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Abstract

This thesis is divided into two parts, the design of a practical first order open loop Σ∆ modu-
lator using discrete components, and simulation of a third order OLSD ADC to investigate the
consequences of circuit imperfections - and determining circuit requirements if the ADC should
be used in a GSM system.

The practical modulator is designed as a first order OLSD ADC, with standard discrete
components such as operational amplifiers and switches, and a microcontroller with a built in
ADC. The practical circuit uses surface mount capacitors with a tolerance of 20%, resulting in
poor matching and inaccurate behavior of the modulo integrator. Despite the poor matching,
the OLSD ADC shows a distinct noise shaping, with a slope of about 20dB per decade. The
quantization noise is not the dominating noise source in the circuit, and the quantizer resolution
must to be set to four bits or less to achieve any improvement in performance over the standard
ADC.

The third order modulator is modeled and simulated at a behavior level using VHDL-AMS.
The ideal circuit confirms the results from the preliminary project [12], where the quantizer
resolution had to be equal to or larger than the modulator order to obtain proper noise shaping.
The simulations shows that the ideal third order modulator with a four bit quantizer can achieve
a SNR of 88.51dB, and an ENOB of 13.78bits within a 200kHz band.

The third order modulator is simulated with circuit imperfections to determine the effect
of these when there is no feedback present. Introducing finite gain in the integrators results in
harmonic distortion at the output. This harmonic distortion is a result of leakage of the internal
reset signal in the integrators. By setting the gain in all three integrators to 2OSR = 42dB,
the SNR of the third order modulator sinks to 71.74dB. The gain in the first integrator is
increased to 60dB, and the SNR raises to 84.52dB. The first integrator is the most crucial to
the performance of the modulator, as is the case for conventional Σ∆ ADCs.

The circuit is also simulated with capacitance mismatch and comparator offset in the modulo
integrator. These two imperfections results in the same error - the output voltage from the
integrator differs from the ideal case. Simulations show that the total voltage error should be
significantly less than 0.5VLSB to obtain the noise shaping. If the integrator output error is too
large, the noise shaping will totally disappear.

In general, it has been proved that the OLSD modulator with modulo integrators works as
intended, the quantization noise is shaped like in conventional Σ∆ modulators. The modulator is
very sensitive to capacitor mismatch and parasitics. The effect of these capacitor imperfections
will increase as the quantizer resolution increase, because the error will cover more units of VLSB .
It is important to minimize these capacitor effects, as increased quantizer resolution will allow a
greater input signal swing.
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Chapter 1

Introduction

1.1 Background

There are a lot of different ways to perform Analog-to-Digital conversion. A very popular
architecture is the Σ∆ converter. Σ∆ converters use oversampling and feedback through a
loop filter to shape the quantization noise in the wanted signal band. This gives more relaxed
requirements for the analog part of the circuit. A variety of different architectures have been
developed, but there have been very few attempts to perform Σ∆ modulation without feedback.
Without feedback there is no DAC, and the problems with non-linearity in the DAC is gone.
This is especially important when using a multibit quantizer because the DAC has to have the
same linearity as the wanted output linearity.

One attempt to perform open loop Σ∆ modulation is done in [9], where the integrator has
been replaced with a frequency modulator. It is stated that this frequency modulator behaves as
a modulo-n integrator, and no feedback is needed to prevent saturation. One of the conclusions
in [9] is that the problem with non-linearity in the DAC is moved to making a linear frequency
modulator.

1.2 Thesis outline

In this thesis a solution for a modulo integrator [3] is presented. The modulo integrator is
described at a circuit level, and the basics of the modulo operation is explained through equations.
This modulo integrator is the fundamental unit of the proposed architecture for performing open-
loop Σ∆ modulation.

1.2.1 Background theory

A preliminary project was performed during the autumn of 2005. The basic theory of quanti-
zation and Σ∆ modulation (standard and open-loop) is revised in appendix A. If the reader is
unfamiliar with analog-to-digital converting, and the open-loop architecture, it is recommended
to read appendix A before reading this thesis.

1.2.2 Design of a practical OLSD with discrete components

To prove that the OLSD modulator with a modulo integration works, a practical modulator is
designed using standard, discrete components and a computer running matlab [1].

1



CHAPTER 1. INTRODUCTION 2

1.2.3 Simulation of an ideal third order OLSD in VHDL-AMS

To further investigate the OLSD architecture a third order modulator was described and simu-
lated using VHDL-AMS. The different building blocks were simulated to ensure correct operation,
before simulating the whole modulator.

Modeling of errors in the third order modulator

The third order modulator was introduced to circuit imperfections by modeling some of the
common imperfections at a behavioral level. The imperfections modeled is given in the following
list.

• Finite integrator gain

• Capacitor mismatch and parasitics

• Comparator offset in integrators

1.2.4 Specifications for use in a GSM system

Finally the third order modulator was simulated with the worst case errors to see if it could
fulfill the requirements in a GSM system. The basic requirement is that is has to have at least
70dB SNR within a 200kHz band ([10] and [5]).



Chapter 2

Notes on open loop Σ∆
modulation

In [12], simulations showed that the ideal OLSD ADC worked properly by the use of a modulo
integrator and a modulo differentiator, with a quantizer in between. The OLSD modulator was
also shown to be identical in operation because the modulo operations became transparent1

under ideal conditions. The derivation of the proof can be seen in appendix A.4.
In [12], the simulation results also showed that the noise shaping in the OLSD modulator

disappeared if the quantizer resolution, n, was equal to or less than the order of the modulator.
As soon as n got larger than the modulator order, the noise shaping came back (also dependent
on the input signal level). An answer to why this happens may be found in [7]. Here it has been
calculated that for a 2nd order non-feedback Σ∆ DAC there is five possible output levels, hence
a resolution of three bits is necessary. It is also stated that it is possible to use a resolution of
two bits if one reduces the input swing and adds a little bias.

By using 2.1 and 2.2 it is shown in [7] that the output from a second order non-feedback Σ∆
DAC is as in equation 2.3.

yn = q(
n∑

k=0

(
k−1∑

l=0

(xl − yl)− yk−1)) (2.1)

q(x) = x−mod2N (x) (2.2)

yn = xn−1 − (mod2N (
n∑

k=0

k−1∑

l=0

xl)− 2mod2N (
n−1∑

k=0

k−1∑

l=0

xl) + mod2N (
n−2∑

k=0

k−1∑

l=0

xl)) (2.3)

By setting

S =
n−2∑

k=0

k−1∑

l=0

xl (2.4)

the mod2N functions in equation 2.3 may be substituted by

1The modulo differentiator cancel out the reset from the modulo integrator, as if no reset happened at all.

3
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mod2N (S) = S (2.5)
mod2N (S) = S + 2N (2.6)
mod2N (S) = S + 2N+1 (2.7)

It is then shown that yn ∈ [0, 2N , 2 ∗ 2N , 3 ∗ 2N , 4 ∗ 2N ] using the above results.
This is an understandable result when working with DACs, but in the ADC, things get a

bit more complicated due to the infinite amount of possible input levels. If the output from
the modulo integrator is reset, and the resulting output voltage is in the same range as the
previous output voltage (for example Vref

2 + Vref = 3Vref

2 − Vref = Vref

2 , the quantizer may end
up quantizing those two voltages to the same value. The result from the differentiation will then
be zero, even though there was a input voltage larger than zero that caused the integrator to
reset. This means that when a high input voltage causes a reset in the integrator, there is a
possibility that the resulting voltage will be quantized to the same value. It is therefore necessary
with greater resolution in the quantizer to separate two close levels, or one can reduce the input
signal swing. It is however impossible to avoid the exact situation where two adjacent samples
are exactly the same value, but this may be assumed to be rare for a busy and non-zero input
signal.



Chapter 3

The modulo integrator

The modulo integrator [3] is the fundament of the proposed open-loop Σ∆ ADC. In [9], a open-
loop modulator has been constructed by the use of a frequency modulator instead of a modulo
integrator. It is however stated that the frequency modulator behaves as a modulo integrator, and
that the non-linearities in the frequency modulator adds directly to the signal. By constructing
a modulo integrator with switched-capacitor technology it should be possible to obtain better
linearity than the frequency modulator.

3.1 Description of the modulo integrator

The modulo integrator is an integrator that resets and keeps the remainder if the output voltage
exceeds a specified limit. For a single ended integrator, as the one that is proposed here, two
basic operations are needed to perform the modulo operation, subtraction of two voltages and
detection of the overloading of the integrator. The latter operation can easily be implemented
by a comparator, but the subtraction is a bit more difficult. If the maximum value of the output
is named Vr, we need to add the voltage −Vr to the output, and then start integrating from that
new value. Hence, the circuit needs to remember the last voltage after reset. This is difficult
when working with voltages and the circuit would become rather complicated.

After conversations with [4], a method to perform modulo integration was derived. In a
common switched-capacitor integrator the output voltage is a result of the charge stored in the
integration capacitor. This capacitor holds the previous values of the input samples, hence no
voltage needs to be remembered. When the integrator overloads, the output voltage is not able
to reach the desired value, and one would think that signal information is lost. This is not
necessarily true since the information is stored in the integration capacitor. To perform the
reset and keep the remainder, one needs a reset circuitry which triggers when the output voltage
exceeds the specified limit, and drains a charge that corresponds to the full scale voltage from
the integration capacitor. The output voltage will then drop by Vr, and the remaining voltage
is kept.

The schematic of the proposed modulo integrator is shown in figure 3.1 (based on figure 3
in [3]). The reset circuitry is shown inside the dotted box. An extra non-overlapping clock is
needed to be sure that the reset happens at a desired time, not interrupting the normal operation
of the integrator. During φ1, capacitor C3 is charged to Vref , with a reverse polarity in respect
to C2. When the comparator triggers, the charge stored in C3 is subtracted from C2, leaving
the remaining charge behind. It is very important that C2 and C3 are well matched for this
operation to be accurate.

5



CHAPTER 3. THE MODULO INTEGRATOR 6

Figure 3.1: Schematic of the proposed modulo integrator
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3.2 Behavior of the modulo integrator

From figure 3.1 one can see that the integrator itself (apart from the reset circuit inside the
dotted box) is a non-inverting delaying integrator (pp404-405 in [8]), with a transfer function as
given in equation 3.1 (equation 10.21 in [8]).

H(z) =
Vo(z)
Vi(z)

=
(

C1

C2

)
1

z − 1
(3.1)

This means that as long as no reset occurs, the modulo integrator behaves identically to
a normal non-inverting delaying integrator. This is also true after a reset, but the charge in
capacitor C2 will then be changed. The charge in C2 and C3 right before a reset occurs, is given
in equations 3.2 and 3.3.

Q2 = C2V
′
out (3.2)

Q3 = C3Vref (3.3)

When the comparator triggers, the switch opens and connects the negative node of C2 to the
positive node of C3. The result is that the charge in C2 will decrease as given in equation 3.4.

Q2,after reset = C2V
′
out − C3Vref = C(V ′

out − Vref ) (3.4)

which implies that the output voltage after the reset is equal to V ′
out − Vref .

If the maximum allowed input voltage is set to Vref (maximum signal swing without cor-
rupting the operation of the modulo integrator), the situation where both the output voltage
and the incoming sample are infinitesimally smaller than Vref may occur. This would ideally
result in an output voltage of about 2Vref , and the reset operation would bring it back to a level
below Vref . This requires a supply voltage of 2Vref , otherwise the output voltage will saturate
too early, and the charge transfer from C1 to C2 will not be able to complete. This is not very
favorable when working with low voltage CMOS processes and wanting as high signal swing as
possible.

In figure 3.1 the output of the comparator controls one switch only. This switch let the charge
flow between C3 and C2. If the charge transfer from C1 to C2 did not complete, as mentioned
earlier, the reset would bring the output voltage to a lower level than wanted causing errors in
the modulo operation. To solve this problem it is necessary to let the comparator output control
the switches clocked by φ2. This enables C1 to complete its charge transfer at the same time as
the reset occurs. By doing this, the supply voltage may be lowered without risking loss of signal
information. The supply voltage still have to be slightly higher than the reference voltage to be
sure that the comparator triggers even if offset and other non-idealities are present.

3.2.1 Non-idealities in the modulo integrator

As all other circuits, the modulo integrator will have non-ideal effects in it. It will have all
the effects known from the standard switched-capacitor integrator, and in addition the non-
ideal effects from the reset circuitry. The integrator itself, without the reset circuitry will have
parasitic capacitances on both sides of C1 and C2. These will not affect the integrator, as
described in pp405-406 in [8]. As seen in figure 3.2 the reset capacitor C3 will have two parasitic
capacitances, coming from the capacitance between the bottom plate and the substrate, and
the metal contacts for the top plate and the substrate. By having the bottom plate grounded,
the parasitic capacitance can be disregarded. This is the largest parasitic capacitance (up to
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approximately 20% of C(p395 in[8])). The top plate parasitic can not be disregarded as this
capacitance is charged to Vref during φ1. When the integrator resets, the charge in the top
plate parasitic will be subtracted from C2, introducing an error on the output. The size of
the top plate parasitic is about 1-5% of C (p398 in [8]). Assuming the worst case where the
parasitic is about 5% of C, the output voltage after a reset would be 5% lower than for the ideal
case. Depending of the resolution in the quantizer, this would possibly be quite critical for the
operation of the ADC. The higher resolution, the more units of VLSB would be covered by the
fault. If the integrator output has an error large enough to trigger a change at the quantizer
output, a false negative may occur. This can happen if the parasitic capacitance is too large.
When a false negative occurs, the modulo differentiator will believe that the input voltage was
much higher than it actually was - introducing a severe error at the output of the modulator.

The mismatch between C2 and C3 is also a factor that needs to be kept in mind. This
mismatch will result in the same fault that the parasitic capacitance causes. The output voltage
after a reset will be different from the ideal case. It is therefore very important to match
capacitors in addition to reducing the parasitic capacitances.

Figure 3.2: Schematic of the proposed modulo integrator with parasitic capacitances

The gain of the integrator is a factor that needs to be thought of during the design. When
having finite gain in the integrator, the integrator is not able to drive the output as high as it
ideally would be. Since the magnitude of the error will depend on the output voltage, it will in
some way be correlated to the input voltage and thus causing distortion.
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Practical first order modulator

A practical first order open loop Σ∆-ADC was constructed to test the open-loop theory in
practice. The analog part was made of regular discrete components while the quantizer and the
digital part consisted of a microcontroller with an internal ADC. The design also included a
RS232-interface to be able to transfer data to a computer and process it in matlab.

4.1 Integrator

The integrator was realized as a Switched-Capacitor integrator with discrete components. The
operational amplifier is a standard dual opamp, where the second amplifier is used as a com-
parator for the reset circuitry. The practical circuit does not clock the comparator by φ3 - the
microcontroller is controlling the reset by receiving an interrupt when the comparator toggles.
The microcontroller software then resets the integrator if a conversion is not in action. This is
possible since the software is generating the two non-overlapping clocks φ1 and φ2 which control
the integrator and quantization. The part list for the integrator is shown in table 4.1.

4.2 Quantizer and PC-interface

The quantizer was realized with an Atmel ATMega48 microcontroller [6]. This microcontroller
features a 10-bit successive approximation ADC, where one may choose to use fewer bits by
performing right shift operations on the conversion result. The reference voltage may be chosen
from an internal 1.1V reference or the analog power supply (typically 5V).

The PC-interface use the built in RS232-interface of the AVR microcontroller. The circuit
continuously transfer the sampled values as they are finished.

Operational amplifier Motorola MC34072 dual opamp (#1)
Comparator Motorola MC34072 dual opamp(#2)

Switches Maxim MAX392 integrated switches
Capacitors General surface mount capacitors (20% tolerance)

Power supply +10V lab supply and decoupling capacitors
Printed circuit board FR4 expoxy laminated circuit board

Table 4.1: Part list for the modulo integrator

9
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4.3 Differentiation in Matlab

To be able to maximize speed, the microcontroller only performs quantization. Every sample
is transmitted to matlab where the modulo differentiation is executed. A simple matlab script
receives the samples and put them into arrays. When the circuit has finished transmitting
samples, the script performs the modulo operation on these arrays. The block diagram of the
realized open loop Σ∆ ADC is shown in figure 4.1. The complete schematic can be seen in
Appendix C and the software for the microcontroller and matlab can be found in appendices
D.1 and D.2. Note that the complete schematics has a lot of wire connections by node names to
simplify the drawing.

4.4 Measuring method and results

4.4.1 The modulo integrator

The modulo integrator was put in a test bench to confirm correct modulo operation. The input
was a DC signal at 50mV and 100mV . The results can be seen in figure 4.2 where screen shots
from the oscilloscope is presented. It is clear that the output never exceeds the reference voltage,
which was set to 1.1V . The output is not zero after a reset, it is the value that would have been
above the reference if the reset did not occur. Note that the reset happens more often when the
input voltage is raised to 100mV .

4.4.2 The complete modulator

The open loop converter was put into a test bench with an adjustable power supply, a signal
generator and an oscilloscope. For every test the results from the standard quantizer was com-
pared to the result from the open-loop modulator. Every test performed here was run for 214

samples.
In figure 4.3 the output frequency spectrum is shown for the standard quantizer with four

bits resolution, and for the OLSD modulator. The input voltage was 0.1 + 0.05sin(2πf), where
f = 5Hz. The reference voltage was 1.1V and the sampling frequency was fs = 487Hz. The
noise floor in the two cases both lie on about −40dB, but the high frequency noise was shaped
a bit in the OLSD modulator. The general noise in the circuit was dominating in the pass band
though.

Analog modulo 
integrator

Atmel ATMega48 RS232
Computer with 

matlab

Clock1 and Clock2

Comparator out/reset in

Vin
Output/
ADC-in

Figure 4.1: Block diagram of the open loop Σ∆ ADC
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Figure 4.2: Left: Output from the modulo integrator with 50mV input. Right: Output with
100mV input.

In figure 4.4 the two spectrums are shown for a sampling frequency of 122Hz. The input
signal level, frequency and quantizer resolution was the same as in figure 4.3. This time the
noise in the OLSD modulator has a more distinct shaping. In figure 4.5, the same spectrum as
in figure 4.4 is shown with markings for easier readout of the magnitudes. From the figure one
sees that the slope of the noise is approximately 20dB per decade, which is the expected value
for a first order modulator.

In general, the modulator was very sensitive to different input voltages and quantizer resolu-
tion. For high sampling frequencies the noise floor raised quickly. To really see an improvement
in SNR from the OLSD, the quantizer resolution had to be set to four bits or less. Otherwise
the quantization noise was buried in other noise sources. With the right parameters the OLSD
modulator outperformed the standard quantizer, although the performance increase was not very
significant. One major source of error was the capacitors used in the modulo integrator. These
were surface mount ceramic capacitors with a tolerance of 20%. As mentioned in chapter 3, the
capacitor matching can be quite critical for the operation of the integrator.
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Figure 4.3: Output frequency spectrum of the standard quantizer (top), and from the open loop
modulator (bottom). F0 = 5Hz, Fs = 487Hz.
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Figure 4.4: Output frequency spectrum of the standard quantizer (top), and from the open loop
modulator (bottom). F0 = 5Hz, Fs = 122Hz
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Figure 4.5: Frequency output spectrum with markings for easier readout.



Chapter 5

Simulations in VHDL-AMS

The ADC was simulated at a behavioral level in VHDL-AMS, using Advance MS [2]. Each
module was implemented in such way that it easily could be replaced by a low level module
later. The behavioral model does not take much advantage of VHDL-AMS ability to simulate
analog circuitry together with digital. As the first switch in the first integrator samples the
signal, everything is in discrete time - and the behavior of the circuit is pure discrete. However,
if one should implement the modules at circuit level at a later time it is necessary to simulate
them as analog circuits.

5.1 The integrator

The modulo integrator is in fact modeled in the same way as a digital accumulator with reset.
The only difference is that the signal is represented by floating point numbers instead of integers.

5.1.1 Adding non-idealities to the integrator

Introducing non-idealities in the integrator is an important factor when determining the perfor-
mance of the ADC in a real circuit. The integrator was therefore modeled with adjustable gain
and comparator offset. Capacitance mismatch and parasitics were also modeled.

Integrator gain

To model the gain of the integrator, the output voltage is multiplied with a constant such that
Vout = V ′

out ∗ k. The constant is given in equation 5.1.

k =
1

1 + 1

10
gain
20

(5.1)

where gain is the dc-gain in decibels.

Comparator offset

The comparator offset is fairly easy to implement in the behavioral model. The comparator is
implemented as a simple if-then-else case, and adding offset means adding offset to the argument
of the if case.

15
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Capacitor mismatch and parasitics

The capacitance non-idealities are only modeled for the reset-circuit, since this is the only new
and unknown element of the integrator. When the integrator resets, the matching between C2

and C3 in figure 3.1 is very important. Modeling of the mismatch between these two capacitors
is done by subtracting a voltage different from Vref , when the reset occurs. The same operation
is done when adding the parasitic capacitance mentioned in chapter 3.2. The effect of these two
non-idealities is the same - the charge removed from C2 is different from Q = CVref .

5.2 The quantizer

The quantizer is modeled as a standard flash quantizer. (The model is generic, meaning that
the number of bits is easily manipulated. This makes it better suited for simulations where one
tries to find the optimal configuration of the ADC.) In figure 5.1, a 3-bit flash ADC is shown.
Note that there are 8, or 2N comparators.

5.3 The differentiator

The operation of the differentiator is quite simple when using unsigned representation of the
numbers. The behavior of the differentiator can be described by the following pseudo code.

d i f f e r e n c e = ( cur rent sample − prev ious sample ) ;
i f ( d i f f e r e n c e > modulo mask)

output = ( d i f f e r e n c e AND modulo mask ) −1
else

output = d i f f e r e n c e ;
end i f ;

The modulo mask in the code above is simply an array of ones, the length of (2N − 1). The
subtraction is performed by 1’s complement, that is x− y = x+not(y). If the result exceeds the
modulo mask, the (2N − 1) lowest bits, minus one, is set to the output. Otherwise the difference
is set directly to the output.
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Figure 5.1: Schematic for a 3-bit flash ADC
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Chapter 6

Simulations results and discussion

The different building blocks of the OLSD ADC was simulated in VHDL-AMS. The output
spectrums, SNR, SNDR and ENOB were all calculated with SdnReport, which is a part of
SystemDotNet [11].

6.1 Block simulations

6.1.1 Integrator

The allowed input range of the modulo integrator is Vin ∈ [0, Vref >, and it was simulated
with different DC and AC voltages to confirm correct modulo operation. In figure 6.1 the input
voltage is 0.1 Vref DC. It is clear that when the output voltage exceeds Vref it is reset to the
remainder, which in the figure always is 0.1Vref . In figure 6.2 the input voltage is raised to
0.5 Vref DC. In this case the output rise faster, and resets more often. The figure shows that
the integrator resets in some cases where Vacc + Vin = 1.0, and in some cases it does not. This
may be due to errors in the simulation tool since the two cases of Vout = Vref may cause both a
reset or not.

In figure 6.3 the input voltage is set to 0.5Vref + 0.5Vrefsin(ω). In this case the output
becomes more complex due to the more complex nature of the input signal. It is however clear
that the output never exceeds the reference voltage. Note that the slope of the output is strongly
correlated to the input signal.

19
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Figure 6.1: Output from modulo integrator (blue) and 0.1Vref input (green)

Figure 6.2: Output from modulo integrator (blue) and 0.5Vref input (green)
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Figure 6.3: Output from modulo integrator (blue) and 0.5Vref + 0.5Vrefsin(ω) input (red)
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6.1.2 Quantizer

The quantizer was fed with a ramp that started from 0V and rose evenly up to, and above the
reference voltage. In figure 6.4 the result is shown for a resolution of four bits. Note that the input
voltage in the figure is multiplied by 2N−1 to easily show the relation to the output. Each output
step corresponds to a voltage of VLSB = Vref

2N = 0.0625V , or 0.9375V in the figure. In figure 6.5
the output frequency spectrum is shown. It is clear that the white noise assumption is not true,
as the noise floor is far from flat. The obtained SNR and SNDR for the bandwidth of 2F0 was
54.96dB, which corresponds to an ENOB of 8.84 bits. The theoretical SNR would be 47.12dB
according to equation A.9 (quantization with oversampling). The difference is quite large, but
if one calculates the SNR for the range from 0− fs

2 the SNR is 25.8dB, which corresponds very
well to equation A.7 (quantization in a nyquist rate converter). This equals an ENOB of 3.99
bits, which is very good when the actual number of bits simulated 4.

Figure 6.4: Quantizer input (green), output(orange) and quantization error (red)
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Figure 6.5: Output spectrum for the quantizer. Fs = 223 and F0 = 31.232 ∗ 103)
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6.1.3 Differentiator

The modulo differentiator was first simulated with an input similar to the output from the
quantizer when feeding it with a ramp. The result is shown in figure 6.6. It is clear that for each
input step the output is equal to the step size. When the input is constant the output is zero.

In figure 6.7 the modulo differentiator was fed with an input signal that corresponds to the
output of the modulo integrator when having a constant input voltage. The constant voltage in
this case results in a step size of 4 on the output of the four bit quantizer. It is clear from the
figure that the differentiator retrieves the constant value of 4 from the input signal.

Figure 6.6: Output from the differentiator with a ramp input
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Figure 6.7: Output from the differentiator with a input that corresponds to the output from the
modulo integrator with constant input voltage
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6.2 Ideal system simulations

A third order OLSD ADC made up of the components described earlier was simulated. The goal
was to achieve a SNR of at least 71dB within a 200kHz band, to meet the specifications for an
ADC in a GSM system ([10] and [5]). The simulations started with a low input level, rising the
level until the noise shaping disappears, to find the maximum input range.

Figure 6.8 shows the output of the third order, four bit modulator for the input voltage
with a DC-level of 0.3 and an amplitude of 0.1. The signal frequency is f = 31.25kHz and
the sampling frequency is fs = 223Hz = 8.388608MHz. The obtained SNR was 82.55dB. It
is however desirable to have as much signal power as possible to obtain a good SNR, so the
amplitude of the input signal was risen. The result for the input signal Vin = 0.3 + 0.2sin(2πf)
is shown in figure 6.9. Unfortunately, the noise shaping has disappeared. The noise floor is
really flat, and the obtained SNR was only 15.34dB. From the time domain view, one sees that
the sinusoidal output has some glitches that rise up from the otherwise low level, up to almost
maximum. As soon as these glitches start to appear, the noise shaping disappears. The other
output values do also differ, but not as extreme as the glitches.

Figure 6.8: Left: input (blue) =0.3 + 0.1sin(2πf) and output (red). Right: Output frequency
spectrum
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Figure 6.9: Left: input (blue) =0.3 + 0.2sin(2πf) and output (red). Right: Output frequency
spectrum

In figure 6.10 the input DC-level was risen, and the input AC-level was kept at 0.2V . As
one can see from the figure, the noise shaping is back, and the glitches has disappeared. It
seems as if the modulator noise shaping is dependent on the absolute value of the input signal,
more than the amplitude disregarding the DC-level. Then what happens if one increases the
amplitude one step further, to a total input level of 0.5 + 0.3sin(2πf)? The result is shown in
figure 6.11. Once again the noise shaping has disappeared, and the glitches are back. This time
there are no glitches from below, but the glitches occur when the input is high. The glitches are
almost always samples with zero magnitude. This is what was called a false negative in chapter
3. When the input is high, the integrators reset more often, and the possibility for equal (within
the same decision area in the quantizer) samples increase. Two equal samples result in a zero
output in the last differentiator.

Figure 6.10: Left: input (blue) =0.5 + 0.2sin(2πf) and output (red).Right: Output frequency
spectrum for input =0.5 + 0.2sin(2πf)
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Figure 6.11: Left: input (blue) =0.5+0.3sin(2πf) and output (red).Output frequency spectrum
for input =0.5 + 0.3sin(2πf)
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6.3 System simulations with circuit imperfections

The third order OLSD was simulated with circuit imperfections to determine the requirements
for the analog circuitry. The imperfections were modeled as described in chapter 5.

6.3.1 Finite integrator gain

In page 564 in [8] it is stated that the opamp gain of a switched-capacitor integrator in a Σ∆
modulator should be larger than OSR

π , and that designers typically will ensure that the opamp
gain is as least twice as large as the OSR. With this in mind, the opamp gain was first set to
2OSR, to check how much the performance degraded compared to the ideal modulator. The
finite gain was first introduced in the first integrator, then in the second one, and in the end all
three integrators got the same gain. The result from the three simulations is shown in table 6.1.
In figure 6.12, the output frequency spectrum for the ADC is shown when the first integrator
has 42dB gain, and when all three integrators have 42dB gain.

Figure 6.12: Output frequency spectrum for input =0.5+0.2sin(2πf) and 60dB gain in all three
integrators (left), and 42 dB in first integrator - infinite in the two others (right)

As one can see from table 6.1, it is the gain of the first integrator that is the most crucial to
the performance of the modulator. This is because the error in the first integrator adds directly
to the signal and propagate through two other integrators.

For the OLSD ADC with 42dB gain in all three integrators, there was only 1.74dB margin to
meet the requirement of 70dB gain within a 200kHz band. The gain in the first integrator was
therefore increased to 60dB, since the first integrator is the most important when considering
gain. The output frequency spectrum in this case is shown in figure 6.13. The obtained SNR
was 84.52dB, a SNDR of 82.53dB resulting in an ENOB of 13.42bits.

From the figures showing output frequency spectrum for the OLSD ADC, it is evident that
there has been added distortion compared to the ideal ADC. There are some spikes on the even
harmonic frequencies of the input signal, and a lot of spikes that not correlate directly to the
input. To find the source of the distortion, the frequency spectrum for the internal reset signal
in the integrators were calculated. In figure 6.14 this spectrum is compared to the output of the

Integrator gain ⇒ IDEAL 42− inf − inf 42− 42− inf 42− 42− 42
SNR 88.51dB 71.79dB 71.77dB 71.74dB

SNDR 84.74dB 71.28dB 71.32dB 71.24dB
ENOB 13.78bits 11.55bits 11.55bits 11.54bits

Table 6.1: Table of SNR, SNDR and ENOB versus integrator gains of 42dB
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Figure 6.13: Output frequency spectrum for input =0.5+0.2sin(2πf) and 60dB gain in the first
integrator, 42dB in the two others

OLSD ADC with 60dB gain in the first integrator. The figure shows a close relation between
the spectrum of the reset signal and the distortion in the output of the ADC. The SNR of the
reset signal was in fact 29.81dB, the SNDR was 29.41dB, resulting in an ENOB of 4.59bits.

Note that the output frequency spectrum for the comparator resembles the output of a
conventional first order Σ∆ ADC.
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Figure 6.14: The output frequency spectrum for a third order modulator with 60dB gain in the
first integrator (red) and the frequency spectrum for the reset signal in the first integrator (blue)
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6.3.2 Capacitor mismatch and parasitics in integrators

The capacitor mismatch and parasitics will as described in chapter 3.2.1 result in the same
changes in the behavioral model. During a reset, a voltage different from Vref will be subtracted
from the accumulated value. Since the combination of mismatch and parasitics result in the
same fault, the combined fault of the two non-idealities was simulated.

The first simulation used the worst case of a 5% parasitic capacitance at the positive side of
the reset capacitor. This would result in a voltage error of 2Nk = (16 ∗ 0.05) = 0.8VLSB .The
output frequency spectrum for the modulator is shown in figure 6.15. The input voltage is the
same as during the gain testing, 0.5 + 0.2sin(2πf). It is clear that the noise shaping is gone.
The reason to this is the magnitude of the output voltage error after a reset. When this error
is 0.8VLSB , the quantized value of the output voltage will very often be one less than it should
have been. (Assuming that the quantizer is adjusted such that the quantization error is between
−VLSB

2 and +VLSB

2 . When a sample is one less than it should be, there is a probability that the
difference between that sample and the previous one is falsely negative. If that is the case, the
modulo differentiator will wrap around and the result would be greater than the actual input
value.

The OLSD ADC was simulated with a 1% parasitic on the reset capacitor. The result can be
seen in figure 6.16. The difference in the output spectrum is hardly noticeable compared to the
ideal modulator. The obtained SNR was 88.22dB, the SNDR 84.52dB, resulting in an ENOB of
13.76bits. In this case the integrator output error after a reset is only 0.16VLSB . The probability
of a false negative is therefore greatly reduced.

Figure 6.15: The output frequency spectrum for the ideal modulator (blue) and for the modulator
with a 5% parasitic capacitance (red)
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Figure 6.16: The output frequency spectrum for the modulator with a 1% parasitic capacitance
(red)

6.3.3 Comparator offset in integrators

A 5mV offset voltage (relative to Vref = 1V ),was added to the comparator inn all three inte-
grators, and no performance degradation was visible. The offset voltage was slowly increased
until degradation appeared. As long as the comparator offset was less than |0.35VLSB |, there
was no noticeable performance drop at all. When the error exceeded |0.35VLSB |, a few glitches
appeared, but the difference in SNR was insignificant. When the offset voltage was in the order
of |0.45VLSB | and larger, the noise shaping disappeared. When there is an offset in the com-
parator, the output voltage after a reset would be erroneous because the reset happens at the
wrong level. If the error is large enough, the quantizer will output a different value than for the
ideal case. If this leads to a false negative, the output value will be much larger than expected.
A higher quantizer output will not be that critical, but still there will be an error.

The comparator offset will add to the error from the capacitance imperfections. It is therefore
important that the combined fault of the capacitors and the comparator is small enough to not
cause errors at the output of the quantizer (Verr < |0.45VLSB |).

6.4 Specifications for use in a GSM system - summary

The simulations with circuit imperfections showed that the capacitor matching, parasitics and
comparator offset are quite critical for the operation of the modulator. To see wether or not the
modulator could be used in a GSM system, the capacitor errors were set to maximum 0.4VLSB

(2.5%of Vref with a four bit quantizer). This includes mismatch and parasitics, and should
be achievable in a common CMOS process when putting some effort in layout. The gain in the
integrators were set to 60dB, 42dB and 42dB. The results for different matching and comparator
offset can be seen in table 6.2. The results show that when both capacitor imperfections and
comparator offset is present, a positive offset is less harmful than a negative offset. This is



CHAPTER 6. SIMULATIONS RESULTS AND DISCUSSION 34

because the capacitor effects will lower the integrator output, and with a positive offset the
lowered value will be canceled out by the amount of offset. When the offset is negative, it adds
to the error and makes the result even worse.

It is possible to achieve a SNR of 70dB within the wanted 200kHz band, but it is necessary
to be careful during layout to minimize the parasitic capacitance and the mismatch. Table 6.2
shows that the requirement is met for a capacitance error causing a total of 5% (0.8 VLSB) error
on the output of the integrators and a comparator offset of +50mV in all integrator comparators.

Units of VLSB error comp. offset SNR ENOB
0.4 +50mV 84.61dB 13.45bits
0.4 −50mV 16.96dB 2.51bits
0.8 +50mV 83.91dB 13.38bits
0.8 −50mV 13.12dB 1.88bits

Table 6.2: SNR and ENOB for different parameters in the third order modulator



Chapter 7

Future work

The OLSD ADC should be implemented in CMOS to see how it performs, and how accurate it
can be made when considering the sensitivity to capacitance imperfections and comparator offset
in the integrators. The problem of n + 1 bits should also be further investigated. The answer
is given for a DAC in [7], but for a ADC it may be necessary to use statistics to model this
problem. A more accurate circuit with discrete components should also be made. The matching
of the capacitors can be done much more accurate than in this thesis.
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Chapter 8

Conclusion

This thesis was divided into two parts, design of a practical first order open loop Σ∆ modulator
using discrete components, and simulation of a third order OLSD ADC to investigate the con-
sequences of circuit imperfections - and determining circuit requirements if the ADC should be
used in a GSM system.

The practical modulator was designed as a first order OLSD ADC, with standard discrete
components such as operational amplifiers and switches, and a microcontroller with a built in
ADC. The practical circuit used surface mount capacitors with a tolerance of 20%, resulting in
poor matching and inaccurate behavior of the modulo integrator. Despite the poor matching,
the OLSD ADC showed a distinct noise shaping, with a slope of about 20dB per decade. The
quantization noise was not the dominating noise source in the circuit, and the quantizer resolution
had to be set to four bits of less to achieve any improvement in performance over the standard
ADC.

The third order modulator was modeled and simulated at a behavior level using VHDL-AMS.
The ideal circuit confirmed the results from the preliminary project [12], where the quantizer
resolution had to be equal to or larger than the modulator order to obtain proper noise shaping.
The simulations showed that the ideal third order modulator with a four bit quantizer could
achieve a SNR of 88.51dB, and an ENOB of 13.78bits1.

The third order modulator was simulated with circuit imperfections to determine the effect of
these when there was no feedback present. Introducing finite gain in the integrators resulted in
harmonic distortion at the output. This harmonic distortion was a result of leakage of the internal
reset signal in the integrators. By setting the gain in all three integrators to 2OSR = 42dB,
the SNR of the third order modulator sunk to 71.74dB. The gain in the first integrator was
increased to 60dB, and the SNR raised to 84.52dB. The first integrator was the most crucial to
the performance of the modulator, as is the case for conventional Σ∆ ADCs.

The circuit was also simulated with capacitance mismatch and comparator offset in the
modulo integrator. These two imperfections resulted in the same error - the output voltage from
the integrator differed from the ideal case. The total voltage error should be significantly less
than 0.5VLSB to obtain the noise shaping. If the integrator output error was too large, the noise
shaping would totally disappear.

In general, it has been proved that the OLSD modulator with modulo integrators works as
intended, the quantization noise is shaped like in conventional Σ∆ modulators. The modulator is
very sensitive to capacitor mismatch and parasitics. The effect of these capacitor imperfections
will increase as the quantizer resolution increase, because the error will cover more units of VLSB .

1Calculated from the SNDR which was 84.74dB
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It is important to minimize these capacitor effects, as increased quantizer resolution will allow a
greater input signal swing. The comparator offset in the integrators will add to the errors from
the capacitors. A positive offset will cancel some of the capacitance error, while a negative offset
will make it even worse.

The requirements for use in a GSM system were met with integrator gains of 60dB −42dB −
42dB, a total capacitance error causing an integrator output error of +0.8VLSB and a comparator
offset of +50mV in all three integrators. The obtained SNR was 84.61dB. This should be possible
to implement in a standard CMOS process.
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Appendix A

ADC theory

This chapter presents the most basic theory about quantization of analog signals and quantization
with noise shaping. Theory about the open-loop modulator is also presented. The open-loop
modulator is shown to be identical in operation to the conventional modulator.

A.1 Quantization of analog signals

When performing quantization, one converts an analog signal with an infinite amount of pos-
sible amplitudes, to a digital value. This digital value has an finite number of possible values
determined by the resolution of the quantizer. The number of values is given by Equation A.1.

n = 2N (A.1)

where N denotes the number of bits in the quantizer. A 1-bit quantizer will for example have
two possible values, 0 and 1. For a 8-bit quantizer the number of possible values is 256.

The quantizer also needs a reference voltage to convert the signal. This could be either a
single voltage or two voltages, dependent of the type of quantizer. If a single voltage is used this
often specifyes the maximum input voltage. The required input voltage to increase the output
by one LSB (Least Significant Bit) is given by equation A.2.

VLSB =
Vref

2N
(A.2)

A.1.1 Quantization error

Equation A.2 gives the smallest change in input voltage that triggers a change on the digital
output. Then there must be an interval where the analog input can change while the digital
output remains the same. The input voltage range where the output will not change is given by
Equation A.3

−1
2
VLSB < Vx <

1
2
VLSB (A.3)

where Vx is in the range where the output will not change. The quantization error will then be

Ve = ±VLSB

2
(A.4)

III
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As one can see from the equation above the quantization error is reduced when the number of
bits in the quantizer is increased. An example of the output from a 3-bit quantizer is shown in
Figure A.1. The quantization error for the same converter is also shown. If the input voltage
exceeds the limits of the quantizer the quantizer will be overloaded and the quantization error
will be larger than the value given in Equation A.4.

A.1.2 White noise assumption

The quantization error can under certain circumstances be treated as additive white noise. To
treat the quantization error as additive white noise one has to do the assumption that the
quantization error is a random value independent of the input signal, and uniformly distributed
between −VLSB

2 and VLSB

2 (p 450 in [8]). This can be assumed if the input signal is busy or
rapidly changing in common words.

When doing this, one can treat the quantization error as additive noise and make a linear
model of the quantizer. This does the computing of transfer functions easier. A linear model of
a quantizer is shown in Figure A.2.

The white noise assumption will be used in all calculations in this report to simplify the
calculations.

A.1.3 Quantization noise

The quantization error described in A.1.1 will appear as noise on the output of the quantizer.
The power of this noise is an important factor in the calculation of the Signal-to-Noise Ratio
(SNR)of the quantizer. The SNR value gives the Signal-to-Noise ratio within the band of interest.
It should be mentioned that this value excludes any harmonics of the quantization noise, if
present. This can give a wrong impression of the performance, and to get a better impression
one should use Signal-to-Noise and Distortion Ratio (SNDR). This includes the harmonics and
gives a better view of the performance.

The average value of the quantization noise can be shown to be zero. This is shown in
Equation A.5 (equation 11.13 in [8]). Even though the average value of the quantization error
is zero, the RMS value is not insignificant. The rms value differs from zero and will add to the
signal. The RMS value of the quantization noise is given in Equation A.6(equation 11.14 in [8]).
The power spectral density (PSD) of an analog signal with frequency of 1kHz is shown in Figure

Figure A.1: (Left): Analog input signal and digital output word. (right): Quantization error
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+

e(n)

x(n) y(n) = x(n) + e(n)

Figure A.2: Linear model of a quantizer

A.3. The PSD of the same signal quantized with a 1-bit quantizer is also shown. It is clear that
the noise floor is raised due to the quantization error. Harmonics of the quantization noise is
also present.

One way to dampen the harmonics of the quantization noise is by using dithering (pp 563-564
in [8]. Dithering can be done by adding a random to the signal right before the quantizer. In
this way the dither signal is shaped in the same manner as the quantization noise. Since the
dither signal behaves randomly the harmonics will be reduced because the quantization noise
becomes less correlated with the input signal. The result is reduced harmonics, but the dither
signal acts like noise and adds about 3dB to noise in the signal band.

VQ(avg) =
∫ ∞

−∞
xfQ(x)dx =

1
VLSB

(∫ VLSB
2

−VLSB
2

xdx

)
= 0 (A.5)

VQ(rms) =

[∫ ∞

−∞
x2fe(x)dx

] 1
2

=

[
1

VLSB

(∫ VLSB
2

−VLSB
2

x2dx

)]
=

VLSB√
12

(A.6)

If one assumes that the input to the quantizer is a sawtooth signal with maximum amplitude
of Vref , and disregard any DC-level the SNR is given in Equation A.7 (equation 11.15 in [8]).
Here one see that if one increase the resolution of the quantizer by one bit the SNR is increased
by approximately 6dB. If the input signal is a sinusoidal waveform between 0 and Vref it is
shown that the SNR is 6.02N + 1.76dB (equation 11.16 in [8]).

SNR = 20log

(
Vin(rms)

VQ(rms)

)
= 20log




Vref√
12

VLSB√
12


 = 20log

(
2N

)
= 6.02NdB (A.7)

Figure A.3: PSD of analog signal (red) and 1-bit quantized signal (blue)
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A.2 Oversampling Analog-to-Digital converters

In oversampling ADCs the analog circuitry meets more relaxed requirements. This leads to a
more complex digital circuitry to compensate for the losses in the analog part. This is getting
more important when the technology for realizing integrated circuits evolve. The trend is that
the supply voltages decrease when a new step in the technology is released. The threshold voltage
does not decrease as much as the supply voltage, and the analog circuitry is getting harder to
design.

When oversampling one samples the input signal at a higher rate than the Nyquist-rate. The
Nyquist-rate is given by fs = 2f0 where f0 is the signal bandwidth. Then one can define the
OverSampling Ratio (OSR) as given in Equation A.8.

OSR ≡ fs

2f0
(A.8)

It is then shown on pp 535-536 in [8] that the maximum SNR for an oversampled ADC is as
given in Equation A.9.

SNRmax = 10log

(
Ps

Pe

)
= 10log

(
3
2
22N

)
+ 10log(OSR) (A.9)

The first part of this equation is the same as in the calculation of SNR without oversampling,
whereas the last part is the gain from the oversampling. The oversampling adds 3dB to the SNR
for each doubling of the sampling frequency, or equivalently 0.5 bits per octave.

A.3 Oversampling with noise shaping

It is clear from Equation A.9 that using only oversampling is not enough if one wants a high SNR
without sampling at really high frequencies. To obtain a higher SNR, the noise in the pass band
has to be suppressed. To do this one can use a Σ∆-modulator. A general Σ∆-modulator and
its linear model is shown in Figure A.4. In the linear model the quantization noise is assumed
to be white.

To derive the signal transfer function (STF ) and the noise transfer function (NTF ) one can
use superposition since the quantization noise is assumed to be independent of the input signal.
The two transfer functions is given in Equation A.10 and A.11 (equations 14.15 and 14.16 in
[8]).

STF (z) ≡ Y (z)
U(z)

=
H(z)

1 + H(z)
(A.10)

NTF (z) ≡ Y (z)
E(z)

=
1

1 + H(z)
(A.11)

The total output signal Y(z) will then be as in Equation A.12 (Equation 14.17 in [8]).

Y (z) = STF (z)U(z) + NTF (z)E(z) (A.12)

It is clear from the equations above that the magnitude of the loop filter should be large for
frequencies inside the pass band (0− f0). With such a loop filter the STF will be approximately
one in the pass band, while the NTF will reach zero in the pass band. This will suppress the
noise and the SNR will increase. If the order of the loop filter increases the noise will be more
suppressed in the signal band, and even greater SNR will be achieved.



APPENDIX A. ADC THEORY VII

+ H(z)

+

Q
-

x(n) y(n)

+ H(z)
-

e(n)

x(n) y(n)

Figure A.4: A ∆Σ modulator and the linear model of the modulator

The quantizer in a Σ∆-modulator can in practice be almost any Nyquist-rate converter, but
it is preferred to use a converter that is capable of running at high speeds because of the high
sampling frequencies. It is very common to use a 1-bit quantizer. The advantage of using a 1-bit
quantizer appears when looking at a real model of a ∆Σ-modulator. In a real modulator there
has to be a Digital-to-Analog Converter (DAC) in the feedback loop. This DAC has to have the
same resolution as the quantizer to obtain full resolution of the ADC. The 1-bit DAC is said to
be inherently linear since it has only two output values, and the shortest path between those
values is a straight line. In this way one can obtain a good linearity, which is important since
the ∆Σ-modulator does not improve linearity.

A.3.1 First order noise shaping

In a first order Σ∆-modulator the H(z) can be a discrete-time integrator. This has a zero at
DC-level so the signal will be un-shaped. The poles of the integrator is equal to the zeros of the
NTF . The transfer function of this integrator is shown in Equation A.13

H(z) =
1

z − 1
(A.13)

It is shown in pp 540-541 in [8] that the STF and NTF of the modulator will be as in Equation
A.14 and A.15.

STF (z) =
1

z−1

1 + 1
z−1

= z−1 (A.14)

NTF (z) =
1
1

1+ 1
z−1

= (1− z−1) (A.15)

It is clear that the signal is delayed by one sample while the noise is high-pass filtered. This
dampens the noise in the signal-band and give a higher SNR. In page 542 and 544 in [8] it is
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shown that the maximum SNR of a first order Σ∆-modulator is as i Equation A.16, and for a
second order modulator in Equation A.17.

SNRmax = 6.02N + 1.76− 5.17 + 30log(OSR) (A.16)

for a sinusoidal input signal. Doubling the sampling frequency adds 9dB to the SNR, or 1.5 bits
equivalently.

SNRmax = 6.02N + 1.76− 12.9 + 50log(OSR) (A.17)

for a sinusoidal input signal. Doubling the sampling frequency adds 15dB to the SNR, or 2.5
bits equivalently.

A.4 Noise shaping in the open-loop modulator

By having a modulo integrator followed by a quantizer and a modulo differentiator, there is
no need for feedback to achieve noise shaping. The modulo integrator accumulates values until
the output voltage exceeds the maximum voltage, and then subtracts this maxium voltage to
keep the remainder. To prove this, one has to look at the basic of integration/accumulation
and differentiation. The following two cases explains why the OLSD should function like a
conventional Σ∆ modulator.

Case1: No reset has occurred

The integrator has accumulated some values over the last time, t, but the output voltage is still
below the reference, hence no reset has occurred. Without the reset, no modulo operation that
can complicate the transfer function has been executed.

It is a mathematical proof that the derivative of an integral of a function is the function
itself, as in Equation A.18.

d

dt

[∫
x(t)dt

]
= x(t) (A.18)

This is also valid in discrete time:
[( n∑

i=0

xi

)
−

(n−1∑

i=0

xi

)]
= xn (A.19)

Equation A.19 shows that the last input sample xn is retrieved at the output. As long as xn

is bonded by 0 and (2N − 1), xnmod(2N − 1) equals xn.

Case 2: A reset has just occurred

When a reset has occurred in the integrator the real accumulated value (call it x
′
(i)) has been

subtracted the maximum value. This maximum value corresponds to the value n = 2N − 1 from
the quantizer. The output from the modulo differentiator is now as shown in Equation A.20.

mDiffout =
(

x(i)− x(i− 1)
)

mod n (A.20)

Now, the difference in the equation above is negative. This is always true after a reset since
the input is bounded by max, and max is subtracted from the real accumulated value.
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The result from Equation A.20 when the left hand side is negative is given in Equation A.21.

mDiffout = (x(i)− x(i− 1) + n) mod n (A.21)

when using 2’s complement representation of negative numbers. Now, remember that x(i)
actually is x

′
(i)−max, (or x

′
(i)− n) Combining that with Equation A.21 gives

mDiffout = x
′
(i)− x(i− 1) mod n (A.22)

which shows that the result after reset is the same as if the reset never occurred.
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Appendix B

List of abbreviations

ADC Analog to Digital Converter

DAC Digital to Analog Converter

ENOB Effective Numer Of Bits

LSB Least Significant Bit

OLSD Open Loop Sigma Delta

OSR OverSampling Ratio

PSD Power Spectral Density

SNR Signal to Noise Ratio

SNDR Signal to Noise and Distortion Ratio

XI
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Appendix C

Schematic for the practical first
order modulator

XIII
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Figure C.1: Schematic for the open loop modulator



Appendix D

Software for practical modulator

D.1 Software for the AVR microcontroller

1 #include <avr / i o . h>
2 #include <avr / in t e r rup t . h>
3 #include <avr / s i g n a l . h>
4
5 #define SAMPLE DELAY 30
6 #define TESTC 20
7 #define VANLIG 40
8 #define OL 50
9

10 void send (unsigned char d) ;
11 void delay ( ) ;
12 void delay2 ( ) ;
13
14 volat i l e unsigned char t sample =0;
15 volat i l e unsigned char p sample=0;
16 volat i l e unsigned char out=0;
17 volat i l e unsigned int t e s t i n g =0;
18 unsigned char s=0;
19 volat i l e unsigned int N=0;
20 volat i l e unsigned int M=0;
21 unsigned int i =0;
22 unsigned char busy=0;
23
24 volat i l e char FAULT =2;
25 volat i l e char MODE = VANLIG;
26 volat i l e char RESET=0;
27 volat i l e unsigned char POWER = 14;
28 volat i l e long int samples=0;
29 SIGNAL(SIG INTERRUPT0)
30 {
31 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
32 // Th i s i n t e r r u p t t r i g g e r s on t h e
33 // o u t p u t f r om t h e c omp a r a t o r .
34 // S e t PORTB h i g h t o r e s e t i n t e g r a t o r
35 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
36 PORTB = 0 x f f ;
37 delay ( ) ;
38 delay ( ) ;
39 PORTB = 0x00 ;
40
41
42 }
43 SIGNAL(SIG OVERFLOW0)
44 {
45 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
46 // Th i s i n t e r r u p t t r i g g e r s on t h e
47 // t i m e r 0 o v e r f l o w . I t c o n t r o l s t h e
48 // two c l o c k s and t h e q u a n t i z e r
49 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
50
51 PORTB = 0x00 ; // o u t p u t f o r c l o c k s
52 TCNT0 = 0 ; // r e s e t c o u n t e r
53 s = s+1;
54
55
56
57 // i n PHI2 , i n v e r t t h e c l o c k s w i t h o u t o v e r l a p p i n g
58 i f ( s==1)// PHI2
59 {
60
61
62 PORTC &= ˜(1<<0) ;
63 delay ( ) ;
64 PORTC |=(1<<1) ;

XV
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65 delay ( ) ;
66
67
68 }
69
70 // i n PHI1 , i n v e r t t h e c l o c k s and s t a r t q u a n t i z a t i o n
71 else i f ( s==2)// PHI1
72 {
73
74
75
76 PORTC &= ˜(1<<1) ;
77 delay ( ) ;
78 // d e l a y ( ) ;
79
80 PORTC |=(1<<0) ;
81 delay ( ) ;
82 ADCSRA |= (1<<ADSC) ;
83 s=0;
84 }
85
86
87 }
88
89 SIGNAL(SIG ADC)
90 {
91
92
93 busy =0x01 ;
94 // s t o r e t h e s amp l e f r om t h e ad c
95 // and r i g h t s h i f t f o u r t i m e s
96 t sample = (ADCH>>4) ;
97
98 // s e n d t h e s amp l e v i a RS232
99 send ( t sample ) ;

100
101 N++;
102
103
104
105
106 }
107 void i n i t ( )
108 {
109 // c l o c k o u t p u t
110 DDRD = 0 x f f ;
111 DDRD &= ˜(1<<PD2) ;
112 PORTD = 0x00 ;
113 // c l o c k g e n e r a t i o n
114 TCCR0B |= (4<<CS00) ;
115 TIMSK0 |= (1<<TOIE0) ;
116
117 //AD
118 ADCSRA |= (1<<ADIE) |(1<<ADPS2) |(1<<ADPS1) |(0<<ADPS0) |(1<<ADEN) ;
119 // SFIOR |= (1<<ADTS0 ) |(1 < <ADTS1 ) ;
120 ADMUX |= (1<<MUX0) |(1<<MUX2) |(1<<MUX1) |(1<<REFS0) |(1<<REFS1) |(1<<ADLAR) ;
121 //UART
122 UCSR0A |= (1<<U2X0) ;
123 UCSR0B |= (1<<TXEN0) ;
124 UCSR0C |= (1<<UCSZ00) |(1<<UCSZ01) ;
125
126 UBRR0 = 0x10 ; // 0 x22 : 5 6 7 0 0 , 0 x 10 : 1 1 5 2 0 0
127
128 // e x t e r n a l i n t e r r u p t
129 EICRA |= (1<<ISC00 ) |(1<<ISC01 ) ;
130 EIMSK |= (1<<INT0) ;
131 DDRC = 0 x f f ;
132 DDRB = 0 x f f ;
133 PORTB = 0 x f f ;
134 delay2 ( ) ;
135 delay2 ( ) ;
136 delay2 ( ) ;
137 delay2 ( ) ;
138
139 PORTB = 0x00 ;
140 MODE = VANLIG;
141 s e i ( ) ;
142 samples = (1<<POWER) ;
143 }
144 void delay ( )
145 {
146 int i ;
147 for ( i =0; i<SAMPLE DELAY; i++)
148 {
149 asm( ”nop \n\ t ”) ;
150 }
151 }
152
153 void delay2 ( )
154 {
155 int i ;
156 for ( i =0; i <32000; i++)
157 {
158 asm( ”nop \n\ t ”) ;
159 }
160 }
161
162 void send (unsigned char data )
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163 {
164 while ( ! ( UCSR0A & (1<<UDRE0) ) ) ;
165 UDR0 = data ;
166 M++;
167
168
169 }
170 int main ( )
171 {
172
173 int a=0;
174
175 // i n i t i a l z e e v e r y t h i n g
176 i n i t ( ) ;
177
178 // t u r n on LED
179 PORTD = 0 x f f ;
180 // s e n d POWER, number o f s a m p l e s = 2ˆPOWER
181 send (POWER) ;
182 // s e n d number o f q u a n t i z e r l e v e l s
183 send (15) ;
184
185
186
187 // run f o r N s a m p l e s w i t h n o rma l q u a n t i z a t i o n
188 while (N<samples )
189 {
190
191 }
192 // S w i t c h t o op en l o o p s i gma−d e l t a
193 // and run N new s a m p l e s
194 ADMUX &= ˜(1<<MUX0) ;
195 N=0;
196 MODE = OL;
197 while (N<samples ) ;
198 // F i n i s h e d , c l e a r i n t e r r u p t s and t u r n o f f LED
199 N=0;
200 c l i ( ) ;
201
202
203 PORTD = 0x00 ;
204
205 while (1) ;
206 return 0 ;
207 }

D.2 Matlab script for reading out data an performing mod-
ulo operations

1 %r e a d o u t d a t a f r om t h e OLSD
2 clear
3
4 % i n i t i a l i z e s e r i a l p o r t
5 port = s e r i a l ( ’COM1’ ) ;
6 port . BaudRate = 115200;
7 port . InputBuf fer = 800000;
8 port . Timeout = 10000;
9 fopen ( port ) ;

10
11 %r e a d f i r s t two b y t e s ( 2 ˆ powe r number o f s a m p l e s )
12 power = fread ( port , 2 )
13
14 %r e a d n e x t b y t e ( number o f q u a n t i z e r l e v e s l )
15 n = fread ( port , 1 )
16
17 %r e a d 2ˆ powe r s a m p l e s t i m e s two
18 data = fread ( port , ( 2 . ˆ power ) ) ; %r e g u l a r q u a n t i z a t i o n
19 data2 = fread ( port , ( 2 . ˆ power ) ) ; %OPEN LOOP
20 f c lose ( port ) ;
21
22 %open t h e o u t p u t f i l e s
23 f i l = fopen ( ’ d i f f o u t . csv ’ , ’wt ’ ) ;
24 f i l 3 = fopen ( ’ kvan t i s e r t . csv ’ , ’wt ’ ) ;
25
26 %run modu l o o p e r a t i o n on d a t a 2 and w r i t e t o f i l e s
27 for i =2: length ( data2 )
28
29 d=mod( data2 ( i )−data2 ( i−1) ,n)
30 ddata ( i )=d ;
31
32 fpr int f ( f i l , ’%i \n ’ ,d) ;
33 fpr int f ( f i l 3 , ’%i \n ’ , data ( i ) ) ;
34 end
35
36 %c l o s e f i l e s
37 f c lose ( f i l ) ;
38 f c lose ( f i l 3 ) ;



APPENDIX D. SOFTWARE FOR PRACTICAL MODULATOR XVIII



Appendix E

VHDL source for the third order
modulator

E.1 The modulo integrator

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Au t h o r : Ø y s t e i n Knau s e r u d <>
3 −− C r e a t e d a t : Wed Jan 11 1 3 : 2 0 : 5 4 2006
4 −− M o d i f i e d a t : Tue Jun 13 1 8 : 4 5 : 1 3 2006
5 −− M o d i f i e d b y : Ø y s t e i n Knau s e r u d < k n a u s e r u @ s t u d . n t n u . no>
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 l ibrary IEEE ;
8 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
9 l ibrary IEEE proposed ;

10 use IEEE proposed . e l e c t r i c a l s y s t em s . a l l ;
11
12
13 entity mint i s
14
15 generic (
16 vmax : r e a l := 1 . 0 ;
17 damp : r e a l :=1 .0 ;
18 cpm : r e a l :=1 . 0 ;
19 ga in e r r o r : r e a l :=1.0) ;
20
21
22 port (
23 termina l input : e l e c t r i c a l ;
24 signal c lk : in s t d l o g i c ;
25 signal rout : out i n t e g e r :=0;
26 −− t e r m i n a l r e f : e l e c t r i c a l ;
27 −− s i g n a l r : o u t r e a l ;
28 termina l output : e l e c t r i c a l ) ;
29
30 end entity mint ;
31
32 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 architecture i d e a l of mint i s
34 quant ity v i n ac ro s s input ;
35 quant i ty v out ac ro s s i o u t through output ;
36 signal temp : r e a l := 0 . 0 ;
37 begin −− a r c h i t e c t u r e i d e a l
38
39 run : process ( c lk ) i s
40 variable temp2 : r e a l :=0 . 0 ;
41
42 begin
43 i f ( clk ’ event and c lk = ’1 ’) then
44 rout <= 0; −− r e s e t s i g n a l
45 i f ( ( temp+( v i n ) ) > (vmax) ) then −−c omp a r a t o r t r i g g e r
46 temp <= (temp + ( v i n ) ) − (vmax∗cpm) ; −−o u t p u t r em a i n d e r
47 rout <= 1; −− r e s e t s i g n a l
48
49 else
50 temp <= (temp + ( v i n ) ) ; −−no r e s e t , o u t p u t u n c h a n g e d
51 rout <= 0;
52
53 end i f ;
54 else
55 end i f ;
56
57 end process run ;
58

XIX
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59
60 v out == temp∗ ga in e r r o r ;
61
62
63
64
65
66
67
68
69
70
71
72 end architecture i d e a l ;
73
74 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E.2 The flash quantizer

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Au t h o r : Ø y s t e i n Knau s e r u d <>
3 −− C r e a t e d a t : Wed Jan 11 1 3 : 2 0 : 5 4 2006
4 −− M o d i f i e d a t : Tue Jun 13 2 2 : 3 7 : 1 3 2006
5 −− M o d i f i e d b y : Ø y s t e i n Knau s e r u d < k n a u s e r u @ s t u d . n t n u . no>
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 l ibrary IEEE ;
8 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
9 use i e e e . numer ic std . a l l ;

10 l ibrary IEEE proposed ;
11 use IEEE proposed . e l e c t r i c a l s y s t em s . a l l ;
12
13 entity FLASH i s
14 generic (
15 vmax : r e a l :=1 . 0 ;
16 ok : r e a l :=0 .00 ;
17 N: i n t e g e r :=4) ;
18 port (
19 termina l input : e l e c t r i c a l ;
20 signal c lk : in s t d l o g i c := ’0 ’ ;
21 signal dout : out i n t e g e r :=0) ;
22 end entity FLASH;
23
24
25 architecture behave of FLASH i s
26 quant ity v i n ac ro s s input ;
27 constant nN: i n t e g e r := (2 ∗∗ N)−1;
28 constant Rstep : r e a l := r e a l (vmax/(( r e a l (nN−1)∗2 .0 ) +2.0) ) ;
29
30 signal tempout : unsigned (nN downto 0) := ( others=> ’0 ’) ;
31 signal tempout2 : unsigned (nN−1 downto 0) := ( others => ’0 ’) ;
32 begin
33
34 run : process ( c lk ) i s
35 variable h i t : i n t e g e r :=0;
36 begin
37 i f ( clk ’ event and c lk = ’1 ’) then
38
39 −− i t e r a t e t h r o u g h t h e c o m p a r a t o r s
40 for i in 0 to nN loop
41 i f ( v i n <= (vmax−(2.0∗Rstep∗ r e a l ( i ) )+(Rstep ) ) then
42 tempout ( i ) <= ’1 ’ ;
43 else
44 tempout ( i ) <= ’0 ’ ;
45 end i f ;
46 end loop ;
47
48 for i i in 0 to nN loop
49 i f ( tempout ( i i ) = ’0 ’) then
50 h i t := h i t +1;
51 end i f ;
52
53 dout <= hit −1;
54
55 i f ( i i =(nN) ) then
56 h i t :=0;
57 end i f ;
58 end loop ;
59
60 for i i i in 0 to nN−1 loop
61
62
63
64
65 end loop ;
66 end i f ;
67 end process run ;
68
69 end architecture behave ;

E.3 The modulo differentiator
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1
2 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 −− Au t h o r : Ø y s t e i n Knau s e r u d <>
4 −− C r e a t e d a t : Wed Jan 11 1 3 : 2 0 : 5 4 2006
5 −− M o d i f i e d a t : Tue Jun 13 2 2 : 4 1 : 2 6 2006
6 −− M o d i f i e d b y : Ø y s t e i n Knau s e r u d < k n a u s e r u @ s t u d . n t n u . no>
7 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 l ibrary IEEE ;
9 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;

10 use i e e e . numer ic std . a l l ;
11 l ibrary IEEE proposed ;
12 use IEEE proposed . e l e c t r i c a l s y s t em s . a l l ;
13
14
15 entity DIFF i s
16
17 generic (
18 N : i n t e g e r :=4;
19 mult : i n t e g e r :=1) ;
20
21
22 port (
23 signal c lk : in s t d l o g i c := ’0 ’ ;
24 signal d i f f o u t : out i n t e g e r :=0;−−u n s i g n e d (N−1 down t o 0 ) := ( o t h e r s = > ’0 ’) ;
25 signal d i f f i n : in i n t e g e r :=0) ;−−u n s i g n e d (N−1 down t o 0 ) := ( o t h e r s => ’ 0 ’ ) ) ;
26
27 end entity DIFF ;
28
29 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 architecture i d e a l of DIFF i s
31
32
33 begin −− a r c h i t e c t u r e i d e a l
34
35 run : process ( c lk ) i s
36 variable current , prev : unsigned (N downto 0) := ( others => ’ 0 ’ ) ;
37 variable d i f f : unsigned (N downto 0) := ( others => ’ 0 ’ ) ;
38 variable check : unsigned (N−1 downto 0) := ( others => ’ 1 ’ ) ;
39
40
41 begin
42 i f ( clk ’ event and c lk = ’1 ’ ) then
43 −−h o l d p r e v i o u s v a l u e
44 prev := current ;
45 current := ( to uns igned ( d i f f i n ,N+1) ) ;
46 −− s u b t r a c t
47 d i f f := ( current +((not prev )+1) ) ;
48
49 i f ( d i f f (N) = ’1 ’ ) then
50 d i f f o u t <= to i n t e g e r ( d i f f (N−1 downto 0)−1) ;
51 else
52 d i f f o u t <= to i n t e g e r ( d i f f (N downto 0) ) ;
53
54 end i f ;
55 else
56
57 end i f ;
58 end process run ;
59 end architecture i d e a l ;
60 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

E.4 The complete third order modulator

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −− Au t h o r : Ø y s t e i n Knau s e r u d
3 −− C r e a t e d a t : Wed Jan 11 1 3 : 4 2 : 2 5 2006
4 −− M o d i f i e d a t : Tue Jun 13 1 8 : 1 3 : 3 4 2006
5 −− M o d i f i e d b y : Ø y s t e i n Knau s e r u d < k n a u s e r u @ s t u d . n t n u . no>
6 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 l ibrary IEEE ;
8 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
9 use i e e e . numer ic std . a l l ;

10 l ibrary IEEE ;
11 use IEEE .MATHREAL. a l l ;
12 l ibrary IEEE proposed ;
13 use IEEE proposed . e l e c t r i c a l s y s t em s . a l l ;
14 use IEEE . s t d l o g i c t e x t i o . a l l ;
15 use STD. t e x t i o . a l l ;
16 l ibrary MGCAMS;
17 use MGCAMS.ELDO. a l l ;
18 use MGCAMS. e ldo parameter s . a l l ;
19
20 entity o l sd i s
21 generic (
22 cpm , ge1 , ge2 , ge3 : r e a l :=1 . 0 ;
23 nbit : r e a l :=4.0) ;
24 port (
25 termina l v i n : e l e c t r i c a l ;
26 signal c lk : in s t d l o g i c := ’0 ’ ;
27 signal t e s t d i n : in i n t e g e r :=0;
28 signal output : out i n t e g e r :=0) ;
29 end entity o l sd ;
30
31
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32 architecture behave of o l sd i s
33
34
35
36 constant damp : r e a l := 1 . 0 ; −− d emp e l e d d me l l om i n t e g r a t o r e r
37 constant mult : i n t e g e r := 1 ;
38
39
40
41 constant N : i n t e g e r := in t e g e r ( nbit ) ;
42
43 termina l i n t 1 ou t : e l e c t r i c a l ;
44
45 termina l i n t 2 ou t : e l e c t r i c a l ;
46
47 termina l i n t 3 ou t : e l e c t r i c a l ;
48
49
50 signal qout : i n t e g e r :=0
51
52 signal d i f f 1 o u t : i n t e g e r :=0
53
54 signal d i f f 2 o u t : i n t e g e r :=0;
55 signal d i f f 3 ou t ,dummy,dummy2 : i n t e g e r :=0;
56
57 signal i r1 , i r2 , i r 3 : i n t e g e r :=0;
58
59
60
61 begin −− a r c h i t e c t u r e t e s t b e n c h
62
63
64 i n t e g r a t o r 1 : entity work . mint ( i d e a l )
65 generic map(
66 vmax => 1 .0 ,
67 cpm => cpm ,
68 ga in e r r o r => ge1 ,
69 damp => 1 . 0 )
70 port map(
71 input => v in ,
72 output => i n t1 out ,
73 rout => i r1 ,
74 c lk => c lk ) ;
75
76 i n t e g r a t o r 2 : entity work . mint ( i d e a l )
77 generic map(
78 vmax => 1 .0 ,
79 cpm => cpm ,
80 ga in e r r o r => ge2 ,
81 damp => damp)
82 port map(
83 input => i n t1 out ,
84 output => i n t2 out ,
85 rout => i r2 ,
86 c lk => c lk ) ;
87
88 i n t e g r a t o r 3 : entity work . mint ( i d e a l )
89 generic map(
90 vmax => 1 .0 ,
91 cpm => cpm ,
92 ga in e r r o r => ge3 ,
93 damp => damp)
94 port map(
95 input => i n t2 out ,
96 output => i n t3 out ,
97 rout => i r3 ,
98 c lk => c lk ) ;
99

100 quant i ze r : entity work .FLASH( behave )
101 generic map(
102 vmax => 1 .0 ,
103 ok => 0 .0150 ,
104 N => N)
105 port map(
106 input => i n t3 out ,
107 c lk => clk ,
108 dout => qout ) ;
109
110 mdif f1 : entity work . d i f f ( i d e a l )
111 generic map(
112 N => N,
113 mult => 1)
114 port map(
115 c lk => clk ,
116 d i f f i n => qout ,
117 d i f f o u t => d i f f 1 o u t ) ;
118
119 mdif f2 : entity work . d i f f ( i d e a l )
120 generic map(
121 N => N,
122 mult => 1)
123 port map(
124 c lk => clk ,
125 d i f f i n => d i f f 1 ou t ,
126 d i f f o u t => d i f f 2 o u t ) ;
127
128 mdif f3 : entity work . d i f f ( i d e a l )
129 generic map(
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130 N => N,
131 mult => 1)
132 port map(
133 c lk => clk ,
134 d i f f i n => d i f f 2 ou t ,
135 d i f f o u t => output ) ;
136
137
138 end architecture behave ;

E.5 Test bench

1 l ibrary IEEE ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use i e e e . numer ic std . a l l ;
4 l ibrary IEEE ;
5 use IEEE .MATHREAL. a l l ;
6 l ibrary IEEE proposed ;
7 use IEEE proposed . e l e c t r i c a l s y s t em s . a l l ;
8 use IEEE . s t d l o g i c t e x t i o . a l l ;
9 use STD. t e x t i o . a l l ;

10 l ibrary MGCAMS;
11 use MGCAMS.ELDO. a l l ;
12 use MGCAMS. e ldo parameter s . a l l ;
13
14 entity t b o l s d i s
15
16 end t b o l s d ;
17
18 architecture t e s t of t b o l s d i s
19 −− i n p u t p a r a m e t e r s f r om cmd− f i l e
20 constant N : r e a l := param( ”nbit ”) ;
21 constant ampl : r e a l :=param( ”aa ”) ;
22 constant dc : r e a l :=param( ”pdc ”) ;
23 constant gain1 : r e a l :=param( ”gain1 ”) ;
24 constant gain2 : r e a l :=param( ”gain2 ”) ;
25 constant gain3 : r e a l :=param( ”gain3 ”) ;
26 constant pcpm : r e a l := param( ”pcpm”) ;
27 constant ge1 : r e a l :=1 .0/(1 .0+(1 .0/(10∗∗ ( gain1 /20 .0 ) ) ) ) ;
28 constant ge2 : r e a l :=1 .0/(1 .0+(1 .0/(10∗∗ ( gain2 /20 .0 ) ) ) ) ;
29 constant ge3 : r e a l :=1 .0/(1 .0+(1 .0/(10∗∗ ( gain3 /20 .0 ) ) ) ) ;
30
31 signal c lk : s t d l o g i c := ’0 ’ ; −− g l o b a l c l o c k
32 signal output , output2 , o pd i f f : i n t e g e r :=0; −− o u t p u t f r om OLSD
33 termina l v i n : e l e c t r i c a l ; −− i n p u t v o l t a g e t o OLSD
34 termina l ground : e l e c t r i c a l ;
35
36 quant i ty v inp ac ro s s v i n ;
37 signal t e s t : vo l tage := 0 . 0 ;
38 signal t e s t d i n : i n t e g e r := 0 ;
39 −−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
40 −−∗ I n p u t s i g n a l g e n e r a t o r
41 −−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
42 component ELDO stimuli i s
43 generic ( f : r e a l ; a : r e a l ; dc : r e a l ) ;
44 port ( te rmina l ground , output : e l e c t r i c a l ) ;
45 end component ELDO stimuli ;
46 attribute Eldo dev i c e
47 of ELDO stimuli : component i s Eldo subckt ;
48 attribute Eldo subckt name
49 of ELDO stimuli : component i s ” s t imu l i ” ;
50 attribute Eldo f i l e name
51 of ELDO stimuli : component i s ” s t imu l i . ckt ” ;
52
53 −−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
54 −−OLSD ADC
55 −−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
56 component o l sd i s
57 generic (cpm , ge1 , ge2 , ge3 : r e a l ; nb i t : r e a l ) ;
58 port ( te rmina l v i n : e l e c t r i c a l ;
59 signal c lk : s t d l o g i c ;
60 signal t e s t d i n : in i n t e g e r ;
61 signal output : i n t e g e r ) ;
62 end component o l sd ;
63
64 −−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
65 −−Log f i l e
66 −−∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
67 f i l e ou t pu t f i l e : TEXT open WRITEMODE i s ”s imres / ou tpu t f i l e 1 . csv ” ;
68
69 begin
70 −−g e n e r a t e s t i m u l i f r om s p i c e
71 stim1 : ELDO stimuli
72 generic map( f =>31.264e3 ,
73 dc => dc ,
74 a => ampl )
75 port map( ground => ground ,
76 output => v i n ) ;
77 −−m o d u l a t o r one
78 o l sd1 : o l sd
79 generic map(
80 ge1=>1.0,
81 ge2=>1.0,
82 ge3=>1.0,
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83 cpm=>1.0,
84 nbit=>N)
85 port map(
86 v i n=>v in ,
87 c lk=>clk ,
88 t e s td i n=>t e s td in ,
89 output=>output ) ;
90
91 −−mo d u l a t o r 2
92 o l sd2 : o l sd
93 generic map(
94 ge1=>ge1 ,
95 ge2=>ge2 ,
96 ge3=>ge3 ,
97 cpm=>pcpm ,
98 nbit=>N)
99 port map(

100 v i n=>v in ,
101 c lk=>clk ,
102 t e s td i n=>t e s td in ,
103 output=>output2 ) ;
104
105 c lk <= not c lk after 59604.64478 ps ;
106 opd i f f <= output − output2 ; −− c a l c u l t a t e d i f f r e n c e b e t w e e n 1 and 2
107
108 −−v i n p == t e s t ’ ramp ( 1 . 0 e −4 , 0 . 0 ) ;
109
110
111 −− l o g p r o c e s s
112 log : process ( c lk ) i s
113 variable L : LINE ;
114 variable cnt : i n t e g e r := 0 ;
115 begin
116 i f ( clk ’ event and c lk = ’1 ’) then
117 wr i te (L , o pd i f f ) ;
118 wr i te (L , ’ ; ’ ) ;
119 wr i te (L , output ) ;
120 wr i te (L , ’ ; ’ ) ;
121 wr i te (L , output2 ) ;
122 wr i te (L , ’ ; ’ ) ;
123 wr i te (L , v inp ) ;
124 w r i t e l i n e ( ou tpu t f i l e , L) ;
125 end i f ;
126 end process l og ;
127
128 −− l o g p r o c e s s t h a t w r i t e s s i g n a l names − e x e c u t e s f i r s t
129 f i r s t l o g : process i s
130 variable l i n e 2 : LINE ;
131 begin
132 wr i te ( l ine2 , s t r ing ’ ( ” Idea l ou tput ; Gainerror output ; D i f f e r en c e ; input ”) ) ;
133 w r i t e l i n e ( ou tpu t f i l e , l i n e 2 ) ;
134 wait ;
135
136 end process f i r s t l o g ;
137 end t e s t ;


