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Problem Description
An algorithm for automatic detection of the vessel wall in an ultrasound image has previously
been developed. The aim of the thesis is to improve this algorithm by trying out alternatives to
some of the cost-criteria in the algorithm; combining the gradient and std information in the
image, and using a model matching criteria with 1.5 Gaussian curves.

The new algorithm is to be tested on a large number of datasets, and compared to the already
existing algorithm, this by comparing both algorithms with manual measurement.

Helseundersøkelsen i Nord-trøndelag (HUNT) is studying endothelial function in Brachialis by
manually tracking the vessel wall at end-diastole and measuring the vessel diameter from this.
Trying out the automatic vessel detection algorithm on Brachialis ultrasound recordings will be
part of the thesis.
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Abstract

The main goal in this thesis has been to develop an algorithm that
robustly identifies the Carotid artery wall boundaries throughout a
heart cycle in an ultrasound image. An existing automatic vessel detec-
tion algorithm (AVDA) uses tissue velocity imaging(TVI) and B-mode
data to score candidate points from various criteria. The candidate
pair with the lowest score gets selected.

AVDA was extended by implementing two alternative criteria to
the existing external cost criterion. The first by combining the infor-
mation on gradient and standard deviation in the intensity signatures;
the GradTrans criterion (GTC).The second by exploiting the shape
of the intensity signature across the vessel wall in the detection of the
intima-lumen interfaces and using a Model Matching criterion with 1.5
Gaussian curves (MMC1.5).

An edge criteria modeling tool (ECMT) was developed for the
purpose of studying the intensity signatures across the vessel wall to
find out how the various cost criteria score the signatures of differ-
ent datasets. In addition, the ECMT was used for parameter tuning.
The implemented criteria were verified by comparing automatically de-
tected edges with manual detected edges on 22 datasets. In addition
automatically detected vessel diameter was compared against manually
detected diameter on 49 datasets. The verification indicated that the
GTC is not a good criterion for detecting the intima-lumen interface.
The GTC either completely failed to detect the wall or detected the
media-adventitia boundary instead of the intima-lumen boundary.

The MMC1.5 criterion, on the other hand, seems promising. The
criterion seems to often detect the wall correctly or with a small de-
viation. Compared with manual diameter measurement, MMC1.5 had
a bias of 0.014 mm and std of the error was 1.056. In some images
the criterion failed completely in correct detection of the wall. The
reason being that a similar structure in the wall or an artifact in the
lumen was detected instead. After removing these outlays, the diam-
eter detection by MMC1.5 had a bias of 0.146 mm and std of 0.347
mm. The criterion has to be developed further to be more robust and
less time consuming, and to overcome the problems of complete failure.

A feasability study was done to see whether the AVDA can be used
on Brachialis recordings to increase the efficiency of the Flow Medi-
ated Dilation measures. The study seems promising when using the
Gradient criterion. This makes it possible to automatically measure
diameter changes throughout a heart cycle as well as measuring the
differences in diameter between recordings.
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1 INTRODUCTION

1 Introduction

Cardiovascular diseases are dominating causes for sickness and death among
elderly people [34]. Endothelial dysfunction is thought to be an important
factor in the development of atherosclerosis, hypertension and heart fail-
ure [10]. Changes in arterial stiffness increases with age, and in disorders
such as hypertension and diabetes. Studies have shown that there is a re-
lation between large arterial stiffening and impairment of cardiac function,
like ventricular systolic stiffening [8], [26] and [27]. By measuring the ex-
act intima-lumen boundary throughout a heart cycle, one will get an exact
measure of the lumen diameter as a variation of time. Measuring the inner
diameter of the vessel throughout a heart cycle using ultrasound provides
an easy way to assess artery stiffness measurements [27], and can therefore
be used in cardiac disease risk assessment.

Atherosclerosis in coronary vessels are often the underlaying causes of coro-
nary diseases. The development of atherosclerostic plaque causes the media
layer to thicken, growing into the lumen. This causes the diameter of the ves-
sel to decrease and hence a reduction in the blood supply, as well as carrying
the risk of plaque rupture that might cause myocardial infarction [4], [21].
Intima media thickness (IMT), the thickness of the tunica intima and tunica
media, is considered to be a marker for early atherosclerosis [6]. Measure-
ment of IMT in the Common Carotid can detect morphological change in
the vessel wall, and hence be used to predict cardiovascular events. IMT is
used for assessing the structural changes of the vessel caused by for example
high blood pressure.

Manual tracing of the vessel wall was long the main detection method. This
gives potential limitations in reproducibility due to ultrasonographer depen-
dence. Another drawback is that manual measurement is time consuming.
Researchers have developed various automatic methods for detecting the ves-
sel wall in vascular and intravascular ultrasound, [7], [9], [13], [20], [19]and [23].
Candidate points are associated with a composite cost function, where con-
straints are put on the contour shape to assure geometrical smoothness
(internal cost), and the characteristics of the image features in the neigh-
borhood (external cost). Traditionally, external cost function is computed
from the image gradient, which is very sensitive to image noise, and in ad-
dition, does not detect the lumen-intima, but the media-adventitia border.

An automatic vessel detection algorithm (AVDA) for detecting the wall
edged in a vascular ultrasound image has been developed by Rabben [23].
This method has the same structure as a method made for detecting and
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1 INTRODUCTION

tracking the apex and two landmarks defining the atrioventricular plane in
apical views of the left ventricle described in [29]. Sets of candidate points
are tracked within the selected RF Region of Interest (ROI). TVI and gray
scale data are used to score the various candidate points from cost criteria
based on the characteristic behavior and shape of the vessel. The candidate
pair with the lowest cost is selected.

The key goal of this thesis is to define a cost function with better robustness
and accuracy, and with less computational and manual initialization than
the existing cost functions. An edge detection criterion using gradient and
std information is implemented, based on the method presented by Luo et
al. [20] and a method proposed by Rabben [24].

In the pre-project, autumn 2005, [12] the AVDA was extended with a model
matching criterion with two Gaussian curves (MMC2). The MMC2 algo-
rithm is time consuming and it is not robust enough, hence one goal of the
thesis is to improve these deficiencies. This is done by developing a model
matching method that utilizes the known shape of the intensity profile across
the vessel wall better than the MMC2, in the detection of the wall bound-
aries. The proposed model is composed of a linear combination of one and
a half Gaussian curves, where the one curve represents the intima layer and
the half curve represents the slope of the adventitia layer. The algorithm
will therefore only work on ultrasound images with visible intima-layers.

The new algorithms will be tested on a large number of datasets, and com-
pared to manual detection for verification.

Helseundersøkelsen i Nord-trøndelag (HUNT) is studying endothelial func-
tion in Brachialis by manually tracking the vessel wall at end-diastole and
thereafter measure the vessel diameter. A feasability study will be done to
see whether the AVDA algorithm could improve the efficiency of the flow
mediated dilation analysis, by automatic calculations of vessel diameter mea-
surement.

This thesis is organized as follows. First, the theory chapter gives a descrip-
tion of the anatomy of the Common Carotid artery and a brief introduction
to ultrasound imaging, followed by an explanation of the AVDA that this
thesis is based on, and finally a presentation of other vessel edge detection
methods. The Materials and Methods chapter describes the methods used
in this thesis. The Results chapter provides the achieved results and the
Discussion chapter presents an evaluation of the results. Finally a chapter
with conclusion and proposals for further work.
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2 THEORY

2 Theory

This chapter provides the theoretical background for the thesis. First, a
brief description of the anatomy of the Common Carotid artery. Second,
an introduction to ultrasound imaging. Finally, a presentation of the vessel
detection method that this thesis builds on, before a presentation of existing
automatic/semi-automatic methods for vessel wall detection with focus on
the external energy cost function.

2.1 Anatomy

Figure 1: Anatomical picture of Common Carotid artery wall. Picture taken
from [32].

Blood vessels are usually composed of three layers: the tunica intima, tu-
nica media, and tunica adventitia. The tunica intima consists of a layer of
endothelial cells lining the lumen of the vessel, as well as a subendothelial
layer made up of mostly loose connective tissue. Often, the internal elastic
lamina separates the tunica intima from the tunica media. The tunica me-
dia is composed mainly of circumferentially arranged smooth muscle cells.
Again, the external elastic lamina often separates the tunica media from
the tunica adventitia. Finally, the tunica adventitia is primarily composed
of loose connective tissue made up of fibroblasts and associated collagen
fibers [32]. Figure 1 shows an anatomical picture of the Common Carotid
vessel wall, where the various layers are marked.

Endothelial dysfunction is thought to be an important factor in the de-
velopment of atherosclerosis, hypertension and heart failure. Finding the
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2 THEORY

intima-lumen boundary for both the upper and lower walls will give the
inner diameter of the vessel. This can be used in estimation of the arterial
wall stiffness and in estimating Flow Mediated Dilation (FMD), a technique
used when studying endothelial dysfunction [10]. Intima media thickness
(IMT), the thickness of the tunica intima and tunica media, expressed as
a single measurement (in millimeters) or a rate of change (in millimeters
per year), has been a good indicator of the presence and extent of coronary
artery disease. IMT can be used to predict major cardiovascular events such
as myocardial infarction and stroke [16].

2.2 Ultrasound imaging

If nothing else is stated, the information presented in this section is taken
from [1], [2] and [17].

Ultrasound imaging, also called sonography, is a mode of medical imaging.
It has become a popular mode for medical imaging, the reason being that
the pictures can be taken with no surgical intervention, the apparatus is
cheap and portable compared to other imaging modes like CT or MR, and
there are no known serious side effects. Ultrasound is a soft-tissue modality,
it gives good images of tissue and blood, however, it does not give useful
images of or through bone or bodies of gas, such as the lungs and bowel.

2.2.1 Ultrasound imaging system

High frequency sound pulses are transmitted from an array of piezoelectric
elements into the body. The pulse propagates through the body and echoes,
reflected from structures in tissues and bone, are received by the transducer
and processed for visualization. The time from pulse transmission till the
echo is received, gives the distance to the reflecting area.

The impulse response of an ultrasound system during interrogation of an
ideal point target is known as the system’s point spread function (PSF) as
it represents the spread of a point object in the image. The character of
the PSF in the axial direction is determined by the center frequency and
bandwidth of the acoustic signal generated at each transducer element. The
lateral and elevation dimensions character is determined by the aperture
and element geometries as well as the beam forming applied.

When an ultrasound pulse encounters a boundary between two tissue struc-
tures, the pulse will be partially reflected and partially transmitted. The
reflection depends on the difference between the characteristic impedances
of the two materials. The characteristic impedance is defined as Z = ρc,
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2 THEORY

where ρ is the mass density of the material and c is the sound velocity in
the material. Reverberations are caused by multiple reflections, meaning
that the pulse bounces back and forth between structures. This sometime
causes artifacts where it seems that a structure is placed further into the
body, behind the actual structure.

As the pulse propagates through the tissue, the intensity is attenuated due
to power absorption, scattering losses and geometric spread. This causes
the reflections from far targets to be weaker than the reflections from near
targets. This is compensated for by using a time variable gain.

The ability of an ultrasound system to discriminate closely spaced scat-
terers is specified by its spatial resolution. The radial resolution, ∆r, is
proportional to the wavelength, Tp, and hence inversely proportional to the
bandwidth, B. ∆r = cTp/2 = c/2B. The higher the frequency, the bet-
ter the resolution, but unfortunately, attenuation of the pulse also increases
with frequency. The lateral resolution, ∆l, is dependent on the relationship
between the wavelength and the size of the probe. ∆l = λF/D, where F
is the depth and D is the beam width, i.e the diameter of the array aperture.

Figure 2: Block diagram of a typical ultrasound imaging system. Figure taken
from [31].

Figure 2 illustrates the various parts of an ultrasound imaging system. The
output of the beamformer is the received Radio Frequency (RF) signal.
It contains frequency information in the frequency bands used, and is a
notation for unprocessed data in the ultrasound industry. The RF signal
is in-phase quadrature (IQ) demodulated, a technique used to extract the
amplitude and phase information in a signal, this to reduce the amount
of data without loosing the essential information [18]. Next, the signal is
bandpass filtered to increase the signal to noise ratio (SNR). To compensate
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2 THEORY

for the attenuation of the signal as it propagates through tissue, time gain
compensation (TGC) is used to amplify the signal. Amplitude and envelope
detection is then used to rectify and smooth the signal. Finally the signal is
logarithmic compressed to get better contrast, before it gets scanconverted
and displayed on the screen [31].

2.2.2 K-space

The Fraunhofer approximation states that the far-field complex amplitude
pattern produced by a complex aperture amplitude function is approxi-
mately equal to the 2-D Fourier transform of that function, meaning that
in ultrasound the ultrasound beam’s pressure amplitude pattern can be es-
timated by taking the 2-D Fourier transform of the transducer aperture.

(i) (ii) (iii)

Figure 3: (i) B is double sided bandwidth in Hz, Bx is the bandwidth in the
kx direction, Brel is relative bandwidth Brel = B/f0, a is aperture in
meter, R is the focal distance, λ is wavelength in meter, f# is the F-
number (f# = R/a).(ii) shows the PSF in the frequency domain, while
(iii) show the PSF in the spatial domain. Figures are taken from [30].

K-space is a two-dimensional frequency space. It is a linear system approach
to the Fraunhofer approximation, and can thus only be applied under condi-
tions of linear propagation and within the constraints of that approximation.
K-space analysis is a method for using the spatial frequency domain repre-
sentation of ultrasound system impulse response and scattering functions,
to understand and analyze imaging methods.

Figure 3 illustrates the geometry of the PSF in frequency domain in (i) and
(ii), and the PSF in the spatial domain in (iii). The PSF in (ii) is the prod-
uct of the aperture frequency response and the pulse frequency response.
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(i) (ii) (iii)

Figure 4: K-space evaluation of a horizontal line, and a line with an incline larger
than the critical angle. (i) shows the original images, (ii) the original
images in frequency domain and (iii) shows the ultrasound images.The
PSF used here is the same as in figure 3. Figures are taken from [30].

A thin horizontal line will show up as a vertical line in k-space (upper
pictures in figure 4). As the angle between the line and the horizontal
plane increases (lower pictures in figure 4), the thin line will get weaker and
disappear at an angel of arctan(2/f#) as it will be outside the PSF in the
frequency domain.

2.2.3 Imaging modes

This section describes the imaging modes used in this thesis.

B-mode
Brightness mode, presents the viewer with gray-scale image. The ge-
ometry of the scanned area is visualized, using brightness to map the
echo amplitude after TGC. B-mode is based on transmitting on one
frequency and receiving on the second harmonic frequency, 2nd har-
monic imaging.
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Tissue Velocity Imaging (TVI)
TVI is performed by sweeping the ultrasound beam across the se-
lected region of the vessel, while estimating the tissue velocity in
several ranges along the beam. TVI uses an autocorrelation tech-
nique to calculate the velocities. The velocity information is usually
displayed as color-coded segments superimposed on the gray-scale B-
mode image. The sampling frequency used is called the pulse repe-
tition frequency (PRF), PRF = 1/PRT. To avoid frequency aliasing,
the Doppler shift (fd) must be according to the Nyquist criterion, less
than half the PRF (fs); fd < fs/2.

Figure 5: Illustrating the difference in power received from the moving wall to
that of the blood.

TVI maps the tissue velocity rather than the blood velocity. The ve-
locity of the vessel wall is considerably lower (0-15 cm/s) than the
velocity of the blood flow. As illustrated in figure 5, the Dopplersignal
received from the moving vessel wall has much higher power (approx-
imately 40dB higher) than the signal received from blood flow, thus
noise from blood signals is negligible [15]. Additionally, as the beam
is almost perpendicular to the blood flow direction, there will be little
Doppler signal received from the blood flow compared to the signal
from the vessel wall, which moves along the ultrasound beam.

When recording TVI data and B-mode simultaneously, the total frame
rate has to be scheduled between these two tasks. A high framerate is
necessary in the TVI data to prevent frequency aliasing. This is done
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2 THEORY

(i)

(ii)

Figure 6: Illustration of simultaneous recording of B-mode (large rectangle) and
TVI (the green rectangle) (i), and the transmit sequence for TVI data
and B-mode.

by recording the B-mode in between the Doppler pulses, as illustrated
in figure 6. A whole IQ image is recorded, then parts of the B-mode
image, before a new whole IQ image is recorded, before another part
of the B-mode image. This gives a higher frame rate for the IQ image
than for the tissue image. This is illustrated in figure 7, showing
the position of the posterior wall throughout the heart cycles, the
resolution on the TVI data (blue line) is much higher than that of the
tissue data (red crosses).

2.2.4 Imaging the vessel wall

A linear array probe is used when imaging the Common Carotid. This gives
a rectangular format with the same width both in the near and far field.
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Figure 7: Plotting the position of the posterior vessel wall throughout the heart
cycles. The blue line represents the RF data, whereas the red crosses
represents the tissue data.

Figure 8: Scanning the Carotid using a linear probe (left) and the resulting ultra-
sound picture (right). The figure is taken from [2].

When imaging the Common Carotid, we have shallow imaging, hence high
frequency can be used. This will give a good enough radial resolution to
differentiate between the various layers of the vessel wall.

The anterior and posterior walls have two echogenic lines separated by a
hypoechoic space. The inner line corresponding to the lumen-intima inter-
face and the outer to the media-adventitia interface, while the hypoechoic
space corresponds to the media layer [33]. Because the tunica intima is a
very thin layer with lined scatterers, the width of the inner echogenic line
is related to the pulse length. As the adventitia layer is a summation of
many scatterers at different depths, the width of the echo from adventitia
is variable. A grayscale ultrasound image of the Carotid is seen in figure 9
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Figure 9: Image showing a grayscale image of the Carotid with indications on the
intima-lumen and media-adventitia boundaries.

When recording the ultrasound images of the vessel, it is necessary to place
the probe at an angle less than the critical angle to the vessel, to be able
to receive the echo and view the intima layer (as explained in 2.2.2). If the
angle is larger than the critical angle, the echo will be reflected in another di-
rection than the transducer. Another issue is that the plane must be placed
in the middle of the vessel to be able to see the intima layer. This is also
important to be able to detect correct vessel diameters.

Ringing is caused by the transducer being in resonance after having removed
the voltage source. Because of this ringing, the pulse has a tail. Reverbera-
tions in adventitia expands the pulse and makes the extension longer. This
pulse tail causes the trailing edge (intima-lumen boundary) on the anterior
vessel wall to be less distinct than the leading edge of the posterior wall.
This can be seen in figure 10.

Figure 10: Image illustrating how the pulse tail causes the anterior wall edge to
be less distinct than the posterior wall edge.

As the intima layer is not always visible in different subjects, it is important
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to be consistent when recording and measuring. Either the diameter mea-
sures must be on anterior media-adventitia to posterior media-adventitia or
on anterior intima-media to posterior intima-media. Inner and outer di-
ameter measurements are not comparable as they give different diameter
measures and diameter distention measures of the wall thickening.

2.3 Vessel edge detection

Figure 11: Illustrating edge positions along one intensity beam. The pink crosses
represents actual border crossing. The green crosses represents the
visual border in the ultrasound images. The black cross represents the
leading edge in the anterior wall.

When the observers detects the intima-lumen boundary in an ultrasound
image, the visual boundary in the image is detected, corresponding to the
green crosses in the plot in figure 11. This, however, is not the true boundary
between intima and lumen. The actual boundary is the peak of the intima-
curve, represented by the pink crosses. This gives an underestimation of the
inner diameter. The underestimation equals the width of the intima-curve,
which is one pulse length. Some researchers, [13] and [19], solves this by de-
tecting the leading edge on both the anterior and posterior wall (black cross
in anterior wall to green cross in posterior wall in the figure). The leading
edge of the intima-lumen boundary in the anterior wall is more difficult to
detect, and this might also be confusing for the operators as they are used
to manually detecting the trailing to leading edge, which visually seems to
be the edges. In this thesis, the visual borders, represented by the green
crosses, are detected.
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The points within the RF-ROI are all vessel wall candidate points. Each
candidate point, c(i) is associated with a composite cost function according
to the characteristics of the formation of the boundary, where constraints
are put on the contour shape to assure geometrical smoothness (internal
cost, Cint), and the image features in the neighborhood (external cost,
Cext) [22], [20], [19].

C(c1, ..., cn) =
n∑

j=1

Cext(cj) +
n∑

j=2

Cint(cj , cj−1) (1)

Traditionally the external cost gets computed from the image gradient.
In the following sections, other methods for computing the external cost
will be presented. The automatic vessel detection algorithm developed by
Rabben [23] is described in the subsection below. Thereafter a study of
other existing methods for vessel boundary detection is presented.

2.3.1 The Automatic Vessel Detection Algorithm (AVDA).

In [29] a method for detecting and tracking the apex and two landmarks
defining the atrioventricular plane in apical views of the left ventricle is de-
scribed. The ideas from this method was used in the development of an
algorithm for vessel wall detection, done by Rabben [23]. The method is
the same, scoring each candidate pair and then selecting the candidate pair
with the lowest score, but the criteria for calculating the costs are modified
to fit the characteristic behavior and shape of a vessel.

Initially the candidate points (ci) are positioned with an adequate resolution
along the beams in the ROI. Using the TVI data the candidate points are
tracked throughout all the ultrasound frames in a cardiac cycle according
to the displacement estimator described in appendix A.1 [25]. Next, the
timeframes in the TVI data where there exists grayscale data are found, see
figure 7. A candidate point is given a cost (C) based on a set of cost functions
(Cj) described below. The cost functions consists of three components:

Cj(c) = wjMj(Bj(c)) (2)

Where Mj is a mapping function that maps the function in a way that good
candidates are given a low cost, Bj(c) is based on the characteristics of the
candidate point and wj is a weight giving each cost function a relative im-
portance compared to other cost functions. Most of the cost functions use
the mapping Mexp(x) = axb. This mapping is controlled by a and b, which
are given by defining two points which specify the normal range. The first
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Figure 12: Flow chart of the AVDA.

point, (x1, y1) specifies a low value and the second point, (x2, y2), specifies
the unit value. a and b are given by b = (log(y1)−log(y2))/(log(y1)−log(y2))
and a = y2/x2

2 [29].

For all the frames, the cost for each candidate point is computed from various
characteristics of the vessel wall [29]. The internal cost terms excursion and
cyclisity are computed from TVI data, and the external cost terms tissue
intensity, blood-tissue transition and spatial gradient are computed from
gray scale data. The various cost terms are normalized to the range [0,1] by
their respective maximum values in the whole image.
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Excursion: Excursion is defined as the maximal displacement (difference
between the maximum depth and minimum depth) of a material point
through one heart cycle. The inner layer of the arterial wall moves
fastest and hence has the highest excursion. Blood is flowing fast and
might have higher excursion than possible tissue excursions and must
therefore be be given a high cost. Also values lower than the tissue
displacement must be given high costs. The excursion cost is assigned
to a candidate point by:

Cexc(ci) = Mexp(maxn(di(n))−minn(di(n))) (3)

Where di is depth. The cost function is exponential outside the range
of reasonable tissue excursion and low within the reasonable tissue
excursion range.

Cyclicity: Unless there is respiration artifacts, the vessel wall will return
to its original position after one heart cycle, it is cyclic. Cyclicity cost
is computed as the distance between the start and end position of one
point through a heart cycle:

Ccyc(ci) = Mexp(abs(di(1))− abs(di(N)))) (4)

Where N is the last frame in the heart cycle and di is depth.

Transition:

Blood-tissue and tissue-blood transition can be calculated from either
what is called transition cost or from gradient cost. Only one of these
two cost functions are in use at one time. For both methods, a win-
dow is slid across the boundary intensity signatures of the US image,
where the middle point of the window represents the candidate point.
The average intensities of the left and right side of the window are
calculated. A cost for blood-tissue transition is calculated, as well as
one for tissue-blood transition. When finding the anterior wall, tissue-
blood transition must be used, and when finding the posterior wall,
blood-tissue transition must be used. Only blood-tissue transition cost
calculation is explained here.

Transition cost is defined as the difference between the signature
within the window and the computed averages [22]. The tran-
sition cost is proportional to the striped areas in figure 13.

Ctrans(ci) =
m∑

j=1

V (pj)2−c2
i−

(
(
∑k−1

j=1 V (pj))
2 + (

∑m
j=k+1 V (pj))

2
)

m

(5)
Where V (.) represents the gray scale value of a given pixels, p
represents the pixels within the window, m is the length of the
window, and k is the index of the middle point.
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Figure 13: Illustration of the transition cost. The cost is proportional to the
striped areas. wk is the candidate point and the horizontal lines are
the left and right averages. Figure is a modified version of figure 4
in [22]

Gradient cost is defined as the average of the left side of the window
minus the average of the right side. This is minimized when the
jump in intensity from left to right is highest [22].

Cgrad(ci) =
( 1

k−1

∑k−1
j=1 V (pj)− 1

m−k−1

∑m
j=k+1 V (pj) + Vmax)

2Vmax
(6)

Where V (.) represents the gray-scale value of a given pixel, Vmax

is maximum gray-scale value of the imaging system, p represents
the pixels within the window, m is the length of the window, and
k is the index of the middle point.

The cost for blood-tissue transition, Cext is either computed from
Ctrans or Cgrad, where wtrans is 1 or 0.

Cext(ci) = wtrans ∗ Ctrans + (1− wtrans) ∗ Cgrad (7)

Tissue intensity: The tissue intensity is normally highest in the media-
adventitia interface. This can be used for finding the vessel wall, but
not for measuring the exact lumen-intima interface. Tissue cost is
defined as the normalized average tissue intensity:

Cint(ci) = Mexp(255− avgn(pi(n))) (8)

As the intensity is highest somewhere in the adventitia layer, the
weighting of tissuecost is normally set to zero as the aim is to find
the lumen-intima interface.
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Finding total cost: The costs are averaged over all the frames, finding a
mean cost for each candidate point. To find the total cost for one
point, the weights of the various costs are multiplied with the costs
and then summed together.

Ctot(ci) = wexc∗Cexc(ci)+wcyc∗Ccyc(ci)+wext∗Cext(ci)+wint∗Cint(ci)
(9)

Where wexc, wcyc, wext and wint are the weights for the various costs,
wint is normally set to zero.

Finding the candidate pair: Points that are separated by a physiological
reasonable distance are paired together and the pair of points with the
lowest total cost is selected as the vessel wall edge points.

C(ci, cj) = Ctot(ci) + Ctot(cj) (10)

CedgePoints = min(C(ci, cj)) (11)

2.3.2 Existing vessel wall algorithms

A literature study was done to study various forms of computing the external
cost.

2.3.2.1 Combining maximum slope with thresholding

Chintio et al. [9] presents an algorithm for finding the imtima-lumen inter-
face by finding the maximum slope of the intensity signal. First, the vessel
is demarcated within the ROI by finding the maximum intensity in the pos-
terior and anterior side. Next, the vessel wall is roughly detected by finding
the maximum slope of each wall in the envelope signal. Thereafter, the
positions of the intima-lumen interface is found by finding an intersection
between a threshold and the envelope in the middle of the found positions of
each wall and the lumen. The resolution is improved by solving the equation
of a line between the two points laying closest to the threshold values of the
anterior and posterior wall. The method underestimates the inner diameter.

2.3.2.2 Combining multiple measurements of echo intensity, edge
strength and edge continuity

Gustavsson et al. [13] describes a dynamic programming procedure for
detecting the various layers in the carotid vessel wall; using local measure-
ments of vessel echo intensity, edge strength and continuity to compute a
cost function. The algorithm was created to overcome problems with weak
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echoes, echo dropouts and speckle noise that is often present in B-mode ul-
trasound imaging.

The various costs are defined for the posterior media-adventitia interface
only; but the definitions for the anterior and posterior lumen-intima interface
are of a similar nature. The cost function is composed of the echo intensity
below the interface c1, the intensity gradient in downward direction c2 and
the boundary continuity c3. The echo intensity below the interface, c1, is
represented by the normalized average intensity of eight pixels beneath the
candidate point bi. c1 is similar to transition cost described in section 2.3.1,
except it looks only in half the window. The intensity gradient in downward
direction, c2, is the normalized value of estimated vertical intensity slope of a
rectangular 5x5 neighborhood of the point bi. This gives a lateral averaging.
The boundary continuity, c3, where dy is the change in vertical distance
between the boundary being detected and a smooth reference boundary.
This utilizes the information from candidates in neighboring beams to find
the edge. c3 is a part of the dynamic programming procedure.

2.3.2.3 Local measurements of the echo intensity, and the inten-
sity gradient combined with a boundary constraint.

Liang et al. [19] presents a multiscale dynamic programming algorithm,
where the approximate vessel wall positions are estimated first in a coarse-
scale image, which then guide the detection of the boundaries in fine-scale
image. The dynamic programming procedure is used to find a global mini-
mum of the cost function.

The costs are only defined for the posterior media-adventitia interface; the
definitions for the anterior and posterior lumen-intima interface are different
but of a similar nature. The cost calculations are similar to those presented
in the section above, 2.3.2.2, with an extra cost criterion added.

The cost function is composed of the image features, f̃1(pi), f̃2(pi), f̃3(pi),
and the geometrical force g(pi, pi−1):

Boundary smoothness (g(pi, pi−1)): Favors a smoother line. The cost
is represented by the square of the finite difference of the distance to
a reference line at node pi:

Intensity gradient (f̃1(pi)): Favors a candidate located at a higher in-
tensity gradient position. The downward intensity gradient, (grad(pi),
is estimated in a 5x5 neighborhood window and normalized. It is the
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slope at the center of a third-order polynomial surface fitted to the
intensity values within the window.

Brightness below (f̃2(pi)): Favors a candidate immediately above a wide
strong echo. The average intensity of m pixels right below pi.

Darkness above (f̃3(pi)): Favors a candidate immediately below a dark
streak. The average intensity of n pixels right above pi (this is true for
finding the media-adventitia boundary, for finding the intima-lumen
boundary, this cost criterion would probably favor candidates below a
wide hypoechoic area.).

The brightness below and darkness above criteria are similar to a transition
criterion in the upward and downward direction.

2.3.2.4 Combination of the intensity gradient and the variance
information in intravascular ultrasound video images.

Luo et al. [20] presents a optimization-based detection method for comput-
ing the contour of the coronary artery from intravascular ultrasound video
images. The method combines the gradient and the variance of the inten-
sity of the image in the radial direction. This method is more robust under
high-level noise than methods counting only on the gradient information.
The variances of the upper and lower pixels of each point in a given column
is summed up as a parameter S. The external cost function is composed of
the difference of the normalized value of the gradient G and the sum S.

G(ij) = I(i + 1, j)− I(i, j) (12)

S(i, j) =
1

i− 1

i−1∑
q=1

( ∣∣∣∣∣∣I(q, j))− 1
i− 1

i−1∑
q=1

(I(p, j))

∣∣∣∣∣∣
)
+

1
m− i

m−1∑
q=i+1

( ∣∣∣∣∣∣I(q, j))− 1
m− i

m−1∑
q=i+1

(I(p, j))

∣∣∣∣∣∣
)

(13)

Cext(ij) = S′(i, j)−G′(i, j)) (14)

where i = 1, 2, ....., m− 1 and j = 1, 2, ....., n, and G′ and S′ are the normal-
ized results of G and S.

In parallel with Luo deriving this method, Rabben [24] derived the same
method for finding the heart wall in cardiac ultrasound. A modified version
of this method will be implemented in this thesis.
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2.3.2.5 Semi-Automatic method that uses anisotropic edge-preserving
smoothing for improved segmentation.

Chan et al. [7] presents a non-linear scheme based on minimization of
a variational energy functional that uses all available pixel information for
estimating anisotropically smoothed image and edge fields. The method
smooths the image field in homogeneous areas, and not i non-homogeneous
areas. The resulting edge field allows for robust snake-based vessel contour
extraction and IMT measurement.

The anisotropic process for non-linear noise-suppression and edge estimation
is performed by jointly estimating a smooth image field, f , and correspond-
ing edge field, s, which minimize the variational cost function:

E(f, s) =
∫ ∫

{α(1− s)2 ‖∇DSf‖1︸ ︷︷ ︸
SmoothnessConstraint

+ β ‖f − g‖1︸ ︷︷ ︸
DataF idelity

+ ρ/2 ‖∇DSs‖2 +
s2

2ρ︸ ︷︷ ︸
EdgeControl

}dxdy

(15)

g represents the B-mode image data, f the piecewise constant approxima-
tion of g, and s is the edge field whose values range between 0 and 1. α,
β and ρ are weighting parameters. E(f, s) describes the smoothing of the
image. In areas containing edges, there is no or little smoothing of the
image. For every iteration there is smoothing. The smoothness constraint
gives high score to jumps in the smoothed field f , except in areas containing
an edge (s ≈ 1), moving the smoothing away from edges. The data fidelity
term forces f to resemble the original image data g. The edge control term
adjusts the density of edges in the s.

∇DS(·) is a directionally sensitive gradient, allowing for user-specified prior
edge orientation information;

∇DS(f) = ζ(∇f · ~e‖)~e‖ + (2− ζ)(∇f · ~e⊥)~e⊥ (16)

~e‖ is a unit vector lying tangentially to the local tissue boundary known a
priori to have a particular edge orientation. ~e⊥ is a unit vector perpendic-
ular to this direction. The scalar ζ controls the relative weighting between
the perpendicular and parallel components of the intensity gradient.

The cost function Esnake is minimized:

Esnake =
∫ 1

0
1/2

[
a

∥∥~x′(t)
∥∥2
2 +

∥∥~x′′(t)
∥∥2
2

]
− Eext(~x(t))dt (17)

The snake ~x(t) is a deformable curve, ~x = [x(t), y(t)] , t ∈ [0, 1]. Where a
and b control the snake’s tension and rigidity respectively, determining the
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curve’s internal cost.

The edge field, s, estimated in 15 is used to compute the external cost
function.

Eext(x, y) = Gσ(x, y) ∗ s(x, y) (18)

where Gσ(x, y) is a 2D Gaussian with at standard deviation of σ which varies
the capture range of the active contour. The external cost term pulls the
contour toward either the lumen-intima or the media-adventitia boundaries.

This is an advanced and time consuming method. Lately there has been a
lot of interest in these partial differential equation image processing methods
as they seem very promising. The method is complicated to implement, in
this thesis a more simple method for finding the edges will be implemented.
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3 Materials and methods

This chapter presents the investigations done and methods used. First, a
description on acquisition of data and the post processing system. There-
after, a presentation of the two criteria developed in this thesis, before the
feasability study done is described.

3.1 Acquisition of data

(i) (ii)

(iii)

Figure 14: Typical images of the Common Carotid, image (i) has visible intima
layers, image (ii) has a less visible intima-layer. The green lines repre-
sents the ROI selected, where RF data is recorded. (iii) RF m-mode
along one beam, on the right hand side of the picture is an extract of
the B-mode along the selected beam.

All the datasets were recorded using a Vivid7 scanner, equipped with a 12
MHz linear array transducer, 12L, from GE Vingmed Ultrasound, Horten,
Norway. Both B-mode and RF data were recorded; while recording the B-
mode, a ROI was selected by the operator, and RF data was recorded along
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8 evenly distributed beams within the ROI, with a center frequency of 8MHz
for Carotid data and 10MHz for Brachialis data. RF data was stored as IQ
demodulated data at a sampling frequency of 10 MHz for both Carotid data
and Brachialis data. While recording the TVI data, B-mode imaging was
recorded simultaneously. A part of the tissue image was recorded (1/10),
then the whole IQ image was scanned, before another 1/10 of of the tissue
image was recorded, as explained in section 2.2.3.

To obtain a good contrast between the vessel wall and lumen, the ultra-
sound beam should be aimed perpendicular to the vessel. Figure 14 shows
two typical images of the Common Carotid. Image (i) has a visible intima-
layer both along the upper and the lower wall. In image (ii) the intima-layer
is only visible for a small section along the lower vessel wall, and there is also
more noise in the lumen area. The green lines represents the 8 beams within
the ROI where RF data was recorded. Image (iii) shows RF m-mode along
one beam with an extract of the B-mode image along the selected beam.

3.2 Post processing system/Software system

After the scanning, the raw ultrasound data with separate gray-scale and
IQ values were transferred to a personal computer for processing.

GcMat, an internal prototype program, used in research by GE Vingmed and
the Department of Circulation and Image Diagnostics at NTNU, makes it
possible to view and manipulate ultrasound data recorded by GE Vingmed
ultrasound scanners. The program runs under Matlab (The MathWorks
Inc., Natick, MA, USA) and consists of two parts:

1. An ActiveX component that reads and displays Vivid7 data.

2. A Matlab toolbox containing the vessel wall detection algorithm.

3.3 HUNT fmd-protocol

Flow mediated dilation (FMD) is an endothelium-dependent process that re-
flects the relaxation of an artery when exposed to increased shear stress. In-
creased flow, and thereby increased shear stress, through the brachial artery
occurs during postocclusive reactive hyperemia. Studies have suggested that
the maximal increase in diameter occurs approximately 60 seconds after re-
lease of the occlusive cuff. The above is a replica from Corretti et. al [10].
To calculate FMD measurements of the diameter changes are needed. In
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the HUNT-study, recording like described below are done to measure FMD.

To create a flow stimulus in the brachial artery, a blood pressure cuff is first
placed on the upper part of the arm. Then an image is taken when the arm
is at a rest state before arterial occlusion is created by cuff inflation for 5
minutes. Subsequent cuff deflation induces a brief high-flow state through
the brachial artery to accommodate the dilated resistance vessels. The re-
sulting increase in shear stress causes the brachial artery to dilate. The
longitudinal image of the artery is recorded continuously from 30 seconds
before to 2 minutes after cuff deflation [10].

After recording the images and the images for analysis are chosen, the
boundaries for diameter measurements (either the lumen-intima or the media-
adventitia interfaces) are detected manually or automatically. The variabil-
ity of the diameter measurement is greatest when it is determined from a
point-to-point measurement of a single frame, and least when there is an
average derived from multiple diameter measurements determined along a
segment of the vessel.

3.4 Population Study and Limitations

The datasets used in this thesis are taken from three different databases. The
13 datasets used in the parameter tuning while implementing the edge detec-
tion criteria are taken form a database containing Carotid recordings from
39 subjects, used in [25]; DatasetsParam. 70 datasets with Carotid record-
ings were provided from the Asklepios study at Gent University Hospital,
Belgium [3]; DatasetsV er. These were used in the verification of the two ves-
sel detection methods proposed. Brachialis recordings on one subject were
taken according to the HUNT fmd-protocol, see section 3.3, which, together
with 4 Brachialis recordings provided from a Master student at Gent Uni-
versity [3], will be used in the Brachialis feasability study; DatasetsBrachialis.

The DatasetsParam are recordings of 39 subjects, aged 18-77 with 7 normals
and 32 patients. The DatasetsV er contains 70 datasets, random selected
from a large database with more than 2000 Carotid recordings. For all 70
datasets, there is information on vessel diameter in one of the eight beams,
that is manually detected in the Asklepios study. Out of these 70 datasets,
22 datasets with visible intima layer were selected and manual tracking of
the inner vessel wall was done by two different observers. The manual track-
ing was done on the same beam as was used in the Asklepios study.

Each dataset in DatasetsParam consists of 3-4 heart cycles. The datasets in
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DatasetsV er were 7-10 heart cycles. For memory purposes the datasets were
reduced to 3 heart cycles. The quality of the datasets ranges from poor to
very good. The aim of the extensions of the algorithm presented here, is to
detect the vessel wall edge where there is a visible intima layer. A visible
intima layer within the ROI is therefore a criterion for which dataset to use
in this thesis.

Only high quality images with visible intima layers have been used in this
thesis.

3.5 External cost criterion

The existing algorithm, developed by Stein Inge Rabben [23] was in the
autumn project extended with a model matching algorithm for scoring can-
didate points, based on the results from the simulation and studying the
signatures [12]. The model chosen was represented by a sum of two Gaus-
sian curves (MMC2). The MMC2 is not robust enough and one of the aims
of this thesis was therefore to replace MMC2 with another model match-
ing algorithm. Additionally, a criterion addressing the problem with the
transition criterion, by combining the gradient and std information, was im-
plemented. The two implemented criteria are presented in this subsection.

3.5.1 GradTrans criterion (GTC)

One of the proposed methods, based on the method derived by Luo [20] and
Rabben [24], combines the gradient and standard deviation information in
the intensity signature to compute an external cost function. A window of
a certain length (WL) is slid over the signature, with the candidate point
positioned in the middle of the window. The intensity mean value, µ, and
intensity std, σ, is computed for both sides of the candidate point, and the
external cost is computed as follows:

CGTC(ci) = (1− wstd)
255− (µO − µI)

510︸ ︷︷ ︸
Gradient

+(wstd)
wI ∗ σI + wO ∗ σO

128︸ ︷︷ ︸
STD

(19)

Where I and O denotes inside and outside respectively, and the weighting wI

= (1 - wO). The first part of equation 19 is a gradient operator that favors
a leap in average inside and outside of the candidate point. The second part
utilizes the std information in the intensity signature; it favors flat regions
outside and inside of the candidate point. At the edge of the vessel wall,
the inside half-window will be positioned in the lumen, where the intensity
signature is flat, and hence the σI is expected to be low. The outside half-
window, however, will include parts of the vessel wall, where the intensity
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signature has high variance. Therefore, the weighting wI is expected to be
much higher than wO. wstd is the weighting between the gradient and the
STD part of the equation. An illustration of the GTC cost computation can
be seen in figure 15.

Figure 15: Figure illustrating the GTC cost [24].

The middle values of the window, within the dashed lines are disregarded
as the leap from dark to bright is not direct, but has a slope that is half a
pulse length wide.

To prevent the GTC from scoring and favoring artifacts that can sometimes
be seen inside lumen, a constraint was put on. The average intensity in
the outside half-window must be of a certain percentage of the maximum
intensity (%AntAmp and %PostAmp for the anterior and posterior wall re-
spectively), forcing the method to search somewhere close to adventitia, as
adventita normally has the highest intensity.

Within the lumen, the variance in intensity is often low. This will be scored
positively by the STD part of equation 19. To prevent the STD from over-
ruling the gradient part in areas like this, with low variance, a constraint
with a threshold value was put on to score the candidates negatively when
within the lumen area.

The various parameters described above was tuned using the ECMT that is
described in subsection 3.6. The result of the tuning can be seen in table 1
(see Appendix B.1 for the parameter tuning).
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WL wO wstd %AntAmp %PostAmp

2.079 ∗ 10−3mm 0 0.9 40% 43%
(27 points)

Table 1: An overview of the GTC parameters; , window length (WL), weight-
ing outside (wO), STD weighting (wStd), % amplitude of anterior wall
(%AntAmp) and % amplitude of posterior wall (%PostAmp).

3.5.2 Model matching method.

A window is slid over the intensity signature of the chosen beam of the
grayscale picture, the parameters of the Gaussian curves are estimated from
the data within the windows. Next, the parameters are checked against
various criteria to see whether the point meets the qualifications to be an
actual candidate. If the parameters do not match the criteria, the point is
given a high cost, whereas if the parameters match the criteria, the Gaussian
curves are computed and then compared to the actual signature within the
window and a score is given to the candidate point.

3.5.2.1 Choosing a model

Simulation of ultrasound signals
In the autumn project [12] a simulation in 1D was done to motivate for the
model used in the model matching cost criterion.

The 1D simulation was done by making a layer model (figure 16, (ii)) with
the various layers in the vessel wall. The lumen, intima, media and adven-
titia layers were given an acoustic impedance according to tables in [11].
Additionally, as adventitia is a summation of many scatterers at different
depths, noise was added to the the adventitia layer. The width of the layers
are taken from [28] and [32].

The pulse displayed in figure 16 (i) was used. The resulting received echo
plotted in 16 (iii) indicate that there are two main peaks on each side of the
lumen, representing the intima-lumen interface and the media-adventitia in-
terface. It is known that the distance between the two peaks is equal to the
IMT, a factor that has to be accounted for when making the model; IMT
will vary from dataset to dataset.

The received echo in 16 (iii) illustrates the effect the pulse tail has on the
vessel wall edges in ultrasound images, as explained in section 2.2.4. The
pulse 16 (i) is asymmetric, meaning there is an extension on the trailing side
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(i) (ii)

(iii)

Figure 16: The pulse (i) and the 1D vessel model with lumen, intima/media and
adventitia layers (ii). (iii) plots the envelope of echo signal

of the peak. The extension can be seen in the anterior wall, at the left side
of the plot of the received echo the edge between the main lobe and lumen
gets smeared out due to the pulse tail. On the right side of the plot, the
pulse tail has no effect on the posterior wall edge.

Intensity signatures across vessel walls
The intensity signatures from the eight beams of the datasets were, in the
autumn project, plotted one by one to see whether what was found in the
simulation corresponded with the actual data signatures.

The plotting and studying of the signatures in figure 18 strengthened the
observations from the simulation. The smaller peak, corresponding to the
intima-lumen interface, is often smooth and has the shape similar to a Gaus-
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Figure 17: Extraction of a signature. This is a modification of figure 5.2 in [14].

Figure 18: A selection of signatures taken from various datasets along beams
where there is a visible intima-layer.

sian curve, while the larger peak, corresponding to the media-adventitia in-
terface, is wider, more irregular and bulky. The reason for this is that tunica
intima is a single layer of scatters, while tunica adventitia is composed of a
set of scatters at different depths, ref. chapter 2.2.4.

From studying both the signatures and the outcome from the simulation
indicates that the model should consist of a graph that contains two steps or
peaks, one lower than the other. Additionally, the distance between the two
peaks or steps has to vary from dataset to dataset. The MMC2 implemented
in the autumn project uses two Gaussian curves. A Gaussian curve is not a
good representation of adventitia as adventitia is very irregular. However,
the slope at the start of the adventitia is often smooth and is related to the
pulse length. A half Gaussian curve could therefore be a model for the slope
of the adventitia layer. Combining this with a Gaussian curve representing
the intima layer, the model presented here is a model consisting of one and
a half Gaussian curves.
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3.5.2.2 The model matching criterion with 1.5 Gaussian curves
(MMC1.5)

The sum of one and a half Gaussian curves model:

Figure 19: Illustration of the model with 1.5 Gaussian curves.

f(x) = θ1 + (θint ∗ e−(x−µint)
2/(2∗σint) + θad ∗ e−(x−µad)2/(2∗σad)) (20)

Where the int-parameters represents the intima curve and ad-parameters
the adventitia curve.

• x represents the row number.

• θ1 is the offset parameter.

• θint and θad are the amplitude parameters for the two Gaussians.

• µint and µad are the mean parameters for the two Gaussians.

• σint and σad are the variance parameters for the two Gaussians.
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Figure 20: Flow chart of the MMC1.5 algorithm.

Parameter estimation and limiting criteria
θint and θad are the scaling parameters, they are given by the maximum
value of the intensity signature within the half-window containing the cor-
responding Gaussian curve. σint represents the width of the intima curve
and σad represents the width of the slope of the adventitia curve. These are
given by the pulse length.
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As found from the going through the signatures and running the simulation
in the autumn project [12], the amplitude of the adventita peak is higher
than the amplitude of the intima peak. A criterion using this was imple-
mented; the Gaussian curves were only calculated for θad larger than θint,
for θad smaller than θint, the candidate was scored maximum cost to make
it least attractive.

Inside the ROI, maximum intensity normally lies somewhere within adven-
titia. The intensity varies for the anterior and posterior adventitia. It is
known that the intima-lumen edge lies somewhere near to the adventitia,
and hence this can be used as a criterion. The ROI is therefore divided
into an anterior and a posterior region, and maximum intensity is found
for both. To discard artifacts in the lumen that might correlate with 1.5
Gaussian curves; when θad lower than %AntAmp and %PostAmp of the
maximum intensity of the anterior and posterior region respectively, the
f(x) was not calculated and instead maximum cost was given to the point.

µint and µad are the middle positions of the curves representing the intima
and the adventitia layer respectively. The distance between µint and µad is
the intima media thickness (IMT), which is normally between 0.4 and 1.2
mm. When finding the wall, µad is set, and the position for µint is found by
iterating through the window and testing for the possible and physiological
reasonable IMT.

When finding the anterior wall, the candidate point is located at the far right
of the window, corresponding to the lumen-intima interface, ref. figure 21.
Likewise, when finding the posterior wall, the candidate point is located on
the far left of the window.

The final step in the algorithm is to find the sum of the absolute value of
the difference between the estimated model and the data. This gives the
matching cost.

The cost is illustrated as the beige area in figure 21 and is computed as
follows :

Cmatch(ci) =
n∑

j=1

∣∣∣(θ1+(θint∗e−(j−µint)
2/(2∗σint)+θad∗e−(j−µad)2/(2∗σad)))−pj

∣∣∣
(21)

where the parameters θ1, θint, µint, σint, θad, µad and σad are calculated as
described above, n is the length of the window and pj is the pixel value in
pixel j within the window.

33



3 MATERIALS AND METHODS

Figure 21: Finding the anterior wall, the candidate point is at the very right of
the black curve. For each candidate point, the distance between the
two curves is changed, to find the best match between signature and
estimated curve. Red curve corresponds to the signature and the black
curve to the estimated curve. The cost corresponds to the beige area.
As the black curve moves further to the right, the area, and hence the
cost increases.

The various parameters described above was tuned using the ECMT de-
scribed in subsection 3.6. The result of the tuning can be seen in the table
below. See Appendix B.1 for the parameter tuning.

WL θ1 %AntAmp %PostAmp

1.617 ∗ 10−3mm 1.001 ∗ 10−3mm 47% 45%
(21 points ) (13 points)

Table 2: An overview of the tuning of the MMC1.5 parameters; window length
(WL), offset value (θ1), % amplitude of anterior wall (%AntAmp) and
% amplitude of posterior wall (%PostAmp).

3.6 Edge criteria modeling tool.

An edge criteria modeling tool (ECMT) was made to study how the various
external cost criteria score different intensity signatures. Further, the ECMT
was used to tune the parameters of the criteria. Intensity signatures were
loaded and one signature was selected and displayed at a time. Figure 22
shows an image of the ECMT, where one intensity signature is loaded and
MMC1.5 is used. The upper window of the figure plots the signature, the
middle window plots the bright-to-dark cost (red) on the signature (blue)
and the lower window plots the dark-to-bright cost (red) on the signature

34



3 MATERIALS AND METHODS

(blue) (finding the posterior wall). The lower the cost, the better the can-
didate point.

Figure 22: Edge criteria modeling tool.

DatasetsP aram, table 7 in Appendix B.1, were used in the parameter tuning.
Two beams with visible intimalayer were selected from each dataset. The
parameters described in the previous sections, seen in the upper right hand
side of figure 22, were tuned for GTC and MMC1.5. The result of the tuning
can be seen in Appendix B.1, tables 8 and 9.

3.7 Feasability study on Brachialis wall detection.

A feasability study to see whether the AVDA application can improve the
efficiency of the Flow Mediated Dilation (FMD) analysis, by automatically
detecting the Brachialis vessel wall and calculating the inner diameter will
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be done. As the Brachialis vessel is smaller than the Carotid vessel, the
intima layer is most often not visible in the ultrasound images of the vessel.
Testing the various cost criteria, both existing and those presented in this
thesis, will be done to find which criterion is best for detecting the vessel
wall in Brachialis recordings.

A recording according to the HUNT fmd-protocol, see section 3.3, will be
taken, to see whether the diameter change in Brachialis can be measured
using the AVDA.

3.8 Verification and comparison of the various methods.

A code to manually select and save the edge points in a trigger point in the
RF image was implemented.

On 22 datasets from DatasetsV er manual measurement of the intima-lumen
boundary was done by two different observers. The aim of this was to do a
reproducibility study between the two observers. In addition, these datasets
were used in the verification of the two implemented cost criteria, GTC and
MMC1.5, by comparing the automatically detected edges with manually
measured vessel wall.

The information on manually tracked inner-diameter done by one observer
in the Asklepios study [3] in DatasetsV er was used to compare automati-
cally with manually estimated inner-diameter. This was done on 49 of the
70 datasets in DatasetsV er.

The datasets in DatasetsBrachialis were used in the Brachialis feasability
study.
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4 Results

This chapter presents the results achieved in the thesis. First, a visual
presentation of the results of the two edge detection criteria implemented,
thereafter the results of the verification of the two criteria. Finally, the
results achieved in the feasability study on the brachial artery wall detection
is presented.

(i) (ii)

(iii) (iv)

Figure 23: Carotid vessel wall detection in beam number 5, dataset number 18,
using the GTC criterion (i) and MMC1.5 (iii). RF image of beam
number 5 showing the wall detection using the GTC criterion (ii) and
MMC15 (iv).

37



4 RESULTS

4.1 Edge detection - Carotid

Figure 23 and 24 shows the result of using GTC criterion, (i) and (ii), versus
MMC1.5 criterion, (iii) and (iv), when detecting the Carotid vessel intima-
lumen boundary. The detected edge is the crossing of the beam and the
oblique line. The RF images shows the selected beam through the heart
cycles, with the detected edges plotted.

Figure 25 visually presents the results of the GTC and MMC1.5 criterion
on a selection of the datasets. The images show that the MMC1.5 criterion
seems to detect the correct vessel wall in many of the images, whereas the
GTC criterion fails more often. In dataset number 5, the MMC1.5 fails
completely and detects the anterior wall to be at a structure within the
wall. In dataset 16, an artifact in the lumen is detected by the MMC1.5.
The result on the remaining datasets can be seen in Appendix C.2.
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(i) (ii)

(iii) (iv)

Figure 24: Carotid vessel wall detection in beam number 5, dataset number 4,
using the GTC criterion (i) and MMC1.5 (iii). RF image of beam
number 5 showing the wall detection using the GTC criterion (ii) and
MMC15 (iv).
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(i) GTC (ii) MMC1.5

5

7

13

14

16

19

Figure 25: Visual Carotid wall detection of datasets 5, 7, 13, 14, 16 and 19 using
both GTC (i) and MMC1.5 (ii) criterion.40
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Figure 26: Dataset 12; MMC1.5 detection on all eight beams (beam number 4 is
the selected beam).

Figure 26 show MMC1.5 detection on all eight beams, illustrating that the
detection works on some of the beams and fails on other. The detection on
the selected beam (beam number 4) fails, while it works on the neighboring
beams.

4.2 Verification of edge detection criteria

The following subsections presents the result of the verification of the GTC
and MMC1.5 criteria.

4.2.1 Verification using manual detected edges

In the 22 provided datasets (from Datasetsver) presented in Appendix C.1,
table 10, manual detection of the Carotid intima-lumen interface in the an-
terior and posterior wall was done by two different observers. Figure 27
presents histograms of the difference in detection by the two observers. The
upper histogram shows the difference in detection of the anterior wall, with
the inter-observer difference having µa = −0.087mm and σa = 0.180mm.
The inter-observer difference in detection of the posterior wall, represented
by the middle histogram, is a bit lower and has µp = −0.045mm and
σp = 0.164mm. The lower histogram shows the diameter difference, µd =
0.041mm and σd = 0.104mm.

Table 3 and 4 presents the result of the verification of GTC and MMC1.5
respectively. The three first colons show the difference, in detected anterior
wall, posterior wall and diameter, between using the selected criterion and
using manual detection (GTC/MMC1.5 - manual). The colon at the far
right show the difference in diameter divided by manually detected diame-
ter, presented in %. The manual detection reference is the average of the
detection done by the two observers described above.
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Figure 27: Histograms showing inter-observer difference in detection of the an-
terior wall (upper histogram), posterior wall (middle histogram) and
diameter (lower histogram).

Figure 28 presents the resulting histograms of the detection differences, com-
paring the two automatic detection criteria with manual detection. The his-
tograms in (i) show that GTC detects both the anterior and posterior wall
to be within the wall, resulting in an overestimated inner diameter. The
MMC1.5 histograms (ii) shows that this criterion detects the edges more
correct than the GTC, with some outlays that were detected completely
incorrect. The MMC1.5 diameter bias is 7.4% when relating the error to
actual vessel diameter, compared with a diameter bias of 30.4% by GTC.
For both criteria, the posterior walls are detected more correctly than the
posterior walls. The mean and std of the histograms in figure 28 are pre-
sented in table 3 and 4.

When the detection fails completely and this is clearly seen in the image,
an operator would probably discard the detection on that beam. Based on
this assumption, the datasets where the MMC1.5 detection fails completely
were removed to be able to study the result on the datasets where the detec-
tion did not completely fail. For MMC1.5 in figure 28 (ii), the histograms
showing the anterior and posterior wall, the datasets where the difference
between manual detection and the MMC1.5 detection were larger than 1
mm were removed (outside the red section). For the diameter difference
histogram, the datasets where the detection on either the anterior or the
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Dataset Ant wall diff Post wall diff Diam diff Diam diff/
[mm] [mm] [mm] Manual diam [%]

1 -1.553 0.585 2.138 39.5
2 -0.806 1.601 2.407 44.7
3 -0.608 0.639 1.247 18.5
4 -1.732 0.341 2.073 40.9
5 -3.059 1.283 4.342 76.0
6 -0.689 0.347 1.035 22.2
7 -1.112 0.499 1.610 27.4
8 -0.929 0.392 1.321 23.6
9 -1.084 0.016 1.100 18.7
10 -0.640 0.005 0.645 13.2
11 -0.505 2.201 2.706 63.4
12 0.151 0.527 0.375 7.5
13 0.230 2.530 2.300 46.4
14 -2.664 0.325 2.989 59.7
15 -0.451 0.382 0.833 13.7
16 -0.309 0.140 0.449 08.1
17 -1.107 0.456 1.562 27.3
18 -1.673 0.015 1.688 26.9
19 -0.984 0.012 0.996 18.2
20 -0.883 -0.009 0.874 14.4
21 -2.377 0.374 2.751 43.1
22 -0.935 0.042 0.977 15.6
µ 1.078 -0.577 1.655 30.4
σ 0.828 0.704 0.975 18.9

Table 3: Table displaying the difference in automatic detection GTC and manual
detection (GTC - manual) for the anterior and posterior wall, and diam-
eter difference. The right column displays the diameter difference over
manually detected diameter (in %). The ∗ indicates that the dataset is
an outlay and is removed in the calculation of µ∗ and σ∗

posterior wall failed were removed. Two datasets were removed from the
anterior wall detection, tree from the posterior wall detection, resulting in
five datasets being removed from the diameter detection. These datasets
are indicated with a star, (∗), in table 4.

Figure 29 shows conventional scatter plots to compare manual detection with
the automatic methods. The points in the MMC1.5 scatter plots lie closer to
the equality-diagonal than the points in the GTC scatterplots. In the GTC
vessel diameter scatter plot, all the points lie above the equality-diameter.
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Dataset Ant wall diff Post wall diff Diam diff Diam diff/
[mm] [mm] [mm] Manual diam [%]

1 -0.530 0.263 0.794 14.6
2 -0.101 0.295 0.395 7.3
3 -0.398 0.419 0.817 12.1
4 -0.471 0.0134 0.485 9.6
5 -2.706 * -0.055 2.651 * 46.4 *
6 -0.292 0.115 0.406 8.7
7 0.083 0.499 0.415 7.1
8 -0.480 0.058 0.538 9.6
9 -0.572 -0.104 0.468 7.9
10 -0.342 -0.148 0.194 4.0
11 -0.577 0.023 0.600 14.1
12 0.333 1.670 * 1.336 * 26.6 *
13 -0.250 -0.011 0.239 4.8
14 -0.204 -0.037 0.167 3.3
15 -0.118 -1.122 * -1.004 * -16.6 *
16 -0.187 -1.264 * -1.076 * -19.4 *
17 -0.290 -0.633 -0.344 -6.0
18 -0.409 0.015 0.424 6.7
19 -0.334 -0.066 0.268 4.9
20 -1.306 * -0.099 1.206 * 19.8 *
21 -0.161 -0.055 0.106 1.7
22 -0.324 -0.681 -0.357 -5.7
µ -0.438 -0.041 0.397 7.4
µ∗ -0.281 -0.010 0.330 6.2
σ 0.591 0.582 0.771 13.6
σ∗ 0.223 0.290 0.323 5.8

Table 4: Table displaying the difference in automatic detection MMC1.5 and man-
ual detection (MMC1.5 - manual) for the anterior and posterior wall, and
diameter difference. The right column displays the diameter difference
over manually detected diameter (in %). The ∗ indicates that the dataset
is an outlay and is removed in the calculation of µ∗ and σ∗.
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(i) GTC

(ii) MMC1.5

Figure 28: Differences between GTC vs manual detection (GTC - manual) (i) and
MMC1.5 vs manual detection (MMC1.5 - manual) (ii) in anterior wall
(upper histograms), posterior wall (middle histograms) and diameter
(lower histograms). The datasets outside the dotted red lines are the
datasets that fail completely in MMC1.5, indicated with a ∗ in table 4.
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(i) GTC

(ii) MMC1.5

Figure 29: Plotting manual detection against automatic detection using GTC, (i),
and MMC1.5, (ii) of the anterior wall, posterior wall and diameter.
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4.2.2 Verification using manual measured diameter

For 49 random selected datasets out of the 70 provided in DatasetsV er,
AVDA using GTC and MMC1.5 was used to estimate the vessel diameter in
one selected beam at four ecg trigger points. This was then compared with
the diameter manually detected in the same beam at the four ecg trigger
points. Figure 30 presents histograms of the detection error (GTC/MMC1.5
- manual) for the 49 datasets at the four ecg trigger points (upper his-
tograms) and averaged over the trigger points (lower histograms). The mean
value, µdiamDiff , and std, σdiamDiff , for the detection error of the two cri-
teria are given in table 5. In addition, the mean value, µ%−diamDiff , and
std, σ%−diamDiff , of the diameter differences divided by manual detected
diameter are shown to relate the error to the actual vessel diameter. After
removing the outlays, where the diameter detection error was more than 1
mm (the 12 datasets outside the red dotted lines in figure 30), µ∗diamDiff

increased to 0.146 mm and σ∗diamDiff reduced to 0.347.

Criterion n µdiamDiff σdiamDiff µ%−diamDiff σ%−diamDiff

Diameter GTC 49 1.237 1.211 21.5% 20.9%
MMC15 49 0.014 1.056 1.3% 15.7%

Table 5: Mean value, µdiamDiff , and and std, σdiamDiff , of the diameter dif-
ferences between manual and automatic detection. µ%−diamDiff and
σ%−diamDiff is the average and std of the diameter differences divided
by manual detected diameter in %.

Figure 31 and 32 presents Bland-Altman plots [5] of the error in the detec-
tion of the Carotid vessel diameter using GTC and MMC1.5 respectively,
together with the conventional scatter plots. In nearly all the datasets the
diameter detected by GTC is overestimated as most points lie above the
equality-diagonal in the scatter plots. In the MMC1.5 scatter plots however,
the points lie closer to the diagonal The mean in the MMC1.5 Bland-Altman
plot is 0.014 mm compared to 1.237 mm in the GTC Bland-Altman plot,
see table 5.
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(i) GTC

(ii) MMC1.5

Figure 30: Upper histograms in showing differences between manual vs GTC (i)
and manual vs MMC1.5 (ii) in diameter measurement at four different
ecg trigger points (GTC/MMC1.5 - manual). Lower histograms show-
ing differences between manual vs GTC (i) / MMC1.5 (ii) in diameter
measurement, averaged over the four ecg trigger points.
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(i) GTC

(ii) manual vs GTC (iii) manual vs GTC

Figure 31: Bland-Altman plot and conventional scatter plots of the difference
between manual detection and automatic detection using GTC. (ii)
show plots the manual detected diameter in 4 ecg trigger points against
automatic detected diameter in the same trigger points, while (iii)
shows the diameters averaged over the 4 ecg trigger points.

49



4 RESULTS

(i) MMC1.5

(ii) manual vs MMC1.5 (iii) manual vs MMC1.5

Figure 32: Bland-Altman plot and conventional scatter plots of the difference
between manual detection and automatic detection using GTC. (ii)
show plots the manual detected diameter in 4 ecg trigger points against
automatic detected diameter in the same trigger points, while (iii)
shows the diameters averaged over the 4 ecg trigger points.
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4.2.3 Computation time

The Profiler in Matlab was used to record the computation time of the var-
ious algorithms. The testing was done on a 1.40GHz Pentium M processor.
The times are displayed in table 6. The improvement on MMC2 has de-
creased the computation time (MMC2new vs MMC2old). The MMC2new

and MMC1.5 computation time is still high compared to the computation
time of the other criteria.

Filename HC Gradient Transition MMC2old MMC2new GTC MMC1.5
[sec] [sec] [sec] [sec] [sec] [sec]

rv1 3 0.88 1.00 70.37 26.87 0.74 20.68
da2 3 0.57 0.71 48.70 17.83 0.50 13.53
dh1 3 0.60 0.83 50.76 20.69 0.48 15.30
pd1 3 0.53 0.69 47.70 19.03 0.59 13.01
mv1 4 1.52 1.45 89.37 35.20 0.97 24.14
mt1 3 0.75 1.02 62.73 24.96 0.77 17.91
ds1 3 0.61 0.81 53.49 19.69 0.56 14.85
dsj1 3 0.90 1.22 80.40 29.79 0.88 26.28
vt1 3 0.73 0.95 65.59 25.34 0.78 18.41
bl1 3 0.68 0.95 60.78 24.61 0.66 18.53
vvl1 3 0.62 0.90 52.83 20.36 0.58 14.26

Table 6: The time consumption of the various criteria for the datasets tested on
in the autumn project, containing 3-4 heart cycles (HC).

4.3 Feasability study - Brachialis wall detection.

The various criteria implemented in the autumn project (MMC2), in this
thesis (GTC and MMC1.5), and the already existing criteria (Transition
and Gradient) were tested on ultrasound images of the Brachialis artery to
see whether the edges can be detected using the AVDA and hence improve
the efficiency of the FMD analysis. Figure 33 and 34 show the result of
the automatic wall detection with the various criteria. The results on more
datasets can be seen in Appendix C.3. The Gradient criterion seems to give
the best result in these images.

In figure 35, the detected Brachialis artery walls and accompanying esti-
mated diameters using the Gradient criterion are shown. The images are
taken according to the HUNT fmd-protocol. Image (i) is taken before
putting on the cuff, image (ii) is taken approximately 30 seconds after the
release, image (iii) approximately 60 seconds after the release and image (iv)
2.5 minutes after releasing the cuff.
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(i) (ii)

(iii) (iv)

(v)

Figure 33: Detecting the Brachialis vessel wall using the various external cost
criteria: Transition (i), Gradient (ii), GTC (iii), MMC1.5 (iv) and
MMC2 (v).
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(i) (ii)

(iii) (iv)

(v)

Figure 34: Detecting the Brachialis vessel wall using the various external cost
criteria: Transition (i), Gradient (ii), GTC (iii), MMC1.5 (iv) and
MMC2 (v).
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(i) (ii)

(iii) (iv)

Figure 35: RF image and accompanying detected diameter in beam number 4
using the Gradient criterion in images taken according to the HUNT
fmd-protocol, see section 3.3, (i) before putting on the cuff, (ii) 30 sec
after release, (iii) 60 sec after release and (iv) 2.5 min after release.
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5 Discussion

In this chapter there will be an evaluation of the results presented in the
previous chapter.

5.1 Edge detection

In this subsection there will first be an evaluation on the interobserver re-
sults, before the aspects of the two implemented edge detection criteria are
discussed. Finally, there will be a discussion on the common issues concern-
ing both the GTC and MMC1.5 algorithms.

5.1.1 Interobserver

Manual detection of the intima-lumen boundary was done by two different
observers allowing for studies on interobserver differences. Figure 27 indi-
cates that the posterior wall is the easier wall to detect, whilst finding the
anterior wall is more complex; the variance between the two observers is
greater in the anterior wall than in the posterior wall. The reason for this is
probably because in most images the posterior wall has a sharper edge than
the anterior wall. This is due to the pulse tail that causes the intima-lumen
boundary in the anterior wall to be affected by the echoes from adventitia,
see section 2.2.4. The higher variance in interobservability in manually de-
tection of the anterior wall alludes that automatically detecting the anterior
wall will also be more difficult than detecting the posterior wall.

As seen from above, using the manual detected points as a golden standard
is necessarily not correct, something that has to be taken into account when
evaluating the automatic detection algorithms.

5.1.2 GTC algorithm

The images presented in the results section 4.1, figures 23, 24 and 25, indi-
cates that the algorithm is not a very good criterion for detecting the intima-
lumen interface. In datasets 5 the GTC algorithm fail completely to detect
both the anterior and posterior wall, whereas for the other datasets the cri-
terion approximately detects either the anterior or the posterior wall. The
images in the results chapter and in appendix C.2 shows that the criterion
often incorrectly detects the edge to be at the media-adventitia transition
instead of the intima-lumen transition.
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All three histogram in figure 28 (i) have a bias, and are asymmetric around
the bias. Studying the histograms shows that the anterior intima-lumen in-
terface is detected to be somewhere within the wall in all but two datasets,
the mean value of the detection error when comparing to manual detection
is 1.078 mm and the std is 0.828 mm. For the posterior wall, however, the
detection seems better, in some of the datasets the edge is detected correctly,
and in the rest, the edge is detected to be somewhere within the wall (bias is
-0.577 mm and std is 0.704 mm). As in most incidents both the anterior and
posterior wall are detected to be within the vessel wall, the vessel diameter
is overestimated by using the GTC algorithm, with as much as 30.4% error
on average. This is illustrated in the histogram in figure 28 (i). The same
is indicated in the histograms in figure 30 (i) where automatically detected
diameter is compared with manual detection in 49 datasets; the diameter is
mostly overestimated by the GTC criterion.
The Bland-Altman plot in figure 31 (i) illustrates the error in the detection;
the points are centered around a mean value of 1.237 mm instead of 0 mm,
and the points are spread out with a large std of 1.211 mm. In the con-
ventional scatter plots in (ii) and (iii) it is easily seen that nearly all the
diameters are overestimated as the points lie above the equality-diagonal,
meaning that the detection of the anterior and/or posterior intima-lumen
interfaces are detected erroneously.

This method was presented as a promising method for automatic detection
of the heart wall in cardiac ultrasound [24] and for detecting the Coronary
vessel wall in intravascular ultrasound [20], as explained in section 2.3.2.4.
In vascular ultrasound however, this method does not seem very promis-
ing. The reason for this is probably because when imaging the Coronary
vessel wall and the heart wall, there is only one hypoechoic-echogenic tran-
sition, whereas in vascular imaging with visible intimalayers, there are two
hypoechoic-echogenic transitions and the media-adventitia interface has the
highest gradient. It seems as the gradient part overrules the STD part in
the GTC criterion, equation 19, and hence the edge is often detected to be
at the media-adventitia interface.

Another issue is that it seems as the parameter tuning might have failed,
as there is a lot of fluctuation in the detection. The variances in the GTC
parameter tuning were large, see table 8 in appendix B.1. A high variance
in the parameter tuning indicates that there will be a high variance in the
detection, and this might explain why the method does not seem to work.
To overcome the problem with the gradient part of the criterion detecting the
media-adventitia boundary, the wstd was driven up, suppressing the gradient
part. In addition a large window length seemed to give the best result.
However, a large window length causes the weighting of the gradient part to
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be even more reduced. It is the gradient that detects a leap in intensity, and
so the weighting on this part should probably have been larger. What seems
to be the result of trying to force the GTC to detect the intima-media layer
instead of the media-adventitia layer, is an algorithm that fails completely
most the time.

5.1.3 MMC1.5 algorithm

From visually studying figures 23 and 24, (iii) and (iv), the MMC1.5 al-
gorithm seems to detect the correct intima-lumen boundary for both the
anterior and the posterior wall. The images in figure 25 demonstrates that
the algorithm often detects the wall correctly or with a small error(datasets
7, 13, 14 and 19). In some of the datasets, the algorithm fails completely to
detect either the anterior or the posterior wall. In dataset 5, for example,
the algorithm fails in detecting the anterior wall and instead detects on a
structure further into adventita. The reason for this might be that there is
a highly echogenic streak above the detected point, with another echogenic
line underneath. This correlates with the model with 1.5 Gaussian curves
and hence the criterion detects this to be the edge. Another reason for the
erroneous detection might be that there is no echo at the crossing of the
beam and the correct intima-lumen boundary, as illustrated in the same
dataset, number 5 in figure 25. In other images the MMC1.5 algorithm
sticks to an artifact in the lumen, for example dataset 16 in figure 25. The
reason for this is probably that the artifact has a echo intensity curve that
matches with the model.

Studying table 4 and the histograms in figure 28 (ii) indicates that the
MMC1.5 algorithm in most cases detects the anterior wall a bit too far into
the wall (µant equals -0.438 mm and σant is 0.591 mm). In some datasets the
detection fails completely, after removing these the bias reduces to -0.281
mm and std to 0.223 mm. Looking at the histogram of the detection error
in the posterior wall, the MMC1.5 seems to detect the intima-lumen more
correct when compared with manual detection(µpost is -0.041 mm and σpost

is 0.582 mm). After removing the datasets where the algorithm fails com-
pletely to detect the posterior intima-lumen boundary, the edges are often
detected correctly or with a slight error, (bias of -0.010 mm, and the std has
decreased to 0.290 mm).
Excluding the cases where the detection fails completely, the MMC1.5 method
seems to be more precise in the detection on the posterior than the anterior
wall. This is in coherence with what was seen in the interobserver differ-
ences above, and also what is explained in the theory in section 2.2.4. The
boundary is more clear in the posterior wall, as the edge is not affected by
the echoes from adventitia. Therefore the intensity signature in the poste-

57



5 DISCUSSION

rior wall probably correlates more with the model than the signature in the
anterior wall where the echo is affected by the pulse tail.

The detection of the vessel diameter seem to be overestimated in most cases,
compared with manually detected diameter, there is a bias of 0.397 mm and
std is 0.771 mm, see histogram in figure 28 and table 4. The reason for the
diameter overestimation is that for both the anterior wall and posterior, the
intitma-lumen boundary is often detected to be a bit further into the wall
than the manually detected boundary. When the MMC1.5 detection fails
in either the anterior, posterior or both walls, the diameter detection fails.
This means that the diameter detection fails more frequently. After remov-
ing the datasets where the detection in either the anterior or the posterior
wall fails completely, the std is reduced from 13.6% to 5.8%(0.323 mm) when
relating the detection error to the actual vessel diameter.

As seen above, in some datasets the MMC1.5 algorithm fails completely to
detect the wall, and sticks to either a bright structure somewhere within the
wall, or an artifact in the lumen. This implies that the signature correlates
with the model at these candidate points or that there is no visible intima
layer at in the selected beam.

The reason why, in some dataset, both the anterior and posterior intima-
lumen boundary are detected to be a bit further into the wall, compared
with manual detection, could be that the candidate point might have been
positioned incorrectly in the model. The candidate point was placed at what
seemed correct position in the model, but this might not be in agreement
with the visual boundary when looking at the ultrasound images. In other
words, the model matching method might detect the edge correctly accord-
ing to the model, but not in accordance with the manual detection.

The results of the comparison between automatic detected diameter and the
diameter detected manually in the 49 datasets supports the results from the
verification above. The histograms in figure 30 indicates that the method
is good in most cases, whilst fails completely in some. The mean value of
the diameter difference (MMC1.5 - manual detection) is 0.014 mm, that is
a bias of 1.3% when relating to true vessel diameter. The std is quite large,
1.056 mm, but is reduced to 0.347 mm after removing the 12 outlays. In
the Bland-Altman plot in figure 32 most of the points are positioned close
to the middle value. This is also seen the conventional scatter plots in the
same figure, most points are close to the equality-diagonal. Studying the
conventional scatter plots one can note that diameters larger than 7 mm are
all underestimated by the MMC1.5.
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5.1.4 Issues concerning both GTC and MMC1.5

An issue when verifying the methods is that the detection was only done on
one of the eight beams. These beams were selected to be good beams for
manually detecting the vessel diameter in the Asklepios study. This manual
selection, however, does not always correspond with the criterion for which
beam is best suitable for automatic detection; that there is a clearly visible
intima-lumen boundary. When testing the automatic detection on all eight
beams in a dataset, the detection often works in some of the beams and fails
in others. This is illustrated in figure 26, the detection on beam number 4
(the selected beam), has an intima-lumen boundary that is hardly visible
and the detection fails. On the neighboring beams however, the boundaries
are detected correctly. Perhaps that instead of the user selecting one beam
before detecting on it, a better approach would be to do the detection on
all eight beams first, followed by the user selecting the best beam to work
with.

Another issue is that the AVDA is temporary, it does not look across the
beams. In the methods presented by Gustavsson et al. [13] and Liang et
al. [19], boundary continuity is a cost criterion. By including this criterion
the edge detected on one beam coincide with the edge detected in the other
beams, which prevents leaps where one beam is detected incorrect while the
others are detected correctly, resulting in a smoother obtained boundary. In
addition, the algorithm could be adaptive and learn from where the edge
was detected on the previous beam, leading to a reduction in the search area
for this beam.

The diameter verification on the 49 datasets, where comparing manually de-
tected diameter and automatically detected diameter does not always show
whether the boundary detection using the implemented criterion is done cor-
rectly. As seen from above, in both the automatic methods implemented,
the detection might fail in either the anterior or posterior wall, and hence the
detected diameter is incorrect and the verification on these datasets fails.
It is shown above that the detection on the posterior wall is better than
the detection on the anterior wall. This does not appear from the diame-
ter verification. However, this kind of verification is good as a secondary
verification method where the results support the outcome of the primary
verification method.

Computational performance
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As seen from table 6, the computational performance for MMC2 has been
improved by more than 50%. The goal of improving the computational cost
of the AVDA using this criterion was therefore acheived. However, both the
model matching criteria are still very timeconsuming compared to the other
criteria, and more work on the code will probably make it more optimal.

5.2 Feasability study - Brachialis

A study of the Brachialis vessel images in figures 33 and 34 was done to see
whether it is possible to use the AVDA for detecting the Brachialis vessel wall
and which criterion is best under these circumstances. The Transition crite-
rion seemed to fail on all the beams in the selected datasets. The MMC1.5
and MMC2 seems to underestimates the diameter as both the anterior and
posterior wall was detected a bit into the lumen. In Brachialis recordings,
the intimalayer is hardly ever visible, the layer is much thinner than the
intimalayer in Carotid. This makes the echo intensity signature different
from the Carotid signature, hence the models in MMC1.5 and MMC2 are
probably not good models for finding the vessel wall in this kind of images.
The GTC criterion seems to fluctuate, it detects correctly on some beams,
while fails on other. The Gradient criterion, developed by Rabben [23], how-
ever, seems to be the best criterion for a robust detection of the Brachial
diameter as the detection seems to be correct on nearly all the beams in the
various images.

Testing the Gradient criterion on recordings taken according to the HUNT-
protocol demonstrates that it is possible to measure the diameter change
during a heart cycle and it is also possible to measure the difference in
diameter for the different recordings, as shown in figure 35.
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6 Conclusion

The aim of the thesis was to develop a fully automatic algorithm that ro-
bustly identifies the carotid artery wall boundaries throughout a heart cycle.
This was done by implementing two different edge detection criteria; the
GradTrans Criterion, (GTC), and the Model Matching Criterion with 1.5
Gaussian Curves (MMC1.5).

The validation of the results allude the most promising of the two proposed
criteria to be the MMC1.5 method. The diameter bias when comparing to
manual detection is 0.014 mm, which is a mean error of 1.7% when relating
to the actual vessel diameter. The std is quite high, 1.056 mm, 15.7% when
relating to the vessel diameter. The major problem of the MMC1.5 criterion
is that occasionally the algorithm fails completely; the edge is detected to
be at a structure further into the wall or at an artifact in the lumen. After
removing these outlays, the diameter bias increased to 0.146 mm but the std
reduced to 0.347 mm.The algorithm has to be improved further to be more
accurate, and to be more robust to overcome the problems with complete
failure.

The GTC method, however, does not seem to work very promising for this
purpose; the vessel diameter is overestimated in most of the datasets as the
edges are detected to be within the vessel wall.

The strength of the Automatic Vessel Detection Algorithm (AVDA) is that
it is fully automatic, with no user interaction required. Further development
of the MMC1.5 criterion making it less time consuming and more robust,
might improve the accuracy and robustness of the AVDA.

The results of the feasability study on the Brachialis vessel seems promising
when using the Gradient criterion. It is possible to automatically measure
diameter changes throughout a heart cycle as well as measuring the differ-
ences in diameter between recordings. This implies that the AVDA using the
gradient criterion might improve the efficiency of Flow Mediated Dilation
(FMD) measurements.

Further work could include:

• The aim of this thesis was to implement a method that function on high
quality images with a visible intima-layer. It will therefore probably
not provide the same results on poor images, like images of old or
overweight people, where the quality of the recordings often are much
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lower. Further work could include expanding the AVDA to work on
both high quality and low quality ultrasound images.

• As the MMC1.5 method seems to succeed in finding the correct intima-
lumen interface in at least one of the eight beams, I propose that the
vessel wall detection to be done on all eight beams first, and then select
the most suitable beam to work with.

• Expanding the algorithm to find both the intima-lumen and the media-
adventita transitions, to be able to measure both inner and outer di-
ameter as well as intima media thickness, could be part of further
work.

• Another improvement could be to integrate a criterion for boundary
continuity, like proposed by Gustavsson [13] and Liang [19]. It is
known that the edge should be at approximately the same depths as
the neighboring beams, and hence learning between the beams could
be used to improve the detection.
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A Appendix A

A.1 Displacement estimator

This is taken from [25].

The RF-signal is denoted by si(z), where z is a certain depth from the
transducer and corresponds to the elapsed time after pulse transmission
and i is the pulse number. si(z) is complex demodulated:

s̃i(z) = LPF
{
si(Z)e−j2πfm2z/c

}
(22)

where LPF. represents a low-pass filter, j =
√
−1, c is the speed of sound

and fm is the demodulation frequency. s̃i(z) is a low-frequency complex
signal with in-phase and quadrature components(IQ data). The RF center
frequency is estimated as follows:

f̂0 = fm +
6 R̂(1, 0)

2π
f̃s (23)

where f̃s is the sampling frequency of the complex demodulated signal s̃i(z),
6 denotes the phase angle and R̂(1, 0) is the estimate of the complex-valued
correlation of s̃i(z) in the range direction. The last term on the right hand
side is an estimate of the mean frequency of the quadrature demodulated
signal, and corresponds to the deviation between the demodulated frequency
fm and the RF center frequency. To estimate the displacement:

∆̂z =
1
2

6 R̂(1, 0)
2π

c

f̂0

(24)

where R̂(1, 0) is a complex-valued correlation estimate of s̃i(z) at a cer-
tain depth z. This differs from the conventional autocorrelation method in
that the demodulated frequency fm is replaced by the estimated RF center
frequency f̂0. To determine the complex-valued correlation function R̂ in
equations 22 and 23, the sample mean estimator is used:

R̂(m′, n′) =
1

M −m′
1

N − n′

M−m′−1∑
m=0

N−n′−1∑
n=0

s̃n(m)∗s̃n+n′(m + m′) (25)

where m′(≥ 0) and n′(≥ 0)are the spatial and temporal lags, while M ×N
is the estimation window.
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B.1 Parameter tuning

An overview of the datasets (from DatasetsParam) that are used in the pa-
rametertuning of GTC and MMC1.5.

Filename Beams used (b1 , b2)
rv1 4, 5
da2 3, 6
dh1 3, 4
pd1 3, 4
mv1 1, 2
mt1 2, 4
vt1 2, 5
ds1 1, 2
bh1 2, 6
dsj1 2, 3
me1 7, 8
bd1 1, 8
rp2 4, 6

Table 7: An overview of the datasets used for tuning the parameters; Filename
and beams with visible intimalayer.
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Filename WL(b1/b2) wO(b1/b2) wstd %AntAmp %PostAmpp
rv1 25/27 0/0 0.9/0.9 40/44 38/39
da2 27/NaN 0/NaN 0.9/NaN 15/NaN 32/NaN
dh1 27/27 0/0 0.9/0.9 47/47 NaN/42
pd1 27/27 0/0 0.9/0.9 26/21 65/53
mv1 27/27 0/0 0.9/0.9 34/43 NaN/NaN
mt1 27/27 0/0 0.9/0.9 48/58 51/52
vt1 27/27 0/0 0.9/0.9 45/45 45/NaN
ds1 27/27 0/0 0.9/0.9 27/44 49/49
bh1 NaN/27 0/0 0.9/0.9 NaN/43 NaN/49
dsj1 27/27 0/0 0.9/0.9 48/49 48/33
me1 27/25 0/0 0.9/0.9 NaN/41 41/44
bd1 NaN/21 0/0 0.9/0.9 48/40 NaN/15
rp2 27/27 0/0 0.9/0.9 23/NaN NaN/38
µ 27 0 0.9 40 43
σ 1.34 0 0 10.85 10.68

Table 8: An overview of the tuning of the GTC parameters; filename, window
length in points (WL), weighting outside (wO), std weighting (wstd), %
amplitude of anterior wall (%AntAmp) and % amplitude of posterior
wall (%PostAmp).

Filename WL(b1/b2) θ1 (b1/b2) %AntAmp %PostAmp

rv1 21/21 15/10 46/47 45/50
da2 21/NaN 15/NaN NaN/NaN 48/NaN
dh1 21/21 15/15 50/42 NaN/42
pd1 21/21 10/10 48/52 52/52
mv1 21/21 10/15 47/49 36/NaN
mt1 21/21 15/15 50/50 50/40
vt1 21/21 5/5 50/50 50/50
ds1 21/21 15/15 42/50 50/50
bh1 21/21 10/15 45/48 45/49
dsj1 21/21 15/15 40/40 40/40
me1 21/21 15/15 35/NaN 36/46
bd1 NaN/NaN NaN/NaN NaN/NaN NaN/NaN
rp2 21/21 15/15 45/47 37/42
µ 21 13 46 45
σ 0 3.28 4.34 5.44

Table 9: An overview of the tuning of the MMC1.5 parameters; filename, window
length (WL) in points, offset value (θ1) in points, % amplitude of anterior
wall (%AntAmp) and % amplitude of posterior wall (%PostAmp).
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C.1 Datasets

An overview of the 22 datasets selected from DatasetsV er that are used in
the verification of the vessel wall detection criteria.

Dataset Beam Frame (ecg-triggerpoint) Heart cycles
1 4 43 3
2 5 43 3
3 5 45 3
4 6 42 3
5 7 36 3
6 5 24 3
7 6 28 3
8 4 25 3
9 4 25 3
10 4 41 3
11 5 25 3
12 4 29 3
13 5 40 3
14 4 45 3
15 5 37 3
16 4 48 3
17 4 29 3
18 5 56 3
19 5 26 3
20 5 26 3
21 6 66 3
22 4 52 3

Table 10: An overview of the datasets used; Dataset number, beam used in verifi-
cation, frame used in the verification (one ecg-trigger point) and number
of heart cycles.
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C.2 Verification datasets

In this appendix, the visual results in datasets not presented in the results
chapter are presented.

(i) GTC (ii) MMC1.5

1

2

3

6

Figure 36: Carotid wall detection on dataset 1, 2, 3 and 6 using GTC (i) and
MMC1.5 (ii) criteria.
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(i) GTC (ii) MMC1.5

8

9

10

11

Figure 37: Carotid wall detection on dataset 8, 9 10 and 11 using GTC(i) and
MMC1.5 (ii) criteria.
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(i) GTC (ii) MMC1.5

12

15

17

Figure 38: Carotid wall detection on dataset 12, 15 and 17 using GTC (i) and
MMC1.5 (ii) criteria.
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(i) GTC (ii) MMC1.5

20

21

22

Figure 39: Carotid wall detection on dataset 20, 21 and 22 using GTC (i) and
MMC1.5 (ii) criteria.
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C.3 Brachialis datasets

(i) (ii)

(iii) (iv)

(v)

Figure 40: Detecting the Brachialis vessel wall using the various external cost
criteria: Transition (i), Gradient (ii), GTC (iii), MMC1.5 (iv) and
MMC2 (v).
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(i) (ii)

(iii) (iv)

(v)

Figure 41: Detecting the Brachialis vessel wall using the various external cost
criteria: Transition (i), Gradient (ii), GTC (iii), MMC1.5 (iv) and
MMC2 (v).
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