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Abstract

Power ampli�ers are nonlinear devices that traditionally have been tried linearized by means
of predistortion. The nonlinear impact can be identi�ed by sidelobes in the frequency domain.
By accepting a certain sidelobe level, this implies that we also accept a somewhat nonlinear
characteristic on the resulting cascade of our transmitter. The main question raised in this
thesis is: How is the optimal nonlinear cascade that maximizes transmitted power de�ned
when some given out-of-band spectral requirements are ful�lled?

The problem has been limited such that examinations have been done on a single carrier system
seen in context to a chosen set of out-of-band spectral requirements. The di�erent nonlinear
characteristics have been represented by means of B-splines. Thus, the results obtained are
only the best set of parameters in the model utilized, and hence, only a sub-optimal solution
to the problem.

Results are presented for di�erent spectral restrictions. Simulations performed suggest that a
linear characteristic is the optimal, when restrictions are placed within the sidelobe level close
to the mainlobe. When the �rst sidelobe is allowed to grow unlimited, a parameter set using
2-segments B-spline have proved to give the highest average transmitted power.
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Chapter 1

Introduction

1.1 Motivation

Wireless applications have for the last decade experienced an enormous growth, particularly
in number of users, but also in range of applications. This increase has not shown any signs
to halt in the near future. With this increased usage of the limited resource bandwidth, it
is obvious that a service provider with a licence for a speci�c band wants to exploit this as
much as possible. However, the other important resource in telecommunications, transmitted
power, will either limit itself with regard to costs, physical limitations of the ampli�er and/or
interference with neighboring systems in context of bandwidth. Thus, the service provider
can not simply increase the transmitted power unlimited. The limitation of costs will not be
considered in this thesis.

A power ampli�er is limited in such a way that the amplitude characteristic is only linear
for low input values. When input values reach, or exceed, a certain level the characteristic
of the ampli�er becomes nonlinear, and the ampli�er will eventually saturate. This nonlinear
characteristic causes sidelobes in the transmitted power spectral density (PSD), and may cause
interference on adjacent channels. Predistortion is often used to linearize the ampli�er and
counter the greatest part of the sidelobes. However, if a certain sidelobe level is acceptable,
will such a pure linearization scheme be optimal based on transmitted power?

1.2 Objective

The objective of this thesis is �nding the optimal resulting nonlinear characteristic for an
ampli�er using predistortion. With optimal we mean the characteristic that maximizes average
transmitted power, while ful�lling given requirements on the out of band spectrum.

1



2 CHAPTER 1. INTRODUCTION

1.3 Scope and Limitations

Several simpli�cations have been made to reduce the complexity, resulting in a sub-optimal
approach to �nd a solution to the problem. We have only examined a speci�c instance of
nonlinearities, namely cubic B-splines, in relevance to a single carrier system. In addition,
we have only considered a fraction of all possible B-splines nonlinearities. To reduce the
problem even further, these nonlinearities have only been examined in relevance to a small
set of various spectral masks. The results obtained should therefore be seen in light of these
simpli�cations, as they do not provide us with an exact solution to the problem. However,
the scenarios examined in this thesis span a su�ciently large set of parameters, both with
respect to variations in nonlinear characteristic and various spectral masks. Further, if such
a nonlinearity exists, we should be able to obtain a coarse estimate of its characteristic.

1.4 Methodology

In this thesis, the problem of sidelobes within the transmitted PSD have been approached in
the following matter.

� Restrictions on the transmitted PSD have been placed by means of a spectral mask.
This implies that under no cirumstances can the transmitted PSD exceed the PSD of the
spectral mask. Depending on the appearance of the mask, we allow for a certain sidelobe
level. Hence, we also accept that the cascade of the predistorter and the ampli�er may
have a somewhat nonlinear characteristic.

� Assumtions that the characteristic of the predistorter and the ampli�er is not optimal,
as regards average transmitted power from the system as a whole, have been made.

� Examinations of whether or not a nonlinear characteristic that maximizes the average
transmitted power from the system as a whole exists have been performed.

Hence, we are dealing with a fairly complex optimization problem, as the optimal nonlinear
function is located in the time domain, while our optimization criterion is located in the
frequency domain.

1.5 Structure

The rest of this thesis is organized as follows:

Chapter 2 describes important background information which is critical for understanding
the work done.

Chapter 3 contains the methodology used and provides an accurate description of the problem
and how it has been solved.

Chapter 4 presents the most important results obtained from simulations.

Chapter 5 gives the conclusion of this thesis.



Chapter 2

Background Theory

The main objective of this chapter is to give a thorough introduction to important concepts
that are fundamental for understanding the work done and understanding and interpreting the
results obtained. A presentation of estimation techniques for the PSD, methods to implement
nonlinearities and the impact these have on transmitted signals are included. To fully under-
stand the theory, it is expected that the reader is familiar with fundamental signal processing
and advanced calculus.

2.1 Power Spectral Density

The following section gives a basic introduction to the PSD, as well as a more in-depths
description of one of several PSD estimation techniques, and is mainly based on [1].

2.1.1 The Periodogram Estimate

The PSD is a measure of how a signal's power is distributed throughout the spectrum. Thus,
it is a function of frequency. When y(t) is considered a stationary stochastic process with
�nite average power, its autocorrelation function is given by

γyy(τ) = E[y∗(t)y(t + τ)] (2.1.1)

where E[·] denotes the statistical average. The PSD of the stationary random process is the
Fourier transform of the autocorrelation function

Γyy(F ) =
∫ ∞

−∞
γyy(τ)e−j2πFτ (2.1.2)

In practice, the true autocorrelation function γyy(τ) is not known, and as a consequence,
we cannot compute Γyy(F ). Hence, an estimate of the actual autocorrelation function must
be utilized. As for the rest of this section, we assume that a single realization of the random
process y(t) is sampled at a rate satisfying the Nyquist sampling theorem, and a �nite-duration

3



4 CHAPTER 2. BACKGROUND THEORY

sequence y(n), 0 ≤ n ≤ N − 1 is obtained. The following estimator is suggested for the
autocorrelation function in [1]

ryy(m) =



1
N

N−m−1∑
n=0

y∗(n)y(n + m) 0 ≤ m ≤ N − 1

1
N

N−1∑
n=|m|

y∗(n)y(n + m) m = −1,−2, . . . 1−N

(2.1.3)

and it is shown that this is asymptotically unbiased as

lim
N→∞

E[ryy(m)] = γyy(m) (2.1.4)

and its variance goes toward zero as N →∞.

When using the estimator given by (2.1.3), a corresponding estimate of the PSD is given by

Pyy(f) =
N−1∑

m=−(N−1)

ryy(m)e−j2πfm

=
1
N

∣∣∣∣∣
N−1∑
n=0

y(n)e−j2πfn

∣∣∣∣∣
2

=
1
N
|Y (f)|2

(2.1.5)

where the second relation comes from inserting (2.1.3) into (2.1.5) and the third relation comes
from the de�nition of the Fourier transform. This relation is called the periodogram. It is
further shown [1] that the estimated spectrum, Pyy(f), is asymptotically unbiased and that
its variance is given by

lim
N→∞

var[Pyy(f)] = Γ2
yy(f) (2.1.6)

as N → ∞. As the variance does not converge to zero, the periodogram is not a consistent
estimator of the true PSD.

2.1.2 The Averaged Modi�ed Periodogram

The averaged modi�ed periodogram, or the Welch method, is based on Bartlett's method of
averaging periodograms. The Bartlett method works as follows: The N-point input sequence
is divided into L non-overlapping segments of length M . For each of these segments, a peri-
odogram is calculated according to (2.1.5). These L segments are then averaged to obtain an
estimate of the PSD with smaller variance than the basic periodogram method explained in
the previous subsection.

The Welch method is obtained by re�ning the Bartlett method in two ways [1]. First, the data
segments are allowed to overlap, in contrast to the non-overlapping segments of the Bartlett
method. In addition, each segment is windowed prior to computation of the periodogram, and
this results in the averaged modi�ed periodogram. The mathematical details concerning this



2.2. MODELING NONLINEARITIES BY MEANS OF B-SPLINES 5

method as well as descriptions of this PSD estimators mean and variance compared to the
basic periodogram method can be found in [1]. Due to the scope of this thesis, only the main
formulas will be repeated here. The Welch PSD estimate is given by

PW
yy (f) =

1
L

L−1∑
i=0

P̃ (i)
yy (f) (2.1.7)

where

P̃ (i)
yy (f) =

1
MU

∣∣∣∣∣
M−1∑
n=0

yi(n)w(n)e−j2πfn

∣∣∣∣∣
2

for i = 0, 1, . . . , L− 1 (2.1.8)

is the modi�ed periodogram for each segment and

U =
1
M

M−1∑
i=0

w2(n) (2.1.9)

is the normalization factor for the window function w(n).

2.2 Modeling Nonlinearities by Means of B-Splines

A general description of how B-Splines can be utilized as basis functions to produce an estimate
of an ampli�er characteristic is given in [2], and the main points are repeated below. The
relation between an input signal x and an output signal y can be expressed as

y(x) =
K−1∑
j=K0

ajBj(x) (2.2.1)

where Bj(x) is the B-spline basis function starting at knot number j, aj is its corresponding
weight coe�cient, K0 = −3 when cubic B-splines are used as basis functions and K is equal
to the number of intervals in which the input interval is divided into.

When cubic splines are used as basis functions, the B0(x) function is given as

B0(x) =



1
4
χ3 x ∈ [k0, k1〉

−3
4
χ3 +

3
4
χ2 +

3
4
χ +

1
4

x ∈ [k1, k2〉

3
4
χ3 − 3

2
χ2 + 1 x ∈ [k2, k3〉

−1
4
χ3 +

3
4
χ2 − 3

4
χ +

1
4

x ∈ [k3, k4]

(2.2.2)

The other basis functions can be derived from B0(x) through the equality

Bj(x) = B0(x− kj) (2.2.3)

The relationship between x and χ is given as

kx = bK · xc, χ = K · x− kx (2.2.4)
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where kx is the interval number in which x is decomposed into.

A common assumption when working with ampli�er nonlinearities is utilized by placing the
following constraints on the origin

y(0) = 0, y′′(0) = 0 (2.2.5)

These constraints cause the B−3(x) and B−2(x) from (2.2.1) to be zero, and the B−1(x) basis
function is modi�ed to

B−1(x) =


−1

2
χ3 +

3
2
χ x ∈ [k0, k1〉

3
4
χ3 − 3

2
χ2 + 1 x ∈ [k1, k2〉

−1
4
χ3 +

3
4
χ2 − 3

4
χ +

1
4

x ∈ [k2, k3〉

(2.2.6)

Figure 2.1 illustrates the basis functions for K = 6, and it shows the relationship between
the basis functions given by (2.2.3), as well as the appearance of the special B−1(x) function
(red).

Figure 2.1: B-Spline basis functions when utilizing six segments

A nonlinearity, utilizing K-segments as shown in (2.2.1), provides us with K + 1 degrees of
freedom when selecting weight coe�cients, {aj}. As only a fraction of these combinations are
interesting in relevance to this thesis, we have placed some limitation on the output-amplitude
to input-amplitude (AM/AM) characteristic of y. First, we will consider the set of K-segments
nonlinearities where K + 1 restrictions are placed on the output signal y. Thereafter we will
examine a set of nonlinearities with only K restrictions on the output signal y.

2.2.1 Fixed Weight Coe�cients on Nonlinearity

By placing a set of initial conditions on our nonlinearity, we are able to decrease the degrees
of freedom. To achieve the desired appearance of our nonlinearity, we �rst require that the
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maximal normalized value of the output signal is obtained when a maximal normalized value
is utilized as the input signal. Mathematically, this requirement is given by

y(1) = 1, y′(1) = 0 (2.2.7)

(2.2.7) decreases the degrees of freedom by two. Thus, to obtain a unique set of weight
coe�cients K − 1 additional initial conditions are required. By demanding that the AM/AM
characteristic of y(x) is approximately linear up to the last segment, we basically approximate
a linear function by means of various K-segments nonlinearities. Mathematically, we demand
linear limits between the segments. This results in the following constraints of y(x)

y′′
(

i

K

)
= 0 for i = 1, 2, 3, . . . ,K − 1 (2.2.8)

Since y(x) depends on the basis functions described by (2.2.2) and (2.2.6), we must derivate
these expressions once and twice respectively to be able to represent the �rst and second
derivatives of y(x) used in (2.2.7) and (2.2.8). Thus,

B′
0(x) =



3
4
χ2 x ∈ [k0, k1〉

−9
4
χ2 +

3
2
χ +

3
4

x ∈ [k1, k2〉

9
4
χ2 − 3χ x ∈ [k2, k3〉

−3
4
χ2 +

3
2
χ− 3

4
x ∈ [k3, k4]

(2.2.9)

and

B′′
0 (x) =



3
2
χ x ∈ [k0, k1〉

−9
2
χ +

3
2

x ∈ [k1, k2〉

9
2
χ− 3 x ∈ [k2, k3〉

−3
2
χ +

3
2

x ∈ [k3, k4]

(2.2.10)

Due to the relation between the basis functions given by (2.2.3), the �rst and second derivatives
of the basis functions Bi(x) for i = 1, 2, . . . K − 1 are the same as that of B0(x) in their
appurtenant intervals. As for the �rst and second derivatives of the basis function, B−1(x),
these are

B′
−1(x) =


−3

2
χ2 +

3
2

x ∈ [k0, k1〉

9
4
χ2 − 3χ x ∈ [k1, k2〉

−3
4
χ2 +

3
2
χ− 3

4
x ∈ [k2, k3〉

(2.2.11)

and

B′′
−1(x) =


−3χ2 x ∈ [k0, k1〉
9
2
χ− 3 x ∈ [k1, k2〉

−3
2
χ +

3
2

x ∈ [k2, k3〉

(2.2.12)
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respectively.

The initial conditions stated in (2.2.7), provide us with the following relation between the
coe�cients that a�ect the nonlinearity at y(1)

aK−3 = aK−1

aK−2 = 1− 1
2
aK−1

(2.2.13)

The initial conditions given by (2.2.8) were set to approximate a linear function within the
�rst K − 1 segments. By inserting the second derivatives of the basis functions into (2.2.8)
and arranging the resulting expression, we obtain the following relation between the foremost
K − 1 weight coe�cients

a−1 =
1
2
a0

a0 =
2
3
a1

a1 =
3
4
a2

a2 =
4
5
a3

...

aK−3 =
K − 1

K
aK−2

(2.2.14)

(2.2.14) and (2.2.13) provides us with an equation system with K + 1 unknown parameters.
Combining these by means of linear algebra we obtain the following matrix system

a−1

a0

a1
...

aK−3

aK−2

aK−1


=



0 1
2 0 · · · 0 0 0

0 0 2
3 · · · 0 0 0

0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 K−1
K 0

0 0 0 · · · 0 0 −1
2

0 0 0 · · · 1 0 0


·



a−1

a0

a1
...

aK−3

aK−2

aK−1


+



0
0
0
...
0
1
0


(2.2.15)

By using vector notation, (2.2.15) can be written as:

a = Ga+ b
Ia−Ga = b
(I −G)a = b

(2.2.16)

where I is the identity matrix and the values of a depend only on K. The unique solution of
(2.2.16) can be found using e.g. Matlab. Figure 2.2 illustrates clearly how di�erent nonlinear-
ities can be achieved by means of varying K. It is easy to observe that by increasing K, the
resulting nonlinearity becomes increasingly linear, as was our intention with (2.2.8). Thus, as
K →∞ the function becomes linear.
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(a) 2-segments nonlinearity (b) 8-segments nonlinearity

Figure 2.2: Comparison of di�erent nonlinearities using constant weight coe�cients

2.2.2 Selecting Weight Coe�cients with One Degree of Freedom

The nonlinearity described in the previous subsection with K as the free parameter, is not
likely to be the optimal solution of a nonlinearity in relevance to the optimization problem
considered in this thesis. However, its complexity is low and it easily provides us with an idea
of how many segments that are required in a possible optimal nonlinearity.

A slightly more complex way of implementing the nonlinearity is to allow one degree of freedom
in choice of weight coe�cients {aj}. Basically, the procedure of �nding these coe�cients are
more or less the same as described when using �xed coe�cients; We restrict our maximal
output value through (2.2.7), but utilize the following restrictions on the double derivatives
in place of (2.2.8)

y′′
(

i

K

)
= 0 for i = 1, 2, 3, . . . ,K − 2 (2.2.17)

This results in a matrix system with one degree of freedom of coe�cients, and it can be
expressed as

a−1

a0

a1
...

aK−3

aK−2

aK−1


=



0 1
2 0 · · · 0 0 0

0 0 2
3 · · · 0 0 0

0 0 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 1
0 0 0 · · · 0 0 −1

2
0 0 0 · · · 0 0 0


·



a−1

a0

a1
...

aK−3

aK−2

aK−1


+



0
0
0
...
0
1

aK−1


(2.2.18)

The last coe�cient, aK−1, is the free parameter which in principle can be chosen freely.
However, there is one limitation: We require that y(x) ≤ 1 for all values of x.

Because of the mathematical relation between all coe�cients {aj} from (2.2.18), we only have
to consider the last segment of the nonlinearity, as this segment sets an upper limit of aK−1.
The last segment can be derived from (2.2.1) to

y(x) = aK−4BK−4(x) + aK−3BK−3(x) + aK−2BK−2(x) + aK−1BK−1(x) (2.2.19)
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By using the relationship between the coe�cients derived in (2.2.18), (2.2.19) can be expressed
as

y(x) = aK−1
K − 2
K − 1

BK−4(x)+aK−1BK−3(x)+(1− 1
2
aK−1)BK−2(x)+aK−1BK−1(x) (2.2.20)

where we notice that all addends are related to the unknown weigh coe�cient aK−1. Further,
by using the de�nitions of the B-spline basis functions given in (2.2.2),(2.2.3) and (2.2.5), we
get

y(x) = aK−1(
11
8

χ3 − 15
8

χ2 − 3
8
χ +

7
8
)

+aK−1
K − 2
K − 1

(−1
4
χ3 +

3
4
χ2 − 3

4
χ +

1
4
)

−3
4
(χ3 − χ2 − χ) +

1
4

(2.2.21)

By inserting the inequality y(x) ≤ 1 in (2.2.21) and by moving the last addend that does not
contain an aK−1 element to the other side of the larger or equal sign we obtain the following
inequality.

3
4
(χ3 − χ2 − χ + 1) ≥ aK−1

11
8

(χ3 − 15
11

χ2 − 3
11

χ +
7
11

)

−aK−1
1
4

(K − 2)
(K − 1)

(χ3 − 3χ2 + 3χ− 1)
(2.2.22)

By means of algebra, the three cubic equations can be solved. As the double root at 1 is equal
for all elements, it can be removed, and (2.2.22) is reduced to

aK−1 ≤

3
4
(χ + 1)

11
8

(χ +
7
11

)− 1
4

(K − 2)
(K − 1)

(χ− 1)
(2.2.23)

As χ varies from 0 to 1, the right side of (2.2.23) achieves its minimum value for χ = 1. Thus,
when we insert this, our demand of y(x) ≤ 1 gives us the following limitation on the last
coe�cient

aK−1 ≤
2
3

(2.2.24)

It should be noted that the maximal value of aK−1 is independent of K.

Figure 2.3 demonstrates a set of di�erent nonlinearities that can be obtained by varying the
value of a1 between 0.4 (the most linear curve) and 2

3 (the curve with the greatest nonlinearity),
using 2-segments nonlinearities with one degree of freedom.

2.3 Nonlinear Impact upon a Signal

The impact a random nonlinearity will have on a signal can be observed both in the time
domain and the frequency domain. It is custom to separate the nonlinear impact into an
AM/AM distortion characteristic and an input-amplitude-to-output-phase (AM/PM) distor-
tion characteristic [3].
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Figure 2.3: Di�erent nonlinearities obtained utilizing a 2-segments nonlinearity, with di�erent
accepted values for a1

2.3.1 Examination of Nonlinear Impact in the Time Domain

The AM/AM distortion can easily be observed in the time domain by means of a scatterplot.
Figure 2.4(a) illustrates how the di�erent symbols in a 16-QAM signal are scattered in clusters,

(a) AM/AM and AM/PM distortion (b) Linear ampli�cation in amplitude and no phase
distortion

Figure 2.4: Comparison of a distorted and a nondistorted 16-QAM signal

where they ideally should have been at the same position because of the nonlinear impact.

The AM/PM distortion is also evident here as we notice that the clusters are shifted by
the same amount compared to the ideal case in Figure 2.4(b). The AM/PM characteristic
is additive and can easily be zeros out with its negative function. However, as it is not of
importance in relevance to this thesis we will not examine this any further. Henceforth, we
will only consider the AM/AM characteristic when discussing nonlinearities.
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2.3.2 Examination of Nonlinear Impact in the Frequency Domain

An important reason for evaluating the transmitted PSD for a speci�c system, is the fact that
these signals can a�ect adjacent channels [4]. By evaluating the PSD and placing restrictions
on our transmitted power outside the mainlobe, we allow adjacent systems to operate as they
are supposed to. On the other hand, if this evaluation is not carried out, a worst case scenario
is that we may corrupt neighboring systems to such a great extent that they are continuously
down.

To understand the impact a nonlinearity have on the PSD, we will consider the general band-
pass analog signal

x(t) = A(t) cos(2πfct + φ(t) + θ) (2.3.1)

where A(t) is the modulated amplitude as a function of time, fc is the carrier frequency,
φ(t) is the modulated phase of the signal as a function of time and θ is an arbitrary phase
constant. Both A(t) and φ(t) are distributed in a much lower frequency range than fc. In this
thesis, only the spectrum of A(t) will be considered. The signal x(t) is transmitted through a
real-valued and memoryless nonlinearity g(·) which results in the output signal y(t). We will
further assume that the nonlinearity g(x(t)), and hence y(t), is given by the general equation

y(t) = g(x(t)) = b0 +
∞∑

k=1

bkx
k(t) (2.3.2)

Because of the known equality [5]

2 cos(nx) cos(mx) = cos(n−m)x + cos(n + m)x (2.3.3)

it is clear that the square addend from (2.3.2) will not have frequency elements in the vicinity
of x(t)

cos2(2πfct + φ(t) + θ) =
1
2
(1 + cos(4πfct + 2φ(t) + 2θ))

because A(t) is narrowband compared to fc, and the frequency elements centered around 2fc

can easily be �ltered away. When applying (2.3.3) once more, we can prove that the cubic
addend from (2.3.2) will have frequency elements in the vicinity of x(t)

cos3(2πfct + φ(t) + θ) =
3
4
(cos(2πfct + φ(t) + θ)) +

1
4
(cos(6πfct + 3φ(t) + 3θ))

and the frequency components centered around 3fc can be �ltered away. In fact, if we continue
to examine the forth, the �fth etc. addends, we can prove that all even combinations of sinu-
soids we achieve when inserting (2.3.1) into (2.3.2) will not cause intermodulation distortion
(IMD) since fc is a great many times larger than the bandwidth of A(t). Thus, it can be
�ltered away.

[6] gives the resulting output from the nonlinearity when the fundamental signal is extracted
through trigonometric expansion and a bandpass �lter is applied over the wanted frequencies

y(t) =
(

b1A(t) +
3b3A

3(t)
4

+
5b5A

5(t)
8

+ . . .

)
cos(2πfct + φ(t) + θ) (2.3.4)
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As the carrier in (2.3.4) is separate from the rest of the expression, the nonlinear behavior in
the �rst harmonic zone is fully characterised by the expression in the brackets. Multiplication
in the time domain corresponds to convolution in the frequency domain [1]. Thus, Ak(t) will
correspond to A(f) ∗A(f) ∗ ... ∗A(f).

Figure 2.5: PSDs of the linear addend in a baseband signal (black), the cubic nonlinear addend
in a baseband signal (blue) and the quintic nonlinear addend in a baseband signal (green)

Figure 2.5 illustrates the di�erent PSDs for a linear addend (black), a cubic addend (blue),
and a quintic addend (green), of a 16-QAM modulated signal1 utilizing a particular set of
nonlinearity coe�cients, {bk}. When these components are added, as given by (2.3.2), we
achieve the resultant PSD of the output signal y(t), which is illustrated in Figure 2.6 for the
three components considered. When examining the resultant PSD we can easily identify the
�rst and the second sidelobe level caused by the nonlinearity, as well as the mainlobe.

Figure 2.6: The resultant transmitted PSD from a nonlinearity

1A cosine rollo� �lter with a rollo� factor of 0.4 has been utilized as the transmit �lter





Chapter 3

Methodology

This chapter presents the methodology utilized in this thesis. A complete presentation of the
problem, and an accurate description of how it has been solved is given. In addition, parameter
choices for all simulations are given, as well as fundamental validation and veri�cation of the
simulation program implemented.

3.1 System Model

A basic baseband system model based on systems given in [7] which utilizes a nonlinear
ampli�er and some predistortion scheme to linearize the ampli�er, is shown in Figure 3.1. The
incoming data bits are modulated into a de�ned constellation and passed through a transmit
�lter with impulse response h(t). The resulting time continuous signal is then attenuated by
the wanted input back-o� (IBO) value before it is predistorted and passed on to the nonlinear
ampli�er. The signal is then transmitted through a channel with impulse response c(t) and

Figure 3.1: A basic baseband system model utilizing a nonlinear ampli�er and predistortion

additive white gaussian noise (AWGN) is added to the signal. At the receiver side, the signal
goes through the receive �lter, gets sampled, and passed on to the demodulator and detector.

The principle of the predistorter is quite simple: A mathematical function that describes the
nonlinearity of the ampli�er must be found. The incoming signal to the predistorter is then
multiplied with the inverse function of the nonlinearity [6]. However, as the true nonlinear

15
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function contains in�nite elements, it needs to be estimated, and a wide variety of these
estimation methods exists [2, 8, 9, 10]. The thoery is beyond the scope and will not be further
discussed.

As the main goal is to maximize the average transmitted power, we will put aside the receiver
side of the system model shown in Figure 3.1 and take a closer look on the transmitter
side. We assume that the predistorter is capable of equalizing any nonlinearity introduced
by the ampli�er. The cascade of the predistorter and the ampli�er can then be considered
an ideal ampli�cation process with a linear AM/AM characteristic up to the saturation point
of the ampli�er, and with a horizontal AM/AM characteristic afterwards. This assumption
is reasonable, as we theoretically can model any nonlinearity as long as we use a su�ciently
high order on our estimate of the nonlinear function of the ampli�er. For simplicity, we also
normalize the signal with regard to average power prior to the linear attenuator.

Figure 3.2: The modi�ed transmitter model, where a nonlinear element is inserted, and ideal
predistortion is assumed

The main change we do on the transmitter side is adding a nonlinear element subsequent to the
cascade. This element will be modeled as various K-segments, B-splines cubic nonlinearities,
as explained in Chapter 2.2. The nonlinearity will be modi�ed in each examined scenario by
varying the number of segments as well as the degrees of freedom. The resulting transmitter
system model is shown in Figure 3.2.

3.2 Optimization Criterion

The main reason for placing restrictions on the transmitted PSD becomes evident in multiuser
systems where the spectrum is limited. This is especially important for the wireless channel,
but is also of importance for wired multiuser systems. [11] contains a good description of the
limitations on the wireless channel, as well as a thorough examination of the frequency division
multiple access (FDMA) scheme. [7] describes the general theory of interference experienced
on multiple-input multiple-output (MIMO) channels. The essence from these two books, in
relation to a shared multiuser channel using the FDMA scheme, boils down to the fact that
when we reduce the sidelobe level on the transmitted signal for each user, we reduce the
interference between the di�erent transmitted signals. Thus, we increase the probability of
detecting the received signals correctly, as the signal-to-interference-ratio (SIR) increases. On
the other hand, by reducing the sidelobe level for nonlinear systems we also reduce the total
transmitted power on each transmitter. This results in a restriction on how much power each
user can transmit at the same time as it reduces the signal-to-noise-ratio (SNR), becuase the
noise on the channel do not change independent of how much power is transmitted.

The optimization criterion considered in this thesis, consists of placing certain constraints on
the transmitted PSD, henceforth referred to as mask constraints, or simply mask. This mask
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can be as simple as requireing the adjacent channel power ratio (ACPR) to be below some
threshold for frequencies outside a speci�c band, or more complex where several thresholds
are utilized for di�erent frequencies.

Figure 3.3: Constraining the transmitted PSD with a simple spectral mask

Related to the system model presented in the previous section, our main objective consists of
�nding the number of, as well as the set of B-spline coe�cients {aj} in our nonlinear element
that maximize the average transmitted power, but still ful�lling the mask constraints. The
�rst step of �nding the optimal {aj} lies in choosing an appropriate mask. In this thesis, we
have examined two variations of the simple mask, as well as a more complex mask. The latter
is not unlike the one utilized in the broadband global area network (BGAN) [12], henceforth
termed the BGAN mask.

The simple mask is illustrated in Figure 3.3 in relation to normalized frequencies, and we can
observe that it only depends on a single threshold level, ∆p, and a single frequency, f0, for the
baseband system considered. The intention of the mask is quite simple: None of the positive
frequencies above or equal to f0 are allowed to transmit more power/hertz, than given by
the di�erence between the peak and ∆p. The same thing applies to the negative frequencies
smaller or equal to −f0.

To achieve this reduction, the entire signal needs to be attenuated by an attenuation factor
that depends on the number of segments in the nonlinearity utilized, ∆p and f0. On the other
hand, as our main objective is maximizing average transmitted power we want to attenuate
our signal as little as possible.

We will now turn our focus from the simple mask to the BGAN mask. Figure 3.4 illustrates
the BGAN mask in relation to normalized frequencies. We note that in contrast to the simple
mask that only have two levels, the BGAN mask have threshold levels based on four di�erent
frequencies. The intention of this mask is the same as for the simple mask. We place the
BGAN mask on top of the transmitted spectrum with the peak of the mask at the same level
as that of the peak of the PSD. The transmitted PSD is found acceptable if its power density
lies below the mask for all frequencies. Else, more attenuation is required to ful�ll the mask.
Figure 3.5 shows a comparison of such an acceptable PSD (a) and a non-acceptable PSD (b)
restricted by the BGAN spectral mask. It is easy to observe that the PSD exceeds the mask
in the latter case.
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Figure 3.4: Constraining the transmitted PSD with the BGAN spectral mask

(a) Acceptable PSD (b) Non-acceptable PSD

Figure 3.5: Comparison of an acceptable and a non-acceptable PSD (black), restricted by the
BGAN spectral mask (dotted red)

The optimization problem utilized in this thesis can now be formalized. Given a spectral mask
and a system model as the one described in Chapter 3.1; by varying the number of segments
and degrees of freedom in the nonlinear element we want to do the following: For each nonlinear
variation, �nd the minimum attenuation factor needed to keep the PSD below the spectral
mask. Then calculate the average transmitted power of such a system, and compare this
result to the average transmitted power of an ideally predistorted system restricted by the
same mask.

3.3 Simulation Environment

All simulations in this thesis have been performed using Matlab version 7.4.0.287 with the
Signal Processing Toolbox installed. Some of the basic operations in relation to the system
model described in Chapter 3.1 are executed by *.m �les written and/or revised by Frank
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Lotku and/or Nils Holte. These functions have been assumed to function correctly, and have
thus been omitted when validating and verifying the simulation program.

3.4 Simulations - A Statistical Approach

The system model presented in Chapter 3.1 is continuous-time. Thus it is not implementable
when utilizing the discrete-time simulation environment Matlab. Hence, to be able to im-
plement it the transmitter model shown in Figure 3.2 requires modi�cations. In addition,
parameters like modulation scheme and transmit �lter have to be chosen.

System Parameter Value

Modulation Scheme 16-QAM

Transmit Filter Square Root Cosine Rollo� Filter
Rollo� Factor, α 0.4
Oversampling rate, T 8

Number of symbols, K 4096

Number of runs for averaging samples, N 50

Table 3.1: Simulation parameters

Table 3.1 summarizes these design choices, while Figure 3.6 illustrates the transmitter model
after it is discretizated and modi�ed with the listed choices. The choice of 16-QAM as our

Figure 3.6: Transmitter model used in simulations

modulation scheme was somewhat accidental, and several other modulation schemes could
easily have been utilized in its place. However, the modulation scheme is not a crucial param-
eter in context to the problem adressed in this thesis, so 16-QAM has remained our choice
for simplicity. The number of symbols to be transmitted, K, is on the other hand a more
important parameter, as it has a direct in�uence on the quality of our estimated variables. As
for the transmit �lter, this was chosen as a cosine rollo� �lter to satisfy Nyquist criterion [7].
The choice of rollo� factor was suggested by STM Norway, and an oversampling rate, T , of 8
was chosen.

We consider a complete run of all symbols through the system a single realization of a station-
ary stochastic process [13]. Thus, each single sample yn can also be considered a stochastic
process, with an expectation value equal to zero and a variance equal to the true average trans-
mitted power, Pavg. A signal of length K × T that passes through the system will therefore
result in the average transmitted power estimate P̃avg through

P̃avg =
1

K · T

K·T−1∑
n=0

|yn|2 (3.4.1)
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and a PSD estimate P̃W
yy (f), where P̃W

yy (f) is calculated by means of the averaged modi�ed
periodogram described in Chapter 2.1.2, using the parameters listed in Table 3.2.

The averaged modi�ed periodogram

w(n) Hamming window

Window Length, M 1024

Number of segments, L 31

Overlap 50 %

Table 3.2: Parameters used when estimating the transmitted PSD in relevance to (2.1.7)-
(2.1.9)

By means of estimation theory [14], we can improve our current estimates of average trans-
mitted power and PSD. As we consider a complete run through the system a single realization
of a stationary stochastic process, we also consider P̃avg and P̃W

yy (f) to be samples from that
single experiment. Thus, by performing N runs, we obtain N samples, which can be applied
to improve our initial estimates. With that, our new estimate for average transmitted power
becomes

P̄avg =
1
N

N−1∑
i=0

P̃ (i)
avg (3.4.2)

and the formula for our new estimate of the PSD will be the same as (3.4.2) where Pavg is
replaced with PW

yy (f). The variance for each sample can be found through the sample-variance
estimation function

S̃2
Pavg =

1
N − 1

N−1∑
i=0

(P̃ (i)
avg − P̄avg)2 (3.4.3)

Finally, the standard deviation for the estimate P̄avg can be found through

S̄Pavg =
S̃Pavg√

N
(3.4.4)

As both mean and variance are estimated quantities, a T-distribution must be utilized. How-
ever, [14] states that if the sample size is large enough (N ≥ 30), the distribution of T does
not di�er considerably from the standard normal distribution and we can conclude that

P (P̄avg − 3 · S̄Pavg ≤ Pavg ≤ P̄avg + 3 · S̄Pavg) ≈ 99% (3.4.5)

As stated in Table 3.1, N has been set to 50 for all simulations preformed in this thesis.

3.5 Con�rmation of Simulation Program

Validation describes whether some software satis�es its intended use and whether the results
obtained from the simulations are su�ciently accurate, while veri�cation describes whether
the software is implemented correctly [15].
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Validation

A computer program capable of simulating the system model illustrated in Figure 3.6 has been
implemented using the parameters enlisted in Table 3.1. The implementations have been done
in such a way that it is possible to utilize one of the following options for the nonlinear element
in system

� A linearity, resulting in what we henceforth will refer to as an ideally predistorted system

� A K-segments B-spline nonlinearity with �xed spline coe�cients where K is the free
parameter. A theoretical description of this nonlinearity is given in Chapter 2.2.1

� A K-segments B-spline nonlinearity with one degree of freedom in choice of spline coef-
�cients, but where K is set constant. A description of this is given in Chapter 2.2.2

Subsequent to the nonlinear element, estimates of the PSD and the average transmitted power
are computed as described in Chapter 3.4. To further improve these estimates, we have
embedded the program within a loop counting from 1 to 50, so averaging a set of 50 initial
estimates for the PSD and the average transmitted power, gives the �nal estimates.

The �nal estimate of the PSD is seen in relation to one of the di�erent spectral masks, described
in Chapter 3.2. If the requirements placed by the mask are ful�lled, the �nal estimate of the
average transmitted power is stored, and later used to compare against other similar estimates.
Else, we increase the attenuation factor, and redo the experiment.

As described above, the implemented simulation program is capable of solving the sub-optimal
optimization problem addressed in this thesis. It also produces quite accurate estimates of both
the PSD and the average transmitted power, as our intention was by averaging 50 samples.
Thus, we conclude that the implemented software satis�es its intention as well as producing
su�ciently accurate results.

Veri�cation

Veri�cation of the implemented simulation program has been preformed using so-called black
box testing, where each element illustrated in Figure 3.6 has been tested based on known
input versus expected and measured output values. Additionaly, the estimates of the PSDs
have been examined visually in relevance to restrictions placed by di�erent spectral masks.
As mentioned in Chapter 3.3, some of the building blocks have been assumed to function
correctly. These include generation of the modulated signals {mk} and �ltering through the
cosine rollo� �lter. Thus, the symbol sequence of all {sn} will form the basis in the following
unit tests.

Normalization with regard to average power has been tested by insuring that the sequence
of all {ŝn} have an average power equal to 1, and the attenuation operation has simply been
done by multiplying the sequence {sn} with b. To verify the exactness of the cascade element
we have measured the maximal amplitude subsequent to this element and ensured that none
of the di�erent {xn} have amplitude values higher than 1.

The nonlinear element has been tested independent of the rest of the system. This test has
been performed for a set of di�erent �xed K-segments nonlinearities by varying K, as well
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as a set of di�erent K-segments nonlinearities with one degree of freedom1. The test has
been performed transmitting a known input vector x of length 1000, where xn = n/1000,
through the nonlinear element. The output vector, y, has been plotted, and the maximum
and minimum values have been calculated. The following conditions have been used as a basis
to verify the correctness of the nonlinear element

� y(0) = 0

� y(1) = 1

� y(x) ≤ 1 for x ≤ 1

� y is more linear for large K than for small K

� Utilization of an aK−1 weight coe�cient larger than 2/3 results in an invalid nonlinearity

All test performed indicate that the correctness of the implementation is su�cient. However,
should the program contain bugs, these have not proved to be of any importance to the results
considered in this thesis.

1Variaton in both K and the free parameter aK−1



Chapter 4

Simulation Results

In this chapter we will present results obtained based on di�erent simulation scenarios. All
results have been obtained utilizing the system model illustrated in Figure 3.6 by examining
di�erent nonlinearities.

The main results presented here are average transmitted powers for the di�erent nonlinear
systems compared to similar linear system restricted by the same spectral mask.

4.1 A Simple Mask close to the Mainlobe

The �rst set of simulations were done utilizing a simple mask, as the one illustrated in Figure
4.1, where the value for ∆p was set to 30 dB and the frequency point at f0 was set to (1+α)/2T .

Figure 4.1: The simple spectral mask restricting the sidelobe at (1+α)/2T to be 30 dB below
the level of the peak

However, to make the implementation more resistant to statistical variations in the PSD, the
peak value was calculated by averaging all values of the PSD estimate for

1− α

2T
≤ f ≤ 1− α

2T
(4.1.1)

23
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The same thing was also done when we calculated the dB value at f0, but here we only
considered the positive side of the PSD estimate

1 + α

2T
· 1.0025 ≤ f ≤ 1 + α

2T
· 1.015 (4.1.2)

As for the choice of coe�cients 1.0025 and 1.015, these were chosen on an empirical basis from
visual examination of the PSD estimate, as they proved to give a fairly good estimate of the
actual break of the curve just outside the mainlobe.

4.1.1 An Ideally Predistorted System

In order to �nd out whether a nonlinear system outperforms an ideally predistorted system,
based on average transmitted power, we will �rst examine the results obtained from an ideally
predistorted system, restricted by the spectral mask as described above. By utilizing the
statistical methods as described in Chapter 3.4, we obtain an estimate of the transmitted
PSD, which is illustrated in Figure 4.2, and Table 4.1 summarizes the most important results

Figure 4.2: Transmitted PSD of an ideally predistorted system, restricted by the simple mask
close to the mainlobe.

achieved. When considered alone, these results do not provide us with any relevant information
apart from the fact that the estimator, P̄avg, has a very small variance, and is thus a good
estimate of the actual transmitted power. However, when compared against results obtained
from similar nonlinear systems, it should become clear whether or not a certain nonlinear
system is capable of outperforming an ideally predistorted system.

Measured variable Estimated Value

Average transmitted power, P̄avg 0.5184 [Normalized]

Standard deviation, S̄Pavg 0.0002 [Normalized]
IBO, linear/dB 0.74 [Linear]/-1.3077 [dB]

Table 4.1: Estimated parameters for the ideally predistorted system
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4.1.2 Nonlinear Systems

The analysis concerning di�erent nonlinear systems will be presented as follows: First, we
will examine a set of nonlinear systems with zero degrees of freedom, as explained in Chapter
2.2.1. Secondly, we will examine selected nonlinear systems with one degree of freedom in
weight coe�cients, as explained in Chapter 2.2.2.

Fixed Weight Coe�cients

When using �xed weight coe�cients we approximate a linear curve with a K-segments nonlin-
earity. Hence, by increasing the number of coe�cients, K, we are approximating a linearity.
Because of this, we are not particularly interested in examining nonlinearities for large K, and
have limited our set of nonlinearities to 2 ≤ K ≤ 10. For each of these, we have calculated
estimates of the average transmitted power, based on the topical spectral mask. Figure 4.3

Figure 4.3: Average transmitted powers for an ideally predistorted system (dotted red) and
nonlinear systems, using �xed weight coe�cients (black). Transmitted PSD is restricted by
the topical mask.

illustrates the average transmitted powers1 for these nonlinearities, compared to the ideally
predistorted case. By examining the plot, we can easily observe that none of these particular
nonlinear systems achieves an average transmitted power as high as that of an ideally predis-
torted system. In fact, the average transmitted powers for the lowest K are clearly weaker,
and in the worst case for K = 2 it is only 96.1 % of the average transmitted power of an
ideally predistorted system. As for the other end of the scale, when we increase K, we can
observe that the average transmitted power of such a system goes toward the result obtained
for an equvialent ideally predistorted system, which is as expected. Already at �ve segments,
we achieve a transmitted power of approximately 99.5 % of the idelly predistorted system, and
this is kept more or less constant up to the maximum value of K which has been considered
in this thesis. However, we can observe from Table 4.2 that the lower K require more IBO to
keep their PSDs below the spectral mask.

1The average transmitted powers are estimated values and have all small standard deviations(S̄Pavg ≤
0.0002)
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Number of segments (K) P̄%
avg of linear system IBO [linear]/[dB]

2 96.1 % 0.615/-2.1112

3 98.5 % 0.657/-1.8243

4 99.2 % 0.678/-1.6877

5 99.6 % 0.691/-1.6052

6 99.7 % 0.699/-1.5552

7 99.4 % 0.703/-1.5304

8 99.8 % 0.709/-1.4935

9 99.7 % 0.712/-1.4752

10 99.6 % 0.714/-1.4630

Table 4.2: Estimated parameters for di�erent nonlinear systems using �xed coe�cients.

Figure 4.4 illustrates the transmitted PSD of a system utilizing a 2-segments nonlinearity (a)
and the transmitted PSD of a system utilizing an 8-segments nonlinearity (b), both compared
to the transmitted PSD of an ideally predistorted system. The PSD of the 2-segments non-
linearity stands clearly out from the other two, as the sidelobe level in the vicinity of ±2, is
distinctly lower than both the ideally predistorted and the 8-segments nonlinearity.

(a) Nonlinear system with 2-segments (black) and an
ideally predistorted system (red)

(b) Nonlinear system with 8-segments (black) and an
ideally predistorted system (red)

Figure 4.4: Comparisons of the transmitted PSDs of an ideally predistorted system to di�erent
nonlinear systems, all restricted by the topical mask

Two Segments Nonlinearity with One Degree of Freedom

The nonlinear system that utilizes a 2-segments nonlinearity with �xed coe�cients, does not
produce a more power e�cient scheme than an ideally predistorted system. However, we
are able to create notable di�erent nonlinearities for a 2-segments nonlinearity by varying
the weight coe�cient a1, as was illustrated in Figure 2.3. We performed a set of 72 new
experiments, where the a1 weight coe�cient was varied between 0.3 and 0.66. For each of
these di�erent nonlinear systems, we calculated estimates of the transmitted PSD and the
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Figure 4.5: Average transmitted powers for an ideally predistorted system (dotted red) and
nonlinear systems, using various 2-segments weight coe�cients (black). Transmitted PSD is
restricted by the topical mask.

average transmitted power. Figure 4.5 illustrates the average transmitted powers of these
nonlinear systems (solid black), compared to the ideally predistorted system (dotted red).
The blue circle illustrates the average transmitted power for a system utilizing a 2-segments
nonlinearity with �xed coe�cients.

We can easily observe that a maximum is achieved when a speci�c weight coe�cient is utilized
in the nonlinear element of the system, and we can further notice that this weight coe�cient
is slightly lower than the one marked with the blue circle. However, none of these nonlinear
systems are capable of increasing the average transmitted power that is achieved by an ideally
predistorted system. In fact, the best 2-segments nonlinearity, (a1 = 0.365), is only capable
of transmitting approximately 98 % of the average power achieved by an ideally predistorted
system, while the largest a1 values, only provide us with average transmitted powers as poor
as 66 % compared to an ideally predistorted system. It should also be mentioned that all
considered systems, utilizing 2-segments nonlinearities, require noticably more IBO attenua-
tion than an ideally predistorted system, to meet the requirements set by the topical spectral
mask.

By examining Figure 4.5, we can conclude that none of the systems, utilizing 2-segments
nonlinearities, are capable of outperforming an ideally predistorted system.

Four Segments Nonlinearity with One Degree of Freedom

We observed that when using �xed coe�cients, the system utilizing a 4-segments nonlinearity
obtained higher average transmitted power than the one using 2-segments. Hence, we will
take a closer look at systems utilizing di�erent 4-segments nonlinearities and allow one degree
of freedom at the last weight coe�cient. Figure 4.6 illustrates the average transmitted power
for systems utilizing these nonlinearities (solid black), compared to the ideally predistorted
system (dotted red). We can observe that the weight coe�cient in the nonlinearity that o�ers
the highest average transmitted power, also for 4-segments, lies a few hundreds below the
coe�cient used in the �xed case (blue circle).
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Figure 4.6: Average transmitted powers for an ideally predistorted system (dotted red) and
nonlinear systems, using various 4-segments weight coe�cients (black). Transmitted PSD is
restricted by the topical mask.

Nevertheless, none of the systems utilizing 4-segments nonlinearities achieve higher average
transmitted power than an ideally predistorted system. The best result we obtain, is an
average transmitted power of approximately 99.7 % of the ideally predistorted system when
using the weight coe�cient a3 = 0.52.

Eight Segments Nonlinearity with One Degree of Freedom

Figure 4.7 illustrates the results obtained by considering systems utilizing various 8-segments
nonlinearities. By setting the a7 value a few hundreds below the one used in the �xed nonlinear-
ity, we obtain a power e�ciency that is approximately equal to that of an ideally predistorted
system, but neither for these cases will any of the nonlinear systems outperform an ideally
predistorted system.

Figure 4.7: Average transmitted powers for an ideally predistorted system (dotted red) and
nonlinear systems, using various 8-segments weight coe�cients (black). Transmitted PSD is
restricted by the topical mask.
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4.1.3 Important Observations

This section has dealt with spectral restrictions placed on a sidelobe level close to the mainlobe,
with a ∆p value equal to 30 dB. Simulations with ∆p values equal to 20 dB and 40 dB have
also been executed, but these results are omitted here as they only support that an ideally
predistorted system is the optimal solution when restrictions are placed close to the mainlobe.

4.2 A Simple Mask at 1.7/T

In the previous section we showed that none of the nonlinear systems considered in this thesis
were able to outperform an ideally predistorted system, based on average transmitted power
when placing restrictions close to the mainlobe. In this section we will consider a slightly
di�erent scenario: By allowing unlimited power density within the �rst sidelobe level, we want
to examine whether this a�ects the proportions in average transmitted powers between the
ideally predistorted system and various nonlinear systems. Figure 4.8 illustrates the spectral
mask used in these scenarios. The value of ∆p was set to 45 dB, while f0 was set to (3+α)/2T ,
which corresponds to 1.7/T as a rollo� factor of 0.4 was used.

Figure 4.8: The simple spectral mask restricting the frequencies larger or equal to 1.7/T , to
be 45 dB below the level of the peak

The peak in the estimated PSD was calculated through (4.1.1), and a statistical approach was
also used here to �nd a fairly good estimate of the power density at 1.7/T by averaging the
power densities for the following frequency values

3 + α

2T
· 0.993 ≤ f ≤ 3 + α

2T
· 1.0055 (4.2.1)

4.2.1 An Ideally Predistorted System

Figure 4.9 illustrates the estimated PSD of a signal that passes through an ideally predistorted
system restricted by the topical spectral mask.
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Figure 4.9: Transmitted PSD for an ideally predistorted system restricted by the topical
spectral mask

We note that the PSD has a very dominant peak, and that the �rst sidelobe level is located
almost as low as the second sidelobe level. Thus, by placing a mask at 1.7/T for an ideally pre-
distorted system we also obtain a low sidelobe level for the �rst sidelobe, which was considered
in the previous section. Table 4.3 summarizes the most important estimated parameters ob-
tained from simulating the described ideally predistorted system. We notice that the average

Measured variable Estimated Value

Average transmitted power, P̄avg 0.4254 [Normalized]

Standard deviation, S̄Pavg 0.0001 [Normalized]
IBO, linear/dB 0.656 [Linear]/-1.8310 [dB]

Table 4.3: Estimated parameters for an ideally predistorted system

transmitted power is noticeable lower compared to the ideally predistorted system considered
in the previous section (Table 4.1). However, this is an expected result as more attenuation
is needed to ful�ll the spectral mask. This can also be observed in the two spectra, where the
entire PSD in Figure 4.9 basically lies lower than the one shown in Figure 4.2.

4.2.2 Nonlinear Systems

This presentation of di�erent nonlinear systems restricted by the topical spectral mask, will
follow an outline resembling the one in the previous section.

Fixed Coe�cients in Nonlinearities

Figure 4.10 illustrates the average transmitted powers for nine various nonlinear systems,
utilizing di�erent K in their respective nonlinear elements (black), compared to the average
transmitted power of an ideally predistorted system (dotted red). What we immediately no-
tice, is that average transmitted power as function of number of segments is the opposite of
the one illustrated in Figure 4.3. By only placing spectral restrictions in the vicinity of the
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second sidelobe level, it is quite obvious from Figure 4.10 that a system utilizing a 2-segments
nonlinear element with �xed weight coe�cients, will outperform an ideally predistorted sys-
tem, as regards average transmitted power, with approximately 3 %. In addition, we can
observe that the nonlinear systems utilizing large K with �xed coe�cients, also with this
spectral restriction will produce approximately the same average transmitted power as an
ideally predistorted system.

Figure 4.11 illustrates the transmitted PSD of a signal passing through a system utilizing a
�xed 2-segments nonlinearity (a) and an �xed 8-segments nonlinearity (b), both compared
to the PSD of an ideally predistorted system. While the transmitted PSDs for the ideally
predistorted system and the 8-segments nonlinear system are more or less equal, the system
utilizing a 2-segments �xed nonlinearity stands out as the transmitted power in the �rst
sidelobe is several decibel higher than that for an ideally predistorted system.

Figure 4.10: Average transmitted powers for an ideally predistorted system (dotted red) and
nonlinear systems, using �xed weight coe�cients (black). Transmitted PSD is restricted by
the topical mask.

Two Segments Nonlinearity with One Degree of Freedom

As we observed, a transmitter utilizing a 2-segments B-spline nonlinear element with �xed
coe�cients is able to slightly increase the average transmitted power obtained by an ideally
predistorted system. As this is probably not the optimal nonlinearity with respect to the
highest possible average transmitted power, we have examined whether another value of a1

for a 2-segments nonlinearity can perform even better. A total of 72 di�erent values of a1,
ranging from 0.3 to 0.66, have been considered, and estimates of their average transmitted
powers been calculated for each scenario. Figure 4.12 illustrates these as a function of the
weight coe�cient a1 (solid black) as well as the average transmitted power estimate for an
ideally predistorted system (dotted red). The blue circle represents the transmitted power
when utilizing a �xed 2-segments nonlinearity.

What we immediately observe from the �gure, is the tremendous increase in average trans-
mitted power, in fact as much as 52 % compared to an ideally predistorted system. As this
is clearly a peak on a quite smooth curve, it seems that the nonlinearity as illustrated in
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(a) Nonlinear system with 2-segments (black) and an
ideally predistorted system (red)

(b) Nonlinear system with 8-segments (black) and an
ideally predistorted system (red)

Figure 4.11: Comparisons of the transmitted PSDs of an ideally predistorted system to dif-
ferent nonlinear systems, all restricted by the topical mask

Figure 4.13 utilizing an a1 coe�ecient equal to 0.485 is optimal. However, as the di�erence in
transmitted power is so pronounced we also want to examine its transmitted PSD, which is
illustrated in Figure 4.14 (black) compared to the ideally predistorted system (red). We can
easily observe that the two spectra di�er by a huge amount. While the PSD of the nonlinear
system has a di�erence between its peak and its �rst sidelobe of approximately 20 dB, the
same di�erence for the PSD of the ideally predistorted system is almost 40 dB.

Four Segments Nonlinearity with One Degree of Freedom

We have also examined a set of di�erent systems utilizing 4-segments nonlinearities with one
degree of freedom, in the same way as was done with 2-segments, and the results in average
transmitted power can be seen in Figure 4.15. When comparing these results to the highest
average transmitted power obtained from the 2-segments nonlinearities, it becomes obvious
that none of the systems utilizing 4-segments nonlinearities are capable of coming close to the
great increase of 52 %. However, this nonlinearity is capable of increasing the transmitted
power by a small amount (4.1 % increase) when utilizing 0.58 as the a3 coe�cient, and we
can observe from Figure 4.16 that the PSD of this system has a di�erence of approximately
35 dB between its peak and its �rst sidelobe level.

4.2.3 Important Observations

The results presented here clearly shows that an ideally predistorted system is not the optimal
solution with respect to average transmitted power when a simple spectral mask at 1.7/T is
utilized. The nonlinearities that achieves 50 % more transmitted power have tremendous
higher sidelobe level at the �rst sidelobe, and will probably not be desireable even though
they outperform the ideally predistorted system to such a great extent.
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Figure 4.12: Average transmitted powers for an ideally predistorted system (dotted red) and
nonlinear systems, using various 2-segments weight coe�cients (black). Transmitted PSD is
restricted by the topical mask.

Figure 4.13: 2-segments, B-spline nonlinear characteristic, where a1 = 0.485

4.3 Restricting the PSD with the BGAN Spectral Mask

The BGAN spectral mask is brie�y presented in Chapter 3.2, and is illustrated in Figure
3.4. This mask is based on four di�erent thresholds given at four di�erent frequency values
(f1 − f4), and the spectral distances between these are given in [12]. In this thesis, we only
consider normalized frequencies, so f1 has been set to (1+α)/(2T ) while f2−f4 was calculated
from f1 by means of [12]. Linear curves were then drawn between the known values, resulting
in the BGAN spectral mask.

When utilizing the simple mask, we calculated both the peak and the sidelobe level by aver-
aging to minimize statistical variations, and then used the di�erence to see whether the PSD
exceeded a mask constraint of ∆p dB. As for the implementation of the BGAN mask, this has
been done in a more simple fashion; The PSD has been estimated as described in Chapter 3.4,
and the maximal value in the peak has been calculated. The BGAN spectral mask has then
been placed on top of the transmitted PSD, with the peak of the mask equal to the peak of
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Figure 4.14: The transmitted PSD, restricted by the topical mask, of an ideally predistorted
system (red) and a nonlinear system, with 2-segments where a1 = 0.485.

Figure 4.15: Average transmitted powers for an ideally predistorted system (dotted red) and
nonlinear systems, using various 4-segments weight coe�cients (black). Transmitted PSD is
restricted by the topical mask.

the transmitted PSD. If the PSD for any frequency values exceeded the mask, the transmitted
PSD was not accepted, and a new estimated PSD was calculated using more attenuation prior
to the nonlinearity.

Thus, this model is more vulnerable for statistical variations as every point in the PSD have
in�uence on whether or not we accept the transmitted signal in relevance to the mask. Hence,
the results presented here will not be as reliable as those obtained when considering the
transmitted PSD with respect to the simple mask constraints.

4.3.1 An Ideally Predistorted System

The ideally predistorted system is the same as the one we considered when using the simple
mask constraints. Table 4.4 summarizes the most important results from this scenario, and
Figure 4.17 illustrates the estimated transmitted PSD of this case. These results alone are not
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Figure 4.16: The transmitted PSDs, restricted by the topical mask, of an ideally predistorted
system (red) and a nonlinear system, with 4-segments where a1 = 0.58.

Measured variable Estimated Value

Average transmitted power, P̄avg 0.5931 [Normalized]

Standard deviation, S̄Pavg 0.0002 [Normalized]
IBO, linear/dB 0.817 [Linear]/-0.8778 [dB]

Table 4.4: Estimated parameters for an ideally predistorted, restricted by the BGAN mask

very informative. However, when these results are used as a basis when examining the di�erent
nonlinear systems, it will become clear whether or not an ideally predistorted system is the
optimal solution as regards transmitted power, when restrictions are placed by the BGAN
mask.

4.3.2 Nonlinear Systems

This presentation of di�erent nonlinear systems will follow the same outline as when we
considered nonlinear systems restricted by the simple mask.

Fixed Coe�cients in the Nonlinearities

Figure 4.18 illustrates the average transmitted power as a function of K. We observe that
this function resembles the one presented in Figure 4.3. As mentioned, the results obtained
here are less reliable than the results presented for the simple mask. However, they provide us
with an idea of what happens when these nonlinearities are used in place of a linear element,
which is worse performance when a small number of segments are used, and approximately
equal performance when a larger number of segments are used. This was also the result we
obtained when examining �xed nonlinearities with regard to a simple mask in the vicinity of
the �rst sidelobe level.

By examining the di�erent PSDs for these particular nonlinearities (Figure 4.19), we can
observe that the actual limitation for all nonlinearities, as well as the ideally predistorted sys-
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Figure 4.17: Transmitted PSD of the ideally predistorted system, restricted by the BGAN
mask

Figure 4.18: Average transmitted powers for an ideally predistorted system (dotted red) and
nonlinear systems, using �xed weight coe�cients (black). Transmitted PSD is restricted by
the BGAN spectral mask.

tem, lies in the proximity of 1.35/T . Thus, the examination has so far proved that restrictions
placed by the BGAN mask is very alike to placing restrictions with a simple mask close to the
mainlobe.

Two Segments Nonlinearities with One Degree Of Freedom

Figure 4.20 illustrates the average transmitted power for this considered set of nonlinearities.
Once more, we observe that this resembles the results we obtained when restricting the trans-
mitted PSD with a simple mask close to the mainlobe, and we can easily observe that the
power e�ciencies of the considered set of nonlinear systems, do not exceed that of an ideally
predistorted system.
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Figure 4.19: Transmitted PSDs of all considered nonlinear systems with �xed coe�cients
(black), seen in relation to the BGAN spectral mask (dotted red)

Figure 4.20: Average transmitted powers for an ideally predistorted system (dotted red) and
nonlinear systems, using various 2-segments weight coe�cients (black). Transmitted PSD is
restricted by the BGAN spectral mask.

Four Segments Nonlinearities with One Degree Of Freedom

Once again, we obtain similar results as those obtained when placing restrictions on the
transmitted PSD, with a simple mask close to the mainlobe. Figure 4.21 illustrates the average
transmitted powers for the topical nonlinear systems, compared to an ideally predistorted
system. We notice that several of the nonlinear system, utilizing an a3 weight coe�cient in
the range of 0.52−0.55, are approximately as power e�cient as an ideally predistorted system.
However, neither of these nonlinear system will outperform an ideally predistorted system.

4.3.3 Important Observations

We observed that none of the considered nonlinear systems here, restricted by the BGAN
mask, were able to outperform an ideally predistorted system as regards transmitted power.
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Figure 4.21: Average transmitted powers for an ideally predistorted system (dotted red) and
nonlinear systems, using various 4-segments weight coe�cients (black). Transmitted PSD is
restricted by the BGAN spectral mask.

In the light of these observations, we conclude that an ideally predistorted is the optimal
solution when the transmitted PSD is restricted with a BGAN mask.



Chapter 5

Conclusions

5.1 Conclusions and Main Findings

In this thesis, we have examined whether any of the nonlinear transmission systems considered
were capable of outperforming an ideally predistorted system, as regards average transmitted
power, when their PSDs were all restricted by the same spectral mask. To perform this
examination, we simulated a simple baseband transmission system utilizing di�erent nonlinear
elements. For all considered nonlinear elements, we calculated the transmitted PSD of the
system and examined whether it ful�lled the particular spectral mask. When the restrictions in
transmitted PSD were ful�lled, an estimate of the average transmitted power was computed
and stored for further use. All esimates, restricted by the same spectral mask, were then
compared to the average transmitted power of an ideally predistorted system.

The main �ndings presented in this report can be summarized as follows. First, the nonlineari-
ties considered have a huge impact on the �rst sidelobe level. Consequenctly, when restrictions
are placed by means of the BGAN mask [12] or a simple mask at the �rst sidelobe level, the
ideally predistorted system has proved to be optimal, as regards transmitted power. When
a simple mask constraint is utilized outside the �rst sidelobe level, several of the nonlinear
systems do obtain higher average transmitted power than an ideally predistorted system, with
a 2-segments B-spline nonlinearity1 as the optimal solution of those considered.

We thus conclude that as long as limitations are placed on the sidelobe level close to the
mainlobe, an ideally predistorted system is the obvious choice. On the other hand, should no
such limitations exist within the �rst sidelobe, a nonlinear system has proven to obtain higher
transmitted power. Hence, such a transmitter could be considered when designing the system.

5.2 Future Work

In this thesis, we have only considered a particular set of nonlinearities in relevance to a basic
baseband transmission system. Suggestions for further work on this subject are:

1Utilizing [0.485 0.7575 0.485] as weight coe�cients

39
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� Find the optimal nonlinearity by using numerical optimization of all parameter B-splines
with a larger number of intervals.

� Use an analytical approach to spectral estimationan because a numerical calculation of
the PSD is time consuming.



Bibliography

[1] John G. Proakis and Dimitris G. Monolakis. Digital Signal Processing - Principles, Al-

gorithms and Applications. Prentice-Hall Inc, New Jersey, 1996. 2.1, 2.1.1, 2.1.1, 2.1.2,
2.3.2

[2] Nima Safari, Nils Holte, and Terje Røste. Digital predistortion of power ampli�ers based
on spline approximation of the ampli�er characteristics. Vehicular Technology Conference,
IEEE 66th, pages 2075�2080, 2007. 2.2, 3.1

[3] Adel A. M. Saleh. Frequency-independent and frequency-dependent nonlinear models of
twt ampli�ers. IEEE Transaction on communications, VOL. COM-29, NO. 11, pages
1715�1720, 1981. 2.3

[4] Osamu Shimbo. Transmission Analysis in Communication Systems, Volume 1. Computer
Science Press, Inc, Maryland, 1988. 2.3.2

[5] Erwin Kreyszig. Advanced Engineering Mathematics 8th ed. John Wiley & Sons Inc.,
New York, 1999. 2.3.2

[6] Lars Sundstrøm. Digital RF Power Ampli�er Linearisers. PhD thesis, Department of
Applied Electronics, Lund University, Sweden, 1995. 2.3.2, 3.1

[7] John R. Barry, Edward A. Lee, and David G. Messerschmitt. Digital Communication.
Springer, New York, 2004. 3.1, 3.2, 3.4

[8] Aldo N. D'Andrea, Vincenzo Lottici, and Ruggero Reggiannini. Rf power ampli�er lin-
earization thorugh amplitude and phase predistortion. IEEE Transaction on communi-

cations, VOL. 44, NO. 11, pages 1477�1484, 1996. 3.1

[9] A.N.D'Andrea, V.Lottici, and R.Reggiannini. E�cient digital predistortion in readio
relay links with nonlinear power ampli�ers. IEE Procedings online no. 20000358, pages
175�179, 2000. 3.1

[10] Angelo Bernadini and Silvia De Fina. Analysis of di�eent optimization criteria for if
predistortion in digital radio links with nonlinear ampli�ers. IEEE, Transactions on

communications, VOL 45, pages 421�428, 1997. 3.1

[11] Andrea Goldsmith. Wireless Communications. Cambridge University Press, New York,
2005. 3.2

[12] Broadband global area network (bgan) sdm volume 5 chapter 1. Inmarsat con�dential
paper. 3.2, 4.3, 5.1

41



42 BIBLIOGRAPHY

[13] Simon Haykin. Communication Systems, 4th edition. John Wiley & Sons, Inc, New
Jersey, 2001. 3.4

[14] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye. Probability &

Statistics for Engineers & Scientists. Prentice Hall PTR, New Jersey, 2002. 3.4, 3.4

[15] Michel C. Jeruchim, Philip Balaban, and K. Sam Shanmugan. Simulation of Commu-

nication Systems - Modelling, Methodology and Techniques. Kluwer Academics/Plenum
Publishers, New York, 2000. 3.5


	Title Page
	Problem Description
	Preface
	Contents
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Objective
	Scope and Limitations
	Methodology
	Structure

	Background Theory
	Power Spectral Density
	The Periodogram Estimate
	The Averaged Modified Periodogram

	Modeling Nonlinearities by Means of B-Splines
	Fixed Weight Coefficients on Nonlinearity
	Selecting Weight Coefficients with One Degree of Freedom

	Nonlinear Impact upon a Signal
	Examination of Nonlinear Impact in the Time Domain
	Examination of Nonlinear Impact in the Frequency Domain


	Methodology
	System Model
	Optimization Criterion
	Simulation Environment
	Simulations - A Statistical Approach
	Confirmation of Simulation Program

	Simulation Results
	A Simple Mask close to the Mainlobe
	An Ideally Predistorted System
	Nonlinear Systems
	Important Observations

	A Simple Mask at 1.7/T
	An Ideally Predistorted System
	Nonlinear Systems
	Important Observations

	Restricting the PSD with the BGAN Spectral Mask
	An Ideally Predistorted System
	Nonlinear Systems
	Important Observations


	Conclusions
	Conclusions and Main Findings
	Future Work

	Bibliography

