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Abstract 

Investigations are performed on the capabilities of Computational Fluid 

Dynamics (CFD) to model a transient transcritical flow around a Submerged 

Floating Tunnel (SFT). The aim of this inquiry is to examine the possibility of 

modeling the effect of Vortex Induced Vibrations (VIV) on a circular cylinder, 

through a coupling between a 2D CFD simulation, and a 3D FEM analysis of 

the structure trough strip theory. To validate such an approach, it is essential to 

verify that the CFD analysis yields accurate results.  

A simulation has been performed on the flow around a circular cylinder with 

          , based on the solution of the 2D Unsteady Reynolds Averaged 

Navier-Stokes (URANS) equations with the Realizable k-ϵ turbulence model 

using enhanced wall treatment. The hydrodynamic values obtained is the time 

averaged drag coefficient (CD,avrg), the root-mean-square lift coefficient 

(CL,rms), and the non-dimensional shedding frequency (St). The analysis yields 

a         which is within published experimental values, in contrast to 

published numerically obtained results. 
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Sammendrag 

Det er utført strømningssimuleringer for å undersøke om det er mulig ved hjelp 

av CFD (Computational Fluid Dynamics) å modellere transient strømning 

rundt en neddykket rørbru i det transkritiske området. Målet med dette er å 

finne ut om det er realistisk å modellere påkjenningene av virvelavløsninger, 

ved å benytte en kobling mellom 2D CFD simuleringer med en 3D struktur 

analyse ved bruk av stripeteori. For å kunne gjennomføre en slik analyse må 

det verifiseres at CFD simuleringen gir resultater med tilstrekkelig 

nøyaktighet.  

Det ble derfor gjennomført en simulering av strømning rundt et sirculært 

tvernitt med           , hvor løsningen er basert på de todimensjonale 

URANS (Unsteady Raynolds Averaged Navier-Stokes) ligningene. Et 

transkritisk strømningsbilde krever at turbulens modelleringen blir foretatt av 

en forenklet turbulens modell på grunn av regnekapasitet. Analyser foretatt i 

denne oppgaven er gjennomført med en Realizale k-ϵ turbulens modell, med 

‘Enhansed’ behandling av turbulens modeleringer nær overflaten av 

sylinderen. De hydrodynamiske resultatene som er hentet ut i fra analysene, er 

de statistiske gjennomsnitt verdiene av drag kreftene, og standard avviket av 

løfte kreftene, samt den dimensjonsløse virvelavløsnings frekvensen (St). 

Beregningene gir en         som er innenfor eksperimentelle verdier, i 

motsetning til hva som er oppnådd i allerede publiserte numeriske analyser. 
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Nomenclature 

 

   Reynolds number, ratio of inertial forces to viscous forces. 

        Time averaged drag coefficient 

       Root mean square value of lift coefficient 

   Strouhal number, non-dimensional vortex shedding frequency 

   Vortex shedding frequency 

    Cylinder diameter 

   Current inflow velocity 

  Fluid density 

  Dynamic viscosity of the fluid 

   Wake width 

   Pressure coefficient 

    Base pressure coefficient 

   Vortex shedding period 

   Drag coefficient 

   Lift coefficient 

    Forces in current direction acting on the cylinder 

    Forces normal to current direction acting on the cylinder 

  Turbulent kinetic energy 

  Turbulent dissipation of kinetic energy 

  Specific dissipation rate (ϵ /k) 

   Non-dimensional first node height 

           , where 1 is in current direction, and 2 is normal to current 

direction 

   Fluid velocity in specified direction 

   Spatial direction vector in specified direction 
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   Average fluid velocity 

  
  Turbulent fluid velocity 

  Kinematic fluid velocity       

   Turbulent shear stress 

   Turbulent kinematic viscosity 

    Kronecker delta function 

    Reynolds number as a function of distance to nearest wall 

   Turbulence intensity 

   Non-dimensional time step 

    Courant number              

   Number of nodes in circumferential direction 

   Number of nodes in the direction normal to the cylinder wall 

   Fourier coefficient of the lift fluctuations 

   Skin friction coefficient 

     Skin friction on cylinder wall 

   Separation angle 

      Body forces 

         Forces acting on surface 

  Pressure 

  Mean pressure 

   Fluctuating pressure 

  Velocity potential  

  Wave elevation as a function of time 
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Introduction 

The Norwegian Public Road Administration is investigating the possibilities 

for extreme fjord crossings, with a width of the fjords in the range of 2 – 6 km, 

and a depth of more than 300m. A feasibility study is conducted in these days 

on crossing the Sognefjord, which are 3.7 km long and about 1250m deep, 

which is discussed in “A feasibility study – How to cross the wide and deep 

Sognefjord” [24]. One of the alternatives discussed for this kind of crossings is 

a Submerged Floating Tunnel (SFT). Such a bridge has yet to be built, and it 

would therefor involve several technological firsts. In 1998 a SFT was decided 

as the preferred solution for crossing the Høgsfjord, but was never built. 

 

A construction length of 3.7 km with no means for anchoring, due to the 

extreme depths, results in a very slender construction which is highly sensible 

to dynamic motions. The author has performed a dynamic modal response 

analysis of the Eigen modes and Eigen frequencies, in the pre works for this 

paper [9], which showed that several modes influence the response. More than 

thirty modes have significant modal mass, and a 3.7 km SFT would therefore 

have more than thirty Eigen frequencies, which suggests a significant 

possibility for resonance effects. A submerged floating tunnel would be 

submitted to multiple hydrodynamic effects. The present study will investigate 

the effect of current, caused by tides, acting on a submerged tunnel with 

circular shape.  

 
Figure 1: Illustration of a SFT concepts seen from underneath. [24] 
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Problem statement 

Current past a circular cylinder results in a highly complex flow, involving 

instabilities such as wake separated shear layer and boundary layer. The 

boundary layer which is illustrated in Figure 2 is a thin layer between the 

separation points, which is close enough to the wall to be affected by viscous 

effects.  

 

In the wake region vortexes cause pressure changes, which lead to fluctuations 

in the forces acting on the cylinder. Due to the unsymmetrical nature of the 

vortex shedding, forces normal to the current direction occurs. The forces 

normal to the current velocity vector are related to which side the vortex 

appears, while the inline forces are insensitive to the location of the vortex 

separation. This causes the inline forces to oscillate at half of the shedding 

period as discussed by Faltinsen [15]. Due to a larger period, the amplitude of 

the motions in the normal direction are usually twice the size of the inline 

amplitudes, and therefore often more critical. The frequency of which the 

vortexes occurs are denoted fv, but are mostly referred to by the non-

dimensional Strouhal number (St): 

    
   

  
 ( 1 ) 

 

where D is the cylinder diameter, and U∞ are the current velocity. All non-

dimensional quantities describing a flow around a circular cylinder are 

dependent on the Reynolds number (Re) of the problem as stated in the book 

by Summer & Fredsøe [33], where:  

 

ρ is the density of the fluid, and μ is the dynamic viscosity of the fluid. 

 
Figure 2: Definition sketch   [33] 

    
    

 
 ( 2 ) 
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The Strouhal number is influenced by the Reynolds number, as showed in 

Figure 3 by Schewe [27]. From the power spectres in Figure 3, one can also 

observe that not only does the value of St varies with Re, but also the nature of 

the vortex shedding. At            the shedding frequency has a wide 

power spectrum, while at both           , and            the power 

spectres shows one distinct shedding frequency. This is important in dynamic 

analysis, because a narrow power spectra means that all the power is focused at 

one single frequency, and resonance effects can therefore be very damaging. 

The classification of shedding regimes indicated in Figure 3, and definitions of 

them are based by the work of Roshko [26], which investigated the transition in 

shedding regimes at Reynolds numbers from     to    , and Schewes [27] 

paper on force fluctuations on circular cylinders.  

 

 

The wake becomes turbulent already at       , but the boundary layer and 

the separation point remains laminar until         . This region is called 

the subcritical shedding regime. At this flow regime the wake width (dw) are 

larger than the cylinder diameter (d), as illustrated by Type A in Figure 4. The 

wake boundary in Figure 4 is identified by a constant pressure coefficient (Cp) 

equal to the base pressure coefficient (Cpb). The vortex shedding at this state 

occurs at one distinct frequency close to       . When the Reynolds number 

is raised further above       the separation points oscillates between being 

laminar and turbulent. This occurs at                 , which is the 

critical regime. Above these values, the flow regime changes to supercritical. 

 
Figure 3: Strouhal number as a function of Reynolds number, and power spectra of 

lift fluctuations at indicated Re. [27] 



Problem statement 

 

Here, both separation points are turbulent, triggering a reattachment of the flow 

to the cylinder surface and the separation point to move backwards. This 

causes the wake width (dw) to become smaller than the cylinder diameter (d), 

as illustrated by Type B in Figure 4. The area affected by the pressure drop 

behind the cylinder consequently becomes smaller; this causes a significant 

reduction in drag forces acting on the cylinder. This is referred to as the drag 

crises, which occurs in the supercritical regime (                  ). 

When further increasing Re, the boundary layer becomes turbulent, first 

fluctuating between sides, until            where the boundary layer is 

turbulent on both sides. This is the transcritical regime. In this flow state the 

wake width increases compared to supercritical flow, but still remains smaller 

than the diameter of the cylinder (dw<d).  

 

 
 

Figure 4: Free streamline model for relating base pressure coefficient to wake width. 

[26] 

 

Flow around a circular cylinder is a classical case, which has been studied by 

several people, and a large amount of articles is written on the subject. 

However, the dimensions required for a submerged floating road tunnel can 

easily lead to Reynolds number in the area of           ,  which is to the 

authors knowledge, higher than any published material. The reason for this 

lack in data can be illuminated by an example: If a wind tunnel tests should be 

performed with unpressurized air, and a structural diameter of 0.1m, the mac 

number of the air velocity must be approximately 7. This makes experiments 

extremely difficult to execute, and large measurement errors occurs. Because 

of this there is a wide spread in the experimental data published in the 

transcritical flow regime. The absence in reliable experimental data imposes a 

challenge for validating the obtained results. The reliability of the results 

presented in this paper are to be extensively discussed later on.  

One of the most renown, and cited article on this subject is the article “On 

vortex shedding from smooth and rough cylinders in the range of Reynolds 

number               ” by Achenbach & Heinecke [2], which have 



Andreas Saur Brandtsegg 

6 

amongst other, studied the effect of the transitions between the subcritical, 

supercritical and the transcritical flow regimes. Their study obtained a    

     in transcritical flow. By the use of this, assumed tidal flow velocities 

between 0.25m/s and 2m/s, and cylinder diameter between 10-15m, the vortex 

shedding period can be approximated to:  

 

This imposes a wide range of frequencies, which contains the natural 

frequencies one may presume a submerged floating tunnel to have.  

Vortex shedding is a highly three dimensional effect, and have a small 

correlation length in the span direction of the cylinder. The correlation length 

for the transcritical regime is about 1-2D [16]. This would indicate low total 

forces on the structure caused by vortex shedding. However, motion of the 

structure can alter the nature of the vortex phenomena, and the frequency 

dependent added mass of the structure can be changed by the vortexes in such a 

way that the wet natural frequency of the structure and the shedding frequency 

moves towards each other, and a lock-in effect occurs. Lock-in between the 

vortex shedding and the motion of the structure; have been investigated by 

Sharpkaya & Shoaff [29]. They found that the correlation length increases 

significantly, the vortex strength increases, the motion amplitude rises which 

again causes a wider frequency band of which lock-in can occur. These 

properties make investigations of vortex induced vibrations vastly important 

when analysing dynamic behaviour in a slender structure, such as a submerged 

floating tunnel.  

Due to the complexity of fluid structure interaction (FSI) and the immense 

computational resources it demands, few methods exist, which are based on 

sound physical principles, that can predict the occurring effects when a non-

rigid cylinder is subjected to vortex induced vibrations. The methods used 

historically are based on complex structural finite element methods, and 

coupled with highly simplified empirical hydro dynamic models, such as 

Morris equation, or potential theory, (see appendix). More recently; attempts 

have been made to couple a structure analysis with a computational fluid 

dynamics (CFD) analysis by a strip method approach, like the work done by 

Schulz & Meling [28]. In their study of dynamic response of a marine riser, a 

2D CFD analysis was coupled with a structural 3D FEM analysis with the use 

of strip theory, as illustrated in Figure 5. CFD analysis are based on solving the 

full Navier-Stokes equation (see appendix) to numerically simulate fluid flows. 

    
    

  
                           ( 3 ) 



Problem statement 

 

 

These studies have given promising results capturing the effects taking place 

when a slender cylinder is exposed to current. These efforts have been made to 

model forces on marine raisers. The present problem however have much 

larger dimensions, as mentioned previously, and the flow is in the transcritical 

range. At high Re there is not possible to solve the Navier-Stokes equations 

directly, which is called the DNS method (Direct Navier-Stokes), due to 

extreme high computation costs. Therefore the turbulent contribution in the 

equation has to be estimated by a turbulence model. This yields also for a 

marine raiser, but the floating tunnel causes a different flow regime. The aim of 

this thesis is therefore to investigate the capability of CFD analysis to model 

the flow around a circular cylinder in the transcritical regime by the use of a 

suitable turbulence model.  

To perform CFD analysis with Re higher than     is very costly in terms of 

computational time, it is therefore only in the present years that there have been 

published papers on this type of problem. Amongst the few papers published 

are the ones of Catalano et al. [12], Singh & Mittal [31], and Ong et al. [25]. 

Catalano et al. [12] compared the Large Eddy Simulation (LES), and an 

Unsteady Reynolds Averaged Navier-Stokes (URANS) simulation, and found 

that the LES gave inaccurate results for       , compared to existing 

experimental values. Singh & Mittal [31] investigated the relationship between 

 
Figure 5: Outline of multi-strip flow structure coupling: multiple CFD slices provide 

the hydrodynamic loading along the span of the riser while a full 3D finite element 

method provides the riser displacement. [28] 
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the drag crisis and the instability of the separated shear layer by the use of LES 

simulations. Both of these studies have investigated flow around a circular 

cylinder at        but the only published data from this area is the drag 

coefficient at          from the URANS simulation of Catalano et al. [12]. 

The only numerically obtained comparison material on the Strouhal number in 

the transcritical regime, is the results of Ong et al. [25] performed at        

   . The Strouhal number obtained here shows some discrepancy compared to 

experimentally obtained values. To be able to obtain the Strouhal number 

accurately is of high importance for a dynamic response analysis due to 

resonance effects. 

The objective of the present study is therefore to investigate the ability of CFD 

analysis to model flow around a circular cylinder in the transcritical regime, 

and identify the issues such an analysis will impose. The tidal flow around a 

SFT may lead to           , which is equivalent to a current velocity of 

1.0[   ]. Simulations performed based such high Reynolds numbers will 

require more than one month of computation time for each simulation, on a 

powerful personal computer. The present simulation will therefore be 

performed with           , which is still in the transcritical regime, and 

equivalent to a current velocity of 0.24[   ].            is chosen due to 

comparison reasons. This is the same value used in the numerical analysis 

performed by Ong et al. [25] and the experiments executed by Achenbach [1], 

and Achenbach & Heinecke [2]. 

The CFD analysis provides a time series of force fluctuations acting on the 

cylinder, to best be able to compare results with other time series statistical 

coefficient on the forces is extracted.  The hydrodynamic results extracted and 

compared with experimental data, and other numerical simulations, are the 

time-averaged drag coefficient, CD,average, the root-mean-squared (standard 

deviation) lift coefficient, CL,rms, and the Strouhal number, St. The drag- and 

lift- coefficient, CD and CL respectively, are defined as: 

 

where Fx1 represents the in the horizontal direction (along current direction), 

while Fx2 represents the forces in the vertical direction acting on the cylinder. 

The values used to compere the present study against experimental values and 

previously performed numerically obtained results are the time average of CD 

(CD,average), and the root-mean-square value of CL (CL,rms). 

    
   

      
  

    ,      
   

      
  

 ( 4 ) 
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Theoretical background 

In the transcritical regime the periodic vortex shedding reappear and the von 

Karman vortex street is again distinct. It was therefore attempted to perform a 

LES, which was conducted based on the article of Breuer [10]. But it was 

found inaccurate for such high Reynolds numbers, as was also concluded by 

Catalano et al. [12]. A LES is a combination of DNS and RANS first proposed 

by Smagorinsky [32], where the large eddies, which are comparable in size to 

the characteristic length of the meant flow, are calculated by directly solving 

the Navier-Stokes equation, while the smaller eddies are modelled by a 

turbulence model. The most challenging concern in performing an analysis in 

the transcritical regime, is the comparison material, which is very slim at     < 

Re <   , and to the authors knowledge non-existent at           . This is 

the reason why the most tested and documented turbulence simulation is 

applied, the     model. The     turbulence model is defined as a two 

equation model, where one equation describes the turbulent kinetic energy (k), 

and the other equation estimates the dissipation of turbulent kinetic energy (ϵ). 

The standard     turbulence model was suggested by Launder & Spalding 

[20]. This is also the method used by Ong et al. [25] and Catalano et al. [12] 

which holds the numerical simulation performed with some of the highest 

Reynolds number published to days date. Due to a discrepancy between the 

obtained Strouhal numbers and experimental values in these analyses, the use 

of an improved k-ϵ method is suggested in this paper.  

The standard k-ϵ turbulence model has proven to perform badly for near-wall 

problems of high Reynolds number flow as stated by Versteeg & Malalasekera 

[34]. These weaknesses appear for flow with high mean shear rates and at 

massive separations, which is present in the problem at hand. The turbulence 

model chosen is a modified k-ϵ suggested by Shih et al. [30]. This method 

improves the eddy viscosity equation used in the standard k-ϵ method in such a 

way that it no longer gives non-realizable stresses for large mean strain rates, 

which in some cases can be negative for the original method. The Realizable 

model contains a new equation for the turbulent dissipation of kinetic energy, 

which is based on the mean-square vorticity fluctuation. This is a non-linear 

turbulence model similar to the renormalization group (RNG) k-ϵ model 

applied by Tutar & Holdø [34]. Both the RNG and the realizable models 

outperforms the standard model when it comes to strong streamline curvature, 

vortices and rotation as found by Shih et al. [30]. This is effects which 

obviously plays an important role when analyzing vortex shedding around a 

circular cylinder. Tests was made to use curvature correction on the k-ϵ 

turbulence method to improve its known weaknesses to simulate flow around 

curves, but it was found that due to the fact that the realizable k-ϵ already 

contains terms to include rotational or swirl effects, curvature corrections is not 
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reliable for this problem, as stated in the Ansys theory guide [4]. Recent studies 

of Han et al. [17] have also shown that the Realizable k-ϵ turbulence model is 

much more insensitive to the inflow boundary conditions compared with the 

standard k-ϵ and the k-ω method. The k-ω turbulence method proposed by 

Wilcox [38], is a two equation model similar to the k-ϵ method, but instead of 

defining a turbulence dissipation a specific dissipation rate is defined (    

 ). Since the practical problem most definitively not has deterministic inflow 

turbulence, the Realizable turbulence model is therefore a better choice when it 

comes to reliability for uncertain flow conditions. The Realizable     is 

therefore applied in the present study.  

The k-ϵ models are primarily valid for fully turbulent flows, and are therefore 

not applicable in the viscous affected near wall area, opposed to the k-ω which 

can be used throughout the boundary layer. Consequently the near wall must be 

dealt with in a separate manner. The standard wall function uses a formulation 

based on the logarithmic law for mean velocity, which is valid for       

  , but is employed by CFD computer package Ansys Fluent for    

      , as stated in the theory guide by Ansys Inc [4]. The y+ value is a non-

dimensional distance between the first node and the nearest wall, further 

defined in the appendix. This means that there is a discrepancy when        

     , which is highly inconvenient for the present problem, which have a 

   value that chances around the boundary of the cylinder, as shown in Figure 

6. The large variations of    around the cylinder surface can create quite large 

discrepancies, as illustrated by Benim et al. [7] in Figure 7, which shows the 

variations in drag coefficient when changing the mean    value. Due to this 

limitation in the standard wall function, the enhanced wall function is applied 

in the present study. The enhanced wall function uses a combination of 

logarithmic law and linear laws of the wall, which is discussed later on in this 

paper. The optimal    value for enhanced wall functions is less than 5, which 

is a one-sided domain, and can be for obtained for the entire surface of the 

cylinder.  

Due to the fact that the k-ϵ is a purely 2D model, there is no reason for 

performing a 3D analysis, since this will not improve the results. The domain 

used is an elongated version of the domain suggested in Tutar & Holdø [34] 

and identical to the one used by Ong et al. [25].  

  



Theoretical background 

 

 

 

 

 

 

 
Figure 6: The variation of y+ around the cylinder. θ is the peripheral angle of the 

cylinder measured clockwise from the stagnation point. [25] 

 

 
Figure 7: CD as a function of average    using standard wall-functions. 

[7] 
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Mathematical modeling 

Realizeable k-ϵ  

The equations needed to be solved by the CFD software for the present 2D 

problem is Reynolds equations for conservation of mass and momentum, 

which are derived in the appendix.  
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where i,j=1,2, and u1 and u2 are the velocities in horizontal and vertical 

direction respectively,    is the averaged velocity,   is the averaged dynamic 

pressure, ρ is the fluid density, and ν is the kinematic viscosity of the fluid.   
   

is the turbulent part of the velocities, and   
   

  is the Reynolds stress tensor.  

The only unknown in equation ( 6 ) is the Reynolds stress, which in turbulence 

modelling can be estimated by the Boussinesq approximation, which yields 

that there is a proportional relation between the turbulent stresses, and the 

gradient of the mean velocities: 
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   is the averaged turbulent stresses, δij is the Kronecker delta function, and    

are the turbulent viscosity which are, unlike the kinematic viscosity, not a 

physical property, but varies inside the flow. When i = j, the turbulent stresses 

reduces to          where k is the mean kinetic energy in the turbulent 

motion, as described by Andersson et al. [3]. The Realizable     turbulence 

model suggested by Shih et al. [30] estimates the mean kinetic energy from this 

equation:  
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where ϵ is the dissipation of kinetic energy, and is found by solving the 

following equation: 

 

 

 

The turbulent viscosity (eddy viscosity) is given by: 

 

The standard     uses a constant Cμ , while the Realizable model uses the 

equation: 

 

 

where     is the mean rotation viewed in a rotating reference frame with the 

angular velocity   . 
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Mathematical formulation 

 

Near wall modeling 

The enhanced wall function is applied as near wall treatment. This method is 

applicable to the laminar sublayer, buffer region, and fully turbulent region. 

The method is a combination of the linear, and the logarithmic laws of the wall. 

For      the enhanced wall function will be identical to the traditional two 

layer wall function, which is formulated as follows: 

In the viscous affected area, when Rey as given in eq. ( 13 ) is smaller than 200, 

the one equation model of Wolfshtein [39] is applied. The kinematic turbulence 

equation is the same trough out the boundary layer. However the turbulent 

viscosity is modelled differently in the viscous affected boundary layer, where 

a two layer turbulence viscosity formulation proposed by Jongen [19] is 

implemented:  

 

 

The enhanced wall function combines the two formulas of turbulent viscosity 

with a blending function which is dependent of: 

 

where y is the distance to the nearest wall. The criteria for the border of the 

viscous affected area are decided by the turbulent Reynolds number (Rey). For 

       
           

     , the realizable k-ϵ turbulence method, 

described earlier is applied. For        
  the turbulence viscosity is a 

combination of the 2 layer, and the Realizable turbulence viscosity. These are 

combined by the following blending function: 
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The turbulent dissipation is given by this equation: 

 

 

The use of a wall function which is applicable for y+ values inside the wall 

buffer region, improves the accuracy for flow around the cylinder, which have 

a highly varying y+ value around the boundary.  
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Numerical solution technique 

The domain used in these analyses is an elongated version of the domain used 

by Tutar & Holdø [34], which was proposed by Ong et al. [25] The domain 

size is 27D in the flow direction and 14D in the transverse direction. The 

boundary conditions are also identical to the ones used in Ong et al. [25] to 

achieve good conditions for comparing these results. The boundary conditions 

are shown in Figure 8, and are based on a turbulence intensity       
      of 

0.8%, and a non-dimensional length scale (L/D) of 0.0045. The turbulence 

intensity is chosen to best be able to compare results to the ones obtained by 

Ong et al. [25] which applied 0.8% in his simulation, and Achenbach [1] which 

obtained 0.7% in his wind tunnel test. As mentioned previously, the 

Realizeable k-ϵ turbulence method is quite insensitive to the inflow conditions, 

and should therefore not be very influenced by them as discussed by Han et al. 

[17]. The solver used in the simulation is the Pressure-Implicit with Splitting of 

Operators (PISO) scheme implemented in Fluent, which have shown to be 

accurate and robust for transient flows as discussed by Barton [6]. The 

numerical method is of first order in time and second order in spatial 

discretization. The time step used is a non-dimensional time step of 

Δt=0.001D/U∞, which imposes a CLF number (          ) of less than 

one for all simulations 

 

The enhanced wall treatment demands a low y+ value (    ) as found by 

Coussirat [13], which leads to a significant mesh refinement compared to a 

standard wall function analysis. A mesh test was therefore conducted to find a 

suitable combination of accuracy and computation time. The coarsest mesh 

used in these analyses contains twice the number of elements compared to the 

mesh used by Ong et al. [25]. 

 
Figure 8: The size of the computational domain and the imposed boundary conditions. 

[25] 
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Table 1: Data concerning the meshes used in convergence study. 
 

Mesh Elements Y+ Nc Nt Aspect ratio CD,avrg CL,rms St 

M1 110,000 10 600 150 73 0.3792 0.1281 0.3357 

M2 110,000 5 600 150 140 0.3885 0.1446 0.2997 

M3 110,000 2.5 600 150 293 0.3798 0.1443 0.3452 

M4 206,000 2.5 1200 150 147 0.3706 0.1339 0.2572 

M5 228,000 4 1080 200 100 0.3779 0.1352 0.2582 

Nc is the number of nodes in the circumferential direction. Nt is the number of nodes 

normal to the cylinder wall. Aspect ratio is the highest relation between the height and 

width of an element, found in the mesh. 

 

 The meshes M1-3 have the same number of elements, but the y+ value is 

changed by varying the size relation between the first and last element in the 

direction normal to the cylinder wall. When inspecting the Strouhal numbers 

with the respect of y+ values shown in Figure 9 it is clearly illustrated that the 

y+ value is not the only parameter that influences the analysis.  

 

The relation between height and width of one element is called the aspect ratio. 

When changing the y+ value in such a manner, the aspect ratio also changes, 

which could affect the result. The analysis of the M4 mesh is conducted to 

investigate the effect the aspect ratio has on the solution. The aspect ratio in 

M4 is almost the same as in M2; this is achieved by doubling the number of 

nodes in the circumferential direction of the cylinder. The analysis performed 

on the M4 mesh shows a significantly influence on the Strouhal number by the 

aspect ratio. To reduce the aspect ratio comes at the price of increasing the 

number of elements, which raises the computation costs. The computation time 

needed to perform the analysis on M4 is more than 100 hours on an Intel Core 

i5-2410M CPU. To execute a full mesh test on aspect ratio, y+ value and 

amount of elements is too time consuming to be executed during this master 

thesis. Instead, a mesh (M5) was fashioned to fit the criteria’s given in the 

Fluent user guide by Ansys Inc. [5], and confirmed by literature, [13] [21]. 

High aspect ratios are not preferable, but are unavoidable in this analysis. 

Quadrilateral elements which are used in the present study can handle higher 

 
Figure 9: Convergence study for Strouhal numbers for meshes M1-3 with the respect 

of y+ value 
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Mathematical formulation 

 

aspect ratios compared to other element shapes. Also the use of double 

precision in the solver reduces high aspect ratio errors. The Ansys user guide 

suggests that the aspect ratio should not be larger than 100 in the boundary 

region, for such a problem. However Mittal [21] investigated the performance 

of high aspect elements on flow past a circular cylinder, and found that 

quadrilateral elements with an aspect ratio as high as     yielded acceptable 

results for the Strouhal number, and both drag and lift-coefficients. The reason 

why it can be so high in this area is that the rate of change is much lower in the 

circumferential direction compared to the normal direction in the boundary 

layer zone. In the domain however, the aspect ratio should not exceed five. The 

M5 therefor contains an aspect ratio lower than 100 in the boundary layer, and 

less than 5 in the rest of the domain. The first node height is 0.003% of the 

cylinder diameter, and was chosen as such that the y+ value is lower than five 

along the entire cylinder wall, as shown in Figure 10. The use of a maximum 

   value below five have been validated by Coussirat [13]. Figure 11 shows 

the grid used in M5. Despite the quite brute and unscientific alterations 

between M4 and M5, the analysis yield small differences. The results in time 

averaged drag coefficient CD,average obtained from M4 and M5 differs 1.9%, 

while the Strouhal number (St), and the root-mean-square lift coefficient CL,rms 

differs 0.4% and 0.9% respectively. These results are satisfactory for the 

present investigation. The results from M5 is therefore chosen as the most 

reliable, and used for further comparisons.  

 

 

 
Figure 10: y+ value around the cylinder wall, with respect to the peripheral angle θ 

measured from the stagnation point.  
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Figure 11: The M5 mesh chosen for the comparison. 
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Results and discussion  

Transient simulations have been performed on the flow past a circular cylinder 

in the transcritical flow regime at           . The turbulence model used is 

the Realizable k-ϵ method with enhanced wall treatment. The analysis have 

been simulated a 150 non-dimensional time steps, and the results have been 

obtained from the last 50 time units. The computation has been performed with 

a CFL number below 1. The hydrodynamic quantities that are extracted are the 

time averaged drag coefficient CD,avrg, the root mean square lift coefficient 

CL,rms, and the non-dimensional shedding frequency St. To investigate the 

reliability of the CFD analysis in the transcritical regime, CD,avrg, CL,rms, and St 

is compared to experimental data [1] [2] [18] [26] [27] [40] and numerical 

simulation [25] [12]. Key data is presented in Table 2. The values obtained in 

the present simulation are well within the published experimental values which 

have a large spread. There are no published numerical simulations to the 

author’s knowledge that have been able to obtain a Strouhal number within the 

range of experimental values. It is therefore very interesting (and pleasing) to 

observe that the present simulations are able to achieve this. The hydrodynamic 

quantities presented in this paper are obtained from the time series of the force 

coefficients which is illustrated in Figure 12. 

Table 2: Existing data of comparison at            
 

 CD,avrg CL,rms St 

Present simulation  0.3779 0.1352 0.2582 

Ong et al. 0.4573 0.0766 0.3052 

Catalano et al.          URANS 0.46 - - 

Benim et al. URANS 0.38   

Achenbach & Heinecke (1980) 0.70 - 0.25 

Published experimental data 0.36 - 0.75 0.06 - 0.14 0.17 - 0.29 

 

 
Figure 12: Time series of the force coefficients obtained from the CFD analysis. 
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Figure 13 show drag coefficients from experimental results extracted from 

Bohl & Elemendorf [8], and the numerical predictions of Benim et al. [7] from 

their k-ϵ simulation, and their SST simulation. SST is an improved k-ω 

turbulence model. The numerically obtained drag coefficient is coherently with 

the present simulation, but all numerical results under predicts the 

measurement. This is suggested by Benim et al. [7] to be caused by the 

difficulties in modelling the organized transient motions for the smaller eddies. 

The averaging performed in the turbulence model causes information loss 

about the spatial discretisation, which causes the organized interaction between 

the small scale vortexes not to be captured. This phenomenon is discussed by 

Cantwall [11].  

 
Figure 13: CD vs. Re measurements and predictions. [7] 

 

 

Figure 14 shows a snapshot of the vorticity occurring behind the cylinder 

computed by the present simulation. The image shows that the simulation is 

capable of capturing vortex shedding qualitatively quite well. It is also obvious 

from the figure that the width of the wake is smaller than the diameter of the 

cylinder, as stated by Roshko [26]. The velocity vectors close to the stagnation 

point illustrated in Figure 15 clearly shows that the boundary layer is turbulent, 

due to the shape of the velocity profile. This implies that the simulation is 

capable of modelling the turbulent nature of the boundary layer, which was 

uncovered by the experiments of Roshko [26]. 



Results and discussion 

 

 

Figure 14: Snap shot of vorticity contours of flow around circular cylinder at the 

non-dimensional time step 159D/U∞ 

 

 

 

 
Figure 15: Image of velocity vector close to the stagnation point, at a peripheral 

angle of 5° on the cylinder wall. 

 

The power spectra of the lift fluctuation in Figure 16 clearly show that the 

shedding regime is modelled with one distinct shedding frequency, this 

harmonizes with the power spectra obtained by Schewe [27], and illustrated in 

Figure 3.  

 
Figure 16: Power spectra of the lift fluctuations in transcritical regime 
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In Figure 17 the mean pressure distribution (   {      } {      
 }) is 

plotted against the periphery angle around the cylinder wall. pc is the static 

pressure measured along the cylinder surface, and pc∞ is the static flow pressure 

at infinity. Both numerical simulations underestimate the negative pressure on 

the back of the cylinder. This may be due to the large pressure gradients in this 

area, which is difficult to model accurately, and the real life occurrence of 

organized transient motions as mentioned previously [11]. Figure 18 shows the 

skin friction coefficient (     {   
 }) around the cylinder wall. The present 

simulation shows a quite large difference in the front half of the cylinder 

compared to Achenbach [1], but are quite similar at the back half. The 

boundary separation however is captured fairly well; whit a separation angel of 

       , compared to 115° in Achenbach’s [1] experiments, and 114° in 

Ong et al. [25] simulations. The investigations of Shih et al. [30] shows that the 

skin friction coefficient is not modeled more accurate by the use of the 

Realizable turbulence model compared to the standard k-ϵ method, but the 

pressure distribution are shown  to have an improved accuracy. The 

investigations performed by Achenbach [1] yields that the participation of skin 

friction in the total drag force at            is about 0.5%. One may 

therefore assume that the pressure distribution is determinant for the drag and 

lift forces. The reason for differences in the obtained drag coefficients from the 

present simulation, the one of Ong et al. [25] and the experiments of 

Achenbach [1] are displayed by the pressure differences on the back of the 

cylinder in Figure 17. A remark should also be made about the uncertainty of 

the two dimensional turbulence models ability to predict three dimensional 

effects, such as the pressure loss caused by local flow velocity in the span vise 

direction of the cylinder, and turbulent dissipation in the span vice direction. 

  



Results and discussion 

 

 

 
Figure 17: Mean pressure distribution along the cylinder wall with respect to the 

peripheral angle θ measured from the stagnation point. 

 

 

 
Figure 18: Skin friction distribution on cylinder surface 
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Concluding remarks & recommended further work 

The results presented it this paper has shown the ability of URANS simulations to 

capture qualitatively the phenomenon of vortex shedding behind a circular 

cylinder in transcritical flow. This suggests that a coupling between a FEM 

analysis and a CFD analysis trough strip theory should be able to capture the 

effects of VIV on a submerged floating tunnel in the nearest future. However 

there are some challenges that need to be met.  

The numerical analysis performed in this paper is a daring experiment due to lack 

of literature on the subject. There is need for a systematic investigation to be able 

to separate the grid resolution form the effects of wall-modeling. More numerical 

analysis is needed to examine different turbulence models, near wall treatments, 

and grid setup. Especially the non-conformal mesh used by Benim [7], illustrated 

in Figure 19, is very interesting for this problem, due to its ability to vary the    

value without varying the aspect ratio.  

The present simulation was performed with           , equivalent to a 

current velocity of 0.24[   ], but as discussed earlier the tidal flow around a SFT 

may lead to           , which is equivalent to a current velocity of 1.0[   ]. 

To raise the Reynolds number in the present simulation by a factor of four will 

lead to an increase in computation time to more than one month on a powerful 

personal computer. It will also be essential to be able to model a free cylinder 

subjected to current. Due to lack of computational resources, this was not 

investigated in the present study. Availability of large computational resources is 

therefore essential to be able to perform all the analysis needed to reduce the 

uncertainty of the numerically obtained results. 

Turbulence models are developed using empirical results. It is therefore important 

to obtain experimental values in the transcritical range to validate the turbulence 

models accuracy for such simulations. Detailed experimental values are necessary 

to be able to confirm the flow modeling, especially more values for lift 

fluctuations and pressure distributions should be acquired from transcritical flows. 

To perform experiments at such high Re is very complicated and expensive. The 

most used experimental setup in the literature is a high pressurized wind tunnel.  

The coupling used between the strip wise 2D CFD simulation and the 3D 

structural analysis by Schultz & Meling [28], is only based by the drag and lift 

forces. If the structural analysis is performed using a hydro elastic element, the 

coupling can consist of hydrodynamic quantities such as added mass and added 

damping, in addition to drag and lift forces. This could possibly increase the 

accuracy in the fluid structure interaction, and possibly reduce the number of CFD 

strips. The development of this technique also demands some physical experiment 

for validation purposes.   
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Figure 19: Detailed view of the non-conformal grid with hanging nodes used by Benim 

et al.[7] 
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APPENDIX  

Navier-Stokes equation  

The basic equations for the derivation of Navier-Stokes equation is Newton’ 

second law, the conservation of momentum. This equation is a statement 

regarding the changes of properties of the fluid particle related to time. To 

simplify the equations some notations will be explained, which can be found in 

the book of Versteeg & Malalasekera [35]. 

 If one probes an arbitrary property denoted ϕ, which is a function of (x, y, t). 

The time derivative of this property, Dϕ/Dt, can be written as  

 

The velocities of a fluid are denoted ∂x/∂t = u, ∂y/∂t = u, ∂z/∂t = w, the 

equation can therefore be written as follows: 

 

Where u is a vector consisting of the three velocity components;   {   } , 

and ϕ is any property which are a function of (x, y, t). 

The general flow equations necessary to solve the problem at hand are the two 

dimensional Navier-Stokes equation for a Newtonian fluid. These equations 

may be derived in several ways. If one assumes that the fluid is incompressible, 

and temperature independent, the equations may be derived as such that one 

can exploit the reader’s presumed solid mechanical background. 

This derivation of the two dimensional Navier-Stokes equation for 

incompressible, Newtonian fluids, as performed by White [37], are constructed 

from: 

 The conservation of mass equation 

 Newton’s second law 

 The deformation law of a Newtonian fluid.  

o The fluid is continuous, and the strain is a linear function of the 

rate of change 

o The fluid is isotropic 

o The deformation law must reduce to hydrostatic pressure for 

zero rate of change 

The conservation of mass can be obtained by considering a control volume 

with a height Δx2 and a with Δx1 and a unity depth, the mass inside the element 
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II 

is equal to (ρ Δx1 Δx2), for a incompressible fluid the rate of change of mass 

inside the element is zero, and can be written as:  

 

where u1 and u2 are velocities in horizontal and vertical direction respectively. 

With vector notation it can be further simplified: 

 

Where u is the velocity vector  

Newton’s second can be written as: 

 

F and a are the force vector and acceleration vector respectively, V is the 

considered volume, f is the volume forces, which are split in to body forces, 

fbody and the surface forces fsurface. The surface forces can be found by summing 

up all the forces acting on the element surface, see Figure 20 
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Figure 20: Stress components on all faces of a 2D fluid element 



Appendix 

 

Because the fluid is isotropic        , the forces can be written as follows:  

where i,j=1,2. 

To complete this derivation it is necessary to express the stresses in terms of 

the velocity. As stated by the deformation law of a Newtonian fluid, the 

stresses are linearly related to the rates of change in the fluid. As an analogy 

with the hookean elasticity theory, Stoke developed in 1845 the Stoke relations 

which states that the rate of change can be written as: 

 

The stresses are linearly dependent of eq.( 22 ), and must reduce to the 

dynamic pressure, given by the Bernoulli equation, when the rate of change is 

zero. For an incompressible fluid it can therefore be written as: 

 

where p is the dynamic pressure, and δij is the kronecker delta function, and μ 

is the dynamic viscosity factor.  

Using equation, ( 20 ), ( 21 ), and ( 23 ) Navier-Stokes equation can be 

formulated: 

 

Using equation ( 19 ) yields:  

 

fbody is in this case gravity forces, which is substantially smaller than the 

viscous forces, and can therefore be neglected, the equation then yields:  
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Reynolds equation  

( 24 )  a) can be written as:  

 

where ν is the kinematic viscosity which are defined as        

This equation contains all necessary information for determining a time-

dependent three-dimensional flow, including turbulence. However, the 

computation costs using these equations on a turbulent flow are immense. To 

reduce these costs, the Reynolds averaged equation is used. To obtain the 

Reynolds averaged equation, the properties in eq.( 26 ) are rewritten as one 

average part, and one turbulent part.  

 

   is the time average of ui and ui´ is the turbulent part. The resulting equation 

obtained by introducing eq.( 26 ) in to eq.( 27 ), are then time-averaged, and 

the Reynolds averaged Navier-Stoke equation is obtained: 

 

Note that the Reynolds averaged conservation of mass is given as: 

 

  

Using the relation in eq. ( 17 ), equation  
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Appendix 

 

Potential theory 

As suggested by Newman [23]. By the use of potential flow theory only one 

equation needs to be found to solve for vectorial velocities, accelerations, and 

pressure. Basic assumptions for the potential flow theory are an inviscid fluid, 

which results in irrotational motion, and incompressible fluid. Neglecting 

elastic behavior of the fluid makes us able to deriving the governing equation: 

     , where      (30) 

The governing equation for the potential flow theory is then the Laplace 

equation: 

 
      (31) 

Boundary conditions:  

 Impermeability of the sea bed:  

   

  
   on SSB (32) 

 Impermeability of structure: 

 
  

  
     , on SB (33 

 Free surface kinematic condition:  

   

  
 

  

  
, on            (34) 

 Free surface dynamic condition: 

     
  

  
  , on            (35) 

 

From these equations a potential can be derives, which describes velocity, 

accelerations and pressure in the volume  . Potential flow theory is not a god 

approximation for high sea states, since this involves nonlinear effects, but for 

a floating bridge, such sea states are not of importance. Comparisons done by 

Faltinsen [14] and Vugts [36] show that hydrodynamic quantities’ can be 

found, with sufficient accuracy by potential theory. The only exception is the 

damping associated with the roll motion, where viscous effects play an 

important role  
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VI 

Morison’s equation  
Morison’s formula is an empirical formulation describing the time averaged 

forces caused by current [22].  

 

This equation gives the forces Fi acting on a strip with the length dz in the axial 

direction of the cylinder. C1 is the drag coefficient CD and C2 is the lift 

coefficient CL. 

 

Y+ value 

The y+ value is a non-dimensional distance between the first node and the 

nearest wall.  

 

Where Δy is the first node height, ν is the kinematic viscosity and    is the 

friction velocity defined as: 

Where τw is the wall shear stress.  
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