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ABSTRACT  
 
Absorption of water in concrete is often described by the simple linear water uptake vs. 
square-root-of-time law. However, a deviation from this behaviour is frequently seen 
depending on factors such as initial water content, water/binder ratio and specimen thickness. 
The deviation increases with thickness (typically from 25 to 100 mm) and is seen even for 
very dry specimens with capillary pores. We have applied Laplaces law for suction created 
under a curved meniscus between air and water to series of pipes with different lengths and 
radii. The resulting analytical model was first compared with numerical simulations at abrupt 
reduction or increase of pipe radius showing good agreement. Then a complete second order 
equation describing the relation between the capillary suction and the suction time was 
developed. Varying geometries of the pipes of the capillary system were investigated 
including the effects on the flow rate of varying combination of lengths, radii and sequence. 
The results showed that largest flow reductions occurred with very narrow sections causing a 
blocking, reducing the capillary flow rate vs. square root of time in the same manner as in 
concrete. The often observed phenomenon of reduced flow below the straight line water 
uptake vs. square root of time could be simulated with the multiple diameter pipe models, as 
seen by comparing simulations with experiments with varying concrete qualities and sample 
thicknesses in simple capillary absorption tests.  
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INTRODUCTION 
 
Capillary transport of water in concrete has kept the attention of researchers world wide for 
many years. It is considered a basic transport mechanism [1] and mainly ascribed  to suction 
under water meniscii in capillary pores. During the last decade an increasing portion of the 
applied concrete qualities has very low capillary porosity due to increasing use of low 
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water/binder ratios and supplementary cementing materials like fly ash and condensed silica 
fume that refine and make the pore structure less continuous [2]. However, such concretes 
may, after some predrying of thin specimens, still show the typical nick point on the water 
uptake vs square root of time plots from one sided (unidirectional) capillary suction 
experiments. The characteristic nick point absorption is associated with the existence of 
capillary porosity. The severity of drying has a very clear effect, and this has been found to 
relate to the degree of saturation of the pore system at start [3]. By re-plotting these results 
they actually fit well into the kind of saturation-sorptivity plots suggested [1] for use in 
solving Richards equation. However, in experiments there is a size effect on capillarity that is 
problematic compared to the capillary mechanism since there is an increasing deviation from 
the linear absorption vs square root of time relation of capillary theory as the sample thickness 
is increasing. The size dependant deviation from the square root-law effect has sometimes 
been ascribed to the replacement of interstitial water and subsequent swelling of the gel [1]. 
We, however, believe that capillary discontinuities in the form of narrow passages or larger 
capillary voids along the flow path of the capillary pore system can be involved in the 
phenomenon (as some sort of pipe geometry effect on the water transport). Depending on the 
severity of pre-drying the deviation from the square-root law has been observed in concrete 
with a significant amount of capillary porosity [4] as well as in HPC materials with little 
capillary porosity [3]. The deviation has also been observed in capillary absorption 
experiments with an organic fluid [5]. It is therefore probable that the proposed gel swelling 
[1] cannot be a general explanation for the anomaly. Figure 1 shows the results of one of our 
experiments on cylindrical mortar specimens with diameter 100 mm and w/c = 0.60 after 
drying at 105 C. 

 
Figure 1- Capillary absorption in w/c 0.60 mortar with increasing deviation from linear 
absorption vs square-root-of-time law at increasing specimen thickness 20 to 40 to 100 mm. 
 
Figure 1 shows how real capillary absorption deviates increasingly from the square-root of 
time law as the specimen thickness increases from 20 to 40 to 100 mm height. We also see 
how the nick-points become less distinct at increasing specimen height. In this paper we 
investigate the above phenomenon with a combined experiment-modelling approach with 
different pipes representing the capillary pore system [6,7]. 
 
CAPILLARY SUCTION FLOW MODELS 
 
Varying pipe flow approaches have been taken in earlier studies of this kind of problem. 
Some have been based on pipe flow according to Hagen-Poiselle (HP) with capillary suction 
due to the under-pressure caused by the surface tension between liquid and gas σl-g (l-g - 
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water-air in our case) and the curvature of the water meniscus between air and the liquid 
wetting the pipe wall (concrete in our case). One example of pipe flow modelling can be 
found in [8] and early efforts to model capillary suction in sandstone and concrete in this way 
are [9,10]. However, these studies did not analyse the reasons for the increasing deviation 
from the square root of time law as the specimen thickness increases.  
 
Flow modelling by suction in pipes with stepwise changing radius 
 
As a starting point for our capillary system, we will assume an incompressible and stationary 
flow in an axial-symmetric pipe system driven by the suction under the water meniscus 
between water and air. Outside the pipes there is no porosity. Thus, on a multiscale we neither 
consider the transport mechanisms in nanoscopic gel pores nor macroscopic air voids; only 
the microscopic capillaries. In order to develop an analytical capillary model for a pipe system 
with a stepwise changing cross section, we will start with the two-sized model shown in 
Figure 2. This Figure illustrates how a physical flow pattern shown in the upper Figure 2(a), 
can be approximated with the stepwise model shown in the upper Figure 2(b). For this binary 
model we assume a HP flow in both sections, which changes abruptly at the interface ( 1= xx
). Thus we neglect the regions indicated with the darkest shading in the upper Figures, where 
the flows are not fully developed. This approach will also lead to a stepwise flow velocity and 
a linear pressure as indicated in the lower Figure 2(b), acting as approximation for the 
physical mean fields shown in the lower Figure 2(a).  

 
Figure 2- A circular tube divided into two sections and the balance force between the 
capillary force pc under the water meniscus  and the moving-body-force. 

 
The velocity field xu  and pressure field xp  should be considered as mean values over the 
pipe cross section. These are deduced from mass- and momentum conservation [6] for an 
axial-symmetrical flow:  

 

   
      𝑢𝑥 = 2

𝑟𝑥2
∫ 𝑢(𝑟, 𝑥)𝑟𝑥
0  𝑟 𝑑𝑟      and    𝑝𝑥 = 2

𝑟𝑥2
 ∫ 𝑝(𝑥, 𝑟)𝑟𝑥
0  𝑟 𝑑𝑟         (1) 

In addition to the radius parameter xr  which has the value 1r  and 2r  in section 1 and 2, 
respectively, the geometry is also characterized by the sections length 1l  and 2l , and h  which 
is the current position for the water front. Local expressions for the HP flow for fully 
developed flow profiles are obtained from integration with non-slip boundary conditions as 
reviewed in [6] yielding the well known parabolic HP-profile [11] in each pipe section: 
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Where µ is viscosity [Pa.s]. This result may be used to determine the mean velocity of flow. 
After substituting eq. (2) into the first of eqs. (1) and integrating, we obtain: 
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It should be emphasized that both the pipe radius, the pressure gradient and the velocity in eq. 
(3) are local quantities changing between the individual pipe sections. Therefore, in order to 
determine the velocity at the fluid-front hu  based on eq. (3), we need two additional 
conditions. The first condition is the pressure fall from position 0=x  to h . This pressure fall 
has to be balanced by the capillary suction under- pressure cp  at the water front as shown in 
Figure 2. The second condition is the conservation of water flow, i.e. the volume flowing 
through a cross section at the left side per time unit must be equal to the volume flowing 
through a section at the right hand side. 
 
Capillary suction under curved mensiscus in pipe series – analytical model 
 
The first condition, the capillary suction (or under-pressure pc in Figure 2), can at moderate 
velocities be approximated with the stationary pressure given by the Laplace equation (eq.(4)) 

 
h

gl
c r

cos
p

δσ −−
2

=  (4) 

obtained from static conditions. Here gl−σ  is the surface tension between water and air and δ
the contact angle between the pipe wall and the wetting water front (see for example [1],[12]). 
The second condition gives [13]: 

 .== 2

2

x

h
hxhhxx r

ruuAuAu ⇒  (5) 

Here xA  and hA  are the cross section areas at position x  and h , respectively, as shown in 
Fig. 2(b). After rearranging eq. (3) and then integrating from 0=x  to h  we obtain 

 20 0

1=
8

h ph
x xp

x

dxu dp
r µ

 − 
 ∫ ∫

 (6) 
A further reformulation of this equation can be done by inserting expressions for the pressure 

0= ppp hc −  and velocity xu  given by eqs. (4) and (5), respectively. This yields 

 3)(
=

h
h rhf

ku  (7) 

for the capillary front velocity where we have introduced a constant k  as 
 

 .
4

=
µ

δσ cos
k gl−  (8) 

and a function f depending on the number and size of pipes and the position of the water front 
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in a model extended from Figure 2 into j pipe sections as shown in Figure 3:  

 
 

Figure 3- Pipe with −N  irregular subsections and water front at the jth section 
 
Then, in order to obtain an equation for the flow uh at a length (or height) h going through N 
subsequent pipe sections of different lengths and radii, a general expression was developed 
extending from the above approach: 

 .
////

=
112211 jjjj

h
ku

αβαβαβαβ ∆++++ −−
 (10) 

where α describes how rapidly the cross sections change with respect to pipe section length 
and in relation to position of the water front: 
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and β relates the cross sections of previous pipe sections ( 1,1,2,= −ji  ) to the current 
section ( ji = ) with 1=jβ  due to its definition: 

 .,1,2,==
3
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r
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
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The relation between the capillary velocity and the capillary height in eq (10) above is also 
given by the differential equation, eq. (13): 

 
dt
dhuh =

 (13)     
 

which can be inserted in eq. (7) and then integrated. This yields  
 .=)(3

0
ktdssfrs

h

∫  (14) 

where s  is an integration variable running over the tube sections with a stepwise changing 
radius rs and k is, as usual, given by eq. (8). A solution of eq. (14) will for a general variation 
in the cross section, require a numerical approach [14]. However, for a stepwise changing 
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radius, it is possible to work out solutions by analytical means. We notice that the function 
)(sf  has to be continuous since it occurred from integrating a stepwise changing function 

(given by eq. (9)), and linear in the individual tube sections as illustrated in Figure 4.  
 

 
Figure 4- The area under the graph of )(hf  from 0 to h , hAA ,,1   
 
The left hand side of eq. (14) may therefore be interpreted as the area A under the graph )(hf  
from 0 to h  weighted by the section value 3

hr , Figure 4. With this in mind and using the 
analytical formula for )(hf  (eq.(9)) and for the area formula of a trapezoidal element, we get: 
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From eq. (15) we see that only the terms related to the front section or j -section, is a function 
of the capillary height h , while the other terms may be regarded as constants with respect to 
this parameter. Moreover, by inserting eq. (15) into the left side of eq. (14) and by substituting 

jf∆  from the last to parts of eq. (9), we find that h  and time t  are related through the 
following second order equation: 



 

7 

 .=)(
2
1

2
1 2

1

1=

3
1

1=

3
1

1=
kth

r
hfrfflr j

j
ji

j

i
jim

i

m
ii

j

i
∆+∆








+
















+ ∑∑∑

−−−

 (16) 

As a short notation we have here introduced the relative height  
 ,= 1−−∆ jj xhh  (17) 

measured from the starting position 1−jx  from the last section. In addition, we will also 
introduce the following parameters: 
 
𝐶𝑗−1 = ∑ 𝑟𝑖3𝑙𝑖

𝑗−1
𝑖=1 �∑ 𝑓𝑚𝑖−1

𝑚=1 + 1
2
𝑓𝑖� ,                𝐵𝑗 = 𝑟𝑗3 ∑ 𝑓𝑖

𝑗−1
𝑖=1 ,          𝐴𝚥� = 1

2𝑟𝑗
   (18) 

 
to put Eq. (16) into the quadratic form  
 

 𝐶𝑗 + 𝐵𝑗∆ℎ𝑗 + 𝐴𝚥� ∆ℎ𝑗2= kt (19) 
Several useful results may be deduced from eq.(19), for example the required filling time t   

 

 𝑡 = 𝐶𝑗−1
𝑘

+
𝐵𝑗∆ℎ𝑗+𝐴𝚥����∆ℎ𝑗

2

𝑘
 (20) 

for all pipe section up to h , for cases where h  is specified. Here the first term provides the 
filling time for the first 1)( −j  sections while the second term gives the time needed to fill up 
the last section up to position h . On the other hand, if the total filling time t  is known or 
specified, jh∆  may be obtained from using the quadratic solution formula on eq. (19), to give  

 ∆ℎ𝑗(𝑡) =
−𝐵𝑗+�𝐵𝑗

2−4𝐴𝚥�����𝐶𝑗−1−𝑘𝑡�

2𝐴𝚥����
 (21) 

 
Only the positive root of eq. (21) should be considered here. It is also possible to recalculate 
well known capillary formulas for tubes with a uniform radius Ur from eq. (19). From 

Uj rrrr ==== 21   we find:  

 t
r

ktrth U
U













µ
δσ

2
cos

=2=)(  (22) 

often refereed to as the Lucas-Washburn equation [15,16]. Finally, we will show that the 
previously derived fluid velocity can be expressed in terms of the new notation, e.g. the 𝐴̅ −, 
−B  and −C terms introduced in eq. (18). This will give us an analytical expression for the 

velocity as a function of time. This time relation may be found by derivation of the flow 
height in eq. (21) with respect to time, which yields eq. (23): 
 

 𝑢∆ℎ𝑗(𝑡) = 𝑑�∆ℎ𝑗�
𝑑𝑡

= 𝑑
𝑑𝑡
�
−𝐵𝑗+�𝐵𝑗

2−4𝐴̅𝑗�𝐶𝑗−1−𝑘𝑡�

2𝐴𝚥����
� = 𝑘

�𝐵𝑗
2−4𝐴̅𝑗�𝐶𝑗−1−𝑘𝑡�

 (23)                

One should notice that this equation has to be identical to previous velocity expressions given 
as a function of position hu , for example, eq. (7). To show this, the time t  in eq. (23) may be 
replaced by eq. (20). This gives  

 𝑢ℎ = 𝑘

�𝐵𝑗
2−4𝐴𝚥�����𝐶𝑗−1−�𝐶𝑗−1+𝐵𝑗∆ℎ𝑗+𝐴𝚥����∆ℎ𝑗

2  ��
         = 𝑘

𝐵𝑗+2𝐴𝚥����∆ℎ𝑗
  = 𝑘

𝑓(ℎ)𝑟ℎ
3 (24) 
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Numerical verification of analytical flow model 
 
In order to analyse the flow conditions at the abrupt change in diameter of the analytical 
model as shown in Figure 2 numerical simulations of the flow conditions at intersections 
between different small and large pipes were performed. The FEM based numerical tool 
COMSOL Multiphysics [17] was used for this purpose by solving the flow fields using 
Navier Stokes equation. Two different geometries were applied; C (Contraction – large pipe 
leading into small) with β1 = 0.125 and model E (Expansion – small pipe leading into large) 
with β1 = 8, see figure 5.  In both cases α2 varied in the order 0.0001 – 1 and α1 = α2/2 
according to the chosen geometry. 

 
Figure 5- Tube with contraction (β1 = 0.125) and expansion (β1 = 8) sections 
 
Thus a range of different ratios between length and radii were applied in numerical 
simulations. The objective was to find out when the analytical models "breaks down" in terms 
of deviating from the numerical solutions of the not fully developed laminar flow shown at 
the darkest shading in Figure2 and also analyzed in terms of Reynolds numbers [6]. Figure 6 
shows examples of the numerical simulations for the E-model. The absolute value of the pipe 
flow rate varied considerably; from a bit less than 1 mm/s to a bit more than 1 m/s depending 
on the actual α− and β-values. 

 
         a) Model 𝐸𝑙=10−3      b) Model 𝐸𝑙=10−5      c) Model 𝐸𝑙=10−6 
 

Figure 6: NSE-Streamline velocity fields for modesl 6,105,10310= −−−l
E , (water flows upwards) 

 
Figure 6 is quite representative of the general finding of the numerical simulations; little 
turbulence at the intersections unless the smallest tube length is very small (10-6) and 
approaching the size of its radius. When the cross section of a pipe is relatively small, for 
example 21, rr ,)10,0.510(1= 66 m−− ×× the flow still is laminar with a sudden 
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contraction/expansion in cross sectional area, in spite of a large variation of the section length, 
ml 53

1,2 1010= −− → . Irregular fields are seen at a sudden change in section geometry as 
Figs.5(c)  for 6

21 10= −≈ll , that is when 1,2α  increases or, as in our case, the section length is 
dramatically decreased with respect to the cross section area so that ,ii rl ≈  1,2=i . The 
deviation of flow determined by the analytical model from the numerical solution could 
become in the order of 10 %. Furthermore, all velocities of the contraction models 

610210= −→−l
C  are faster than the corresponding expansion models 610210= −→−l

E That is, the 

suction at the front is more important than the flow resistance for these geometries. Based on 
these simulations with a variety of pipe intersection [6], it is clear that the analytical model 
(AE) is a very good model for the approximation of flow as the fluid passes section changes.  
 
COMPARING CAPILLARY SUCTION EXPERIMENTS AND MODELING 
 
Concrete data and laboratory measurements of water suction on dry concrete slices 
 
Experiments with one sided capillary absorption were performed with two different concrete 
qualities. Specimens were produced from ordinary portland cement (ASTM Type II/CEM I 
42,5 R) with blaine specific surface 384 kgm /2 , granitic aggregate with 8 mm maximum size, 
9%  fines less than mm0.125  and 0.5% absorption and a co-polymer water reducer (Sika 
Viscocrete) added to obtain flowable consistency. Two different mortar mixes were made 
with 0.45=/cw  and 0.60  respectively. Both mixes had 39 vol-% cement paste and 2 % air 
voids. Cylindrical specimens with diameter 100 mm and height 200 mm were cast in two 
layers in steel molds with slight compaction on a vibrating table between each layer. The 
cylinders were de-moulded after 24 hours and cured in water at Co20  for approximately four 
months. Then, slices with thickness 20, 40 and 100mm where wet-sawn normal to the 
cylinder axis. The slices were dried at Co105  to constant weight, air cooled to room 
temperature and quickly sealed on their lateral surfaces to ensure undirectional flow of water. 
For each material and thickness four specimens were weighed regularly. The capillary suction 
curves for slices of different thickness of the w/c = 0.60 are shown in Figure 1. The suction 
porosities of the specimens were measured after the capillary absorption tests by total 
immersion until constant weight. Volumes were determined by weighing in water. Then 
degree of hydration (hyd in eq.(25) [18]) was solved based on the Powers model [19]:  

 = ( / 0.172 ) / ( / 1/ )tot cp w c hyd w c ρ− +   (25) 

cρ  is particle density of cement. Finally, the capillary porosities were determined according 
to Powers model with eq. (26) [18]: 
  )1//)/(0.415/(= ccap cwcwp ρα +−   (26) 
Table 1 shows the results indicating that capillary porosity makes up around 40 % of the total 
porosity for our specimens according to the differentiation between gelpores (where meniscii 
do not exist)- and capillaries based on Powers and Brownyard [19]. 
 
Table 1:  Porosity )/( 33 mm  and degree of hydration in the mortars  

cw/  totp    capillaryp   hyd  

 0.45   0.16   0.064   0.78  
 0.60   0.18   0.068  1.0  
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This means that in the order of 60%  of the pore volume could be filled by other 
mechanism(s) than capillary suction. (Due to the water curing of the cylinders the factor 0.415 
in eq.(26) should probably be reduced towards 0.357 which yields for filling of self-
dessiccation pores. So the capillary porosities of table 4 are probably a bit low and the 
difference too small between w/c = 0.45 and 0.60.) The pipe suction model can only work in 
capillaries so the gel porosity is obviously a source of error. Nevertheless we believe that our 
model gives information about the possibility for pore necks to cause the capillary absorption 
anomaly (deviation from linear absorption-√time and vanishing nick points) since our 
specimens contained large fractions of capillaries. 
 
Comparing measured capillary suction with calculations for different pipe geometries 
 
In order to study the influence of the pipe geometry on the absorption of water, we 
constructed first several contraction-expansion sections (Model C) and expansion-contraction 
(Model E), see Figure 5. The resulting pipe-geometries are illustrated in Figure 7.  
 

 
Figure 7- Model C, E with 3=ns , 6=N  sections and Model U with constant radius  
 
As shown in Figure 7, two different combinations of sections (a) and (b) give the structure of 
models C-E. Each combination has )( Nns −  sections. Also a mean uniform radius giving the 
same pipe volume was constructed. When plotting the calculated absorption as (𝑘𝑔 𝑚2)⁄  vs 
square root time the absorption may simply be interpreted as a suction height to be compared 
with the results of eqs.(21) - (24). This is also a way to interpret experimental, one sided, 
absorption. To compare calculations with experiments where the pore volume varies 
depending on w/c, degree of hydration and fraction of cement paste (assuming non-porous 



 

11 

aggregate) we then simply calculate the absorption in the form of weight. The above 
mentioned mean pipe radius was calculated for each C- and E-models. This gives a mean 
porosity (this was also done for a random sized pore model, see [6,7]). Absorption measured 
in lab was always compared with calculated absorption in different pipe systems at equal total 
porosity by using mean pipe radii. For each set of models C or E, there is a corresponding 
model-U with the constant uniform mean volume radius Ur . We require the conservation of 
volume for these three models. Let CV , EV  and UV  denote the volume for model C, model E 
and model U, respectively. In order to have the same volume for all three models, the radius 

Ur  must satisfy the following condition: 

 𝑉𝐶 = 𝑉𝐸 = 𝑉𝑈 ⇒
1
2
𝜋(𝑟12 + 𝑟22) = 𝜋 𝑟𝑈2  => .

2
=

2
2

2
1 rrrU
+  (27) 

We observe that the radius Ur  depends only on the radii 1r  and 2r  but not on the section 
lengths 1l  and 2l .The volume (V) of the capillary absorbed water is then calculated by eq.(28) 

with )(thj∆  defined by eq. (21):  )(=)( 22
1

1=
thrlrtV jjii

j

i
∆+∑

−

ππ  (28) 

Before comparing the model with experiments, absorption was calculated in a wide range of  
analytical C- and E- models  [6,7]. These results showed that the right kind of deviation from 
straight-line (absortion-√t) could be obtained for realistic pipe sizes, - lengths and time scales. 
Fig. 8 compares calculated capillary suction for two different pipe geometries with measured 
absorption in the 0.60=/cw specimens . 

 
 𝑎) 𝑙1: 𝑙2 = 1: 1, 𝑟1: 𝑟2 = 1: 0. 1     𝑏) 𝑙1: 𝑙2 = 1: 1, 𝑟1: 𝑟2 = 1: 0.1.       𝑐) 𝑙1: 𝑙2 = 1: 1, 𝑟1: 𝑟2 = 1: 0.1  

 
 𝑑) 𝑙1: 𝑙2 = 2: 1, 𝑟1: 𝑟2 = 1: 0. 1     𝑒) 𝑙1: 𝑙2 = 2: 1, 𝑟1: 𝑟2 = 1: 0.1.      𝑓) 𝑙1: 𝑙2 = 2: 1, 𝑟1: 𝑟2 = 1: 0.1 

 
Figure 8- Analytical ( dashed lines, Model C) and Experimental ( full lines with circles) water 
absorption curves �𝑊(𝑡) − √𝑡� for 0.60=/cw , and for three different pipe/specimens 
length/thickness, and 𝑝𝑡𝑜𝑙 = 0.18. Note different scales depending on specimen thickness L 

 
 
In Figure 8 the ratio of radii between large and small pipes is constant at 0.1:1  or 

mm 66 100.1:101 −− ×× , whereas the main pipe geometry variation between the upper and 
lower 3 figures is the length ratios between large and small pipes. Figure 8 shows that the 
calculated absorption approaches the measured absorption as the length ratio between the 
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large and small pipes increases from 1:1  to 1:2 . It is very interesting to note that the 
calculated capillary suction seems to give the right kind of increasing anomaly at increasing 
suction length, i.e at increasing specimen thickness. Apparently the increased number of 
necks has the right kind of effect compared to what is commonly seen in capillary suction 
experiments on concrete. Figure 9 below shows the same type of plots as in Figure 8 for 

0.45=/cw .  

 
𝑎) 𝑙1: 𝑙2 = 1: 1, 𝑟1: 𝑟2 = 1: 0. 1     𝑏) 𝑙1: 𝑙2 = 1: 1, 𝑟1: 𝑟2 = 1: 0.1.       𝑐) 𝑙1: 𝑙2 = 1: 1, 𝑟1: 𝑟2 = 1: 0.1 
 

Figure 9- Analytical ( dashed lines, Model C) and Experimental ( full lines with circles) water 
absorption curves �𝑊(𝑡) − √𝑡� for 0.45=/cw , 3 different pipe/specimen length/thickness, and 
𝑝𝑡𝑜𝑡 = 0.16., l1:l2=2:1,r1:r2=1:0.1, Note different scales depending on specimen thickness L 
 
From Figure 9 we see that a slightly different pipe geometry with similar length of the large 
and small pipes fits the measured absorption best for w/c = 0.45. That is,  compared to Figure 
8 with w/c = 0.60, a somewhat larger fraction of smaller pores in 0.45=/cw  with less 
continuity is represented by this geometry. Figure 10 shows experimental capillary suction 
data from the literature [2,3] together with the model. The first concrete has 0.40=/bw  and 2 
% condensed silica fume, and so has a low fraction, if any, of capillary porosity.  

 
a)l1:l2=2:1,r1:r2=1:0.07 [3]                         𝑏) 𝑙1: 𝑙2 = 2: 1, 𝑟1: 𝑟2 = 1: 0.1 mortar [2]     
 

Figure 10 - Experiments [3,2] ( full lines) and analytical ( dashed lines) water absorption  
a) w/b = 0.40 and 2 % SF and 𝑝𝑡𝑜𝑡 = 0.12., b) mortar w/c = 0.40 and 𝑝𝑡𝑜𝑡 = 0.18. 
 
From Figure 10 a) it can be seen that the changing of pipe geometry that worked successfully 
with high cw/  in Figures 8 and 9 with 0.1:1  ratio between radii and a bit longer large pipe -
sections is less successful and the small pipe has to be made even thinner. The reason could 
be the slow capillary suction in these specimens due to even more narrow necks than in 

0.45=/cw . Figure 10 b) shows experimental capillary suction data of ordinary portland 
cement mortar with 0.40=/bw  taken from [2] showing a bit faster suction than the 
specimens with 2 % silica fume [3], pressumably due to higher cement paste volume fraction 
in the mortar as well as coarser OPC binder and more ITZ in the (OPC) mortar.  
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The total length of the model pipes compared to the thickness of the specimen is a matter of 
uncertainly. We have in our comparisons between calculated and experimental capillary 
suction used a total pipe length equal to the thickness of the specimens. Due to factors such as 
entrapment of air in a network and torturousity, it seems obvious that the straight C and E 
models are not right. Clearly more work in the calculation of the correct total absorption 
should be made. We believe, however, that the present investigation indicates that the kind of 
narrowing or pore-neck effect proposed can at least partly explain the deviation from the 
square root time law often seen in concrete capillary suction experiments. 
 
Size limit of suction by water tensile strength, effective pore-size, multi-scale 
 
There is a physical limitation to the use of capillary rise simply calculated from the suction pc 
created in the pore water under the curved meniscus, eq. (4). This limitation is the minimum 
pore size of a water meniscus where the tensile strength of water 02Hσ  is exceeded so that the 

meniscus breaks down. The tensile strength of water has been measured: 2
02

/0.5 mmNH ≈σ  at 

Co20  [20]. Then solving eq.(4) with zero degree contact angle gives the minimum capillary 
pore radius rmin for a maximum suction equal to the tensile strength of water, eq.(29): 

  𝑚𝑎𝑥 𝑝𝑐 = 𝜎𝐻2𝑜 = 2𝜎𝑙−𝑔
𝑟𝑚𝑖𝑛

⇒ 𝑟𝑚𝑖𝑛 = 2𝜎𝑙−𝑔
𝜎ℎ2𝑜

   so    𝑟𝑚𝑖𝑛 =
2×0.073 𝑁𝑚
0.5 𝑁

𝑚𝑚2
≈ 3 × 10−4𝑚𝑚 ≈ 0.3 𝜇𝑚

 (29) 
 
We see that the minimum capillary radius with a meniscus creating suction calculated this 
way is similar to the minimum radius used in the above calculations. We therefore assume 
that capillary theory based on Laplaces law applies to our pipes. 
 
The results also demonstrate a contradiction between the restriction of capillary theory due to 
the tensile strength of water (minimum capillary pore size approximately m7103 −× ) and the 
application of a sort of "effective uniform capillary radius" or “effective pore-size” which is 
calculated as low as m1110−  when applying eq.(22) to experimental data, see also 
[1,3,4,10,21,22]. This scale problem is possibly solved to a large part by the accumulated 
effect of repeated necks with high flow resistance, possibly together with some kind of slow 
diffusion mechanism filling the gel-type pores smaller than those filled by the capillary 
mechanism and slow filling of large air voids by some other mechanism. Gel filling could be 
further investigated with some sort of diffusion-loss from the water in the pipe-shaped pores 
into the pipe walls made of gel-material, whereas absorption into large air voids could be due 
to a different filling mechanism. Use of one or two additional transport (multi-scale) 
mechanisms could still keep the model on a relatively simple yet realistic and sound physical 
basis. However, an algorithm or calculation method requiring little computational power has 
to be developed so that a simultaneous gel-capillary-macro pore absorption model could 
calculate transport as fast as the present model. 
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CONCLUSIONS 
 
Capillary suction was modeled with a relatively simple analytical pipe model consisting of  
series of pipes with different diameters and lengths put together in a regular manner. The 
objective was to investigate the slowing down of capillary absorption compared to linear 
(absorption- √t) plots. This occurs at increasing specimen thickness and reduced w/b and 
could be explained by repeated narrow pore necks.  
 
First a multiple pipe flow model based on repeated series of pipes with varying radii and 
lengths was developed. Suction under water meniscii according to Laplace was used as 
driving force for flow. The flow calculated by this analytical pipe model was then compared 
with numerical simulations. The simulations allowed analysis of the effect of local flow 
conditions (development of flow profile, turbulence ) and showed that the analytical model 
works satisfactorily. Then, a systematic comparison was made between calculated aborption 
for different model-pipe systems and real capillary absorption data from own experiments as 
well as some experimental data from the literature. 
 
Realistic time scales for capillary filling can be obtained for series of pipes consisting of only 
large and small pipes of diameter in the order 1 and 0.1 microns, respectively. There has to be 
somewhat larger length than radius for the larger pipe in order to fit capillary suction for 

0.60=/cw  compared to 0.45=/cw . The calculated capillary absorption then fits our 
experimentally measured absorption in slices with different thickness (20,40 and 100 mm), in 
line with the increased number of necks with increasing thickness and higher fraction of 
coarser capillary pores at heigh cw/ . The results of some comparisons with experiments from 
the literature were in line with the comparisons with own experiments, including both the 
effect of silica fume (pore refinement) and ITZ (mortar with increased amount of capillaries). 
 
The capillary suction size limitation by tensile strength of water was found to be acceptable 
for our models (minimum r ≈ 0.3 microns). However, the effective averge size that can be 
calculated from observed concrete absorption rates (r  ≈ 0.1 Å) is far too small. Possibly this 
can be dealt with by adding another diffusion type transport mechanism in the gel into a 
extended, multi-scale, model. Also the very slow filling of large air voids should be included. 
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