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Problem Description
The modified autocorrelation method (MAM) has shown to be superior to the conventional
autocorrelation method (AM) in simulation environments. However, this superiority is not present
in results from in vivo experiments. In order to understand these inconsistent results the
simulation model will be extended to include acoustic and thermal noise, and aliasing. The
influence of clutter filtering and aliasing correction on MAM and AM is then to be investigated.

Clutter will be added to the model as a low-pass process, while aliasing can be achieved by
decimation in the time domain. Existing methods for clutter filtering and aliasing correction will be
implemented and tested. New methods can be developed and tested if found necessary. The
chosen methods will be applied to in-vivo data of the septum and compared to simulations.
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Abstract

When estimating tissue velocities, the conventional autocorrelation method
(AM) is only biased if the demodulation frequency is correctly estimated.
While AM assumes the received centre frequency to be constant, the modi-
fied autocorrelation method (MAM) estimates the received centre frequency
continuously from pulse to pulse. Although MAM has shown superior per-
formance in simulation environments, it fails to show consistently better
performance compared to AM when applied to experimental data. In order
to investigate this lack of consistency, a model for simulation of signal from
moving tissue was developed, including realistic aspects such as thermal
noise, signal from clutter and aliasing. The simulation model was adapted
using experimental tissue data and parameters from a true acquisition sys-
tem. A 1st order FIR filter was applied for clutter rejection prior to velocity
estimation.

The investigations using simulation data shown faster performance degra-
dation of MAM compared to AM when the amount of signal from clutter
or thermal noise were increased independently. For clutter signal mimick-
ing acoustic noise from reverberations, MAM went from significantly better
under low-noise conditions to approaching AM performance when the signal-
to-clutter ratio became lower than 10 dB. Analogously, MAM approached
AM performance when the signal-to-noise ratio was lower than 15 dB.

Velocity estimation of experimental data shown MAM’s robustness to
frequency dependent attenuation by means of frequency compensation, while
AM suffered from bias effects due to erroneously estimated demodulation fre-
quency. The frequency compensation did, however, not succeed to approve
lower estimation variance in MAM compared to AM. Statistical analysis
based on expected values from simulations, demonstrated correlation be-
tween the estimation error in AM and MAM.





Preface

This thesis fulfills the requirements for a degree of Master at the Norwe-
gian University of Science and Technology (NTNU). My formal supervisor
has been professor Tor A. Ramstad at the Department of Electronics and
Telecommunications. The work was however carried out at the Department
of Circulation and Medical Imaging, NTNU, and has been based on pre-
viously unpublished work by the writer. Daily supervision was given by
professor Hans Torp and PhD Student Svein Arne Aase.

Acknowledgements

First of all, I would like thank Hans Torp for outlining the problem to be
assessed in this work. Further, I would like to thank Svein Arne Aase for
his help and patience in the lab. I would like to thank them both for their
encourage and the interest they have shown in my work, which has been a
great inspiration for me. Also, I would like to thank my student colleagues
at the Department of Circulation and Medical Imaging for social as well as
academic contributions. Finally, thanks to Tor A. Ramstad for being listed
as my supervisor.

Jessheim, June 19, 2007

Trond-Olav Dahl





Contents

1 Introduction 1

2 Background 3

2.1 Diagnostic ultrasound imaging . . . . . . . . . . . . . . . . . 3

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Principles of ultrasound imaging . . . . . . . . . . . . 4

2.1.3 Building blocks of an ultrasound imaging system . . . 7

2.1.4 Image quality . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Ultrasound Doppler imaging . . . . . . . . . . . . . . 10

2.2 Tissue Doppler Imaging . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . 14

2.2.3 Signal model . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Clutter signal separation . . . . . . . . . . . . . . . . . 18

2.2.5 Tissue velocity estimation . . . . . . . . . . . . . . . . 19

3 Methods and implementation 23

3.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 GCMat . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.3 Ultrasound equipment and setup . . . . . . . . . . . . 23

3.2 The simulation model . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Acquisition system . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Signal from moving tissue . . . . . . . . . . . . . . . . 25

3.2.3 Signal from clutter . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Signal loss and thermal noise . . . . . . . . . . . . . . 28

3.2.5 Statistic Gaussian signal . . . . . . . . . . . . . . . . . 29

3.2.6 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Simulation model verification . . . . . . . . . . . . . . . . . . 32

3.4 Simulation model set-up . . . . . . . . . . . . . . . . . . . . . 32

3.4.1 Pulse centre frequency and bandwidth . . . . . . . . . 32

3.4.2 Pulse beam width . . . . . . . . . . . . . . . . . . . . 33

3.4.3 Temporal signal length . . . . . . . . . . . . . . . . . . 33

i



3.4.4 Parameter set-up . . . . . . . . . . . . . . . . . . . . . 34
3.5 Using the simulation model . . . . . . . . . . . . . . . . . . . 34

3.5.1 Signal-to-noise ratio . . . . . . . . . . . . . . . . . . . 35
3.5.2 Signal-to-clutter ratio . . . . . . . . . . . . . . . . . . 35
3.5.3 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.4 Angle dependency . . . . . . . . . . . . . . . . . . . . 36
3.5.5 Pulse bandwidth . . . . . . . . . . . . . . . . . . . . . 36

3.6 Experimental data acquisition . . . . . . . . . . . . . . . . . . 37
3.7 Tissue velocity estimation . . . . . . . . . . . . . . . . . . . . 38

3.7.1 Clutter filtering . . . . . . . . . . . . . . . . . . . . . . 38
3.7.2 Autocorrelation methods . . . . . . . . . . . . . . . . 39
3.7.3 Cross-correlation method . . . . . . . . . . . . . . . . 39

4 Results 43

4.1 Simulation model verification . . . . . . . . . . . . . . . . . . 43
4.1.1 Frequency analysis . . . . . . . . . . . . . . . . . . . . 43
4.1.2 RF-domain analysis . . . . . . . . . . . . . . . . . . . 43

4.2 Simulation model set-up . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 Pulse centre frequency and bandwidth . . . . . . . . . 48
4.2.2 Temporal signal length . . . . . . . . . . . . . . . . . . 48

4.3 Clutter filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Velocity estimation on simulation data . . . . . . . . . . . . . 52

4.4.1 Presence of thermal noise . . . . . . . . . . . . . . . . 52
4.4.2 Presence of clutter . . . . . . . . . . . . . . . . . . . . 52
4.4.3 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.4 Angle dependency . . . . . . . . . . . . . . . . . . . . 56
4.4.5 Pulse bandwidth . . . . . . . . . . . . . . . . . . . . . 56

4.5 Velocity estimation on experimental data . . . . . . . . . . . 59

5 Discussion 63

5.1 Simulation model verification . . . . . . . . . . . . . . . . . . 63
5.2 Simulation model set-up . . . . . . . . . . . . . . . . . . . . . 64
5.3 Clutter filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Velocity estimation on simulation data . . . . . . . . . . . . . 65
5.5 Velocity estimation on experimental data . . . . . . . . . . . 67

6 Conclusion 69

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ii



List of Figures

2.1 Reflection principle in wave propagation . . . . . . . . . . . . 5

2.2 Beam profiles for unfocused and focused transducers . . . . . 6

2.3 Block diagram of a typical ultrasound system. The figure is
found in [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 The Doppler effect . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Illustration of signal acquisition in TDI. . . . . . . . . . . . . 15

2.6 Investigation of amplitude distribution in myocardial tissue. . 18

3.1 Simulated transducer pulse . . . . . . . . . . . . . . . . . . . 25

3.2 Simulated signal from moving tissue . . . . . . . . . . . . . . 26

3.3 Gaussian shaped clutter signal in Doppler frequency . . . . . 27

3.4 Simulated clutter signal in the 2D power spectrum . . . . . . 28

3.5 Simulated signal from thermal noise in the 2D power spectrum 29

3.6 Received simulation signal made statistic Gaussian. . . . . . . 30

3.7 Decimation of simulation signal in IQ-domain . . . . . . . . . 31

3.8 B-mode image of the left ventricle in a healthy human heart . 33

3.9 1. order FIR filter for clutter rejection . . . . . . . . . . . . . 38

3.10 Cross-correlation estimation using sub-segment . . . . . . . . 40

4.1 Spectrum of simulated pulse versus received simulated signal 44

4.2 Simulated RF-signal with different SNR . . . . . . . . . . . . 45

4.3 Simulated RF-signal with different SCR . . . . . . . . . . . . 46

4.4 Simulated RF-signal with aliasing and not . . . . . . . . . . . 47

4.5 Estimated spectra of experimental versus simulation data . . 48

4.6 Estimated standard deviation as a function of temporal samples 49

4.7 Clutter filter effects in the 2D power spectrum . . . . . . . . 50

4.8 Velocity estimation statistics as a function of FIR attenuation 51

4.9 Velocity estimation statistics as a function of SNR . . . . . . 53

4.10 Velocity estimation statistics as a function of SCR . . . . . . 54

4.11 Velocity estimation statistics as function of axial velocity . . 55

4.12 Velocity estimation statistics as a function of intersection angle 57

4.13 Velocity estimation statistics as a function of pulse bandwidth 58

4.14 Septum of a human heart applied to velocity estimation . . . 59

4.15 Estimated radial frequency content in experimental data . . . 60

iii



4.16 Velocity curves, biased AM . . . . . . . . . . . . . . . . . . . 61
4.17 Velocity curves and estimation difference, compensated AM . 62

iv



List of Tables

3.1 Experimental parameter set-up. . . . . . . . . . . . . . . . . . 24
3.2 Simulation model parameter set-up . . . . . . . . . . . . . . . 35

4.1 Values for standard deviation from Figure 4.11. . . . . . . . . 55

v





Chapter 1

Introduction

Since the early 90’s, Tissue Doppler Imaging (TDI) has been developed as a
clinical tool to quantify regional myocardial function. In 1998, Heimdal et.
al [4] introduced a velocity-based method for regional deformation imaging,
referred to as Strain Rate Imaging. One-dimensional strain rate measures
the speed of local deformation along the beam direction as the difference in
axial velocity between two points a known distance apart. Due to this gra-
dient operation, strain rate has shown to be very sensitive to noise [11], and
its performance, therefore, heavily depends on the velocity estimator used.
Most known methods for velocity estimation are based on the autocorrela-
tion function, and today the conventional autocorrelation method is widely
used. Another such method, referred to as the modified autocorrelation
method (MAM), was introduced in by Loupas et al. [12] in order to improve
velocity estimates. While the conventional autocorrelation method assumes
the center frequency of the received ultrasound signal to be constant from
pulse to pulse, MAM estimates the received center frequency continuously.

Although MAM in previous work has shown superior results when ap-
plied to simulated data [3, 12], the results are contradictory in experimental
data. Applied to blood velocity estimation in [7] resulted in a reduced es-
timator bias and variance. On the contrary, estimation bias and variance
were lower for AM than MAM, when applied to strain rate estimation on
experimental data in [3].

The purpose of this work is to investigate possible causes the modified
autocorrelation method not consistently shows better performance than the
conventional method in-vivo experiments. A comparison of the two meth-
ods will be made together with the cross-correlation method (CCM) in a
controlled environment. First, this involves development of a simulation
model for received signal in Tissue Doppler Imaging. By including essential
aspects present in real ultrasound acquisition, the simulation model intends
to clarify the inconsistency in results when MAM is applied to data from
simulations and experiments. In this work, the most important aspects are
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2 1. Introduction

considered to be acoustic and thermal noise, and aliasing. Second, spectral
analysis on data acquired with GE Vingmed Ultrasound’s Vivid 7 will be
carried out and used as reference in setting up the simulation model. This to
make the simulation model more realistic in terms of tissue velocity estima-
tion purposes. Next, the velocity estimators, implemented in previous work
not published, will be applied to data from the simulation model. The differ-
ent aspects will be investigated separately to assess their influence in tissue
velocity estimation, and then to point out one or more candidates that to
a greater extent introduce estimation errors to the modified autocorrelation
method than the conventional one. Finally, the velocity estimators will be
applied to data from the septum of a healthy human heart for comparison
based on results from simulations. The correlation between estimation error
in AM and MAM will be investigated by means of statistical analysis.

This thesis is organized as follows: An introduction to basic principles in
ultrasound imaging is given in Chapter 2, including a description of Tissue
Doppler Imaging. Chapter 3 includes the methods of this work, while the
results are presented in Chapter 4. Next, Chapter 5 contains discussion of
the presented results based on knowledge attained in Chapter 2. Finally,
Chapter 6 states the conclusion of the work.



Chapter 2

Background

The following section aims to give the unfamiliar reader a brief introduction
to principles, terms and methods related to diagnostic ultrasound. This
chapter also contains more detailed description of the modality under inves-
tigation in this thesis work, the concept of Tissue Doppler Imaging (TDI).

2.1 Diagnostic ultrasound imaging

2.1.1 Background

Diagnostic ultrasound had its humble start in the early 1940’s, when two
Austrian brothers managed to generate an image using ultrasonic waves in
an attempt to locate a brain tumor [11]. The concept of using ultrasonic
waves to image the human interior was based on knowledge from pulse-echo
SONAR and technology from metal flaw detectors available at the time. As a
result of research into its diagnostic use in the late 40’s, the first descriptions
of diagnostic ultrasound was reported in the early 50’s in the United States
by Wild & Reid and Howry & Bliss, and in Europe by Edler & Hertz [5].
The discovery of new piezoelectric material during the 40’s, that allowed for
short pulses in the MHz range, was a necessity for the technology to be used
in medicine.

The pioneer groups demonstrated in the early 50’s that ultrasound as
a diagnostic tool was able to detect tissue layers, tumors and heart struc-
tures. A decade later the first commercial instruments to offer static images
of the human interior became available. In such instruments, B-mode scan-
ners (brightness mode), the image is based on amplitudes, more precisely
the envelope of the amplitudes, in the received echo. Improved transistor
technology during the 60’s made real-time B-mode imaging feasible on com-
mercial scanners by the end of the decade.

Some years earlier, in 1957 Satumora proposed an continuous wave (CW)
ultrasound system to detect movements based on the Doppler shift of the
received signal. The lack of depth information in CW systems lead to a

3



4 2. Background

pulsed wave (PW) approach in the late 60’s, which was able to measure
blood flow in a vessel at an explicit depth. In the mid-eighties, the modal-
ity was combined with B-mode imaging, allowing the Doppler signal to be
superimposed on the B-mode image in real-time [5, 8].

Ultrasound imaging has a number of advantages over other imaging sys-
tems. There are no building requirements as for X-ray and MR, the equip-
ment is relatively cheap and transportable, and its real-time capabilities can
give rapid diagnosis while being being safe and painless to the patient [1, 5].
Today ultrasound imaging is probably best known for applications during
pregnancy and obstetric. Cardiovascular diagnosis utilize the high frame
rate imaging in qualitative analysis of the heart muscle deformation and
blood flow in the heart and arteries, while Doppler imaging provide quan-
titative measurements on tissue velocities and blood flow. Other areas in
medicine where ultrasound imaging has found its application is in detection
of cancer and as a tool for quality control in the operating theatre.

The following section gives a brief description on the principles in ultra-
sound imaging.

2.1.2 Principles of ultrasound imaging

Ultrasound are acoustic waves with frequencies higher than 20 kHz, making
them undetectable for the human ear. Diagnostic ultrasound make use of
acoustic waves with centre frequencies in the range of 2 − 15 MHz. When
an acoustic wave travels through some medium the particles will oscillate
around their equilibrium position along the wave’s direction, making it a
longitudinal wave. Therefore, no net displacement takes place and no mass
is transported – it is only the wave that travels. As an ultrasound wave
propagate in human tissue it interacts with medium having different acoustic
properties, which result in the back-scattered signal that makes ultrasound
imaging possible. An image can then be formed, based on the amplitudes
in the received signal.

Density ρ and adiabatic compressibility κ are the two factors describing
the acoustic properties of a homogeneous medium. By assumption of energy
conservation, the acoustic pressure waves in a homogeneous medium is com-
pletely described by (2.1) for linear propagation, which means the particle
displacement is linearly proportional to the instantaneous pressure [2].

∇2p(r, t) −
1

c2

∂p(r, t)

∂t2
= 0 (2.1)

Here r is the spatial position vector, t is time and c =
√

1
ρκ

is the speed of

sound in a medium characterized by ρ and κ. In water sound travels with
a speed of 1480 m/s, and in human tissue, which consists of mostly water,
the speed has been measured to be 1540 m/s on average [8]. In medical
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ultrasound the assumption of constant propagation speed is an important
convention to achieve a simple, unambiguous relation to depth in pulsed
wave echo.

In conventional ultrasound a pressure pulse is transmitted into the tissue
by a transducer as illustrated in Figure 2.1. When the propagating wave
encounters a boundary between two different tissue structures, one part of
the wave is reflected while the other continues its propagation. The amount
of reflection depends on the two media’s difference in acoustic properties,
while the other wave possibly continues its propagation in a new direction
(not illustrated in the figure), dependent on the speed of sound in the two
media [5].

Figure 2.1: Illustration of the essential reflection principle in wave prop-
agation. When a propagating wave encounters a boundary between two
different media, the wave is partly reflected. The figure is found in [8]

Clear boundaries rarely exist in the human body. A propagating wave
is more likely to encounter areas with varying acoustic properties, which
constitutes a set of reflecting objects. The type of reflection from such
objects depends entirely on their size compared to the wavelength. Objects
larger than the wavelength reflects the wave in a specular way, while objects
of comparable size to the wavelength reflects the wave directionally. When
the object is smaller than the wavelength, it scatters the signal in an omni-
directional way, so-called Rayleigh-scattering. The total signal from many
scatterers result in a destructive and constructive interference pattern that
give the image a grainy appearance, referred to as speckle. Due to scattering,
the back-scattered signal can be characterized in statistical terms. The
amplitude distribution in back-scattered signal from human tissue is statistic
Gaussian with zero mean and some variance, dependent on the deviation in
acoustic properties of the penetrated medium [5].

The ultrasonic wave is attenuated as it propagates through some medium.
Two main factors to attenuation is absorption and scattering. Absorption is
conversion into thermal energy and amounts to 75−95 % [5] of the total en-
ergy loss. This attenuation limits the penetration depth in ultrasound imag-
ing. Increasing frequency of the transmitted pulse results in higher image
resolution, but, since the attenuation is frequency dependent the penetration
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Figure 2.2: Beam profiles for unfocused and focused transducers, in upper
and lower plot, respectively. The unfocused beam suffers from diffraction
effects in the near field, which cause convergence of the beam known as
diffraction focusing. A narrow beam width is achieved over a limited depth
by means of focusing. The figure is found in [8].

depth is reduced. Therefore the choice of pulse frequency is a compromise
between image resolution and penetration depth [1]. Another consequence
of the frequency dependent attenuation is the change in spectrum of the re-
ceived pulse, as the higher frequency components are attenuated to a greater
extent than the lower. The attenuation in human tissue is approximately
0.5 dB/[MHz cm] one way [1].

Beam formation

The upper plot in Figure 2.2 illustrates a directional sound beam. The
beam becomes directional as a consequence of a small wavelength of the
transmitted pressure wave compared to the transmitting aperture. That
is, the directionality increases when the transmitted frequency increases.
It is convenient to divide the beam course into near and far field. The
extreme near field is often defined as the region where the beam width is
approximately the same as the aperture used. On the other hand, the far
field is defined as the region where the pressure wave amplitude fall of at a
fixed rate. Diffraction effects in the near field cause the beam to converge,
a phenomenon called diffraction focusing. For a plane circular transducer,
the transition between the near and far field is given by



2.1 Diagnostic ultrasound imaging 7

zfar =
D2

2λ
, (2.2)

where D is the diameter of the aperture, and λ is the wavelength of the
transmitted pulse. In medical ultrasound, image formation is made in the
near field of the transducer.

A focused beam can be achieved at a specific depth in a limited region
by curving the aperture, by using a lens, or by using transducer arrays and
electronic delays between the different array elements. In order to achieve
efficient focusing, the focus point must lie within the near field, as shown in
the lower plot of Figure 2.2. For a focused transducer, the beam width DF

defines the lateral resolution of the imaging system, given by (−3 dB beam
width)

DF =
λ

D
F = F#λ, (2.3)

where F is the distance to the focus point, D is the aperture diameter, and λ

is the emitted wavelength. F#, the F-number of the imaging system, is the
focus distance measured in apertures. Moreover, the effective depth region
of uniform beam width as given at the focus depth is denoted focal depth,
given by (−1 dB beam width)

LF = 4 · λF 2
#. (2.4)

In order to achieve narrow beam width in focus, the F# is desired to be
low. However, as the focal depth depends on the F# squared, using too low
F-number can concentrate the sound energy in small region along the beam
axis. As a consequence, the F-number must be optimized with respect to
transducer and application. [8]

2.1.3 Building blocks of an ultrasound imaging system

This section deals with the composition of imaging systems used in diagnos-
tic ultrasound. Typical building blocks and signal chain for such systems
are shown in Figure 2.3, and will be described in the following.

Figure 2.3: Block diagram of a typical ultrasound system. The figure is
found in [8].
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Transducer

The transducer is responsible for transmission and reception of ultrasonic
pressure waves, typically consisting of an array of piezoelectric elements. On
transmission, an external electric field cause vibrations in the piezoelectric
material that results in ultrasonic waves. Analogously, on reception, the
elements vibrate as a consequence of external pressure, creating an electrical
signal. The size and shape of the transducer must be chosen with respect
to clinical application. Further, as a given application demands certain
penetration depth, the piezoelectric material is designed to work in a specific
frequency range. As an example, a transducer designed for cardiac imaging
must be small enough to fit between the ribs, with typical working frequency
in the range from 2-4 MHz in order to achieve sufficient penetration. [8]

Front-end

The front-end consist of hardware responsible for controlling the transmis-
sion and reception of ultrasonic waves by the transducer. In order to direct
the beam in one direction, the necessary delays are calculated in the front-
end. In receive mode, a delay-and-sum procedure realises beam-forming
of the received signal from the transducer elements into one direction. A
filter matched to the bandwidth of the received signal is applied in order
to maximize the signal-to-noise ratio. Furthermore, as the attenuation is
depth dependent, echoes from deeper structures are amplified in order to be
images simultaneously with structures placed close to the transducer. This
concept is called time-gain compensation. Finally, the RF-signal is brought
to baseband through complex demodulation in order to reduce the number
of samples, thus, the demand for storage for later processing. [8]

Back-end

The back-end of an ultrasound system is responsible for a number of tasks
involving user interfacing, signal processing, image preparation and scan con-
version, and archive storage of ultrasound recordings. In modern systems,
these tasks are performed in software on a real-time aware operating sys-
tem on a conventional desktop computer. Typically, the back-end computer
first processes user interface tasks before communicating with and setting
up the front-end for new operations. A number of tasks have been moved
from front-end to the back-end due to development in computer technology,
which give more flexible and cost effective systems than earlier hardware
solutions could offer. Example of such tasks are image filtering, Doppler
processing and scan conversion. [8]
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2.1.4 Image quality

Spatial resolution

The spatial resolution is defined as the minimum spacing between two ob-
jects the imaging system is able to distinguish. In ultrasound imaging, the
spatial resolution is theoretically determined by the centre frequency and
bandwidth of the transmitted pulse, the aperture diameter, and the focus
depth. The theoretical radial resolution is related to the temporal length of
the emitted pulse Tpulse as

∆r =
c · Tpulse

2
=

c

2 · Bpulse
, (2.5)

where Bpulse is the pulse bandwidth. In other words, the radial resolution is
first of all limited by the transducer bandwidth. Furthermore, it is degraded
by frequency dependent attenuation, which shift the frequency content of
the received pulse towards zero. As the lateral resolution is defined by the
beam width, given by Eq. (2.3), it depends on the F-number and wavelength
of the emitted pulse. [8]

Factors corrupting image quality

The image quality in ultrasound systems is reduced by different factors re-
lated to physical phenomenons and to system design. A brief description of
factors related to this work is given below.

Reverberations: Conventional ultrasound imaging assumes only one scat-
tering process before reception at the transducer. However, the ultrasound
wave may encounter multiple reflections on its way. This phenomenon, re-
ferred to as reverberations, result in ghost images as a consequence of several
receptions of signal from specific scatterers.

Frequency dependent attenuation: Frequency dependent attenuation
shifts the frequency content towards zero during wave propagation. The
reduced centre frequency results in lower spatial resolution and penetration.
The effect increases with depth.

Beam side-lobes: Beam side-lobes are present due to the finite trans-
ducer aperture. A scatterer in a side-lobe will therefore be registered on
receive, reducing the contrast resolution of the image.
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Figure 2.4: The two listeners observe different frequency if the sound source
is moving like indicated. The figure is found in [5].

2.1.5 Ultrasound Doppler imaging

If an acoustic source is moving relative to the observer, the observed fre-
quency is different from the frequency transmitted by the source. This
phenomenon is termed after Christian Doppler, who first proposed the ef-
fect in 1842 in an attempt to explain the colour of the stars. The observed
frequency fR will be given by [5]

fR =
c + vo

c − vs
fT , (2.6)

where fT is the transmitted frequency,vo is the speed of the observer, vs is
the speed of the source and c is the speed of sound. The velocity is defined
as positive when the motion is towards the other.

Figure 2.4 shows two stationary listeners observing a continuous tone
from a source moving relatively to each of them. Due to the trumpet’s
motion towards listener B, the listener experiences a frequency fRB

that is
higher than the frequency fT transmitted by the trumpet. The observed
frequency fRB

for listener B is then given by

fRB
=

c

c − vs
fT , (2.7)

where vs is the trumpet’s velocity towards listener B.

When an ultrasound wave interacts with objects moving relatively to
the source, the reflected wave will experience a slight shift in frequency. The
Doppler effect contradicts or expands the timescale of waves reflected from
moving scatterers or emitted by moving sources. Both of these cases occur in
conventional ultrasound. The scaling of the temporal axis can be expressed
as [5]:

α =
c + v cos θ

c − v cos θ
≈ (1 +

2v cos θ

c
), (2.8)

where θ is the angle between the scatterer velocity and the ultrasound beam,
v cos θ is the axial velocity component of the scatterer, defined positive to-
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wards the transducer. The corresponding Doppler shift is then given by

fd = αf0 − f0 = 2f0
v cos θ

c
, (2.9)

where the Doppler shift is termed fd and f0 is the emitted frequency. The
equation is valid as long as v cos θ ≪ c.

The Doppler principle can be utilized to measure velocities of flowing
blood or moving tissue by ultrasound. Normal velocity of blood flow can
reach up to 1 m/s, while stenotic and valve defection can cause blood flows
up to 6 m/s. The highest tissue velocities is found in the heart, where
the myocardium contractions can be in the range up to 10 cm/s, while the
movement of heart valves can have velocities up to 50 cm/s.

The backscattered signal from tissue is a sum of contributions from sev-
eral scatterers, each producing their own Doppler shift, resulting in a spectra
of different velocities in the received signal. Moreover, due to the fact that
each scatterer is observed in a finite time interval, a non-zero bandwidth is
given for each single velocity contribution. This effect is referred to as the
transit time effect.

Spectral analysis of the received signal can provide velocity information
of a given sample volume. As the Doppler shifted signal is in the audible
range, it is common to make the signal audible through a set of speakers
for interpretation. For blood velocities, listening to the output gives an
impression of the blood flow. This modality was the only modality available
in the first Doppler instruments before real-time spectral analysis became
feasible. Two different pulse excitation approaches have become standard
in Doppler imaging, one based on continuous wave and a second based on
pulsed waves. A brief description will now be given. [8]

Continuous-wave Doppler

In continuous-wave Doppler (CW-Doppler), a single frequency sinusoidal is
continuously transmitted into the tissue, while the echo signal is simulta-
neously picked up, typically by another part of the transducer. Because
the sample volume is determined by the overlap between the transmit and
receive beam, range resolution is in practice not available in CW-Doppler.
Due to its continuous nature, the main advantage of CW-Doppler is that it
is not limited in maximum velocity.

The magnitude and sign of the Doppler frequency can be obtained by
quadrature demodulation. Consider the emission given by [8]

e(t) = cos(2πf0t) = Re{ei2πf0t}, (2.10)

where f0 is the emitted sinusoidal frequency. The received signal at time t

after emission, assumed to be a delayed, scaled and Doppler shifted version
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of the emitted signal at time t0, is then given by:

r(t) = A(α(t − t0)) · e(α(t − t0)) = A(α(t − t0)) · cos(2πf0α(t − t0)) (2.11)

The complex analytic signal received is obtained through the Hilbert trans-
form, and given by:

r̃(t) = Ã(α(t − t0)) · e
2παfo(t−t0) (2.12)

Mixing the analytic received signal with the quadrature reference signal
e−i2πfot reveals the Doppler signal:

rIQ = Ã(α(t − t0)) · e
i2παf0(t−t0) · e−i2πf0t

= Ã(α(t − t0)) · e
i2π(αf0−f0)t−i2παf0t0

= Ã(α(t − t0)) · e
i2πfdt+iφ0 (2.13)

Pulsed-wave Doppler

In Pulsed-wave Doppler (PW-Doppler), series of pulses are emitted into
the tissue at a constant pulse repetition frequency (PRF). Range resolution
is obtained by sampling the received echo at a fixed time after transmis-
sion, using pulse length shorter than the time between two pulse emissions
TPRF = 1

PRF
. As the pulses interact with moving scatterers, they are shifted

in frequency according to (2.9). However, the change in bandwidth due to
frequency dependent attenuation can be large compared to the Doppler shift
itself, making it difficult to measure the Doppler shift as in CW-Doppler. In-
stead, another approach to measure the velocity of scatterers is taken, based
on the difference between two pulses received subsequently. The signal from
consecutive emissions will be delayed an amount proportional to the axial
velocity of the scatterers. For a simple illustration of this, pulse interaction
with a single scatterer is considered. The emitted pulse typically consist of
a burst of sinusoidal oscillations, as given in complex form by

e(t) = g(t)ei2πf0t, (2.14)

where g(t) is the complex envelope of the pulse and f0 is the pulse carrier
frequency. Considering a single scatterer at depth r0, moving with velocity
v and angle θ compared to the beam and pulses emitted at the rate 1

TPRF
,

the received signal from a pulse emitted at time t can then be described by

rm(t) = e(α(t − tm)), (2.15)

where α is the time compression factor given in (2.8), and tm is the relative
time from pulse emission to reception for pulse number m, given by
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tm =
2ro

c
+

2v cos θmTP

c
= t0 + mτ. (2.16)

The relation between two consecutive received pulses then becomes

rm(t) = e(α(t − t0)) = e(α(t − t0 −
2v cos θmTP

c
)) = rm−1(t − τ), (2.17)

which in this ideal case is a delayed version of the previous pulse. The pa-
rameter τ , which contain the velocity information, can be estimated, either
directly from consecutive RF-signals, or by sampling the resulting change in
phase compared to the carrier frequency between consecutive pulses. Con-
ventional PW-Doppler ultrasound make use of the latter procedure. Insert-
ing (2.14) into the expression for rm(t) gives

rm(t) = g(α(t−t0))e
i2πf0α(t−t0−mτ) = g(α(t−tm))ei2πf0α(t−t0)eiφ(m), (2.18)

where the phase function is given by

φ(m) = 2πf0α
2v cos θTP

c
m. (2.19)

The instantaneous frequency of this phase function, estimated by discrete
derivative, then becomes

fφ =
1

2π

φ(m) − φ(m − 1)

TP
= 2foα

v cos θ

c
≈ fd. (2.20)

This equation is valid for v cos θ ≪ c. As seen, the instantaneous Doppler-
shift is actually an artefact in PW-Doppler systems. In conventional PW-
Doppler systems, this signal, referred to as the complex Doppler signal, is
obtained by removing the carrier frequency through complex demodulation.
The sign of the Doppler signal can be found by investigating the phase
relationship between the in phase and quadrature components. [8]

2.2 Tissue Doppler Imaging

2.2.1 Background

Tissue Doppler Imaging (TDI) is a modality for combined quantification
and visualization of tissue movements, first reported by McDicken et al.
in 1992 [9]. In this modality, the velocity estimates are colour coded su-
perimposed on a B-mode image for clinicians to assess myocardial regional
function. As tissue movements are mainly situated in the heart, the clinical
community often refer to it as Colour Doppler Myocardial Imaging. Further-
more, local deformation of the heart is an interesting measure for clinicians,
and a velocity-based approach was described by Heimdal et al. in 1998 [4].



14 2. Background

One-dimensional strain rate measures the speed of deformation along the
ultrasound beam, based on two axial velocity estimates a known distance
apart. Unfortunately, the method is demonstrated very sensitive to noise in
the velocity estimates [11].

Estimation of the complete Doppler spectrum for each range gate is not
a practical solution for TDI. Consequently, effort was put into research for a
suitable estimator with respect to the few samples available for processing.
In the mid-eighties, Kasai and Namekawa introduced an autocorrelation
approach feasible for real-time systems, initially for estimation of blood flow
[6]. Today, the autocorrelation estimator is the standard algorithm in most
modern commercial scanners for velocity estimation of blood and tissue.

The basic signal processing blocks in TDI includes data acquisition, clut-
ter signal separation, tissue velocity estimation, and tissue velocity visualisa-
tion. In short, after data acquisition, NP samples are available for processing
for each sample bin in the image. Prior to velocity estimation, the signal
is processed to remove the clutter signal due to reverberations or side-lobe
effects. After velocity estimation, the velocities are conventionally encoded
in different colours and visualised superimposed on a gray-scaled B-mode
image. A more detailed description of data acquisition, clutter signal sepa-
ration and velocity estimation in TDI will now be given.

2.2.2 Data acquisition

The data acquisition in TDI is based on pulsed wave excitation. As the
ultrasonic beam is scanned over the region to be imaged, NP pulses are
transmitted and received in each direction. This acquisition scheme is re-
ferred to as packet acquisition and NP is the packet-size. There are some
challenges in TDI acquisition. A sufficiently high spatial resolution, needed
to investigate local changes in the two-dimensional velocity, is obtained us-
ing high-bandwidth pulses. However, the signal-to-noise ratio decrease with
bandwidth and longer pulses must often be used to achieve adequate sensi-
tivity. This compromises the spatial resolution, and also requires a separate
acquisition of B-mode images.

Frame rate represents another challenge in TDI acquisition. A high
packet-size is desired to efficiently separate the signal of moving tissue from
clutter. On the other hand, a high frame rate is required to follow the
dynamics of the tissue motion. In TDI, the packet-size is therefore limited
by the frame rate, often to the minimum at 3. A higher frame rate can be
achieved by reducing the sampling of lateral beams, however, this will reduce
the lateral resolution and the image quality, and again a compromise is made.
Modern scanners often offer multi-line acquisition (MLA). In this acquisition
scheme, several receive beams are generated on each beam transmission, and
the frame rate is increased at the expense of more beam-forming hardware
[8].
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Figure 2.5: Illustration of signal acquisition in TDI. Signal from a strong
reflector at depth z0, representing clutter, and a moving scatterer at depth
z1, representing moving tissue, is acquired by subsequent pulse emissions.
The acquired signal along the beam is termed the fast-time signal, while the
signal from subsequent emissions at a specific depth is termed the slow-time
signal. The corresponding frequency content in Fourier domain is shown to
the right. The figure is adapted from [8]

The received signal from each beam is sampled along depth range at a
high rate (∼ 50 MHz) and the obtained signal is referred to as the fast-
time signal. Correspondingly, the signal obtained at a fixed depth from
subsequently beam acquisitions is referred to as the slow-time signal. These
concepts are shown in Figure 2.5, which illustrate the received signal from
a stationary strong scatterer at depth z0 and a moving scatterer at depth
z1 in presence of thermal noise. Combined, the fast-time and slow-time
signal from a given range gate is available for velocity estimation in TDI.
From corresponding frequency content, shown to the right, the signal from
moving tissue can be seen spread out in both frequency dimensions, where
the angle φ corresponds to the velocity of the moving scatterer.

The rate of subsequent pulse transmissions, the pulse repetition fre-
quency (PRF), determines the sampling of the slow-time signal. The vari-
ation of the slow-time signal, given by the velocity of the scatterer, must
therefore be lower than PRF/2, the Nyquist limit, in order to be correctly
represented. If making use of only the slow-time signal in velocity estima-
tion, the PRF is proportional to the maximum measurable velocity before
aliasing occurs, while PRF is limited by the maximum depth to be imaged
in order to avoid ambiguities as to where the signal is obtained from. In TDI
this is avoided by waiting a suitable time before a new pulse is fired. By
decreasing the PRF with a factor of k, there is time to obtain data in k − 1
other directions, before transmitting the next pulse in the initial direction.
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This technique is termed beam interleaving [8]. The number of beams k is
called the interleave group size (IGS) and together they form an interleave
group (IG). The interleave group size (IGS) can be expressed by

IGS =

⌊
PRFmax

PRF

⌋
· MLA, (2.21)

where MLA is the number of beams received in parallel, and ⌊·⌋ means
rounding off to nearest integer towards −∞. Beam interleaving aims to
maximize the overall frame rate given a user chosen PRF, according to the
range of velocities in interest. [8]

2.2.3 Signal model

After acquisition the data sampled along slow-time and fast-time are orga-
nized in a two-dimensional matrix, as illustrated in Figure 2.5. The signal
model in this work, based on NP slow-time samples received at each range
gate, and NR fast-time samples in reach range bin, is then given by the
complex matrix x as

x =




x1,1 x1,2 . . . x1,NP

x2,1 x2,2 . . . x2,NP

...
...

. . .
...

xNR,1 xNR,2 . . . xNR,NP


 (2.22)

In this general signal model, the received signal from an insonified sample
volume is assumed to consist of three signal components. A moving tissue
signal component t originating from sound scattered by tissue moving in
the region of interest, a clutter signal component c originating from sound
scattered by moving tissue in a region out of interest, due to acoustic noise
sources as reverberations and beam side-lobes, and an electrical/thermal
noise component n. The general signal model is then given by

x = t + c + n. (2.23)

Since the signal from moving tissue and clutter originate from scattering
sources at different spatial locations, the two components are considered
to be statistically independent. The thermal noise component is consider
to have a large bandwidth compared to the sampling frequency PRF after
receiver filtering, and therefore modeled as white noise.

When assuming the received signal from moving tissue and clutter to
be a zero-mean complex Gaussian process, the probability density function
(PDF) of the received matrix will be given by

px =
1

πN |Rx|
e−x∗T R

−1
x x. (2.24)
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The Gaussian signal is then uniquely described statistically by its second
order moments, which is contained in the signal correlation matrix

Rx = E{xx
∗T }, (2.25)

where E denotes the expectation operator. Dealing with statistical indepen-
dent signal component, this can be written as

Rx = Rt + Rc + Rn = Rt + Rc + σ2
nI, (2.26)

where Rt and Rc is the correlation matrix of moving tissue and clutter,
respectively, σ2

n is the thermal noise variance, and I is the identity matrix.
Stationarity is assumed in this framework.

A justification for assuming signal from moving tissue and clutter to be
a zero-mean complex Gaussian process, will now be given.

Tissue signal model

Both clutter and moving tissue are assumed to originate from tissue in the
signal model presented. Since tissue consist of scatterers of varying size
compared to the wavelength of the ultrasound pulse, different scatter char-
acteristics are present in the backscattered signal. The scattering proper-
ties can also vary with the angle of insonification. Tissue characterization
based on analysis of backscattered pressure waves is still considered exper-
imental. It is however well known that the received signal from randomly
distributed scatterers is statistically Gaussian. This is assumed to be the
case when modeling tissue in this work. When considering larger regions
of non-uniform signal from tissue, a non-Gaussian distribution is typically
observed due to big differences in reflections. It can however be justified,
that when considering smaller regions of tissue with close to uniform distri-
bution, the distribution of the received signal approaches a Gaussian shape.
This phenomenon is illustrated in Figure 2.6, where the myocardial wall of
a pig is imaged using an i13L linear array probe (GE Healthcare, WI, USA)
operating at 14 MHz. The distribution of the tissue signal is observed to
approach a Gaussian shape when smaller regions in the image is considered.

The Doppler signal received from tissue depends on the direction and ve-
locity relative to the ultrasound probe of all scatterers in the group present
within a resolution cell. Each scatterer contribute to the received Doppler
signal with a Doppler shift, and a limited bandwidth due to the finite ob-
servation time related to the movement through the sample volume. Muscle
contractions and muscle vibrations in the operator holding the ultrasound
probe and patient are typical tissue movements that result in a Doppler shift.
Because muscle contractions often are cyclic, and therefore are accelerated,
they increase the bandwidth of the tissue Doppler spectrum. The transition
between stationary fat and muscles that can result in reverberations, will
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Figure 2.6: Investigation of amplitude distribution in signal from the my-
ocardial wall of a pig. The distribution evidently approach Gaussian when
the observed area becomes more uniform, as it will for smaller regions. The
figure is found in [8].

therefore give a low Doppler-shift with some bandwidth according to the
accelerated motion. [8]

2.2.4 Clutter signal separation

Due to beam side-lobes and reverberations, signal from surrounding struc-
tures may be present in the region of interest for velocity estimation. If the
signal from these structures is not sufficiently attenuated it will introduce a
significant bias to the velocity estimates. In conventional TDI, the clutter
signal is removed by filtering in the slow-time domain. Besides sufficient
attenuation in stop-band, the clutter filter is desired to have a short transi-
tion region in order to maintain the Doppler signal from moving tissue. A
number of different approaches has been proposed for clutter filtering when
a small number of temporal samples are available. The proposed approaches
comprise finite impulse response (FIR), infinite impulse response (IIR) high-
pass filters, and also polynomial regression filters [13]. In this work, the FIR
filter approach is considered.

FIR filters can be described by an impulse response function h(n) defined
for n = 0, . . . ,M − 1, where M − 1 is denoted the filter order. The output
signal y(n) is then related to the input signal x(n) through convolution,
given by

y(n) =

M−1∑

k=0

h(k)x(n − k), (2.27)
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where the first M −1 output samples are invalid and discarded, thus, reduc-
ing the number of samples for velocity estimation. However, the advantages
of FIR filters are low computational demands, easy implementation and the
fact that they are time invariant.

2.2.5 Tissue velocity estimation

Velocity estimation in TDI utilize the change in RF or baseband signal re-
ceived from moving scatterers. This change is observed over a few pulse emis-
sions. Due to the limited number of temporal samples available, estimation
of the full spectrum as in PW-Doppler, would result in poor spectrum esti-
mates. Implementation wise, estimation of spectral parameters can be done
in the frequency or time-domain. However, estimation in frequency domain
is not a practical solution, due to the computational demands. Time-domain
estimators obtain spectral information directly from samples, or by means
of correlation analysis, and can have low computational demands.

The estimators are characterized by the signal information employed, as
the slow-time signal only, or both the fast-time and slow-time signal can be
exploited. Further the estimators are classified as narrowband or wideband
estimators, in principle being valid for single frequency signal or general
wide-band pulse emissions, respectively.

Phase-shift estimators utilize the fact that displacement of a scatterer
between pulse emissions can be related to a change in shift in phase of the
received signal compared to the demodulation frequency. The slow time
signal only, or both the slow-time and fast-time signal can be employed
by phase-shift estimators. Phase-shift techniques are computationally low
demanding, and can also be done efficiently on baseband signals. However,
phase-shift estimators are limited by aliasing, as the maximum phase-shift
corresponding to a scatter displacement is ±π.

Time-shift estimators are based on estimation of the time-delay of the
received echoes due to a scatterer’s displacement along the beam direction.
Time-shift estimation techniques utilize both slow-time and fast-time signal
in tracking the scatterer movement in the received RF-signal, and can in
general offer estimates with lower bias and variance than estimation tech-
niques that only employ the slow-time signal, also above the aliasing limit.
However, time-shift estimators in general demand significant more compu-
tational power compared to phase-shift estimators, and the complexity is
further increased when working on RF-signals.

The following section gives a brief description on the velocity estimators
involved in this thesis work.
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The autocorrelation estimator

The autocorrelation estimator was introduced by Kasai and Namekawa [6]
in the mid-eighties, when real-time two-dimensional ultrasound velocity es-
timation first was shown feasible. The estimator was earlier described in the
context of weather radar, where it was known as the correlated pulse-pair
estimator. The autocorrelation approach utilizes the slow-time correlation
function Rx(n) at lag one in order to estimate the mean Doppler frequency,
and the relation between the correlation function at lag one and the in-
verse Fourier transform of the Doppler spectrum G(ω) is, by means of the
Wiener-Kinchin theorem, given by

Rx(1) =
1

2π

∫ π

−π

G(ω)eiωdω =
eiω̄d

2π

∫ π

−π

G(ω)ei(ω−ω̄d)dω. (2.28)

The mean Doppler frequency ω̄d can thus be estimated from the phase angle
of Rx(1) if the imaginary part of the last integral in Eq. (2.28) is zero. This
criterion is fulfilled when dealing with spectra that are symmetric around
its mean frequency, whereas a good approximation can be derived from
narrowband spectra. [8]

The correlation function of lag one R̂x(1), estimated from the received
signal sequence, is related to the mean axial velocity of tissue v̂z as

v̂z =
c · PRF

4πfdem

6 R̂x(1), (2.29)

where fdem is the demodulation frequency. The autocorrelation estimator is
an unbiased estimator, also in presence of white noise, when the demodula-
tion frequency corresponds to the true radial centre frequency of the received
signal.

Any frequency dependent attenuation and random fluctuations in the
radial centre frequency respectively introduce bias and variance in the auto-
correlation estimator. To compensate for any variation in centre frequency,
Loupas et al. introduced a two-dimensional autocorrelation approach in the
mid-nineties [12] that estimates the received radial centre frequency f̂0 be-
fore velocity estimation. Explicit estimation of the radial centre frequency
f̂0 can reduce the variance, by compensating for the random fluctuations,
which cause similar fluctuations in the Doppler frequency, and to overcome
the bias effect frequency dependent attenuation has on the autocorrelation
estimator. The estimator makes use of the two-dimensional correlation func-
tion Rx(m,n), where m and n denote samples in fast-time and slow-time,
respectively. The fast-time correlation of lag one R̂x(1, 0), estimated from
depth samples within a range bin, is related to the mean received radial
frequency f̂0 as
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f̂0 = fdem +
6 R̂x(1, 0)

2π
frs, (2.30)

where frs is the sampling frequency along depth. The mean axial velocity
of tissue is further obtained by

v̂z =
c · PRF

4πf̂0

6 R̂x(0, 1). (2.31)

The estimator has shown to reduce the variance of the velocity estimates in
simulated environments [12]. This result was supported in recent work in [3],
where the estimator, here referred to as the modified autocorrelation method
(MAM), outperformed the conventional autocorrelation method when esti-
mating strain rate in a simulated environment. However, the same work
found the conventional method to have a lower variance than the modified
method when applied to strain rate estimation on experimental data. The
modified autocorrelation estimator is, thus, still considered experimental.

The cross-correlation estimator

The cross-correlation estimator represents the time-shift estimators and is
applied in the RF-domain. The concept of cross-correlation estimation is
intuitively based as it tries to estimate the delay in the received signal. The
delay τ , introduced in subsequent received pulses due to scatterer movement,
was in Section 2.1.5 shown to be given by

τ =
2∆z

c
=

2v cos θTP

c
. (2.32)

The time delay can be estimated from the maximum correlation between
two consecutive pulses r1 and r2 in a range segment, given by

τ̂max = arg max R12, (2.33)

where the cross-correlation estimate for an explicit range segment in the
RF-signal is given by [5]

R̂12(l
′) =

1

NS

NS−1∑

k=0

r1(k)r2(k + l′), (2.34)

where NS is the number of range samples in a given range segment. Knowing
the pulse emission interval TP the axial velocity estimate is obtained from

v̂z =
c

2

τmax

TP
. (2.35)

In contrast to the autocorrelation approach, where the estimated velocity
is related to the mean velocity is the insonified region, the maximum lag



22 2. Background

estimated by the cross-correlation approach is related to the velocity of the
dominant scatterer in the region.

The cross-correlation technique, validated both in-vivo and in-vitro, can
achieve lower variance estimate of the axial velocity compared to the con-
ventional autocorrelation estimator, and is in theory not limited by alias-
ing. However, the increased performance compared to the autocorrelation
approach is reduced when longer pulses must be used to obtain sufficient
sensitivity. [8]



Chapter 3

Methods and implementation

This chapter describes the procedure of this work, comprising development,
verification and adaption of a simulation model, acquisition of experimental
data and implementation of velocity estimators. First, a brief description of
the tools used for this purpose is given below.

3.1 Tools

3.1.1 MATLAB

In this work, all implementations and simulations are done in MATLAB
version 7.2 R2006a installed on an IBM Thinkpad X41 having 1.5 GHz Intel
Pentium M processor and 1.5 GB DDR2 RAM.

3.1.2 GCMat

GCMat is a tool for working with ultrasound data in MATLAB made by
GE Vingmed in collaboration with Department of Circulation and Medical
Imaging (ISB) at NTNU in Trondheim, Norway. The tool is able to im-
port into MATLAB data stored in dicom format, which is the format GE
Vingmed’s scanners make use of, and through GCMat’s graphical interface,
the data can be presented in a sequence as they would appear on a scanner.
To realise this GCMat utilizes only a part of its data processing functionality
that also includes spectral analysis, conversion from IQ- to RF-data, among
several others. In this work GCMat version 0.93b is used.

3.1.3 Ultrasound equipment and setup

Experimental data will be acquired with a modern high-end ultrasound scan-
ner, the GE Vivid 7 ultrasound system, using a linear phased array trans-
ducer, the M3S. Essential set-up of acquisition parameters used in this work
are listed in Table 3.1.

23
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Parameter Value

Center frequency, fc 2.5 MHz
Demodulation frequency, fdemod 2.41 MHz
Pulse repetition frequency (PRF) 1 kHz
Pulse length 3 periods
Packet size 3
MLA 1
Aperture, D 2.2 cm
Radial IQ-samples 188

Table 3.1: Experimental parameter set-up.

3.2 The simulation model

This section describes the development of the simulation model to simulate
acquired signal from moving tissue using ultrasound. For simplicity, only
constant tissue velocity will be possible simulated by the model. The model
will include acoustic and thermal noise, which is present in real ultrasound
acquisition, as well as aliasing, which occur when the scatterers move faster,
relative to the transducer, than the Nyquist velocity. In the following the
implementation of the extended simulation model is described in detail and
covers the acquisition system, simulation of signal from moving and sta-
tionary or slowly moving tissue, and thermal noise, and also simulation of
aliasing in the received signal.

3.2.1 Acquisition system

In a pulsed-wave system, the transducer sends out a pulse before listening
for the echo signal, which is statistical Gaussian from human tissue. The
acquisition system does pre-processing on the signals before the data are
visualised or used in estimation. For the simulation model, a one-beamed
transducer and a receive filter constitute the simulated acquisition system,
but the simulated transducer will only listen for echo, and the signal is not
statistic Gaussian at the time of reception, but will be after reception. The
transducer pulse is Gaussian shaped with some frequency f0 and bandwidth
B. Furthermore, the beam width will be determined in Section 3.4.2, based
on experimental set-up parameters found in Table 3.1. While receive filters
in true acquisition systems intend to maximize the received signal-to-noise
ratio [13], its purpose in the simulation model is to limit the received signal
in order to parametrise signal-to-noise and signal-to-clutter ratios, where
the term signal here means signal only from moving tissue. The filter is
realised by means of a Tukey-window with a bandwidth equal to −20 dB of
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Figure 3.1: Simulated transducer pulse, receive filter and the effective pulse
in power frequency domain.

pulse-peak value, B−20dB . Figure 3.1 shows the simulated transducer pulse,
the receive filter and the effective pulse after filtering. Here f0 is 2.5 MHz
and B−6dB is 1.1 MHz, where the dotted line represents −6 dB of pulse-peak
value. These two parameters are not fixed, but will be used in the following
to describe the simulation model.

3.2.2 Signal from moving tissue

As was seen in Section , the signal spectrum from scatterers moving with con-
stant velocity is concentrated along a straight line, with a slope proportional
to the axial velocity. This line has some bandwidth inversely proportional to
the time the scatterers are inside the sample volume, referred to as transit
time. Since transit time depends on lateral velocity and beam width, the
model includes intersection angle, which is set to 20◦ in order to approach
a realistic environment.

From an implementation point of view, the starting point is a straight
line in the 2D power spectrum representing scattered signal from moving
tissue. Such a line is shown in Figure 3.2(a) for scatterers with axial velocity
5 cm/s and intersecting the beam in a 20◦ angle. Figure 3.2(c) shows the
signal acquired with a by the simulated transducer when listening at the
bandwidth defined by the pulse in Figure 3.1.
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(a) Simulation of tissue moving with axial
velocity 5 cm/s.
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(b) Region covered by the ultrasound pulse
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(c) Result from acquisition of data in Figure 3.2(a) using the pulse shown
in Figure 3.1

Figure 3.2: The ultrasound pulse truncates signal from moving tissue in
2D power spectrum. The y- and x-axis show radial and Doppler frequency,
respectively.
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Figure 3.3: Simulation of clutter by Gaussian-shaped power signal along
Doppler frequency. Here shown with different bandwidths mapped onto the
corresponding velocity axis, where a given rms-bandwidth corresponds to
axial velocity.

3.2.3 Signal from clutter

The clutter signal, either signal from reverberations or strong reflectors in
side-lobes, contains velocity information from a region of no interest and
thus distorts the velocity estimation. Signal from reverberations is near
stationary and caused by non or slowly-moving tissue, i.e. from the chest
wall, while a strong reflector in a side-lobe can have a high variation in
velocity over in the case a heart valve falls into a side-lobe. The simulation
of clutter will for simplicity be of the type from reverberations. As the
unwanted movements from the hand of the transducer operator is present,
it is plausible to assume this signal to contain normal distributed velocity
information with zero mean, which is realised by means of a Gauss shaped
signal along the Doppler frequency around 0 Hz. The clutter bandwidth Bcl

is chosen as the rms-bandwidth of the Gauss curve and related to clutter
velocity vcl through Eq. (3.1):

Bcl =
2fcvcl cos(φ)

c
(3.1)

Here f0 is the centre frequency of the transducer pulse, φ the intersection
angle between the clutter and the ultrasound beam and c is the speed of
sound in tissue.

Figure 3.3 shows the clutter signal along the Doppler frequency domain
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Figure 3.4: Clutter signal added to the signal from moving tissue in 2D
power spectrum. The signal-to-clutter ratio is 10 dB.

for three different values of vcl. In this work, the clutter movements are
limited by setting vcl equal to 0.1 cm/s.

The clutter signal together with signal from moving tissue in the 2D
power spectrum can be found in Figure 3.4. The two signals were truncated
separately by the ultrasound pulse in Figure 3.1 before addition. Here the
moving tissue has an axial velocity of 5 cm/s and the signal-to-clutter ratio
is 10 dB. This ratio was computed on the signals after the receive filter
in Figure 3.1 was applied, giving the true ratio in the received signal. A
negligible amount of clutter is achieved by setting SCR to 120 dB.

3.2.4 Signal loss and thermal noise

The presence of thermal noise in true acquisition systems is due to losses,
both in the transducer and in the signal transmission to receiver amplifier,
and noise in the receive amplifier. Thermal noise is white and therefore
easily modeled with a constant over the full 2D power spectrum. The signal
from thermal noise is then scaled by calculating signal-to-noise ratio (SNR)
after the receive filter is applied to the noise signal as well as the signal from
moving tissue. Figure 3.5 shows the addition of thermal noise to the signals
from moving tissue and clutter after the receive filter was applied. Here, the
signal-to-noise ratio is 10 dB.
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Figure 3.5: Thermal noise added to the signal from moving tissue and clutter
in 2D power spectrum. The signal-to-clutter and signal-to-clutter ratios are
both 10 dB.

3.2.5 Statistic Gaussian signal

The back-scattered amplitudes in an ultrasound signal from human tissue
follows a Gaussian distribution [5]. The simulated signal is made statistic
by multiplication with a random signal in the 2D Fourier domain. If the
amplitude distribution of the random signal follows a Gaussian distribu-
tion, the amplitude distribution of the resulting signal becomes Gaussian as
well. Figure 3.6 shows the resulting Gaussian simulated signal in 2D power
spectrum, when a complex Gaussian random signal with zero mean and
unit standard deviation was used for multiplication. The resulting signal is
statistic Gaussian and complex, therefore, and the IQ-data is obtained by
2D inverse Fourier transform.

3.2.6 Aliasing

Aliasing occurs when the sampling frequency is less than half of the high-
est frequency component in the signal being sampled [10, Chapter 4.2]. In
ultrasound acquisition aliasing occurs along the Doppler frequency in the re-
ceived signal if scatterers move faster than the Nyquist velocity, relatively to
the transducer. Aliasing can be introduced in the simulated signal through
decimation along slow time in RF-domain, and Figure 3.7 shows the conse-
quence of aliasing in the 2D power spectrum. Figure 3.7(a) shows a signal
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Figure 3.6: Received simulation signal made statistic Gaussian.

from tissue moving with axial velocity 8 cm/s with a PRF of 1600 Hz, while
Figure 3.7 (b) shows the same signal decimated a factor of 4, yielding a new
PRF of 400 Hz.
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Figure 3.7: Signal from moving tissue decimated in RF-domain to introduce
aliasing to the simulation model. The axial velocity of moving tissue is 8
cm/s, and the PRF is: a) 1600 Hz b) 400 Hz.



32 3. Methods and implementation

3.3 Simulation model verification

The simulated received signal is intended to have certain properties deter-
mined by the simulation parameters. Spectral analysis of the received signal
is carried out and compared to the power spectrum of the effective pulse
found in Figure 3.1. For this purpose, simulated signal from moving tissue
and clutter in addition to thermal noise is obtained by the simulated acquisi-
tion system with a pulse centre frequency of 2.5 MHz and bandwidth B−6dB

of 1.1 MHz. The axial velocity of the moving tissue is 5 cm/s, while SCR
and SNR both are set to 10 dB. A hamming window is weighted along the
radial samples before estimation of the spectrum in order to reduce side-lobe
effects in the estimated spectrum.

Additionally, the RF-signal will be inspected to verify the addition of
thermal noise, clutter and aliasing.

3.4 Simulation model set-up

For the simulation model to be realistic, the received simulated signal is
desired to have similar properties to a signal acquired with a real transducer
in a real environment. The following subsections describes the determination
of different parameters in terms of achieving a realistic simulation model.

3.4.1 Pulse centre frequency and bandwidth

In the following, experimental data recorded with GE Vingmed Ultrasound’s
Vivid 7 is used as a reference for the simulation data, in order determine
the centre frequency and bandwidth to be used for simulations. Instead of
estimating the centre frequency and bandwidth of the experimental data, an-
other approach is taken where the simulation data spectrum will be adapted
to the spectrum of the experimental data, in a mean-square-error sense, by
varying the centre frequency and the bandwidth. The experimental data of
a healthy human heart is acquired by the M3S transducer, with pulse centre
frequency 2.5 MHz and a pulse length of 3 periods. Figure 3.8 shows one
frame of recorded data visualised through GCMat. The full data set will be
used for the estimation of the spectrum, consisting of 181 radial samples,
32 lateral samples and 24 frames. However, the image does contain regions
of blood, but the contribution made to the estimated power spectrum is
considered insignificant as signal from tissue is much stronger than blood.
A hamming window is weighted along the radial samples before estimation
in order to reduce the side-lobe effects on the spectrum.

The simulated signal used for adaption is the signal shown in Figure 3.6,
having SCR and SNR equal to 10 dB and a signal from tissue moving at 5
cm/s towards the transducer.
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Figure 3.8: B-mode image of the left ventricle in a healthy human heart.
The full data set is used for spectral analysis.

3.4.2 Pulse beam width

The ultrasound beam width DF at a specific depth d can be found given the
aperture D and centre frequency f0 from Table 3.1, where the corresponding
F# is given by

F# =
d

D
. (3.2)

Considering a plausible depth for measuring tissue velocities to be 8 cm, the
beam width DF is determined to

DF = F#λ =
0.08 · 1540

0.022 · 2.5 · 106
cm = 0.22 cm. (3.3)

3.4.3 Temporal signal length

Choosing signal length is related to repeatability of the experiments as the
deviation between experiments decreases with increased number of slow-
time samples. To achieve practical simulation time for the experiments,
8192 is considered a reasonable compromise between simulation time and
deviation from experiment to experiment. When using PRF equal to 1 kHz,
the slow-time signal duration then becomes roughly 8 seconds.

The temporal signal length should be sufficiently longer than the signal
correlation time. Due to its low-pass characteristics, the signal from clutter
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will have the longest correlation time Tcl within each range bin. The clutter
correlation time Tcl is estimated by the rms-bandwidth Bcl inverse, where
inserting the parameters from Table 3.2 into Eq. (3.1), when vcl is 1 mm/s,
yields Bcl equal to 2.83 Hz. Furthermore, the clutter correlation time is
found by Tcl = 1

2.83 Hz = 0.35 sec – considerably shorter than the temporal
signal length in simulations using 8192 samples and PRF set to 1 kHz.

Repeatedly velocity estimation on simulation data produced with the
same parameters allows to measure the uncertainty in experiments based
on 8192 temporal samples. In order to put the result in context with other
signal lengths, N estimations are brought out on slow-time samples ranging
from 1024 to 10240 in steps of 1024. The parameter set-up for the simulation
model used for this purpose is listed in Table 3.2, while 5 cm/s tissue motion
is simulated when both SCR and SNR are set to 10 dB. The simulation data
applied to the autocorrelation estimator, described in Section 3.7.2, yields
a variance estimate σ̂2

i,l for each simulation i for each signal length l. The
mean estimated standard deviation for each signal length l is then given by

¯̂σl =

N∑

i=1

√
σ̂2

i,l

N
, (3.4)

where N is the number of simulations for each signal length, set to 300. The
corresponding variance estimate is further obtained from

std(σ̂l) =

√√√√ 1

N − 1

N∑

i=1

(
√

σ̂2
i,l −

¯̂σl)2. (3.5)

Finally, the ratio between the standard deviation and the mean estimate of
the standard deviation is found by

Γ =
std(σ̂l)

¯̂σl

. (3.6)

3.4.4 Parameter set-up

Table 3.2 lists the typical set-up of essential parameters for the simulation
environment outlined in this text. In experiments where the value is changed
for some reason, that will be clearly stated in the text, if not evident from
the experiment itself.

3.5 Using the simulation model

The simulation model developed in this work carry out the opportunity to
assess the process of velocity estimation in a controlled environment and in-
tends to supply the velocity estimators with realistic data. The model allows
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Parameter Value

Radial samples 512
Temporal samples 8192
Center frequency, f0 2.32 MHz
Bandwidth, BW−6dB 0.7 MHz
Radial sampling frequency, frsRF 40 MHz
Pulse repetition frequency, PRF 1 kHz
Speed of sound, c 1540 m/s
Intersection angle, φ 20◦

Beam width 2.2 mm

Table 3.2: Simulation model parameter set-up

for separate investigation of several aspects, related to signal or system, in
order to assess their effect on the velocity estimates. These investigations
aim to point out one or more candidates that prevent the modified autocor-
relation method from superior performance on experimental data, compared
to the conventional method. Evaluation of the velocity estimators with re-
spect to statistic properties like bias and standard deviation is carried out
in order to do this selection. Motivation for investigation of each aspect and
relation to true acquisition is described below.

3.5.1 Signal-to-noise ratio

As thermal noise is modeled as white noise it increases the randomness in the
received signal. In a true acquisition system low SNR can be compensated
for by increasing the power of the ultrasound pulse transmitted by the trans-
ducer. However, ultrasound exposure to human tissue is, for safety reasons,
limited by some intensity measures [5]. The investigation of signal-to-noise
ratio will be in the range from 5 to 25 dB.

3.5.2 Signal-to-clutter ratio

Acoustic noise signal from clutter directly affects the frequency content along
the Doppler frequency, where the phase-shift estimators operate in order to
estimate the mean frequency. Based on the assumption that clutter has
low velocity, it can be reduced by means of a high-pass filter applied along
the Doppler frequency. Section 3.7.1 describes the clutter filter used in this
work. A separate investigation of the clutter filter effects is carried out. The
investigation of signal-to-clutter ratio will be in the range from 0 to 25 dB.
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3.5.3 Aliasing

When the velocity signal exceeds the Nyquist limit, the velocity signal is
wrapped around from positive to negative velocity, or vice versa. To cope
with this, a simple unwrap algorithm is applied to the phase angle estimates.
Since working with simulation data means working with constant velocity,
the applied algorithm unwraps the phase angles in the estimated slow-time
correlation function of lag one R(0, 1), if the sign is the opposite of the sign
of the velocity simulated. The cross-correlation estimator is in principle
not affected by aliasing, but for reasons to be clarified in Section 3.7.3,
the maximum detectable velocity is parametrised as vmax and equal to the
Nyquist velocity by default. In this experiment, vmax is set to two times the
Nyquist velocity. As this should allow for detection of velocities up to two
times the Nyquist velocity for all three estimators, this is also the range for
investigation of aliasing.

3.5.4 Angle dependency

The transit time, which is dependent on angle of intersection between moving
scatterers and the ultrasound beam, is inversely proportional to the band-
width of the signal from moving tissue. To deal with angle dependency, the
ultrasound transducer should be held in the same plane as the scatterers of
interest move along. The investigation of angle dependency will be in the
range from 1 to 45 degrees.

3.5.5 Pulse bandwidth

As seen in the section describing the simulation model, the choice of pulse
bandwidth limits the amount of spectral information available to the ve-
locity estimators. In a true acquisition system the choice of bandwidth is
done by setting the pulse length, as they are inversely proportional to each
other. Using short pulse lengths give high spatial resolution, but compro-
mises the received signal-to-noise ratio. The investigation of the −6 dB peak
bandwidth B−6dB will be in the range of 0.25 MHz to 1.65 MHz.
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3.6 Experimental data acquisition

The velocity estimators are applied to experimental data acquired by GE
Vingmed Ultrasound’s Vivid 7 for in-vivo investigation. Septum of a healthy
human heart is captured in narrow acquisition, using the set-up listed in
Table 3.1 with 16 lateral beams. This resulted in 270 frames per second. In
order to focus on the difference in variance when comparing AM and MAM,
the bias effect in AM is reduced by replacing the demodulation frequency
fdem in Eq. (2.29) with the mean estimated radial frequency f̂0 for the given
range bin, defined by Eq. (2.30).

Analysis comprise investigation of difference in velocity estimation ∆v

between the two phase-shift estimators considered in this work, AM and
MAM, given by

∆v = vAM − vMAM . (3.7)

Here, ∆v is zero in mean, due to the aforementioned compensation of de-
modulation frequency fdem. Standard deviation of the difference velocity
signal σ̂∆v over an interval with N temporal samples, is then estimated as

σ̂∆v =

√√√√ 1

N − 1

N∑

i=1

∆v2
i . (3.8)

The estimation will be made in an interval appropriate for comparison with
results from simulations. That is, comparison of the estimated standard
deviation for the difference signal σ̂∆v with the expected difference from
simulations with similar parameter set-up, intends to look into the correla-
tion in error estimation done by AM and MAM.
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Figure 3.9: Magnitude and phase of the 1. order FIR filter for clutter
removal.

3.7 Tissue velocity estimation

Since the implementation of tissue velocity estimation is adopted from pre-
vious work not published, a description will be given in this text to form
a whole. The velocity estimators assume a 2D array of IQ-data x(m,n),
where row and column correspond to fast-time and slow-time, respectively.
This data set constitute the basis for each velocity estimate. Throughout
this work, the number of slow-time samples are set to 3, while the number of
fast-time samples are set to a value corresponding to 6 mm in radial distance.
These values determines the temporal and spatial averaging, respectively.

3.7.1 Clutter filtering

Prior to velocity estimation, the IQ-data are filtered to reduce the amount
of clutter in the signal. By assuming the clutter signal to only contain low
Doppler frequencies, the clutter removal filter is applied along the slow-time
dimension. Due to the few temporal samples available, a FIR filter of 1st
order is applied, and its magnitude and phase is shown in Figure 3.9. As
the filter also attenuates the signal from slowly-moving tissue within the
region of interest, it is a trade-off between velocity estimation and artifacts
from reverberations and strong reflecting objects in a side-lobe. The filter
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operation reduces the number of temporal samples in the signal with one,
thus 2 temporal samples are available to the velocity estimators.

3.7.2 Autocorrelation methods

In order to estimate tissue velocities, the conventional autocorrelation method
(AM) employs slow-time correlation only, while the modified autocorrela-
tion method (MAM) makes use of both fast-time and slow-time correlation.
Given the IQ-data in x(m,n) the two-dimensional correlation function is
defined as [12]

R(m′, n′) =
M−m′−1∑

m=0

N−n′−1∑

n=0

x∗(m,n)x(m + m′, n + n′), (3.9)

where m and n are radial and temporal index, respectively. The implemen-
tation of this function in MATLAB is shown below, where the two input
parameters correspond to m′ and n′ in Eq. (3.9).

1 function R=getautocorr(segmat,m,n)
2 %The function computes the 2D autocorrelation R(m,n) on the
3 %matrix given in 'segmat'. The input parameters m and n decid e
4 %the lags to be computed.
5

6 [M N]=size(segmat);
7 R=0;
8 for idxm=1:M −m
9 for idxn=1:N −n

10 R=R+(conj(segmat(idxm,idxn)). * segmat(idxm+m,idxn+n));
11 end
12 end

Both methods use this function to obtain the slow-time correlation function
at lag one R(0, 1). AM estimates the velocity directly using Eq. (2.29), while
MAM obtains R(1, 0) in order to estimate the received centre frequency f̂0

using Eq. (2.30), prior to estimation of velocity by Eq. (2.31).

For both of the autocorrelation methods, the number of fast-time sam-
ples determines the spatial averaging, which reduce the overall estimation
variance. Although not considered in this work, spatial averaging compro-
mises the spatial resolution of the velocity estimates, thus a compromise is
made when the number of fast-time samples is set to a value corresponding
to 6 mm in range.

3.7.3 Cross-correlation method

As the cross-correlation method estimates velocities on samples in the RF-
domain, the IQ-data are brought into RF-domain prior to estimation. In
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Figure 3.10: Estimation of cross-correlation from two subsequently received
RF-pulses using sub-segments.

order to avoid possible edge-effects, the conversion is applied along the full
RF-line, before the RF-signal z(m,n) is achieved. Here, the data in z(m,n)
is spatially equivalent to x(m,n), but the number of fast-time samples is a
factor I times higher than that of x(m,n), where I is the interpolation fac-
tor in the conversion from IQ-data to RF-data, hence, the cross-correlation
method is computationally more demanding than AM and MAM.

As previously mentioned, the number of slow-time samples is 2. The
cross-correlation estimate of the two available segments of the RF-line is
carried out using Eq. (2.34). In order to reduce the considerably high prob-
ability of global errors [5, 12], the maximum lag l′ calculated in Eq. (2.34)
is constrained to a number Nmaxlag lower than NS . This is realised by
correlation of sub-segments in the first RF-line, with equally sized, overlap-
ping sub-segments of the second RF-line. By using the same procedure on
sub-segments of the second RF-line, the two cross-correlation estimates are
averaged to achieve lower estimation variance. This concept is illustrated in
Figure 3.10. The resulting cross-correlation estimate R̂12(l

′) then have val-
ues in range of [−Nmaxlag,Nmaxlag ], where the highest detectable velocity
vmax is related to Nmaxlag by
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Nmaxlag =

⌈
vmax2frsRF

c · PRF

⌉
. (3.10)

Here frsRF , listed in Table 3.2, is the fast-time sampling frequency of the
RF-signal. In this work, vmax is set to the Nyquist velocity by default.

Furthermore, the cross-correlation estimate has its maximum value at lm.
Due to quantization of possible lags, the precision of the velocity estimate
is increased by parabolic curve fitting around the maximum value. The
interpolated value is then given by [5, 12]

lint =
1

2

R̂12(lm − 1) − R̂12(lm + 1)

R̂12(lm − 1) − 2R̂12(lm) + R̂12(lm + 1)
+ lm. (3.11)

Estimation of tissue velocities by CCM is then given by

vint =
c · lint

2frsRF
PRF. (3.12)

The implementation of the cross-correlation estimator using parabolic
fitting was verified in aforementioned work not published.





Chapter 4

Results

This chapter presents the results of this work according to the procedure
outlined in the previous chapter. This comprise verification and adaption
of the simulation model, effects from clutter filtering, and tissue velocity
estimation of simulated and experimental data.

4.1 Simulation model verification

4.1.1 Frequency analysis

Frequency analysis of the simulated received signal is carried out in order
to verify the simulation model developed in this work. Figure 4.1 shows the
estimated power spectrum of the received signal and the effective pulse of
the simulated transducer in solid and dashed lines, respectively. For this
comparison, simulated signal from tissue, moving at 5 cm/s towards the
transducer, is acquired by a pulse with centre frequency f0 of 2.5 MHz and
−6 dB peak-value bandwidth B−6dB of 1.1 MHz. The normalized spectra
are shown in decibel scale.

4.1.2 RF-domain analysis

Thermal noise

The thermal noise was modeled as a white noise signal added to signals from
moving scatterers and clutter in the Fourier power spectrum. Figure 4.2
shows simulated RF-signals. Here the signals contain velocity information
from moving scatterers in addition to thermal noise. The scatterers are
moving with an axial velocity of 5 cm/s and the intersection angle is 20◦.
The signal-to-noise radios are 120 and 0 dB in the upper and lower plot,
respectively.

43
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Figure 4.1: Estimated power spectrum of the simulated received signal ver-
sus power spectrum of the effective pulse simulated.

Clutter

The clutter was modeled as a low-pass component added to the signal from
moving scatterers in the Fourier power spectrum. Figure 4.3 shows the
simulated RF-signal, having information from moving scatterers and clutter.
The moving scatterers intersect the ultrasound beam with an angle of 20◦

and the axial velocity is 5 cm/s. The signal-to-clutter ratios are 10 and 0
dB, in the upper and lower plot, respectively.

Aliasing

Aliasing was introduced to the model by decimating the RF-signal along
the slow time dimension. Figure 4.4 shows simulated signals that have been
decimated with different factors. The moving scatterers are intersecting the
ultrasound with an angle of 20◦ having an axial velocity of 10 cm/s. Before
decimation the PRF was 1500 Hz. The decimation factors are 1 and 4 in the
upper and lower plot, respectively. This corresponds to Nyquist velocities
of 22 m/s and 5.5 m/s.
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Figure 4.2: Simulated RF-signal with a SNR of a) 120 dB b) 0 dB
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(a)

(b)

Figure 4.4: Simulated RF-signal from tissue moving at 10 cm/s decimated
at a factor a) 1 b) 4. PRF is set to 1500 Hz before decimation.
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Figure 4.5: Estimated spectrum of experimental data shown in Figure 3.8
together with the best matching spectrum for the simulation data.

4.2 Simulation model set-up

4.2.1 Pulse centre frequency and bandwidth

Figure 4.5 shows the estimated power spectrum for the experimental data, in
red, together with the best matching power spectrum for the simulation data,
dashed in blue. Both spectra are normalised and shown in decibel scale. The
centre frequency and −6 dB bandwidth for the simulation data was varied
from 2.2 to 2.6 MHz and 0.3 to 1.1 MHz, respectively, where centre frequency
equal to 2.32 MHz and bandwidth equal to 0.7 MHz gave the power spectrum
with lowest mean-square-error difference to the estimated power spectrum
from the experimental data. The presence of aliasing in the experimental
data above 2.85 MHz limits the mean-square-error calculation interval to
1.90 − 2.85 MHz.

4.2.2 Temporal signal length

Figure 4.6 shows the ratio of standard deviation of the estimated variance
and its mean as a function of temporal signal length. For each number of
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Figure 4.6: Ratio of standard deviation of the estimated standard deviation
and its mean as a function of temporal samples. The calculations are based
on 300 simulations for each signal length using AM for velocity estimation.

temporal samples (denoted with circles in the plot), data from 300 simula-
tions were applied to AM for velocity estimation. The ratio is 3.1% when
the estimation is based on 8192 temporal samples.

4.3 Clutter filtering

Prior to velocity estimation, a clutter filter is applied to the data. Figure 4.7
shows the two-dimensional power spectrum of the data before and after the
one-dimensional 1st order FIR-filter in Figure 3.9 is applied along the slow-
time samples. In the simulation data, signal from moving tissue simulates
an axial velocity of 8 cm/s, while SCR and SNR are both set to 10 dB.

Using the same simulation model parameters, the data are applied to
velocity estimation to investigate the effects from clutter filtering. For this
purpose, the DC-level attenuation varies from 0 to 16 dB, and Figure 4.8
shows the mean estimated velocity and standard deviation as a function of
attenuation.
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Figure 4.7: Showing the effect of clutter removal in the two-dimensional
power spectrum. The clutter filter, a 1st order FIR filter with DC-level
attenuation of 8 dB, is shown in Figure 3.9.
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Figure 4.8: Mean estimated velocity and standard deviation as a function of
DC-level attenuation for AM, MAM and CCM, respectively in blue, green
and red.
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4.4 Velocity estimation on simulation data

This section contains results obtained from velocity estimation on simula-
tion data. The clutter filter is applied prior to velocity estimations for the
following simulations.

4.4.1 Presence of thermal noise

By varying the amount of thermal noise in the simulation data, the effect
thermal noise has in velocity estimation is investigated. Figure 4.9 shows the
velocity bias and standard deviation for the three velocity estimators as a
function of signal-to-noise ratio. The axial velocity of the moving scatterers
is kept constant at 8 cm/s, and the intersection angle between the scatterers
and the ultrasound beam is 20◦.

4.4.2 Presence of clutter

By varying the amount of clutter in the simulation data, the effects from
present clutter is investigated in terms of tissue velocity estimation. Fig-
ure 4.10 shows the mean velocity estimates and corresponding standard de-
viation for the three velocity estimators as a function of signal-to-clutter
ratio. The axial velocity of the moving scatterers is kept constant at 8 cm/s,
and the intersection angle between the scatterers and the ultrasound beam is
20◦. For this experiment, the signal contain a negligible amount of thermal
noise.

4.4.3 Aliasing

By decimating the simulation data along slow time in RF-domain, the
Nyquist-velocity is reduced by the same factor. This introduces aliasing
to the signal when the simulation data before decimation contained velocity
information above the new Nyquist-velocity. To handle velocities above the
Nyquist limit, a simple aliasing algorithm is applied to the two phase-shift
estimators, making them able to cope with velocities up to two times the
Nyquist-velocity. Correspondingly for the cross-correlation estimator, the
parameter vmax in Eq. (3.10) is set to two times the Nyquist-velocity.

Figure 4.11 shows the velocity bias and standard deviation for the three
velocity estimators as a function of axial velocity. In the simulation model,
the PRF and decimation factor was set to 1500 Hz and 5, respectively,
yielding an effective PRF of 300 Hz and Nyquist limit at 4.9 cm/s after
decimation. Signal from clutter and thermal noise is negligible in this ex-
periment.
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Figure 4.9: Mean estimated velocity and standard deviation as a function
of signal-to-noise ratio using AM, MAM and CCM.
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Figure 4.10: Mean estimated velocity and standard deviation as a function
of signal-to-clutter ratio using AM, MAM and CCM.
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Figure 4.11: Mean estimated velocity bias and standard deviation as a func-
tion of axial velocity using AM, MAM and CCM.

Vax [cm/s] 2 3 4 5 6 7 8

σAM [cm/s] 0.057 0.079 0.106 0.140 0.164 0.180 0.227
σMAM [cm/s] 0.023 0.026 0.041 0.053 0.066 0.080 0.084
σCCM [cm/s] 0.029 0.029 0.044 0.055 0.070 0.084 0.085

Table 4.1: Values for standard deviation from Figure 4.11.
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4.4.4 Angle dependency

The intersection angle between the moving scatterers and the ultrasound
beam decides the transit time together with beam width and the scatterer’s
speed. A long transit time gives a narrow-band signal and vice versa. Fig-
ure 4.12 shows the velocity estimation bias and standard deviation for the
three velocity estimators as a function of intersection angle. Here, the signal
from clutter and thermal noise are negligible, and an axial velocity of 8 cm/s
is simulated.

4.4.5 Pulse bandwidth

Figure 4.13 shows the velocity estimation bias and standard deviation for the
three estimators as a function of −6dB peak pulse bandwidth B−6dB . The
signal from moving tissue simulates motion of 8 cm/s towards the transducer,
while signal from clutter and thermal noise are negligible.
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Figure 4.12: Mean estimated velocity and standard deviation as a function
of intersection angle using AM, MAM and CCM.
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Figure 4.13: Mean estimated velocity and standard deviation as a function
of pulse bandwidth using AM, MAM and CCM.
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Figure 4.14: One frame of the experimental data applied to velocity esti-
mation. The white circle located in the septum of human heart denotes the
mid-point of velocity estimation.

4.5 Velocity estimation on experimental data

Figure 4.14 shows a frame of the narrow acquisition of the septum, located
in the upper part of the image, where the white circle denotes the mid-point
of the range bin for velocity estimation. The estimated spectral content in
terms of radial frequency is shown in Figure 4.15. Next, Figure 4.16 shows
the comparison of the velocity curves for the three velocity estimators AM,
MAM and CCM, in blue, green and dashed red, respectively. Figure 4.17(a)
shows the compensated AM using demodulation frequency equal to 2.31
MHz, the estimated mean radial frequency f̂0 by MAM. The compensation
aims to make AM unbiased to ease variance comparison with MAM.

Finally, Figure 4.17(b) shows the velocity difference between AM and
MAM, that is, velocity estimated by MAM subtracted from that of AM.
The standard deviation of the difference signal σ̂∆v is estimated to 0.038
cm/s in the interval from 0.18 − 0.32 seconds.
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Figure 4.15: Estimated radial frequency content of the full data set shown
in Figure 4.14.
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Figure 4.16: Velocity estimation on the experimental data in Figure 4.14.
The three velocity estimators AM, MAM and CCM are shown in blue, green
and dashed red, respectively.
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Figure 4.17: Velocity curves from Figure 4.16 with compensated AM in
upper plot, and estimation difference between AM and MAM in lower plot.



Chapter 5

Discussion

5.1 Simulation model verification

To verify the simulation model developed in this work, the simulated received
signal is analysed in frequency and compared to the effective pulse, which
represents the intended spectrum. As can be seen in Figure 4.1, the effective
pulse spectrum is placed symmetrically within the estimated received signal
spectrum. The slightly broader bandwidth of the estimated spectrum is due
to smoothing effects caused by the Hamming-window applied to the received
signal prior to frequency analysis. In other words, there seems to be good
agreement between the intended radial frequency spectrum and that of the
received signal.

Further verification comprise qualitative analysis of the received RF-
signal in terms of thermal noise, acoustic noise and aliasing. Figure 4.2
demonstrates the disturbance introduced to the RF-signal by thermal noise,
where Figure 4.2(a) shows a simulated signal from moving tissue in presence
of neither acoustic nor thermal noise. The oblique lines that appear in the
RF-signal are a result of the simulated scatterers’ movement along the beam,
where the slope, compared to a horizontal line, depends on the velocity.
Under heavy noise conditions, as in Figure 4.2, the characteristic velocity
lines are less evident and nearly vanished. To sum up, the effect of thermal
noise added to the velocity signal is clearly confirmed in the RF-domain.

As the clutter signal implemented in this work mimics the artifacts from
reverberations, it carries information from simulated sources with low ve-
locities. Figure 4.3 demonstrates the addition of clutter to the signal from
moving tissue. Due to the low velocity information, the clutter signal is char-
acterised by some wavy contours along the time scale, where the waviness
is proportional to the rms-bandwidth Bcl of the Gauss curve the simulation
of clutter was based on. This waviness is observed to be more pronounced
in Figure 4.3(b) than Figure 4.3(a). That is, the effect of acoustic noise,
in terms of clutter, added to the velocity signal has been validated in the

63
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RF-domain.

Aliasing is obtained through decimation of the IQ-data in order to mimic
acquisition of velocities higher than the Nyquist velocity, and is exemplified
by Figure 4.4. As can be seen, decimation of the unambiguous velocity signal
in Figure 4.4(a) results in a signal with ambiguous velocity information as
shown in Figure 4.4(b). Here, the originally velocity lines are seen vaguely,
while velocity lines with opposite slope sign also appear. Clearly, the effects
of aliasing in the velocity signal can be seen in the RF-domain.

In summary, the simulation model developed in this work simulates re-
ceived echo from moving tissue with acoustic and thermal noise. The tissue
movement is limited to constant velocities, the acoustic noise is limited to
reverberations, while the thermal noise is similar to general signal loss and
receive amplifier noise. The model does not include frequency dependent
attenuation. Moreover, the simulated transducer receives data in only one
beam, which is sufficient for investigations in this work as exchange of in-
formation between beams are not considered. In other words, a simulation
environment for evaluation of tissue velocity estimators has successfully been
developed.

5.2 Simulation model set-up

The purpose of tuning the simulation model is to approach a realistic envi-
ronment, given the limitations in the preceding section. First, the spectrum
of the simulated received signal is adjusted using an estimated spectrum of a
signal acquired with Vivid 7 as reference. As can be seen in Figure 4.5, the
mean-square-error approach has lead to reasonable values for both centre
frequency and bandwidth for the simulation model. Also the shape of the
simulated spectrum is observed to be in pleasing accord with the reference
spectrum obtained by Vivid 7.

Second, investigation was carried out to state the repeatability in sim-
ulation data applied to tissue velocity estimation. When the number of
samples equals 8192, the standard deviation of the estimated standard de-
viation amounts to 3.1% of the mean estimated standard deviation. This
value, which is a measure of the statistical uncertainty in the estimation of
standard deviation using the autocorrelation estimator, must be considered
sufficiently low to achieve acceptable repeatability. As can be seen in Fig-
ure 4.6, simulation with fewer slow-time samples could lead to substantially
higher statistical uncertainty.

To sum up, the received echo signal obtained with the simulation model
has a spectrum similar to that of signal acquired from a human heart by
Vivid 7. Moreover, the uncertainty in standard deviation in tissue velocity
estimation amounts to 3.1%, in general, from one set of simulation data to
another.
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5.3 Clutter filtering

The purpose of clutter filtering is to remove unwanted signal from acoustic
sources outside the sample volume to avoid the estimators to take this sig-
nal into account when estimating velocities. Figure 4.7 illustrates how the
two-dimensional power spectrum is affected by the 1st order FIR filter used
for clutter rejection. The filter clearly succeeds in reducing the signal from
clutter and low-frequency noise, without affecting the velocity signal to a
great extent. As can be seen in Figure 4.8, a negative velocity bias result
when the DC-level attenuation of the FIR-filter is decreased. Further it is
observed that a positive bias results when the attenuation is increased in
an attempt to attain stronger clutter rejection. The positive bias is due to
stronger attenuation of the lower frequencies in the velocity signal, leading
to a higher mean frequency. Moreover, as low velocity signals are more at-
tenuated than high velocity signals, it is clear that they are more vulnerable
to these effects. Since the frequency content of the velocity signal gets more
concentrated with higher attenuation the standard deviation decreases as
well.

In summary, the clutter signal is evidently reduced by the 1st order FIR
filter, which in general increase the mean Doppler frequency of the signal
an amount dependent on the signal constitution. Attenuation of 8 dB at
DC-level, which is used in this work, introduces a small positive bias for all
the estimators, when the simulation of SNR and SCR is 10 dB, while the
axial velocity of tissue is 8 cm/s.

5.4 Velocity estimation on simulation data

Data obtained from the simulation model is applied to velocity estimation
to investigate to what extent different aspects affect the three velocity esti-
mators. Figure 4.9 illustrates how thermal noise affects estimation of tissue
velocities with respect to mean estimates and standard deviation. Presence
of thermal noise contributes in principle uniformly to all Doppler frequen-
cies. However, as the clutter filter attenuates the low-frequency noise, the
addition of thermal noise results in increased mean Doppler frequency for
the signal. As can be seen in Figure 4.9(a), this yields a positive velocity
bias that decreases when the SNR increases, and the three estimators are af-
fected to the same extent. Likewise, shown in Figure 4.9(b), increased SNR
yields lower standard deviation for all estimators, where CCM and MAM
achieve significant lower deviation than AM, provided that the SNR is above
15 dB. However, the three estimators perform similar once the SNR is below
15 dB. That is, dependent on the amount of thermal noise in the simulated
signal, the performance of MAM varies from significantly better, to similar
performance to that of AM.
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Next, investigation of clutter is shown in Figure 4.10. In contrast to
thermal noise, clutter presence introduces a negative velocity bias, shown
in Figure 4.10(a), since addition of clutter decreases the mean Doppler fre-
quency of the signal. The velocity bias is similar for the three methods, and
due to clutter filtering, the bias is insignificant when SCR is above 15 dB.
However, the bias increase considerably for SCR below 15 dB. As can be
seen in Figure 4.10(b), the standard deviation decreases with increased SCR,
and likewise the case with thermal noise, the standard deviation of AM is
significantly higher when SCR is above 10 dB. However, the performance of
the three estimators approach each other when SCR is below 10. That is,
the performance of MAM varies from significantly better, to similar to that
of AM, dependent on the amount of clutter present in the simulated signal.

Further, investigation of aliasing is shown in Figure 4.11. As can be seen
in Figure 4.11(a), any small bias in AM is proportional with velocity and,
thus, more revealing when the velocity is high. MAM and CCM are both
unbiased. Now that clutter and thermal noise is negligible, the standard
deviation, shown in Figure 4.11(b), is considerably higher for AM than MAM
and CCM. This result is in accord with the results above. Interestingly, this
difference in standard deviation is increasing with velocity. That is, presence
of aliasing in the simulation data harms the performance of AM to a greater
extent than MAM and CCM.

Continuing, Figure 4.12 shows the investigation of angle dependency. As
can be seen in Figure 4.12(a), increased intersection angle leads to slightly bi-
ased estimates. The reduced transit time as a consequence of increased inter-
section angle, results in velocity signals with broader bandwidth in Doppler
frequency. Due to aforementioned effects by clutter filtering the velocity sig-
nal, the mean Doppler frequency is slightly increased when the bandwidth is
increased. As shown in Figure 4.12(b), the difference in standard deviation
between AM and MAM increase in favour of MAM when approaching the
optimal intersection angle. Further, the gap is observed to decrease with
increasing angle. In other words, the potential in MAM compared to AM,
is best exploited when the moving scatterers intersect the ultrasound beam
at low angles.

Finally, investigation of pulse bandwidth, found in Figure 4.13, is related
to the length of the pulse transmitted by the transducer. The Doppler
signal acquired by shorter pulses is broader in frequency due to the broader
radial frequency of short pulse lengths. As can be seen in Figure 4.13(a),
increased bandwidth results in proportional positive velocity bias for AM,
while the mean estimation in MAM and CCM is independent of bandwidth
in the range of investigation. This confirms the fact that AM is a narrow-
band estimator, and shows that MAM and CCM are robust to variation in
bandwidth. Moreover, while the standard deviation of AM is observed in
Figure 4.13(b) to increase with bandwidth, it decreases slightly for MAM and
CCM. That is, using shorter pulses MAM obtain higher radial resolution in
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velocity estimates, while the estimation performance is maintained, and even
improved. However, because the SNR of the received signal is proportional
to bandwidth, the SNR is assumed to increase with bandwidth. Thus, given
the noise floor of any system, it is plausible to assume the existence of
an optimal working bandwidth for MAM. In this work, the −6 dB peak
bandwidth was set equal to 0.7 MHz, which seems to be a fair bandwidth
for all estimators.

To sum up, different aspects are investigated using a simulation model
that aims at being realistic. Both thermal noise and clutter from reverber-
ations were able to, independently, influence the conditions in disfavour of
MAM compared to AM. That is, presence of noise weakens the correlation
between radial and Doppler frequency fluctuations, thus, the effect of com-
pensation under such conditions is reduced. A higher SNR can be achieved
by increasing the emitted energy. However, there exist limits to the emit-
ted intensities of the ultrasound field [5, Ch. 2.1]. Another approach is
to make use of pulse compression, a technique referred to as coded excita-
tion, which intends to increase the SNR without making compromises to
spatial resolution. A higher SCR is obtained by increased attenuation of
the low frequency components from reverberations. However, increasing the
DC-level attenuation of the 1st order FIR filter used in this work, leads to
significant estimation bias. Another approach is to use higher order filters
that can achieve stronger attenuation in stop band, and shorter transition
interval between stop and pass band. Using multi-line acquisition (MLA)
to obtain high frame rate with packet size 1, higher order clutter filters can
be applied to a corresponding number of slow-time samples. In contrast to
thermal noise and clutter, the presence of aliasing did not show capabilities
to disfavour MAM, but on the other hand shown to harm AM more than
MAM. Finally, there are more potential in the performance of MAM when
it comes to both angle dependency and bandwidth, but the values used in
this work has shown to be fair to all estimators.

5.5 Velocity estimation on experimental data

The estimation of the mean received radial frequency by MAM to be 2.31
MHz is in good accord with the estimated spectre in Figure 4.15. As can be
observed by comparing the velocity curves in Figure 4.16 and Figure 4.17(a),
the bias effect in AM is to be reduced when compensated demodulation
frequency is used. The variance could not be qualitatively approved lower
for MAM than AM, like it was when the estimators were applied to blood
velocity estimation in [7].

In general, Figure 4.17(b) shows largest deviation between AM and MAM
at points with peak velocities, which corresponds well with results from Fig-
ure 4.11. The difference signal presents the variation in deviation between
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the two estimators, and give no direct information about performance on
either of them, only on the relation between them. Nevertheless, the stan-
dard deviation of the difference signal σ∆v is dependent on the correlation
in error estimation done by the two estimators, where a high correlation
would reduce the deviation. On the other hand, the deviation will increase
when the estimation error between the two estimators is uncorrelated. The
standard deviation of the difference signal σ̂∆v is estimated to be 0.038 cm/s
in the interval from 0.18 − 0.32 seconds, where the axial velocity is approx-
imately 2 cm/s. Using results from simulations with similar set-up param-
eters and axial velocity, the expected standard deviation can be calculated.
From Table 4.1, the standard deviations for AM σAM and MAM σMAM

in a noise-free environment is found to be 0.057 and 0.023, when the axial
velocity is 2 cm/s. Assuming uncorrelated estimation error between AM
and MAM, the expected standard deviation of the difference σ∆v is given

by σ∆v =
√

σ2
AM + σ2

MAM = 0.062. This result claims that the estimation

error in AM and MAM is correlated for the experimental data, as the esti-
mated standard deviation of the difference signal σ̂∆v is significantly lower
than expected for a noise-free environment. That is, at least one source to
error is likely to introduce correlation between the estimation error in AM
and MAM.

However, one should be careful to rule out other unknown factors that
corrupt velocity estimation. As an example, Figure 4.15 reveals probable
aliasing in the fast-time signal, a factor not considered up to this point.
Such aliasing cause low-frequency content to be misplaced in the upper part
of the spectre. Although it is difficult, without further investigation, to
suggest how the present aliasing affected velocity estimation in this work, it
is plausible to assume MAM more vulnerable to fast-time aliasing than AM.
This because the continuously frequency compensation in MAM is based on
direct estimation in the radial frequency domain, while AM estimates are
fully based on the slow-time signal.

In summary, estimation of radial centre frequency reduced the bias effect
in AM when replacing the demodulation frequency. In fact, while AM is
vulnerable to frequency dependent attenuation, MAM remains unbiased by
means of frequency compensation. On the other hand, a lower estimation
variance could qualitatively not be approved with continuously frequency
compensation. Furthermore, statistical analysis based on expected values
from simulations demonstrated correlation between the estimation error in
AM and MAM.
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Conclusion

Strain Rate Imaging was introduced as a clinical tool to quantify regional
myocardial deformation. As the method is velocity-based and very sensitive
to noise, precise velocity estimates are essential to achieve acceptable per-
formance. An extended version of the widely used autocorrelation estimator
(AM), exploit correlation in radial and Doppler frequency fluctuations to
obtain lower estimation variance. The approach, referred to as the modified
autocorrelation method (MAM), has previously shown superior performance
in low-noise simulation environments, but lacks to show equivalent results
when applied to in-vivo experiments.

A simulation model for evaluation of tissue velocity estimators was suc-
cessfully developed. The model includes realistic aspects like thermal noise,
typical acoustic noise from reverberations, and aliasing. Parameters and
data from experimental acquisition was used as a reference in order to
achieve realistic simulated acquisition settings like centre frequency, band-
width and beam width. When a 1st order FIR filter was used for clutter
rejection, investigations shown that thermal noise and clutter signal from
reverberations, independently, were able to disfavour MAM to a greater ex-
tent than AM. The performance of MAM went from significantly better in
low-noise conditions, to approaching AM when SNR and SCR became lower
than 15 and 10 dB, respectively. The presence of any noise weakens the
correlations in radial and Doppler frequency fluctuations, and thus reduce
the compensation effect.

Velocity estimation on experimental data shown MAM’s robustness to
frequency dependent attenuation. MAM remains unbiased by means of fre-
quency compensation, while AM suffers from bias effects. However, contin-
uously frequency compensation failed to approve lower estimation variance
for MAM compared to AM. Finally, by means of statistical analysis, corre-
lation between estimation error in AM and MAM was demonstrated when
applied to experimental data.
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Future work

Future work may comprise:� further investigation, in a simulated environment, of the correlation
between estimation error made by AM and MAM.� investigation of the use of higher order clutter filters prior to tissue
velocity estimation. This can be realised through the use of MLA to
obtain high frame rate in continuous acquisition (packet size 1).� investigation of the performance of MAM with respect to the relation
between pulse bandwidth and the system noise floor. It is plausible to
assume an optimal working bandwidth for MAM given a noise floor
level.� Finally, effort should be put into development of a model to simulate
tissue velocities that vary with time and space. This would allow for
simulation of strain rate.
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