
June 2006
Kjetil Svarstad, IET
Robin Hoel, Chipcon
Per Torstein Røine, Chipcon

Master of Science in Electronics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

A programmable DSP for low-power,
low-complexity baseband processing

Hallvard Næss

Problem Description
The concept of Software-Defined Radio (SDR) holds tremendous promise. The basic idea is to get
code as close to the antenna as possible, in order to achieve greater flexibility, improve
adaptability, and decrease development time compared to implementing dedicated, fixed-function
hardware modules for digital radio. The concept is not new, but the development of RF-compatible
deep submicron process technology has reached the point where SDR can be implemented
costcompetitively and sufficiently high-performance compared to fixed-function digital radio
hardware.

In a typical digital single-chip radio transceiver, digital demodulation and modulation is performed
in dedicated hardware, MAC and link functionality in a combination of software and hardware, and
network and application in software/firmware. By using a high-performance DSP core to
implement the demodulation/modulation of the signal, it should be possible to support multiple
radio physical layers, and possibly save area compared to a dedicated hardware implementation
due to reuse of hardware resources. Furthermore, higher performance may be achievable by fine-
tuning the demodulator/modulator algorithms on the actual silicon device or by implementing
channel coding or equalization techniques that are too costly or complex for dedicated hardware.

The development of a processor architecture especially suited for implementation of simple to
medium complexity radio physical layers will be the task for two student master thesis projects.
One student will concentrate on how one or more radio standards can be implemented as SDR on
such a processor, while the other student will focus on the actual DSP architecture (this thesis).

The focus for this thesis will be:

• Searching published literature for related baseband processors and concepts relevant for low-
power DSP architectures.
• Propose an area-efficient DSP-architecture that within certain documented constraints supports
the required primitive operations, and that can implement one or more of the physical layers
studied.
• Estimate computational complexity and power consumption for the proposed architecture
implementing a specific physical layer.
• Discuss system partitioning for an SDR: some DSP-operations may be more suited for dedicated
hardware and some control and some low-bandwidth control loops or data decoding better suited
for a general-purpose CPU.

Assignment given: 16. January 2006
Supervisor: Kjetil Svarstad, IET

 i

Abstract
Software defined radio (SDR) is an emerging trend of radio technology. The idea is
basically to move software as close to the antenna of a radio system as possible, to
improve flexibility, adaptability and time-to-market.

This thesis covers the description of a DSP architecture especially optimized for
modulation / demodulation algorithms of low-complexity, low-power radio standards.
The DSP allows software processing of these algorithms, making SDR possible. To make
the DSP competitive to traditional ASIC modems, tough constraints are given for area
and power consumption. Estimates done to indicate the power consumption, area and
computational power of the DSP, shows that a software implementation of the studied
physical layer should be possible within the given constraints.

 ii

 iii

Preface

This paper is a Master’s thesis in electronics, based on the finishing work of a Master’s
degree during the spring 2006. It is written by a student at the Department of Electronics
and Telecommunication at the Norwegian University of Science and Technology
(NTNU). The task of this project has been given by Chipcon, as a study of the feasibility
of implementing their future radio transceivers as Software Defined Radio (SDR). This
work has partially been done in cooperation with one other student, resulting in two
different theses as the work has been partitioned between the two students. However, it is
assumed that the reader has some knowledge of the work described in the second thesis,
as its contents are not fully described in this paper.

I would like to thank my team-mate, Roger M. Koteng, for cooperation during this work.
I will also like to thank my supervisors at NTNU and Chipcon; Kjetil Svarstad, Lars
Lundheim, Per Torstein Røine and Robin Hoel for valuable counselling and guidance
along the way.

Trondheim, 17.06.2006

Hallvard Næss

 iv

 v

Contents

1 Introduction... 1

1.1 Problem... 1
1.2 Scope... 1

1.2.1 Requirements .. 2
1.2.2 Assumptions for RF front-end .. 2

1.3 Software defined radio.. 3
2 Baseband processing... 4

2.1 IEEE 802.15.4 overview... 4
2.2 Building blocks for baseband processing ... 4

2.2.1 Application-specific integrated circuit.. 4
2.2.2 Field programmable gate array ... 5
2.2.3 General microprocessor .. 5
2.2.4 Digital signal processors ... 5
2.2.5 Application specific instruction set processors... 5

3 Domain specific digital signal processors... 6
3.1 Architectures for parallel processing .. 7

3.1.1 Pipelining .. 7
3.1.2 Single Instruction Stream, Multiple Data Stream....................................... 8
3.1.3 Very long instruction word (VLIW) processors ... 8
3.1.4 Superscalar processors .. 9
3.1.5 Multiple Instruction stream, Multiple Data stream................................... 10
3.1.6 Discussion... 11

3.2 Memory architecture... 11
3.3 Programming model.. 12

3.3.1 The instruction set... 12
3.4 Addressing modes... 13
3.5 Loop handling ... 14

3.5.1 Address Generation Unit... 14
3.5.2 Software looping... 15
3.5.3 Hardware looping.. 15

3.6 Acceleration techniques .. 16
3.6.1 Instruction level acceleration .. 16
3.6.2 Functional level acceleration .. 16

3.7 Low-power considerations.. 17
3.7.1 Low-area implementation ... 17
3.7.2 Low power memories ... 17
3.7.3 Clock gating and operand stopping... 17

3.8 Related work ... 18
3.8.1 BaseBand Processor 1 (BBP1).. 18
3.8.2 Sandblaster.. 19
3.8.3 Montium.. 19
3.8.4 Discussion... 19

4 Analysis of operations... 20

 vi

4.1 Convolution... 20
4.1.1 FIR-filters.. 20
4.1.2 Correlation .. 24
4.1.3 CORDIC ... 26
4.1.4 Find max/min .. 28
4.1.5 Shift operations ... 29
4.1.6 Linear/log conversion ... 29

5 Architecture... 30
5.1 Memory structure.. 30

5.1.1 Memory organizing unit ... 32
5.1.2 Address generation units... 33
5.1.3 DMA control... 36

5.2 Datapath .. 37
5.2.1 The pipeline .. 38
5.2.2 The accumulators .. 39
5.2.3 The MAC and arithmetic unit ... 40
5.2.4 The shift and logic unit ... 42
5.2.5 The CORDIC unit ... 43
5.2.6 Find max/min unit... 44
5.2.7 The status register ... 44
5.2.8 The ADC/DAC interface .. 45

5.3 Control path architecture... 47
5.3.1 The instruction decoder... 47
5.3.2 The program counter... 48
5.3.3 The branch controller.. 48
5.3.4 The hardware loops... 48

6 Programming model.. 53
6.1 The instruction set... 53
6.2 Supported addressing modes... 54

7 Estimated complexity.. 56
7.1 Implementation of an IEEE 802.15.4 demodulator .. 56

7.1.1 Channel filter and downsampling ... 56
7.1.2 RSSI .. 57
7.1.3 Frequency offset compensator .. 57
7.1.4 Frequency offset correction .. 58
7.1.5 Matched filter.. 58
7.1.6 The correlator.. 58
7.1.7 LQI.. 60

7.2 Estimation of computational complexity .. 61
7.3 Estimation of critical path... 61
7.4 Estimation of current consumption... 62
7.5 Area estimation ... 62

8 Discussion... 64
8.1 Gate area ... 64
8.2 Performance .. 64

8.2.1 SFD detection.. 64

 vii

8.2.2 Frequency offset estimation.. 65
8.2.3 Packet reception .. 65

8.3 Power consumption... 65
8.4 Modulation.. 66

9 Conclusions and further work... 67
9.1 Further work.. 67

10 Bibliography ... 69

Appendix A – Estimated computational complexity .. ii
Appendix B – Estimated power consumption ... iii
Appendix C – Estimated area ... v

 viii

Abbreviations

ADC Analog to digital converter
AGC Automatic gain control
AGU Address generation unit
ALU Arithmetic logic unit
ASIC Application specific integrated circuit
ASIP Application specific instruction set processor
CORDIC Coordinate rotation digital computer
DAC Digital to analog converter
DMA Direct memory access
DSP Digital signal processor or processing
DSSS Direct sequence spread spectrum
FFT Fast Fourier transform
FIR Finite impulse response
FPGA Field programmable gate array
HW Hardware
IP Intellectual Property
ISA Instruction set architecture
LIFO Last in first out
LQI Link quality indicator
Lsb Least significant bit
MAC Multiply-accumulate or Media access control
MIMD Multiple instructions multiple data
Modem Modulator-demodulator
Msb Most significant bit
OFDM Orthogonal frequency division multiplexing
PC Program counter
PHY Physical layer
QPSK Quadrature phase shift keying
RAM Random access memory
RISC Reduced instruction set computer
ROM Read only memory
RSSI Received signal strength indicator
RTL Register transfer level
SDR Software defined radio
SFD Start of frame delimiter
SIMD Single instruction multiple data
SNR Signal-to-noise ratio
SW Software
VLIW Very long instruction word
WLAN Wireless local area network
WPAN Wireless personal area network

 1

1 Introduction

1.1 Problem
As wireless communications systems keep evolving at an ever increasing speed, the
amount of different radio standards keeps growing. Due to this development, it is a need
for devices such as mobile phones, laptops etc to handle a large amount of different radio
standards. However the low-cost and low-area requirements for the transceivers in such
devises are not becoming smaller. This raises a need for a higher degree of hardware
reuse and flexibility in radio systems to make it possible to implement several
communication standards on the same piece of hardware. These issues have led to an
increasing interest of using reconfigurable rather than fixed-function hardware for
realizations of radio systems. The concept of softening the hardware of radio
architectures is often referred to as Software Defined Radio (SDR).

In a typical digital single-chip radio transceiver, digital demodulation and modulation is
performed in dedicated hardware, MAC and link functionality in a combination of
software and hardware, and network and application in software/firmware. To make SDR
implementations of such transceivers feasible, it is a need for programmable
implementations of the heavy signal processing tasks of the modulator/demodulator
(modem).

Chipcon, a leading supplier of low-power low-cost radio chips, are currently evaluating
the feasibility of developing a digital signal processor (DSP) to implement existing and
future radio physical layer (PHY) protocols. The focus of their interest is mainly at
reducing their time-to-market of future radio chips by minimizing the required hardware
adjustments when a chip implementing a new standard or update is to be developed.
Also, the ability of fine tuning the modem algorithms on the actual silicon device, may
improve performance for a programmable solution.

The major challenges of designing such a DSP core are the tough area and power
efficiency requirements that must be satisfied to make this solution competitive to an
ASIC implementation. In order to satisfy these requirements, the DSP will need extensive
optimizations for the most demanding tasks of common radio physical layer algorithms.
Additionally, a high degree of flexibility is essential to provide a high throughput across a
wide range of algorithms and implementations.

1.2 Scope
The scope of this thesis is to develop and describe a DSP architecture especially
optimized for implementation of low-complexity, low-power modems. The development
of the architecture will mainly be based on the IEEE 802.15.4 standard. However, it is

 2

also a focus on flexibility to make implementation of other standards feasible by the
architecture. The work included in this thesis has been restricted to a system level and a
partial register transfer level description of the architecture. The actual implementation of
the architecture is not included in this work.

The work of this thesis has been done in co-operation with a second parallel master
project. In this project suitable algorithms and radio signal-chains are found to identify
critical operations for the DSP. It is referred to the resulting thesis [1] of this project for a
throughout description of these issues.

1.2.1 Requirements
To study the feasibility of the architecture, it was given requirements on area and power
consumption for the DSP. These requirements should be fulfilled in order to make the
cost of a DSP solution comparable to a traditional ASIC solution. The following
requirements were given:

• The total equivalent gate count of the DSP should not exceed a total of 40000
gates. This gate count includes all necessary memories for the DSP.

• Implementation of the IEEE 802.15.4 physical layer should be possible at a
typical current consumption of 5mA and a maximum of 10mA.

1.2.2 Assumptions for RF front-end
The DSP will operate as a part of a larger radio system, a block diagram of the assumed
radio system including the RF front-end is shown in figure 1.

x

x

Low-
pass
filter

ADC

ADC

Digital
Demodulator

x

x

DAC

DAC

Digital
modulator

90°

Low-
pass
filter

Low-
pass
filter

Low-
pass
filter

Automatic Gain Control

Upper
Layers

Analog RF front-end

Figure 1 - System overview and analog front-end

The DSP will interface to the RF front-end on one hand, and the upper radio protocol
layers on the other. The basic function of the RF front-end is to amplify the signal

 3

received at the antenna and convert it from a carrier frequency down to baseband. This
conversion is performed in one step, i.e. direct-conversion. The analog to digital
converters (ADC) will convert the real and imaginary values of the received down-
converted signal to digital form. The sampling ratio of the ADC’s will be between 4 and
8 MSamples/s, and the accuracy will be of 12 bits. The digital to analog converters
(DAC) are used to convert the complex values received from the DSP to analog form.
The sampling ratio and accuracy of these are assumed to be the same as for the ADC’s.
For a more throughout description of the RF front-end, it is referred to [1].

1.3 Software defined radio
The idea of SDR is basically that it should be possible, by the use of programmable
and/or reconfigurable hardware, to alter much of the radio functionality simply by
replacing software. By describing modulation, demodulation, error correction and other
baseband processing techniques in software, multiple radio physical layers could be
realized on the same, or nearly the same hardware platform. The potential benefits of
such implementations are many, especially the time-to-market aspect are a driving force
currently leading to an increasing commercial interest of these concepts.

The SDR Forum is an international industry association dedicated to promoting the
development and use of SDR for advanced wireless systems. The SDR forum divides the
term “Software defined radio” in several tiers based on the capabilities of the SDR [2].

• Tier 0 – Hardware radio (HR): The radio is implemented using hardware
components only and cannot be modified except through physical intervention.

• Tier 1 – Software controlled radio (SCR): Only the control functions of the
radio is implemented in software - thus only limited functions are changeable
using software. Typically this extends to inter-connects, power levels etc. but not
to frequency bands and/or modulation types etc.

• Tier 2 – Software defined radio (SDR): The radio provide software control of a
variety of modulation techniques, wide-band or narrow-band operation,
communications security functions (such as hopping), and waveform
requirements of current and evolving standards over a broad frequency range. The
frequency bands covered may still be constrained at the front-end requiring a
switch in the antenna system.

• Tier 3 – ideal software radio (ISR): ISRs provide dramatic improvement over
an SDR by eliminating the analog amplification or heterodyne mixing prior to
digital-analog conversion. Programmability extends to the entire system with
analog conversion only at the antenna, speaker and microphones.

Due to limitations in the RF-front-end, the architecture described in this thesis will not
reach a programmability exceeding tier 2.

 4

2 Baseband processing

This chapter will provide a brief overview of the standard the DSP is aimed at and a short
description of various hardware blocks relevant for baseband processing.

2.1 IEEE 802.15.4 overview
The DSP architecture proposed in this thesis was mainly directed at implementing the
IEEE 802.15.4 [18] physical layer (PHY). The standard is especially aimed at
applications requiring very low cost and power consumption at the expense of a low data
throughput.

The physical layer is characterized by and responsible of the following:

• To keep the power consumption at a minimum, the physical layer shall be able to
activate and deactivate the radio transceiver at request.

• A received signal strength indicator (RSSI) must be included to estimate the
activity within the current channel.

• Link quality index (LQI) shall be applied to the received packet as an estimate of
the link quality of the reception.

• Clear channel assessment (CCA) shall be provided to investigate if the channel is
idle before packet transmission.

• Channel frequency selection.
• The actual transmission and reception of data on the channel, including

modulation and demodulation. The modulation technique utilizes direct sequence
spread spectrum (DSSS) and offset quadrature phase shift keying (O-QPSK). The
data rate is 250 kb/s. For a throughout description of the modulation and
demodulation techniques used, it is referred to [1].

2.2 Building blocks for baseband processing
This section will provide a short description of various hardware modules possibly used
for baseband processing [3].

2.2.1 Application-specific integrated circuit
An application-specific integrated circuit (ASIC) is an integrated circuit designed for a
single particular use. Since an ASIC is designed with a single application in mind, they
usually display the best power efficiency, area and computational power. However, the
high performance comes at a cost. An ASIC provide close to zero flexibility, and the
chances of being able to use an ASIC for another application than the one it is designed
for is minimal. The design time of an ASIC will usually be very long compared to the
time of altering programmable hardware, this result in a slow time-to-marked for ASIC’s.

 5

An ASIC is unsuited for software radio exceeding tier 1 or even tier 0 of the definitions
provided by the SDR Forum.

2.2.2 Field programmable gate array
A field programmable gate array (FPGA) is a chip or chip module whose hardware
functionality is programmable. This is performed by changing the values of memory
elements which determines the functionality of configurable logic blocks that the FPGA
is compound of. By making their hardware programmable, an FPGA will allow some
flexibility while a relatively high computational power is achieved. However, the many
lengthy routing lines between the CLB’s of an FPGA cause a high power consumption
and area. FPGA’s are frequently used in SDR systems when area and power consumption
is non-critical. For such systems an FPGA is often used in collaboration with a digital
signal processor to accelerate functions unsuitable for software implementation.

2.2.3 General microprocessor
A general microprocessor is, in opposite to an ASIC, especially optimized for flexibility.
The general microprocessor usually consists of one or a few functional units, controlled
by a simple instruction set with few instructions (RISC). Few optimizations for specific
functions and algorithms are included in a general microprocessor; this makes the
processor able to operate at a reasonable high speed for a large range of applications. A
change of application to execute can be performed very fast in software programmable
processors. By performing a simple branch to a new location in the program memory, the
processor will start processing a new application. Due to few optimizations for digital
signal processing algorithms, general microprocessors are unsuitable for implementations
of radio physical layers.

2.2.4 Digital signal processors
When the application domain of a processor is limited, it is suitable to optimize the
instruction set and processor architecture for commonly executed operations. A digital
signal processor (DSP) is a programmable processor especially optimized for digital
signal processing. Digital signal processors are further discussed in chapter 3.

2.2.5 Application specific instruction set processors
An Application specific instruction set processors is a programmable processor especially
optimized for running a single application. By such optimizations, the efficiency of the
processor can become comparable to that of an ASIC, while some flexibility is preserved
by making the architecture programmable.

 6

3 Domain specific digital signal processors

Digital signal processing algorithms are usually very repetitive in nature, in which the
same mathematical operation is performed on a large number of input samples [4]. A
digital signal processor (DSP) is a microprocessor especially optimized to perform such
tasks. This enables a DSP to be very efficient in terms of speed and power efficiency
compared to a general microprocessor when such tasks are executed. By applying further
optimizations for a certain domain of digital signal processing, the efficiency of the
processor can be enhanced even more. A domain specific DSP can be considered as a
cross between a DSP and an ASIP, by being especially optimized for a limited domain of
digital signal processing. The DSP proposed in this thesis is especially optimized for the
domain of low-power, low-complexity baseband processing.

The following summarizes the basic requirements made for general and domain specific
DSP’s:

• Dedicated units for multiply-and-accumulate (MAC) operations are essential for
efficient processing of many DSP algorithms. Digital filtering, correlation and
Fast Fourier Transforms (FFT) are examples of DSP operations requiring efficient
MAC operations.

• Parallel processing architectures may be deployed to speed up operations on
parallel data.

• A large memory bandwidth must be provided in order to allow efficient
processing of a large amount of data.

• Dedicated units handling address generation (AGU’s) should be supported to
avoid additional cycles for calculation of addresses.

• The instruction set and execution units should be especially optimized for the
most demanding operations the DSP is supposed to handle.

• The provided addressing modes should be optimized for the algorithms to
process.

• Efficient handling of loops should be supported in order to optimize the
performance of repetitive operations.

• The chosen word lengths of the datapath and memory should be especially
optimized for the applications at hand.

This chapter will provide an overview of the different enhancements that can be made to
optimize the efficiency of a DSP.

 7

3.1 Architectures for parallel processing
Employing a parallel architecture will allow the DSP to perform more operations each
clock cycle, increasing the speed of the processing without increasing the clock
frequency. Additionally, such enchantments will decrease the control overhead for each
operation, making the DSP more power efficient.

Another highly relevant issue considering the power efficiency of a parallel architecture
is the possibility of using wider memories. Generally, a memory which stores multiple
words of data in each memory location will require less power per word that is accessed
[5]. Potentially, employing a parallel architecture will thereby greatly reduce the power
consumption due to memory accesses compared to a traditional scalar architecture which
accesses one word per cycle from each of the memories.

In this section some of the basic principles of parallel processor architectures are
discussed.

3.1.1 Pipelining
By inserting registers in the critical path of the control and data path of a processor, the
execution of operations can be divided into several stages. By performing the different
pipeline stages for following instructions in parallel, the critical path of the system is
decreased significantly. The reduction of the critical path makes the system able to run at
a higher clock frequency with only minor additional system complexity.

A processor pipeline is usually divided into the following steps [5]:

• Instruction fetch: The instruction is fetched from program memory.
• Operand fetch: The operands for the operation are accessed.
• Execute: One or more steps are used for execution of the instruction by the

datapath.
• Result store: The resulting operands are stored in memory.

Figure 2 shows the basic principle of a processor pipeline.

Op fetch Execute Result storeInstr fetch

Instr 0Instr 1Instr 2Instr 3Instr 4Instr 5

Figure 2 - Processor pipeline

A problem of datapath pipelining arises when executing an instruction dependent on data
currently being modified in the pipeline. In a deep pipeline such dependencies may waste
a large amount of clock cycles, since the instruction will be unable to execute until the
previous instruction has completed. Also program branching may result in a waste of
clock cycles since the pipeline must be flushed when the program branches [5].

 8

Since the logical depth of the execute stage may vary, some processors utilize a variable
pipeline depth by pipelining the execution step of demanding operations over multiple
stages. This may cause conflicts when a pipelined instruction is followed by a non-
pipelined, since the instructions may need access to the same resources simultaneously.
This adds to the complexity of a variable-length pipeline, since such conflicts must be
detected and resolved by dedicated hardware.

3.1.2 Single Instruction Stream, Multiple Data Stream
In a typical Single Instruction stream, Multiple Data stream (SIMD) architecture, a single
operation stated by the instruction will be executed by multiple execution units operating
in parallel [5]. The principle of the SIMD architecture is shown in figure 3.

Figure 3 - SIMD architecture

Vinn1 and Vinn2 denote vectors which are added in parallel, resulting in a vector Vout. The
principle of the SIMD architecture is to perform the same operation on multiple words of
a vector simultaneously. This exploits the data parallelism that can be found in many
types of operations found in the DSP and baseband processing domains, thereby
increasing execution speeds. A benefit of the SIMD approach is that the memory
architecture may be kept quite simple since each vector of data may be placed in one
large register or RAM location.

3.1.3 Very long instruction word (VLIW) processors
A considerable restriction of a SIMD processor is that the same operation has to be
performed by each execution unit, resulting in poor efficiency when the rate of data
parallelism is low. The VLIW architecture solves this problem by introducing very long
instructions consisting of multiple operation codes, each controlling an execution unit [6].
The instruction also needs to address data for all of the execution units if they are to
operate efficiently in parallel. Figure 4 shows the structure of a typical VLIW
architecture.

 9

Figure 4 - VLIW architecture

Due to the increased flexibility, the VLIW processor will usually perform efficiently over
a wider range of applications than the SIMD architecture. However, to fully utilize the
execution units of a VLIW processor the memory architecture might become a
bottleneck. For example, if 4 execution units where to obtain single cycle throughput, a
memory architecture with eight read ports and four write ports would be required. As
each unutilized functional unit will cause the corresponding operation code to be filled
with a NOP instruction, VLIW processors usually exhibit a poor code density and an
unnecessary large program size.

Both for a VLIW and a SIMD processor, scheduling of operations and execution unit
allocation are typically performed by software compilation. This saves costly hardware
implementation of these processes, and also makes execution-time deterministic.

3.1.4 Superscalar processors
To improve the low code density of VLIW processors, a superscalar architecture may be
deployed. As opposed to the VLIW approach, a superscalar processor is able to fetch
multiple sequential instructions per clock cycle. These instructions are then consecutively
packaged and dispatched to the execution units. The principal structure of this
architecture is shown in figure 5.

 10

Figure 5 - Superscalar architecture

A key issue to obtain high performance in a superscalar architecture is the instruction
dispatcher. Several instructions will be fetched from the program memory
simultaneously, and before each instruction can be assigned to an execution unit, some
sort of scheduling based on data dependencies between the instructions must be
performed. The overall performance of a superscalar processor will in a high degree
depend on how well the instruction fetcher and the dispatcher manage to keep the
processor cores busy.

The superscalar approach allows higher code density and shorter instruction words than
the VLIW approach, and it is also in a higher degree possible to make this architecture
code-compatible to other processors. The downside is a more complex control unit which
introduces a significant overhead slowing down processing speed. The run-time
dispatching of instructions also makes execution time non-deterministic, and with that
less favorable for real-time processing.

3.1.5 Multiple Instruction stream, Multiple Data stream

In a Multiple Instruction stream, Multiple Data stream (MIMD) architecture, parallelism
is characterized by the concept that each processing element is really a processor
operating asynchronously and independently. This allows multiple streams of instructions
to be active simultaneously, often referred to as Multithreading [5]. A block
representation of the basic MIMD principles is shown in figure 6.

 11

Figure 6 - MIMD architecture

By dedicating each of the processors of a MIMD architecture to execution of a set of
related operations, each operation can potentially be executed very efficiently and with a
low overhead. A downside of the MIMD approach is that multiple memories will be
required in order to make the processors run in parallel. Also the interconnection and
synchronization between different processors and memories will introduce expenses in
term of area and throughput.

3.1.6 Discussion
The proposed DSP architecture is mainly based on the principles of SIMD and VLIW
processing. Especially the possibility of employing a simple memory structure while a
high throughput is achieved, favored a SIMD approach. The VLIW capabilities of
controlling multiple functional units while the complexity is kept at a minimum were also
considered advantageous. The use of a multithreaded architecture was found unsuitable
considering the strict area requirements that was given for the DSP. Especially the
memory structure was considered too complex to satisfy the given constraints. The
superscalar approach was neither followed. This is because compiler-friendliness was not
considered a big issue for the DSP, and because the instruction dispatcher was considered
too complex.

3.2 Memory architecture
The efficiency, power consumption and area of a DSP are in a large extent depending on
the memory architecture. The memory can be divided in two subsystems – the program
memory, and data memory. The program memory will store and provide the instructions
to be executed by the processor, while the data memory stores and provides data to be
altered by the execution units in the DSP datapath. To provide a single cycle throughput,

 12

it is needed to perform one memory access from the program memory and at least one
memory-read access and one memory-write access for the data memory each clock cycle.
Two main types of memory architecture are defined to provide the needed amount of
memory accesses each cycle, the Harvard architecture and the modified von Neuman
architecture.

The basic difference between these two architectures is that the Harvard architecture
divides the program memory and the data memory to two separate memory spaces with
multiple data busses. In a von Neuman architecture only one data bus is provided; this is
ran at a higher clock frequency than the computations, allowing multiple memory
accesses each cycle.

Since the DSP processor to be designed is aimed at low-throughput radio PHY’s, the
necessary memory will consist of small on-chip memories making the cost of multiple
busses relatively small. Also, running the memories at a high speed will require the use of
high speed memories, resulting in lower power efficiency. Thus, some kind of a Harvard
memory architecture consisting of multiple busses should be the best choice for the DSP
architecture.

3.3 Programming model
The programming model of a processor is the processors interface to the programmer or
the compiler. The programming model will basically consist of the instruction set and the
available addressing modes of the processor. To make the programming of a processor as
easy as possible, it is necessary to provide a well-structured programming model with a
well defined instruction set and straightforward use of the available addressing modes.

3.3.1 The instruction set
The choice of instruction set format may have great influence on the system cost of a
processor, and trade-offs will have to be made between orthogonality, word length,
programmability and throughput.

3.3.1.1 Orthogonality
Orthogonality is a principle by which two variables are independent of each other [7]. In
the context of an instruction set, the term usually refers to making the different
addressing modes uniformly available for different operations. Also, a complete and
regular set of instructions are considered orthogonal [8].

On the machine code level, the instruction word of an orthogonal instruction set should
be divided into different subfields, independent of each other. For example, the operation
to be performed, the addresses of the data to be read and the location to write the result to
may be specified in different subfields of the instruction, making each subfield describe
the same type of functionality across a large number of different instructions.

 13

A highly orthogonal instruction set leads to easier programming and simpler decoding
logic, but will generally result in a larger instruction word.

3.3.1.2 The instruction word width
Since a large instruction word width will require a wider program memory and bus width,
the chosen size of the instruction words will directly affect the area and power dissipation
within the processor. The use of an orthogonal instruction set will generally increase the
word width of the instructions. All subfields of an orthogonal instruction word will not be
used by all instructions, increasing the redundancy of the instructions.

An approach to achieve a smaller instruction word length is to divide the instruction set
into groups of similar instructions. To avoid making sacrifices on performance, the
instructions of different groups should be unable or unlikely to operate in parallel. An
example would be to use two different instruction types for control operations such as
branches, and data operations such as additions.

3.4 Addressing modes
In this section, some addressing modes commonly available in DSPs are discussed. The
available addressing modes state how a programmer is able to declare the data to be used
for an operation. For further reading, see [6].

3.4.1.1 Register addressing
In this addressing mode the data to be accessed is contained in registers. The registers to
access and write to is specified by field in the instruction. If the value of register R1
(data1) is added to R2 (data2) and the result are saved in R1, the instruction could look as
follows:

ADD R1, R2, R1 ; data1+data2 R1

3.4.1.2 Direct addressing
The address of the data to be accessed is specified by a field in the instruction. If the data
contained at the address *data1 should be added by the data stored at the address *data2,
the instruction could be look follows:

ADD *data1, *data2, R1 ; data1+data2 R1

3.4.1.3 Indirect addressing
The address is determined by the content of a register, e.g. the address register of an
address generation unit (AGU). This addressing mode often supports an altering of the
register before or after the operands are fetched. The value of the register can usually

 14

either be added or subtracted by a value given by the instruction, a register or an implied
value of 1 [6]. In the following example, the data at the address given by an address
register, Raddr1, is added to the data at the address of Raddr2. If the registers contains *data1
and *data2, the instruction could look as follows:

ADD Raddr1, Raddr2, R1 ; data1+data2 R1

3.4.1.4 Immediate addressing
In this addressing mode, the data is given in the instruction itself. If data1 contained by
R1 should be incremented by a constant, C, the instruction could look as follows:

ADD R1, C, R1 ; data1+C R1

3.4.1.5 Circular addressing
Circular addressing, or modulo addressing is an addressing mode that is especially useful
in DSP algorithms. If circular addressing is applied, the address pointer of the address
register will automatically start over from the beginning if it reaches a certain value. This
mode is useful for implementing circular buffers or when addressing operands of sliding
windows (e.g. convolution).

Circular addressing is usually implemented in one of two ways. The start and end address
of the circular buffer can be stored, by setting the address to the start address when the
end of the buffer is reached a circular buffer is implemented. Otherwise, only the buffer
size can be stored. The start of the buffer will then be restricted to an N-word boundary,
where N is the smallest power of 2 that is greater than or equal to the buffer size. The first
implementation gives a higher flexibility, while the second reduces the complexity.

3.4.1.6 Bit reversed addressing
This is an addressing mode optimized for computation of FFT’s (Fast Fourier
Transforms). Since the use of FFT was found unbeneficial for low-throughput radio
standards [1], these concepts are not further discussed.

3.5 Loop handling
Because of the repetitive nature of digital signal processing algorithms, it is essential for
a DSP to provide efficient program looping. This section will describe some of the most
commonly used approaches to improve the efficiency of execution of looped instructions.

3.5.1 Address Generation Unit
To perform efficient looping in DSPs, it is a need for dedicated units handling address
generation. These units will calculate the addresses of operands and write locations in

 15

parallel with execution of other operations. In this way, these addresses will not have to
be given directly in each instruction or be calculated explicitly by separate instructions.
The AGU’s will typically be controlled by separate fields in the instruction, and should
be able to support a variety of address modifications based on the addressing modes
provided by the DSP.

3.5.2 Software looping
Looping performed by software instructions is often referred to as Software looping. This
means that all loop-handling operations are performed by branch instructions given in the
program. Consequently, for each iteration of a loop, instructions must be added to modify
a loop-count register and perform a check to determine if a branch should occur [9].
Additional cycle delays are introduced in pipelined datapaths, since the datapath must be
flushed before each branch operation.

3.5.3 Hardware looping
To avoid the extra cycles introduced in a software loop, a hardware support for looping
may be implemented. By letting the hardware loop perform tasks such as loop counting,
evaluation of dependencies and branching in parallel with other operations, both
throughput and power consumption may improve considerably. Three main types of
hardware loops are discussed [9]: Single instruction looping, block of instructions
looping and block of nested looping.

3.5.3.1 Single instruction looping
Many program sequences may consist of a single instruction repeated a number of times,
performing the same operation on a vector of multiple words. By freezing the value of the
program counter until a loop-counter has iterated a specified number of cycles, such
instruction loops could be efficiently handled by hardware. In addition to performing
such loops with zero cycle overhead, the power consumption due to memory accesses
from program memory will also be significantly reduced.

Typically the hardware realization of the loop will consist of a decrementor/incrementor
to count the number of iterations, a register to store the number of iterations to be
performed and a comparator to determine if the loop has finished. The hardware cost of
such an implementation will typically be very low, determined by the maximum number
of iterations to be performed.

3.5.3.2 Block of instructions looping
If a sequence of instructions are to be repeated a number of times, a block of instructions
loop may be implemented. This implementation will typically be a bit more complex than
in the case of instruction repeating [9]. Usually such loops are implemented by saving the
end- and start-address of the loop and the number of loop-iterations. When the current

 16

address of the program counter equals the end-address, the loop will start over and a loop
counter is decremented. The loop will finish when the loop counter reaches zero.

3.5.3.3 Nested looping
Hardware implementation of nested loops can be achieved in a similar way. However, the
registers storing the start-address, end-address and number of iterations of each loop, will
have to be stored in a LIFO-stack. The depth of the stack determines the number of
nested loops the processor is able to handle.

3.5.3.4 Instruction buffering
For short loops, the power consumption due to program memory accesses may be
decreased significantly by employing a small local buffer for storage of looped
instructions. By this enhancement, the program memory will only be accessed the first
time the loop is executed. For larger loops, the hardware cost of an instruction buffer will
become very high, making this approach unsuitable.

3.6 Acceleration techniques
What separates a semi-custom processor like a DSP or an ASIP from a general purpose
processor is basically the use of accelerators to enhance execution speeds for certain
operations. According to [8], acceleration can be performed on instruction level or
function level.

3.6.1 Instruction level acceleration
Instruction level acceleration means that common operations in an application or
application domain are given a specific instruction in the processors instruction set. One
of the most common examples of instruction level acceleration is the MAC operation
used in nearly every DSP instruction set. The amount of changes that has to be done in
the processor datapath and instruction decoder to add a new instruction may vary
considerably depending on how much the new instruction part from the existing ones.
The trade-off between gained efficiency due to saved clock cycles vs. efficiency-loss due
to higher complexity has to be considered before adding a new instruction. A highly
orthogonal instruction set and a well organized instruction decoder may ease the
implementation of future instructions in an existing architecture.

3.6.2 Functional level acceleration
Functional level acceleration means to partition a whole algorithm or subroutine to a
fixed-function hardware module. This would typically lead to a higher increase in
performance than for instruction level acceleration, but will also imply a larger hardware
cost and a lower flexibility. Algorithms that requires high performance or would spend
much more power implemented in software (SW) than hardware (HW) should possibly

 17

be executed by a functional level accelerator. The use of accelerators can also potentially
increase the parallelism of a system since the accelerator should be able to run in
background while the program continues to execute. The possibility of reuse of
accelerators is an issue that should be considered. An accelerator that only can be used to
implement a specific algorithm only used by one certain standard would be much more
expensive in terms of e.g. development cost than one for a general algorithm applicable
in a broad range of applications. The process of deciding which functions should be
implemented in HW accelerators is often referred to as HW-SW partitioning.

3.7 Low-power considerations
In addition to the architectural enhancements discussed earlier in this chapter, some other
issues considering power efficiency should be kept in mind when designing a processor.
This section will give a brief description of various techniques that may be applied to
keep power consumption at a minimum.

3.7.1 Low-area implementation
A trade off between performance and area/power consumption exist for the
implementation of most functional units. The implementation of an adder is used as an
example illustrating this. A ripple carry adder will have a considerably lower area, and
thereby also power consumption, than a faster implementation such as a carry look ahead
adder. By parallel enhancements such as pipelining or a parallel architecture, it should be
ensured that low-area implementations of functional units are sufficient to obtain the
desired throughput.

3.7.2 Low power memories
Memories supplied from IP-vendors can usually be optimized for low area, high speed or
low power [5]. By ensuring that low-power optimized memory blocks are sufficient to
reach the area and clock frequency requirements of the system, the power consumption of
each memory access will be reduced. Also, keeping the amount of memory accesses as
low as possible is essential to obtain power efficient processing.

3.7.3 Clock gating and operand stopping
Usually, all parts of a processor are not used by all instructions. Clock gating and operand
stopping are techniques used to turn off unused units, making them consume close to zero
current when disabled [10]. When clock gating is applied, the system clock is simply
disabled for the unused functional unit. Operand stopping is applied by keeping the input
values of unused units stable, avoiding unnecessary switching. On the architectural level,
an orthogonal instruction set and a modular architecture should make the implementation
of such enhancements simpler.

 18

3.8 Related work
In this section, some related baseband processors used for SDR are briefly discussed.

3.8.1 BaseBand Processor 1 (BBP1)
Eric Tell at the University of Lindköping has proposed an architecture especially
designed for software baseband processing [8]. The proposed architecture was optimized
for running WLAN applications.

The idea behind the BBP1 is basically to connect two DSP cores to multiple function
level accelerators and memories through a configurable network. An overview of the
architecture is shown in figure 7.

Figure 7 - The BaseBand Processor 1 architecture

The DSP core of the BBP1 architecture consists of two datapaths. A simple 16 bit RISC
like processor handles control operations, and a dual complex MAC unit handles
complex valued calculations. When operating, each accelerator is given direct access to
one of the small memories through the crossbar network, making multiple accelerators
able to work in parallel. This ensures a high throughput by parallelism, while the power
consumption is kept low by each operation being executed by a nearly optimized unit.

 19

3.8.2 Sandblaster
Sandbridge technologies have developed a multithreaded processor capable of executing
DSP operations, embedded control and java code [12]. The processor is optimized for
handheld wireless communication.

To obtain a high performance, SIMD capabilities and deep processor pipelines are
included in the architecture. To minimize the instruction memory, each fetched
instruction may be compound of multiple operations. The architecture utilizes
multithreading, by letting up to 8 simultaneous threads control the execution of various
execution units in the core.

3.8.3 Montium
The Montium processor is developed at the University of Twente, and is a DSP processor
especially optimized for mobile wireless terminals [13]. The Montium employs a coarse-
grained reconfigurable architecture. This means that a system-on-chip can consist of
multiple tile-processors communicating via a reconfigurable network-on-chip. Each tile-
processor consists of multiple execution units connected to multiple memories via a
reconfigurable crossbar network. The reconfigurability makes the complexity of the
processor adaptable to the computational power of the task at hand.

3.8.4 Discussion
All of the discussed baseband processors are optimized for high-throughput standards
such as WLAN or 3G applications. Especially the memory structures of these
architectures would have to be made much simpler in order to achieve the area
requirements of low-throughput standards. Also, complex control and interconnection
features such as multithreading and reconfigurability was considered too complex to be
adopted by a low-area DSP. The idea of function level acceleration was considered as a
possible solution for the most computationally intensive operations the proposed DSP
will have to handle.

 20

4 Analysis of operations
In this section, the most computational extensive operations required implementing the
signal chains of the IEEE 802.15.4 and related physical layers are analyzed. For further
information on the studied algorithms, it is referred to [1]. The following was found as
the most critical operations the DSP should be able to compute.

• Support of multiply and accumulate (MAC) operations on both 2 and 8 bit
numbers are essential i.e. to implement multiple forms of convolution based
operations and to find the signal power of a data stream.

• Optimization for CORDIC rotation and vectoring are necessary for efficient
frequency offset estimation and correction.

• Shift operations and logical operations must be supported e.g. to perform scaling
and quantization (divide by 2N). These operations are also useful when packing or
unpacking sub-word sized values to or from a register.

• Saturation and rounding should be applied to keep a high precision through the
signal chain.

• Arithmetic operations such as additions and subtractions should be included.
• Compare instructions to efficiently find maximum / minimum of a vector of

multiple values are needed.
• The DSP should be able to perform Lin/log conversion due to the specification of

the RSSI of the IEEE 802.15.4 standard.

4.1 Convolution
A substantial part of the algorithms used in baseband processing are based on
convolution. FIR filtering, matched filtering and cross-correlation are examples of
operations being highly relevant for modem implementations. It is therefore of great
importance to achieve a high throughput while minimizing the power consumption for
such operations. Convolution over a shorter sequence, Cj, and longer sequence, Di+j, of
real data is defined as [4]:

()
N

i j i j
j

C D C D +∗ = ×∑

N denotes the length of the shortest sequence and i is the sample number.

4.1.1 FIR-filters
Channel filters, matched filters and correlators with unknown timing will basically be
implemented as FIR-filters. An N-tap FIR filter can be described as a convolution of a
continuous stream of data and N coefficients. The data sequence is shifted by one for

 21

each FIR computation. The first M output samples resulting from the FIR-filtering will be
as follows:

0 0 0 1 1 2 2() N NC D C D C D C D C D∗ = × + × + × + + ×

1 0 1 1 2 2 3 1() N NC D C D C D C D C D +∗ = × + × + × + + ×

2 0 2 1 3 2 4 2() N NC D C D C D C D C D +∗ = × + × + × + + ×

3 0 3 1 4 2 5 3() N NC D C D C D C D C D +∗ = × + × + × + + ×
.
.
 1 0 1 1 2 1 1() M M M M N N MC D C D C D C D C D− − + + −∗ = × + × + × + + ×

Two structures applicable of SIMD FIR-filter implementations will be discussed in this
section. In the examples shown, each memory locations will hold a vector of 4 words of
data or coefficients and 4 word sized multipliers will be provided by the datapath.
However, the discussed principles will also be applicable to other vector sizes.

4.1.1.1 Solution 1
A straightforward SIMD implementation of a FIR-filter would be to calculate one output
sample at a time. A structure for such operations is described by figure 8.

X

+

X

 Acc

X X

Vin1

Vin2

Ci Ci+2 Ci+3Ci+1

Di+j Di+j+1 Di+j+2 Di+j+3

Figure 8 - SIMD fir-filter solution 1

This structure will require 2 memory accesses each cycle, one vector of data samples and
one of coefficients. A problem occurs when the start of a data sequence is unaligned with
the memory boundaries, i.e. the first data sample of a sequence is not contained in the
leftmost location within the memory location. This can be solved by using 4 different
coefficient streams where 0, 1, 2 or 3 zero coefficients are inserted at the start of the
sequence. Consequently, the necessary amount of coefficients to be stored in data
memory will be greatly increased.

 22

4.1.1.2 Solution 2
A way to decrease the amount of memory accesses and the coefficient memory
requirements is to compute multiple output samples in parallel [15]. The structure of
figure 9 shows how this can be performed.

Figure 9 - SIMD fir-filter solution 2’

One output of the vector containing the data samples is multiplexed to a 3 word shift
register. The words contained by the registers and the multiplexer output are inserted at
the multiplier inputs. One coefficient of the coefficient-vector is multiplexed to the other
inputs of the multipliers. By inserting three zero-coefficients at the start of the sequence,
the data samples are allowed to propagate through the shift register before the
computations starts. Table 1 shows how the computations will be performed each cycle.

Table 1 - Computations per cycle - solution 2
Cycle

1 2 3 4 5 … N+2 N+3

Mux 1 0 1 2 3 0 … 2 3
Mux 2 0 1 2 3 0 … 2 3
Acc 1 0*U +0*U +0*U +C0*D0 +C1*D1 … +CN-1*DN-4 +CN*DN-3
Acc 2 0*U +0*U +0*U +C0*D1 +C1*D2 … +CN-1*DN-3 +CN*DN-2
Acc 3 0*U +0*U +0*U +C0*D2 +C1*D3 … +CN-1*DN-2 +CN*DN-1
Acc 4 0*U +0*U +0*U +C0*D3 +C1*D4 … +CN-1*DN-1 +CN*DN

When the first data sample of a sequence is unaligned with the memory boundaries, this
can be solved by simply offsetting Mux 1 with a value of 1, 2 or 3. Each time one of the

 23

multiplexers reaches the last word of a vector, a new vector will be loaded from memory.
This means that the amount of memory accesses will be quartered compared to the
previously discussed structure. Another benefit of this structure is that the accumulators
also can be used for purposes such as element-wise vector additions and subtractions.

A problem of the depicted solution arises when handling FIR-filters with downsampled
output. Some hardware optimizations should be applied at the ADC interface to simplify
such computations when solution 2 is employed. The resulting stream of downsampled
values from the channel filter will be as follows:

0 0 0 1 1 2 2() N NC D C D C D C D C D∗ = × + × + × + + ×

1 0 2 1 3 2 4 2() N NC D C D C D C D C D +∗ = × + × + × + + ×

2 0 4 1 5 2 6 4() N NC D C D C D C D C D +∗ = × + × + × + + ×

3 0 6 1 7 2 8 6() N NC D C D C D C D C D +∗ = × + × + × + + ×
.
.
 0 2 1 2 1 2 2 2 2() M M M M N M NC D C D C D C D C D+ + +∗ = × + × + × + + ×

This problem should only be of relevance for the channel filter [1]. To avoid half of the
calculations for such cases, the optimizations depicted in figure 10 can be performed for
the ADC interface.

I branch ADC

DN

DN+2

DN+4

DN+6

DN+1

DN+3

DN+5

DN+7

To RAM

Figure 10 - Modified ADC interface

By letting the ADC interface save the odd and even samples of the incoming data stream
in different memory locations, the downsampling channel filter can be implemented in
the same manner as an ordinary FIR implementation. By first calculating the
multiplications with odd coefficients, the stream of data samples will be shifted by one
each iteration. Subsequently, the multiplication by even coefficients can be performed in
the same manner.

4.1.1.3 Discussion
The throughput and required amount of memory accesses to compute an N-tap FIR filter
is shown for a selection of different architectures in table 2.

 24

Table 2 - Comparison of architectures
Architecture SIMD

factor
Cycles /
output
sample

Memory
accesses /
output sample

Required
number of
coefficients

Scalar MAC 1 N 2N N
SIMD solution 1 2 N/2+1 N+1 N*2
SIMD solution 2 2 N/2+1/2 N/4+3/2 N+1
SIMD solution 1 4 N/4+1 N/2+1 N*4
SIMD solution 2 4 N/4+3/4 N/8+3/4 N+3
SIMD solution 1 8 N/8+1 N/4+1 N*8
SIMD solution 2 8 N/8+7/8 N/32+3/8 N+7

From the table it can bee seen that the throughput will be about the same for, the two
solutions. However, it is a large benefit considering required number of coefficients and
number of memory accesses by employing solution 2. In spite of the added complexity to
support FIR-filtering with down-sampled outputs for solution 2, this solution was
considered preferable.

4.1.2 Correlation
Correlation is used to find the strength of the relation between two variables. In the
domain of baseband processing, correlation is used to compare an incoming symbol with
multiple possible symbols defined by a protocol [1]. The correlation values found can
then be used to evaluate which symbol the incoming data is most likely to represent.
Correlation is also based on the principle of convolution.

The correlation values of multiple data sequences correlated with one coefficient
sequence of N samples will be as follows:

0 0 0 1 4 2 8 4() N NC D C D C D C D C D ×∗ = × + × + × + + ×

1 0 1 1 5 2 9 4 1() N NC D C D C D C D C D × +∗ = × + × + × + + ×

2 0 2 1 6 2 10 4 2() N NC D C D C D C D C D × +∗ = × + × + × + + ×

3 0 3 1 7 2 11 4 3() N NC D C D C D C D C D × +∗ = × + × + × + + ×

By swapping coefficients and data samples in the equations, correlation of one stream of
data against multiple streams of coefficients can be calculated in the same manner.

The correlation values can be found efficiently by a similar architecture as solution 2
previously discussed. This architecture is shown in figure 11 [15].

 25

Figure 11 - Architecture for multiple data, single coefficient

The structure utilizes a parallel input of the data samples and a multiplexed input of one
coefficient. The i denoted in the figure is the currently accessed coefficient. For this
example, a SIMD factor of 4 is deployed, but the concept can also be extended to other
SIMD factors.

4.1.2.1 Discussion
The throughput and amount of necessary memory accesses for the depicted architecture
utilizing a selection of SIMD factors is shown in table 3.

Table 3 - Performance for single stream vs. multiple streams of data
Architecture SIMD

factor
Cycles /
output sample

Memory accesses /
output sample

Scalar MAC, one data stream,
one coefficient stream.

1 N 2N

Two coefficient streams, one
data stream.

2 N/2 3N/4+1/2

Two data streams, one
coefficient stream.

2 N/2 3N/4+1/2

Four coefficient streams, one
data stream.

4 N/4 5N/16+1/4

Four data streams, one
coefficient stream.

4 N/4 5N/16+1/4

Eight coefficient streams, one
data stream.

8 N/8 9N/64+1/8

Eight data streams, one
coefficient stream.

8 N/8 9N/64+1/8

It is a clear advantage both considering throughput and memory accesses as the
parallelizing increases. However, this will come at a cost of added area and complexity.

 26

4.1.3 CORDIC
The COordinate Rotation DIgital Computer (CORDIC) algorithm can be used for a wide
variety of functions [16]. For the DSP proposed in this thesis, CORDIC optimization was
found critical for frequency offset estimation and compensation [1]. This compensation is
necessary due to a drift of the phase of the complex samples at the ADC outputs.

Due to a large amount of branching (if/else statements), conditional additions and logical
shifts used in the CORDIC algorithm [16], it would require a vast amount of instruction
cycles to perform CORDIC operations on an unoptimized ALU. Hence, it is a need for
certain hardware optimizations to increase the performance of this operation. Two
possible implementations of a CORDIC sub-unit of the DSP have been discussed; a word
serial and a word parallel structure. Both of these implementations require a basic
rotation/vectoring unit [17] as depicted in figure 12.

iθ

1iθ+

iθ

1iθ+

Figure 12 - Basic rotation/vectoring unit

The rotation/vectoring unit will have four inputs, two for the complex sample to be
rotated or to find the angle of, the angle to rotate and an elementary angle coefficient. The
three outputs give the complex sample and angle to be processed during the next
iteration.

One bit of precision is obtained per iteration of the basic rotation/vectoring unit, i.e. 8
iterations are needed to rotate or vectorize an 8 bit word [17].

4.1.3.1 Word serial implementation
In a word serial implementation, the CORDIC processing is performed in a recursive
fashion as shown in figure 13 [17].

 27

iθ

1iθ+
Figure 13 - Word serial implementation

This implementation requires only one rotation/vectoring unit, but will require one clock
cycle per bit of obtained precision to execute. It will also require the possibility to
perform a table look-up in parallel with the rotation/vectoring operation, and some
control overhead for the iteration counter.

The benefits of the described CORDIC implementation are a relatively small logical
depth, giving a small area and making it possible to run at high clock frequencies without
pipelining. Also it should be possible to utilize this unit to also perform other operations
than CORDIC, such as add and shift operations. However, the implementation is
relatively slow in terms of required clock cycles to perform a CORDIC operation; one
cycle is needed per bit of precision. Also the look-up table may be expensive in terms of
power dissipation due to memory accesses, and there will be a need of barrel shifters to
perform the shift operations.

4.1.3.2 Word parallel implementation
In a word parallel CORDIC implementation, all iterations of the CORDIC algorithm are
performed in one combinatorial sequence. This method allows for single cycle vectoring
and rotation by using one dedicated rotation/vectoring unit for each of the iterations in
the CORDIC loop. The concept is shown in figure 14 [17].

inθ outθ

Figure 14 - Word parallel implementation

 28

This implementation will require N rotation-elements to obtain N bits of precision,
requiring 3*N adders. A number of pipeline stages may be placed between the
rotation/vectoring units to increase performance. By hardwiring the shift-operations it
will be no need of barrel shifters when this design is used, also the elementary angle
coefficients may be hard-coded since each of the sequential rotation/vectoring units will
only use one coefficient each.

The drawbacks of this implementation is the large logical depth since N adders will have
to operate in serial, a number of pipeline stages is probably needed to allow a high clock
frequency. Also the area requirements are quite large since a large amount of adders are
needed; additionally the pipeline stages are added to the total area cost. However,
omitting the barrel shifters and look-up table will save some area compared to the word
serial solution.

4.1.3.3 Discussion
The approximated area and performance of the two solutions are shown in table 4.

Table 4 - Comparison of architectures
Chosen
architecture

Estimated
area

Cycles/
output
sample

#Pipeline
stages

Word serial 1250 gates 4 1
Word
parallel

4032 gates ½ 2

It can be seen that the area will be about three times higher for the word parallel solution.
However, this solution will achieve 8 times the performance. In terms of power
dissipation, the second solution will most certainly be more efficient since this solution
requires only one control cycle per iteration. Also, omitting the barrel shifters and table
look-ups will have a positive impact on power consumption.

The resulting samples of a CORDIC rotation will have an error proportional to a scale
factor [17]; this will not be an issue for this design since it is the mutual scaling between
samples that is of relevance, not the actual value of the rotated samples.

4.1.4 Find max/min
During chip-to-symbol demapping, there is a need of finding the correlation samples with
the largest absolute value. A typical way to find the largest of multiple values would be
through a compare instruction which compares two values and sets a flag according to
the result. This approach becomes problematic when the number of values to compare
becomes high, since a very large amount of conditional branches would be required. It is
also difficult to take advantage of a SIMD architecture when this approach is followed,
since only one comparison can be computed at a time. This would lead to slow program
execution and a large program size due to the branches, and should therefore be avoided.

 29

To utilize the SIMD architecture for this function, it would be more suitable to give the
result of a comparison as the address of the largest value (i.e. the values placement in the
memory bank), and store this value in the datapath. These addresses can then be used to
calculate the address of the symbol value which the input signal was most correlated to.
The use of branches would then be avoided, and multiple values may be compared
simultaneously.

4.1.5 Shift operations
Shift operations are useful for a wide variety of microprocessor and DSP tasks. In the
domain of baseband processing, shift operations are especially useful for scaling (division
by 2N), quantization and subregister packing/unpacking. Two options have been
considered for implementation of shift operations;

• Multipliers could be used by multiplying/dividing the data to be shifted by a
proper constant

• Dedicated barrel shifters could be included in the architecture

The complexity of the barrel shifter will basically be O(n2) where n is the word-size of
the data samples. For the word sizes the DSP is operating on, the required area for these
units will be quite small. The use of multipliers will greatly increase the power
consumption during these operations due to a larger logical depth and additional memory
accesses.

4.1.6 Linear/log conversion
The IEEE 802.15.4 standard specifies how RSSI values shall be represented to the MAC
layer. The RSSI value shall be given as an 8 bit word, but with a higher dynamic range
than what is feasible within 8 bits. Obviously, some kind of linear to logarithmic
conversion is needed to satisfy these requirements. Two options where considered; the
use of an iterative logarithm for the computation or the use of table look-ups.

In [21] an iterative algorithm for such computations is represented. It was found that a 16
bit barrel shifter would be needed in order to convert a 16 bit value to a smaller
logarithmic representation. Barrel shifters tend to get very expensive in terms of area
when the word sizes are large. Considering that the log/lin conversion will only need to
be computed once for each packet that is received, a 16 bit barrel shifter would probably
cause a too high system cost for this DSP.

Instead, it should be possible to perform the conversion by the use of table look-ups. The
required resolution for the RSSI value is defined as 4dB over a range of 40dB [18]. The
number of coefficients to store for the table look-ups will therefore be 10, which should
be considered as a much lower system cost than the barrel shifter.

 30

5 Architecture
In this chapter, the proposed DSP architecture is presented. The chapter will be divided in
three parts, by describing the memory structure, the datapath and the control path
separately.

5.1 Memory structure
The proposed memory architecture contains two memory blocks, a ROM for storage of
instructions and coefficient and a RAM for storage of data. It is stated in [11] that a word
size of 8 bit should be sufficient for implementation of the 802.15.4 modem. The word
size of memories and datapath are therefore set to 8 bits. A SIMD factor of four is
employed to obtain a large throughput, the resulting widths of data and coefficient
memories should therefore be 32 bits. A block diagram of the proposed memory structure
is shown in figure 15.

Figure 15 - Memory architecture

For the most computationally intensive operations to be implemented in the core, such as
convolution, correlation and CORDIC, a register file would at a large extend only be used

 31

as a temporary buffer for memory read from and to be written to the main memory.
Considering this, it was decided to equate the register file with the data memory to reduce
the area of the memory structure. The required amount of memory to implement the low-
throughput radio standards the proposed DSP core is aimed at can be considered quite
small. The cycle time of these small on-chip memories should therefore be considered
low enough to allow efficient processing. The use of caches was also considered
unnecessary considering the types of memories used.

For volatile data storage, four possible solutions were considered:

• Single ported RAM: This use one shared port for both read and write operations.
Consequently only one read or write operation is possible each cycle

• 2-port RAM: Two dedicated ports for read and write operations.
• Dual ported RAM: Two shared ports for both read and write operations.
• 3-port RAM: Two ports for read accesses and one for write operations.

 It was found that during most of the operations, the memory required at the inputs of the
datapath will consist of a set of constant coefficients and a set of data samples. Therefore,
it should in most cases be sufficient to equip the DSP with a dual or 2 port RAM in
combination with a coefficient ROM to obtain a single cycle throughput. The area and
power savings obtained by this configuration can be considered quite large since a 3-port
RAM consists of two 2-port RAM blocks containing the same data. This configuration
would double the area and the energy needed to write to memory compared to a 2-port
solution. The use of a single ported data memory was considered disadvantageous in spite
of a much lower area than the other solutions. When no register file is used, the
obtainable throughput would be significantly lower for this solution. Also, the energy
efficiency is generally lower for such memory blocks [19]. The use of 2-port memory
was preferred above a dual port solution considering gains in form of lower area and
higher power efficiency.

Two options was considered for coefficient storage; the use of a separate ROM block or
equating the coefficient memory with the program memory. A separate ROM block
would produce a large memory overhead since two small memories will have a
significantly larger area than one larger memory [5]. Equating coefficient and program
memory will on the other hand result in a lower memory bandwidth since both the
instruction and coefficients would need to be supplied from one memory port. However,
the improved area efficiency was evaluated to outweigh the small sacrifice at execution
speed and was chosen as the best solution for this DSP. To maintain a high memory
bandwidth and minimize memory accesses for the most demanding operations, the use of
a single and dual instructions repeat loop is proposed. The hardware loop is further
described in section 5.3.4, and will allow ROM access to be handed over by the datapath
during loop execution. Also, issue of one or four words of immediate data in non-looped
instructions is supported to allow coefficient access for such operations.

The considered trade-offs for different memory architectures is summarized in table 5.

 32

Table 5 - Memory architecture trade offs
Storage type Memory

configuration
Advantages / Disadvantages

Single ported RAM
(1RW)

+ Low area requirements
- Low throughput
- Low power efficiency

2 port RAM (1R-1W) + Highest power efficiency
+ Single cycle single read - single write
- High area requirements

Dual ported RAM
(2RW)

+ Single cycle two read, two write or one read
 and one write
+/- Medium power efficiency
- Higher area requirements

Data storage

3 port RAM (2R-1W) + Single cycle dual read - single write
- Low power efficiency
- Highest area requirements

One ROM for both
instructions and
coefficients

+ Low area requirements
+ Single instruction repeat looping
 dramatically reduces power consumption due
 to memory accesses
+ Requires two memory busses
+ The use of a single ROM simplifies
 programming
- Lower throughput
- Requires a large instruction width when
 equating to 4 word SIMD coefficient
 memory

Coefficient
storage

A separate ROM for
coefficient storage

+ Higher throughput
+ Possibly enabling a smaller instruction width
+ Reduced power due to smaller memories
- High area requirements
- Require three memory busses

5.1.1 Memory organizing unit
The memory organizing unit is included to efficiently provide correct data from the
memory ports to the datapath inputs. The structure of this unit is shown in figure 16.

 33

Figure 16 - Memory organizing unit

The data registers are used to store four words given on the RAM or ROM port when a
memory request have been given by the DSP. Datapath port 1 will either supply one
multiplexed word (the same word repeated four times on the data bus) or four parallel
words. The data is given by four words at the ROM port, the RAM port or one word of
delayed immediate data given explicitly in the instruction. Datapath 2 will either supply
the rightmost four words of an eight word shift register (see section 4.1) or four parallel
words. The data is given as a value from the RAM port stored in the data register.

5.1.2 Address generation units
The proposed architecture contains 2 AGUs for the RAM block, one for each memory
port. Additionally, 2 AGUs are included for the ROM block, one for coefficients and one
for program memory (the program counter).

To avoid insertion of extra delay to the memory read cycle, the read addresses will
always be post-modified. I.e. the addresses modified by the currently executed instruction
will be available for the next instruction. The write address can be modified by the
instruction which makes the access request for the read port. Figure 17 shows a sequence
diagram for the pipeline, illustrating the timing of the memory accesses and AGU
modifications.

 34

Instruction Fetch: instr0

Decode / Operand fetch:

Execute:

instr1

Instr0 Instr1

instr1

Result store:

instr3instr0

instr0 instr1

instr2 Instr3 instr4

instr2

instr2 instr3

instr4

instr4

instr5

instr5 instr6 instr7
instr2 instr3 instr4 instr5 instr6

addr a

addr b

addr a+1/4

addr a addr a

Mux2:

RAM read port AGU:

RAM write port AGU:

RAM read register:

RAM write port: addr b

addr a+1/2

addr b

addr a+3/4 addr a+1

addr a addr a addr a+1

0 1 2 3 0

addr b

Instr0 set the value of
the read port agu to an
immediate value given
by the instruction. The

value is ready at the
RAM port when instr1

is executed

Instr 1,2,3,4 and 5
increments the value of
the AGU. The
corresponding Mux 2
values are delayed one
cycle

When the mux bits
overflows, the address is
updated and a read
request is made. The data
of the new RAM address is
available after one cycle

The address of the write port
AGU is set during the decode
stage of instr1. A write request
is made, and the data will be
saved during the result store
stage of instr1.

addr b+1

Instr4 increments the
write port AGU
without making a
write request

Figure 17 - Timing diagram of memory generation

5.1.2.1 RAM read port AGU
A block diagram of the AGU is shown in figure 18.

RAM
read AGU

Data
N+2

Address N

Mode
2Mux

control

3

Rd
req
Rd

grant

DAC/MAC

Figure 18 - RAM read port AGU

The AGU will contain two address registers; one for the data to be accessed by the
datapath, and one for the MAC/DAC interfaces. The datapath address register will be 2
bit larger than the accessible memory size (N); the two lsb’s of the register will be used
as a control signal for Mux 2 of figure 16. This control signal is delayed by one cycle,
since the execution of the operands takes place during the pipeline stage following the
operand fetch. The MAC/DAC address register is of size N, the multiplexer-control bits
are not needed for this register.

 35

A 5 bit increment register is included in the for the DSP address register. The 2 lsb’s of
the register determines the value to increment the multiplexer control bits of the address
when the mode input selects an increment. The remaining bits of the register determine
the increment of the address when the multiplexer-control bits overflow. This is useful
e.g. when I and Q samples are processed separately, by enabling the AGU to skip some
of the addresses. If the two lsb’s of the increment register is set to zero, the address will
always be incremented.

The MAC/DAC address register will be used as output and incremented by one if the Rd
req bit is set high and the DSP address is not modified. When the request has been
granted, the Rd grant bit is set high.

The AGU supports a circular addressing mode for both address registers. The registers
RBS_DP and RBS_MAC/ADC are used to hold the size of the circular buffers. The registers,
RBS_DP and RBS_MAC/ADC, will store the length of the circular buffer; this can have any
value up to 128. The start of the buffer will have an N-word boundary, where N is the
smallest power of 2 that is greater than or equal to the buffer size. When an address
exceeding the limits of the buffer is calculated, the address will wrap around to the start
of the buffer. The multiplexer bits are not included in the buffer size for these registers.

The different modes available for the AGU are summarized in table 6.

Table 6- AGU modes of operation
Mode Function
Load Raddr_DP Loads the datapath address register with the value given at the

Data input.
Load Rinc_DP and
RBS_DP

Loads the datapath increment and buffer-size registers with the
value given at the Data input.

Load Raddr_MAC/DAC
and RBS_MAC/DAC

Loads the MAC/DAC address and buffer-size registers with the
value given at the Data input.

Add Raddr_DP Adds the value of the datapath address register with the value
given at the Data input. If the value is negative, a subtraction is
performed.

Increment DP Increment the value of the datapath address register. When the
multiplexer-control output generates carry, both increment
values are added to the address. If the multiplexer-control field
of the increment register is set to zero, the remaining bits of the
increment register are always added to the address.

No operation All registers are left unchanged.

5.1.2.2 ROM coefficient AGU
The ROM coefficient AGU will work in a similar way as the RAM read port AGU. The
calculated address will optionally connect to ROM and Mux 1 of figure 16 during the
execution of a HW-loop. Optionally, this AGU will work as a secondary RAM read port

 36

AGU when operations requiring two operands from RAM are executed. To implement
circular buffers of coefficients, modulo addressing will be supported for this AGU. In
contrast to the RAM read port AGU, the multiplexer fields of the address is included in
the specified buffer size to obtain the necessary precision of the circular buffer.

This AGU will be used as a secondary RAM read port AGU if an instruction requires
access of two operands from RAM simultaneously.

The following modes will be available for the AGU:

• Load Raddr
• Load Rinc and RBS
• Increment
• Add Raddr
• No operation

5.1.2.3 RAM write port AGU
This AGU will calculate the read address of the RAM. One N+2 sized register is used to
store the address used by the datapath, the two lsb’s of this register is used as a control
signal for the accumulators. A second N bit register holds a write address for the
ADC/MAC interface. Circular addressing is supported for the ADC/MAC address
register, this mode will be identical as the circular addressing mode for the RAM read
port AGU. DMA control of the two addresses is supported in the same manner as for the
read port AGU.

The following modes are supported for the AGU:

• Load Raddr_DP
• Load Raddr_MAC/ADC and RBS_MAC/ADC
• Increment by 1 or 1/4
• No operation

5.1.3 DMA control
The ADC, DAC and MAC interfaces will occasionally need access to data from the DSP
memory. The use of interrupts to handle such routines would lead to expenses in terms of
increased complexity and decreased throughput. Also, the execution time would become
unpredictable, leading to added complexity of the hardware loops. Instead, it was decided
to provide the external interfaces with direct memory access (DMA). The DMA control is
handled by the AGU’s and a very simple DMA controller. The only purpose of the DMA
controller is to issue a dual cycle read request from RAM if the primary and secondary
RAM read port address registers changes values during the same cycle.

The different units are given the following priorities when a memory access request is
made:

 37

Priority 1: To prevent delays and unpredictable execution-time for the DSP core, a
request from this unit will always be granted. If a request is made simultaneously from
the primary and secondary RAM read port AGU’s, the primary address will be loaded
during the first cycle, followed by loading of the secondary address.

Priority 2: The ADC and DAC interfaces will have second priority. Since the ADC and
DAC sampling frequency will be in an order much lower than the DSP frequency, the
latency requirements for such memory accesses should not be very strict. E.g. if the data
converters are sampled at 8 MHz, and the DSP at 80 MHz, a data converter memory
request must be granted within 10 cycles. By employing some data buffering at the
interfaces, these requirements could be lowered considerably. However, care must be
taken when the DSP is programmed to avoid too many sequential memory reads or
writes.

Priority 3: It is assumed sufficient for the MAC interface to communicate with the DSP
when a packet has been fully received or before a packet is sent. It should thereby not be
a conflict between these memory accesses and DSP and DAC/ADC accesses. The MAC
interface is therefore given lowest priority.

5.2 Datapath
The datapath architecture of the DSP is shown in figure 19.

MAC /
arithmetic

4 X 20 bit
accumulators

ADC/MAC
interface

Shift /
logic

Find max/
min CORDIC

Memory
write port

Datapath
port 1

Datapath
port 2

Acc_highAcc_low

32

32 32

32

Sat

Acc_guard

Acc_guard

Figure 19- Datapath architecture

 38

Four execution units are included in the datapath of the DSP. All results from an
operation performed by any of the execution units will be stored in the accumulators.
Depending on the operation, the operands will either be accessed from the accumulator or
from the main memory through the datapath ports.

5.2.1 The pipeline
To minimize the logical depth and improve the performance of the DSP, execution will
normally be performed over four pipeline stages. Table 7 summarizes the pipeline stages
and the operations performed in each of them.

Table 7 - Pipeline stages
Pipeline stage Operations
Instruction fetch The instruction is fetched from program memory and loaded

to the instruction register.
Decode / operand fetch The instruction is decoded and the data currently pointed to by

the AGU is fetched from RAM. The address pointer is
optionally modified.

Execute The execution stage of the datapath. The actual execution of
an instruction is performed by the datapath during this stage.
The result of the computations is always stored in the
accumulators.

Result store If specified in the instruction, the current values of the
accumulator will be stored in the memory location given by
the RAM write AGU.

It was found that a variable pipeline depth would increase the complexity of the DSP
since additional hardware would have to be implemented to monitor the execution and
prevent pipeline conflicts. Also, throughput may decrease since no-operation instructions
would have to be inserted when pipeline conflicts appear. It was therefore focused on
obtaining a fixed pipeline length.

 From [10] it was found that a multiplier operating on 8 bits and a 20 bits adder would
have a quite small critical path considering the small word sizes. When chaining low-area
implementations of these units, the corresponding clock frequency would be about
200MHz in a 0.13 micron process. The access time of low-power memory modules will
be comparable to these delays [5], making pipelining of the MAC unit unnecessary. The
critical path delay of the Find max/min unit will be about the same as for the MAC unit,
and should not have to be pipelined. The barrel shifters and logical blocks of the shift and
logic unit will have an even smaller logical depth. The CORDIC unit however, was found
too slow to perform non-pipelined execution. If a low area should be obtainable, it was
found necessary to pipeline this unit in two stages to align with the critical path of the
other units. To avoid added complexity to the DSP control path, such complications can
be solved by delaying the write operations one cycle when CORDIC instructions are
issued. Five instructions must be given to execute four CORDIC operations.

 39

5.2.2 The accumulators
The accumulators are large registers used as temporary storage of data processed by the
execution units. The data resulting from an operation will always be saved in the
accumulators at the end of the execution stage(s) of the pipeline. Figure 20 shows how
the accumulators are realized.

Figure 20 - The accumulators

Each of the four accumulators is 20 bits wide, divided in the Acc_high and Acc_low
registers of 8 bit and the 4 bit Acc_guard register. The Enable control signals are used to
specify whether the accumulators shall be updated or not. These signals will be controlled
by the two lsb’s of the RAM read port AGU in combination with a field in the instruction
which specifies if the accumulators shall be updated or not.

5.2.2.1 Data storage and saturation
Except from the ADC and MAC interfaces, only data stored in the accumulators can be
stored directly in the main memory. Depending on the instruction, the 32 bits of either the
Acc_low or Acc_high registers are stored. The values of the Acc_high registers can
optionally be saturated; the Acc_guard registers are then used to determine if an overflow
or underflow has occurred. The data at the RAM read port is after saturation set
according to table 8.

Table 8 - Saturation dependencies
Register
to store

Guard bits Dependencies Output

If (Acc_guard[3]=1 and
(Acc_guard[0:2]!=111 or
Acc_high[7]!=1))

Underflow:
0x80

If (Acc_guard[3]=0 and
(Acc_guard[0:2]!=000 or
Acc_high[7]!=0))

Overflow:
0X7F

Acc_high Acc_guard[0:3]

Else Acc_high

 40

5.2.3 The MAC and arithmetic unit
The execution of 2 and 8 bit MAC operations and 8, 16 and 20 bit arithmetic operations
are equated in the same execution unit to save area. The unit will employ a SIMD factor
of 4 or 16 by parallelizing the execution units. Each of the four MAC and arithmetic units
will operate on one word from each of the datapath ports and a 20 bit value from one of
the accumulators. The structure of each of the parallel MAC units will be as shown in
figure 21.

add/sub

0

0

0

8 bit
Mult

2 bit
Mult

Accumulators

Datapath port1
Datapath port2

Add/sub

Acc[8]

ExtendExtend

1
Sign(DP2)

Cin9

Sign
(DP1)

Accumulator

0

Figure 21 - The MAC and arithmetic unit

5.2.3.1 The multipliers
Each of the multipliers will either operate on two 8 bit values or eight 2 bit values,
employing a SIMD factor of 4 or 16 for the MAC operations.

8 bit multiplications
For 8 bit operations, the 16 bit output of each multiplier will be:

1 2i iDP DP×

DP1 denote datapath port1, DP2 denote datapath port2. i denote the i’th 8 bit word
available at the corresponding port.

2 bit multiplications
To minimize the required complexity, the 2 bit multiplications are aligned with each of
the four MAC units as shown in figure 22.

 41

Figure 22 - Integration of 2 bit multipliers

By the use of this scheme, no additional modifications of the memory organizing unit
was necessary to realize a SIMD factor of 16 operating on 2 bit numbers. However, the
use of four coefficient sets is required due to unalignment within the 8 bit memory
boundaries when 2 bit MAC operations are executed.

The resulting 4 bit output value of a 2 bit MAC operation will be as follows for each of
the four MAC units:

1 1 2 2 3 3 4 41 2 1 2 1 2 1 2i i i i i i i iDP DP DP DP DP DP DP DP× + × + × + ×

DP1 denote datapath port1, DP2 denote datapath port2. iN denote the n’th 2 bit word
available at the corresponding 8 bit word.

This concept can easily be extended to also apply for 1 bit MAC operations. The
hardware cost of both 1 and 2 bit MAC units can be considered very low since all
operations can be performed as additions or simple logic operations.

5.2.3.2 The adders / subtractors
Each of the adders / subtractors is 20 bits wide. They can operate on 20 bit values
supplied from the accumulators, 16 bit values from the 8 bit multipliers, 8 bit values from
the memory ports and 4 bit values from the 2 bit multipliers. Additionally, the values of
both datapath ports can be assembled as one 16 bit value at one of the adder inputs. To
provide a large dynamic range for certain additions, the word at datapath port 1 can be
given at the lower 8 bits of the adder, allowing additions by the value of the accumulator.
All inputs will be sign extended to 20 bits by inserting zeroes or ones (depending on the
sign) for the upper bits at the input of the adders. The lower 8 or 12 bits are generally set
to zero for 4 and 8 bit additions.

To perform rounding of the accumulators, a control signal is used to select the 8’th bit of
the accumulator as a carry bit for the upper 12 bit of the adder (Cin9) while the

 42

accumulator is added by zero. If this bit is one, the value of Acc_high will be
incremented.

The operational mode of the adders (add/sub) is either given by the instruction or the sign
of the sample provided by datapath port 2. The latter is used for computation of absolute
value by subtracting the input value from zero if the input is negative.

5.2.4 The shift and logic unit
A block diagram of the shift and logic unit is shown in figure 23. It consists of four 8 bit
barrel shifters and four logic blocks. The units will operate in a SIMD fashion – all barrel
shifters and logic blocks will always perform the same operation.

Figure 23 - Shift and logic unit

The barrel shifters will shift or rotate the input samples by a number specified by a field
in the instruction. The shift direction is given by the sign of this field. For unshifted logic
operations, the barrel shifters are set to shift by zero. The barrel shifters will operate on
the data from RAM given at datapath port 2.

The logic blocks will operate in one of five modes, depending on the instruction; xor,
and, or, not or nop. The nop mode will pass the signal unchanged to the output. The logic
blocks will operate on data given at the outputs of the barrel shifters and the current data
of datapath port 1.

The shift and logic unit will also be able to reduce the precision of the values of the barrel
shifter inputs to 2 bits, and pack these values to an 8 bit word. By only enabling one of
the accumulators, only the packed word will be stored.

 43

5.2.5 The CORDIC unit
A high throughput for CORDIC vectoring and rotation is essential to obtain a high
performance of the DSP. The CORDIC unit is therefore based on a word parallel
implementation. Figure 24 shows a block representation of the CORDIC unit.

inω

outθ

ω

θ

Figure 24 - CORDIC architecture

The CORDIC unit will consist of 8 sequential basic rotation / vectoring units (see section
4.1.3), each of them will use dedicated phase constants to avoid table look-ups. To avoid
extra cycles due to scaling of the rotation angle, a dedicated adder is employed for these
operations. Each time a CORDIC rotation is performed, the rotation angle (θ) will be
incremented by the phase velocity (ω). The phase velocity is computed during frequency
estimation and saved in the ω register. When the angle reaches 2π , the comparator will
make the θ register overflow. To align the critical path of the CORDIC to the cycle
delay of the memories, the CORDIC unit is pipelined in two stages.

To avoid making the two-stage execution of CORDIC operations visible during other
operations by the DSP, pipeline control will have to be handled by software. E.g. when
four complex values are rotated by the CORDIC unit, this can be performed by five
instructions. The first four instructions can then specify the desired read operations, while
the four last instructions specify the write operations.

Since the CORDIC unit will need both I and Q values to perform a rotation, there will be
needed an extra cycle each time new values are loaded from memory (assuming I and Q
values are stored in separate memory locations). This will align well with the extra cycle

 44

needed for pipeline control. The three following rotations will have a single cycle
throughput since the input data will already be available at the inputs. The high and low
values of the accumulators are used to store the resulting I and Q values. This is
performed to keep these branches in separate memory locations when the CORDIC
operation is performed. The enable_acc bits of the write port AGU is used to select in
which of the accumulators to store the values.

The CORDIC unit will not utilize a SIMD structure, due to the high cost of this unit in
terms of area.

5.2.6 Find max/min unit
To minimize program size and computational overhead for finding the maximum value of
a vector, it was found necessary to optimize for such computations. This unit will find the
largest value of the four words contained in a RAM location and one word contained in
an accumulator. Figure 25 shows how this can be solved.

Figure 25 - Find max/min unit

First, the leftmost word in the RAM location will be subtracted from the value currently
stored in an accumulator register. The resulting sign of this subtraction will be used by
the Max/min encoder to select the largest value for the next subtraction. Subsequently,
the resulting signs of the two first subtractions will be used to determine the input for the
third subtraction and so on. After four subtractions, the max/min encoder is able to
determine the largest input value and store this in the accumulator register. The position
of this word in the input vector will be added to the current value of an accumulator
register. The critical path of this unit will be quite large - four 8bit subtractions and some
delay for decoding and multiplexing. The updating of the position in the accumulator
should therefore be pipelined by inserting this value to the pipeline register of the
corresponding MAC unit. Note that the absolute value of the words contained in the
evaluated vector must be found before these calculations can take place.

5.2.7 The status register
A status register is a set of flags needed to make the DSP able to perform conditional
testing and branching. The status register will consist of the following flags:

• Z1: Zero flag. Set if the lowest 16 bits of accumulator 0 are equal to zero.

 45

• Z2: Zero flag. Set if the guard bits of accumulator 0 are equal to zero.
• N: Negative flag. Set if the value of accumulator 0 is negative.
• O: Overflow flag. Set if an overflow has occurred for accumulator 0.
• Reserved

The first four flags are used to evaluate conditions, such as “greater than”, “less than” or
“not equal”. Also, the overflow flag can be used to determine if an overflow has occurred
for an 8 bit or 16 bit arithmetic operation. These flags are set based on the content of
accumulator 0, i.e. the operations to base the branches on must be calculated by the
leftmost execution unit of a SIMD unit.

A set of flags are reserved for future enhancements, such as for communication with
function level accelerators.

5.2.8 The ADC/DAC interface
This unit supplies an interface between the DSP core and the data converters. During
demodulation, the main purpose of this unit is to arrange the incoming samples suitable
for the channel filter algorithm before storing the samples in memory. The unit will also
supply some data buffering to reduce the delay requirements for the DMA accesses.
Figure 26 shows a block diagram of the ADC/DAC interface.

Figure 26 - ADC/DAC interface architecture

The buffers are used to store and organize samples received from the ADC’s and to
buffer up samples to be converted by the DAC’s. Each of the buffers will have a depth of
4 samples and is able to receive and dispatch samples in both parallel and serial fashion.
The purpose of the state machine is to supply correct control signals and read/write
requests based on a mode specified by a setup instruction and grants from the AGU’s.
This unit will basically consist of a small adder and some decoding logic to set the
outputs based on inputs and current state.

 46

During demodulation, samples will be received in serial form from the ADC’s and sent in
parallel form from one of the buffers to the RAM read port. A write request is issued
when one of the buffers is full. The corresponding buffer will be selected by the read port
multiplexer. The next sample from the ADC register will not be clocked to the buffer
until a grant has been received from the DMA controller. Since two buffers are supplied
for the I and Q branches respectively, the interface is able to store odd and even
numbered samples in different memory locations. This optimization was performed to
greatly increase the efficiency of channel filters with downsampled output (see section
4.1.1).

During modulation, samples are received in parallel form from the RAM write port and
dispatched serially to the DAC’s. I and Q samples will be stored in two buffers each.
When a buffer is empty, a read request is issued and the corresponding buffer is enabled
for parallel reception. When an access grant has been received, the available data on the
RAM read port is clocked in and the register is disabled.

The interface will have different latency requirements for DMA access based on the
operating mode. These requirements are summarized in table 9.

Table 9 - DMA latency requirements
Mode Latency requirements
Demodulation – odd and even samples
stored separately Four write operations within 5 DSP

ADC

f
f

×

clock cycles
Demodulation – odd and even samples
stored together Two write operations within 7 DSP

ADC

f
f

×

clock cycles
Modulation

One read operation within 5 DSP

DAC

f
f

× clock

cycles

 47

5.3 Control path architecture
The control path of the DSP basically consists of a program memory for program storage,
an instruction decoder and a control unit for hardware loops and branches. A block
diagram showing the control path of the proposed DSP architecture is show in figure 27.

Instruction
register

Instruction decoder

Hardware loops

Immediate
data

Enable

Execute
ctrl

Operand
fetch ctrl

Result
store ctrl

Sel

En En

Sel En

nop nopnop

Program memoryProgram
counter

Enable

Operand fetch
control

En

Sel Sel

Coefficient
address

Status
flags

Result store
control

Execute
control

Result
store ctrl

Branch
controller

Immediate
data

Sel

En

Figure 27 - Control path architecture

The registers shown in the figure are pipeline registers for correct timing of operations
performed during the four pipeline stages. During normal execution, the operand fetch
control signals are given directly from the instruction decoder to be executed during the
decode stage. The execute control signals are normally delayed one cycle by selecting
them from the output of the Execute ctrl register. By applying two registers to the path of
the result store control signals, these will be executed during the result store pipeline
stage. The multiplexers are used by the hardware loop to control execution of certain
loops. This is discussed further in section 5.3.4.

5.3.1 The instruction decoder
The instruction decoder decodes the instruction stored in the instruction register to
control signals for the control path, datapath and memory architecture. The
implementation of this block is not discussed further in this thesis, but the orthogonal
instruction set should make its implementation quite simple.

 48

5.3.2 The program counter
The program counter is used to compute the program memory address. It will be
implemented as a simple address register and an incrementer. Each cycle, the address
register is either updated by an incrementation of 1 or the value of an address register in
the hardware loop.

5.3.3 The branch controller
The branch controller is a simple unit which compares a condition given during the
execution stage of a branch instruction to the current values of the status register. If the
condition is met, the branch controller will tell the state machine of the hardware loop to
perform a branch. Two instructions following a branch instruction will always be
executed, whether the branch is executed or not. This is performed to avoid insertion of
no-operation instructions while the dependency is evaluated.

5.3.4 The hardware loops
The purpose of this unit is to handle execution of hardware loops and branches. Figure 28
shows a block representation of how this unit can be implemented.

State
machine

Decrementor 1 Decrementor 2

Comparator 1 Comparator 2

Inner
loop reg2

Branch
address

Outer
loop reg

Inner
loop reg1

Inner
loop cnt

Outer
loop cnt

Immediate
data

instruction
decoder

Loopstart
address

PC
out

PC
in

External
control

Internal
control

Coefficient
AGU

Execute
branch

Sign

Figure 28 - The hardware loop

As shown in the figure, this unit mainly consists of registers to keep loop values and
addresses, decrementors, comparators and a state machine. When a loop instruction is
decoded by the instruction decoder, control signals will set the state machine to load a set
of mode bits to a register. Based on these bits and the results from the comparators, the
state machine will set the necessary internal and external control signals and determine
the next state of the loop execution. The different modes the hardware loop is able to
operate in is summarized in table 10. How the modes are executed by the state machine is
explained further in the following section.

 49

Table 10 - Loop modes
Mode Description
Idle No loop is executing. The state machine is to set PC in to the address

stored in the Branch address register if the Execute branch bit is set
high. If an instruction giving a 32 bit immediate value is executed, a
no-operation is inserted.

Single/Dual
instruction
repeat loop

The two instructions following the loop instruction is fetched and
decoded once. Then these two instructions are executed by the
following loop structure:
For (i=0; i++; i<(Outer loop reg/2))
 For (j=0; j++; i<Inner loop reg1){
 Execute instruction 1}
 For (j=0; j++; i<Inner loop reg2){
 Execute instruction 2}
}

Single/Dual
instructions
repeat loop
w/coefficient
instr1

 Mode set if the first instruction to be executed requires ROM
coefficient access. A no-operation instruction will be inserted before
the loop is executed.

Single/Dual
instructions
repeat loop
w/coefficient
instr2

Mode set if the second instruction to be executed requires ROM
coefficient access. A no-operation instruction will be inserted after
the loop is executed.

Single/Dual
instructions
repeat loop
w/coefficient
both

Mode set if both instructions to be executed require ROM coefficient
access. A no-operation instruction will be inserted before and after
the loop is executed.

Optimized
mode for FIR
filtering with
down-sampling

By minor modifications, this mode is especially optimized for
execution of FIR-filters with downsampled output.

Block of
instructions
loop

A number of sequential instructions are looped in the following
manner:
For (i=0; i++; i<outer loop reg/2){
 execute instruction 1
 execute instruction 2
 …..
 execute instruction #(inner loop reg)
}

 50

5.3.4.1 Dual instructions repeat loop
To keep the required amount of memory accesses from the program memory as low as
possible, it was essential to describe as much functionality as possible with a minimum of
instruction memory accesses. Accessing the program memory may contribute largely to
the total power consumption of the DSP. It was found that a ROM configuration of 32 X
256 bits would contribute with a power consumption of over 5mA, assuming that one
instruction would have to be fetched every cycle at a clock frequency of 150MHz. When
the restrictions given on the total power consumption of the DSP is 5mA, obviously a
large effort will have to be done to minimize the amount of instruction fetches.

It was found that many of the most demanding operations the DSP where to perform
could be described by two instructions in a nested loop. The control unit of the proposed
DSP includes a Dual instructions repeat loop, optimized for execution of nested loops
containing two instructions. The two instructions are only fetched and decoded once,
making the concept very energy efficient when suitable program sequences are executed
by the loop. The concept also allows ROM access to be handed over to the datapath
during execution of the loop, providing a large memory bandwidth for coefficient fetches.

The hardware loop is able to multiplex between the decoded instruction contained in the
pipeline registers and the instruction given at the output of the instruction decoder. This
gives a very small area overhead for this implementation, since few additional registers
are required for the instruction buffering. However, some multiplexers are needed to
multiplex between the two instructions (see figure 27).

The inner loop cnt register is used to keep track of how many times one of the
instructions has been repeated. The counter will alternate between counting down the
values of two inner loop registers, holding the number of repeats for instruction 1 and 2
respectively. The outer loop cnt register will be decremented each time the inner loop cnt
reaches zero. This is done to provide the state machine with correct timing of the
finalization of the loop.

The following explains how the loop will execute.

1. During the decode stage of the loop instruction, the two inner loop registers and
the outer loop register is set according to the values specified by the instruction.

2. Instruction 2 is fetched; the next address to fetch from ROM can optionally be
given by the ROM coefficient AGU. Instruction 1 is decoded and stored in the
pipeline registers. The PC, currently containing the address of instruction 3, is
stopped.

3. If instruction 1 requires access to ROM, a no operation instruction is inserted
while the coefficients are fetched. In this case, the inner loop counter will not be
decremented during this cycle. Otherwise, instruction 1 will be selected by the
multiplexers. The selection of the execution and write operand stages of the
instruction will always be delayed by one cycle. Instruction 2 is decoded and the
instruction and pipeline registers are disabled, making the output of the instruction
decoder and the pipeline registers stable.

 51

4. Instruction 1 is executed until the inner loop counter reaches zero. When zero is
reached, instruction 2 is selected by the multiplexers and the number of iterations
of instruction 2 is loaded to the inner loop decrementor. Each time a zero is
reached by the inner loop counter, the outer loop counter is decremented.

5. Instruction 2 is selected to execute until the inner loop counter reaches zero.
When zero is reached, the multiplexers select instruction 1 to execute and the
number of iterations of instruction 1 is loaded to the inner loop counter.

6. When the outer loop counter has reached zero and the value of the inner loop
counter is one or zero, the PC is started and the current value of the PC will be
fetched during the next cycle. The instruction register is enabled and the program
continues its execution. If ROM coefficients are needed by the last instruction to
be executed, a no operation instruction will be inserted while the next instruction
is fetched.

Figure 29 is a sequence diagram illustrating which operations are performed during the
execution of a small loop. In this example instruction 1 is repeated twice, instruction 2 is
executed once before instruction 1 is repeated two more times. Both instructions need
ROM access for coefficients.

Figure 29 - Timing diagram of loop operations

Note that the outer loop register must be set to a value one higher than the number of
inner loops to be executed.

5.3.4.2 Optimized mode for FIR filtering with down-sampling
Since the channel filtering will contribute with a large amount of the total processing of
the core, it was found necessary to provide an optimized mode for such computations
with downsampled outputs. This mode will basically work as a dual instruction repeat
loop whereas the first instruction requires coefficient access, but with some
modifications. Every second time the inner loop register has counted down for instruction
1, starting at the first countdown, only the operand fetch field of instruction 2 is set to
execute. All other fields will be given by instruction 1. The next time this counter reaches
zero, instruction 2 will be fully executed. This is useful to be able to control the memory
accesses for FIR-filtering when the odd and even samples of the input vector are stored in
different memory locations. By this approach, an arbitrary number of such FIR-filter
implementations can be executed while only three instruction memory accesses will have
to be made.

 52

5.3.4.3 Single instruction repeat loop
Single instruction repeat looping is performed in the same manner as dual instruction
repeat looping. By specifying the outer loop register to 1 and the inner loop registers to
the number of repeats and zero, a single instruction will be repeated.

5.3.4.4 Block of instructions loop
To increase throughput and power efficiency of loops containing more than two
instructions, a general hardware loop for repetition of sequences of multiple instructions
should also be implemented. This can be implemented in a similar way as the dual
instruction repeat loop, by letting the inner loop counter count down a value specifying
the number of instructions contained in one iteration of the loop. Since the DSP does not
support interrupts and have a predictable execution time, this is possible rather than
comparing the PC address to the end address of the loop. The outer loop will count down
from the total number of loop iterations.

The following explains how this loop is executed:

1. During the decode stage of the loop instruction, the inner loop reg1 and the outer
loop reg registers are set according to the values specified by the instruction. The
current value of the PC is stored in the loop start register.

2. One more instruction is executed before the loop begins. This is necessary since it
is the address of the next instruction that was stored.

3. The instructions are executed sequentially until the inner loop cnt register reaches
zero. The value of the outer loop counter is then decremented, if the resulting
value is a zero, the loop has finished and the PC will be incremented during the
next cycle. Otherwise, the value of the PC is set to the address contained in the
loop start register, making the loop start over from the beginning.

Figure 30 shows a sequence diagram for the execution of a small loop. A sequence of
three instructions is repeated two times in this example.

Figure 30 - Timing diagram of block of instructions loop

This concept can also be extended to include support for nested loops. This would require
an implementation of stacks to store program addresses and loop count values. The depth
of the stacks would give the maximum number of nested loops. However, in most cases a
loop depth of one should be sufficient. Since such enhancements would add to the total
complexity of the DSP, it is not included in the hardware loop.

 53

6 Programming model

This chapter will give an overview of the programming model of the proposed DSP
architecture.

6.1 The instruction set
The proposed instruction set of the DSP will have an instruction width of 32 bits to align
with the data vectors to be contained in the same ROM as the instructions. To minimize
the required decoding logic and make future adjustments of the instruction set as simple
as possible, it was focused on achieving a high degree of orthogonality in the instruction
set.

The instructions are arranged in four possible ways as shown in figure 31.

Loop instruction:

Instr type Op ProgAddress

Instr type Op Mem org Addr op Wr Address/Constant

Instr type Op Rd op Wr op Constant#shiftsMem org Addr op Wr

Condition

Instr type Op Loop constant

Branch instructions:

Datapath instructions:

Figure 31 - Instruction set format

Some VLIW features are included in the instruction set to improve orthogonality and
decoding complexity. There are used separate operation fields for datapath operations,
address manipulation and write operations. Also, operations to be executed in different
pipeline stages are stated in different subfields. Control operations and operations
performed by each of the execution units are connected to different instruction groups.
This is performed to simplify implementation of clock gating and operand stopping, and
possibly simplify the instruction decoder. The instruction type field is used to specify
which group an instruction belongs to. A description of the different subfields is given in
table 11.

 54

Table 11 - Instruction subfields
Subfield #Bits Description
Instr type 3 Controls a multiplexer which switches between the

different instruction types.
Op 5 The operation code states the actual operation of the

execution or control unit selected by the instr type field. A
certain bit specifies whether the operation is pipelined or
not.

Mem org 4 This field specifies the operation of the memory
organizing unit to supply the desired data at the datapath
input ports.

Rd op 5 Specifies the mode of the three AGU’s. Depending on the
mode, data stated in the immediate data field can be used
to update or modify one of the AGU registers.

Wr op 3 Specifies whether the high or low values of the
accumulators shall be written to RAM and whether the
data should be saturated.

Address/Constant 12 This field can either contain an address or modifier for one
of the AGU’s or one word immediate data to be supplied at
Datapath port 1.

Constant 8 Field containing one word of immediate data be supplied
at Datapath port 1.

#shifts 4 Specifies the number of shifts to be performed by the
barrel shifters. A negative value specifies a left-shift.

Condition 12 Used by conditional branch instructions to specify the
condition to be tested.

ProgAddress 12 Specifies the program address to jump to after a branch
instruction.

LoopConst 24 Specifies the number of iterations to be performed by a
hardware loop.

The instruction set could probably have been made smaller. However, a tighter
instruction format would give few possibilities for future adjustments of the instruction
set. It was also found suitable to align the instruction width with the data bus width to
obtain single cycle throughput when the program memory are used for coefficient
accesses. The decoding complexity would also increase when shorter instruction words
are applied.

6.2 Supported addressing modes
To avoid insertion of additional delay in the memory read cycle, the address registers
containing read addresses will always have to be altered by the instruction executing
before the instruction accessing the operands is executed. Write addresses are modified
by the same instruction that makes the write operation.

 55

6.2.1.1 Register addressing
There are only 4 data registers in the DSP; the accumulators. These can be addressed
directly of the adders of the MAC unit (e.g. during MAC operations) and the barrel
shifters. The MAC units can also access the address registers of the AGUs. This is
necessary e.g. to obtain synchronization with the ADC interface and during chip to
symbol mapping.

6.2.1.2 Indirect addressing
The addresses of the RAM and ROM are always determined by the values of the AGUs,
i.e. indirectly addressed. Which of the address registers that are given priority, is decided
by the AGU’s and the DMA controller. See section 5.1.2 and 5.1.3 for further details.

6.2.1.3 Immediate addressing
Immediate addressing is supported by setting a constant field of the instruction to an 8 or
12 bit value to be accessed by the datapath, the AGU’s or the PC. Also, 32 bit data can be
given immediate by specifying it in an instruction. The ROM location following the
instruction will hold this data.

6.2.1.4 Circular addressing
Circular addressing modes are supported for the AGU’s. The start of a circular buffer will
have an N word boundary, where N is the smallest power of 2 that is greater than or equal
to the buffer size. I.e. if the size of the buffer is 12, the buffer will have to start at address
0, 16, 32, 48 etc. The circular addressing mode will work in a slightly different way for
the AGU’s. For the RAM AGU’s, the buffer will not include the multiplexer fields of the
addresses. These fields are included in the buffer size of the ROM coefficient AGU.

 56

7 Estimated complexity
In this chapter, estimates of area, power consumption and required clock frequency for
the proposed architecture are presented. Additionally, a description of how an IEEE
802.15.4 demodulator can be implemented by the DSP is provided.

7.1 Implementation of an IEEE 802.15.4 demodulator
The most critical operational mode for the DSP core will be during demodulation of
incoming data. A possible signal chain for implementation of the IEEE 802.15.4
demodulator is shown in figure 32. This section will merely describe how the needed
algorithms can be implemented by the proposed DSP, for further details regarding the
algorithms it is referred to [1].

RF-Front-
end

Channel
filter

A/D-
converter ↓2

Frequency
offset

estimator

Matched
filter Correlator

LQI

X

RSSI

Demodulator
Frequency offset compensator

8→2

Figure 32 - IEEE802.15.4 receiver chain

The real and imaginary components of the A/D converter output will be processed
separately throughout the signal chain (except from the frequency offset compensator).
The chain will consist of a channel filter, frequency offset compensator, Received Signal
Strength Indicator (RSSI), matched filter, correlator and a Link Quality Indicator (LQI).
The following will explain how the different blocks of the signal chain can be computed
by the proposed DSP architecture.

7.1.1 Channel filter and downsampling
The channel filter is an 11-tap FIR filter with downsampled outputs. The ADC interface
should be set to store odd and even samples of the I and Q branch separately before the
channel filter is implemented. This will greatly reduce the amount of cycles for the
computation, since the downsampled outputs will not have to be computed. To minimize
the amount of memory accesses, the channel filter can be executed by the dual
instructions repeat HW-loop with shifted input of data samples and circular addressing of
coefficients. The optimized mode of the hardware loop for FIR-filtering with
downsampled output should be used to obtain maximum power efficiency. This allows

 57

execution of an arbitrary number of FIR-filter implementation while only three
instructions will have to be fetched and decoded. The first instruction following the loop
instruction will specify MAC operations and increments of the operand address registers.
The second instruction will specify a round and save operation with saturation to
maximize the precision. The read operation of instruction 2 should specify an addition of
the operand address by an immediate value given by one of the instructions.

7.1.2 RSSI
RSSI is computed as an average value of the signal power over 10 symbol periods during
a preamble. The power is found by squaring each of the samples included in the
calculations. This can be performed by the DSP as parallel MAC operations with the
same input signal for both of the multiplier inputs, and should be highly suited for single
instruction repeat looping. To avoid overflow, the samples will have to be scaled before
the RSSI value is computed. This can be performed by the barrel shifters operating in a
single instruction repeat loop.

The RSSI value must be given in logarithmic form before it is passed on to the MAC-
layer. This conversion can be performed as a table look-up by modifying the coefficient
AGU based on the computed 16 bit RSSI value. An instruction can then set the program
to branch to this address, and the logarithmic value can be given immediate by the
following instruction.

7.1.3 Frequency offset compensator
A block diagram of the frequency offset compensator is shown in figure 33.

Figure 33 - Frequency offset compensator

First, the frequency offset is calculated by the lower branch of the figure. The obtained
estimate is then used to rotate the incoming samples for correction of frequency offset.

7.1.3.1 Frequency offset estimation
The frequency offset estimation is performed by the CORDIC unit operating in vectoring
mode during a preamble. It is most efficiently implemented as a dual instruction repeat
loop where both instructions specify CORDIC vectoring. For every four times one of the

 58

instructions has iterated, the second instruction of the loop is executed once. This scheme
can be used to compensate for the necessity of delayed write operation due to pipelining
of the CORDIC unit, and will allow for insertions of delays due to dual cycle operand
fetches. The loop of these two instructions is repeated a desired number of times, 4 phase
angles are found during each loop iteration.

When the desired angles are found, the vector of phase values are subtracted by a delayed
version of the same vector. A delay of a factor of 4 is most suitable, due to the SIMD
memory structure. The subtractions can be carried out by a dual instruction repeat loop
by delaying the subtractions every other cycle due to dual cycle operand fetches. The
resulting vector is then accumulated and shifted to obtain the average phase value. The
resulting phase offset is stored in the phase register of the CORDIC unit.

7.1.4 Frequency offset correction
The frequency offset correction is computed in the same manner as the CORDIC
vectoring during frequency offset estimation, but with the CORDIC unit operating in
rotation mode. Eight rotated samples are obtained for each five cycles of the hardware
loop.

7.1.5 Matched filter
The matched filter is implemented as a FIR-filter of order 4. A desired number of FIR-
implementations can be calculated by two dual instruction repeat looped instructions.
The first instruction will specify the MAC operations and an increment of the read port
AGU’s. The second instruction may specify a round and save operation and an increment
of the write port AGU. Additionally, a subtraction of the data address should be specified
by the second instruction to bring the address back to the first input sample of the next
FIR-implementation. The coefficients will rotate by the use of the circular addressing
mode for the coefficient address.

7.1.6 The correlator
The correlation will have different form during preamble and during reception of the
actual packet.

7.1.6.1 SFD detection
To find correct timing of the start of the first symbol of the packet following the
preamble, the start of frame delimiter (SFD) at the end of the preamble must be detected.

Quantization
During SFD detection, the incoming data stream will be quantized by packing four
subsequent samples into a word with 8 bit boundaries. The quantization can be performed
by a single instruction repeat loop, quantizing and packing four samples each cycle.

Correlation

 59

During the preamble, correlation is used to determine the start of the first symbol of the
packet. Since the start-of-symbol timing is unknown at this point, the detection is
implemented as a FIR-filter working on 2 bit samples. The order of the FIR-filter will be
256 when correlation is performed for the two SFD symbols. Four shifted versions of the
same coefficient set are correlated to one stream of input data, sixteen 2 bit
multiplications are performed in parallel each cycle during this operation. To avoid extra
sets of coefficient when the incoming word is unaligned within the four words of the 32
bit memory boundary, the shifted input can be used for the data samples. The Dual
instruction repeat loop can be used for these calculations in a similar way as for the
matched filter.

Each of the computed samples must be compared to a threshold value to determine if a
match has been found, this can be performed by a subtraction of a constant and a
conditional branch. When a match has been found, the end-address of the detected
sequence can be used to calculate the address of the start of the next symbol.

7.1.6.2 Chip to symbol demapping
During chip-to-symbol demapping, the incoming symbol is correlated to multiple
possible predefined symbols to find the one it is most likely to represent. At this stage,
the timing of the start of each symbol is known; this makes the quantization and
correlation take a slightly different form during these calculations.

Quantization
To align the data samples suitable for correlation, every fourth sample should be placed
within the same 8 bit memory boundaries. The 8 to 2 bit quantization will require 6
cycles to perform the necessary shifts for quantization and subregister packing of 16
samples. A block of instructions loop can be set to handle the packing of 16 samples for
each loop iteration.

Correlation
Figure 34 shows a block representation of how the algorithm for finding the most
correlated symbol is depicted [1].

 60

0

7

6

5

4

3

2

1
C
h
o
o
s
e

b
i
g
g
e
s
t

I-branch Q-branch

i
yi Check

sign

+

-

i

 i+8

Correlate
with symbol

Correlate
with symbol

Detected
symbol

Figure 34 - Chip to symbol correlator

The real values (I branch) of one symbol period will consist of 64 samples outputted from
the matched filter. This sample sequence will be correlated with 8 predefined chip
sequences representing the I values of each symbol. The correlation can be performed by
2 bit MAC operations with multiplexed and parallel inputs described by a dual
instructions repeat loop. When all correlations have been performed, the results must be
compared to find the one with the highest correlation. This can be performed by first
taking the absolute value of each sample before the dedicated Find max/min unit is used
to find the largest value. Both these operations can be performed by single instruction
repeat looping. The corresponding address of the symbol the input stream was most
correlated to, will be used to compute the address of the Q values of the symbol. The Q
branch of the incoming chip sequence will then be correlated with this value. The data
symbol the incoming chip sequence represents is determined by the sign of this value in
combination with the symbol found by the I branch.

7.1.7 LQI
The Link quality indicator is a value basically based on the RSSI value and the
correlation value. This value should be relatively straightforward to compute.

 61

7.2 Estimation of computational complexity
The estimates of computational complexity of the IEEE 802.15.4 demodulator for the
proposed DSP core is summarized in table 12. For a more throughout description of how
the estimates are obtained, it is referred to Appendix A.

Table 12 - Computational requirements
Mode Operation % of total

complexity
Channel filter 63
RSSI calculation 2
Frequency offset estimation 22
Additional control overhead 13

Frequency offset correction

Minimum clock frequency 50 MHz
Channel filter 15
Frequency offset correction 3
Matched filter 7
SFD Correlation 73
Additional control overhead 2

SFD detection

Minimum clock frequency 200 MHz
Channel filter 41
Frequency offset correction 7
Matched filter 19
Symbol correlation 24
Additional control overhead 9

Packet reception

Minimum clock frequency 75 MHz

The DSP will operate in three different modes during demodulation; Frequency offset
correction, SFD detection and packet reception. The two first mentioned, will take place
during the preamble. The computational requirements of each of the blocks of figure 33
and the minimum clock frequency of the DSP during the different modes are summarized
in the table. As seen from the table, the requirements during SFD detection will be much
higher than during the other modes. The reason for this is the high complexity of the 256-
tap FIR filter used for SFD correlation. Even when operating on two bit values with a
SIMD factor of 16, the resulting complexity was exhaustive. During the other modes, the
computation of the FIR-filter is dominant.

7.3 Estimation of critical path
The critical path of the system will constitute of the 8 bit MAC when the memories are
not considered. The critical path of this operation will consist of access of two registers,
an 8 bit multiplication, a 20 bit addition and two multiplexers. The resulting critical path
is 5,0ns for 0.13 and 8,4ns for a 0.18 micron silicon technology. The resulting maximal
clock frequencies are at 200 and 120MHz. These estimates are based on adders and
multipliers optimized for lowest possible area, much higher frequencies should be
obtainable by optimizing for performance.

 62

The estimates are based on [10], [19] and [20].

7.4 Estimation of current consumption
The current consumption was estimated for the DSP during SFD detection and packet
reception of IEEE 802.15.4 demodulation.

The current consumption for the memories and logic is summarized in table 13.

Table 13 - Estimated current consumption
Contribution SFD

detection
0.18um

SFD
detection
0.13um

Packet
reception
0.18um

Packet
reception
0.13um

Logic blocks [mA] 10,8 5,4 7,2 3,6
Memory accesses [mA] 3,3 2,0 1,6 1,0
Total current consumption [mA] 14,1 7,4 8,8 4,6

During SFD detection, a clock frequency of 200MHz and an activity factor of 15% were
assumed. During packet reception, it was assumed a clock frequency of 80MHz and an
activity factor of 25%. Clock gating and operand stopping are assumed applied for the
estimation of activity factor. The activity factor during SFD detection was assumed lower
since a very large part of the computations consists of 2 bit multiplications, requiring a
very low active gate area. Also, the instruction decoder will have a very low activity
during these operations, since the instructions will only have to decoded once each
symbol period for the SFD correlation. For further details on the estimation of the amount
of memory accesses, it is referred to Appendix B. The estimates are done for both 0.18
and 0.13 micron technologies [20]. A 40% current reduction was assumed for 0.13
micron memories compared to 0.18 micron.

7.5 Area estimation
The total area of the proposed DSP including data and program memory was estimated.
The estimated area of the various units of the DSP is summarized in table 14.

Table 14 - Estimated gate area
Part of DSP architecture Unit Area

256x32 bit RAM 14500
512x32 bit ROM 4600
Memory organizing unit 1264
Write port multiplexer 200
Address generation units 1312

Memory architecture

Total area: 22066 DMA controller 190

 63

MAC and arithmetic unit 5336
CORDIC unit 4613
Accumulators 460
Find max/min unit 516
Shift and logic unit 722

Datapath architecture

Total area: 13233 ADC/DAC interface 1736

Pipeline registers 674
Instruction decoder 1000
Branch controller 100

Control path architecture

Total area: 2902 Hardware loop 1128
Total area: 38351

For further details on how these estimates are obtained, it is referred to Appendix C.

 64

8 Discussion

8.1 Gate area
The total estimated area was found to be slightly below the 40000 gates given as an area
restriction for the DSP.

The area of the memories, MAC and CORDIC unit will contribute by a very large part of
the total area. The area of the memories could have been reduced significantly by
employing high density memory blocks rather than the low power memories these
estimates are based upon. Also, a commercial memory compiler would probably obtain a
denser memory than the compiler that was used to obtain these estimates [5]. On the
other hand, the area estimation may be a bit optimistic for the logic blocks of the design.
Hidden factors such as delay buffers, higher drive strength for certain components and
additional logic for clock gating and operand stopping are not included in the estimate.
However, a gate count of 40000 should be considered feasible.

The gate count is estimated for low-area implementations of all logical blocks. If a clock
frequency higher than the estimated maximal clock frequency is needed to obtain the
desired throughput, the resulting logic area will increase.

8.2 Performance
The performance of the proposed DSP architecture has been evaluated for a IEEE
802.15.4 demodulator during its different modes of operation.

8.2.1 SFD detection
The obvious bottleneck considering the computational performance of the DSP is the
SFD detection during preamble. The minimal clock frequency during this mode was
estimated to 200MHz. For silicon technologies above 0.13 micron, this high frequency
will not be obtainable for a low-area implementation of the architecture. A faster design
of the functional units and memories will lead to a higher area and power consumption.
This should be avoided in order to achieve the given constraints. For a silicon technology
of 0.13 micron, the estimated maximal clock frequency will be the same as the minimum
frequency when optimizing for low area. A slightly larger area of the MAC unit will be
required in order to increase the maximal frequency.

The correlator will contribute by a very large part of the computational complexity during
the SFD detection. This operation can either be simplified or further optimized to obtain a

 65

lower minimal clock frequency of the system. The following options have been
considered to increase the speed of the correlator:

• By downsampling to 1 bit before the correlation, the calculations can be
performed by a SIMD factor of 32. The complexity of the correlator would be
decreased by 50 percent, but the accuracy of the detection would also be
decreased. Some hardware optimizations would be necessary for the DSP core to
make 1 bit correlation possible.

• The SFD detection could be reduced to only check one of the SFD symbols. A
reduction of the complexity by 50 percent would be achieved, but the accuracy of
the detection would also be reduced.

• A functional level accelerator could be included in the DSP core to speed up the
correlation. The hardware cost of such a unit would probably be quite large, and
the flexibility would be limited.

• The SIMD factor of the DSP can be made even larger. This would be a very
expensive solution, since the memories and datapath units would have to be
scaled by the same factor.

If a high accuracy of the detection is required, the best choice will probably be to
integrate a hardware accelerator for 2 bit correlation in the core. This would imply very
few changes of the DSP architecture, by letting repeated instructions handle the operand
fetches of the correlator and state a conditional branch. By letting the accelerated unit set
a flag in the status register when a match has been found, the program will branch when
this occurs. By specifying the values to correlate with in software, some flexibility can be
preserved for this solution.

8.2.2 Frequency offset estimation
The frequency offset estimator implemented for the estimation of computational
requirements is too simple for realization of the IEEE 802.15.4 PHY [1]. However, the
estimates show that the complexity for computation of the current algorithm is low
compared to the other modes that were considered. Based on the available computational
resources, it should therefore be possible to raise the complexity considerably during this
mode of operation.

8.2.3 Packet reception
The estimates indicate that a clock frequency below 80 MHz should be sufficient for the
DSP during packet reception.

8.3 Power consumption
The estimates for power consumption show that the proposed DSP architecture is able to
achieve the given constraints for maximal power consumption during its most
computational intensive tasks. This requires that a technology of 0.13 micron or below is
used for the realization of the processor. For this technology, the current consumption

 66

will be below the constraint of typical current consumption of 5mA during packet
reception. Demodulation is dominated by this mode of operation, since the preamble has
a duration of only ten symbol periods while the duration of the packet reception will be
from 10 to 512 symbol periods depending on the packet size. Both typical and maximum
constraints on power consumption should therefore be considered as obtainable. If a
hardware accelerator was applied for SFD correlation, the constraints of maximal current
consumption should also be achievable for a 0.18 micron process.

From Appendix B it can be seen that a great reduction of instruction fetches have been
obtained by the use of single and dual instruction repeat loops. Nearly all of the most
intensive and repetitive operations was found suitable for such looping, resulting in
instruction fetches only necessary for between 3 and 21% of the total cycle count. These
numbers will depend on the possible amount of buffering achievable for a certain RAM
size, resulting in a trade off between a larger RAM and a reduced number of instructions
fetches.

The number of memory fetches due to data accesses could have been further reduced if
the concept of solution 2 discussed in section 4.1.1 was fully applied for 2 bit
convolution. However, such enhancements would result in a quite large added
complexity of the MAC units and memory architecture and was therefore not followed.

8.4 Modulation
Modulation can be considered as a much less complex task than a demodulator [1] and
the complexity of these operations has therefore not been fully investigated. However, the
DSP is fully optimized for tasks such as symbol shaping, shift operations and table look
ups which are essential during demodulation.

 67

9 Conclusions and further work
A DSP architecture especially optimized for low-power, low complexity baseband
processing has been proposed. To obtain the necessary performance for repetitive signal
processing tasks, concepts of both VLIW and SIMD architectures has been included in
the DSP architecture. It has especially been focused on energy efficiency, since the radio
protocols the processor is aimed at usually have very strict energy requirements. The use
of an instruction buffer, storing two instructions at a minimum of added hardware
complexity, greatly reduces the required amount of instruction fetches. By the use of
shifted or multiplexed input words during convolution of word-sized data, the required
number of memory accesses was minimized also for data access. Also, it has been
focused on obtaining a minimal logic area, thereby reducing power consumption.

Flexibility has also been an important issue of the DSP architecture. A broad range of
logical, arithmetic and shift operations are therefore supported.

The estimated metrics for area, current consumption and clock frequency for the DSP are
summarized and compared to given constraint in table 15. The estimates are based on
0.13 micron silicon technology and the implementation of an IEEE 802.15.4
demodulator.

Table 15 - Achieved metrics
 Maximum current

consumption
Typical
current
consumption

Maximum
clock
frequency

Area

Constraint 10mA 5mA 200MHz 40000 gates
Achieved 7,4mA 4,6mA 200MHz 38500 gates

As seen from the table, software implementation of the demodulator should be achievable
for the proposed DSP core. However, the usability of a simpler algorithm for Start of
frame delimiter detection should be investigated in order to decrease the maximum
required clock frequency significantly. If the requirements during this mode of operation
can not be simplified, a functional level accelerator for 2 bit correlation should be added
to the architecture. Such enhancements will lead to a reduction of both maximum current
consumption and clock frequency, but the resulting area may exceed the given constraint.

9.1 Further work
This thesis can be considered as a small step considering a possible commercializing of a
software defined baseband processor. A great deal of verification will have to be done
before an actual silicon realization of the DSP.

To provide further verification of the proposed DSP architecture, a system level model of
the architecture can be developed. More accurate estimates of power consumption and
computational requirements should be obtainable by implementing algorithms on a
software model of the proposed DSP. Also, an instruction set simulator can be

 68

implemented to verify the functionality of the programming model. An FPGA
implementation can provide further verification and simulation before a possible ASIC
realization of the DSP.

In this thesis, mainly the IEEE 802.15.4 standard has been considered for implementation
on the DSP. Other possible standards should also be throughout investigated to analyze
how well the architecture performs when implementing these standards.

 69

10 Bibliography

[1] Roger Martinsen Koteng. Evaluation of SDR-implementation of an IEEE 802.15.4
Physical Layer. Master thesis. 2006.

[2] Software Defined Radio Forum. http://www.sdrforum.org.

[3] Walter Tuttlebee. Software Defined Radio – Enabling Technologies. John Wiley and
Sons, LTD. 2002.

[4] Sen M. Kuo, Woon-Seng Gan. Digital Signal Processors. Prentice Hall. 2005.

[5] Dolphin Integration. http://www.dolphin.fr.

[5] Harry F. Jordan, Gita Alaghband. Fundamentals of Parallel Processing. 2003.

[6] Matthias H. Weiss, Gerhard P. Fettweis. Dynamic Codewidth Reduction for VLIW
Instruction Set Architectures in Digital Signal Processors. Dresden University. 1998.

[7] William Stallings. Computer Organization and Architecture. Prentice Hall. 2003.

[8] Eric Tell. Design of Programmable Baseband Processors. Lindköping University.
2005.

[9] Ya-Lan Tsao, Wei-Hao Chen, WenSheng Cheng, Maw-Ching Lin, ShyhJye Jou.
Hardware Nested Looping of Parameterized and Embedded DSP Core. IEEE. 2003.

[10] Digital ASIC Group, Lund University. Digital ASIC Design - A Tutorial on the
Design Flow. 2005.

[11] S. Bourdel, P. Pannier, H. Barthélemy, and N. Dehaese. Low-cost solutions for
802.15.4 rf. Spread Spectrum Techniques and Applications. IEEE Eighth International
Symposium. 2004.

[12] Michael Schulte, John Glossner, Suman Mamidi, Mayan Moudgill, and Stamatis
Vassiliadis. A Low-Power Multithreaded Processor for Baseband Communication
Systems. Sandbridge Technologies. 2004.

[13] Gerard J.M. Smit, Gerard K. Rauwerda. Reconfigurable Architectures for Adaptable
Mobile Systems. University of Twente. 2004.

[14] John G. Proakis, Dimitris G. Manolakis. Digital Signal Processing. Prentice Hall.
1996.

 70

[15] Robin Hoel. Feasibility Study. Internal Document. Chipcon AS. 2006.

[16] Ken Turkowski. Fixed-Point Trigonometri with CORDIC Iterations. Apple
Computer. 1990.

[17] Synchronization and Channel Estimation in OFDM: Algorithms for Efficient
Implementation of WLAN Systems.

[18] IEEE Standard for Information Technology. Part 802.15.4: Wireless medium access
control (MAC) and physical layer (PHY) specifications for LR-WPANs. IEEE. 2003.

[19] Data Sheet. Libra Visa, 0.18-micron Chartered Library. Synopsis. 2004.

[20] Texas Instruments. Silicon Technologies, SR40 and GS30. http://www.ti.com

[21] Demetros K. Kostopoulos. An Algorithm for the computation of binary Logarithms.
IEEE. 1991.

[22] Graham Petley. VLSI and ASIC Technology Standard Cell Library Design.
http://www.vlsitechnology.org/

 ii

Appendix A – Estimated computational complexity

Table 16 shows the estimated cycle count for implementation of an IEEE 802.15.4
demodulator.

Table 16 - Estimated cycle count
Mode Operation # cycles for

initialization
and control

cycles /
output
sample

output
samples

Total
cycles

Channel filter 5 15/4 128 485
RSSI 6 2/4 16 14
Frequency offset
estimation

3+23 128*9/8 1 170

Additional
control overhead

100 100

Frequency
offset
correction –
1 symbol
period

Total #cycles 769
Channel filter 5 15/4 128 485
Frequency offset
correction

3 5/8 128 83

Matched filter 5 7/4 128 229
Quantization 3 1/4 128 64
Correlation 10 17+3/4 128 2272
Additional
control overhead

50 50

SFD
detection –
1 symbol
period

Total #cycles 3183
Channel filter 5 15/4 128 485
Frequency offset
correction

3 5/8 128 83

Matched filter 5 7/4 128 229
Quantization 4 6/4 128 196
I branch
correlation

5 5/4 32 40

Take absolute
value

3 1/4 32 11

Find max/min 3 32 1 35
Q branch
correlation

5 5/4 4 10

Additional
control overhead

100 100

Packet
reception -
1 symbol
period

Total #cycles 1189

It is assumed a buffering of two symbol periods (64 memory locations), i.e. each of the
operations can be performed for one symbol period at a time.

 iii

Appendix B – Estimated power consumption

Table 17 and 18 shows the estimated amount of memory accesses for implementation of
an IEEE 802.15.4 demodulator. The analysis is based on demodulation of one symbol
period during packet reception and SFD detection.

Table 17 - Estimated number of memory accesses during packet reception
Mode Operation #instruction

accesses
#coefficient
memory
accesses

#data
read
accesses

#data
write
accesses

ADC interface 0 0 0 64
Channel filter 8 112 128 32
Frequency offset
correction

6 0 32 32

Matched filter 8 32 32 32
Quantization 3*32+3 0 32 32
I branch correlation 8 40 10 8
Take absolute value 7 0 8 8
Find max/min 7 0 8 1
Q branch correlation 8 2 2 1

Packet
reception

1 symbol
period

Additional control
overhead

100 0 100 100

Total # memory accesses 251 186 352 310
uA/MHz 33 33 24,7 19,3
Power consumption 0,52mA 0,39mA 0,55mA 0,38mA

Table 18 - Estimated number of memory accesses during SFD detection
Mode Operation #instruction

accesses
#coefficient
memory
accesses

#data
read
accesses

#data
write
accesses

ADC interface 0 0 0 64
Channel filter 8 112 128 32
Frequency offset
correction

6 0 32 32

Matched filter 8 32 32 32
Quantization 3 0 32 32
Correlation 8 512 512 32
Take absolute value 7 0 32 32
Find max/min 7 0 32 1

SFD
detection

1 symbol
period

Additional control
overhead

50 0 50 50

Total # memory accesses 97 656 850 306
uA/MHz 33 33 24,7 19,3
Power consumption 0,20mA 1,39mA 1,32mA 0,37mA

 iv

It is assumed a buffering of two symbol periods (64 memory locations), i.e. each of the
operations can be performed for one symbol period at a time. The power consumption of
the memories are based on [5] and [19] for a 0.18um CMOS process.

 v

Appendix C – Estimated area

Table 19 - Area estimates
Part of DSP
architecture

Unit Basic components Component
Area

Total
area

RAM 256x32bit asynchronous
2-port RAM

14500 14500

ROM 512x32bit asynchronous
ROM

4600 4600

Memory organizing
unit

2x 32bit 4:1 multiplexers
3x 32bit 2:1 multiplexers
1x 8bit 2:1 multiplexer
4x 8bit registers
2x 32bit registers

400
288
24
184
368

1264

Write port
multiplexer

1x 32bit 4:1 multiplexer 200 200

Address generation
units

7x12bit registers
3x12bit adders
1x12bit 7:1 multiplexer
1x12bit 5:1 multiplexer
1x12bit 4:1 multiplexer
2x10bit comparators

483
360
183
111
75
100

1312

Memory
architecture

DMA controller 1x10bit 2:1 multiplexer
1x10bit 3:1 multiplexer
Decoder logic

30
60
100

190

MAC unit 4x 8bit multipliers
4x 4x2bit multipliers
4x 20bit
adders/subtractors
4x4 10 bit 2:1
multiplexers
4x2 20 bit 4:1
multiplexers

2176
560
1120
480
1000

5336

CORDIC unit 24x 12bit adders/
subtractors
1x 8bit adder
1x 8bit register
3x 12bit registers
8x 8bit hardcoded
constants
2x 2:1 8bit multiplexers
Control logic and state
counter

4032

80
46
207
100
48
100

4613

Accumulators 4x 20bit registers 460 460

Datapath
architecture

Find max/min unit 4x 8bit subtractors 320 516

 vi

3x 8 bit 2:1 multiplexers
1x 8 bit 5:1 multiplexer
Logic

72
74
50

Shift and logic unit 4x8bit 8:1 multiplexers
4x 8bit 5:1 multiplexers
Logic blocks

436
236
50

722

ADC/DAC interface 20x8bit registers
4x4x8bit 2:1 multiplexers
32bit 4:1 multiplexer
2x8bit 2:1 multiplexers
State logic

920
334
334
18
100

1736

Pipeline registers 2x32 bit register
3x8bit registers
2x8bit 3:1 multiplexers
32bit 3:1 multiplexer

400
106
36
132

674

Instruction decoder Decoder logic and
multiplexers

1000 1000

Branch controller Compare logic 100 100

Control
path
architecture

Hardware loop 5x 6bit registers
2x 12bit registers
1x 12bit 3:1 multiplexer
3x 5bit 2:1 multiplexers
2x 5bit comparators
2x 5bit decrementors
States and logic

173
138
72
45
100
100
500

1128

Total logic
area

 19251

Various standard cell libraries was used to obtain equivalent gate counts of the various
basic logic components, see [22] and [19] for further details considering these libraries.
The use of ripple carry adders and Non-Booth-recoded Wallace-tree multipliers was
assumed sufficient considering the slow clock frequencies the DSP should be able to run
at. Area of the multipliers was obtained from [10]. Area of the memory modules was
found from [5] and [19] and is based on low power memories in a 0.18um technology.

