Snippet 4.1: Code before optimization

1 temp = 0 ;
2 f o r (m = m_min; m ≤ m_max; m++){
3 temp = temp + (_x . array [n−m] ∗_h. array [m−1]) ;
4 }
5
6 // Divide r e s u l t with the root o f s
7 _convrs . array [n−1] = sqrt_lookup [_s−1] ∗ temp ;

Code Snippet 4.2: Code after optimization

In Code Snippet 4.1, the _convrs.array list is located in memory, and in the for-loop,
this array is both read from and written to. A better alternative is to create a local variable,
which in a processor could be a local register, and use it as shown in Code Snippet 4.2. This
would reduce the amount of memory accesses to _convrs.array significantly.

The resulting floating point application is converted to fixed point, based on the theory
of fixed point conversion, as presented in Chapter 3. This fixed point application is presented
in the next section.

4.6 The fixed point application

In this section, the fixed point conversion of the C application is presented, and most of the
techniques used are based on the theory discussed in Section 3.4. First, the changes to the
floating point application are presented in Section 4.6.1. The optimizations done are then
presented in Section 4.6.2, before the validation of the application is described in Section 4.6.3.

40 CHAPTER 4. MATLAB TO C CONVERSION

4.6.1 Changes to the floating point application
When converting a floating point application to fixed point, it is important to first analyze
the requirement for the accuracy, i.e., the Q-notation for the fixed point numbers, as defined
in Section 3.4. The input values to the algorithm from the IMEC database are integers,
where signals between -3.2 and 3.2 μV was sampled into 12 bit unsigned numbers, [RLG08b].
The MIT/BIH database used 13 bit signed numbers. This gives the input signal an integer
range of 11 or 12 bits, according to which database is used. Assuming that not more than
12 bits are needed for the input values, 16 bit signed numbers is decided to be used for the
fixed point representation.

After deciding how many bits is going to be used to represent floating point numbers,
the Q-notations for all floating point variables could be determined. All floating point
variables and lookup tables are then adjusted according to their Q-notation. Addition and
multiplication operations in loops are adjusted by shifting the numbers in every iteration, in
order to preserve the desired accuracy. Rounding operations and conditional statements with
floating point numbers are modified using shift operations and alternative representations.
All divisions with constant values are eliminated by using shift operations, and a cosine lookup
table is created with pre-calculated values. In the rest of this section, the implementation of
all these changes are discussed separately, before introducing the optimizations done to the
resulting application, in Section 4.6.2.

Determining the Q-notation for the floating point variables

By analyzing the integer range of all variables in the floating point application, including
the fractional accuracy required, mainly 2 different Q-notations are determined, Q2.14 and
Q10.6.

For most variables, including the coefficients after the convolution step, the Q2.14 signed
integer format is chosen. This decision is based on the largest absolute value of the coefficients,
calculated from the square root lookup table in the CWT function. All other coefficients
had decimal values between minus one and one, with small values close to zero. From
Equation 3.5, the square root coefficients have maximum values with n equal to one. Most
signals represented in floating point are therefore shifted 14 times to the left, following
Equation 3.5. However, many of those variables are used in additions and multiplications
inside loops. Therefore, they had to be analyzed in every step in order to assure that all
variables are shifted correctly.

For the threshold parameters, the Q10.6 signed format is chosen because of large integer
values. The threshold parameters do not affect any other signals in the code. Therefore,
assigning more bits for the integer representation in this case do not introduce any challenges.

Adjustment of addition and multiplication operations in loops

Within the convolution step in the cwt2 function, _h.array is the input ECG signal, as
shown in Code Snippet 4.3. This array is assumed to have values with a 13 bit signed range.
_x.array contains values shifted 14 bits to the left, from the reference mother wavelet lookup
table. Therefore, the expected number of bits after the loop could be theoretically calculated
as shown in Equation 4.1.

RB = 12 + 15 + s+ ceil[log2(m_max−m_min+ 1)], (4.1)

where RB is the number of bits in the resulting temp variable, 12 is from _h, 15 + s is from
_x, s is the signed bit, and m_max − m_min + 1 is the number of iterations this loop

4.6. THE FIXED POINT APPLICATION 41

is performed. This calculation allows approximately 4 bits for overflow if a 32 bit result is
desired.

1 f o r (m = m_min; m ≤ m_max; m++){
2 temp = temp + (_x . array [n−m] ∗ _h. array [m−1]) ;
3 }

Code Snippet 4.3: Code consideration of fixed point addition in a loop

m_max −m_min + 1 has a maximum value of |1078|. According to Equation 4.1, the
ceiling statement is the requirement for overflow. In this case, 11 bits are needed. This
means in theory that a 39 bit register is needed to handle the worst case accurately. The
loss in accuracy here is assumed to be acceptable. Otherwise, the use of a 64 bit result
would be necessary, and that is expensive in terms of area. If the accuracy turned out to be
unacceptable, then a 39 bit specialized result register could be created in an ASIP, but a 64
bit standard register would have to be used in a general purpose register. Based on these
considerations, the solution is to accept 4 bits for overflow, in order to eliminate the need for
large registers.

Multiplication operations as shown in Code Snippet 4.4 also needed to be adjusted
properly, in order to keep the result variable size as compact as possible. It is in a for-loop,
and the values of the lookup table sqrt_lookup are signed values, shifted 14 bits to the left.

1 _convrs . array [n−1] = sqrt_lookup [_s−1] ∗ temp ;

Code Snippet 4.4: Code before fixed point conversion

The range of the temp variable is in this case 28 bits, with 4 bits for overflow in a 32 bit
register. In addition, the values of temp are already shifted 14 bits to the left from Code
Snippet 4.3. The result of the multiplication is therefore shifted 28 bits to the left. Since
_convrs.array is an array assumed to have values shifted only 14 bits to the left, the result
needs to be shifted back 14 bits. As shown in Equation 4.2, the size of the multiplication
result requires 42 bits.

RBS = 15 + 27 + s, (4.2)

where RBS is the number of bits in the resulting variable, 15 is from sqrt_lookup, 27 is from
temp, and s is the signed bit.

The result is required to be a number that could fit in a 32 bit register. In this case, two
possible solutions could be applied. Solution one is to do as shown in Code Snippet 4.5.

1 _convrs . array [n−1] = (sqrt_lookup [_s] ∗ temp) >> 14 ;

Code Snippet 4.5: Code using solution 1 based on Code Snippet 4.7

Here, the the multiplication is performed, before the result is shifted. The end result fits
within a 32 bit register, with minimum loss of accuracy, but 42 bits for the temporary result
after the multiplication is still needed. The array _convrs.array must then be defined as
long int, but then a 64 bit representation would be used.

Solution two is more optimal with respect to area, but comes with the cost of less accuracy.
As shown in Code Snippet 4.6, only 32 bit registers are needed for the intermediate step and
the answer. However, some accuracy is already lost before the multiplication takes place.

42 CHAPTER 4. MATLAB TO C CONVERSION

1 _convrs . array [n−1] = sqrt_lookup [_s] ∗ (temp >> 14) ;

Code Snippet 4.6: Code using solution 2 based on Code Snippet 4.7

The differences are best shown through an example. The alternative solutions are shown
using binary numbers in Code Snippet 4.7. Under the assumption that there is enough bits
for overflow, solution 2 was chosen.

1 // S o l u t i o n 1 :
2 (101 ∗ 110) >> 2 = 111 = 7 // 111|10 (maximum p r e c i s i o n)
3
4 // S o l u t i o n 2 :
5 // (101 >> 2) = 1|01 −−> Accuracy o f the 2 LSB i s thrown out
6 (101 >> 2) ∗ 110 = 110 = 6 // (p r e c i s i o n l o s t)

Code Snippet 4.7: Code before fixed point conversion

Changes to the rounding operations

Some variables are rounded at run-time. A rounding function is performed by adding a half
to the value and truncate the fractional part. In order to round one variable that is shifted 14
times to the left, one could simply add the value one, shifted 13 times to the left. The binary
value of 0.5 is 0.1, and by shifting this value 14 times to the left, one would get the same
result as taking the binary value 1 and shift it 13 times to the left instead. Similarly, a floor
operation is performed by truncating the fractional part. A ceiling operation is performed
by taking the value of one and shift it 14 times, before subtracting the value of one from the
result. This result is then added to the number, and the fractional part is truncated.

An example of how this looks like in the C code is given in Code Snippet 4.8.

1 /∗
2 ∗ FIXED POINT n o t i c e :
3 ∗ round −−> (i n t) (x+0 ,5)
4 ∗ s h i f t e d 0 t imes (rounded us ing f i x e d po int)
5 ∗/
6 x1 = (i n t) (((x1<<14)+(1<<13))>>14) ;
7
8 /∗
9 ∗ FIXED POINT n o t i c e :

10 ∗ x2 i s s h i f t e d 14 times , to take the
11 ∗ c e i l the f o l l o w i n g i s added : ((1<<14)−1)
12 ∗
13 ∗ x3 i s s h i f t e d 14 times , to take the
14 ∗ f l o o r the va lue i s t runcated
15 ∗/
16 x2 = (i n t) ((x2 + ((1<<14)−1))>>14) ;
17 x3 = (i n t) ((x3)>>14) ;

Code Snippet 4.8: Fixed point round operations.

Elimination of divisions with constant values in conditional statements

Some conditions in if-statements are changed, as shown in Code Snippet 4.9. Alternative 1
was changed to alternative 2 in this example.

4.6. THE FIXED POINT APPLICATION 43

1 // A l t e r n a t i v e 1 :
2 x < 0.02 ∗ f s
3
4 // A l t e r n a t i v e 2 :
5 50 ∗ x < f s

Code Snippet 4.9: Floating point elimination

Implementation of a cosine lookup table

A cosine is used to calculate the Hanning window, and a part of that code is shown in Code
Snippet 4.10. The fixed point conversion of this code is shown in Code Snippet 4.11.

1 n l e f t . array [i −1] = 0.5∗(1− cos (2 ∗ ((double) M_PI) ∗ n l e f t . array [i −1]/(((double)
_N)−1))) ;

Code Snippet 4.10: Floating point cosine calculation.

1 n l e f t . array [j −1] =
8192−((8192∗ cos_func [((n l e f t . array [j −1]∗ n_lookup [_N−20])>>21)]) >>14) ;

Code Snippet 4.11: Fixed point cosine calculation.

As shown in Code Snippet 4.11, the number 8192 is the same as 0.5 shifted 14 times to the
left and rounded. Equation 4.3 was pre-calculated for every possible _N values and placed
in a lookup table, where the values are shifted 14 times to the left. This table has all values
for _N in the range from 20 to 200. By accessing the lookup table using the index _N − 20,
one could achieve the desired value for the corresponding _N .

2π
_N − 1 , 20 ≤ _N ≤ 200 (4.3)

All values of nleft.array are shifted 14 times to the left. Since all n_lookup values are shifted
14 times to the left, the cosine input must be corrected to a number in the Q2.14 format.
This is done by first shifting nleft.array[i−1] to the left 7 times, and then shift the answer of
the multiplication back 28 times. This is similar as shifting the result of the multiplication 21
times to the right. All these considerations resulted in the code shown in Code Snippet 4.11.
The cos_func lookup table consisted at this point of one period of a cosine wave, spread over
804 samples. This cosine lookup table is changed into a function call and further optimized,
along with other code optimizations. All optimizations are described in Section 4.6.2.

4.6.2 Optimization of the fixed point application
After converting the floating point application into fixed point, the application was optimized
further. Some lookup tables are optimized by the usage of alternative representations,
resulting in smaller lookup tables. A cosine function based on the CORDIC method [Vol59]
is also implemented, using a smaller lookup table than the previous one. All divisions are
replaced by a software division function, made to support divisions in calculations located
outside the critical loop of the application. The total memory usage is also further optimized,
by inserting some constraints based on an analysis of the worst possible heart rate of a
human being. A preprocessor macro is also made in order to optimize the code further. All
optimizations are described in the rest of this section.

44 CHAPTER 4. MATLAB TO C CONVERSION

Lookup table size reduction

In the calculation of the scaled mother wavelet in the cwt2 function, the large lookup table
in the floating point application consisted of 6420 elements. Since this table is quite big, an
alternative lookup table is created from Code Snippet 4.12 in Matlab.

1 f o r i =1:20
2 x (i) = f l o o r ((1/ i) ∗2^9) ;
3 end

Code Snippet 4.12: Calculating the alternative lookup table in Matlab

All values in this lookup table are represented with a Q7.9 signed number (shifted 9 bits to the
left). In addition, this lookup table is never used in other calculations than the ones involving
the selection of index positions of the reference mother wavelet lookup table, as described in
Section A.1. The index for a particular value in the reference mother wavelet is selected by
the calculation shown in Code Snippet 4.13. All parameters in the divisions are changed with
values in the power of two. This was done in order to optimize away the divisions and insert
shift operations instead. In addition, this scaling solution depends on both the scale value
and the current iteration. Instead of putting many coefficients in a large matrix, a scaling
of one parameter is done while the values of the other parameter are selected from the new
lookup table (x_lookup). The resulting _psi_scale.array is in this case similar to the one
calculated in the floating point application (using the large lookup table). This optimization
has reduced the memory size required for the x_lookup significantly, from 6420 down to 20
elements.

1 f o r (j = 1 ; j ≤ s c l +1; j++){
2 _psi_scale . array [s c l+1− j +1−1] =
3 psi_lookup [((i n t) ((((((i n t) (((j −1)∗ x_lookup [s −1]))) ∗

255+(1<<12))>>13))))] ;
4 }

Code Snippet 4.13: Optimization of the assignment of _psi_scale.array.

Combining loops

Some of the calculations in the Hanning window step, in the QRSDet3 function, were done
in separate loops. The Hanning window step is therefore optimized by combining these
calculations together in the same loop, giving a faster execution time.

Implementation of a cosine function based on the CORDIC method

In order to optimize the cosine function with a smaller lookup table, a special lookup table
consisting of 202 samples of the first quadrant of a cosine is made (with steps of 1/128). A
cosine function is created in addition, in order to handle the cosine input and return the right
value dependent on which quadrant the input value is placed. This solution is based on the
method of CORDIC cosine, as described in [Vol59]. The basic idea here is to exploit the fact
that the points in the first quadrant of a circle, created by the cosine function, is the same in
all other quadrants. The only difference is that the points are rotated differently, dependent
on which quadrant the desired value is located. The input to this function is the angle in
radians, shifted 14 bits to the left, and the output is the cosine of the input value, shifted 14
bits to the left. The implemented cosine function is shown in Code Snippet 4.14.

4.6. THE FIXED POINT APPLICATION 45

1 /∗
2 ∗ FIXED POINT n o t i c e :
3 ∗ Al l the va lue s in the c o s i n e t a b l e are s h i f t e d 14 t imes to the l e f t .
4 ∗ F i r s t and second quadrant : M_PI∗128/2 = 201 (approx .)
5 ∗ Second and t h i r d quadrant : M_PI∗128 = 402 (approx .)
6 ∗ Third and four th quadrant : 3∗M_PI∗128/2 = 603 (approx .)
7 ∗ Fourth quadrant : 2∗M_PI∗128 = 804 (approx .)
8 ∗/
9 i n t cos_func (i n t beta) {

10 // I f the ang le i s in the f i r s t quadrant
11 i f (beta ≥0 && beta < 201) {
12 re turn cos_tab [beta −1] ;
13 }
14 // I f the ang le i s in the second quadrant
15 e l s e i f (beta ≥201 && beta < 402) {
16 re turn (−1∗cos_tab [(s i z e o f (cos_tab) / s i z e o f (∗ cos_tab) − beta + 201 − 1)]) ;
17 }
18 // I f the ang le i s in the t h i r d quadrant
19 e l s e i f (beta ≥ 402 && beta < 603) {
20 re turn (−1∗cos_tab [beta − 402 − 1]) ;
21 }
22 // I f the ang le i s in the four th quadrant
23 e l s e i f (beta ≥ 603 && beta < 804) {
24 re turn cos_tab [(s i z e o f (cos_tab) / s i z e o f (∗ cos_tab)) − beta + 603 − 1] ;
25 }
26 }

Code Snippet 4.14: Fixed point cosine calculation.

The software division

Not all divisions are removed, because there are some mean values calculated at run-time
in the QRSDet3 function. These mean values are dependent on the input signal, and can
not be predicted. Therefore, a lookup table could not be used. A software division function
is therefore implemented, using only additions and shift operations. This function is time
consuming, and would make the application significantly slower if the division is located in
a critical loop of the program. In the case of the algorithm, the division operations are
not performed in a critical loop. A better solution is to perform the division operation in
hardware, but if a software division function is already made, then it could easily be changed
with a hardware division when mapped to the processor later, without major modifications to
the code. In addition, the application would be embeddable without using any more complex
operations than multiplications, additions and shift operations.

Memory optimization of the fixed point application

The memory required for the floating point numbers, compared to their fixed point represen-
tation, is twice as much in the floating point application than in the fixed point application.
32 bits are usually allocated to represent an integer number, whereas a floating point variable
with double precision, like the ones used in the floating point application, requires 64 bits.
Therefore, the conversion to fixed point alone already reduced the memory required for all
floating point values by half.

A final analysis of the memory usage was performed statically to the code, and the memory
usage, in terms of total number of integers used, turned out to be approximately 441 883
integers. Since four bytes is required for one integer, the memory usage was estimated to be
approximately 1.8 MB for the integers in the application. This memory usage is unacceptable,
because it is too much for this embedded application. Therefore, an analysis was performed
on all the large arrays in order to determine the maximum memory size necessary.

46 CHAPTER 4. MATLAB TO C CONVERSION

According to [Ham80], a pulse for a human being can not be more than 300 heart beats per
minute. A human being with this heart rate would have maximum 5 beats per second. For a
3-second interval, maximum 15 beats could be detected. This would generate clusters of 5625
(75x75) elements in the C code. This size includes the assumption that each cluster could
have maximum 5 samples. By scaling down the cluster sizes, all other arrays and matrices
directly dependent on the clusters could also be scaled down. Therefore, it is sufficient to
multiply all sizes of the arrays and matrices related to the clusters with the total number
of beats that could be detected in a 3 second interval. The FACTOR parameter defined
in the floating point application was used in the scaling of all arrays related to the clusters.
Therefore, by reducing it from 50 to 15, the memory usage was reduced significantly because
all arrays and matrices related to the clusters are dependent on this parameter.

All these memory optimizations were done first in the floating point application and
simulated for different values of FACTOR, before finalizing the changes in the fixed point
version. The simulation of the floating point application produced the exact same results
as the original Matlab model for all values of FACTOR larger than 10. In order to cover
the extreme case of a heart rate of 300, the FACTOR parameter is decided to be 15. After
these optimizations, the required memory usage was reduced to 97 463 integers, and this
corresponds to approximately 400 KB of memory space for the integers. Figure 4.5 gives an
illustration on how the number of kilo bytes needed for integers in the application changes
for different values of FACTOR. From this figure, one could see that the memory usage is
reduced significantly.

�� �� �� �� �� �� �� �� �� �� �

�

���

����

����

����

����

�	
������	������	��������	��	������������

�� �!�"#�$�%�����

�	
������	�&'()

������

*
+

�
	
��
�
,�
'
(

Figure 4.5: Memory usage with respect to FACTOR and ECG_FS = 1000.

Despite the results, it is worth noting that when FACTOR equals to 5, only two test
signals from the databases fail the simulation due to the lack of memory. For FACTOR
equal to 10, the floating point simulation results are the exact same as the Matlab model.
This simply means that there are none or to few test signals that produce the extreme case
of a heart rate close to 300 per minute. Maybe some artificial signals should be produced in
order to test the limits of this algorithm, but this is in any case a subject to future work.

In addition to the scaling of FACTOR, the sample frequency of the ECG signal will be
fixed to one specific value after implementation on a processor. Since the ECG array size
depends on the number of samples, one could reduce the memory size by using a frequency
with a smaller value. The scaling parameters are shown in Code Snippet 4.15, and Figure 4.6
shows the reduction in memory size by using ECG signals sampled at shorter frequencies.
ECG_FS is in Code Snippet 4.15 the sample frequency of the ECG signal.

4.6. THE FIXED POINT APPLICATION 47

�-.�/������������

�

���

���

���

���

���

/��

0��

.��

�	
������	�������	��	������!�"#�$

�� ��������%���

��	1+	���&2�)

*
+

�
	
��
�
,�
'
(

�	
������	�&'()

Figure 4.6: Memory usage with respect to ECG_FS and FACTOR = 15.

1 // Global parameters
2 #d e f i n e ECG_FS 1000
3 #d e f i n e FB0 15
4 #d e f i n e FB1 18
5 #d e f i n e SCALE0 ((i n t) ((((4 1 1 2 /FB1) ∗ECG_FS))>>14))
6 #d e f i n e SCALE1 ((i n t) (((4112/FB0) ∗ECG_FS + ((1<<14)−1))>>14))
7 #d e f i n e PSI_SCALE_SIZE (16∗SCALE1)
8 #d e f i n e ECG_INPUT_INTERVAL 3
9 #d e f i n e MEXICAN_HAT_SIZE 255

10 // Number o f s c a l e s and f s must be known , and f s
11 // should be big enough to cover the s i z e o f the
12 // convo lut ion r e s u l t . The convo lut ion r e s u l t i s
13 // the number o f samples o f the ECG s i g n a l p lus
14 // the s i z e o f p s i _ s c a l e .
15 #d e f i n e MAX_NUM_OF_SCALES (SCALE1−SCALE0+1)
16 #d e f i n e MAX_FS (ECG_FS+((i n t) (PSI_SCALE_SIZE/3 + 1)))
17 // Factor can not be under 15
18 // (the matr i ce s are then too smal l to cover a heart r a t e o f 300)
19 #d e f i n e FACTOR 15

Code Snippet 4.15: Global define parameters in global.h.

It is worth noting that the C application is not designed to be used for frequencies of the
ECG signals above 1000 Hz, because the databases do not have any signals sampled at higher
frequencies. The lowest frequency used in the databases is 198 Hz, which is a reasonable
frequency for processor implementation, giving the best optimal memory usage. For this
frequency, the application needs approximately 100 KB of memory just for the integers in
the program.

Insertion of preprocessor macros

In addition to all memory optimizations, the built-in absolute function abs in C is replaced
with the preprocessor macro shown in code snippet 4.16. This is done in order to prepare the
fixed point application for processor implementation without the use of the standard GNU
C libraries.

1 #d e f i n e abs (x) ((x)≥0?(x) :(−(x)))

Code Snippet 4.16: Pre-processor macro optimization of the abs function in C.

48 CHAPTER 4. MATLAB TO C CONVERSION

Re-usage of the coefficients matrix

It was observed that the largest matrix in the application, the matrix containing the coef-
ficients after the CWT step, is never used in the steps related to the clusters of beat. In
the step of finding the clusters of beat, some temporary values are stored in a temporary
matrix.Although this matrix was smaller than the coefficients matrix, it is optimized away
by re-using the coefficients matrix for the temporary storage.

4.6.3 Validation of the fixed point application
After converting all floating point values to fixed point integers, the program was simulated.
The simulation of the fixed point application was done in a similar manner as the floating
point application. However, some modifications are done in the Matlab interface scripts. All
floating point input values to the algorithm are shifted 14 bits to the left and rounded before
they are written to file, except from the thresholds, which are shifted 6 bits. The precision
of the fixed point conversion is by Equation 3.7 calculated to be 0.000061 for all signals that
are shifted 14 bits, and 0.0156 for the threshold parameters. The accuracy is assumed to be
good enough for the thresholds. In addition, the detected beats read from file are shifted
back 14 bits, and the new calculated thresholds are shifted back 6 bits before they are sent
through the rest of the test bench. These modifications in the Matlab interface scripts are
also needed in a receiver system which is going to read the resulting data from the application.
The results from this simulation are good enough, with less than 0.5% differences from the
results produced by the original Matlab code. These results are shown in Section 4.7.

It is worth noting that if the fixed point representation for the threshold values get out
of their specified fixed point range in accuracy, the thresholds get to low. This might cause
some issues related to the memory sizes of the cluster. The solution used to solve these issues,
is explained in Appendix D.

4.7 Results
In this section the results are presented, and they are discussed in Section 4.8.

4.7.1 Simulation results
The simulation of the floating point application produced the exact same results as the
original Matlab code. Therefore, only the results from the fixed point application are shown
here.

When simulating the fixed point application, the CWT function was first interfaced to
the original Matlab code and simulated, before the QRSDet3 application was simulated. By
doing it this way, one could verify the functionality of the CWT function before simulating
the whole program.

Figure 4.7 displays the simulation results from the MIT/BIH database, simulated over
the thresholds from 10% to 90% with intervals of 5%. The same simulation was done for the
IMEC database, and the results are shown in Figure 4.8. In these figures, the sensitivity (Se)
in percent is plotted with respect to the positive predictivity (+P) in percent. The optimal
threshold is achieved when the sum of Se and +P are maximized. From the figures one could
locate that threshold by looking at the point on the graph closest to the upper left corner.
The optimal threshold is found to be 30%.

Figure 4.9 illustrates the differences in the noise test. From this one could see that the
fixed point application has more noise than the original Matlab code, but the differences are
less than 0.5%.

4.7. RESULTS 49

Figure 4.7: The MIT/BIH test over all thresholds.

Figure 4.8: The IMEC test over all thresholds.

50 CHAPTER 4. MATLAB TO C CONVERSION

10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10
50

55

60

65

70

75

80

85

90

95

100
Noise test th = 30

Se (Original Matlab code)
+P (Original Matlab code)
Se (CWT fixed point)
+P (CWT fixed point)
Se (QRSDet3 fixed point)
+P (QRSDet3 fixed point)

SNR (dB)

%

Figure 4.9: Noise tests for th=30%.

4.7.2 Profiling results
Both gprof and Valgrind was used to get profile information. For the profiling, a 3-second
part from the peak test, sampled at 1000 Hz, was used from the IMEC database. With this
frequency, the application uses all allocated memory at run-time. This 3-second signal is
graphically displayed in Figure 4.10.

Figure 4.10: The sample of an ECG signal used for profiling.

Figure 4.10 illustrates a 3-second sample of the ECG signal taken from a patient diagnosed

4.7. RESULTS 51

0.651 0.652 0.653 0.654 0.655

−405

−400

−395

−390

−385

−380

Time in seconds

E
C

G
 s

am
pl

ed
 a

t 1
00

0
H

z
(1

2
bi

t s
am

pl
in

g)

Figure 4.11: The third beat detected by the sample in Figure 4.10.

with Arrhythmia. In this figure, the detected beats from the fixed point C application are
shown as red circles on the graph. The plot of the detected beats from the original Matlab
code, are not seen in this figure. Figure 4.11 displays a close up of the third beat (the marked
area) in Figure 4.10. If one takes a closer look at the same graph, one could see that the
differences between the fixed point C application (red circles) and the original Matlab code
(black circles) are very small. The other beats have similar differences between the fixed
point C application and the original Matlab code. In order to give the profiling tools enough
time to calculate the usage at run-time, the application was executed in a loop where the
same calculation of the 3-second interval was done one hundred times.

The gprof profiler indicated in which function calls most of the execution time was spent.
From the output file, the convC function call is executed the most, and this function call was
assumed earlier to be in the critical loop of the application. A part of the gprof results is
shown in Code Snippet 4.17.

From Code Snippet 4.17, one could see that, relative to the main function and QRSDet3
function, the convolution function call was executing in approximately 87.7 % of the execution
time. It is also called 500 times, which means five times for every call to the QRSDet3
function. This function call consist of two nested loops, where min and max functions
are called in the outer loop, while the inner loop performs the multiplication and addition
operation of the convolution. The min and max function calls are executed approximately
1.6 million times. This means that for one iteration of the whole application, these function
calls are called approximately 16 000 times. The number of iterations performed in the inner
loop depends on the values of conditions of the for-loop in Code Snippet 4.3. However,
the profiling tools used in Chapter 6 showed that the inner loop iterates approximately 3.6
million times in this case. This loop consist of the multiplication and addition operation of
the convolution, and by optimizing these operations, one could reduce the execution time.

52 CHAPTER 4. MATLAB TO C CONVERSION

1 Cal l graph
2 index % time s e l f c h i l d r e n c a l l e d name
3 0 .21 1 .58 100/100 main [1]
4 [2] 100 .0 0 .21 1 .58 100 QRSDet3C(i n t l i s t &, int , i n t ∗ , int ,

int ,
5 int , int , int , int , i n t ∗ ,
6 i n t l i s t &, i n t l i s t &,

i n t l i s t &) [2]
7 0 .01 1 .57 100/100 cwtC(i n t l i s t &, i n t ∗ ,

m a t r i x I n t L i s t &,
8 i n t l i s t &, i n t l i s t &) [3]
9 0 .00 0 .00 500/1620000 min (int , i n t) [5]

10 0 .00 0 .00 500/1620000 max(int , i n t) [6]
11 0 .00 0 .00 3800/4200 so f t_div (int , i n t) [1 6]
12 0 .00 0 .00 500/500 hanning3C (int , int , int , int ,
13 i n t l i s t &) [1 8]
14 0 .00 0 .00 100/100 mean(i n t l i s t , i n t) [1 9]
15 −−−
16 0 .01 1 .57 100/100 QRSDet3C(i n t l i s t &, int , i n t ∗ , int ,
17 int , int , int , int , int ,
18 i n t ∗ , i n t l i s t &, i n t l i s t &,
19 i n t l i s t &) [2]
20 [3] 88 .3 0 .01 1 .57 100 cwtC(i n t l i s t &, i n t ∗ , m a t r i x I n t L i s t &,
21 i n t l i s t &, i n t l i s t &) [3]
22 1 .53 0 .04 500/500 convC (int , int , int , i n t l i s t &,
23 i n t l i s t &, i n t l i s t &) [4]
24 −−−
25 1 .53 0 .04 500/500 cwtC(i n t l i s t &, i n t ∗ ,

m a t r i x I n t L i s t &,
26 i n t l i s t &, i n t l i s t &) [3]
27 [4] 87 .7 1 .53 0 .04 500 convC (int , int , int , i n t l i s t &,

i n t l i s t &,
28 i n t l i s t &) [4]
29 0 .03 0 .00 1619500/1620000 min (int , i n t) [5]
30 0 .01 0 .00 1619500/1620000 max(int , i n t) [6]
31 −−−
32 Index by f u n c t i o n name
33 [2] QRSDet3C(i n t l i s t &, int , i n t ∗ , int , int , int , int , int , int , i n t ∗ , i n t l i s t &,
34 i n t l i s t &, i n t l i s t &)
35 [3] cwtC(i n t l i s t &, i n t ∗ , m a t r i x I n t L i s t &, i n t l i s t &, i n t l i s t &)
36 [4] convC (int , int , int , i n t l i s t &, i n t l i s t &, i n t l i s t &)

Code Snippet 4.17: Call graph results from gprof.

Valgrind showed similar results, and these results are in kcachegrind shown graphically, as
shown in Figure 4.12. In this figure, a call graph is shown with the execution time relative
to the the cwtC function. The convC function, which is called within the cwtC function, is
executed at 99.39% of the total execution time of the cwtC function. 86.84% of the total
execution time of the QRSDet3 function consisted of calls to the cwtC function.

In addition to the call graph, the results from the memcheck tools reported no memory
leaks and no errors.

The memory needed for data memory (DM) and program memory (PM), in addition
to execution cycles and stack usage, was found using the Target instruction-set simulator
(ISS). In order to achieve these profiling informations, a general 16-bit base processor from
the Target templates was modified into a 32-bit processor. The fixed point C application
was then mapped to the new platform and simulated with the ISS. The Target tools are
introduced in Chapter 5. The results from the ISS report are given in Table 4.1 for different
ECG_FS frequencies, between 198 Hz and 1000 Hz. All test samples from the IMEC and
MIT/BIH databases are sampled at frequencies between 198 Hz and 1000 Hz. The processor
clock frequency required to process the ECG signal must be high enough to execute the
application before two seconds has elapsed because of the overlap described in Chapter 2.4.

4.7. RESULTS 53

Figure 4.12: The call graph with the focus on the convC function.

This means that if the application needs 27 million cycles, then the processor must execute
those cycles using a frequency of at least 13.5 MHz.

Profiling information from the Target tools.
Frequency (Hz) Data memory Cycle

(Hz) usage (KB) count
1000 512 27 761 417
500 300 6 341 634
360 180 2 913 374
198 150 1 589 178

Table 4.1: Memory usage and cycle count with different frequencies of the ECG signal. The
program memory usage was constant, where 8 KB of memory was needed. 3320 instruction
words was used in this case.

4.7.3 Application specifications for processor implementation

Based on the profiling and simulation results of the fixed point C application, the application
specifications for a general processor implementation are summarized in Table 4.2. These
specifications are based on the ECG sample frequency that gave the optimal solution in the
analysis done for memory usage. In Chapter 6, it is concluded that a 32-bit processor is needed
in order to be able to calculate all coefficients with acceptable accuracy. The limitations of
the processor clock frequency is also discussed in Chapter 6. For an ECG signal which is
sampled with a sample frequency of 198 Hz, the minimum clock frequency required for a
processor is then 800 KHz. With this frequency, the program finishes just in time before the
next set of samples arrive, as described in Chapter 6.1.

54 CHAPTER 4. MATLAB TO C CONVERSION

Application specification for processor implementation.
Sample frequency (Hz) of the ECG signal 198 Hz

Data memory 150 KB
Program memory 8 KB

Stack memory 4 KB
Processor clock frequency (fclk) 800 KHz < fclk < 100 MHz

Table 4.2: Application requirements for processor implementation.

4.8 Discussion of the results and conclusions
Even though the results of the fixed point application are satisfactory, there is still room
for improvement. Due to the complexity of the Matlab model, there was not enough time
to optimize the alternative code in the prototype for every built-in function. However, the
execution time of the code is fast enough with the resulting fixed point application for real-
time beat detection.

The data memory usage on the other hand, is far to much for a low power general
processor. For instance, the MSP430F1611 microcontroller from Texas Instruments [Tex09]
has reserved 48 KB for the program memory, while for data memory, only 10 KB is available.
The fixed point C application will therefore not fit in the MSP430F1611 because it requires
150 KB data memory for beat detection of ECG signals sampled at 198 Hz.

There is not much one could do for memory optimization in software without changing the
algorithm itself. For instance, the step for classifications of beats in the QRSDet3 function
is based on Matlab indexing of matrices, as described in Appendix B. This is not easily
converted to C. In order to change this, one has to figure out a new way to classify detected
beats and to chose the clusters. In the fixed point application, an extra array is used for
remembering the positions using C indexing of matrices, while the calculations are done in
the same fashion as Matlab. If this step is to be optimized, one could reduce the memory
more, but not significant enough to be considered. The MSP430F1611 would still not have
enough space for the data memory.

Another alternative is to use smaller intervals of the ECG signal, i.e., 2 second intervals.
The length of most arrays in the algorithm are dependent on the ECG input interval and the
sample frequency of the ECG signal. Even though the interval is reduced to 2 seconds, one
would only save up around 10 KB of data memory for a sample frequency of 198 Hz. One
could reduce the sample frequency even further, but the requirements for the data memory
would still be too much for the MSP430F1611.

In order to run the application, a DSP like TMS320C6413GTS500 from Texas Instru-
ments [Tex06] could be used. This processor has enough memory, but it is more power
consuming than the MSP430F1611.

In order to achieve better power efficiency, an ASIP is needed. Even if there existed a
low power processor that had enough data memory for this application, the chance of having
low power consumption for this application is very small due to the many iterations of the
convolution function.

Another limitation of this algorithm is that it requires 32-bit integers for the desired
accuracy, thus a 32-bit processor. It is possible to use a 16-bit processor to execute the
application, as discussed in Chapter 6, but that would result in a more power consuming
solution since most of the arrays and matrices in the code would have to be converted into long
integer types. Then every assignment would have to use at least twice as many instructions,
compared to a 32-bit processor, in order to do the same task. By adjusting the Q-factor

4.8. DISCUSSION OF THE RESULTS AND CONCLUSIONS 55

in the fixed point application, one could assign the numbers with 8-bit precision instead of
16-bit precision, eliminating the need for 32-bit integers. In that case, the algorithm would
not produce good enough results for beat detection.

By using an ASIP, one could exploit the profiling information, and optimize the hardware
for the application. In addition, the critical loop could be optimized using custom operations,
multiply-accumulate (MAC) operations, etc. Instructions could also be pipelined in order to
be executed in parallel within the same clock cycle. By optimizing the hardware for this
application, it is possible to achieve a solution much more optimized in terms of power
consumption than using a low power general purpose processor.

The next chapter will introduce the Target development tools, before the ASIP imple-
mentation of the fixed point C application is presented in Chapter 6.

Chapter 5

The Target Development tools

This chapter presents the Hardware/Software Co-design (HW/SW Co-design) methodology,
as well as the Target development tools, which are the development tools used for the ASIP
design in this thesis. Since an architecture description language called nML is used in the
ASIP design, an introduction to this modeling language is also given.

Section 5.1 briefly introduces the HW/SW Co-design methodology, and in Section 5.2,
the Target development tools are presented. The nML processor description language is
introduced in Section 5.3.

5.1 Introduction to the HW/SW Co-design methodology
In some applications, i.e., software applications, it is desired to speed up the execution time.
If the software containing data processing functions is already optimized in software, and a
faster application is needed, one could tend to HW/SW Co-design in order to achieve specific
goals. Similar, if a hardware application needs optimization with respect to area and/or
time, HW/SW Co-design could solve the problem. The methodology consist of partitioning
a given application in a software module and one or more hardware modules. The part of
an application which executes best on hardware is placed in the hardware module(s), i.e.,
data processing elements which require a large amount of clock cycles to execute on software.
Similar, the part of the application that is best suited to be in software, is placed in software.
Control functions and monitoring are examples of good suited software applications. HW/SW
Co-design is defined as follows:

“Hardware/Software co-design means meeting system-level objectives by ex-
ploiting the synergism of hardware and software through their concurrent de-
sign” [WS97].

In other words, HW/SW Co-design includes modeling, partitioning, scheduling and designing
a system, where one exploits the similarities in hardware and software, in order to achieve
specific requirements. In general, splitting a system or application into hardware and software
introduces several design challenges that varies with the application domain, implementation
technology and design methodology. The HW/SW Co-design methodology has two primary
advantages; more time to evaluate trade-offs, and it creates better hardware/software inter-
faces.

According to [KR05], any design methodology should do the following: provide a checklist
for the design process, facilitate the communication of design team members, help to predict
costs, aid in the creation of a working prototype, aid in the creation of a time line for the

57

58 CHAPTER 5. THE TARGET DEVELOPMENT TOOLS

development cycle, help with the identification of metrics, aid with requirements specification,
and assist with the development of test procedures.

The goal of HW/SW Co-design is to do all of these things as well as allow designers to
“predict” implementation, “incrementally refine” a design over “multiple levels of abstrac-
tion”, and create a “working first implementation” [WK05].

There exist several platforms where the HW/SW Co-design methodology could be applied.
What kind of architecture is needed, depends on the target application. Most digital systems
use components with an instruction set architecture (ISA). Among the most common ar-
chitectures available, one usually find platforms including Central Processing Units (CPU’s),
Application Specific Integrated Circuits (ASIC’s), Instruction-set Processors (ISP’s), Appli-
cation Specific Instruction-set Processors (ASIP’s), and/or Digital Signal Processors (DSP’s).

Many papers have been published on the HW/SW Co-design issues, including modeling
and simulation, generic integration and interfaces, custom HW/SW synthesis, and especially
partitioning. The latter category includes manual approaches: coarse-grain or fine-grain,
and automatic approaches: starting from hardware allocation first or from software alloca-
tion [DCDM97].

Different design environments exists, i.e. homogeneous (one design language, i.e., SpecC)
and heterogeneous (multi-language environment like C and VHDL combined).

In general, HW/SW Co-design methodology consist of four steps, according to [NdMM07].
First, a system specification is made. It can either be a software model (like in C++), or
a hardware description using a hardware description language (like VHDL). A software
specification indicates that the design follows a software-oriented approach, and if the system
specification is written with a hardware description language, then the design is following
a hardware-oriented approach. In a homogeneous design environment, the same description
language is used for both hardware and software. The next step consists of hardware and
software partitioning where the designer needs to determine which part to be implemented
in software and which part to be implemented in hardware. In the third step, both hardware
and software are designed and synthesized. In addition, an interface between hardware
and software is designed and synthesized. This involves adding latches, FIFOs or address
decoders in hardware, and inserting code for I/O operations and semaphore synchronization
in software. The final step of the design is to integrate hardware and software components
into the target architecture.

The verification of the design could be done in every step of the design process, but during
system integration, co-simulation is needed to verify that both hardware and software work
together as expected. This could either be done directly online on the platform, or through
dedicated software tools that allow simulation of hardware and software executing together.

Several development tools exist today which makes the design easier for a designer to
create and implement embedded systems using HW/SW Co-design.

For ASIP design, dedicated development tools, such as Silicon Hive, or IP designer from
Target Compiler Technologies, could be used. In this thesis, the Target IP designer tools
were used, and an overview of the tools will be given in the next section.

5.2 ASIP design with Target

In this section, the Target development tools are introduced, and the design environment is
briefly described. First, a general introduction to Target Compiler technologies is given in
Section 5.2.1, before the Target design environment is presented in Section 5.2.2.

5.2. ASIP DESIGN WITH TARGET 59

5.2.1 About Target
Target Compiler Technologies is the leading provider of re-targetable software tools for
the design, programming, and verification of Application Specific Instruction-set Processors
(ASIPs), [abo]. The processor is designed with a processor description language called
nML, which is a hierarchical and highly structured architecture description language, that is
used to represent ASIP designs at the abstraction level of a programmer’s manual [MD08].
Essentially, re-targetable tools behave as if they had been specifically created for the processor
defined by the nML processor model, without any customization required. A re-targetable
tool simply allows one to immediately determine the improvement in algorithmic performance
for any given architectural modification. Therefore, with nML, architectural changes are easy
to make, and with re-targetability, the affect is immediately apparent.

In the next section, the design environment is presented, where the focus will be on the
tools used in Chapter 6.

5.2.2 ASIP design with Target
The re-targetable tool-suite from target is called Chess/Checkers, and it supports both the
design and use of embedded processors in a heterogeneous HW/SW Co-design environment.
In this design environment, C is used to model the software application, and nML is used to
model the processor. The Chess/Checkers environment consists of six major packages; a C
compiler, a linker, an assembler and disassembler, an instruction-set simulator, a hardware
description language generator, and a test program generator. These tools are re-targetable,
and can be applied to different instruction-set architectures. An outline of these tools is
shown in Figure 5.1.

As shown in Figure 5.1, the application in C is compiled using the Chess compiler. This
compiler generates machine code in an Elf or Dwarf format. The Bridge linker generates an
executable Elf or Dwarf file from multiple C-files. It is also possible to translate assembly
code into machine code, or the other way around, using the Darts assembler/disassembler
tool. The instruction-set and datapath of the processor is described using the key element in
the Chess/Checkers environment, the nML language. This modeling language is described
in Section 5.3. Co-simulation of the software and hardware application is possible with
the instruction-set simulator (ISS) tool called Checkers. This ISS simulates the execution
of machine code on the target processor, using bit- or cycle-accurate simulation. It is also
possible to extract profiling information from the Checkers tool, along with information about
memory usage, stack usage, etc. When the correct behavior of the processor is verified, the Go
tool could be used to generate a synthesizable VHDL and/or Verilog model of the processor.
There is two possible ways of HDL generation; using the Primitives Definition and Generation
(PDG) language, or interface generation of functional units and code them manually in VHDL
or Verilog.

The term "primitives" refer to the primtive data types and operations of the processor
architecture, modeled by means of C++ classes, which are declared in the processor header
file. For the ISS, an implementation of these primitives in C++ is required, and for the
synthesizable HDL model, an implementation in Verilog or VHDL is required.

Both of these implementations can be written by hand, but this requires twice the effort
and raises the issue of consistency across these implementations. In addition, some things
are missing from C++ to conveniently describe hardware, e.g., operations to do bit and slice
selection, and types with a different number of bits than the standard C integer types.

To avoid these problems, the PDG language can be used to describe the primitives once.
This language is based on C with a few extensions to address the short-comings described

60 CHAPTER 5. THE TARGET DEVELOPMENT TOOLS

Figure 5.1: An outline of the Chess/Checkers environment.

above. From the PDG description, C++, Verilog and/or VHDL implementations of the
primitives can automatically be generated by the PDG tool. The generated C++ file can be
used when compiling the ISS. The generated Verilog or VHDL file can be used in the model
generated by the Go HDL generator. For more information about the PDG language, the
reader is referred to [Tar08].

The Risk test program generator quickly generates a large number of assembly-level test
programs. These test-programs can be executed in the ISS and in the HDL model of the
processor, in order to check the consistency of both models. According to [Tar03], the results
of a number of ASIPs has shown that the timing, power, and area performance obtained from
the generated VHDL code is comparable to manual designs. If necessary, the user could go
back to the nML description to modify the instruction-set architecture, after having analyzed
the performance.

It is possible to do the development of the application and the processor in parallel, but
the application development must finish before the processor could be fully optimized for the
application. For example, the design of the application is done in parallel with the design of
a basic processor. When the application design is complete, it is compiled using the Chess

5.3. THE NML LANGUAGE 61

compiler, and then simulated with the Checkers ISS. By analyzing the profiling information
achieved from the Checkers tool, and the assembly code generated by the Darts tool, it
is possible to optimize the processor further. This could for instance be done by forcing
the application to use special operations, like multiply-accumulate (MAC) operations, or to
combine two or more operations to be performed in parallel, thus saving cycle counts.

In the next section, the nML language is briefly introduced.

5.3 The nML language
nML is a hierarchical and highly structured architecture description language (ADL), [MD08].
It models a processor in a concise way for a re-targetable processor design and software
development tool suite. As described in [Tar03], the nML language captures the specification
of the processor’s instruction-set, in addition to the structural information to enable efficient
compilation. In this section, the nMl language is described briefly, and more detailed
information about the nML language can be found in [MD08].

An nML description is best written using a top down approach. The structural skeleton
of the target processor is first specified, where all the storage elements are declared. This is
done globally, in the first part of the nML description. This structural skeleton defines the
connection points for primitive operations that are defined on the processor. In addition, the
processor description contains a grammar that defines the machine language of the processor,
and thus models its instruction-set.

After the structural skeleton for the datapath is defined, the instruction-set is analyzed.
The structure is then captured by writing down production rules for the underlying

grammar. Every sentence in this language corresponds to an instruction in the instruction-set.
The composition of the orthogonal instruction parts are described with so called AND-rules,
and the alternatives of an instruction are described with OR-rules. An example of an
AND-rule and an OR-rule is shown in Code Snippet 5.1 and 5.2, respectively.

In Code Snippet 5.1, the rule is called arith_mem_ind_instr, where the two instructions
ar and mi are required. ar is an arithmetic instruction (called arith_instr), and mi is a
memory indirect load/store instruction (called mem_ind_instr). The AND-rule is denoted
by the comma which separates the two instructions ar and mi.

1 opn arith_mem_ind_instr (ar : a r i t h _ i n s t r , mi : mem_ind_instr)

Code Snippet 5.1: AND-rule

Similarly, in Code Snippet 5.2, the direct load/store instruction called mem_dir_instr
could either perform a direct load or a direct store operation. This is denoted by the "|" sign.

1 opn mem_dir_instr (l oad_di rec t | s t o r e _ d i r e c t)

Code Snippet 5.2: OR-rule

If an AND-rule instruction is to be defined, three attributes are needed; action, syntax
and image attributes. OR-rules do not use action or syntax attributes, but could have an
image attribute for the different inputs, although it is not needed. Usually, OR-rules are
used for a class of instructions related to each other, i.e., to separate between load and store
instructions, while AND-rules are used to define the composition of, for instance, a load
instruction. An example of a basic arithmetic-logic unit ALU instruction using the three
attributes is shown in Code Snippet 5.3.

62 CHAPTER 5. THE TARGET DEVELOPMENT TOOLS

1 enum alu {add "+" , sub "−" , and "&" , or " | " } ;
2
3 opn a lu_ ins t r (op : alu , a l : alu_left_opd , ar : alu_right_opd)
4 {
5 a c t i o n {
6 s tage EX1 :
7 A = a l . va lue ;
8 B = ar . va lue ;
9 switch (op) {

10 case add : C = add (A, B, AS) @alu ;
11 case sub : C = sub (A, B, AS) @alu ;
12 case and : C = A & B @alu ;
13 case or : C = A | B @alu ;
14 }
15 S = C @sh ;
16 AR = S ;
17 }
18 syntax : AR " = " a l op ar ;
19 image : op : : ar : : a l ;
20 }

Code Snippet 5.3: A basic ALU instruction

For the action attribute, a switch statement is used to select the primitive operation to
be executed. The selector of the switch statement is declared by the "op : alu" parameter
which refers to the enumeration type alu. This enumerate type generates a set of named
binary constants. For alu, the add, sub, and, and or constants get the values 00, 01, 10, and
11, respectively. Each entry in a switch statement contains a case label, and one or more
actions, which may be of any kind. That means they could refer to primitive operations,
or references to actions of other rules, or even other switch statements. The @alu denotes
that the instructions must be executed at the alu functional unit in the processor. stage
EX1 : indicates at which pipeline stage (in this case EX1) all operations are supposed to
be executed. al and ar are mode rules, which are special types of rules. These types of
rules are described in [MD08]. Basically, if special registers must be used as inputs, or a
special selection of values are needed, mode rules could be created in order to meet such
requirements.

The syntax attribute shows the assembly syntax of the instruction parts. Everything
between the double quotes must literally appear in the assembly language statement for the
corresponding rule.

The image attribute specifies the binary encoding of the instruction parts. All instantia-
tion names in the parameter list occur in the instructions image attribute. The parameters
are separated by "::", which represent a concatenation.

In the next chapter, the ASIP design for the fixed point C application, as described in
Chapter 4, is presented.

Chapter 6

Application mapping and ASIP
design

In this chapter, the ASIP design of the application described in Chapter 4 is presented. The
processor is designed by modifying an existing 16-bit processor core with a basic architecture,
from Target. The embedded environment around the processor is described in Section 6.1,
before the basic core architecture is described in Section 6.2. Section 6.3 then presents the
implementation strategy used in order to optimize the processor for the application, and the
validation strategy of the processor is presented in Section 6.4. All optimizations are presented
in Section 6.5, and the profiling results are presented in Section 6.6. VHDL generation is
discussed in Section 6.7. The place and route process is described in Section 6.8 before the
extraction of the power numbers is described in Section 6.9. The results for the processor
after the VHDL generation and place and route are presented in Section 6.10. All results are
discussed and some conclusions are made in Section 6.11.

6.1 The embedded environment of the processor

The embedded environment of the processor basically consist of an analogue to digital
converter (ADC), a buffering system, and the processor. In the hardware development,
it is assumed that the embedded environment will continuously receive input ECG samples
from electrodes attached to a patient. The ECG will arrive at the sample frequency fs, as
illustrated in Figure 6.1.

Based on the overlap described in Chapter 2.4, the embedded system must pre-buffer 2
seconds of ECG samples before they are sent to the processor for processing. The design of
this pre-buffering system is out of the scope of this thesis, but there exist several ways of
implementing a buffering system, like ping pong buffering [JM98], and static buffering [LM87].
As soon as the buffer is filled up with 2 seconds of sampled ECG data, the samples are sent
directly to the processor along with updated threshold values, calculated from the previous
round. The next set of input data comes 2 seconds later. This gives the processor a processing
deadline of 2 seconds. Therefore, the application has to be fast enough to finish in time, and
send all detected beats to the receiver system before the next set of input data arrives.

The new threshold values must arrive together with every new set of ECG samples. Since
the processor must finish before the deadline, the new threshold values have to be stored,
and fed back as inputs along with the next set of ECG samples. The new thresholds should
therefore be stored within the buffering system in order to be able to shut down the processor
while it is idle.

63

64 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

Figure 6.1: Processing interval of the processor in a real-time environment.

6.2 Platform architecture of the BASE core
Target provides a basic 16-bit processor core architecture, intended to illustrate various
concepts related to processor modeling, as well as tool capabilities such as on chip debugging
and processor verification [Tar09]. This processor core, called BASE, is in the scope of this
thesis used as a starting point for the development of an ASIP.

The BASE processor contains a collection of general purpose instructions, in addition to
other features such as:

· 16 bit integer arithmetic, bitwise logical and compare instructions

· Integer multiplications with 16 bit operands and 32 bit results

· 16 bit shift instructions

· Load and store instructions to and from a 16 bit data memory with an address space
of 64K words (indirect addressing)

· 16 bit program memory

· An 8 field, 16 bit wide general purpose register file.

· Various control instructions such as jumps and subroutine call and return

· Zero overhead loops

· Support for interrupts

· Support for on-chip debugging

6.2. PLATFORM ARCHITECTURE OF THE BASE CORE 65

· Possibility for application specific custom instructions

Figure 6.2 basically shows the architecture of the BASE processor. The rest of this section
will briefly describe the BASE architecture.

Figure 6.2: The BASE processor core architecture.

Memories and registers

The BASE core has two memories, one data memory (DM) and one program memory (PM).
Both memories have a 16 bit word length, and a size of 64K words. In addition, it has a 16-bit
wide general purpose register file with 8 fields. The register file accesses its units through
ports, and it has one port for each pipeline stage, except from the instruction fetch stage.
Other registers exist for the program counter (PC) and stack pointer (SP). In addition, there
are loop control and loop flag registers, link and interrupt link registers, status and interrupt
status registers, and product registers for the multiplier unit.

Instruction pipeline

The BASE processor has a 16-bit wide instruction word, and it is capable of executing single
and double word instructions. in the case of a double instruction word, the second word
contains a 16-bit immediate value, while the first word contains the encoding bits.

In order to meet the timing requirements for a given clock frequency, the processor
executes instructions using a pipeline with 3 stages; IF, ID and E1. In stage IF, the instruction
code is being fetched from the program memory, and in stage ID, the instruction is being
decoded. Most operations execute in stage E1. Figure 6.3 depicts the operation of the
pipeline. The time progresses from left to right, and the program instructions progresses
from top to bottom. In cycle 4, instruction A is executing the actions of its second stage (if
any), while instruction D is being fetched from the program memory.

66 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

����� � � � 	
 �

������ � � � 	
 �

�� �����������

� � �� �� ��

� � �� �� ��

� � �� �� ��

� � �� �� ��

Figure 6.3: Instruction pipeline of the BASE processor.

Arithmetic logic unit (ALU)

The instructions of the arithmetic logic unit (ALU) are intended to execute ANSI C arith-
metic, logical, and relational operations. This is a 16-bit ALU, and all operations execute in
pipeline stage E1.

Shift unit

The 16 bit shift unit executes its operations in pipeline stage E1, and the instructions are
intended for ANSI C shift operations.

Multiply unit

The multiplier performs 16 by 16 bit multiply operations and stores the 32 bit result in
the multiply registers (PH and PL). It operates directly on the general purpose register file
through ports mulr and muls, as shown in Figure 6.2. This multiplier performs both signed
and unsigned multiplications, and it has a multiply-accumulate (MAC) unit.

Load and store unit

The load and store instructions operate on the data memory (DM). The load and store unit
contains one address generator unit (ag1), and indirect addresses are taken from the general
purpose register file. The address generation unit can increment or decrement the address
using post modification. As shown in Figure 6.2, the nint9 type is a 9-bit type with negative
range (-1 to -256). This type is used for stack pointer (SP) indexed load and store operations.

In case a SP addition with an immediate value is needed, the word or sbyte type are
used. sbyte is a 8-bit signed type, and word is a 16-bit signed type. These inputs to the
address generator (ag1) unit are handled by the multiplexer shown in Figure 6.2. This address
generator is used to communicate with the memories.

Control instructions

The control instructions are performed by the program control unit (PCU). They include
jumps, subroutine call and return, hardware loops and interrupts. The PCU unit is also capa-
ble of executing multi-cycle instructions, multi word instructions and delay slot instructions.
The purpose of this unit is to advance the flow of the program.

Hazards

The base controller solves all hazards (artifacts) of the pipeline execution of instructions, by
organizing the software in such a way that the hazard does not occur. This is done through
software stalling. For more information about this, the reader is referred to [Tar09].

6.3. IMPLEMENTATION STRATEGY 67

6.3 Implementation strategy
Before the application from Chapter 4 can be mapped onto the platform architecture, the
BASE processor has to be modified.

First, the processor has to be re-targeted to the application by using the Chess compiler
from Target. Before the processor is re-targeted for this application, it has to be modified in
such a way that the application can execute and produce the correct results. In addition, the
main function of the application has to be modified to exclude the read and write operations
to file, since these operations are not supported by the BASE processor.

The second step is to simulate the processor with the instruction-set simulator (ISS),
and optimize the execution of the application through an iterative process. By reading the
assembly code produced by the Chess compiler, and by exploiting the profiling information
produced by the ISS, it is possible to identify the instructions in the critical loop, and optimize
them by using some of the techniques described in Chapter 3.2. The main purpose of this
optimization is to reduce the cycle count of the application.

When the critical loops of the application have been optimized, then VHDL files of the
optimized processor are produced by using the Go tool. The memories must be added to
the generated VHDL files, because the Go tool generates interfaces for the memories in the
design. In this project, 90 nm TSMC low power memories from Virage Logic Corporation
are used. The processor and memories have to be interfaced properly to each other through
a top module, before simulating the design through RTL simulation. The ncsim tool from
Synopsis is used for this simulation.

In the fourth step, the design is synthesized, and a place and route is performed on a chip
using a 90 nm TSMC process. For the place and route, a tool called Encounter from Cadence
is used. After a successful place and route, some information about the load resistance and
load capacitance are extracted from the layout of the design, and a netlist simulation is
performed. During the netlist simulation, several value change dump (VCD) files are created
in order to extract information about the power dissipation (power numbers). A VCD file is
an ASCII file which contains header information, variable definition and the value changes
for specific values, or all variables, in a given design.

In the final step, the power numbers are extracted by using a development tool called
Primetime from Synopsis. The VCD files created in the previous step are analyzed through
this tool, where information related to the power consumption are reported in a text file.

Figure 6.4 illustrate the hardware development flow based on the implementation strategy
just discussed. The validation strategy is presented in the next section, before the work done
in each implementation step in Figure 6.4 are described.

6.4 Validation strategy
Two types of simulation environments are used; self-checking simulation and simulation
through text files. These environments are described in the following subsections.

6.4.1 Self-checking simulation

In order to simulate the application fast and efficiently, the main function is modified to be
self-checking. By having a self-checking application, it is possible to run RTL and netlist
simulations, and validate the result of the simulation by reading the result registers. The
same input ECG signal as the one used for profiling in Chapter 4.7.2 is used, with an ECG
sample frequency of 1000 Hz.

68 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

Figure 6.4: ASIP implementation strategy.

The ECG input sample array is defined globally, along with a parameter array, containing
information like number of ECG samples, threshold parameters, etc. The answer arrays
containing the detected beats and the new threshold values are stored separately, both defined
globally. By defining the arrays globally, it is possible to read the allocated memory address
in the data memory from within the ISS, and confirm the correct results.

6.4.2 Simulation interface with TCL

In order to simulate the processor with all other signals in the test databases used in
Chapter 4, an interface through text files is used. A scripting language called Tool Command
Language (TCL) is used to interface the processor simulation in the ISS by taking input
values from a text file, and write the results to file. TCL is a textual language intended for
issuing commands to interactive programs such as text editors, debuggers, and shells. It has
a simple syntax and it is also programmable.

In this TCL interface, 4 files are read, one for the input ECG samples, one for the
parameters, one for the expected beats, and one for the expected new thresholds. In a similar
manner as the simulation interface for the C-files in Matlab (as described in Chapter 4.4),
this script first initializes the ISS, loads both PM and DM, before the input parameters and
arrays are updated by the TCL script. The application then executes normally through the
ISS, and stores the results to their allocated registers. These registers are then read by the
TCL script, and compared to the expected results. A text file is then produced, indicating if
the test signal failed or succeeded. All input files, containing the input data and the expected
results, are extracted by the Matlab databases. The TCL environment is also illustrated in
Figure 6.4.

6.5. PROCESSOR CORE MODIFICATIONS AND OPTIMIZATIONS 69

6.5 Processor core modifications and optimizations
This section presents the modifications and optimizations done to the processor architecture.
The same test scenario as the one described in Section 6.4.1 and Chapter 4.7.2 has been used
during the optimization process.

In order to handle ECG signals sampled at 1000 Hz, 512 KB data memory is required if
32-bit integers are used, or 256 KB if 16-bit integers are used. Therefore, the 128 KB data
memory had to be extended.

Initially, the memory extension was done using two 16-bit wide data memories with a
size of 128K words. This 16-bit BASE processor was then simulated using the self-checking
test described in Section 6.4. However, this simulation failed because the results were wrong.
An analysis of the application showed that shifting the coefficients 14-bits was too much
for some input values. This required the integers to be defined as long instead of int.
Since these coefficients were calculated in the critical loop of the application, the change
to long variables would result in a longer execution time because the processor must execute
additional instructions to handle 32-bit words. Therefore, a 32-bit processor would be faster
and more energy friendly, since it would in this case execute less instructions. In Chapter 4.6
it was assumed that the number of bits reserved in the calculation within the critical loop
was sufficient to handle overflow, based on the use of 16-bit integers. The 16-bit processor
proved that more bits are needed for overflow. The software simulation did not indicate this
issue because the standard GCC compiler assigned 32-bit integers for the software.

Alternatively, one could have shifted the coefficients less than 14 bit, but this would result
in inaccurate values. Therefore, the decision was to convert the 16-bit processor to 32-bit.

The modification of the processor required an extension of the addressing mode, from
16-bit addressing to 32-bit addressing. The word data type of the processor is also extended,
from 16-bit to 32-bit. This change required a change in all the instructions in the instruction-
set that were related to immediate values. All 16-bit immediate words became 32-bits words,
and appropriate bits needed to be assigned to each instruction that processed an immediate
word value. In addition, the immediate bytes were now changed from 8-bit to 16-bit, and
they had to be defined separately.

The program memory is still 16-bit, but the PCU is modified to handle triple instruction
words (for 32-bit immediate values). The resulting instruction-set is at most 48 bit wide, and
Figure 6.5 illustrates the 32-bit processors instruction-set, as seen from the nML viewer in
the Target IP designer tools. In this figure, all instructions consist of (one or more) 16-bit
words. They are all encoded in the first instruction word.

After the conversion, the resulting 32-bit processor was simulated using the simulation
environments described in Section 6.4. The results are presented in Section 6.6. The processor
was then ready for optimizations, and all optimizations done are described in the rest of this
section.

Optimization with MAC operations

The existing multiply-accumulate unit (MAC) did not perform the desired MAC operation.
The MAC unit multiplied two unsigned numbers and shifted the result of the multiplication
16 bit to the left, before it accumulated a 32-bit value formed by two input registers. This
MAC was intended for other purposes than the one needed in the case of this application,
and therefore it had to be removed. By studying the assembly code for the main critical loop
of the application (the convolution step within the continuous wavelet transform), shown in
Figure 6.6, one could see that a signed multiplication was performed, before the multiplication
result was accumulated with the temp variable. Figure 6.6 is taken from the ISS window.

70 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

Figure 6.5: Initial instruction-set of the 32-bit processor.

The highlighted part of Figure 6.6 shows all instructions involved to execute the corre-
sponding C code. All 6 assembly instructions were executed 3.6 million times each according
to the profiling information generated by the ISS (in addition to the move operation between

6.5. PROCESSOR CORE MODIFICATIONS AND OPTIMIZATIONS 71

the highlighted lines). Since all assembly instructions for this C-code are executed the same
amount of time, it is easy to see that by reducing these instructions it would result in a
shorter execution time for the application.

Therefore, the MAC unit is modified to multiply two signed integers, and accumulate
without shifting the result of the multiplication. This was done in the primitives definition
and generation (PDG) language of the processor. Code Snippet 6.1 shows the PDG code for
the MAC unit before the modification, and in Code Snippet 6.2, the resulting MAC unit is
shown. The processor was then simulated again in the ISS, and the resulting assembly code
is shown in Figure 6.7. This modification alone saved approximately 14.4 million cycles of
execution.

Figure 6.6: Initial simulation without the MAC unit.

1 void macl (word a , word b , word c l , word ch , word& r l , word& rh)
2 {
3 int64_t p = (uint32_t) a ∗ (uint32_t)b ;
4 int64_t q = (p << 16) + (ch : : c l) ;
5 r l = q [3 1 : 0] ;
6 rh = q [6 3 : 3 2] ;
7 }

Code Snippet 6.1: 32-bit MAC unit

1 void macl (word a , word b , word c l , word ch , word& r l , word& rh)
2 {
3 int64_t p = a ∗ b ;
4 int64_t q = p + (ch : : c l) ;
5 r l = q [3 1 : 0] ;
6 rh = q [6 3 : 3 2] ;
7 }

Code Snippet 6.2: 32-bit MAC unit after modification.

Figure 6.7: Simulation with the resulting MAC unit.

Parallel load and store operations

Based on Figure 6.7, the load operations related to the MAC operation are combined by
a customized instruction where they are performed in parallel. This optimization resulted
in saving additional 3.6 million execution cycles. However, since it is only possible to load

72 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

and store from the same memory once per pipeline stage, the DM memory is split in two
identical data memories, DM and CM. CM stands for coefficient memory, and half of the
data elements are assigned to CM. The assignment of variables to a specific memory is done
by specifying this in the C code directly, as shown in Code Snippet 6.3.

1 i n t l i s t chess_storage (CM) p s i _ s c a l e ;
2 i n t l i s t e c g s i g 3 ;

Code Snippet 6.3: Direct assignment to CM.

The ecgsig3 array is assigned to the standard data memory (which is assigned to DM by
default), and the psi_scale array is assigned to the CM memory. Both those arrays are used
in the MAC operation, and could now be performed in parallel.

In order to access two memories in parallel, another address generator, ag2, is created
such that the load and store operations from the DM and CM memories could be performed
within the same pipeline stage. This is done through separate ports to the register file, called
rr1 and rr2, as shown in Figure 6.12.

Based on the load and store instructions for the data memory, the indirect load and store
instruction is copied and modified to operate on CM. Since the CM does not have any stack,
only the indirect instruction is needed. The nML code for the parallel load instruction is
shown in Code Snippet 6.4. As shown, the address generator fetches the addresses in the ID
stage of the pipeline for both DM and CM, and the load is performed in parallel in stage E1.
The parallel store instruction is done similarly.

1 // Def ine the behavior o f the p a r a l l e l load i n s t r opera t i on :
2 opn par_load_pload (ag1 : ag_opn , r r1 : r_reg , ag2 : ag2_opn , r r2 : r_reg2)
3 {
4 a c t i o n {
5 s tage ID :
6 ag1 ;
7 ag2 ;
8 s tage ID . . E1 :
9 dm_addr`ID` = ag1p `ID ` ;

10 rr1 `E1` = dm_read`E1` = DM[dm_addr`ID `] `E1 ` ;
11 cm_addr`ID` = ag2p `ID ` ;
12 rr2 `E1` = cm_read`E1` = CM[cm_addr`ID `] `E1 ` ;
13 }
14 syntax : " ld " r r1 " ,dm(" ag1 ") | ld " r r2 " ,cm(" ag2 ") " ;
15 image : ag1 : : r r1 : : ag2 : : r r2 ;
16 }

Code Snippet 6.4: Parallel load instruction.

The processor was simulated after this optimization, resulting in the assembly code shown in
Figure 6.8.

Figure 6.8: The new parallel instruction assembly code, as shown in the ISS.

This new instruction could now be viewed by the nML viewer in the Target IP de-
signer tools, as shown in Figure 6.9. In this figure, the parallel load instruction is called

6.5. PROCESSOR CORE MODIFICATIONS AND OPTIMIZATIONS 73

par_load_pload, and the parallel store instruction is called par_store_pload. The third
instruction is exactly the same as the indirect load and store instruction for DM, modified to
access CM.

Figure 6.9: The new parallel instruction, as shown in the nML viewer.

Combining MAC and load instructions

By studying the assembly code in Figure 6.8, one could see that there is a possibility to load
the input registers of the MAC unit directly. However, doing this requires another pipeline
stage. The parallel load and MAC instruction are therefore combined by first adding another
pipeline stage, E2, and creating a custom instruction that integrates both MAC and parallel
load instructions. The MAC instruction is executed in pipeline stage E2, while the parallel
load instruction executes in pipeline stage E1. Code Snippet 6.5 presents this new instruction.

Instead of assigning the two multiplicands to the multiplier from registers, additional
pipes (delay registers for the pipeline) were created, called mulr2 and muls2. In this case,
a pipe is used to delay a signal one pipeline stage. This is done because the values from the
data memory in pipeline stage E1 would in this case be fed directly into the input of the
multiplier in pipeline stage E2.

After this modification, the processor simulation resulted in 3.6 million cycles less than
the previous round, optimizing this critical loop optimally. As shown in Figure 6.10, the
critical loop, performs the MAC operation using only one instruction, which is executed 3.6
million cycles.

In order to eliminate pipeline hazards, the compiler adds one nop operation after the end
of the inner loop of the convolution step. The convolution step is described in Chapter 4.2.1

74 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

Figure 6.10: The new parallel load and MAC instruction.

and Appendix A. This nop operation executes only 16 000 cycles, compared to the 3.6 million
cycles that was saved by this parallelism.

1 opn par_load_macl_pload (ag1 : ag_opn , ag2 : ag2_opn)
2 {
3 a c t i o n {
4 s tage ID :
5 ag1 ;
6 ag2 ;
7 dm_addr = ag1p ;
8 cm_addr = ag2p ;
9 s tage ID . . E1 :

10 mulr2 `E1` = cm_read`E1` = CM[cm_addr`ID `] `E1 ` ;
11 muls2 `E1` = dm_read`E1` = DM[dm_addr`ID `] `E1 ` ;
12 s tage E2 :
13 macl (mulr2 , muls2 , mulu2=PL, mulv2=PH, mulx2 , muly2) @mul ;
14 PL = mulx2 ;
15 PH = muly2 ;
16 }
17 syntax : " macl (cm(" ag2 ") ,dm(" ag1 ")) " ;
18 image : ag1 : : ag2 ;
19 }

Code Snippet 6.5: Parallel load and MAC instruction.

Combining load, equal, greater than and select instructions

In a similar way as the MAC operation, another critical loop is optimized by combining
a load, select and equal instruction to execute in parallel. This optimization resulted in
reducing three instructions, executing approximately 200 000 cycles each into one custom
instruction, as shown in Figure 6.11. This optimization saved around 400 000 cycles. The
nML code for this instruction is given in Code Snippet 6.6.

Figure 6.11: The new parallel load, equal and select instruction.

This instruction was created by copying the functionality from the equal and select
instruction and combining them together with a normal load operation. The greater than
instruction was added because it also optimized another part of the application similarly,
by a parallel load, greater than, and select operation. As seen in Code Snippet 6.6, there
are two ALUs executing in parallel, alu and alu2. The second ALU is created for the select
operation.

If an independent select statement is assigned to alu2 by the compiler, then a delay (nop)
must be inserted. One custom instruction that handles this situation is made, by assigning
a delay (the nop instruction). This is shown in Code Snippet 6.7.

6.6. TARGET PROFILING RESULTS 75

1 opn par_ld_eq_sel (ag1 : ag_opn , op : leq_op , r : c2u , s : c2u , t : c2u)
2 {
3 a c t i o n {
4 // Load :
5 s tage ID :
6 ag1 ;
7 s tage ID . . E1 :
8 dm_addr`ID` = ag1p `ID ` ;
9 RT[r] `E1` = r t e 1 = dm_read`E1` = DM[dm_addr`ID `] `E1 ` ;

10 s tage E1 :
11 // eq or gt :
12 a l u r = r r e 1 = RT[r] ;
13 a l u s = r s e 1 = RT[s] ;
14 switch (op) {
15 case eq : CND = eq (alur , a l u s) @alu ;
16 case gt : CND = gts (a lur , a l u s) @alu ;
17 }
18 // S e l e c t :
19 a lur2 = 1 ;
20 a lus2 = rre12 = RT[t] ;
21 a lu t2 = s e l e c t (CND, alur2 , a lu s2) @alu2 ;
22 RT[t] = rte12 = a lut2 ;
23 }
24 syntax : " ld r " r " ,dm(" ag1 ") | " op " r " r " , r " s " | s e l r " t " ,1 , r " t ;
25 image : ag1 : : op : : r : : s : : t ;
26 }

Code Snippet 6.6: Parallel load, equal and select instruction.

1 opn par_nop_sel (t : c3u)
2 {
3 a c t i o n {
4 s tage E1 :
5 // NOP:
6 nop () ;
7 // S e l e c t :
8 a lur2 = 1 ;
9 a lus2 = rre12 = R[t] ;

10 a lu t2 = s e l e c t (CND, alur2 , a lu s2) @alu2 ;
11 R[t] = rte12 = a lut2 ;
12 }
13 syntax : " nop | s e l r " t " ,1 , r " t ;
14 image : t ;
15 }

Code Snippet 6.7: A nop and select instruction.

Architecture modification

All optimizations and modifications resulted in a new BASE architecture, as shown in
Figure 6.12. Basically, an address generator and a second ALU are added, in addition to
some pipes and some ports. This figure shows Figure 6.2 with the additional hardware
marked in red.

6.6 Target profiling results
Based on the profiling reports generated by the Target tools, the reduction of program
execution cycles are shown in Figure 6.13, for each optimization step. The same signal
was simulated using ECG sample frequencies of 500, 360 and 198, in order to illustrate how
the different execution times vary with different input sizes (number of samples). From this

76 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

Figure 6.12: The optimized BASE architecture.

figure, it is clear that the execution cycle counts are highly dependent on the size of the input
signal. In the figure, the relative ratio is the same for all frequencies.

In Figure 6.13, unoptproc is the unoptimized processor, Cust MAC is the improvement
after the customized MAC operation has been added. Similarly, Par ld, st shows the opti-
mization after the parallel load and store have been added. Par MAC, ld is after the parallel
MAC and load instruction was applied, and Par load, eq/gt, sel shows the result after all
custom instructions were created. Ctrl sig in local reg is after the final optimization, where
some control signals were defined locally instead of globally. After all optimizations, the
execution cycle count was reduced by 81%.

���������	

�����

���������
�����
���

��������������������

�������������	������

�

�������

��������

��������

��������

��������

��������

�	���	���������������

����� !

���� !

�"�� !

�#$� !

Figure 6.13: Improvement in execution cycles after every optimization step.

6.7. VHDL GENERATION 77

6.7 VHDL generation
After the optimizations mentioned in the previous section, the remaining code still had some
critical loops. However, these loops did not execute more than 16 000 cycles each, and
therefore the optimization process was stopped in order to proceed with the VHDL generation.

The VHDL files of the processor are produced by using the Go tool. In addition, the PDG
language made sure all functional units were generated. Although the process was automated,
the BASE controller VHDL file needed two modifications before it could function properly.
The first modification was the killing of the next instruction when relative conditional jumps
are executed. The second modification was to increment the program counter when returning
from a subroutine call.

After these modifications, the optimized BASE processor was interfaced with three mem-
ory blocks consisting of 90 nm TSMC low power memories from Virage Logic Corporation
(VLC). Two of the memories have a data word size of 32 bit, while the last memory has
a word size of 16 bit. It was not possible to create one large memory of 256 KB for the
data memories, because the largest possible memory available from VLC libraries used in
this project, was a high performance ultra low power SRAM, with a memory size of 16K
words. This memory could operate in a clock frequency up to 100 MHz. Therefore, 4 of these
memory blocks had to be connected together through a memory wrapper. The entity of a
VLC memory block is shown in Figure 6.14.

Figure 6.14: A 90 nm TSMC low power memory block from VLC.

Each memory block can be addressed through the ADR 14 bit address input. D is the
data input, and WE is the write enable signal. The memory could only be written to when
WE is logic high. OE is the output enable signal, and this signal indicates the contents of
the memory location given by ADR to Q when it is logic high. When this signal is logic low,
the data output, Q is in a high impedance state. ME is the memory enable input. When
this signal is logic low, the memory is deactivated. Therefore, it must be active in order to
perform a read or write operation to the memory. A similar block is made for the program
memory, with a 16 bit word size. Figure 6.15 illustrates how the memories are wrapped
together for the data memory DM, in order to achieve the desired memory size. CM and PM
are done similarly.

In order to write to a 64K word memory, a 16 bit address is needed. But since each
memory block only has 14 bit for the address memory, the 2 MSB of the input address signal
is used to determine which memory is enabled when a read or write operation takes place.
As seen in Figure 6.15, WEN is used to assign all WE signals. Similarly, D is connected
to all data inputs. The 14 first bits of the A input are connected to the ADR input of all
memory blocks. However, the CEN is connected to a demultiplexer, which uses the 2 MSBs

78 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

Figure 6.15: The memory wrapper of DM.

of the input address A to activate the desired memory. Each output of this demultiplexer is
connected to the ME input of a specific memory. Table 6.1 shows the truth table of how the
CEN signal is forwarded to these memories by the 2 MSBs of the address input signal.

Truth table of how the memories are enabled
CEN A[15] A[14] ME_3 ME_2 ME_1 ME_0

1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

Table 6.1: Truth table for the memory enable signal of DM.

The output, Q, is assigned by a multiplexer of all output signals from the memory blocks.

6.7. VHDL GENERATION 79

The 2 MSBs of the address input determine which output signal is forwarded to Q. Basically,
only one internal memory block is enabled at a time.

The top module, connecting all memories with the BASE processor is shown in Fig-
ure 6.16. The clk signal is the processor clock, mem_add is the memory address location,
mem_data_in is the data to be assigned to a memory selected by the mem_select signal.
mem_wen is the write enable signal for the memories, and mem_data_out is the output
signal of the memory selected by the mem_select signal. The reset signal is used to reset
the base processor.

All input signals, except from the reset, are connected to the memories, in order to
be able to program and read them externally. As long as the reset signal is logic high,
the processor is deactivated, and an external testbench can program the memories with the
desired information. After the memories are programmed by the testbench, the reset signal
is set to logic low. The processor then starts the program counter and executes the program
specified by the information in the program memory. The processor will continue executing
the program memory in a loop unless the reset signal is set to logic high.

All memories have dedicated connections to the BASE processor, and an external test-
bench can program the memories, and initialize or reset the BASE processor through the
inputs of the top module. Similarly, an external testbench can also read the values in a
memory through the output signal of the top module.

Figure 6.16: The top module, connecting the memories and the BASE processor.

The self-checking test described in Section 6.4 was used to verify the functionality of this
processor, and the correct beats were detected by RTL simulation in ncsim.

80 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

6.8 Place and route

In the place and route step, the design was synthesized for 100 MHz, where the design was
optimized for low power consumption. During synthesis, a library of standard cells was
specified. In this thesis, standard cells from a low power TSMC library are used.

The memory blocks are placed and routed on a chip as shown in Figure 6.17. This chip
is created by a 90 nm TSMC process, and the processor core is placed between the DM and
CM. Two of the PM blocks (the smallest blocks) are placed next to the DM memory and
the other two blocks were placed next to the CM memory. The processor core is centered
between DM and CM because most of the communication is related to those memories.

Figure 6.17: How the memory blocks were placed on the chip.

After this successful place and route, the location of the individual standard cells (in the
design) were known. The capacitance on the output of each standard cell could then be
calculated by adding both the input capacitance of the connected standard cells, and the
interconnect (wire) capacitance. The wire capacitance thereby were calculated by using a
technology file provided by TSMC. In this technology file, the capacitance for the different
metal layers are listed. The capacitance of the complete design is calculated in this way, and
the information was written into a so called standard parasitic exchange format (SPEF) file.
Also, the resistance of the interconnect (wires) was extracted from the layout of the design.

After the capacitance and resistance of each node was known, and the drive strength
of the cells was given, the timing of the design was calculated with Primetime. The drive
strength refers to how much current the cells can source (flow into the output) or sink (flow
out of the output). The timing is calculated by adding the interconnect delay, and the delay
from the standard cells (from input to output) in all paths.

The netlist of this chip is generated through Encounter, and timing reports were gener-
ated. These reports indicated no violating paths, negative fan outs, or other problems. The
timing information was used in the netlist simulation in ncsim. In addition, VCD files of the
signals were created for the whole execution phase of the application in the processor. These
dump files were used to extract the power numbers described in the next section. Figure 6.19
in Section 6.10.1 shows the correctly detected beats from the netlist simulation.

6.9. EXTRACTION OF POWER NUMBERS 81

6.9 Extraction of power numbers
The final step in the design process was to extract information about the power dissipation
of the optimized processor. All steps involved in the extraction of the power dissipation was
also done for the unoptimized 32-bit BASE processor (using the same standard cell libraries)
in order to compare the results.

These power numbers were extracted by Primetime from the VCD files created during
the netlist simulation. The power numbers were only extracted during the execution phase
of the application. No information about the power dissipation were extracted when the
processor was idle, because it is in this thesis assumed that clock gating is applied. The
idle power consumption could then be neglected, except from the leakage power. By using
Equation 3.16, the average power consumption for the optimized processor was calculated.
The duty cycle of each processor was calculated from Equation 3.17.

In addition, a graph containing the values of the circuit delay for a given supply voltage in
a 90 nm TSMC process, was studied in order to explore the possibilities of reducing the power
consumption even more by some of the techniques presented in Section 3.3. This graph is
shown in Figure 6.18, and it was created using a ring oscillator for a different range of supply
voltages, beginning from 1.2 V down to 0.6 V. In this thesis, standard voltage libraries are
used, with a supply voltage of 1.08 V.

Graph0

 (
s
)

0.0

500p

1n

1.5n

2n

2.5n

 0:vd(_)

0.60.6250.650.6750.70.7250.750.7750.80.8250.850.8750.90.9250.950.9751.01.0251.051.0751.11.1251.151.1751.21.225

(s) : 0:vd(_)

Period(v(out13))

Figure 6.18: How the delay of the circuit varies with different supply voltages in a 90 nm low
power TSMC process.

How this information could be used to reduce the power consumption is discussed in
Section 6.11, based on the results presented in Section 6.10.

6.10 Simulation and power consumption results
In this section, all simulation results are presented. In addition, the power consumption of the
optimized and the unoptimized processor are presented. Both power and simulation results
are achieved by using the self-checking test described in Section 6.4.1. Section 6.10.1 shows
how the detected beats were identified in the waveform simulation window by reading the
memory address of the global result arrays location, for the RTL simulation and the netlist
simulation. Finally, Section 6.10.2 presents the power dissipation of both the optimized and
the unoptimized BASE processor.

6.10.1 Register transfer level (RTL) and netlist simulation results
The expected beats to be detected were pre-calculated, and stored in a lookup table in the
data memory DM. Similarly, a lookup table was made for the results of the application. All

82 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

values in this lookup table were set to zero, and the detected beats are then copied to that
lookup table in the main function of the program. Similarly, the expected new threshold
values and the actual results were compared.

The netlist results were confirmed in a similar way as the RTL simulation, by observing
the results on the Q-port of the data memory, at the addresses allocated for the result lookup
tables. Figure 6.19 shows the waveform of the netlist simulation where the right beats were
detected correctly.

Figure 6.19: Results from the netlist simulation with ncsim.

6.10.2 Power numbers

From the equations in Section 6.9, the duty cycle of the optimized processor is found to be
2.8%. Similarly, the duty cycle of the unoptimized processor is found to be 14%. For the
optimized processor, the total average power consumed within the base processor and the
memories DM, CM and PM, were extracted from Primetime. The same was done for the
unoptimized processor.

As expected, the unoptimized processor consumed less average dynamic power while it was
running than the optimized processor. The total dynamic power of the unoptimized processor
consumed is much greater than the optimized processor within the 2-second interval. This is
illustrated in Figure 6.24. Figure 6.20 illustrates the portion of the total power consumption
each module in the optimized processor (on the left) and the unoptimized processor (on
the right). Figure 6.21 and 6.22 illustrates the same for the leakage power and dynamic
power, respectively. Figure 6.23 and 6.24 display the total average power consumption of the
processors compared to each other.

The total average power dissipation of the optimized processor is reduced by 55%. Sim-
ilarly, the total average dynamic power dissipation is reduced by 78%. The total average
leakage power on the other hand has increased by 13%. It is worth noting that the difference
in the leakage power consumed in the optimized processor is not shown in Figure 6.24.

�����
���

���	�
	
�

��
�		
�
�

�����	
���

�������������

����������������

����

��

��

 �

������
���

������
���

��	�
�
���

��������������

��������		�	��	���

����

��

��

Figure 6.20: Total average power consumption of the processors. On the left are the results
for the optimized processor, and the unoptimized processor results are displayed on the right.

6.10. SIMULATION AND POWER CONSUMPTION RESULTS 83

�����
��

�����
�	��	�

��

�
��
�
���

������������
�������
��������

����

�

!

"

����
��

����
���

�	�

��

�������������

���������
������

����

��

 �

Figure 6.21: Average leakage power consumption of the processors. On the left are the results
for the optimized processor, and the unoptimized processor results are displayed on the right.

 ����
�
�� ���

���

���		
	!�

����!
	��

����"#$%&'�����

���������
�((���

����

��

��

!�

������
���

	�����
���

	�
�
�
�	�

����"#$�%&'�����

��������
���
	���

����

��

��

Figure 6.22: Average dynamic power consumption of the processors. On the left are the
results for the optimized processor, and the unoptimized processor results are displayed on
the right.

���� �� �� 	�

�

�

�

�

�

�����

�����

�����

����
�����

��
���
�����

���������������� ���!�"#$%��&�"�'$()

)"���&%&*�+����!�##��

,��&%&*�+����!�##��

Figure 6.23: Total average power consumption of the processors compared together.

84 CHAPTER 6. APPLICATION MAPPING AND ASIP DESIGN

Figure 6.24: Total average power consumption of the processors.

6.11 Discussion of the results and conclusions
In Figure 6.13, it is shown that the amount of cycles is reduced in every optimization step.
What is also observed from this figure, is that the processing time is highly dependent on the
input ECG sample frequency, fs. At a sample frequency equal to 198 Hz, the execution time
of the processor is at a minimum.

The total average power consumption shown in Figure 6.20 illustrates clearly that the
memories have a great impact on the power consumption. Furthermore, the percentage of
the power consumed by the optimized processor is improved by 55%. The dynamic power
shown in Figure 6.21 is reduced by 78% in the optimized processor. The leakage power has
increased because of the additional application specific hardware, and the additional memory,
CM.

Based on the results shown in Figure 6.23, the conclusion is that the optimized processor
is more energy efficient than the general purpose processor. However, there are more opti-
mizations that could be done in order to make the processor more energy efficient. There
is no doubt that a change in the application that would result in less memory usage, would
automatically reduce the memory sizes, and hence the power consumption.

In the place and route step, the ASIP was assigned a 128 KB program memory. According
to the usage of instruction words, not more than 8 KB is needed to execute the application.
However, ASIPs are meant to be used for several other applications, and a bigger size of
the program memory is therefore preferred. In any case, more power could be saved by
reducing the size of the program memory, because the processor reads from it during the
whole execution time.

Since the BASE core supported several features, as described in Section 6.2, not all of
them are used for the target application. Switching them off or removing the modules which
are not used would result in optimizing the architecture of the processor.

In the case of the unoptimized processor, the execution time resulted in approximately
27 million cycles, while the optimized processor resulted in approximately 5 million cycles.
This is a reduction of 81%. For both processors to finish processing before the deadline of 2
seconds, the unoptimized processor can operate in the frequency range 14 MHz to 100 MHz,
when the ECG sample frequency is 1000 Hz. Timing issues could easily occur if the processor
is synthesized for higher frequencies, because the memories applied operate at maximum 100
MHz. The optimized processor clock frequency range is on the other hand between 3 Mhz
and 100 MHz.

The penalty of larger area is small, because the improvements were gained by adding a
few application specific units. The same chip area shown in Figure 6.17 was used for the
unoptimized processor.

6.11. DISCUSSION OF THE RESULTS AND CONCLUSIONS 85

Assuming that the application is optimal, and that the cycle count has been optimized
fully, it would be possible to make the processor even more power efficient by applying voltage
scaling and power gating, as described in Chapter 3.3. From Figure 6.18, the voltage supply
of a transistor in a 90 nm TSMC process could be scaled down to 0.6 V. For lower voltages,
the delay is to high. However, the corresponding delay would result in a 6 times slower circuit.
In the case of a clock frequency of 100 Mhz, the operating clock frequency would have to be
scaled down to approximately 17 Mhz, without violating the deadline of the processing time.
The processor would in this case consume dynamic power for a longer time period. If the
leakage power is dominant, then the total average power consumption might increase.

The supply voltage in the voltage libraries used in this project is 1.08 V. By using
Equation 3.1, the dynamic power is estimated to be reduced with a ratio of 19 times (or
94.7% improvement) by applying voltage and frequency scaling.

Alternatively, by applying power gating, one could shut down the processor after it has
finished processing, and wake it up again just before the next set of samples are about to
arrive. By doing so, the leakage power could be reduced significantly. The leakage power
consumed when the processor is idle (in Figure 6.24), would be reduced to approximately
zero. This means that the reduction in leakage power would be 97.2% for the optimized
processor.

For 90 nm TSMC, the improvement gained by using voltage scaling or power gating is
more or less the same. However, the gain by using power gating is slightly better than the
gain achieved by voltage scaling. When it comes to newer technologies than 90 nm TSMC,
the leakage power starts to be more dominant compared to the dynamic power consumption.
Therefore, one could reduce the leakage power significantly by reducing the duty cycle of the
processor as much as possible, and by applying power gating.

Chapter 7

Conclusions

Compared to of-the-shelf general purpose processors, it is possible to reduce the power con-
sumption of a processor significantly for a given set of applications, by designing application
specific instruction-set processors (ASIPs). However, in this thesis, it is concluded that the
memory usage of the application is dominant in the power consumption. It is only possible
to fully optimize the processor if the application is fully optimized in terms of memory usage
and power consumption.

In the software development activities presented in Chapter 4, the provided Matlab model
was converted into a fixed point C application. This application was then optimized further by
using lookup tables, inline functions, reducing read and write operations to global memories,
eliminating divisions with constant values where it is possible, combining loops, implementing
software division for usage outside the critical loop, implementing a special cosine function
using a small lookup table, insertion of pre-processor macros, and re-usage of variables. The
run-time memory usage of the application was reduced significantly, to only 150 KB for an
ECG sample frequency of 198 Hz.

It is concluded that the data memory usage in the resulting fixed point C application
is far to much for a low power general purpose processor, or microcontroller. In order to
achieve higher power efficiency, the processor architecture needs to be optimized for the
specific application, resulting in an ASIP. In addition, the application requires the use of
32-bit integers, and therefore a 32-bit processor is needed. The accuracy is not satisfactory
with the use of 16-bit integers.

In the hardware development presented in Chapter 6, a 16-bit general purpose processor
architecture was converted into a 32-bit architecture. The resulting architecture was then
optimized by applying several hardware optimizations, i.e., a customized multiply-accumulate
(MAC) operation, and by adding instruction level parallelism with two load and one MAC
operation. Other optimizations include the creation of customized instructions that combined
two or more assembly instructions to be executed in parallel within the same clock cycle.

Due to the added functionality in the optimized processor, and because the data memory
has been divided into two independent memories, the leakage power has increased by 13%.
For the technology used in this thesis, the leakage is not so dominant compared to the dynamic
power. The number of execution cycles of the application has been reduced by 81%, resulting
in a reduction of the total average power consumption by approximately 55%.

It is concluded that the processing time is highly dependent on the sample frequency of the
input ECG signal. In addition, it is shown that the memories have a significant impact on the
total average power consumption, and by reducing the memory usage, the power consumption
would be reduced significantly. The processor is optimized for this application by adding

87

88 CHAPTER 7. CONCLUSIONS

dedicated hardware, resulting in a reduction of the average dynamic power consumption by
78%.

The power consumption could be reduced even further by applying voltage and frequency
scaling. A rough estimate shows that by reducing the supply voltage from 1.08 V to 0.6 V
using 90 nm low power TSMC process, the dynamic power consumption could be reduced
approximately 19 times. This comes at the cost of a slower circuit.

Alternatively, if power gating is applied, then one could shut down the processor when it
is idle. Since the idle time is quite big in the case of this application when a clock frequency
of 100 MHz is used, then the leakage power consumption is calculated to be reduced by 97.2%
in the case of the optimized processor.

The optimized processor can operate in the frequency the range 3 to 100 MHz, without
violating the deadline constraints of the application. However, if the clock frequency is 3 MHz,
then power gating would not benefit in the reduction of the power consumption, because the
processor would finish just in time before the next set of input data arrives. In this case,
voltage scaling is a more attractive solution.

Since the leakage power is more dominant for newer technologies, it is concluded that
power gating might be a better solution than voltage scaling.

Chapter 8

Future work

In future work, the application should be re-designed, with the focus of reducing the data
memory usage. Alternatively, the memories could be forced to operate using slower fre-
quencies than 100 MHz. This would reduce the power consumption by making the pro-
cessor slower. Other software and hardware power optimization techniques, as described
in [BDM00], could be applied as well. The memory size of the program memory could be
reduced to 16 KB, which would result in a more power efficient processor.

In the case of this project, the leakage power consumption is not so dominant compared
to the dynamic power consumption. However, when the voltage is scaled down by using ultra
low voltage libraries, the leakage starts to grow compared to the dynamic power.

If the processor is switched off when it is in the idle state, then the leakage would be
reduced. The only leakage present would come from the switch transistor of the power
gating. In addition to the reduced dynamic power in the optimized processor, the leakage
power consumed when the processor is idle, as shown in Figure 6.24, could be reduced by
applying power gating.

It would be interesting to see how the power dissipation changes by applying power gating,
and compare the results to the same processor with voltage scaling applied.

Instead of using a random access memory (RAM) for the program memory, one could use
flash memory to see how it would effect the power consumption. With RAM, the data is lost
when the power is switched off. With flash on the other hand, it would be possible to avoid
programming the memory every time the power is shut down.

89

Appendix A

Analysis of the original Matlab
model

In this appendix chapter, the detailed analysis of the CWT function and the QRSDet3
function of the original Matlab model is performed, and in some cases, alternative solutions
are suggested.

A.1 The CWT function

The cwt2 function performs the advanced computational parts of the algorithm. It is used in
the function called QRSDet3 as one of the steps for the QRS detection method, as described
in Section 2.3 and 2.4. The wavelet transform is performed as described in Section 2.2. The
cwt2 function is illustrated in Figure A.1.

Defining the Mexican hat mother wavelet

Initially, the Mexican hat mother wavelet is generated using Equation 2.6, and it is stored in
an array of 256 elements (the psi reference model in Figure A.1). The scaled mother wavelet,
which is an array called psi_scale in Figure A.1, is then created by selecting values from the
reference model. These values are selected by first by making a temporary array from the
lowest bound to the highest bound of the reference model, using steps of one divided by the
scale. The elements of this array are then divided by the step size of the reference model,
before they are rounded. The resulting temporary array contains the indexes to the desired
values of the reference model array. Before the psi_scale array is sent to the input of the
convolution function, it is flipped using the built-in Matlab function fliplr, which flips all
elements of a vector horizontally.

If the mexican hat reference model is calculated on a processor every time the cwt2
function is called, it would require a lot of computing power, because of the computational
mechanisms like square root functions and divisions. Those functions are extremely expensive
in terms of power if implemented in hardware, and cycle counts if software emulated. Since
it is only sampled over 256 elements, this model could be stored in a lookup table, and hence
save all the calculation costs.

The temporary array, which contains the indexes of the desired elements of the reference
model, could introduce scaling errors to the scaled mexican hat wavelet from the rounding.
As a consequence, the psi_scale is not necessarily symmetrical. That is why this array is
flipped before it is sent to the convolution step.

91

92 APPENDIX A. ANALYSIS OF THE ORIGINAL MATLAB MODEL

Figure A.1: Illustration of the cwt2 function.

Furthermore, by studying the code carefully, it was observed that if the sample frequency
was 1000 Hz, then the scaled mother wavelet would be oversampled because the scaling would
give this array a size of 272 elements. That simply means that some values of the reference
model would be duplicated. One alternative to solve this oversampling is to increase the
sampled Mexican hat wavelet to 512 elements. Another alternative is to make the wavelet
dynamically scalable according some factor of the sample frequency of the input signal. Both
methods was tested, and the results did not give any significant improvement of the algorithm
itself. Therefore, the decision is to keep the fixed Mexican hat wavelet with the size of 256
elements in order to save the additional memory space.

Computation of the wavelet coefficients

The convolution step is then performed using the optimized Matlab convolution function
conv, [mat]. In addition, the convolution is done for every scale separately. After the
computation of the wavelet coefficients, the results for each scale are divided by the square
root of the scale value, before they are stored in a matrix called cecg. In this matrix,
coefficients from each scale are stored in different rows, as shown in Figure A.1. The output
size of the convolution result (for every scale) is equal to the size of the scaled mother wavelet
and the ECG signal minus one. Therefore, there are less coefficients for the lowest scale

A.2. THE QRSDET3 FUNCTION 93

than the highest scale. This implies that the cecg matrix must be big enough to cover the
coefficients of the largest scale. The cecg matrix is the output of the cwt2 function.

The maximum frequency used in the test databases is 1000 Hz, giving at most five different
scales. Considering the large sizes of the input ECG signal and the scaled mother wavelet,
the cwt2 function was assumed to be within the critical loop of the algorithm, because the
convolution step would iterate through most elements many times.

Since the convolution function does not exist in C, it must be created. This could be done
by converting the Matlab function, or implement the convolution by its definition [Weia].
The Matlab function conv is therefore analyzed and compared to the standard definition
of the discrete convolution function. This analysis is described in Appendix C. When the
input signal is sampled with frequency 1000 Hz, it has 3000 elements. The scaled mother
wavelet then contain 272 elements for this frequency. Based on these input sizes, the analysis
concluded that the number of iterations is a around 11.7 million times in the worst case
when using the convolution function by the definition. However, the number of iterations is
dependent on the number of scales, and the size of the scaled wavelet. Instead of iterating
through all elements in the inner loop every time, the optimized Matlab function uses a fast
convolution algorithm. In the worst case, the Matlab conv function iterates 5.4 million times.
This is significantly better than the convolution function by the definition. Therefore, a direct
conversion of the Matlab conv function is suggested.

A.2 The QRSDet3 function
The QRSDet3 function is the largest function, containing all the steps in Figure 2.8. However,
this function only performs the QRS-detection method on a 3-second input interval, as
described in Section 2.4.

In the first step of this function, the ECG signal is normalized by subtracting the mean
value from every element, and the desired scales are calculated before entering the CWT step.
The continuous wavelet transform step is performed using the cwt2 function as described in
Section A.1.

Calculation of the modulus maxima

The output of the cwt2 function (the cecg matrix) is used in the calculation of the modulus
maxima. First, three new matrices are created, called rightc, centc and leftc. rightc contains
column 1 to N-2 of the cecg matrix, where N is the total number of columns. Similarly, leftc
contains column 3 to N, and centc contains column 2 to N-1. This is illustrated in Figure A.2
for a 3x5 matrix. By doing so, the modulus maxima could be calculated by extracting the
indexes of all elements that fulfill the constraints in Equation A.1. In Matlab, those elements
are found by the built-in find function, with the constraints as the input to that function.

(centc > leftc)&(centc > rightc))‖((centc < leftc)&(centc < rightc), (A.1)

Copying the cecg matrix, which is the largest matrix in this algorithm, is extremely inefficient.
Instead of creating three matrices, one could just modify the cecg matrix itself. For instance,
by using a temporary list, the indexes of all values that do not meet the constraints could
be copied for each row. By iterating through this array, the elements in cecg matrix could
be reset, given by the index values. The resulting cecg matrix would then contain only the
parameters that meet the constraints in Equation A.1. All elements that do not exceed the
threshold are set to zero. By doing so, one would eliminate the need for three extra matrices,
and thus save the memory space. This alternative solution is suggested because the cecg

94 APPENDIX A. ANALYSIS OF THE ORIGINAL MATLAB MODEL

Figure A.2: Creation of the modulus maxima matrices.

matrix is the biggest matrix in the application, and saving the extra memory space would
reduce the memory requirement significantly.

Finding the modulus maxima above the running threshold

After the modulus maxima are found, the algorithm defines the running threshold based on
the old threshold, and extracts the values of all modulus maxima above this threshold. This
is done for each scale. The Matlab code stores the indexes of all these values in a matrix
called posqrs, and the absolute value of all modulus maxima above the threshold are stored
in a matrix called posqrsval. In these matrices, each row represents a different scale. This is
illustrated in Figure A.3.

Figure A.3: Modulus maxima above the threshold.

The creation of the posqrsval matrix is a waste of space, because the values from the cecg
matrix are just copied. However, the posqrsval matrix is much smaller than the cecg matrix,
which means that there is a possibility of re-using the cecg matrix in a later step. Therefore,
no alternative implementation suggestions are given for this step.

A.2. THE QRSDET3 FUNCTION 95

Finding clusters of beats

The clusters of beats are small intervals surrounding the actual peak of each beat. These
clusters are determined by iterating through all index elements in posqrs. For each element in
posqrs, the algorithm checks if the current element is already added to a matrix called clust.
If not, the value of this element is subtracted from the posqrs matrix, and only the index
of the remaining elements with values within 0.02 times the sample frequency are stored in
a temporary array. The values in this temporary array are then added to a new row in the
clust matrix. In addition, the row position for every element in the clust matrix is calculated
using the built-in Matlab function ind2sub, and the results are stored in a matrix called row.
This step is illustrated in Figure A.4.

Figure A.4: Finding clusters of beats.

In C, the elements of a matrix are accessed by selecting the row and column position.
This requires two index parameters. In Matlab, the elements of a matrix could be accessed
using only one index parameter. The elements are then accessed column wise, i.e., in a 3x3
matrix M , the matrix element M(1,1) could be accessed in Matlab by typing M(1), and
M(1,2) by typing M(4). Figure A.5 illustrates this.

This method of accessing elements is used throughout the Matlab model, and also in
calculations during later steps. To do this in C, the easiest solution would be to copy this
functionality. Finding another way of doing the calculations by using C indexing would be
more optimal. However, this would result in changing the Matlab model completely.

96 APPENDIX A. ANALYSIS OF THE ORIGINAL MATLAB MODEL

Figure A.5: Matlab indexing of matrices.

Classification of beats

All beats are then classified, according to whether or not they meet the criterion of being
present in 2 out of 4 wavelet scales (as discussed in Section 2.4). For every cluster the
representative time corresponding to the R-peak is selected. This is done by finding all
unique values in the clust matrix for every row, and checking if the number of unique values
are more than two. If so, then all elements of this row in the clust matrix are copied over to a
matrix called validclust. Selecting all unique values is done using the built-in Matlab function
unique. In addition, the mean value of this row in posqrs, which contain the indexes of the
coefficients, is calculated for every valid cluster, and stored in an array called meantime. If
the validclust matrix is empty after this step, i.e., no beats was detected, then all beats in
clust are defined to be valid and copied over to validclust. The meantime array is then
sorted, before the validclust matrix is sorted so that the first element in the meantime array
corresponds to the first row in validclust, and so on. This step is illustrated in Figure A.6.

In this step, the matrices are accessed using the Matlab one-value indexing. As discussed
in the previous step, the easiest way to implement this step is to copy the functionality.
In addition, the unique function does not exist in C, and an alternative solution must be
implemented. The easiest way to implement the unique function, is done by iterating through
every element, and compare them with each other. This might not be the optimal solution,
since comparing every element with each other would require multiple iterations. However,
this step is not in the most critical loop of the algorithm. Therefore, the easy approach is
suggested, where a further optimization of this step could be applied in future work.

Removing clusters too close to each other

Clusters that are too close to each other are then removed before the beats are stored in an
array called beats. The values of the beats are picked out from the posqrsval matrix. Another
array, qrs2, is then created and the beats divided by the sample frequency are stored in this
array. The values in qrs2 are now represented in seconds of when a beat is detected in the
3-second interval.

In this step, the beats are divided by the sample frequency, resulting in a floating point
representation. The possibility of using the detected beats as output of this function, instead
of the time in seconds where they were detected, could make the conversion to fixed point
easier. However, this re-arrangement would require several changes to the test environment.

A.2. THE QRSDET3 FUNCTION 97

Figure A.6: Classification of beats.

The decision is not to do these changes, and consider this alternative in a future optimization
if the fixed point C application does not give good enough accuracy.

Back to time domain

Before entering the final step of the algorithm, the beat from every valid cluster within the
time interval is determined using a Hanning window. This Hanning window is implemented
by using Equation A.2. The Hanning window is used as a window function to remove any
unwanted noise and peaks near the R-peak of the QRS complex. It is usually used to reduce
aliasing in Fourier transforms, [Weib], and according to [han], the Hanning window gives
the best overall filter characteristics. The Hanning function is in [Weib] defined as shown in
Equation A.2.

w(n) = 0,5 · (1− cos(2πn
N − 1)), (A.2)

98 APPENDIX A. ANALYSIS OF THE ORIGINAL MATLAB MODEL

where N is the total number of elements, and n is an element from −N/2 to N/2− 1. This
function is illustrated in Figure A.7.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

n

w
(n

)

Figure A.7: The hanning window by definition.

This general function is modified in order to reduce the amplitude of the ECG signal
except from a small interval around the R-peak. Since the R-peak is not always located at
the highest point of the cosine function, the reduction of the R-peak amplitude is avoided.
In Matlab, this is implemented by creating three arrays, right, center and left. In right and
left, the corresponding side of the cosine window is calculated and stored. In center, the
array is filled with ones in order to keep a small search interval around the R-peak unchanged.
The size of the center array depends on the search interval calculated at runtime. An example
of the modified Hanning window is shown in Figure A.8.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

n

w
(n

)

Figure A.8: The modified hanning window.

For all beats in the qrs2 array, this search interval is selected around the beat position.
The Hanning window is then multiplied with the ECG signal input of the algorithm around
this interval, and the maximum value of this interval is stored in the qrs2 array as the actual
detected beat.

In the final stage of the QRSDet3 function, those beats are identified in time domain
as described in Section 2.3. The output of this function is a time array (the qrs2 array) of
detected beats (i.e., the ECG of the heart is measured for 3 seconds, and this function takes

A.2. THE QRSDET3 FUNCTION 99

the measured signal as input and returns an array, consisting of the times where it detected
a heart beat).

This step is modeled in a straight forward manner, and there is no need to do an alternative
implementation of this step.

Appendix B

Detailed description of the Matlab
prototype

In this appendix chapter, all steps that required alternative implementations of the original
Matlab code, i.e., the suggestions made in Chapter 4.3 and Appendix A, are described in
detail.

B.1 Changes to the CWT step and modulus maxima step
Starting with the cwt2 function, the computation of the scaled Mexican hat wavelet is
simplified, by dividing the compact Matlab code into several steps. First, the indexes are
created and stored in an array. The Mexican hat mother wavelet is then accessed by the
rounded values of the array. The chosen elements are then stored in the opposite end of the
scaled mother wavelet list. This is done in order to emulate the fliplr Matlab function. This
scaled array is then sent to the convolution step along with the ECG signal.

Since the analysis in Appendix C proved that the Matlab convolution function was more
optimal, this function is converted according to the Matlab documentation.

The square root calculation after the transform is integrated with the convolution step in
order avoid iterating through the convolution array more than necessary.

In addition, the cecg matrix is defined with a fixed size which was large enough to include
the worst case. The biggest size of this matrix is approximated to be five rows with 3300
elements when the ECG sample frequency was 1000 Hz. The actual used size of the matrix,
in columns and rows, is updated during the calculation of coefficients. The rows in this case
are the number of scales, and the columns are calculated at the end of the transform, taking
into account the scale with most columns. By doing it this way, iterating through the whole
allocated matrix would not be necessary, but only to the boundaries defined by the columns
and rows. The calculation of the modulus maxima is changed as proposed in Section 4.2, in
order to save memory usage.

B.2 Changes to the step for finding clusters of beats
Major changes are done in the step where the clusters of beats are found. In addition to the
clust matrix, another clust matrix is introduced. This is called clust2, and the difference
between them are how the indexes are stored in them. In the original Matlab function,
all calculations and manipulations of matrices were done using only one index variable.
Therefore, the clust matrix is used to store all indexes using the Matlab method of accessing

101

102 APPENDIX B. DETAILED DESCRIPTION OF THE MATLAB PROTOTYPE

elements in a matrix, while clust2 stores the column indexes of the accessed elements, as
normally done in C. The first attempt was to find a function that could calculate the right
column by looking at the row matrix and clust matrix, but this resulted in a more complex
solution. Therefore the solution using clust2 is chosen due to the limited time frame of the
project.

The size of the cluster columns are assumed to be at maximum the posqrs column size,
and since there could be several clusters in each scale, the assumed cluster row size is set
to be twice the number of scales. The arrays coltmp, rowtmp and the matrix abstmp were
created. These arrays are used as temporary arrays in order to calculate the intermediate
steps illustrated in Figure A.4. abstmp has the same size as posqrs, and rowtmp and coltmp
has the same length as the cluster column. Figure B.1 shows the changes from Figure A.4.

Figure B.1: Finding clusters of beats in the prototype.

B.3 Changes to the classification of beats
The classifications of beats (for validcluster) are done using the same Matlab indexing
technique as the one described in the step of finding the clusters. Within this step, the
original Matlab code used a unique function to find all unique elements in the row matrix.
This function has been implemented by going through all elements in the row matrix, and

B.3. CHANGES TO THE CLASSIFICATION OF BEATS 103

every index value which has not been discovered before is stored in a temporary array. By
checking if an element exist in this temporary array, the unique element could be found. The
new model is illustrated in Figure B.2.

Figure B.2: Finding valid clusters of beats in the prototype.

After the classification of the valid clusters, the original code sorts the validcluster and
validrow matrix. Here, this is done by using insertion sort as described in [CLRS03]. The
reason for choosing the insertion sort algorithm is because it is not recursive and it is easy to
implement.

Appendix C

Calculation of convolution iteration
times

The convolution function in Matlab is defined in [mat] as shown in Equation C.1.

(u ∗ v)[k] = w(k) =
∑
j

u(j) · v(k − j), (C.1)

where the length of w is m+ n− 1, m is the length of u, n is the length of v, and the range
of j is defined in Equation C.2.

j = max(1, k + 1− n)..min(k,m) (C.2)

The discrete convolution is defined as shown in Equation C.3, [Weia].

(f ∗ g)[n] = w(n) =
∞∑

m=−∞
f [m] · g[n−m] =

∞∑
m=−∞

f [n−m] · g[m] (C.3)

In the case the discrete list of elements is finite, the length of w would be N = Lf + Lg − 1,
where Lf is the length of f , and Lg is the length of g. This yields the following equation:

w(n) =
N−1∑
m=0

f [m] · g[n−m]. (C.4)

The convolution code which was implemented using the original definition of the convo-
lution function was implemented using Code Snippet C.1.

1 f o r n=1: x_size+h_size−1
2 f o r m=1: h_size
3 i f (((n−m) ≥ 0) && ((n−m) < x_size))
4 convrs (n)=(convrs (n)+(x (n−m+1)∗h(m))) ;
5 end
6 end
7 end

Code Snippet C.1: Matlab code for convolution by the original definition.

In Code Snippet C.1, x is the psi_scale, h is the ECG signal, and h_size and x_size
are their respective array length. By analyzing the number of loop iterations for the ECG
sample frequency of 1000 Hz, one could estimate how many times the convolution function
loops through its code (how many times the if-sentence is checked). In this case, the psi_scale
has a length of 272 elements, and the ECG signal has approximately 3300 elements. The

105

106 APPENDIX C. CALCULATION OF CONVOLUTION ITERATION TIMES

inner loop of the code is visited 3300 times in this case. Since the outer loop is executed
3300 + 272 − 1 times, the total number of times the inner loop is visited is approximately
11.7 million times.

The matlab function was analyzed in a similar manner, but here the inner loop was
iterated the same number of times as j. In addition, the length of j is changed every time
the code in the outer loop is executed, dependent on the value of k in Equation C.2. In order
to estimate j, three cases has to be considered:

1 When k < 272, the the total number of iterations is by Equation C.5 calculated to be
37 128 times.

2 For the interval 272 < k ≤ 3300, the number of iterations is approximately 5.4 million
times according to Equation C.6 (a = 272 and b = 3300).

3 When k > 3300, Equation C.6 results in approximately 863 772 times(a = 3300− 272
and b = 3300).

The sum of all three cases gives the total number of iterations this convolution function
perform in the worst case. The number of iterations is in this case approximately 6.3 million
iterations. This means that the Matlab convolution function is almost twice as fast as the
convolution function implemented using the original definition. Another observation is that
the psi_scale array is much smaller than the ECG signal. By changing the x array with the
h array in the original convolution function (as done in the second case of Equation C.3), one
would get a maximum of approximately 9 million iterations.

The Matlab convolution is in any case significantly faster than the original convolution
function, and therefore this function was implemented in the C code. In Code Snippet C.2,
the C code for the implemented floating point convolution function is shown, based on the
Matlab convolution function.

n∑
k=1

k = n(n+ 1)
2 , (C.5)

where k and n are integers.

b∑
k=a

k =
b∑

k=1
k −

a−1∑
k=1

k = b2 + b− a2 + a

2 , (C.6)

where k, a and b are integers.

107

1 /∗
2 ∗ Function : convC
3 ∗ Input :
4 ∗ i n t _s : Current s c a l e
5 ∗ i n t _x_size : Actual s i z e needed o f the a l l o c a t e d
6 ∗ s i g n a l x (Mexican hat wavelet)
7 ∗ i n t _h_size : Actual s i z e needed o f the a l l o c a t e d
8 ∗ s i g n a l h (ECG s i g n a l)
9 ∗ d o u b l e l i s t _x : Mexican hat wavelet as the mother wavelet

10 ∗ d o u b l e l i s t _h : ECG s i g n a l
11 ∗ d o u b l e l i s t _convrs : A l l ocated array f o r the r e s u l t o f t h i s a lgor i thm
12 ∗
13 ∗ Result :
14 ∗ A modi f i ed _convrs with the convo lut ion
15 ∗ o f the s i g n a l s _x and _h.
16 ∗
17 ∗ D e s c r i p t i o n :
18 ∗ This Algorithm c a l c u l a t e s the convo lut ion o f two s i g n a l s , _x and _h,
19 ∗ and r e t u r n s the r e s u l t d iv ided by the root o f the cur rent s c a l e .
20 ∗/
21 void convC (i n t _s , i n t _x_size , i n t _h_size , d o u b l e l i s t &_x, d o u b l e l i s t &_h,

d o u b l e l i s t &_convrs) {
22 // Def ine parameters
23 i n t n=0;
24 i n t m=0;
25 i n t m_min=0;
26 i n t m_max=0;
27 double temp = 0 ;
28
29 f o r (n = 1 ; n ≤ (_h_size + _x_size − 1) ; n++){
30 // Do the convo lut ion
31 // According to matlab s p e c i f i c a t i o n (f a s t e r)
32 m_min = max(1 , n+1−_x_size) ;
33 m_max = min (n , _h_size) ;
34
35 temp = 0 ;
36 f o r (m = m_min; m ≤ m_max; m++){
37 temp = temp + (_x . array [n−m] ∗_h. array [m−1]) ;
38 }
39
40 // Divide r e s u l t with the root o f s
41 _convrs . array [n−1] = sqrt_lookup [_s−1] ∗ temp ;
42 }
43 _convrs . s i z e = (_h_size + _x_size − 1) ;
44 }

Code Snippet C.2: C code for convolution by the Matlab definition.

Appendix D

Solving issues related to low
threshold values

If the fixed point representation for the threshold values get out of their specified fixed point
range in accuracy, the thresholds get to low. This means that to many coefficients are assigned
for the clusters. In that case, a variable called poscol is assigned a value much higher than the
pre-allocated array sizes for the clusters. Some memory reads are dependent on this variable,
and if this variable is too high, then it is possible that the application in later stages might
try to access the clusters with an index outside their memory boundaries.

In order to protect the clusters from running out of memory, an upper limit is defined
for poscol. This limit is set to be the column size of the posqrs matrix. If more elements
are attempted to be accessed, then they are simply ignored. This modification was done by
changing Code Snippet D.1 to Code Snippet D.2.

1 i f ((cecg . matrix [i −1] [j −1]>>8) ≥ _thm_new . array [i −1]) {
2 posqrs [i −1] [pos −1] = j ;
3 p o s q r s v a l [i −1] [pos −1] = abs (cecg . matrix [i −1] [j −1]) ;
4 i s z e r o = 0 ;
5
6 // To make sure the l a r g e s t row i s known
7 i f (pos > p o s c o l) {
8 p o s c o l = p o s c o l + 1 ;
9 }

10 pos = pos + 1 ;
11 }

Code Snippet D.1: The code before inserting the memory protection.

1 // To a s s u r e p o s c o l i s never h igher than i t s l i m i t
2 i f (i ≤ posrow && pos ≤ posqr s_s i ze) {
3 i f ((cecg . matrix [i −1] [j −1]>>8) ≥ _thm_new . array [i −1]) {
4 posqrs [i −1] [pos −1] = j ;
5 p o s q r s v a l [i −1] [pos −1] = abs (cecg . matrix [i −1] [j −1]) ;
6 i s z e r o = 0 ;
7
8 // To make sure the l a r g e s t row i s known
9 i f (pos > p o s c o l) {

10 p o s c o l = p o s c o l + 1 ;
11 }
12 pos = pos + 1 ;
13 }
14 }

Code Snippet D.2: Memory out of bounds protection

109

Bibliography

[Abd] Dr. A. M. Abdulla. Heart electrical activity. http://www.heartsite.com.
http://www.heartsite.com/html/electrical_activity.html on April 07, 2009.

[abo] About target. http://retarget.com/about.php on May 16, 2009.

[ATNL99] V.X. Afonso, W.J. Tompkins, T.Q. Nguyen, and Shen Luo. Ecg beat detection
using filter banks. Biomedical Engineering, IEEE Transactions on, 46(2):192–
202, Feb. 1999.

[BDM00] L. Benini and G. De Micheli. System-level power optimization: techniques and
tools. ACM Trans. Des. Autom. Electron. Syst., 5(2):115–192, 2000.

[BFDVS+98] S. Barro, M. Fernandez-Delgado, J.A. Vila-Sobrino, C.V. Regueiro, and
E. Sanchez. Classifying multichannel ecg patterns with an adaptive neural
network. Engineering in Medicine and Biology Magazine, IEEE, 17(1):45–55,
Jan/Feb 1998.

[Bra] D. Brand. Integration of runtime profiling and static code analysis in linux.
Computing Science Department, University of British Columbia, Vancuver,
BC, Canada. danube@cs.ubc.ca.

[CC99] A.G.M. Cilio and H. Corporaal. Floating point to fixed point conversion of c
code, 1999.

[CC03] S.W. Chen and H.C. Chen. Development of a real-time qrs beat classifier using
a nonlinear trimmed moving averaging-based system. pages 577–580, Sept.
2003.

[CDGS98] F. Catthoor, E. De Greef, and S. Suytack. Custom Memory Management
Methodology: Exploration of Memory Organisation for Embedded Multimedia
System Design. Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[CFW+94] F. Catthoor, F. Franssen, S. Wuytack, L. Nachtergaele, and H. De Man. Global
communication and memory optimizing transformations for low power signal
processing systems. pages 178–187, 1994.

[CHC06] A. Chao-Hung Cheng. Application-specific architecture framework for high-
performance low-power embedded computing. PhD thesis, Ann Arbor, MI, USA,
2006. Adviser-Tyson, G. S. and Adviser-Mudge, T. N.

[CL93] B. Cabral and L.C. Leedom. Imaging vector fields using line integral
convolution. In SIGGRAPH ’93: Proceedings of the 20th annual conference
on Computer graphics and interactive techniques, pages 263–270, New York,
NY, USA, 1993. ACM.

111

[CLRS03] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to
Algorithms. McGraw-Hill Science/Engineering/Math, 2nd edition, December
2003.

[DCDM97] K. Danckaert, K. Catthoor, and H. De Man. System level memory
optimization for hardware-software co-design. In CODES ’97: Proceedings
of the 5th International Workshop on Hardware/Software Co-Design, page 55,
Washington, DC, USA, 1997. IEEE Computer Society.

[DGF90] A. De Gloria and P. Faraboschi. An evaluation system for application specific
architectures. pages 80–89, Nov 1990.

[DNYB+07] M. De Nil, L. Yseboodt, F. Bouwens, J. Hulzink, M. Berekovic, J. Huisken,
and J. van Meerbergen. Ultra low power asip design for wireless sensor nodes.
pages 1352–1355, Dec. 2007.

[DPT98] W.E. Dougherty, D.J. Pursley, and D.E. Thomas. Instruction subsetting:
Trading power for programmability. pages 42–47, Apr 1998.

[EM89] J. Eliot and B. Moss. Addressing large distributed collections of persistent
objects: The mneme project’s approach. In DBPL, pages 358–374, 1989.

[FN06] J. Fraden and M. R. Neuman. Qrs wave detection. Medical and Biological
Engineering and Computing, 2006.

[GAG+13] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff,
P. Ch. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K.
Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physiologic signals.
Circulation, 101(23):e215–e220, 2000 (June 13). Circulation Electronic Pages:
http://circ.ahajournals.org/cgi/content/full/101/23/e215.

[GM01] T. Glokler and H. Meyr. Power reduction for asips: a case study. pages 235–246,
2001.

[GVPL+97] G. Goossens, J. Van Praet, D. Lanneer, W. Geurts, A. Kifli, C. Liem, and
P.G. Paulin. Embedded software in real-time signal processing systems: design
technologies. Proceedings of the IEEE, 85(3):436–454, Mar 1997.

[Ham80] J.R. Hampton. The E.C.G. Made Easy. Churchill Livingstone, 2 edition, 1980.

[han] Hanning window. From http://www.diracdelta.co.uk.
http://www.diracdelta.co.uk/science/source/h/a/hanning%20window/source.html
on April 26, 2009.

[HRS] HRSonline. The normal heart: the elec-
trical system. http://www.hrspatients.org.
http://www.hrspatients.org/patients/the_normal_heart/electrical_system.asp
on April 07, 2009.

[IY98] T. Ishihara and H. Yasuura. Power-pro: programmable power management
architecture. pages 321–322, Feb 1998.

[JBK01] M.K. Jain, M. Balakrishnan, and A. Kumar. Asip design methodologies: survey
and issues. pages 76–81, 2001.

112

[JM98] Y.-M. Joo and N. McKeown. Doubling memory bandwidth for network buffers.
volume 2, pages 808–815 vol.2, Mar-2 Apr 1998.

[KAFK+05] K. Karuri, M.A. Al Faruque, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr.
Fine-grained application source code profiling for asip design. pages 329–334,
June 2005.

[KFA+07] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi. Low Power
Methodology Manual: For System-on-Chip Design. Springer Publishing
Company, Incorporated, 2007.

[KHO02] B.-U. Kohler, C. Hennig, and R. Orglmeister. The principles of software qrs
detection. Engineering in Medicine and Biology Magazine, IEEE, 21(1):42–57,
Jan.-Feb. 2002.

[KHO03] B.U. Kohler, C. Henning, and R. Orglmeister. QRS Detection Using Zero
Crossing Counts., pages 138–145. Erlangen, 2003.

[KI97] A. Kalambur and M.J. Irwin. An extended addressing mode for low power.
pages 208–213, Aug 1997.

[KJBK04] M. Kumar Jain, M. Balakrishnan, and A. Kumar. An efficient technique for
exploring register file size in asip design, 2004.

[KKA97] L. Keselbrener, M. Keselbrener, and S. Akselrod. Nonlinear high pass filter for
r-wave detection in ecg signal. Medical engineering & physics, 19(5):481–484,
1 June 1997.

[KR05] K. C. Kassner and K. G. Ricks. Hardware/software co-design of embedded real-
time systems from an undergraduate perspective. In WCAE ’05: Proceedings
of the 2005 workshop on Computer architecture education, page 9, New York,
NY, USA, 2005. ACM.

[Kuc99] K. Kucukcakar. An asip design methodology for embedded systems. pages
17–21, 1999.

[LM87] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of the
IEEE, 75(9):1235–1245, Sept. 1987.

[LR94] D.B. Lidsky and J.M. Rabaey. Low-power design of memory intensive functions.
pages 16–17, Oct 1994.

[LR02] Y. Liao and D.B. Roberts. A high-performance and low-power 32-bit multiply-
accumulate unit with single-instruction-multiple-data (simd) feature. Solid-
State Circuits, IEEE Journal of, 37(7):926–931, Jul 2002.

[LRW+03] I.R. Legarreta, M.J. Reed, J.N. Watson, P.S. Addison, N. Grubb, G.R. Clegg,
C.E. Robertson, and K.A.A. Fox. Long term continuous collection of high
resolution ecg signals from a coronary care unit. pages 407–409, Sept. 2003.

[LZT95] C. Li, C. Zheng, and C. Tai. Detection of ecg characteristic points using wavelet
transforms. Biomedical Engineering, IEEE Transactions on, 42(1):21–28, Jan.
1995.

113

[Mal99] S. Mallat. A Wavelet Tour of Signal Processing, Second Edition (Wavelet
Analysis & Its Applications). Academic Press, September 1999.

[mat] conv. www.mathworks.com. Site last visited 14 April, 2009.

[MCCS02] D. Menard, D. Chillet, F. Charot, and O. Sentieys. Automatic floating-point
to fixed-point conversion for dsp code generation. In CASES ’02: Proceedings
of the 2002 international conference on Compilers, architecture, and synthesis
for embedded systems, pages 270–276, New York, NY, USA, 2002. ACM.

[MD08] P. Mishra and N. Dutt. Processor Description Languages, Volume 1. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[MHM+93] A. Maton, J. Hopkins, C. W. McLaughlin, S. Johnson, M. Q. Warner,
D. LaHart, and J. D. Wright. Human Biology and Health. Prentice Hall,
Englewood Cliffs, New Jersey, USA, 1993.

[NdMM07] N. Nedjah and L. de Macedo Mourelle. Co-design for System Acceleration: A
Quantitative Approach. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2007.

[Obe07] E. L. Oberstar. Fixed-point representation & fractional math. August 30
2007. http://www.superkits.net/whitepapers/Fixed%20Point %20Representa-
tion%20&%20Fractional%20Math.pdf.

[Ped02] M. Pedram. Power Aware Design Methodologies. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[pyn] http://www.physionet.org. Visited on April 08, 2009.

[RAP08] M. Rashid, L. Apvrille, and R. Pacalet. Application specific processors for
multimedia applications. pages 109–116, July 2008.

[RHY06] M. B. Raez, M. S. Hussain, and Mohd F. Yasin. Techniques of emg signal
analysis: detection, processing, classification and applications. Biological
procedures online, 8:11–35, 2006.

[RJ98] J.T. Russell and M.F. Jacome. Software power estimation and optimization for
high performance, 32-bit embedded processors. pages 328–333, Oct 1998.

[RLAR+05] I. Romero Legarreta, P.S. Addison, M.J. Reed, N. Grubb, G.R. Clegg, and
C.E. Robertson. Continuous wavelet transform modulus maxima analysis of
the electrocardiogram: beat characterisation and beat-to-beat measurement.
International Journal of Wavelets, Multiresolution and Information Processing,
2005.

[RLG08a] I. Romero Legarreta and B. Grundlehner. Development and evaluation of an
ecg beat detection algorithm for ambulatory monitoring applications. Technical
report, IMEC-NL, 2008.

[RLG08b] I. Romero Legarreta and B. Grundlehner. Ecg datafile format. Technical report,
IMEC-NL, October 15 2008.

114

[RLS01] I. Romero Legarreta and L. Serrano. Ecg frequency domain features extraction:
a new characteristic for arrhythmias classification. volume 2, pages 2006–2008
vol.2, 2001.

[Sch05] P. Schniter. Continuous wavelet transform. Connexions, June 9 2005.
http://cnx.org/content/m10418/2.13/ on April 06, 2009.

[Tar03] Target Compiler Technologies n.v., Haasrode Research Park, Technologielaan
11-0002, B-3001 Leuven, Belgium. CHESS/CHECKERS: A retargetable tool-
suite for embedded processors, 3.3 edition, June 2003.

[Tar08] Target Compiler Technologies n.v., Haasrode Research Park, Technologielaan
11-0002, B-3001 Leuven, Belgium. Primitives Definition and Generation,
November 2008. Release 08R1.

[Tar09] Target Compiler Technologies n.v., Haasrode Research Park, Technologielaan
11-0002, B-3001 Leuven, Belgium. Target base core processor manual, March
2009. v4.0.

[Tex06] Texas Instruments. TMS320C6000 DSP Platform: The Highest-Performance
DSPs, 2006. Updated Q1 2006.

[Tex09] Texas Instruments. MSP430 Ultra-Low-Power Microcontrollers, 2009.

[Vol59] J. Volder. The cordic computing technique. In IRE-AIEE-ACM ’59
(Western): Papers presented at the the March 3-5, 1959, western joint
computer conference, pages 257–261, New York, NY, USA, 1959. ACM.

[Weia] E.W. Weisstein. Convolution. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/Convolution.html on April 26, 2009.

[Weib] E.W. Weisstein. Hanning function. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/HanningFunction.html on April 26,
2009.

[Wik08] Wikipedia. Hann function, December 09 2008.
http://en.wikipedia.org/wiki/Hann_function on April 10, 2009.

[Wik09a] Wikipedia. Cardiovascular disease, April 06 2009.
http://en.wikipedia.org/wiki/Cardiovascular_disease on April 06, 2009.

[Wik09b] Wikipedia. Electromyography, April 08 2009.
http://en.wikipedia.org/wiki/Electromyography on April 10, 2009.

[WJH03] B.B. Welch, K. Jones, and J. Hobbs. Practical Programming in Tcl & Tk.
Prentice Hall Professional Technical Reference, 2003.

[WK05] W. Wolf and M. Kaufmann. Computers as Components: Principles of
Embedded Computer System Design. Morgan Kaufmann, 2005.

[WS97] W. Wolf and J. Staunstrup. Hardware/Software CO-Design: Principles and
Practice. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

115

	Title Page
	Problem Description
	tfe4915_masterprosjekt_0209.pdf

