
July 2007
Børje Forssell, IET
Steinar Brede, Telenor R&D

Master of Science in Electronics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Software-Defined GNSS Receiver based
on Free Software Components

Trond Danielsen

Problem Description
This task is a continuation of a previous project consisting of an evaluation of existing free
software GNSS solutions. None of these solutions were found suitable for future work, so
specifications for a software-defined receiver built on top of the GNU Radio software-defined radio
framework were developed.

The current task includes implementation, testing and evaluation of the OpenGNSS receiver
described in the project mentioned, and also to evaluate, implement and propose changes to the
GNU Radio framework that would make it more adaptable to GNSS applications.

Assignment given: 15. January 2007
Supervisor: Børje Forssell, IET

Software-Defined GNSS Receiver based on
Free Software Components

Trond Danielsen

July 6, 2007

Preface

This is the Master Thesis for Trond Danielsen, presented to the Norwegian
University of Science and Technology as partial fulfillment of the requirement
for obtaining a Master’s Degree in signal processing and communication. The
thesis has been written under the supervision of Professor Börje Forssell at the
Department of Electronics and Telecommunications, and Steinar Brede from
Telenor R&I in Trondheim.

The assignment has been to implement, test and evaluate parts of a software-
defined satellite navigation receiver based on free software. The specification
for the receiver was written in a previous assignment by the author himself.
Personally it has been a privilege for me to be able to work on this assignment.
I find free software very exciting, and to be able to combine this with satellite
navigation has been the perfect topic for a thesis for me. I am therefore grateful
for the freedom given to me by my supervisors which enabled me to shape my
assignment as I wished.

Acknowledgement

First of all I would also like to thank my supervisors — Professor Börje Forssell
and Steinar Brede — for their help and guidance.

I would also like to thank the GNU Radio community for their valuable
support. Without their insightful answers on the GNU Radio mailing list, this
would not have been possible. I would also like to thank all of those who work
on the GNU Radio framework and the Universal Software Radio Peripheral
both professionally and on a voluntary on their free time.

I also would like to thank the thousands of people who spend their time
working on free software. Isaac Newton has expressed what I feel better than
what I am able to:

If I have seen a little further, it is by standing on the shoulders of
Giants.

And last, but not the least, I would like to thank my fiancé Cecilie for all her
love and care.

iii

Abstract

In this paper an acquisition module for the OpenGNSS software recevier
is discussed. OpenGNSS is built on top of the GNU Radio SDR framework,
which is a free software framework for building software-defined radio. The
overall task is to create a complete software-defined GNSS receiver from free
software components; the acquisition module is the first stage in this process.

The acquisition module supports variable length of non-coherent integra-
tion to improve signal-to-noise ratio, variable Doppler frequency search range,
and an arbitrary number of satellites can be searched in parallel. Tests show
that the module perform very well under normal to strong signal conditions,
while it fails under weak signal conditions. This is expected as no techniques
to improve the performance under such conditions have been applied.

A number of issues have been discovered during the development of the
acquisition module:

• Limitations in the GNU Radio framework.

• Limitations in the appurtenant hardware: The Universal Software Radio
Peripheral.

Both of these issues are addressed, and recommended modifications and
topics for potential future work have are proposed.

Even though the complete OpenGNSS receiver is not yet complete, the re-
sults so far indicate that the current approach is a viable approach to create a
software-defined GNSS receiver from free software components.

ii

Contents

1 Introduction 1
1.1 Previous work . 3
1.2 Software defined receivers . 3
1.3 GNU Radio . 3
1.4 Outline . 4

2 Theory 5
2.1 Basic Acquisition . 5

2.1.1 Frequency-domain correlation 6
2.2 C/A code properties . 7
2.3 Multipath effects . 9
2.4 Effect of sampling frequency inaccuracy 9
2.5 Effect of FFT window on estimate accuracy. 11
2.6 Moving average filter . 12
2.7 The GNU Radio software radio framework 14

2.7.1 Signal processing blocks 15
2.7.2 Run-time support system 16

2.8 Digital down-conversion . 17
2.8.1 CORDIC . 18
2.8.2 Cascaded integrator-comb filter 20
2.8.3 Half-band filter . 20

3 Hardware description 23
3.1 Spirent satellite navigation simulator 23
3.2 Low noise amplifier . 23
3.3 Universal Software Radio Peripheral 24

3.3.1 RF front-end . 24
3.3.2 Analog to digital converter 25
3.3.3 Oscillator . 26
3.3.4 Field Programmable Gate Array 26
3.3.5 USB controller . 27

3.4 Host computer . 27

4 Software description 29
4.1 Operating system . 29
4.2 Development tools . 29
4.3 GNU Radio . 30

iii

5 System design and implementation 31
5.1 Single channel correlator . 32

5.1.1 Exponential moving average filter 32
5.1.2 Local code generator . 33

5.2 Frequency and delay estimator 33

6 Results 35
6.1 Simulated signals . 35
6.2 Single satellite . 37

6.2.1 Length of non-coherent integration 38
6.2.2 Signal to noise ratio . 41

6.3 Multiple satellites . 44
6.4 Effect of sampling frequency accuracy 48
6.5 Effect of FFT window function 48

7 Discussion 51
7.1 Length of non-coherent integration 51
7.2 Signal to noise ratio . 52
7.3 Multiple satellites . 52
7.4 Effect of sampling frequency accuracy 52
7.5 Effect of FFT window function 53

8 Future work 55
8.1 GNU Radio limitations . 55
8.2 Hardware limitations . 57

8.2.1 RF front-end limitations 57
8.2.2 USRP limitations . 58

8.3 OpenGNSS design limitations . 58
8.4 Effect of multipath reflections . 58

9 Conclusion 59

A Source Code 61
A.1 OpenGNSS acquisition module 61
A.2 GNU Radio argmax extension . 66
A.3 GNU Radio max extension . 71

iv

Abbreviations

ADC Analog to digital converter

AGC Automatic gain control

BSD Berkeley Software Distribution

C/A Clear/Acquisition

CAM Coarse acquisition module

CDMA Code-division multiple access

CIC Cascaded Integrator Comb

CORDIC COordinate Rotation DIgital Computer

COTS Commersial of the shelf

DBS Direct Broadcast Satellite

EMA Exponentially weighted moving average

FFT Fast Fourier Transform

FIFO First in - First out

FIR Finite impulse reponse

FPGA Field Programmable Gate Array

GNSS Global Navigation Satellite System

GNU Recursive acronym for “GNU is not Unix”

GPS Global Positioning System

IIR Infinite impulse response

INS Inertial navigation system

LE Logical elements

LNA Low-noise amplifier

PLL Phase lock loop

PPM Parts per million

v

PR Pseudo-random

RF Radio frequency

SDR Software Defined Radio

SIMD Single instruction, multiple data

SV Space Vehicle or GPS satellite

USB Universal Serial Bus

USRP Universal Software Radio Peripheral

VCO Voltage Controlled Oscillator

vi

Chapter 1

Introduction

Satellite navigation systems have been around since the early 1960s, with TRAN-
SIT as the first satellite navigation system of the world [12, Ch. 10.1]. But
it was not until the 1980s and the creation of the NAVSTAR Global Position-
ing System — or more commonly known as GPS — that the use of satellite
navigation became widespread. Satellite navigation systems were not the first
radio-navigation systems to be created. Land-based systems has existed since
the first world war, but land-based systems only provide partial coverage of
the Earth. A satellite system is able to provide global coverage at any time
with only a relatively small number of satellites.

The word navigation is derived from the Latin word navigato, which means
voyage. However, satellite navigation systems are no longer exclusively used
for traditional navigational purposes such as ship navigation, but also for pre-
cise positioning services in the offshore industry, personal navigation in urban
areas with localized information about the area you are visiting, fleet manage-
ment systems for people and goods transport companies as well as many other
applications. Satellite navigation systems were originally created to serve mil-
itary purposes, but the number of civil users has outnumbered military users
by many times. Satellite navigation is now a part of our everyday life, and the
number of applications grow every year.

Until now the only available system has been the American GPS. The Rus-
sian GLONASS system has also existed almost as long as GPS, but because of
funding issues and a limited numbers of satellites, the system has not been able
to provide complete coverage of the earth. The situation has changed in recent
years, and the Russians are continuously deploying new satellites. With the in-
creasing dependency of satellite navigation systems, the European Union (EU)
decided during the early 2000s to create an alternative system that would be
under civil control. This became known as the Galileo positioning system, and is
scheduled to be operational at the end of this decade.

In the years to come, users will have several systems to choose from. As
each of the satellite navigation systems evolve, they get increasingly more ad-
vanced. This present new possibilities to both researchers and users. But satel-
lite navigation receiver technology is a very closed technology; manufacturers
are reluctant to expose the inner workings of their systems, and commercially
available receivers rarely provide access to the raw GNSS data. This makes
it difficult to use conventional receiver for advanced concepts such as inertial

1

navigation assisted systems, multi-system receivers and for developing more
advanced algorithms. Receivers that are usable for such applications are both
expensive and under restrictive licenses, which makes them inaccessible to
many researchers, developers and for educational purposes.

In this paper a GPS acquisition module for the OpenGNSS software receiver
is discussed. The OpenGNSS software receiver is a software GNSS receiver
design described by Danielsen [10]. The purpose of the OpenGNSS software
receiver is to create an expandable, flexible and modular platform for creating
GNSS receivers for both research, development and education. It is built on
top of the GNU Radio software-defined radio framework. The receiver is not
yet complete, but the acquisition module is the first step towards creating a
complete system. The present task can be divided into two distinct parts:

• Implementation, testing and verification of the functionality and perfor-
mance of the GPS acquisition module.

• Evaluation of the existing GNU Radio framework, and implementation
of required changes to make is more suitable for satellite navigation ap-
plications.

The acquisition module is the first stage after the analog processing in a
GPS receiver. Initially there are several unknown parameters in the GPS signal
which the receiver must estimate be for reception can begin. This is known
as the acquisition procedure and involved searching for visible satellites and
estimating the unknown parameters so that the receiver can start receiving data
from the satellite. This is described in section 2.1 on page 5.

OpenGNSS is a receiver design entirely based on free software components.
The term free is an ambiguous term in English. It is therefore important to
emphasize that free here should be read as freedom, and not gratis. Many people
think of free software as software that is available to the user at no cost, but in
this context it is the freedom that is important.

The requirement for freedom applies both to the hardware and the soft-
ware. This includes, but are not limited to, the following demands:

• One must be able to use the hardware and the software for whatever
purpose.

• One must be able to study the hardware and the software, and also make
changes to it if that is necessary to make it adaptable to ones needs. Ac-
cess to sufficient documentation, specification and source code is a pre-
condition for this.

• One must be able to share ones work with others. This includes both the
original work, and any modifications that has been made. If any non-
disclosure agreement is required to get access to documentation or spec-
ification, the result can not be considered free.

All though the intention is not to limit the OpenGNSS receiver to a particu-
lar type of satellite navigation system, the American Global Positioning System
(GPS) is the only one that is fully operational and with widespread coverage.
The rest of this document therefore focuses on the requirements of the Global
Positioning System.

2

1.1 Previous work

Software-defined satellite navigation receivers are not a new idea, and several
commercial receivers and related research projects exist. Real-time receiver
have been implemented both on digital signal processors [17] and for personal
computers [9], but both of these are implemented entirely in low level lan-
guages such as C, C++ and assembly. Many people have also written off-line
receivers which process data in Matlab®, but such a receiver cannot operate in
real-time, making its usefulness fairly limited.

The OpenGNSS design combines the low-level performance of C++, with
the high-level flexibility of Python, creating an easily modifiable system that
also include real-time performance. In addition to that, no other current re-
ceivers also includes a fully open source hardware and software stack, making
it an interesting choice both for researchers and commercial users.

1.2 Software defined receivers

Traditionally satellite navigation receivers implemented the majority of the sig-
nal processing in hardware. But because of the growth in computational power
in COTS computer equipment, many of these signal processing tasks can now
be performed in an ordinary computer. This makes it possible to move much
of the functionality of the receiver from static hardware implementations, to
dynamic software. This is what is know as a software-defined radio (SDR).

The OpenGNSS design is a software-defined receiver design, since the ma-
jority of the signal processing is performed either in a FPGA or on an ordinary
computer. This makes the design very flexible, since the receiver can be re-
configured dynamically, making it an ideal choice for multi-mode receivers,
research and development, and for low-volume designs. An example of the
advantage of the software-defined receiver compared to a traditional receiver
is presented in [10, Ch. 1.2].

1.3 GNU Radio

GNU Radio is a framework for creating software-defined radios. GNU Radio
has a large and active community of developers, and has been used to cre-
ate many types of software-defined radios, such as HDTV receivers, passive
radars, and experimental GSM receivers. GNU Radio runs under several oper-
ating systems such as Linux, Microsoft Windows, Mac OS X and NetBSD, but
the primary development platform is Linux.

The GNU Radio project was started by Eric Blossom in 1998 as a fork of
the PSpectra code that was developed by the SpectrumWave project at MIT. By
2004 all of the PSpectra code was replaced by GNU Radio code, but the de-
sign inherited from the PSpectra framework is still visible. The PSpectra SDR
framework is described in [7]1.

1PSpetra is referred to as SPECTRA in this paper.

3

1.4 Outline

The rest of this paper contains the following chapters:
First several basic theoretical topics are presented. This includes the princi-

ple behind GPS signal acquisition, and important properties of the GPS signal.
Then the GNU Radio framework is described in details, and finally a number
of important topics regarding software radios is presented.

Furthermore the hardware and the software setup used during the devel-
opment is described. This includes both the actual software and hardware used
in the receiver, and also software and hardware used during the development,
testing and verification.

After that the actual implementation of the acquisition module is presented.
The various sub-components are described separately, as well as the complete
system.

Finally the results of the various tests performed on the OpenGNSS acqui-
sition module is presented and discussed.

4

Chapter 2

Theory

This chapter covers the basic theory of GPS signal acquisition, important prop-
erties of the GPS signal relevant to the acquisition procedure, and fundamental
issues regarding software receivers. Basic knowledge of topics such as GPS
position calculation and elementary radio and signal processing theory has in-
tentionally been omitted from this paper as it is assumed known to the reader.

2.1 Basic Acquisition

In order to be able to track the GPS signal, an acquisition procedure must be
used to detect the presence of the signal. In a regular radio receiver one would
usually tune the receiver to the desired frequency and start receiving, but in
a satellite navigation system there are a number of factors that must be taken
into account:

1. The relative speed between the transmitter and the receiver causes a sig-
nificant Doppler frequency shift on the GPS signal. The receiver have
to calculate this frequency shift before the signal can be brought back to
baseband.

2. The GPS signal is multiplied with a pseudo-random (PR) sequence. This
done for two major reasons:

• Provide simultaneous access to the same frequency band for all satel-
lites. This is known as code-division multiple access (CDMA).

• The PR sequence is used to measure the distance from the receiver
to the satellite.

The receiver has to remove the PR sequence before the data can be de-
modulated. The problem is that initially the start of the PR sequence is
unknown.

The PR sequence is also known as a spreading code. Several different
spreading codes are used in the GPS system, but only the Clear/Acquisition
(C/A) code is available to the general public. The effect of the multiplication
with the C/A code is that the signal is spread out over a wider frequency band.

5

The effect of multiplying a clean carrier at 1 MHz with the spreading code can
be seen in figure 2.1.

−2 −1 0 1 2

ω (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

|X
(ω

)|

−2 −1 0 1 2

ω (MHz)

0.0

0.2

0.4

0.6

0.8

1.0

|X
(ω

)|
Figure 2.1: C/A code spectral properties.

The procedure for estimating the C/A code delay and Doppler frequency
shift is described in [10], but the principle is to correlate the received signal
with a locally generated signal that consists of the Doppler frequency and the
C/A code of the desired satellite:

R = R(fd, δ) = (x � x̂)(fd, δ) =
N−1

∑
δ=0

x[δ]x̂∗[n + δ] (2.1)

where x = x[n] is the received signal, and x̂ = x̂(fd, δ) is the locally gener-
ated signal that is a function of both the Doppler frequency and the C/A code
delay.1

The solution of R is therefore a surface, and the maximum value of |R|
corresponds to the Doppler frequency and C/A code delay for the received
signal.

Two parameters determine the resolution of the estimate obtained from
equation 2.1: The sampling frequency and the length of the sequence used in
the calculation[24, Ch.7.4]. Given that one ms of the signal sampled at 5 MHz,
the frequency resolution is 1 kHz. With the same sampling frequency, the time
resolution will be ±100 ns[24, Ch.8.10].

2.1.1 Frequency-domain correlation

In order to estimate the Doppler frequency and C/A code shift, the received
signal is correlated with the locally generated code. The time-domain correla-
tion is a computationally intensive operation, and is usually implemented in
hardware. But the number of operations can be significantly reduced by per-
forming the correlation in the frequency domain. This is known as frequency-
domain correlation or fast correlation.

1Formally, the operation described in equation 2.1 is circular correlation, and not correlation.
Mallat [18, Ch. 3.3.1] gives a deviation of circular convolution, which is very similar to the devia-
tion of circular correlation. Strictly speaking, correlation is defined from −∞ to ∞, but here only
finite signals is used in the calculation.

6

Mallat [18] shows that if f and h have period N, then the discrete Fourier
transform of the circular convolution of f and h, g = f ~ h, is:

G[ω] = F[ω]H[ω] (2.2)

Since the only difference between correlation and convolution is that one of
the signals have been reversed, it follows from the same deviation that circular
correlation also can be calculated in the frequency domain. If g = f � h, then:

G[ω] = F[ω]H[ω]∗ (2.3)

since F{h[−n]} = H[ω]∗ [11, P.528]. The time-domain signal can now be ob-
tained from the inverse Fourier transform of G. Since the Fourier transform is
a linear operator, the time-domain representation of the signal can always be
reconstruction from the frequency-domain coefficients. Therefore the results
obtained from the time-domain and frequency-domain correlation are equal.

From this it is clear that the cross-correlation between the received signal
and the locally generated code can be calculated using fast correlation in the
frequency domain. While time-domain correlation requires N(N + 1) multipli-
cations and additions, the frequency-domain correlation requires 3N log2(N)+
11N multiplications and additions. For signals where N >= 32 fast-correlation
is faster than time-domain correlation[18, Ch. 3.3.4].

2.2 C/A code properties

As mentioned earlier, there are several reasons for using CDMA in GPS:

• Multiple access.

• Distance measurement.

• Makes the signal robust against interference and jamming.

The use of the C/A code for distance measurement is not discussed in
this paper, as it is not directly relevant to the acquisition procedure, and nei-
ther is the jamming aspect. The multiple access features and the robustness
against interference however important to the acquisition procedure, and is
more throughly discussed.

The C/A code is a member of the family of pseudo noise sequences known
as Gold codes. Important properties are given in table 2.1.

Property Value
Chip rate 1.023 MHz
Code length 1023 chips or 1 ms

Table 2.1: C/A code properties

CDMA is an access method that permits access to the channel through the
assignment of a unique spreading code[14, Ch.7.8]. This means that there at
any given time is N interfering satellites visible to the user. The amount of

7

interference between the individual satellites is dependent on the properties of
the spreading code.

In order to be able to separate the different satellites from each other, the
cross-correlation between the different spreading-codes codes should be zero
everywhere:

Rij(τ) =
∫ ∞

−∞
gi(t)gj(t + τ)dt = 0 (2.4)

for all τ where i 6= j. gi(t) is the C/A code from satellite i.
In reality this is generally not possible, and it is one usually restricts the

demand to say that the cross-correlation should be less than ρ for all τ:

|Rij| < ρ (2.5)

where 0 < ρ � |Rii(0)| and i 6= j.

(a) Auto-correlation

−3999 0 3999

0.0

0.2

0.4

0.6

0.8

1.0

(b) Cross-correlation

−3999 0 3999

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.2: C/A code correlation properties.

Figure 2.2 shows the cross-correlation between the C/A code from satellite
1 and 2, and the auto-correlation of the C/A code from satellite 1.

Since the received signal is the sum of the signals from each of the satellites,
the correlation for a given code is the sum of the auto-correlation function for
the desired satellite, plus the cross-correlation from interfering satellites. If the
number of visible satellites be N, then resulting correlation function would be:

Rii = Rii +
N−1

∑
j=1

αjRij(fdj, τj) (2.6)

Note that the both the C/A code delay, Doppler frequency shift and re-
ceived power is different for each of the satellites. Spilker [21, p.105] shows
that the worst-case peak value of the cross-correlation side-lobe is 21.6 dB be-
low the auto-correlation peak of the desired signal. However, due to the time-
varying Doppler frequency, the cross-correlation peaks are not stationary com-
pared to the auto-correlation peak. Also, the probability for that all of the in-
terfering satellites with produce cross-correlation peaks with the same delay
is very small. As an approximation the undesired cross-correlation terms can

8

therefore be expressed as additive white noise 30 dB below the auto-correlation
peak of the desired signal.

2.3 Multipath effects

Multipath is the phenomenon whereby a signal arrives at a receiver via multi-
ple paths attributable to reflection and diffraction[8, p.547]. Multipath effects
is a dominant source of errors in navigation systems. Reflections distorts the
signal modulation, which broadens the correlation peak of the C/A code and
thereby reduced the accuracy of the pseudo-range measurement and decreases
the signal to noise ratio and makes acquisition more difficult. It also distorts
the carrier phase, and hence degrades the accuracy for interferometric use.

For a stationary receiver the effect can be significantly reduced by antenna
design, but for mobile applications, in urban areas and in highly dynamic ap-
plications such as aircrafts, the effect can not reduced by the effect of the an-
tenna pattern.

It is important to notice that the errors introduced by reflections generally
have non-zero mean values[8, p.548], which means that the error can not be
remove by averaging the signal over a given period of time.

The direct signal received from a single satellite can be described by the
following equation:

sd(t) =
√

A
2

Cisin(2π(fc + fd)t + θ0) (2.7)

where A is the power of the received signal, Ci is the C/A code of SV #1, fd
is the initially unknown Doppler frequency shift, and θ0 is the initial carrier
phase.

If a single-ray reflection is introduced, the equations can be rewritten as
follows:

sm = sd(t) + αsd(t + δ) (2.8)

where α is the attenuation factor for the reflected signal and δ is the delay of the
reflected signal introduced by the longer path compared to the direct signal.

Simulations for a single-ray reflection that is attenuated 20 dB compared to
the direct ray show that the peak pseudo-range error is 15 m[8, p. 554]. The
worst case reflection scenario is where the reflected ray is stronger than the
direct ray (α > 1). This can occur in urban areas and indoor, but this special
case is beyond the scoop of this paper.

2.4 Effect of sampling frequency inaccuracy

Most discussions regarding digital signals assume that the sampling frequency
is exact, but if an offset in the sampling frequency is present, a number of errors
are introduced. Tsui [24, Ch. 6.15] discusses the effect this has on the center fre-
quency of the down-converted signal. This error is however so small that it is
insignificant compared to the Doppler shift on the signal. The most important
effect is on the pseudo range measurement, and is related to the drift of the
correlation peak caused by the offset.

9

If an offset between the assumed and the actual sampling frequency is
present, the estimated C/A code delay would change at a rate that is propor-
tional to the sampling frequency offset ∆ fs and the length of the C/A code,
which is 1 ms.

If the received signal is sampled at 4 MHz, the locally generated C/A code
also has to be digitized at this frequency, which means that the C/A code is
4000 samples long. But if there is an error ∆ fs in the sampling frequency, the lo-
cally generated code would either be longer or shorter than the received code.
This mismatch makes the cross-correlation peak drift with a rate that is given
by:

d
dm

δC/A(m) =
d

dm

[
argmax
n∈[0,N)

{R(n)}
]

= tc∆ fs (2.9)

where tc is the length of the spreading code, δC/A(m) is the C/A code delay,
and R(n) is the cross-correlation function for a fixed fd. Notice that the rate of
δC/A is different from that of R(n). The period of δC/A(m) is always equal that
of the C/A code period, 1 ms, while the rate of R(n) depends on the sampling
frequency. The code tracking loop in the receiver must be able to follow this
change in code delay.

In figure 2.3 the effect can be seen for a simulation with a sampling clock
offset of -1.57 kHz. This corresponds to a different in length between the two
codes of 2 samples.

1. ms

2. ms

3. ms

4. ms

-10 -5 0 5 10 15 20 25 30

5. ms

Figure 2.3: Effect of sampling frequency offset

In addition to the shifting the correlation peak is also broaden because the
generated and received code no longer match perfectly. According to Tsui [24,
Ch. 7.3], if the C/A code is off by half a chip, the correlation peak is reduced
by 6 dB. Simulations show that an offset in sampling frequency of -1.57 kHz,
attenuates the correlation peak by 0.6 dB. The reduces the signal to noise ratio,
but the loss is small enough to be neglected.

10

2.5 Effect of FFT window on estimate accuracy.

When using frequency domain correlators for calculating the cross-correlation,
the choice of Fast Fourier Transform (FFT) window function is important with
regard to the accuracy of the estimate obtained from the acquisition module.
A window function is any given finite sequence {zn} of length N equal to the
length of the FFT operation that is multiplied with the signal before the FFT
is performed. The most obvious window is the rectangular window, where
zi = 1 for i ∈ [0, N), which is implicitly applied since sequences of finite length
is used. Figure 2.4 shows the effect of multiplication with a Hann(ing) window.

(a) Signal

-1.0

-0.5

0.0

0.5

1.0

(b) Hann(ing) window

-1.0

-0.5

0.0

0.5

1.0

(c) Result

-1.0

-0.5

0.0

0.5

1.0

Figure 2.4: Signal before and after multiplication with a Hann(ing) window.

There are two important factors that must be considered when selecting the
window function for the FFT:

• The effect on the C/A code correlation peak.

• The spectral leakage to adjacent frequency bins.

Both these factors are discussed in the following paragraphs.

Correlation peak loss The effect of the window function on the correlation
peak magnitude has been simulated, and table 2.2 show the correlation peak
loss relative to the ideal correlation peak for several well-known window func-
tions. Both the received signal and the local code was multiplied with the win-
dow function before the cross-correlation was calculated.

Window function: Loss [dB]
Flattop -7
Blackman-Harris -5
Blackman -4
Hann -4
Hamming -4
Triangular -4

Table 2.2: Correlation peak loss.

11

Spectral leakage A signal consisting of a single frequency corresponds to a
Dirac in the frequency domain, but for this relation to be valid, the signal must
have infinite duration. The effect of using finite length sequences for com-
puting the frequency content of a signal is that the Dirac is convoluted with
the Fourier transform of the window function, which leads to spectral leakage
to adjacent frequency bands. When estimating the Doppler frequency of the
received GPS signal, this means that the original carrier frequency might be
smeared into neighbouring bands. If enough energy is leaked into these side-
bands, the magnitude of the correlation peak in the sidebands might be almost
equal to the correct one, and it would not be possible to determine which peak
is the correct one.

The most important properties of the window function is the width of the
main lobe, and the attenuation of the side lobes. Figure 2.5 on the next page
shows the Fourier transform of a single frequency signal windowed by three
different window functions: Rectangular window, Hann(ing) window and Blackman-
Harris window (from left to right).

It is obvious from the figure that the level of the side lobes are much lower
for both the Hann(ing) and the Blackman-Harris window. However what is not
visible from the figure, is the width of the main lobe. If the main lobe is very
wide, it will stretch into adjacent bins, and have large impact on the acquisition
procedure.

Window function 3 dB bandwidth (bins) Highest side-lobe level (dB)
Rectangular 0.89 -13
Hann(ing) 1.44 -32
Blackman-Harris 1.9 -58

Table 2.3: Properties of selected window functions[13]

Table 2.3 shows the 3dB bandwidth of three selected window functions.
From this it is clear that the relation between the side lobe level and the

width of the main lobe are contradicting terms: One can not get a narrow main
lobe while maintaining low side lobe levels.

2.6 Moving average filter

Because of the low signal to noise ratio of the GPS signal, it is usually not
possible to estimate the Doppler frequency and C/A code delay from a sin-
gle C/A code period[24, Ch. 7.11]. The correlator outputs are therefore non-
coherently integrated over several C/A code periods to produce acceptable
estimates. There are several ways to perform this non-coherent integration;
here two different moving average filters are described.

A moving average filter is used to reduce random noise while retaining a
sharp step response. This section describes the difference between the expo-
nentially weighted moving average (EMA) filter and the simple moving av-
erage (SMA) filter[20, Ch. 15]. The EMA filter is also known as a single pole
recursive filter[20, Ch. 19].

The EMA filter can be described by the following equation:

y[n] = (1− α)y[n− 1] + αx[n] (2.10)

12

(a) Rectangular window

0 50 100 150 200 250 300
-60

-50

-40

-30

-20

-10

0

(b) Hann(ing) window

0 50 100 150 200 250 300
-60

-50

-40

-30

-20

-10

0

(c) Blackman-Harris window

0 50 100 150 200 250 300
-60

-50

-40

-30

-20

-10

0

Figure 2.5: Fourier transform of window functions: Rectangular, Hann(ing)
and Blackman-Harris (left to right)

13

where x(n) is the input signal, and y(n) is the output.
The SMA filter can be described by the following difference equation:

y[n] =
1
N

N−1

∑
i=0

x[n− i] (2.11)

The EMA and the SMA filters are similar in the way that they both output
a weighted sum of N previous input items. This is different is that in a simple
moving average filter N previous values are weighted equally, whereas in a
EMA filter higher confidence is placed in recent observations.

From this it is obvious that to compute a single output from the SMA filter
N previous observations are required, while the EMA filter only depends on
the previous output and the current input. The memory requirement of the
EMA filter is therefore independent of the filter coefficients, while the require-
ment for the SMA increases linearly with the length of the filter.

The difference in memory requirement becomes significant when operating
on data sets of the size of the correlation matrix found in the coarse acquisition
procedure.

2.6 shows the step response of the EMA filter for α = 0.05. As can be seen
from the figure, the step response reaches 70 % of the maximum value after
20 samples, which is approximately 1

α , and 100 % after 100 samples (5
α). This

relationship between α and the step response can be used to find the desired
filter coefficient.

t

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

x(t)

Figure 2.6: Exponential moving average filter step response.

2.7 The GNU Radio software radio framework

This section gives a brief introduction to the GNU Radio software radio frame-
work. The purpose of this section is to illuminate the possibilities and limita-
tions of the system.

14

GNU Radio uses a block-based architecture that utilizes a hybrid Python/C++
programming model. This enables programmers to write computationally in-
tensive tasks in C++ to get high performance, while retaining the convenience
of the dynamic type system, automatic memory management and interactivity
of the high-level language Python. Python was created by Guido van Rossum
in 1991 and was designed to be a multi-paradigm interpreted programming
language[25, Ch. C1]. Python is a very popular programming language due to
its versatility and clean syntax. It supports a number of programming paradigms,
such as object-oriented programming, functional programming and impera-
tive programming.

The principle behind the framework is to write elementary signal process-
ing blocks such as FIR filters and mixers in C++, and then connect these to-
gether to create a chain of processing blocks. This is named a flow graph in
GNU Radio terminology. The term is borrowed from graph theory. The ad-
vantage of this design is that the topology of the signal processing chain is
defined in Python scripts, and the topology can therefore be changed without
recompiling the program. The inner details of the GNU Radio framework is
described more elaborately in 2.7 on the facing page.

GNU Radio is accompanied by a custom made hardware component named
the Universal Software Radio Peripheral (USRP). The USRP is a general purpose
software radio device that consists of a motherboard with AD- and DA-converters,
a FPGA for high-speed signal processing, and an USB interface, and a variety
of daughterboard for a broad range of frequency bands and applications. The
USRP is described in section 3.3 on page 24.

The GNU Radio framework was evaluated and compared to the alterna-
tives in [10], and found to be the most promising free framework for building
software radios, and was therefore chosen as the foundation for further work.
Other alternatives exist, but non provided the necessary flexibility and freedom
[10, Ch. 3].

GNU Radio can be described as to separate parts:

Signal processing blocks: Elementary signal processing functions such as au-
tomatic gain control (AGC), phase lock loops (PLL), and simple multipli-
ers are where the actual signal processing takes place.

Run-time support system: Memory buffers for communication between blocks,
and scheduling of the data flow in the entire system.

Each of these parts are described separately in the following sections.

2.7.1 Signal processing blocks

All GNU Radio programs are made up of elementary signal processing block
that are connected together in a flow_graph. This is where the actual signal
processing in a GNU Radio application takes place. Signal processing blocks
are either written as individual signal processing blocks in C++, or they can be
aggregated into hierarchical block in Python to create super-blocks consisting
of several smaller blocks.

All signal processing blocks have well defined interfaces that consists of
the number of input and output streams, the data type of the input and output
streams, and the number of items per stream. The properties are derived from

15

the top level class gr_block, which all blocks inherit from. The gr_block
class has a number of properties and methods, but the most important ones
are listed below:

• virtual int general_work():
This function is a virtual function that must be overridden by every block,
and is the function that is called when a block is activated by the run-time
support system. This is therefore the key function that defines the actual
functionality of the block.

• gr_io_signature {input, output}_signature():
The IO signatures defines the input and the output interface of the signal
processing block. The gr_io_signature data structure contains the
number of minimum and maximum number of connections, and the data
type of a given port.

• void set_history():
The history of a block is the number for previous items are required to
generate a single output item. An example of this is a FIR filter of length
N. To produce one output item y[n], the previous values of x from x[n]
to x[n− M− 1] are required.

• void set_relative_rate():
The relative rate of a block is the ratio between the number of inputs
compared to the number of outputs.

By using the set_relative_rate() method, it is possible to create vari-
able rate blocks, but most common blocks fall into one of the following sub-
classes:

Synchronous blocks: 1:1 relation between the number of input and output
items.

Decimating blocks: N > 1 inputs items is required to produce a single output
item. This effectively reduces the rate of the signal.

Interpolating blocks: M > 1 output items are produced per input item. This
effectively increases the rate of the signal.

For these three common cases, predefined subclasses of the gr_block has
been created: gr_synch_block, gr_sync_decimator, and gr_sync_interpolator.
These classed simplifies the development of blocks that fits these standard
cases.

2.7.2 Run-time support system

The individual signal processing blocks are separate, functional units that ac-
cepts data on one end and returns the processed data on the other. Each ele-
mentary block has no knowledge of the surrounding environment, and there-
fore a run-time support system is needed to connect blocks together and con-
trol the data flow through the entire system.

The run-time support system provides two basic functionalities:

FIFO buffers: These buffers are used to connect the individual blocks together.

16

Scheduling: Each block is activated when there is sufficient data available at
the input, and sufficient space available at the output.

The FIFO buffers used to connect individual blocks together are allocated
during the initialization of the GNU Radio flow graph. The run-time support
system traverses the entire graph, allocates buffer depending on the size of the
data and the length history of the blocks, and ensures that the types of the
input and the output matches. The GNU Radio framework is a strongly typed
system, which means that no implicit conversion of data types is performed.
This means that input and output of different data types cannot be connected,
and attempting to do so will result in an exception from the run-time system.

Once the initialization is complete, control is passed to the scheduler. The
scheduler in GNU Radio is a very simple scheduler that sequentially polls each
block to see if there is enough data available in the input buffer, and sufficient
free storage space available in the output buffer. If these criteria are met, the
general_work() method is invoked.

2.8 Digital down-conversion

The process of down-conversion, or more generally frequency conversion, is to
move a signal from one frequency to another. Ideally one would just connect
the ADC to the antenna or a low-noise amplifier (LNA) and sample the GPS
signal directly at 1575.42 GHz, but with the current performance of analog-to-
digital technology, it is easier to build a down-converted design. The signal is
therefore translated from RF using analog components to a lower IF where it
can be digitized.

Once the signal is at IF there are several alternatives:

Direct conversion. Also known as Zero-IF. The signal is brought directly from
RF down to baseband, and can therefore be sampled directly after the
analog down-conversion.

Additional analog mixing stage(s). By mixing down the signal over several
stages, the specifications (resolution, dynamic range) of each stage is re-
laxed compared to the direct approach.

Non-zero IF digitization. The signal can be brought down to an intermediate
frequency and digitized there, and then the rest of the down conversion
can be performed digitally. This is the approach that will be discussed
further.

By doing the down-conversion from IF in the digital domain, one retains the
relaxed requirements on the initial RF stage, while maintaining the flexibility
of the digital signal processing.

The following sections describes three essential algorithms used in the dig-
ital down-converter on the USRP: The CORDIC algorithm for generation the
complex carrier used for the actual down-conversion, and two filters used to
decimate the signal to a lower sampling rate, cascaded integrator-comb and
half-band filters.

17

2.8.1 CORDIC

CORDIC is an algorithm for calculating trigonometric functions and vector ro-
tation using only simple operations such as shift and add, making it suitable
for hardware implementation. The CORDIC algorithm is used in the USRP
to generate the carrier for mixing down the received signal. There are sev-
eral ways to generate the carrier frequency in the FPGA. One way would be to
store the complex carrier in a lookup table, and just iterate over it as desired.
Although simple, the memory requirement for such an approach is much too
large for the FPGA on the USRP. It is possible to avoid the large lookup table by
using generating the sine and cosine samples with appropriate IIR filters[16, p.
162], but this still requires four multipliers that are not available in the FPGA
on the USRP.

The CORDIC algorithm can be operated in two modes: Rotation and vec-
toring. A complete description of both modes is given by Vankka in [26, Ch.
6], but a brief introduction to the rotation mode is given here.

The complex carrier e2jπ fcn/N can be described as a two-dimensional vector
~x = [x, y] that is rotated by an angle θ per iteration:

~xn+1 = A~xn =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
~xn (2.12)

where A is the transformation matrix.
The transformation matrix A can be rearranged as follows:

A =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
= cos(θ)

[
1 tan(θ)

− tan(θ) 1

]
(2.13)

If the rotation angle θ is restricted to tan(θ) = ±2−i = di2−i, the multi-
plication by the tangent term is reduced to a simple shift operation. In order
to produce arbitrary angles, a sequence of successively smaller elementary ro-
tations as shown in figure 2.7 are performed. di determines the direction of
rotation, and the angle of the composite rotation is uniquely defined by the
sequence of the directions of the elementary rotations.

x

y

~x0

~x1

~x2

~xN

θ

Figure 2.7: Vector rotation using CORDIC algorithm

18

Furthermore this restriction makes it possible to simplify the cosine term
to:

cos(θ) = cos(arctan(2−i)) = Ki (2.14)

The vector ~K is a constant vector which is independent of the rotational
angle, and can thereby be computed in advanced and stored in ROM. This fi-
nal modification allows us to write the transformation matrix on the following
form:

A = Ki

[
1 di2−i

−di2−i 1

]
(2.15)

If the scaling term Ki is ignored, the equation 2.12 on the preceding page
can be computed using only shifts and adds.

In rotation mode an additional equation is added to the CORDIC algorithm:

zi+1 = zi − di arctan(2−i) (2.16)

where

di =

{
1 for z >= 0
−1 otherwise.

(2.17)

~x0 is the initial phase of the rotation vector, and z0 is the desired rotation
angle. When zi approaches zero, the desired rotation is obtained. In order to
generate a complex carrier, the rotation angle is chosen according to the carrier
and the sampling frequency, and the ~xn is used as the initial phase to calculate
~xn+1.

It can be shown that the product of the K’s are [26, p.82]:

lim
N→∞

N

∏
i=0

Ki ≈ 0.6073 (2.18)

This means that the non-scaled CORDIC algorithm has a gain GN = 1
0.6073 =

1.647. The effect of this scaling is not discussed here as it is not relevant for un-
derstanding the principle behind the CORDIC algorithm.

Errors introduced by the CORDIC algorithm

When the CORDIC algorithm is used to calculate trigonometric functions, a
number of errors are introduced. This is partly because fixed-point numbers
used for calculation, and because the number of iterations are always finite.
The effect of using fixed-point numbers for calculation is discussed by Antelo
et al. [5]. An error is introduced when the desired rotational angle gets smaller
than the smallest number that can be represented by the zi register. This will
eventually happen when then number of iterations exceed a certain value.

The effect of using a finite number of iterations, is that there will be an error
between the desired rotation and the actual rotation, i.e. zi 6= 0. The largest
error will occur if the vector after the second last iteration lands on the correct
angle. The last rotation will then move the vector tan−1(2N−1360

2π away from the
correct angle. For a 12 stage CORDIC, this error will then be:

e =
tan−1(211360

2π
= 0.03 Hz (2.19)

19

Frequency resolution

Since the largest angular rotation that can be performed by the CORDIC al-
gorithm is ±π

2 , it takes for cycles to rotate the vector all the way round. The
frequency resolution is given by the size of the phase register. This register is
updated by a certain amount between each step to generate the complex car-
rier,

2.8.2 Cascaded integrator-comb filter

The cascaded integrator-comb (CIC) filter is an efficient way to perform inter-
polation and decimation without multipliers.

A CIC filter consist of two basic building blocks: The integrator and the
comb. The integrator, which is also known as a accumulator, is similar to the
exponential moving average filter described in section 2.6 on page 12, except
that the integrator has a unity feedback coefficient:

y[n] = y[n− 1] + x[n] (2.20)

The power response of this is essentially a low-pass filter with -20 dB per
decade roll-off, but with infinite DC gain. This means that the integrator by
itself is unstable.

The comb is a odd-symmetric FIR filter filter described by:

y[n] = x[n]− x[n− RM] (2.21)

Where R is the rate change parameter and M is the differential delay, usu-
ally 1 or 2[26, p.232]. For a decimating CIC, the integrators are connected before
the change of sampling rate, and the comps are connected after the rate change
as seen in figure 2.8.

x[n] IIR R Comb y[n]

Figure 2.8: Cascaded integrator-comp filter

The power response of the filter at the output can be shown to be:

H(f) =
[

sin(πM f)
sin(π f /R)

]2N
(2.22)

where N is the order of the filter, namely the number of integrators and combs.
Figure 2.8 shows a first order filter. From equation 2.22 it is evident that the
frequency response of the CIC filter is fully described by the three parameters
R, M and N.

2.8.3 Half-band filter

A half-band filter[6, Ch. 6.9.4] is a FIR filter where every alternate coefficient is
zero, except for the center coefficient which is 0.5. To realize such a filter, the
filter must be centered around fs/4, and have an odd number of coefficients.

20

The advantage of the half-band filter over an arbitrary filter design is that
the zero-valued coefficients reduces the number of multiplications and mem-
ory requirement by 50 %.

Half-band filters are usually used right after CIC filters in the digital down-
converter because the CIC filter does not have sufficient stop band attenuation[26,
Ch. 11.9].

21

22

Chapter 3

Hardware description

In this chapter the various hardware components used during development
and testing of the OpenGNSS acquisition module is described.

3.1 Spirent satellite navigation simulator

A Spirent satellite navigation simulator had been used during the develop-
ment of the OpenGNSS acquisition module. The simulator is a comprehensive
facility for developing GNSS equipment. Both ionospheric, tropospheric, and
multipath effects can be simulated. It is also possible to simulate a dynamic
receiver platform. The simulator consist of two distinct parts:

• A multi-channel RF signal generator.

• A computer workstation for controlling simulation scenarios.

The simulator was used to generate GPS signals during development and
evaluation. Initially the plan was to use real signals from an active antenna,
but due to the lack of control of the signal properties, this was reject early in
the process. The Spirent simulator can be operated in several modes, provid-
ing both single channel signals as well as complete scenarios with full satellite
constellations.

In the single channel mode the simulator generate the signal from a single
satellite. All parameters — such as Doppler frequency and signal strength —
can be modified interactively at runtime.

In normal mode, the operator creates a scenario where parameters such
as number of satellites, multipath properties and receiver dynamics are pro-
grammed in advance, and then the scenario is executed. In normal mode it is
not possible to adjust parameters interactively at runtime.

3.2 Low noise amplifier

A ZHL-1217MLN low noise amplifier from Mini-Circuits was used between
the Spirent simulator and the USRP. The LNA add an additional 30 dB gain
and has a noise figure of 1.5 dB (max)[19].

23

Figure 3.1: Low-noise amplifier

3.3 Universal Software Radio Peripheral

The USPR is a key component in the system, and its performance is crucial
to the overall performance. The USRP is a modular system that consist of a
motherboard with AD- and DA-converts, a FGPA for high-speed signal pro-
cessing, and a USB controller for interfacing with a host computer. A variety
of daughterboards are available which covers a large range of radio frequency
bands and applications. The USRP motherboard can be seen in figure 3.2 on
the facing page, where the four daughterboard connectors are visible in each
of the corners.

The USRP has be especially made for use with the GNU Radio framework,
and is under continuous development. Both the motherboard and daughter-
boards are available from http://www.ettus.com, but since the USRP is
being developed under the same conditions as GNU Radio, both the schemat-
ics and Verilog source code1 for the FPGA is available from the GNU Radio
website.

3.3.1 RF front-end

The RF front-end used is the DBSRX daughterboard from http://www.ettus.
com. The DBSRX is based on the Maxim MAX2118 tuner IC[4], which is a direct
conversion tuner originally intended for digital direct broadcast satellite(DSB)
television applications. It has integrated VCOs ranging from 925 to 2175 MHz,
and tunable LP filters from 4 to 33 MHz, which makes it usable for receiving
GPS L1 signals.

1see 3.3.4 on page 26

24

http://www.ettus.com
http://www.ettus.com
http://www.ettus.com

Figure 3.2: Universal Software Radio Peripheral

The MAX2118 can perform direct conversion of the signal from RF to com-
plex baseband, but here non-zero IF digitization described in section 2.8 on
page 17 is used, so the MAX2118 carrier frequency is set below the carrier fre-
quency of the GPS signal.

Figure 3.3 on the next page shows the DBSRX daughterboard. The MAX2118
IC is visible just to the right of the coaxial connector.

3.3.2 Analog to digital converter

The analog to digital (ADC) converters are Analog Devices AD9862 [1], which
are mixed-signal front end processors. The AD9862 consists of both a receiver
and transmitter path, but only the receiver path is described here.

The AD9862 has differential input, programmable gain before sampling,
and optional digital Hilbert filters. The Hilbert filter can be used to generate
complex signals from real input, but this is not necessary, since the MAX2118
outputs both I and Q channels. Each of the I and Q channel are sampled at 12
bit resolution.

The USRP has two AD9862; one for each pair of RX and TX. These can be
seen on each side of the FPGA in the middle of the picture in figure 3.2.

25

Figure 3.3: DBSRX daughterboard

3.3.3 Oscillator

A 64 MHz crystal oscillator is used to generate the clock signals for everything
on the USRP. The oscillator has an tolerance of 50 ppm, which means that is
should be within 64 MHz ± 50 Hz. This clock is used to generate all of the
signals used in both the FPGA, the AD/DA-converters and on the daughter-
boards.

3.3.4 Field Programmable Gate Array

FPGA is a device containing programmable logic components and inter-connectors.
FPGAs are programmed in a hardware description language such as Verilog or
VHDL, and the source code is then synthesised to an image that is loaded into
the FPGA.

The FPGA on the USRP is a Altera Cyclone I[3], and can be seen as the large
integrated circuit in the middle of the board on figure 3.2 on the previous page.
Key parameters are given in table 3.1, and the complete reference is given in [3].

Parameter Value
Logical elements(LE) 12060
RAM Up to 36,864 bytes
Clock frequency 64 MHz

Table 3.1: Altera Cyclone I specifications

The FPGA is used to implement the digital up- and down-converters. Since

26

the Cyclone I does not have any hardware multipliers, the mixing operation
cannot be performed directly by multiplying the received signal with a locally
generated complex carrier. Therefore the CORDIC algorithm described in sec-
tion 2.8 on page 17 is used to perform this operation.

The USRP motherboard has room for four daughterboards, which means
that four independent RX and TX paths must be available in the FPGA. The
standard FPGA image for the USRP has two RX and two TX paths, each with
a CORDIC, a CIC filter and a half-band filter. An alternative image is also
available which contains 4 RX paths, but no half-band filter.

3.3.5 USB controller

A Universal Serial Bus (USB) is used to interface the USRP with the host com-
puter. The theoretical maximum speed of the USB 2.0 interface is 480 Mbits/sec
or 60 MB/sec, but the overhead of the USB protocol is taken into account, the
effective throughput is approximately 40 MB/sec. Each channel (I and Q) are
sampled at 12 bit, but are either be padded to 16 bit or truncated to 8 bit be-
fore transmitting. This makes each sample from the USRP wither 2 or 4 bytes
in total. The effective bandwidth over the USB interface of 10 MHz at 12 bit
resolution, and 20 MHz at 8 bit resolution.

The USB controller can be seen below the FPGA in the picture in figure 3.2
on page 25.

3.4 Host computer

All of the software was developed and executed on a COTS workstation with
an AMD Athlon X2 64 CPU. The GNU Radio framework has be written to
take advantage of SIMD instructions available in modern processors such as
3DNow!, SSE and MMX. SIMD instructions are special instructions provided
by the CPU that operates on blocks of data instead of single registers, and
thereby increasing the performance of the calculation by taking advantage of
the pipelining in the CPU. As described by Heckler and Garrison [15], this sig-
nificantly speeds up the performance of functions such as FIR filters, FFT and
other common signal processing tasks.

The complete specification of the computer is given in table 3.2.

Component: Specification:
CPU: AMD Athlon X2 64 3200+ or faster
RAM: 1 GB or more
Motherboard: ASUS
USB controller: Nvidia NForce
Hard drive: Ordinary SATA drive

Table 3.2: Host computer specifications

27

28

Chapter 4

Software description

In this chapter the software used during development and testing is described.
This includes development tools, operating system and runtime support sys-
tems.

4.1 Operating system

Fedora 6 and 7 was used both for development and as host platform for the
OpenGNSS. Fedora is a free operating system based on the Linux kernel and
user space software from many different sources. It is sponsored by Red Hat,
which is one of the biggest commercial Linux vendors, but people from all over
the world contribute to Fedora. Fedora is a completely free operating system
that anyone can download, install, use, modify and redistribute as it suits their
needs.

Fedora was chosen because of its large user base, up to date selection of
software included in the operating system, and the authors existing knowledge
of the system. It has proven to be a reliable and stable platform.

4.2 Development tools

All of the required tools such as compiler, assembler, linker, text editor and
other required tools to build GNU Radio and OpenGNSS are available as free
software and included in the Fedora distribution. The compiler required to
compiler the firmware for the USB controller on the USRP was initially not
available in Fedora, but was packages and submitted for inclusion, and is now
a part of Fedora and maintained by the author of this paper.

Other important things to notice is that the compiler that has been used
is GCC 4.1.2 and Python 2.5. GCC is the GNU Compiler Collection and is a
collection of compilers for a large range of programming languages such as C,
C++, Java and Fortran.

29

4.3 GNU Radio

The development version of GNU Radio was used for all of the development
of the acquisition module. The development version is the unstable version of
GNU Radio that is only available directly from the Subversion repository. Sub-
version is an open-source revision control system that is used to track changes
to a code base.

Usually it is desirable to use the stable version of a piece of software, but
unfortunately OpenGNSS depends on some modules which are only available
from the Subversion repository. These modules are the gr.max and gr.argmax
modules which were developed for OpenGNSS. They have been committed to
the GNU Radio tree, and should therefore be available in the next stable re-
lease.1

For users who which to use the current stable release, it should not be very
hard to download the modules from the Subversion repository, and patch the
stable release. However, the unstable version of GNU Radio has not yielded
any problems during the development of OpenGNSS

1The commit message can be found here: http://lists.gnu.org/archive/html/
commit-gnuradio/2007-05/msg00184.html

30

http://lists.gnu.org/archive/html/commit-gnuradio/2007-05/msg00184.html
http://lists.gnu.org/archive/html/commit-gnuradio/2007-05/msg00184.html

Chapter 5

System design and
implementation

In this chapter the design and implementation of the acquisition module is pre-
sented. The acquisition module is based overall description of the OpenGNSS
receiver is given in [10]. Three important aspects are emphasized in the design
of the acquisition module:

Modularity and flexibility: The most important aspect of the acquisition mod-
ule design is the modularity and flexibility of the system. Each part
should have a well defined interface; making it possible to replace in-
dividual components without breaking other parts of the system.

Parallel acquisition: It should be possible to perform acquisition on an arbi-
trary number of satellites and variable Doppler range. The design should
not limit any of these properties.

Performance: Although performance is not the number one goal for this de-
sign, one should strive for high performance where this does not reduce
the modularity and flexibility of the module.

The basic principle behind the acquisition procedure is described in 2.1 on
page 5, and is essentially to compare or correlate the received signal with a
locally generated copy of the signal. The correlation will have a peak when
the locally generated signal matches the received signal perfectly. There are a
number of ways to speed up the acquisition procedure, and in the OpenGNSS
acquisition module two principles are used:

Fast Correlation: Also known as frequency domain correlation, fast correlation
is a way to speed up the correlation procedure by performing it in the
frequency domain as described in section 2.1.1 on page 6. Fast correlation
is faster than ordinary time-domain correlation when the length of the
sequence used in calculation is larger than 32 2.1.1 on page 6. If the GPS
signal is sampled at 4 MHz, the C/A code will be 4000 samples long, so
in this case it should be safe to say that fast correlation is indeed faster
than the time-domain equivalent.

31

Parallel Doppler frequency search The acquisition module is capable of search-
ing N Doppler frequencies in parallel, where N is determined by the
Doppler frequency search range. The maximum number of Doppler fre-
quencies that can be processed in parallel is only limited by the computa-
tional power of the host computer. Since the GNU Radio framework runs
each block in its own thread, this comes automatically from the GNU Ra-
dio framework.

Figure 5.1 presents a graphical representation of the complete acquisition
module which is given in listing A.2 on page 62. The block SCC is the single
channel correlator described in section 5.1. It is important to note that the figure
only shows three parallel channels, but as mentioned, an arbitrary number of
channels can be connected to the FFT output. All of the elementary blocks will
be described more elaborately in the following sections.

x(t) FFT

f d
an

d
C

/A
es

t.

SCC

SCC

X(ω)

|r(τ)|

SCC

Doppler frequency
estimate

C/A code delay
estimate

Figure 5.1: Complete acquisition module

5.1 Single channel correlator

The single channel correlator (SCC) correlates the received signal with the lo-
cally generated code, using the fast correlation procedure described in 2.1.1
on page 6. Input parameters at initialization are Doppler frequency, frequency
range and Space Vehicle Number (SVN). These remain constant for the entire
lifetime of the acquisition object. A graphical representation of the module is
given in figure 5.2 on the next page, and the source code can be found in list-
ing A.3 on page 64.

5.1.1 Exponential moving average filter

The single channel correlator module contains an IIR filter that is used to in-
tegrate the signal. The filter is an exponential moving average filter, and its
characteristics is described in 2.6 on page 12.

32

X(ω)

X̂(ω)

IFFT Magnitude EMA |r(τ)|

Figure 5.2: Single channel frequency domain correlator

The EMA filter integration constant can be adjusted by using the funtion
set_alpha() on the acquisition object. This makes it possible to dynamically
adjust the length of integration during runtime, and thereby making it possi-
ble to change from high sensitivity and slow response to lower sensitivity and
rapid response to changes in signal properties.

5.1.2 Local code generator

The local code generator is a part of the signal channel correlator, and is used to
generate the local code. The code is generated by multiplying the C/A code
with a complex carrier, and the result is in turn transformed in the frequency
domain and complex conjugated:

X̂ = F{Ciej2π fdt}∗ (5.1)

where F{·} denotes the Fourier transform, and Ci is the C/A code from satel-
lite i.

To reduce the number of calculations required at run-time, the local code is
calculated during initialization of the block, and stored in a look-up table. The
samples can then be fetched from memory during run-time, and no additional
calculations are required.

The local code generator is implemented as an independent signal process-
ing block, but is only used internally in the acquisition module. The source
code for the block is given in listing A.1 on page 61.

5.2 Frequency and delay estimator

The frequency and delay estimator compares the signals from each of the sin-
gle channel correlators, and returns the argument of the maximum value of the
two dimensional cross-correlation function between the received and the lo-
cally generated signal. This module is essentially the gr.argmax block given
in listing A.4 on page 66. The gr.argmax block accepts an arbitrary number of
inputs, where each input is a vector of length N. The input to the gr.argmax
block is therefore a matrix |R| of dimension N× M, where M is the number for
Doppler frequency search bins.

The outputs from the frequency and delay estimator are two individual
streams, where one is the index n ∈ N that corresponds to the estimated C/A

33

code delay, and the other is the index m ∈ M that corresponds to the estimated
Doppler frequency.

ar
gm

ax
{·
}

|R|

Doppler frequency
estimate

C/A code delay
estimate

Figure 5.3: Doppler frequency and C/A code delay estimator.

34

Chapter 6

Results

This chapter the results from the tests of the OpenGNSS acquisition module is
presented. Both simulated signals and signals generated with the Spirent GPS
simulator described in section 3.1 on page 23 has been used to test the module.

6.1 Simulated signals

Figure 6.1 on the next page, 6.2 on the following page, and 6.3 on page 37 show
the result of simulations where the acquisition module was fed a simulated
signal from a single satellite with various signal to noise levels. This results are
included to verify the basic functionality of the acquisition module.

The power level of the signals for the different SNR levels are similar, so the
correlation peak magnitude for the different signals are comparable.

35

(a) C/A code delay

0 5 10 15 20 25 30 35 40

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 5 10 15 20 25 30 35 40

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak maximum

0 5 10 15 20 25 30 35 40

t (ms)

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

|r
|

×1011

Figure 6.1: Simulated result: fd = 5123.00kHz, SNR -20dB, C/A delay is 3090.0
samples.

(a) C/A code delay

0 5 10 15 20 25 30 35 40

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 5 10 15 20 25 30 35 40

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak maximum

0 5 10 15 20 25 30 35 40

t (ms)

0
1
2
3
4
5
6
7

|r
|

×1011

Figure 6.2: Simulated result: fd = −2314.00kHz, SNR -10dB, C/A delay is
3366.0 samples.

36

(a) C/A code delay

0 5 10 15 20 25 30 35 40

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)
(b) Doppler frequency estimate

0 5 10 15 20 25 30 35 40

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak maximum

0 5 10 15 20 25 30 35 40

t (ms)

0
1
2
3
4
5
6
7
8

|r
|

×1012

Figure 6.3: Simulated result: fd = 1123.00kHz, SNR 0dB, C/A delay is 3800.0
samples.

6.2 Single satellite

This section contains the output from the acquisition module when processing
signals from the Spirent GPS simulator described in 3.1 on page 23. The simu-
lator was operated in single channel mode, with only the L1 frequency enabled
and the P-code disabled.

The USRP settings given in table 6.1 on the next page where used under
all tests. Due to the tuning-inaccuracies caused by the oscillator instability de-
scribed in section 3.3.3 on page 26, the carrier frequency had to be adjusted
manually to place the GPS signal as close to baseband as possible. The oscilla-
tor has a tolerance of 50 PPM, and when this error is mixed up to 1575.42 GHz,
the carrier could be at a maximum 78 kHz away from the correct carrier.

The signal was tuned close to baseband by sending a signal consisting of
only the GPS L1 frequency from the simulator and using the usrp_fft.py
program that is part of GNU Radio to find the correct carrier frequency. The
usrp_fft.py is a software spectrum analyzer that uses the USRP as the front-
end.

This correction could be avoided by increasing the Doppler frequency search
range, but that would significantly increase the computational requirements.

37

Settings Value
Sampling frequency 4 MHz
USRP Gain: 50 dB
Carrier frequency 1575.436 MHz

Table 6.1: USRP settings.

6.2.1 Length of non-coherent integration

This section contains the output from the acquisition module for different length
of non-coherent integration. The length of the non-coherent integration is de-
termined by the parameter α in the exponential moving average filter described
in 2.6 on page 12.

(a) C/A code delay

0 200 400 600 800 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 200 400 600 800 1000

t (ms)

−4000

−2000

0

2000

4000
f

d
(k

H
z)

(c) Correlation peak maximum

0 200 400 600 800 1000

t (ms)

2.0
2.5
3.0
3.5
4.0
4.5
5.0

|r
|

×1017

Figure 6.4: Single satellite. SNR -10 dB. α = 0.500

38

(a) C/A code delay

0 200 400 600 800 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 200 400 600 800 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)
(c) Correlation peak maximum

0 200 400 600 800 1000

t (ms)

0.4
0.6
0.8
1.0
1.2
1.4
1.6

|r
|

×1017

Figure 6.5: Single satellite. SNR -10 dB. α = 0.100

(a) C/A code delay

0 200 400 600 800 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 200 400 600 800 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak maximum

0 200 400 600 800 1000

t (ms)

0.2

0.4

0.6

0.8

1.0

1.2

|r
|

×1017

Figure 6.6: Single satellite. SNR -10 dB. α = 0.050

39

(a) C/A code delay

0 200 400 600 800 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 200 400 600 800 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak maximum

0 200 400 600 800 1000

t (ms)

0
1
2
3
4
5
6
7
8

|r
|

×1016

Figure 6.7: Single satellite. SNR -10 dB. α = 0.010

(a) C/A code delay

0 200 400 600 800 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 200 400 600 800 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak maximum

0 200 400 600 800 1000

t (ms)

0
1
2
3
4
5
6
7

|r
|

×1016

Figure 6.8: Single satellite. SNR -10 dB. α = 0.005

40

6.2.2 Signal to noise ratio

This section shows the results for various signal to noise ratios of the GPS sig-
nal. As described in section 3.1 on page 23, the SNR of the GPS signal generated
by the Spirent simulator can be adjusted from -20 to 20 dB with respect to the
STANAG minimum level of -130 dBm[22]. The integration constant α were set
to 0.01 during all of these tests.

(a) C/A code delay

0 200 400 600 800 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 200 400 600 800 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak maximum

0 200 400 600 800 1000

t (ms)

0
1
2
3
4
5
6
7

|r
|

×1016

Figure 6.9: Single satellite. SNR -20 dB. α = 0.010

41

(a) C/A code delay

0 200 400 600 800 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 200 400 600 800 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak maximum

0 200 400 600 800 1000

t (ms)

0
1
2
3
4
5
6
7
8

|r
|

×1016

Figure 6.10: Single satellite. SNR -10 dB. α = 0.010

(a) C/A code delay

0 200 400 600 800 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 200 400 600 800 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak maximum

0 200 400 600 800 1000

t (ms)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

|r
|

×1017

Figure 6.11: Single satellite. SNR 0 dB. α = 0.010

42

(a) C/A code delay

0 200 400 600 800 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 200 400 600 800 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)
(c) Correlation peak maximum

0 200 400 600 800 1000

t (ms)

0.0

0.5

1.0

1.5

2.0

2.5

|r
|

×1018

Figure 6.12: Single satellite. SNR 10 dB. α = 0.010

(a) C/A code delay

0 200 400 600 800 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency estimate

0 200 400 600 800 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak maximum

0 200 400 600 800 1000

t (ms)

0.0

0.5

1.0

1.5

2.0

2.5

|r
|

×1019

Figure 6.13: Single satellite. SNR 20 dB. α = 0.010

43

6.3 Multiple satellites

Figure 6.14 on the next page, 6.15 on page 46, and 6.16 on page 47 shows the
results from the acquisition module when a complete GPS scenario was gener-
ated by the Spirent simulator. A constellation of 24 GPS satellites with SVN 1
to 24 were present, and the receiver was stationary in a location with no reflec-
tions.

The two-dimension cross-correlation surfaces for each satellite is also shown.
It is important to note that the values have been normalized, so that 1.0 corre-
sponds to |R|max. The absolute value of the correlation function can be found
in sub-figure (c) in each of the figures.

44

(a) C/A code delay

0 1000 2000 3000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency

0 1000 2000 3000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak value

0 1000 2000 3000

t (ms)

0.0

0.2

0.4

0.6

0.8

1.0

|r
|

×1019

(d) 2D correlation map

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

5

0

-5

 0

 1000

 2000

 3000

 4000

 0

 0.2

 0.4

 0.6

 0.8

 1

Doppler frequency

C/A code delay

Figure 6.14: Acquisition result on signal with 24 satellites present. SVN 1

45

(a) C/A code delay

0 1000 2000 3000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)
(b) Doppler frequency

0 1000 2000 3000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak value

0 1000 2000 3000

t (ms)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

|r
|

×1017

(d) 2D correlation map

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

5

0

-5

 0

 1000

 2000

 3000

 4000

 0

 0.2

 0.4

 0.6

 0.8

 1

Doppler frequency

C/A code delay

Figure 6.15: Acquisition result on signal with 24 satellites present. SVN 9

46

(a) C/A code delay

0 1000 2000 3000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency

0 1000 2000 3000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak value

0 1000 2000 3000

t (ms)

0.0

0.5

1.0

1.5

2.0

2.5

|r
|

×1018

(d) 2D correlation map

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

5

0

-5

 0

 1000

 2000

 3000

 4000

 0

 0.2

 0.4

 0.6

 0.8

 1

Doppler frequency

C/A code delay

Figure 6.16: Acquisition result on signal with 24 satellites present. SVN 22

47

6.4 Effect of sampling frequency accuracy

Figure 6.17 shows a close-up version of the C/A code delay from figure 6.14
on page 45. From the figure it is evident that the C/A code delay drifts with
approximately 100 samples in three seconds.

0 1000 2000 3000

t (ms)

800

850

900

950

1000

δ
(n

)

Figure 6.17: Effect of sampling frequency offset on the C/A code delay

6.5 Effect of FFT window function

Figure 6.18 on the facing page and 6.19 on page 50 shows the output from
the acquisition module when the signal has been multiplies with different FFT
window functions.

48

(a) C/A code delay

0 250 500 750 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency

0 250 500 750 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak value

0 250 500 750 1000

t (ms)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

|r
|

×1019

(d) 2D correlation map

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

5

0

-5

 0

 1000

 2000

 3000

 4000

 0

 0.2

 0.4

 0.6

 0.8

 1

Doppler frequency

C/A code delay

Figure 6.18: Acquisition module output when a rectangular window is used.

49

(a) C/A code delay

0 250 500 750 1000

t (ms)

0
500

1000
1500
2000
2500
3000
3500
4000

δ
(n

)

(b) Doppler frequency

0 250 500 750 1000

t (ms)

−4000

−2000

0

2000

4000

f
d

(k
H

z)

(c) Correlation peak value

0 250 500 750 1000

t (ms)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

|r
|

×1015

(d) 2D correlation map

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

5

0

-5

 0

 1000

 2000

 3000

 4000

 0

 0.2

 0.4

 0.6

 0.8

 1

Doppler frequency

C/A code delay

Figure 6.19: Acquisition module output when a Blackman-Harris window is
used.

50

Chapter 7

Discussion

In this chapter the performance of the acquisition module is discussed. Issues
regarding limitations in the hardware and in the software are not included in
this chapter, but discussed separately in chapter 8 on page 55. This chapter
therefore only deals with the current implementation of the acquisition mod-
ule, and does not address potential improvements on both the design, hard-
ware and software.

Tests has been performed with both simulated signals and signals from a
single satellite for verification, and realistic scenarios with complete satellite
constellations. The tests show that the acquisition module perform well un-
der ordinary singal conditions. Under week signal conditions further signal
processing has to be applied in order to obtain reliable results. A number of
different issues such as length of integration, different signal to noise ratios,
and cross-correlation properties has been evaluated and are discussed in the
following sections.

7.1 Length of non-coherent integration

Given a SNR of -10 dB relative to the STANAG minimum level, it is clear from
the results in section 6.2.1 on page 38 that for α >= 0.05 it is not possible to
estimate the desired parameters. For α < 0.01, there are no obvious improve-
ments, despite the increased integration time. α = 0.01 has therefore been
chosen as the integration constant.

Currently there is no functionality to detect phase transitions caused by
the navigation data message. The rate of the navigation data is 50 Hz, which
means that every 20th C/A code period there might be a phase transition. For
α = 0.01, the length of integration is much longer that 20 ms. According to 2.6
on page 12, the impulse response of the EMA filter will drop to 20 % of its
maximum after 100 samples, which means that the EMA filter is almost equiv-
alent to a simple sum of 100 consecutive results. Clearly within this time span,
there is a high probability of a phase transition cause by the navigation data
message. This does not cause any significant problems for strong signals, but
might be one of the limiting factors when processing weak signals.

The OpenGNSS acquisition module uses an exponential moving average
filter for integrating the signal. This may not be the optimal filter for this appli-

51

cation, since it places more confidence in the most recent observations. Since
the rate of change of the GPS signal parameters is very slow compared to the
period of the C/A code, the GPS signal parameters are weak stationary for all
reasonable length of integration. Therefore an ordinary moving average which
places equal weight on all observations might have been more appropriate, but
because of the computational requirement of a SMA filter compared to a EMA
filter, this has not been implemented.

7.2 Signal to noise ratio

From simulated results in 6.1 on page 35, it is clear that the acquisition module
should able to correctly estimate the parameters from the signal from a single
satellite at least down to -10 dB. Below this, the parameters can not be obtained
without further signal processing. Techniques for for acquisition of week sig-
nals have not been investigated in this paper.

When processing signals from the Spirent simulator, the acquisition module
is not able to correctly estimate the parameters below the STANAG minimum
level. There are a number of reasons why this result is different from the result
with the simulated signals, but the most important factor is that the SNR loss
caused by the LNA, the DBSRX and the digital down-converstion in the USRP
has not been taken into account in the SNR level given in 6.2.2 on page 41. The
actual SNR level is therefore lower than what is indicated.

However, the tests show that the OpenGNSS acquisition module is able to
successfully acquire a signal at the STANAG minimum level.

7.3 Multiple satellites

The results from the tests with realistic signals provide similar results to ones
found in the single satellite case. From figure 6.14d on page 45 and 6.16d on
page 47 it is clear that satellite 1 and 22 which were visible from the receiver
location could be acquired, while satellite 9 could not. From these tests it is
clear that the acquisition module works well under normal signal conditions,
and that the cross-correlation between the different satellites does not affect the
acquisition procedure to a great extent.

7.4 Effect of sampling frequency accuracy

From figure 6.17 on page 48 it is found that the C/A code drifts by approxi-
mately 100 samples in three seconds. According to equation 2.9 on page 10,
this corresponds to a sampling frequency offset of:

∆ fs =
100

3000tc
= 3.3 Hz (7.1)

This result is well within the oscillator tolerance of 50 PPM, which at 1.023
MHz gives a maximum error of approximately 50 Hz.

52

7.5 Effect of FFT window function

Section 6.5 on page 48 shows the results of the tests where the GPS signal has
been multiplied with different window functions. From these tests it is evi-
dent that window functions other than the rectangular window has a major
negative impact on the acquisition estimate. The choice of FFT window affects
both the spectral leakage and the correlation peak magnitude, but from the
results seen in figure 6.18d on page 49 it can be seen that the high side-lobe
levels of the rectangular window does not affect the correlation peak to a great
degree. The wide main-lobe and the reductions of the correlation peak magni-
tude caused by the Blackman-Harris window however, has a major impact on
the estimate. From figure 6.19d on page 50 is is clear that the wide main-lobe
of the Blackman-Harris causes a significant spectral leakage to adjacent side-
bands which makes it very hard to determine the correct Doppler frequency.
This can be seen in figure 6.19 on page 50, where the Doppler frequency esti-
mate fails to lock onto the correct frequency bin, but jumps between the correct
and the neighbouring bins. The C/A code estimate is not affected that much,
but the reduced correlation peak magnitude increases the required SNR by ap-
proximately 5 dB as seen in 2.2 on page 11.

53

54

Chapter 8

Future work

In this chapter the various limitations of the hardware, the software, and the
design of the OpenGNSS acquisition module is discussed. This chapter should
be seen as a continuation of previous chapter, and address issues that were dis-
covered during the development of the OpenGNSS acquisition module. Pro-
posals for future work are therefore presented in this chapter. These modifi-
cations include changes to both the hardware, the software, and the software
receiver design it self.

8.1 GNU Radio limitations

There are a number of factors that curtail the usefulness of the GNU Radio
framework for building complete GNSS receivers. The current architecture of
the framework is suitable for processing continuous streams of data such as
broadcast radio and TV, but not very well suited for packet based radios. Al-
though the GPS satellites are broadcasting their signals in a continuous man-
ner, the internal processing is more packet based, and therefore a GNSS re-
ceiver would greatly benefit from changes that makes the GNU Radio frame-
work more adaptable to such applications.

The ADROIT1 project has proposed a number of architectural changes to
the GNU Radio framework that makes it more suitable for packet radio appli-
cations. The complete set of changes are described in [2], and include:

• Message-based scheduling.

• Standardized time transfer mechanism and common time reference.

• Dynamic reconfigurability.

• Support for control interfaces.

The main extension that implements all of these features, is the message
block, or m-block, extension. All of the items mentioned above are described
briefly in the following sections:

1The ADROIT project [23] is a joint project funded by DARPA woes goal is to create open-source
cognitive software radios.

55

Message-based scheduling Since the GNU Radio framework has been cre-
ated to process continuous streams of data, a fixed number of input items is
aggravated in the FIFO buffer between blocks before a block is put in the run
queue of the scheduler. This is not very suitable for packet radios where packet
have varying sizes, and is certainly not very desirable for sending control mes-
sages between blocks since it introduces unknown latencies into the system.

To circumvent this limitation, a new message-based scheduler has been
proposed. The message-based scheduler is fundamentally different from the
stream-based scheduler, since it allows arbitrarily sized block of data coupled
with meta-data to be passed through the system. The structure of the messages
used in the new architecture is shown in table 8.1.

Field Description
Message handle Unique identifier.
Priority Messages can be assigned different priorities.
Signal This is an event name that can be used to control finite-

state machines (FSM) within processing blocks.
Timestamps standardized timestamps that allows synchronization

across different flow_graphs and between different
threads.

Data user-defined data to be processed by the blocks in an
ordinary flow_graph.

Table 8.1: Sectional description of message fields.

Standardized time transfer mechanism and common time reference With
the aid of a common time reference and a standard mechanism for this infor-
mation, is it possible both to measure the latency through different parts of
the flow graph, and to ensure synchronization between parallel flow graphs
and between different threads and processes. This would be a greatly benefi-
cial feature when calculating the time of arrival of the signal from the different
satellites.

Dynamic reconfiguration at runtime Currently it is not possible to reconfig-
ure a flow graph at runtime. In a GNSS receiver it would be desirable to be
able to add additional channels dynamically at runtime. That way one could
add additional channels if the current number of satellites does not provide the
desired result, and to start searching for additional satellites when the signal
quality of one of the current satellites is fading.

It would also make it possible to connect and disconnect different tracking
loops depending on the signal quality. Usually a phase lock loop is used to
track the incoming signal, but depending on signal quality, it can also be used
together with a delay lock loop or a frequency lock loop which perform better
than the PLL under certain situations.

By being able to connect and disconnect the individual tracking loops the
flexibility of the system is increased without decreasing the overall runtime
performance.

56

Support for control interfaces By the use of the signal flag, priority and
metadata it is possible to send control message from both internal and external
entities. Currently one of the biggest limitations of the framework is the lack
of mechanisms to pass control information and parameters such as Doppler
frequency and C/A code delay from one part of the system to another. This
will be simplified with the new m-block architecture.

8.2 Hardware limitations

There are several limitations with the current hardware setup with regards to
GNSS applications.

• The lack of a more suitable RF frontend.

• No hardware multiplier in the FPGA.

• Limited bandwidth over the USB.

These items reduce the current performance of the USRP for GNSS applica-
tions, and also limits the potential for future expansions.

8.2.1 RF front-end limitations

The MAX2118 tuner IC which the DBSRX daughterboard is based on the is not
designed for GNSS applications, and is therefore not optimal for such applica-
tions. The noise figure of the MAX2118 has a typical value of 10.5 dB[4], which
is a fairly high value compared to LNAs that are typically used. This means
that an external low-noise preamp must be used as between the antenna and
the daughterboard.

Initially tests were performed without the LNA, but due to the high noise
figure of the MAX2118 (see 3.3.1 on page 24) it was not possible to obtain sat-
isfying results without an external preamp.

Oscillator stability is also a source of many problems. As given in sec-
tion 3.3.3 on page 26, the oscillator tolerance should be within ±50 Hz. When
this clock signal is up-converted in the daughterboard, the carrier frequency
will have the same error, which means that the L1 carrier at 1575.42MHz will
have a tolerance of:

fc50 PPM = fc
50
106 ≈ 78 kHz (8.1)

A dedicated high performance oscillator for the daughterboard would im-
prove the carrier frequency precision and also help reduce the phase noise gen-
erated by the PLL in the MAX2118. Furthermore an analog filter such as a SAW
filter should be used to suppress out-of-band noise before the preamp and the
mixer.

The analog filter and the preamp are not crucial modifications, since they
can easily be attached between the antenna and the daughterboard. The oscil-
lator on the USRP can also be replaced with an external, stabilized clock source.
However, a dedicated GNSS daughterboard would be a very interesting project
for future work.

57

8.2.2 USRP limitations

Since the FPGA lacks hardware multipliers, it is difficult to move functionality
such as the correlators and the FFT from the host computer and to the USRP. In
order to implement support from new and more advance modulations avail-
able from both Galileo and GPS which uses more bandwidth than the C/A
code, several parts of the demodulation must be moved from the host com-
puter to the FPGA because of the limited bandwidth of the USB. This limits
the potential for expansion to more advanced receiver designs without major
modifications to the hardware.

There is ongoing work to improve the USRP, and hopefully the next revi-
sion will upgrade the FPGA to a more powerful version. There has also been
discussions on the GNU Radio mailing list about replacing the USB with a
faster interface such as gigabit Ethernet, but nothing has been decided yet.

8.3 OpenGNSS design limitations

Although the current design has not yet revealed any major limitations or
flaws, there are a couple of issues that should be mentioned. The first one
the fact that although the current implementation is very modular and flexible,
it places high requirements on the processing computer. Since each block is
connected with a FIFO, the memory requirement increases with the Doppler
frequency search range and with the number of channels that are tracked in
parallel.

A monolithic design would have reduced the memory usage at the expence
of the flexibility. It would potentially also increase the performance of the sys-
tem, because a monolithic design would avoid much of the memory copying
that happends when data is moved from one block to another.

The second point that should be mentioned is related to the removal of the
Doppler shift from the signal. In the initial design the Doppler removal was
performed in the host computer. However, the USRP comes with an alterna-
tive FPGA image which contains 4 RX paths. This makes it possible to per-
form down-conversion of the incoming signal on four different frequencies,
and thereby perform Doppler removal on four satellites in parallel in hard-
ware.

8.4 Effect of multipath reflections

Initially is was desired to measure the performance of the acquisition module
in scenarios with both strong and week reflected signals. However, it proved
very difficult to obtain quantifiable results on the performance of the module
under such conditions. It is expected that the reflections would broaden the
correlation peak, but since no techniques to suppress reflected signals have im-
plemented in the OpenGNSS, no results on the performance under such con-
ditions are available. It would however be a very interesting topic for future
work to improve the acquisition module with regard to such conditions.

58

Chapter 9

Conclusion

In this paper an acquisition module for the OpenGNSS software-defined re-
ceiver has been discussed. OpenGNSS is a flexible and modular software re-
ceiver targeted at both researchers, developers and for educational purposes.
Other similar receivers are either high-performance implementations in either
C or assembly, or off-line analysis tools written in Matlab. The unique thing
about the OpenGNSS is that it combines the flexibility of the scripted language
Python with the performance of C++. This makes it usable for both real-time
or off-line uses.

The entire topology and functionality of the receiver is defined in Python
scripts, and it is also possible to tap the signal at all stages of the receiver. This
makes it an ideal choice for students who want to study the inner workings
of a GNSS receiver. It also makes it an interesting choice for developers who
are integrating the receiver with other navigational aids such as inertial nav-
igation systems, or for researchers who are investigating atmospheric effects
on the GNSS signal since they have simultaneous access to raw signal and the
processed data.

Although the complete receiver is not finished, the acquisition module which
is the first stage after the analog processing shows promising results. The per-
formance of the acquisition module is satisfactory under normal signal condi-
tions, and a number of issues that would improve the system has been pre-
sented in chapter 8 on page 55.

GNU Radio limitations A number of issues regarding the GNU Radio frame-
work has been addressed. The predominant limitations of the framework is the
lack of suitable mechanisms for transfer of control parameters between differ-
ent signal processing blocks. The GNU Radio framework were originally cre-
ated to process continuous streams for data, and no packet-based radio signals.
However, these issues has been addressed with the new message-block exten-
sion that has been proposed. It is considered unrealistic to build a complete
receiver without the features provided by this new extension.

Hardware limitations A couple of issues were also mentioned regarding the
radio front-end of the receiver. This is not an optimal receiver for GNSS appli-
cations, in particular with regard to noise figures and oscillator stability. Al-

59

though sufficient under normal and strong signal conditions, this is the lim-
iting factor if the receiver should be improved to support week signal condi-
tions such as those experienced in-door and in urban areas. A custom GNSS RF
board would therefore be an interesting topic for future work that would be a
significant improvement for the performance and expandability of the system
as a whole.

Commercial support Another issue that has not been mentioned earlier, is
the lack of commercial support for GNU Radio. Although the support pro-
vided by GNU Radio community has been indispensable, it is a fact that soft-
ware developers are more fond of writing software than documentation. Al-
though GNU Radio has extensive application programming interface docu-
mentation, the lack up-to-date tutorials might be intimidating for new users.
This has not been a major problem for the development of the OpenGNSS ac-
quisition module, but it has clearly been a retarding factor for the speed of
progress.

But despite these issues, the OpenGNSS receiver has proven to be a promis-
ing concept. With the computational power available in modern FPGAs, DSPs
and ordinary computers, SDR has become the dominant technology for many
applications. The flexibility offered by the SDR approach outweighs the disad-
vantages when compared to a conventional hardware-based design:

• Easy access to the signal in all parts of the receiver.

• Dynamic reconfigurability.

• Reuse of existing source code and ease of transfer of the receiver to a new
target.

• Modular design makes it easy to replace individual parts without affect-
ing other parts of the system.

By taking advantage of existing source code provided by a number of free
software project, the development time of the OpenGNSS acquisition module
has been significantly reduced. It would not have been reasonable to imple-
ment the equivalent functionality from scratch within the same timespan. It
is therefore clear that free software combined with suitable hardware can be a
powerful tool for building GNSS receiver.

60

Appendix A

Source Code

A.1 OpenGNSS acquisition module

Listing A.1: OpenGNSS local code generator
1 # Copyright 2007 Trond Danielsen <trond.\

danielsen@gmail.com>
#

3 # This file is part of OpenGNSS.
#

5 # This program is free software; you can redistribute\
it and/or modify

it under the terms of the GNU General Public \
License as published by

7 # the Free Software Foundation; either version 2 of \
the License, or

(at your option) any later version.
9 #

This program is distributed in the hope that it \
will be useful,

11 # but WITHOUT ANY WARRANTY; without even the implied \
warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE\
. See the

13 # GNU General Public License for more details.
#

15 # You should have received a copy of the GNU General \
Public License

along with this program; if not, write to the Free \
Software

17 # Foundation, Inc., 51 Franklin Street, Boston, MA \
02110-1301 USA

19 from gnuradio import gr,window
from numpy import *

21 from gps import ca_code

61

23 class local_code(gr.hier_block2):
def __init__(self, svn, fs, fd):

25

Compute local code in advance to reduce the \
number of runtime

27 # calculations required.
code = ca_code(svn=svn, fs=fs)

29 n = arange(len(code))
f = e**(2j*pi*fd*n/fs)

31 lc = conj(fft.fft(code * f))

33 gr.hier_block2.__init__(self,
"local_code",

35 gr.io_signature(0,0,0),
gr.io_signature(1,1, len(lc)*gr.\

sizeof_gr_complex))
37

src = gr.vector_source_c(lc, True)
39 s2v = gr.stream_to_vector(gr.sizeof_gr_complex, \

len(lc))

41 self.connect(src, s2v, self)

43 # vim: ai ts=4 sts=4 et sw=4

Listing A.2: OpenGNSS coarse acquisition module

Copyright 2007 Trond Danielsen <trond.\
danielsen@gmail.com>

2 #
This file is part of OpenGNSS.

4 #
This program is free software; you can redistribute\

it and/or modify
6 # it under the terms of the GNU General Public \

License as published by
the Free Software Foundation; either version 2 of \

the License, or
8 # (at your option) any later version.

#
10 # This program is distributed in the hope that it \

will be useful,
but WITHOUT ANY WARRANTY; without even the implied \

warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE\

. See the
GNU General Public License for more details.

14 #
You should have received a copy of the GNU General \

62

Public License
16 # along with this program; if not, write to the Free \

Software
Foundation, Inc., 51 Franklin Street, Boston, MA \

02110-1301 USA
18

from gnuradio import gr
20 from single_channel_correlator import *

22

class acquisition(gr.hier_block2):
24 # Output 0 is the C/A code delay.

Output 1 is the Doppler frequency estimate in Hz.
26 # Output 2 is the correlation peak value.

28 def __init__(self, fs, svn, alpha, fd_range, \
dump_bins=False):
gr.hier_block2.__init__(self,

30 "acquisition",
gr.io_signature(1,1, gr.sizeof_gr_complex),

32 gr.io_signature(3,3, gr.sizeof_float))

34 fft_size = int(1e-3*fs)
doppler_range = self.get_doppler_range(fd_range)

36

agc = gr.agc_cc(1.0/fs, 1.0, 1.0, 1.0)
38 s2v = gr.stream_to_vector(gr.sizeof_gr_complex, \

fft_size)
fft = gr.fft_vcc(fft_size, True, [])

40

argmax = gr.argmax_fs(fft_size)
42 max = gr.max_ff(fft_size)

44 self.connect(self, s2v, fft)
self.connect((argmax, 0),

46 gr.short_to_float(),
(self, 0))

48 self.connect((argmax,1),
gr.short_to_float(),

50 gr.add_const_ff(-fd_range),
gr.multiply_const_ff(1e3),

52 (self,1))
self.connect(max, (self, 2))

54

Connect the individual channels to the input \
and the output.

56 self.correlators = [single_channel_correlator(\
fs, fd, svn, alpha, dump_bins) for fd in \
doppler_range]

63

58 for (correlator, i) in zip(self.correlators, \
range(len(self.correlators))):
self.connect(fft, correlator)

60 self.connect(correlator, (argmax, i))
self.connect(correlator, (max, i))

62

64 def set_alpha(self, alpha):
for correlator in self.correlators:

66 correlator.set_alpha(alpha)

68

def get_doppler_range(self, fd_range):
70 """Range is given in kHz.

Step length is currently hard coded to 1kHz."""
72 step = 1e3

return range(int(-fd_range*1e3), int((fd_range\
+1)*1e3), int(step))

74

vim: ts=4 sts=4 sw=4 sta et ai

Listing A.3: OpenGNSS single channel correlator

Copyright 2007 Trond Danielsen <trond.\
danielsen@gmail.com>

2 #
This file is part of OpenGNSS.

4 #
This program is free software; you can redistribute\

it and/or modify
6 # it under the terms of the GNU General Public \

License as published by
the Free Software Foundation; either version 2 of \

the License, or
8 # (at your option) any later version.

#
10 # This program is distributed in the hope that it \

will be useful,
but WITHOUT ANY WARRANTY; without even the implied \

warranty of
12 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE\

. See the
GNU General Public License for more details.

14 #
You should have received a copy of the GNU General \

Public License
16 # along with this program; if not, write to the Free \

Software
Foundation, Inc., 51 Franklin Street, Boston, MA \

02110-1301 USA

64

18

from gnuradio import gr
20 from local_code import local_code

import os
22

24 class single_channel_correlator(gr.hier_block2):
def __init__(self, fs, fd, svn, alpha, dump_bins=\

False):
26 fft_size = int(1e-3*fs)

28 gr.hier_block2.__init__(self,
"single_channel_correlator",

30 gr.io_signature(1,1, gr.sizeof_gr_complex*\
fft_size),

gr.io_signature(1,1, gr.sizeof_float*\
fft_size))

32

lc = local_code(svn=svn, fs=fs, fd=fd)
34 mult = gr.multiply_vcc(fft_size)

ifft = gr.fft_vcc(fft_size, False, [])
36 mag = gr.complex_to_mag_squared(fft_size)

self.iir = gr.single_pole_iir_filter_ff(alpha, \
fft_size)

38

self.connect(self, (mult, 0))
40 self.connect(lc, (mult, 1))

self.connect(mult, ifft, mag, self.iir, self)
42

if dump_bins == True:
44 self.connect_debug_sink(self.iir,fft_size,’/\

home/trondd/opengnss_output’, fd)

46

def set_alpha(self, alpha):
48 self.iir.set_taps(alpha)

50

def connect_debug_sink(self, src, fft_size, \
output_path, fd):

52 filename = os.path.join(output_path, "fd_%d.dat"\
% fd)

file_sink = gr.file_sink(fft_size*gr.\
sizeof_float, filename)

54 self.connect(src, file_sink)

56

vim: ai ts=4 sts=4 et sw=4

65

A.2 GNU Radio argmax extension

Listing A.4: /gnuradio-core/src/lib/gengen/gr_argmax_XX.cc.t

1 /* -*- c++ -*- */
/*

3 * Copyright 2007 Free Software Foundation, Inc.

*
5 * This file is part of GNU Radio

*
7 * GNU Radio is free software; you can redistribute it \

and/or modify

* it under the terms of the GNU General Public License \
as published by

9 * the Free Software Foundation; either version 2, or (\
at your option)

* any later version.
11 *

* GNU Radio is distributed in the hope that it will be \
useful,

13 * but WITHOUT ANY WARRANTY; without even the implied \
warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. \
See the

15 * GNU General Public License for more details.

*
17 * You should have received a copy of the GNU General \

Public License

* along with GNU Radio; see the file COPYING. If not, \
write to

19 * the Free Software Foundation, Inc., 51 Franklin \
Street,

* Boston, MA 02110-1301, USA.
21 */

23 // @WARNING@

25 #ifdef HAVE_CONFIG_H
#include "config.h"

27 #endif

29 #include <@NAME@.h>
#include <gr_io_signature.h>

31

@SPTR_NAME@
33 gr_make_@BASE_NAME@ (size_t vlen)

{
35 return @SPTR_NAME@ (new @NAME@(vlen));

}
37

66

@NAME@::@NAME@(size_t vlen)
39 : gr_sync_block ("@BASE_NAME@",

gr_make_io_signature (1, -1, vlen*\
sizeof (@I_TYPE@)),

41 gr_make_io_signature (2, 2, sizeof (\
@O_TYPE@))),

d_vlen(vlen)
43 {

}
45

47 int
@NAME@::work(int noutput_items,

49 gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

51 {

53 int ninputs = input_items.size ();

55 @O_TYPE@ *x_optr = (@O_TYPE@ *) output_items[0];
@O_TYPE@ *y_optr = (@O_TYPE@ *) output_items[1];

57

for (int i=0; i<noutput_items; i++) {
59

@I_TYPE@ max = 0;
61 int x = 0;

int y = 0;
63

for (int j=0; j < (int) d_vlen; j++) {
65 for (int k=0; k<ninputs; k++) {

if (((@I_TYPE@ *) input_items[k])[i*d_vlen + j]\
> max) {

67 max = ((@I_TYPE@ *) input_items[k])[i*d_vlen +\
j];

x = j;
69 y = k;

}
71 }

}
73

*x_optr++ = (@O_TYPE@) x;
75 *y_optr++ = (@O_TYPE@) y;

}
77 return noutput_items;

}

Listing A.5: /gnuradio-core/src/lib/gengen/gr_argmax_XX.h.t

1 /* -*- c++ -*- */
/*

67

3 * Copyright 2007 Free Software Foundation, Inc.

*
5 * This file is part of GNU Radio

*
7 * GNU Radio is free software; you can redistribute it \

and/or modify

* it under the terms of the GNU General Public License \
as published by

9 * the Free Software Foundation; either version 2, or (\
at your option)

* any later version.
11 *

* GNU Radio is distributed in the hope that it will be \
useful,

13 * but WITHOUT ANY WARRANTY; without even the implied \
warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. \
See the

15 * GNU General Public License for more details.

*
17 * You should have received a copy of the GNU General \

Public License

* along with GNU Radio; see the file COPYING. If not, \
write to

19 * the Free Software Foundation, Inc., 51 Franklin \
Street,

* Boston, MA 02110-1301, USA.
21 */

23 // @WARNING@

25 #ifndef @GUARD_NAME@
#define @GUARD_NAME@

27

#include <gr_sync_block.h>
29

class @NAME@;
31 typedef boost::shared_ptr<@NAME@> @SPTR_NAME@;

33 @SPTR_NAME@ gr_make_@BASE_NAME@ (size_t vlen);

35

class @NAME@ : public gr_sync_block
37 {

friend @SPTR_NAME@ gr_make_@BASE_NAME@ (size_t vlen);
39

@NAME@ (size_t vlen);
41 size_t d_vlen;

43 public:

68

45 int work (int noutput_items,
gr_vector_const_void_star &input_items,

47 gr_vector_void_star &output_items);
};

49

51 #endif

Listing A.6: /gnuradio-core/src/lib/gengen/gr_argmax_XX.i.t

1 /* -*- c++ -*- */
/*

3 * Copyright 2007 Free Software Foundation, Inc.

*
5 * This file is part of GNU Radio

*
7 * GNU Radio is free software; you can redistribute it \

and/or modify

* it under the terms of the GNU General Public License \
as published by

9 * the Free Software Foundation; either version 2, or (\
at your option)

* any later version.
11 *

* GNU Radio is distributed in the hope that it will be \
useful,

13 * but WITHOUT ANY WARRANTY; without even the implied \
warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. \
See the

15 * GNU General Public License for more details.

*
17 * You should have received a copy of the GNU General \

Public License

* along with GNU Radio; see the file COPYING. If not, \
write to

19 * the Free Software Foundation, Inc., 51 Franklin \
Street,

* Boston, MA 02110-1301, USA.
21 */

23 // @WARNING@

25 GR_SWIG_BLOCK_MAGIC(gr,@BASE_NAME@)

27 @SPTR_NAME@ gr_make_@BASE_NAME@ (size_t vlen);

29 class @NAME@ : public gr_sync_block
{

69

31 private:
@NAME@ (size_t vlen);

33 size_t d_vlen;
};

70

A.3 GNU Radio max extension

Listing A.7: /gnuradio-core/src/lib/gengen/gr_max_XX.cc.t

/* -*- c++ -*- */
2 /*

* Copyright 2007 Free Software Foundation, Inc.
4 *

* This file is part of GNU Radio
6 *

* GNU Radio is free software; you can redistribute it \
and/or modify

8 * it under the terms of the GNU General Public License \
as published by

* the Free Software Foundation; either version 2, or (\
at your option)

10 * any later version.

*
12 * GNU Radio is distributed in the hope that it will be \

useful,

* but WITHOUT ANY WARRANTY; without even the implied \
warranty of

14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. \
See the

* GNU General Public License for more details.
16 *

* You should have received a copy of the GNU General \
Public License

18 * along with GNU Radio; see the file COPYING. If not, \
write to

* the Free Software Foundation, Inc., 51 Franklin \
Street,

20 * Boston, MA 02110-1301, USA.

*/
22

// @WARNING@
24

#ifdef HAVE_CONFIG_H
26 #include "config.h"

#endif
28

#include <@NAME@.h>
30 #include <gr_io_signature.h>

32 @SPTR_NAME@
gr_make_@BASE_NAME@ (size_t vlen)

34 {
return @SPTR_NAME@ (new @NAME@(vlen));

36 }

71

38 @NAME@::@NAME@(size_t vlen)
: gr_sync_block ("@BASE_NAME@",

40 gr_make_io_signature (1, -1, vlen*\
sizeof (@I_TYPE@)),

gr_make_io_signature (1, 1, sizeof (\
@O_TYPE@))),

42 d_vlen(vlen)
{

44 }

46 int
@NAME@::work(int noutput_items,

48 gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items)

50 {
@O_TYPE@ *optr = (@O_TYPE@ *) output_items[0];

52

int ninputs = input_items.size ();
54

for (int i=0; i<noutput_items; i++) {
56

@I_TYPE@ max = 0;
58

for (int j=0; j < (int) d_vlen; j++) {
60 for (int k=0; k<ninputs; k++) {

if (((@I_TYPE@ *) input_items[k])[i*d_vlen + j]\
> max) {

62 max = ((@I_TYPE@*) input_items[k])[i*d_vlen + \
j];

}
64 }

}
66

*optr++ = (@O_TYPE@) max;
68 }

return noutput_items;
70 }

Listing A.8: /gnuradio-core/src/lib/gengen/gr_max_XX.h.t

1 /* -*- c++ -*- */
/*

3 * Copyright 2007 Free Software Foundation, Inc.

*
5 * This file is part of GNU Radio

*
7 * GNU Radio is free software; you can redistribute it \

and/or modify

* it under the terms of the GNU General Public License \
as published by

72

9 * the Free Software Foundation; either version 2, or (\
at your option)

* any later version.
11 *

* GNU Radio is distributed in the hope that it will be \
useful,

13 * but WITHOUT ANY WARRANTY; without even the implied \
warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. \
See the

15 * GNU General Public License for more details.

*
17 * You should have received a copy of the GNU General \

Public License

* along with GNU Radio; see the file COPYING. If not, \
write to

19 * the Free Software Foundation, Inc., 51 Franklin \
Street,

* Boston, MA 02110-1301, USA.
21 */

23 // @WARNING@

25 #ifndef @GUARD_NAME@
#define @GUARD_NAME@

27

#include <gr_sync_block.h>
29

class @NAME@;
31 typedef boost::shared_ptr<@NAME@> @SPTR_NAME@;

33 @SPTR_NAME@ gr_make_@BASE_NAME@ (size_t vlen);

35

class @NAME@ : public gr_sync_block
37 {

friend @SPTR_NAME@ gr_make_@BASE_NAME@ (size_t vlen);
39

@NAME@ (size_t vlen);
41 size_t d_vlen;

43 public:

45 int work (int noutput_items,
gr_vector_const_void_star &input_items,

47 gr_vector_void_star &output_items);
};

49

51 #endif

73

Listing A.9: /gnuradio-core/src/lib/gengen/gr_max_XX.i.t

1 /* -*- c++ -*- */
/*

3 * Copyright 2007 Free Software Foundation, Inc.

*
5 * This file is part of GNU Radio

*
7 * GNU Radio is free software; you can redistribute it \

and/or modify

* it under the terms of the GNU General Public License \
as published by

9 * the Free Software Foundation; either version 2, or (\
at your option)

* any later version.
11 *

* GNU Radio is distributed in the hope that it will be \
useful,

13 * but WITHOUT ANY WARRANTY; without even the implied \
warranty of

* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. \
See the

15 * GNU General Public License for more details.

*
17 * You should have received a copy of the GNU General \

Public License

* along with GNU Radio; see the file COPYING. If not, \
write to

19 * the Free Software Foundation, Inc., 51 Franklin \
Street,

* Boston, MA 02110-1301, USA.
21 */

23 // @WARNING@

25 GR_SWIG_BLOCK_MAGIC(gr,@BASE_NAME@)

27 @SPTR_NAME@ gr_make_@BASE_NAME@ (size_t vlen);

29 class @NAME@ : public gr_sync_block
{

31 private:
@NAME@ (size_t vlen);

33 size_t d_vlen;
};

74

Bibliography

[1] AD9860/AD9862 Mixed-Signal Front-End (MxFE™) Processor for Broadband
Communications.
URL http://www.analog.com/UploadedFiles/Data_Sheets/
AD9860_9862.pdf.

[2] GNU Radio Architectural Changes, 2006.
URL http://acert.ir.bbn.com/downloads/adroit/
gnuradio-architectural-enhanc%ements-3.pdf.

[3] Cyclone Device Handbook.
URL http://www.altera.com/literature/hb/cyc/cyc_c5v1.
pdf.

[4] MAX2118 Complete DBS direct-conversion tuner ICs with monolithic VCOs.
URL http://datasheets.maxim-ic.com/en/ds/
MAX2116-MAX2118.pdf.

[5] Elisardo Antelo, Javier D. Bruguera, T. Lang, and Emilio L. Zapata. Error
Analysis and Reduction for Angle Calculation Using the CORDIC Algo-
rithm. IEEE Transactions on Computers, 46(11):1264–1271, 1997.
URL citeseer.ist.psu.edu/antelo97error.html.

[6] Andrew Bateman and Paterson-Stephens Iain. The DSP Handbook – Al-
gorithms, Applications and Design Techniques. Prentice Hall, 2002. ISBN
0201398516.

[7] Vanu Bose. Virtual Radios. PhD thesis, 1999.
URL http://citeseer.ist.psu.edu/bose98virtual.html.

[8] Michael S. Braasch. Multipath Effects. In Bradford W. Parkinson and
James J. Spilker, Jr., editors, Global Positioning System: Theory and Applica-
tions. American Institute of Aeronautics and Astronautics, 1996.

[9] Shahin Charkhandeh, Dr. Mark G. Petovello, and Dr. Gerard Lachapelle.
Performance Testing of a Real-Time Software-Based GPS Receiver for x86
Processor. In ION GNSS 2006 Proceedings, pages 2313–2320. The Institute
of Navigation, 2007.

[10] Trond Danielsen. Creating a software defined GNSS receiver from free
software components. Technical report, 2006.

[11] Byron Edde. Radar: Principles, Technology, Applications. Prentice Hall, 1993.

75

http://www.analog.com/UploadedFiles/Data_Sheets/AD9860_9862.pdf
http://www.analog.com/UploadedFiles/Data_Sheets/AD9860_9862.pdf
http://acert.ir.bbn.com/downloads/adroit/gnuradio-architectural-enhanc% ements-3.pdf
http://acert.ir.bbn.com/downloads/adroit/gnuradio-architectural-enhanc% ements-3.pdf
http://www.altera.com/literature/hb/cyc/cyc_c5v1.pdf
http://www.altera.com/literature/hb/cyc/cyc_c5v1.pdf
http://datasheets.maxim-ic.com/en/ds/MAX2116-MAX2118.pdf
http://datasheets.maxim-ic.com/en/ds/MAX2116-MAX2118.pdf
citeseer.ist.psu.edu/antelo97error.html
http://citeseer.ist.psu.edu/bose98virtual.html

[12] Börje Forssell. Radionavigation Systems. Kompendieforlaget, 2003.

[13] Fredric J. Harris. On the use of windows for harmonic analysis with the
discrete Fourier transform. Proceedings of the IEEE, 66(1):51–83, 1979.

[14] Simon Haykin. Communication Systems. John Wiley & Sons, 2001.

[15] Gregory W. Heckler and James L. Garrison. SIMD correlator library for
GNSS software receivers. GPS Solutions, 10(4):269, 2006.

[16] Tim Hentschel and Gerhard Gettweis. The Digital Front End - Bridge
Between RF and Baseband Processing. In Walter Tuttlebee, editor, Software
defined radio: Enabling Technologies. John Wiley & sons Ltd.

[17] Todd E. Humphreys, Mark L. Psiaki, Paul M. Kintner jr., and Brent M.
Ledvina. GNSS Receiver Implementation on a DPS: Status, Challenges,
and Prospects. In ION GNSS 2006 Proceedings, pages 2370–2382. The Insti-
tute of Navigation, 2007.

[18] Stèphane Mallat. A Wavelet Tour of Signal Processing. Academic Press, 1999.

[19] ZHL-1217MLN – Coaxial Low-Noise Amplifier. Mini-Circuits.
URL http://www.minicircuits.com/pdfs/ZHL-1217MLN.pdf.

[20] Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Process-
ing. 1997.
URL http://www.dspguide.com/.

[21] James J. Spilker, Jr. GPS Signal Structure and Theoretical Performance. In
Bradford W. Parkinson and James J. Spilker, Jr., editors, Global Position-
ing System: Theory and Applications. American Institute of Aeronautics and
Astronautics, 1996.

[22] STR Series Multichannel Satellite Navigator Simulator Reference Manual.
Spirent Communications, 2001.

[23] G.D. Troxel, E. Blossom, S. Boswell, A. Caro, I. Castineyra, A. Colvin,
T. Dreier, J.B. Evans, N. Goffee, K.Z. Haigh, T. Hussain, V. Kawa-
dia, D. Lapsley, C. Livadas, A. Medina, J. Mikkelson, G.J. Minden,
R. Morris, C. Partridge, V. Raghunathan, R. Ramanathan, C. Santivanez,
T. Schmid, D. Sumorok, M. Srivastava, R.S. Vincent, D. Wiggins, A.M.
Wyglinski, and S Zahedi. Adaptive Dynamic Radio Open-source Intelli-
gent Team (ADROIT): Cognitively-controlled Collaboration among SDR
Nodes. 2006.

[24] James Bao-yen Tsui. Fundamentals of global positioning system receivers : a
software approach. John Wiley & Sons, 2006.

[25] Guido van Rossum. Python Library Reference, 2.5 edition.
URL http://docs.python.org/lib/lib.html.

[26] Jouko Vankka. Digital Synthesizers and Transmitters for Software Radio.
Springer, 2005.

76

http://www.minicircuits.com/pdfs/ZHL-1217MLN.pdf
http://www.dspguide.com/
http://docs.python.org/lib/lib.html

