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Problem Description
Cryptographic algorithms are commonly used with microcontrollers today. As performance
demands increase, so does the need for dedicated cryptographic hardware inside the
microcontroller itself. While area and speed are two essential parameters, minimizing the energy
per encryption/decryption has become increasingly important. The Advanced Encryption Standard
(AES) is one of the most used symmetric cryptographic ciphers. This thesis will focus on hardware
implementation of AES, tailored for low energy microcontrollers.

Main objects:

- Evaluate existing AES software solutions to serve as a performance benchmark. The ARM Cortex
M3 processor should be used.

- Evaluate existing AES hardware implementations with regards to energy, area and speed.

- Implement, in HDL code, a low energy AES hardware implementation suited for
microcontrollers, based on the initial evaluations and a cost/performance analysis.
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This Master thesis is a continuation of an earlier project [38] which gave an introduction to
the Advanced Encryption Standard and underlying theory. The submodules MixColumns
and SubBytes were given a close look and several implementations of these were explored in
[38]. Using this as a basis, a complete AES core has been developed in this thesis. As this
thesis is based on a previous project, parts of Chapters 2 and 3 are similar to corresponding
Chapters in [38], but some adjustments and extensions have been made.

To fully understand the contents of this thesis, the reader should have basic knowledge
about electronics and digital design as well as binary arithmetics.
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guidance and helpful input during this work. I would also like to thank my supervisor at
NTNU, Per Gunnar Kjeldsberg, for support throughout the process of writing this thesis.
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Abstract

Cryptographic algorithms, like the Advanced Encryption Standard, are frequently used in
todays electronic appliances. Battery operated devices are increasingly popular, creating
a demand for low energy solutions. As a microcontroller is incorporated in virtually all
electronic appliances, the main objective in this thesis is to evaluate possible hardware
implementations of AES and implement a solution optimized for low energy consumption,
suited for incorporation in a microcontroller. A good cost/performance balance is also a
design goal.

An existing solution based on a 32 bit architecture with support for 128 bit keys was
chosen as a basis and altered in order to lower area and energy consumption. The alterations
yielded a 13.6% area reduction as well as 14.2% and 3.9% reduction in energy consumption
in encryption and decryption mode, respectively. In addition to alterations in the datapath,
low energy techniques like clock gating and numerical strength reduction has been applied
in order to further lower the energy consumption.

The proposed architecture was also extended in order to accommodate 256 bit keys.
Although this increased the area by 9.2%, the power consumption was still reduced by 7.6%
and 1.3% in en- and decryption, compared to the architecture chosen as basis.

As AES is an algorithm which easily can be parallelized, a high throughput solution
utilizing a 128 bit datapath was implemented. This AES module is able to process 372.4
Mbps at an operating frequency of 32 Mhz and is based on the same architecture as the 32 bit
datapath solution. In addition, this implementation yielded excellent energy per encryption
figures, 24.5% lower than the 32 bit solution.

The alternative to performing AES in a dedicated hardware module is to perform it
using software. In order to have a basis for comparison, a software solution optimized for 32
bit architectures was implemented. Simulations show that the energy consumption attained
when performing AES in the proposed hardware module is approximately 2.3% of what a
software solution would use. In addition, the throughput is increased by a factor of 25.

The architecture proposed in this thesis combines relatively high throughput with modest
demands to area and low energy per encryption.
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Chapter 1

Introduction

Electronic appliances surround us in our everyday lives. Everything from our mobile phone
to our car keys are electronic devices. In virtually all these electronic devices, a microcon-
troller is incorporated in order to implement some sort of functionality. A microcontroller
could perform any task, for instance turning on the device when a button is pressed, or more
complex tasks like data processing. The microcontrollers are often a significant contributer
to the overall energy consumption, and as the number of battery operated appliances in-
crease, so does the need for low energy solutions as prolonged battery life is highly desired.

Energy Micro is a Norwegian semiconductor company founded in 2007. Their goal is to
develop the worlds most energy friendly microcontrollers based on the 32 bit ARM Cortex
M3 processor. They plan to reach this goal by means of numerous low power modes and
possibility for autonomous operation without CPU intervention through a wide range of
peripherals.

Communication between nodes is frequently used in electronic systems (e.g., mobile
phones and smart cards) and in many applications it is crucial that this communication is
carried out in a secure manner, in other words: The data transmitted should not be readable
to anyone else than the data is intended for. Numerous cryptographic algorithms have been
developed for this purpose, and in the later years, The Advanced Encryption Standard,
AES, has become one of the most widely used algorithms. AES is a symmetric block cipher
processing 128 bits at a time using 128-, 192-, or 256 bit keys. It is considered a very secure
algorithm and it is predicted to be widely used in many years to come.

AES can easily be realized in software, but this could lead to unnecessary use of energy
and time due to the fact that execution on a CPU is accompanied by energy- and time
consuming memory accesses and overhead instructions, like updating loop indices and cal-
culating memory addresses. If AES is performed in a dedicated hardware module, most of
the energy will be consumed performing computations defined by the algorithm. In addi-
tion to reduction in energy consumption, the throughput achievable in a dedicated hardware
solution is superior to what can be achieved using software.

Numerous hardware solutions exists today, some optimized for low area, some optimized
for high throughput and some optimized for low energy consumption. The aim of this
thesis is to evaluate possible solutions and implement a hardware solution based on the
evaluation. The implementation should be tailored for microcontrollers and have low energy
consumption as well as a good cost/performance balance.
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Thesis outline

Chapter 2 in this thesis will give an introduction to the Advanced Encryption Standard
algorithm and underlying theory. After this, theory concerning power consumption and ap-
proaches for limitation of this is presented in Chapter 3. A brief introduction to methods for
power estimation, both in software and hardware, will also be given. The theory part of the
thesis will then be concluded with Chapter 4 giving a short introduction to microcontrollers.

Presentation and evaluation of a software implementation of AES optimized for 32 bit
architectures will be given in Chapter 5 before two existing hardware implementations are
presented in Chapter 6.

In this thesis, an AES implementation has been developed with emphasis on minimizing
energy per encryption while maintaining a good cost/performance balance. The 32 bit
architecture is based on a previous solution, but three major changes were made resulting
in improvements both in area and energy/power consumption. In addition, energy saving
approaches like clock gating and numerical strength reduction has been utilized to further
reduce area and energy/power consumption. This implementation will be presented in
Chapter 7 along with a parallelized 128 bit solution yielding high throughput and excellent
energy per encryption.

Description of the synthesis and verification process will then be presented in Chapter
8 before evaluation of the different implementations is done in Chapter 9. The thesis ends
with conclusions and suggestions for future work in Chapter 10.

Main contributions

The main contributions in this thesis are:

• An AES core supporting 128- and 256 bit keys, optimized of low energy/encryption
while maintaining a good cost/performance balance. The AES core consumes 8.03
nJ/encryption and an area equivalent to 7536 NAND2 gates.

• A high throughput AES core supporting 128 bit keys, optimized low energy/encryp-
tion. This implementation consumes 5.63 nJ/encryption and is able to process 372.4
Mbps @ 32 Mhz.

• Application of numerical strength reduction in AES resulting in area and energy sav-
ings.

• A software implementation of AES optimized for 32 bit architectures.

2



Chapter 2

Advanced Encryption Standard

2.1 Rijndael

In January 1997 the National Institute for Standards and Technology (NIST) organized a
contest for the new Advanced Encryption Standard (AES). Three years later, in October
2000, the algorithm Rijndael was announced the winner. Rijndael was designed by the
Belgians Joan Daemen and Vincent Rijmen and was a ”surprise winner“ because many
observers did not believe that the US would adopt an encryption standard developed by
non-US citizens. Rijndael won the contest due to its elegance, efficiency, security, and
principled design.

Rijndael is a symmetric block cipher which means that it maps plaintext blocks to
ciphertext blocks and that the same key is used in both en- and decryption. The size of both
the plaintext- and ciphertext blocks is 128 bits in AES. During encryption and decryption,
the algorithm scrambles the data during several rounds of different basic operations. Refer
to Section 2.3 for detailed description of the algorithm.

AES is not exactly the Rijndael-algorithm, it comes with a few extra restrictions: While
Rijndael allows any key- and and blocksizes that are a multiple of 32 bits and between 128
and 256, the AES has a fixed, 128-bit blocksize and key sizes of 128, 192 and 256 bits [8]. In
this report, AES with 128-, 192-, and 256 bit keys will be referred to as AES128, AES192,
and AES256, respectively.

2.2 Finite Fields

Operations in AES are performed on basic units of 8 bits, one byte. All bytes are interpreted
as elements of the finite field GF(28). This ensures that the results of all multiplications and
additions also are elements of the same finite field. Hence, a constant word length can be
used without overflow problems. All basic operations in AES can be described as operations
over the finite field GF(28).

To represent a byte, mainly hexadecimal notation will be used in this report. For ex-
ample, the byte {01001010} will be written as {4A}. Another representation used by the
literature is polynomial representation. The byte b7b6b5b4b3b2b1b0 could be represented as∑7

i=0 bix
i. {01001010} would then be written as x6 + x3 + x.

3



2.2.1 Addition in GF(28)

Addition of two bytes in the finite field is done by performing a bitwise addition modulo 2
on each bit pair in the two bytes that are to be added. This translates to a simple bitwise
XOR operation. If c7c6c5c4c3c2c1c0 is the sum of a7a6a5a4a3a2a1a0 and b7b6b5b4b3b2b1b0,
then ci = ai ⊕ bi.[22]

2.2.2 Multiplication in GF(28)

Multiplication of two elements in GF(28), denoted by •, is done by performing a multi-
plication of the two elements modulo an irreducible polynomial. For AES this irreducible
polynomial is defined as m(x) = x8 + x4 + x3 + x+ 1, or {01}{1b} in hexadecimal notation.

Multiplication by the polynomial x, or {02} in hexadecimal notation, can be done by
doing a left shift followed by a conditional subtraction of the irreducible polynomial m(x)
[22]. If the most significant bit, MSB, of the element that is to be multiplied with {02} is
zero, then no subtraction is needed. If the MSB is one, then the subtraction of m(x) should
be performed. The subtraction is carried out in the same manner as an addition, a bitwise
XOR. This operation is referred to as xtime(). Examples:

{7F} • {02} = {7F} << 1 = {FE}
{8F} • {02} = ({8F} << 1)⊕ ({01}{1B}) = {05}

{XX} << i represents {XX} shifted i places to the left. The xtime() operation can be
used in order to multiply two arbitrary polynomials. In regular binary multiplication, the
product can be computed using a sequence of shift and add operations [12]:

1 0 1 1 1 0 multiplicand ({2E})
× 1 0 1 1 0 1 multiplier ({2D})

1 0 1 1 1 0
0 0 0 0 0 0

1 0 1 1 1 0
1 0 1 1 1 0

0 0 0 0 0 0
1 0 1 1 1 0

1 0 0 0, 0 0 0 1, 0 1 1 0 product ({816})

Multiplications in the finite field can be performed in a similar manner, substituting left
shift with xtime() and addition with bitwise XOR.

{2E} multiplicand
• {2D} multiplier
{2E}
{00}
{B8} xtime2({2E})
{6B} xtime3({2E})
{00}
{B7} xtime5({2E})
{4A} product

4



Note that the product is represented by 8 bits in the finite field multiplication. Regular
binary multiplication produces a 12-bit product.

2.3 AES algorithm

There are four basic operations used in AES: AddRoundKey , ShiftRows, MixColumns,
and SubBytes. The three latter operations also have inverses, called InvShiftRows, InvMix-
Columns and InvSubBytes. They are repeatedly applied to the block which is to be en- or
decrypted. A datablock of 16 bytes is in AES referred to as a state. Figure 2.1 gives an
overview of how en- and decryption is performed.

Main loop

Nr-1 rounds

SubBytes

Initial Round

Final Round

ShiftRows

MixColumns

AddRoundKey

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

4x4 bytes 

of 

ciphertext

4x4 bytes 

of 

plaintext

Main loop

Nr-1 rounds

InvShiftRows

Initial Round

Final Round

InvSubBytes

AddRoundKey

InvMixColumns

AddRoundKey

InvShiftRows

InvSubBytes

AddRoundKey

4x4 bytes 

of 

plaintext

4x4 bytes 

of 

chiphertext

Figure 2.1: AES en- and decryption

2.3.1 AddRoundKey

AddRoundKey is the part of the algorithm which makes the output subject to the cipherkey.
Each byte in the state is XOR’ed with a corresponding byte in the expanded key, as illus-
trated in Figure 2.2. The expanded key is derived from the cipherkey according to the key
schedule described in Chapter 2.3.5. AddRoundKey is its own inverse.
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Figure 2.2: AddRoundKey operation, [36]

2.3.2 SubBytes

The SubBytes operation provides the non-linear property of the cipher which is crucial for
protection against differential and linear cryptanalysis [9]. It substitutes the state, one byte
at a time, using a substitution box known as the Rijndael S-box. Figure 2.3 illustrates how
SubBytes is performed.

Figure 2.3: SubBytes operation, [36]

The S-box consists of a multiplicative inversion in GF (28) in sequence with an invertible
affine transformation. The inverse a to an element b is defined such that a • b = {01}. The
element {00} is its own inverse. Affine transformation involves the multiplication of a matrix
followed by the addition of a vector, as shown in equation 2.1.



b0
b1
b2
b3
b4
b5
b6
b7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





a0

a1

a2

a3

a4

a5

a6

a7


⊕



1
1
0
0
0
1
1
0


(2.1)

InvSubBytes is performed like SubBytes substituting the affine transformation with its
inverse, given in equation 2.2. The inverse affine transformation has to be performed prior
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to the multiplicative inversion.

b0
b1
b2
b3
b4
b5
b6
b7


=



0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0





a0

a1

a2

a3

a4

a5

a6

a7


⊕



1
0
1
0
0
0
0
0


(2.2)

2.3.3 ShiftRows

ShiftRows is an operation which shifts each row in the state in a cyclical manner. A criteria
for this step is that each row should be shifted with different offsets [8]. As the block which
AES operates on consists of four rows, the offsets has to be 0, 1, 2 and 3. See figure 2.4 for
illustration.

This step introduces inter column diffusion to the algorithm which provides resistance
against differential and linear cryptanalysis [8].

InvShiftRows is done by shifting the rows in the opposite direction with the same offset
as in ShiftRows.

Figure 2.4: ShiftRows operation, [36]

2.3.4 MixColumns

MixColumns performs a transformation of the state, column by column. Each column is
interpreted as a polynomial with coefficients in GF (28) and multiplied modulo x4 + 1 with
a fixed polynomial c(x) = {03}x3 + {01}x2 + {01}x+ {02}. As shown in [8], this operation
can be written as the matrix multiplication given in Equation 2.3.

S′0,c

S′1,c

S′2,c

S′3,c

 =


{02} {03} {01} {01}
{01} {02} {03} {01}
{01} {01} {02} {03}
{03} {01} {01} {02}



S0,c

S1,c

S2,c

S3,c

 (2.3)

S and S′ are the columns before and after transformation, respectively.

InvMixColumns is performed similarly to MixColumns, the only difference being that
the inverse of the polynomial in MixColumns is used. The inverse polynomial is c−1(x) =
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{0B}x3 + {0D}x2 + {09}x+ {0E}, resulting in the matrix multiplication given in Equation
2.4. 

S′0,c

S′1,c

S′2,c

S′3,c

 =


{0E} {0B} {0D} {09}
{09} {0E} {0B} {0D}
{0D} {09} {0E} {0B}
{0B} {0D} {09} {0E}



S0,c

S1,c

S2,c

S3,c

 (2.4)

Figure 2.5: MixColumns operation, [36]

MixColumns introduces inter row diffusion to the cipher.

2.3.5 Key expansion

The AddRoundKey operation in AES adds a roundkey in each round of en- or decryption.
This roundkey is derived from the cipherkey according to the Rijndael key schedule. The key
schedule produces Nr + 1 roundkeys (11 for 128 bit key, 15 for 256 bit key), each consisting
of 16 bytes. Algorithm 1 describes the key expansion.

Algorithm 1 KeyExp(word CipherKey[Nk], word RoundKey[Nb ∗ (Nr + 1)])
1: word temp
2: i = 0
3: while i < Nk do
4: RoundKey[i]=ChipherKey[i]
5: i+ +
6: end while
7: i = Nk

8: while i < Nb ∗ (Nr + 1) do
9: temp = RoundKey[i− 1]

10: if i mod Nk=0 then
11: temp = SubWord(RotWord(temp)) ⊕ Rcon[i/Nk]
12: else if Nk > 6 and i mod Nk=4 then
13: temp = SubWord(temp)
14: end if
15: RoundKey[i]=RoundKey[i−Nk] ⊕ temp
16: i+ +
17: end while

The keys used in the different rounds of AES are stored in the word-array RoundKey.
The function SubWord() applies the SubBytes routine to each byte in the word, wordsize is
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4 bytes. RotWord() rotates the word in a cyclical manner, RotWord([a0, a1, a2, a3]) would re-
turn [a1, a2, a3, a0]. Rcon[] contains the round constant words, given by [{02}i−1, {00}, {00}, {00}],
where i is the round number, starting at 1.

2.3.6 Different modes of AES

In block ciphers, two equal plaintext blocks produce the same ciphertext blocks. This is a
possible weakness, because the ciphertext might reveal patterns in the plaintext. To counter
this effect, different modes of operation can be used. The five operation modes presented in
the following sections are recommended by NIST [10].

Electronic Code Book, ECB

ECB is the simplest mode of AES, it simply encrypts the data 128 bits at a time. The
advantage with this mode is that it is easy to implement and requires a few less operations
than the other modes. The disadvantage is that it reveals patterns in the plaintext, as
illustrated in Figure 2.11. Figure 2.6 illustrates how AES in ECB mode is performed.

BLOCK 

ENCRYPTION

Ciphertext 1

BLOCK 

ENCRYPTION

Ciphertext 2

Plaintext 1

BLOCK 

ENCRYPTION

Ciphertext n

Plaintext 2 Plaintext n

BLOCK 

DECRYPTION

Plaintext 1

BLOCK 

DECRYPTION

Plaintext 2

Ciphertext 1

BLOCK 

DECRYPTION

Plaintext n

Ciphertext 2 Ciphertext n

Figure 2.6: En- and decryption in ECB mode

Cipher Block Chaining, CBC

In CBC encryption mode, each plaintext block is XOR’ed with the previous ciphertext block
as illustrated in Figure 2.7. In the first round, an initialization vector is used for XOR’ing
with the plaintext. In CBC decryption mode, the output from the Block Cipher Decryption
needs to be XOR’ed with the previous ciphertext in order to attain the plaintext.

BLOCK 

ENCRYPTION

Plaintext 1

IV

Ciphertext 1

BLOCK 

ENCRYPTION

Plaintext 2

Ciphertext 2

BLOCK 

ENCRYPTION

Plaintext n

Ciphertext n

BLOCK 

DECRYPTION

Ciphertext 1

Plaintext 1

BLOCK 

DECRYPTION

Ciphertext 2

Plaintext 2

BLOCK 

DECRYPTION

Ciphertext n

Plaintext n

IV

Figure 2.7: En- and decryption in CBC mode
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Cipher Feedback, CFB

CFB transforms the AES block cipher into a stream cipher, meaning that the ciphertext is
attained by combining the plaintext with a pseudorandom string for example using an XOR
operation, which is the case in CFB. XOR’ing the ciphertext with the same string produces
the plaintext. Figure 2.8 illustrates how the AES block cipher is used in CFB mode. Notice
that block cipher encryption is used both in en- and decryption.

BLOCK 

ENCRYPTION

IV

Ciphertext 1

BLOCK 

ENCRYPTION

Ciphertext 2

Plaintext 1 Plaintext 2

BLOCK 

ENCRYPTION

Ciphertext n

Plaintext n

BLOCK 

ENCRYPTION

IV

Plaintext 1

BLOCK 

ENCRYPTION

Plaintext 2

Ciphertext 1 Ciphertext 2

BLOCK 

ENCRYPTION

Plaintext n

Ciphertext n

Figure 2.8: En- and decryption in CFB mode

Output Feedback, OFB

Like CFB, OFB transforms AES into stream cipher. The difference compared to CFB is that
input to an encryption is the output from the previous block encryption, not the previous
ciphertext. Figure 2.9 illustrates how OFB is performed. Also in this mode, only block
cipher encryption is used.

BLOCK 

ENCRYPTION

IV

Ciphertext 1

BLOCK 

ENCRYPTION

Ciphertext 2

Plaintext 1 Plaintext 2

BLOCK 

ENCRYPTION

Ciphertext n

Plaintext n

BLOCK 

ENCRYPTION

IV

Plaintext 1

BLOCK 

ENCRYPTION

Plaintext 2

Ciphertext 1 Ciphertext 2

BLOCK 

ENCRYPTION

Plaintext n

Ciphertext n

Figure 2.9: En- and decryption in OFB mode

Counter, CTR

Counter mode is another stream cipher using a counter to produce the cipher stream. En-
or decryption is done by XOR’ing the plaintext/ciphertext with the cipherstream. Figure
2.10 illustrates AES in CTR mode. As in CFB- and OFB mode, CTR mode only use block
cipher encryption.
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ENCRYPTION
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ENCRYPTION
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Ciphertext 2
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ENCRYPTION
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Counter 2 Counter n Counter 1 Counter 2 Counter n

Figure 2.10: En- and decryption in CTR mode

In the modes CBC, CFB and OFB, initialization vectors, IV, are used as input. The
initialization vectors are 128 bit vectors which can be computed using different strategies.
One strategy recommended by [10] is to apply the forward block cipher to a nonce (a data
vector not expected to recur) using the same key as used in encryption. The nonce should
be a unique data block for each execution of the encryption process. For more details on
generation of IVs and counters in CTR mode, refer to [10].

Figure 2.11 illustrates how the ciphertext can reveal patterns in the plaintext in ECB
mode. The other four modes described in the preceding sections ensures that two equal
plaintext blocks does not produce the same ciphertext blocks. This prohibits the ciphertext
from revealing patterns in the plaintext.

Low Cost Hardware Acceleration of Cryptographic Algorithms in Microcontroller
 

 

- 12 - 

Pseudo code for the expansion algorithm is shown in Figure 2.9. To expand the round 
keys in the reverse order (decryption), the operations have to be done in the opposite 
order. Pseudo code for the inverse key expansion is shown in [3]. 
 

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)], Nk) 
begin 

 word temp 
 

 i = 0 
 
 while (i < Nk) 

  w[i] = word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]) 
  i = i+1 

 end while 
 
 i = Nk 

 
 while (i < Nb * (Nr+1)] 

  temp = w[i-1] 
  if (i mod Nk = 0) 
   temp = SubWord(RotWord(temp)) xor Rcon[i/Nk] 

  else if (Nk > 6 and i mod Nk = 4) 
   temp = SubWord(temp) 

  end if 
  w[i] = w[i-Nk] xor temp 
  i = i + 1 

 end while 
end 

Figure 2.9: Pseudo code for AES key expansion 

 

2.3 Cipher Modes 

Block ciphers operate on fixed lengths of data. This means that all blocks of equal 
plaintext will result in equal ciphertext. For some types of data where the element 
sizes are multiples of the block size, this property can be utilized to find patterns in 
the ciphertext and expose corresponding patterns in the plaintext. To counter this, 
several modes of encryption have been invented. In these modes, the ciphertext for 
each block is dependent on earlier encryptions (block chaining). Equal plaintext will 
then result in different ciphertext. Figure 2.10 (from [8]) shows an example where a 
picture(left) has been encrypted in the simple mode (ECB) (middle) and one where a 
chaining method has been used (right). Cipher modes are described in [9]. 
 

  
Figure 2.10: Encryption with (right) and without (middle) block chaining [8] 

 

 

Figure 2.11: Encryption using ECB and other modes, respectively, [37]

2.4 Multiplicative inversion through isomorphic mapping

The SubBytes routine involves multiplicative inversion in GF (28). As there are 256 elements
in GF (28), this can be done using a look up table containing 256 bytes. An alternative is to
compute the inverse directly. In order to reduce the complexity of the inversion, the element
could be mapped to a finite field of lower order, for example GF (24). This would enable
the inversion to be done using a 16 byte look up table or a relatively small combinational
circuit. [28] describes an approach which uses this strategy. The mapping and its inverse
corresponds to matrix multiplications as shown in [28]. The matrices are given in Appendix
A. The mapping produces a polynomial of GF (24)2 on the form PHx+ PL, where PH and
PL are elements of GF (24). The inverse polynomial modulo I(x), P−1

H x+P−1
L is then given

by equation 2.5. The irreducible polynomial I(x) is on the form I(x) = x2 + x+ λ, where λ
is an element in GF (24) which can be freely chosen as long as I(x) remains irreducible.

1 = (PHx+ PL)(P−1
H x+ P−1

L )mod I(x) (2.5)
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As shown in [8], P−1
H and P−1

L can then be computed using Equation 2.6 and 2.7, respectively.

P−1
H = PH(λP 2

H ⊕ PHPL ⊕ P 2
L)−1 (2.6)

P−1
L = (PH ⊕ PL)(λP 2

H ⊕ PHPL ⊕ P 2
L)−1 (2.7)

Figure 2.12 depicts an architecture performing Equations 2.6 and 2.7.

Figure 2.12: Inversion in GF (24), [28]

Multiplication in GF (24) could be performed as depicted to the right in Figure 2.12. As
shown in [19], the GF (22) multiplications performed inside the GF (24) multiplier can be
performed using a small number of AND and XOR gates.

2.5 Cryptanalysis

Cryptanalysis is the study of deriving information from an encrypted message without know-
ing the key. Different approaches can be made in order to break a cipher, and they can be
divided into two main groups: algorithm based attacks, and implementation attacks which is
also called side channel attacks. Cryptanalysis is a very wide field, and only a few examples
will be presented in this section.

Side channel attacks

Side channel attacks is a collective term for all types attacks where information is gained
from the physical implementation of a cryptographic system.

Differential power analysis is a side channel attack which exploits the fact that power
consumption might vary with the data being processed. By measuring the power consump-
tion during encryption, information about the data or key can be collected, and used in order
to break the cipher. Especially, if there exist a relationship between the key and power con-
sumption, this type of attack could be efficient. The key expansion in AES ensures that
even if the cipherkey is all ones or zeros, the roundkeys will be of such a nature that the
power consumption would not reveal any information about the key. This makes it hard to
break the AES cipher using power analysis. The physical implementation of an AES module
also has impact on how susceptible it is to this kind of attacks. [13] suggest to use masking
in order to prevent direct operations between the key and data. This however would add
complexity to the hardware which in turn leads to increased energy consumption. As only
a small part of the circuitry is targeted in a power analysis attack, all power consumption
not correlated to the targeted part appears as noise to the attacker. Based on this, one can
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conclude that implementations utilizing large datapaths would be better protected from this
kind of attack. [13]

Timing attack is another side channel attack which can be used if processing time during
encryption depends on the data or key. In AES, the processing time of all operations are
inherently independent of both key and data, making AES well protected against timing
attacks.

Algorithm based attacks

Linear cryptanalysis is a general form of cryptanalysis based on finding affine relationships
between ciphertext and plaintext. If the cipher is not properly constructed to withstand this
kind of attack, these relations can lead to information regarding the key. Another general
form of cryptanalysis is differential cryptanalysis. The basic idea in differential cryptanaly-
sis is to study differences in the output based on differences in the input of a cipher. The
non linear properties of the Sbox is the main contributer to resistance against linear and
differential cryptanalysis. The Sbox used in AES have extremely low correlation between in-
and output. In addition, when applying an input difference to the Sbox one can derive little
or no information about the output difference. These properties ensures that attacks based
on linear or differential cryptanalysis will not succeed against AES [9]. For more details on
algorithm based attacks, refer to [9].

AES has become a world standard and is expected to remain a standard for 30 years.
Although numerous attempts for breaking the cipher has been made, no results implies that
the security of AES should be questioned [9].
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Chapter 3

Power Consumption

3.1 Sources of power consumption

The power consumption in CMOS technology can be split into three main components;
dynamic, leakage and short circuit. [6]

Ptotal = Pdynamic + Pleakage + Pshort−circuit (3.1)

3.1.1 Dynamic power

In a CMOS circuit, each node is associated with a capacitance, C. During operation, the
nodes switch values from logical zeros to logical ones a number of times. Each time, an
amount of power is dissipated in the process of charging the capacitance at the given node.
The dynamic power component is given in Equation 3.2, where Vdd is the supply voltage, f
is the clock frequency and α is the number of transitions per clock cycle.

Pdynamic ∝ CV 2
ddfα (3.2)

3.1.2 Short circuit power

In CMOS, when the output of a logic gate changes value, there will be a short period of
time when both the N- and P-network are partially conducting. This results in short circuit
power dissipation due to the current flowing from Vdd directly to ground. Both N- and
P-networks are (partially) on when Vtn < Vin < (Vdd−|Vtp|) [6]. [24] states that with careful
design, this power consumption source can be kept to be less than 15 % of the dynamic
power.

3.1.3 Leakage

Leakage power is power consumption due to the leakage currents flowing though transistors
which are not supposed to conduct. The leakage current can be split into three main
components [24]:

• Source/drain junction leakage current

• Gate direct tunneling leakage
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• Sub-threshold leakage through channel

The source/drain leakage current flows from the source or drain to the substrate. Gate
direct tunneling leakage is the current flowing through the gate of the transistor to the
substrate. Sub-threshold leakage current flows through the channel of a transistor that is
not supposed to conduct, this current is given by Equation 3.3, where K and n are functions
of the technology used and η is the drain-induced barrier lowering coefficient [24].

IDS = K(1− e−
VDS
VT )e

(VGS−VT+ηVDS)

nVT (3.3)

Figure 3.1 depicts the contribution of leakage power compared to dynamic power. As the
transistor sizes decrease, the power dissipation due to leakage increase exponentially. Figure
3.2 illustrates how the leakage currents vary with temperature. The leakage currents grow
exponentially with the temperature. It should also be noted that leakage power is given as
W/cm2, hence it is proportional to the area.

in fact, been growing. We will see that this ties strongly
into another power-related challenge with scaling, that of
passive power.

The Gordian knot of CMOS scaling
A fourth consequence of classic scaling is rather
undesirable, but until recently it has not been a
particularly negative feature; the standby current density
increases exponentially as the length scale is decreased.
This follows from the demand that VT decrease with VDD,
together with the observation that IOFF � exp(�VTQe/nkT ),
where Qe is the electronic charge, k is Boltzmann’s
constant, and T is the absolute temperature. This IOFF

dependence is simply a thermodynamic relationship
describing the minority-carrier population (the inversion
channel) as a function of temperature and energy level in
the silicon. While n � 1.4 for practical designs today, the
theoretical lower bound for any FET, even decreasing n to
1, provides only minor reductions to IOFF, given the low
values of VT (�0.2 V) at present. Furthermore, in the
most recent generations of CMOS, the rate of tunneling
of electrons and holes through gate oxides has increased
to a point at which these currents must also be
considered. These currents cause an additional power
demand in the operation of CMOS which is often referred
to as “passive” power, since, unlike switching, or active
power, passive power is dissipated by all CMOS circuits all
of the time, whether or not they are actively switching.

Figure 4 illustrates the passive-power trend based on
subthreshold currents calculated from the industry trends
of VT, all for a junction temperature TJ � 25�C. More
practical values of TJ only serve to exacerbate this
situation, with the off-current of MOSFETs rising nearly
two times for each 10�C increase in TJ. For reference, the
active-power density shown in Figure 2 is copied onto this
scale to illustrate that the subthreshold component of
power dissipation is emerging to compete with the long-
battled active-power component for even the most power-
tolerant, high-speed CMOS applications.

Thus, as the lithography pushes forward, the device
designer and the product designer must devise new
strategies to cope with the interference of passive power,
which pushes for higher VT (and thus higher VDD) versus
active power, which demands lower VDD and thus lower
VT. This results in fragmentation of device design points
that address these conflicting needs in the foundry-CMOS
business [5, 6], where multiple values of TOX, VT, LGATE,
and VDD are offered within a lithography generation
(see Table 1). This approach allows the product designer
flexibility to choose the best device match for active and
passive power vs. performance. Products that are very
sensitive to passive power, such as portable and hand-held
devices, may sacrifice some performance to enable higher
VT. If these designs require higher performance, they are

forced to sacrifice some switching power by use of
correspondingly higher VDD as well. Other applications

Table 1 Foundry CMOS has already been forced to offer
a variety of MOSFETs tailored to the demands of individual
applications, as illustrated by this variety of devices offered
within a 180-nm CMOS technology (after L. K. Han et al. [5]).
Where low power, both active and passive, is required, VDD is
kept low, TOX high, and VT high (low ID-OFF). High-performance
applications must limit VDD because of active-power density
restrictions (cooling), but can afford considerable subthreshold
and gate leakage current. Between these cases, one finds
general logic with moderate leakage allowances and moderate
performance demands.

Application High
performance

1.2-V
logic

1.5-V
logic

Low
power

Interface

VDD (V) 1.2 1.2 1.5 1.2 2.5

TOX (nm) 1.8 2.2 2.2 2.2 5

ID-OFF (nA/�m) 10 3 6 0.05 0.01

Figure 4

Active-power density and subthreshold-leakage-power density 
trends calculated from industry trends in Figure 1 are plotted vs. 
LGATE (points), for a junction temperature of 25�C. Empirical 
extrapolations (dashed curves) suggest that subthreshold power 
will equal active power at  LGATE � 20 nm; this point is encountered 
closer to LGATE � 50 nm when elevated temperatures, typically 
required of applications, are factored in. This collision, already 
encountered by applications that are more power-sensitive, will 
spur further circuit and technology design efforts to manage 
subthreshold leakages.
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Figure 3.1: Leakage vs Dynamic power, [21]

Clearly, constant electric field scaling (sup-
ply voltage scaling) gives the lower energy-
delay product (ignoring leakage energy) and
hence is preferable. However, it requires scal-
ing threshold voltage (VT) as well, which
increases the subthreshold leakage current,
thus increasing the chip’s leakage power.

Subthreshold leakage
Now we attempt to estimate the sub-

threshold leakage power of future chips, start-
ing with the 0.25-micron technology
described in Bohr et al.,3 and projecting sub-
threshold leakage currents for 0.18-, 0.13-,
and 0.1-micron technologies. Assume that
0.25-micron technology has a VT of 450 mV,
and Ioff is around 1 nA per micron at 30°C.
Also assume that subthreshold slopes are 80
and 100 mV per decade at 30°C and 100°C
respectively. Assume that VT decreases by 15%
per generation, and Ioff increases by 5 times
each generation. Since Ioff increases exponen-

tially with temperature, it is important to con-
sider leakage currents and leakage power as a
function of temperature. Figure 10 shows pro-
jected Ioff (as a function of temperature) for
the four different technologies.

Next we use these projected Ioff values to
estimate the active leakage power of a 15-mm
die and compare the active leakage power with
the active power. The total transistor width
on the die increases around 50% each tech-
nology generation; hence, the total leakage
current increases about 7.5 times. This results
in the chip’s leakage power increasing about
5 times each generation. Since active power
remains constant (according to scaling theo-
ry), leakage power will become a significant
portion of total power.

Notice that it is possible to substantially
reduce leakage power, and hence overall
power, by reducing the die temperature.
Therefore, better cooling techniques will be
more critical in advanced deep-submicron
technologies to control both active leakage
power and total power.

Impact of scaling on circuits
Supply voltage scaling increases subthresh-

old leakage currents, increases leakage power,
and poses numerous challenges in the design
of special circuits.

Domino circuits (Figure 11), for example,
are widely used to achieve high performance.
A domino gate typically reduces delay 30%
compared with a static gate, but it consumes
50% more power. A domino circuit also takes
less space because the logic is implemented
with N transistors, and most of the comple-
mentary P stack is absent. As the threshold
voltage decreases, the noise margin decreases.
To compensate, the size of the keeper P tran-
sistor must increase, in turn increasing the
contention current and consequently reduc-
ing the gate’s performance. Overall, the domi-
no’s advantage over static logic will continue
to decrease. This effect is not restricted to
domino logic alone; supply voltage scaling will
affect most special circuits, such as sense
amplifiers and programmable logic arrays.

Soft errors
Soft errors (single-event upsets) are caused

by alpha particles in the chip material and by
cosmic rays from space. Since capacitance and
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Figure 3.2: Leakage vs Temperature, [3]

3.2 Software power consumption

As software executes on hardware, the basic mechanisms for power consumption mentioned
in Section 3.1 also apply here. The drawback, in terms of power consumption, associated
with software is that the microprocessor executing the code often has to use several instruc-
tions in order implement functionality that could be done easily using dedicated hardware.
Each instruction consume power and in addition, several power consuming memory accesses
has to be performed in order to implement the desired functionality. As execution of software
involves more switching of nodes than the same functionality implemented in hardware, a
hardware solution would generally result in lower energy consumption.

During software execution, memory accesses represents a significant part of the energy
consumption. [7] estimates that data- and instructions supply consumes 70% of the total
energy.
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	 28	 Computer

increasingly complex applications are harder to imple-
ment as hardwired logic and have more dynamic 
requirements—for example, different modes of opera-
tion. Algorithms are also evolving more rapidly, mak-
ing it problematic to freeze them into hardwired imple-
mentations. Increasingly, embedded applications are 
demanding flexibility as well as efficiency.

An embedded processor spends most of its energy 
on instruction and data supply. Thus, as a first step 
in developing an efficient embedded processor, seeing 
where the energy goes in an efficient embedded proces-
sor can be instructive. Figure 1 shows that the proces-
sor consumes 70 percent of the energy supplying data 
(28 percent) and instructions (42 percent). Performing 
arithmetic consumes only 6 percent. Of this, the pro-
cessor spends only 59 percent on useful arithmetic—the 
operations the computation actually requires—with 
the balance spent on overhead, such as updating loop 
indices and calculating memory addresses. The energy 
spent on useful arithmetic is similar to that spent on 
arithmetic in the hardwired implementation: Both use 
similar arithmetic units.

A programmable processor’s high overhead derives 
from the inefficient way it supplies data and instruc-
tions to these arithmetic units: for every 10-pJ arithme-
tic operation (a weighted average of 4 pJ adds and 17 pJ 
multiplies), the processor spends 70 pJ on instruction 
supply and 47 pJ on data supply. This overhead is even 
higher, though, because 1.7 instructions must be fetched 
and supplied with data for every useful instruction.

Figure 2 shows a further breakdown of the instruction 
supply energy. The 8-Kbyte instruction cache consumes 
most of the energy. Fetching each instruction requires 
accessing both ways of the two-way set-associative cache 
and reading two tags, at a cost of 107 pJ of energy.

Table 1 lists each component’s energy costs. Pipeline 
registers consume an additional 12 pJ, passing each 
instruction down the five-stage RISC pipeline. Thus 

the total energy of supplying each instruction is 119pJ 
to control a 10-pJ arithmetic operation. Moreover, 
because of overhead instructions, 1.7 instructions must 
be fetched for each useful instruction.

Figure 3 shows the breakdown of data supply energy. 
Here the 8-Kbyte data cache (array, tags, and control) 
accounts for 50 percent of the data supply energy. The 
40-word multiported general-purpose register file 
accounts for 41 percent of the energy, and pipeline reg-
isters account for the balance. Supplying a word of data 
from the data cache requires 131 pJ of energy; supply-
ing this word from the register file requires 17 pJ of 
energy. Two words must be supplied and one consumed 
for every 10-pJ arithmetic operation. 

Thus, the energy required to supply data and instruc-
tions to the arithmetic units in a conventional embed-
ded RISC processor ranges from 15 to 50 times the 
energy of actually carrying out the instruction. It is 
clear that to improve the efficiency of programma-
ble processors we must focus our effort on data and 
instruction supply.

Instruction supply energy can be reduced 50X by 
using a deeper hierarchy with explicit control, eliminat-
ing overhead instructions, and exposing the pipeline. 
Since most of the instruction-supply energy cycles an 
instruction cache, to reduce this number the processor 
must supply instructions without cycling a power-hun-
gry cache. As Figure 4 shows, our efficient low-power 
microprocessor (ELM) supplies instructions from a 
small set of distributed instruction registers rather than 
from the cache. The cost of reading an instruction bit 
from this instruction register file (IRF) is 0.1 pJ versus 
3.4pJ for the cache, a reduction of 34X.

In many ways, the IRF is just another, smaller, level 
of the instruction memory hierarchy, and we might ask 
why such a level has not been included in the past. His-
torically, caches were used to improve performance, not 

Figure 1. Embedded processor efficiency. Supplying data and 
instructions consumes 70 percent of the processor’s energy; 
performing arithmetic consumes only 6 percent.
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Figure 2. Instruction-supply energy breakdown. The 8-Kbyte 
instruction cache consumes the bulk of the energy, while fetching 
each instruction requires accessing both directions of the two-
way set-associative cache and reading two tags.
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Figure 3.3: Energy consumption in embedded processors, [7]

As seen in Figure 3.3, only 6% of the total energy is dissipated performing arithmetics.
Only 59% of these 6% (3.54%) are spent on useful arithmetics. The remainder is spent on
overhead, like updating loop indices and calculation of memory addresses. The amount of
energy consumed in useful arithmetics is comparable to what a hardwired module would
consume, as similar arithmetic units are used [7]. Energy consumption due to memory
accesses and overhead generally makes software implementations significantly less energy
friendly than a hardware implementation.

3.3 Power reduction techniques

3.3.1 Voltage scaling

Equation 3.2 states that the dynamic power consumption is proportional to V 2
dd. Thus,

lowering the supply voltage could potentially lead to a significant reduction of power con-
sumption. The drawback with lowering the supply voltage is that the logic gates become
slower, i.e., the delays through them increase. If the increased delay represents an unaccept-
able degradation of the total design, different countermeasures could be used.

One approach is to lower the threshold voltage of the transistors [6]. Unfortunately,
lowering the threshold voltage increases the leakage current. As seen in Equation 3.3, there
is an exponential relationship between the channel leakage current and the threshold voltage.

Another possible countermeasure to compensate for the increased delay due to voltage
scaling is pipelining. By inserting one or more pipeline stages, the critical path through the
combinational logics can be significantly reduced. This allows the voltage to be reduced while
the throughput is kept constant. The drawbacks associated with pipelining are increased
area and additional power consumption in the pipeline registers. In addition, a latency of N
cycles is introduced when a pipeline consisting of N stages is used. If the reduction in power
consumption due to voltage scaling outweighs the drawbacks of pipelining, this method can
be used to make a module more energy friendly [6].

3.3.2 Clock and data gating

Clock distribution represents a major part of the power consumption in a chip. As much as
50% or even more of the dynamic power can be spent on supplying the sequential parts of
the design with clock signals [15]. The clock distribution circuitry represents such a large
part of the power consumption due to high switching activity and the high drive strength

17



of the clock buffers, which is necessary in order to minimize clock delay. A widely used
approach to reduce the power dissipated in clock distribution is clock gating. By using clock
gates, the clock signals to parts of the design can be shut down resulting in reduced power
consumption in clock distribution. There are two types of clock gating, combinational and
sequential.

Combinational clock gating involves disabling the clock for registers that do not change
state. This could also be implemented using a feedback mux, but using clock gating is
favorable as it saves both area (no feedback mux is needed) and power in the clock tree.
The logic functionality is exactly the same, making is easy to verify equivalence. This type
of clock gating reduces activity in the clock tree, but not in the fan out of the registers. A
combinational clock gate is depicted in Figure 3.4.

Figure 3.4: Combinational clock gate

Sequential clock gating involves locating states when the output of registers change even
though they do not need to. Gating the clock to these registers would eliminate unnecessary
switching in the fan out of the register and thus saving energy. This type of clock gating is
more efficient than combinational clock gating as it limits switching in the circuitry following
the registers in addition to saving energy in the clock tree. Since the logic functionality is
changed, verifying equivalence using this type of clock gating is harder than what is the case
in combinational clock gating. Figure 3.5 depicts a sequential clock gate.

Figure 3.5: Sequential clock gate

Data-gating is a technique based on the same principle as sequential clock gating; keeping
the inputs to a logic block constant will prevent the gates in the block from consuming
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dynamic power. A simple and operation between the input(s) of a logic block and an enable
signal would prevent undesired switching in the circuitry.

As both clock- and input-gates consume area and power, an evaluation has to be made
whether usage of these would lead to a better solution. If a gate is open most of the time,
it would probably lead to a higher average power consumption in addition to the increased
area. On the other hand, if the gate is closed most of the time, the reduction in power
consumption can be significant. When using clock gating, the number of flip flops gated
need to be large enough to outweigh the power consumed in the gates.

3.3.3 Power gating

An approach to reduce energy consumption due to leakage is to turn off the power supply
for modules which are not in use. This can be done by using an NMOS in series with the
logic gates, as depicted in Figure 3.6.

Logic gate 1 Logic gate 2 Logic gate 3

Virtual Ground

Ground

Sleep

Vdd

Figure 3.6: Power gate

Asserting the Sleep signal disconnects the logic gates from the ground, minimizing the
leakage current. Power gate transistors should incorporate high threshold voltages, Vt, to
keep the leakage current through the power gate itself at a minimum. As seen in Equation
3.3, increasing the threshold voltage greatly reduces leakage currents. In order for the logic
gates connected to the power gate to function properly, the sleep transistor has to be carefully
sized. If the voltage drop over the sleep transistor is too large, the delays through the logic
gates will increase. Using a large sleep transistor solves this, but increases area overhead
and the dynamic power consumed for turning the transistor on and off [24]. For more details
on sizing of power gate transistors, refer to [24]. Due to the fact that turning the power gate
on and off consumes energy, there exists a lower time limit indicating how long the Sleep
signal must be asserted in order to save energy. Using the power gate for shorter periods
than this time limit only results in increased energy consumption. It should be noted that
using power gates on sequential circuitry, like registers, results in loss of the data stored.

3.3.4 Numerical strength reduction

Constant matrix multiplication is involved in quite a lot of algorithms. [25] presents a nu-
merical transformation technique which reduces the strength of these matrix multiplications.
This technique is based on subexpression elimination. The idea in subexpression elimination
is to analyze the computation that is to be done, extract subexpressions involved in multiple
computations, and share these.
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Example:

Equation 3.4 shows an example of a constant matrix multiplication.
y0

y1

y2

y3

 =


{05} {00} {04} {00}
{00} {05} {00} {04}
{04} {00} {05} {00}
{00} {04} {00} {05}



x0

x1

x2

x3

 (3.4)

Straightforward calculation could be performed as in Equations 3.5 through 3.8.

y0 = {05} × x0 + {04} × x2 (3.5)
y1 = {05} × x1 + {04} × x3 (3.6)
y2 = {04} × x0 + {05} × x2 (3.7)
y3 = {04} × x1 + {05} × x3 (3.8)

These calculations would require eight multiplications and four additions. Applying numer-
ical strength reduction reduces the number of multiplications needed. The procedure can
be divided into four steps.

1. Represent the coefficients in each column in binary form

2. Perform iterative matching on the coefficients to derive common subexpressions

3. Write each yi as a sum of subexpressions

4. Perform iterative matching on the expressions for yi to find common subexpressions

Step 1 and 2:

The coefficients in each column can be represented with a set of subexpressions. In this case,
all columns consist of the coefficients {04} and {05}. These coefficients can be represented
by the subexpressions {04} and {01}. {05} would then be written as {04} + {01}. In the
case of more complex coefficients, the subexpressions can be found using iterative matching,
described in step 4.

Column 0 Column 1 Column 2 Column 3
{04} {04} {04} {04}
{01} {01} {01} {01}

Step 3:

The subexpressions represents unique products which can be used to calculate each yi.

p1 = {04} × x0, p2 = {01} × x0, p3 = {04} × x1, p4 = {01} × x1,
p5 = {04} × x2, p6 = {01} × x2, p7 = {04} × x3, p8 = {01} × x3

y0 = p1 + p2 + p5

y1 = p3 + p4 + p7

y2 = p1 + p5 + p6

y3 = p3 + p7 + p8
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Step 4:

Iterative matching can now be performed in order locate common subexpressions. Iterative
matching can be divided into four steps:

1. Represent the expressions for each yi in a binary format.

2. Determine the number of bitwise matches between the expressions, choose the best
match.

3. Create a new expression consisting of the shared subexpressions found in step 2. Re-
turn remainders of the yi’s and the new expression to the expression set.

4. Repeat steps 2 and 3 until no further improvements are made.

pi 1 2 3 4 5 6 7 8
y0 1 1 0 0 1 0 0 0
y1 0 0 1 1 0 0 1 0
y2 1 0 0 0 1 1 0 0
y3 0 0 1 0 0 0 1 1

Examining the table above reveals that y0 and y2 share the subexpressions p1 and p5. y1

and y3 share the subexpressions p3 and p7. A new table is made with two new expressions,
C02 and C13. These represent the common expressions for y0, y2 and y1, y3, respectively. ryi

represents the remainder of yi, that is what needs to be added to the common expressions
in order to form yi.

pi 1 2 3 4 5 6 7 8
C02 1 0 0 0 1 0 0 0
C13 0 0 1 0 0 0 1 0
ry0 0 1 0 0 0 0 0 0
ry1 0 0 0 1 0 0 0 0
ry2 0 0 0 0 0 1 0 0
ry3 0 0 0 0 0 0 0 1

No further improvements can be made and the new expressions for yi can be written as
seen in Equations 3.9 through 3.14

C02 = {04} × x0 + {04} × x2 = {04} × (x0 + x2) (3.9)
C13 = {04} × x1 + {04} × x3 = {04} × (x1 + x3) (3.10)
y0 = C02 + x0 (3.11)
y1 = C13 + x1 (3.12)
y2 = C02 + x2 (3.13)
y3 = C13 + x3 (3.14)

The common subexpressions, C02 and C13, are shared and only need to be computed once.
The new equations require two multiplications and six additions. Also, only multiplications
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by {04} needs to be performed which is less complex than multiplication by {05} needed in
the original computation of y. Numerical strength reduction results in less complex hardware
able to do the computations using less energy.

3.3.5 Energy versus power

Energy- and power consumption are obviously closely related, the relationship being that
power consumption over time results in energy consumption, as shown in equation 3.15.
As a battery is able to store a certain amount of energy, the life of the battery might be
prolonged if a module is designed to consume a large amount of power for a short period of
time instead of a small amount of power for a long period of time.

Energy =
∫
T

Power(t) dt (3.15)

Datapath width is a design parameter which has great impact on both power consumption
and execution time. Increasing the datapath width generally increases the power consump-
tion, but could also lead to a reduction in execution time.
“In general, if a datapath is too narrow, energy is increased because of the increased instruc-
tion cycles.” [24]

Expanding the datapath of a hardware module could lead to lower energy consumption
if the computations that is to be performed are inherently associated with a bitwidth. For
instance, addition of two 32 bit integers would be far more energy efficient using a 32-bit
datapath opposed to a 8-bit datapath. Using a datapath narrower than this bitwidth would
lead to additional execution cycles and control circuitry. Using an even broader datapath
enables parallelization of computations. If the calculations to be performed are possible to
execute in parallel, a significant speedup and possible energy reduction is achievable.

[4] explores how the width of the datapath affects the energy consumption. A program
performing MPEG-2 decoding was evaluated on a soft core processor using various datapath
widths. The energy consumption in the CPU grew in a non-monotonic manner as the width
of the datapath was increased. Depending on the task that is to be performed, the datapath
width of a computational unit should be optimized in order to minimize energy consumption.

3.4 Power estimation

The ability to estimate the power consumption of a module is essential for a designer in order
to evaluate the quality of a design. Power estimation is done by combining parameters like
supply voltage and operating frequency with a description of the design and data regarding
activity in the circuitry. The different approaches differ in the models being used and how
the activity data is collected. In general, the approaches which produces the most accurate
estimations require significantly more time and effort than the less accurate ones [24].

3.4.1 Design models

When estimating power consumption in a design, a model of the design has to be provided
to the simulation and estimation tool. The detail level of this model influences the accuracy
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of the estimation and the execution time of the simulations. More detailed models generally
produce more accurate results, but increases the simulation time.

RTL level models describes the design as a collection of memory elements and combi-
national black boxes [20]. At this abstraction level the composition of logic gates are not
known to the simulator making it impossible to calculate exact activity in the combinational
parts of the design. As a result of this, accuracy is degraded. For instance, glitches due to
delays in the combinational logics are not accounted for.

Gate level models provide information about all logical gates in the design, usually by
means of a netlist. This makes it possible to attain more precise information about the
activity in the circuitry. If information about delays through logical gates is provided, the
energy dissipation due to glitches can be estimated, which can represent a significant part
of the energy consumption, typically about 20% [29].

For even more accurate power estimation, transistor level or post layout models can be
used leading to increased accuracy and simulation time.

3.4.2 Estimating switching activity

Simulation based estimation is a straightforward way to estimate power consumption.
During simulation, switching activity in different parts of the design is logged. Combining
this with information like power supply and capacitance at different nodes in the design,
allows average power to be computed. The circuit on which simulations are performed can be
represented using models of different detail levels, for instance register transfer level, RTL,
or gate level. Simulation on RTL models are quite fast, at the expense of accuracy. In order
to include energy consumption due to glitches, gate level simulation has to be performed.

Probability based estimation is an alternative to simulation. This approach uses prob-
abilities to describe switching in the circuitry. When performing power estimation using
Synopsys’ Power Compiler, the designer has the possibility to define switching activity in
different parts of the design using probabilities and toggle rates. The designer can, for in-
stance, specify that an input to a design is a logical 1 50% of the time and that it toggles
10 times in 1000 time units. Power compiler can then use this data to estimate the power
consumption of the design. This is done by propagating the switching activity defined by the
designer using a zero delay simulator [34]. In addition to short execution time, this approach
has the advantage that the exact stimuli does not have to be known, which is often the case
when power estimation is to be performed [20]. Other approaches for computing switching
activity without simulation are presented in [20].

3.4.3 Software power estimation

Estimation of power consumption during software execution could be performed in the
same manner as hardware. However, this requires a detailed model of the processor and
simulations would be relatively time consuming making it impractical or impossible [35].

[35] proposes an estimation method for software power consumption based on an instruc-
tion level power model. Each instruction is analyzed with regards to power consumption
and cycle execution time. By investigation of the assembly code, an estimate of the power
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consumption can be calculated. [26] simplifies this approach by using the average power for
all instructions. Physical measurements shows that this method is sufficient and accurate
within 8% with 99% confidence [26].

As mentioned in Section 3.2, memory accesses represent a major part of the total energy
consumption when software is executed. Estimation of this contribution to the total energy
can be performed by simply counting the number of memory accesses made. Combining
this with a constant representing energy dissipated per memory access provides an estimate
of energy consumption due to memory accesses. Energy dissipated in a memory access is
determined by memory size, presence of cache, and what kind of memory that is being used,
among others. For details on how energy consumption per memory access can be calculated,
refer to [17].
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Chapter 4

Microcontrollers

Microcontroller theory is a wide field and numerous aspects of microcontroller design could
be presented. To limit the size of this chapter, only topics which are relevant for discussion
in this thesis will be presented.

4.1 Architecture

Modern microcontrollers are miniaturized, single chip computers incorporating many of
the same basic blocks as a regular computer, for instance memory (both volatile and non-
volatile), Central Processing Unit (CPU), and bus system. In addition, microcontrollers are
equipped with a set of peripherals aiding the CPU and enabling communication with the
outside world. Microcontrollers can be divided into two architectural classes, Von Neumann
and Harvard [33].

Peripherals
Program

memory
CPU

Interrupt

logic

Data 

memory

Address bus

Data bus

Von Neumann architecture

Peripherals
Program

memory
CPU

Interrupt

logic

Data 

memory

Address bus

Data bus

Harvard architecture

Address bus

Data bus

Figure 4.1: Von Neumann vs Harvard architecture, [33]

Figure 4.1 shows the two fundamental architectures. The difference between the two
is that Harvard architectures have separate buses for program- and data memory. The
separate buses enables the next instruction to be fetched while the previous instruction
is being executed, resulting in significantly increased computer speed. Computers based
on Harvard architectures often have reduced instruction sets, leading to a less complex
and faster CPUs. Because of this, Harvard architectures are often referred to as Reduced
Instruction Set Computers (RISC). Von Neumann architectures often come with rather
complex instruction sets and are therefore often called Complex Instruction Set Computers
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(CISC). In order to execute these complex instructions, CISC CPUs are relatively complex
and slow, compared to RISC computers [33].

4.2 Peripherals

A microcontroller is equipped with a set of resources, called peripherals. These resources are
hardware modules specialized for some specific task. Almost all microcontrollers incorporate
the following peripherals [33]:

• General Purpose I/O ports (GPIO)

• Asynchronous serial interface (UART)

• Synchronous serial interface (SPI)

• Several types of timers

• Analog to digital converters (ADC)

For details regarding the peripherals mentioned above, refer to [33].
In addition to the mentioned peripherals, many microcontrollers include peripherals

specialized for some sort of computations. These peripherals can relieve the CPU from
certain types of computations. This enables the CPU to enter a low power mode or perform
other tasks in parallel. Cryptographic algorithms are examples of computation intensive
tasks which could be implemented in a specialized peripheral module.

4.3 Memory map

A CPU is able to address a certain amount of memory locations (232 = 4G for 32-bit
architectures). Most CPUs utilizes memory mapped I/O, meaning that the CPU makes no
distinction between memory devices and peripherals like a UART or an AES module [5].
All resources (like peripherals and memory devices) available to the CPU are represented by
addresses within this address space. In order to access a peripheral, the CPU simply reads
or writes to an address assigned to the specific peripheral. Figure 4.2 shows an example of
a memory map, taken from from the ARM Cortex M3 processor.

4.4 Direct Memory Access

Some microcontrollers include a Direct Memory Access Controller, DMAC. A DMAC is a
unit which can be used for data transfers without invoking the CPU. It can be programmed
by the CPU to transfer an amount of data from one memory location to another upon some
sort of request, either from the CPU itself or from a peripheral module. When the data
transfer is completed, the DMAC issues an interrupt signaling the CPU that the task is
performed. When DMA is used, the CPU is only involved at the beginning and end of a
transfer [30]. As use of DMA relieves the CPU, the CPU can reside in a low-power mode
or alternatively perform other tasks while the transfer is being performed. A DMAC can
also enhance the throughput of a peripheral module as a data transfer can be done without
involving the CPU [23]. A DMAC is typically equipped with a number of channels which
can be configured independently to perform memory transfers.
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The Cortex-M3 processor enables direct access to single bits of data in simple systems by 
implementing a technique called bit-banding (Figure 5). The memory map includes two 1MB bit-
band regions in the SRAM and peripheral space that map on to 32MB of alias regions. Load/store 
operations on an address in the alias region directly get translated to an operation on the bit aliased 
by that address. Writing to an address in the alias region with the least-significant bit set writes a 1 
to the bit-band bit and writing with the least-significant bit cleared writes a 0 to the bit. Reading the 
aliased address directly returns the value in the appropriate bit-band bit. Additionally, this operation 
is atomic and cannot be interrupted by other bus activities.  
 

Figure 5. Comparison of traditional bit manipulation with Cortex-M3 bit-banding 
 

 
LDR R0,=0x200FFFFF ; Setup address 
MOV R2, #0x4              ; Setup data 
LDR R1, [R0]                ; Read 
ORR R1, R2                   ; Modify bit 
STR R1, [R0]                 ; Write back result 

 
LDR R0,=0x23FFFFFC ; Setup address 
MOV R1, #0x1               ; Setup data 
STR R1, [R0]                  ; Write  

Traditional bit manipulation method Direct, single cycle access with bit banding 
 
Traditional ARM7 processor-based systems support only aligned data access, allowing data to be 
stored and accessed only along aligned word boundaries. The Cortex-M3 processor implements 
unaligned data access that enables unaligned data transfers in a single core access. When 
unaligned transfers are used, they are converted into multiple aligned transfers and remain 
transparent to application programmers.  
 

Code 

SRAM 

Peripheral 

External RAM 

External Device 

Private Peripheral Bus - Internal 

Private Peripheral Bus - External 

Vendor Specific 

Bit band alias

Bit band region

Bit band alias

Bit band region

ROM table

External PPB

TPIU

ETM

FPB

DWT
ITM

Reserved

NVIC

Reserved

0.5GB

0.5GB

0.5GB 

1 GB 

1GB 

Figure 4.2: ARM Cortex M3 memory map, [27]

4.5 Microcontrollers and power

Microcontrollers are incorporated in most modern electronic products [23], and as prolonged
operation time in battery operated devices is highly desired, low-power design has become
increasingly important in microcontrollers. Another aspect making low-power design in-
creasingly important is the increasing transistor counts in todays microcontrollers. High
power consumption in a small chip, like a microcontroller, would require a heat sink. De-
signs utilizing microcontrollers often have strict requirements regarding mechanical devices,
such as heat sinks, and it is therefore desirable for a microcontroller to be able to function
without such a device. As seen in Equation 3.2, the power consumption in CMOS devices
is proportional to the frequency, hence the power consumption can be a limiting factor to
performance [23]. As a result of this, low-power design is a necessity in microcontrollers.

Low-power modes

One of the most common measures taken in order to limit power consumption in microcon-
trollers is low-power modes. In many applications, the demands for performance varies over
time. Low-power modes enables the device to adapt its power consumption according to
the performance demands. Actions taken to lower power consumption could for instance be
disabling clock signals or power supply (by means of power gating) to parts of the design.
For instance, the ARM Cortex M3 based MCU STM32F10106 from STMicroelectronics
incorporates three low power modes [31]:

1. Sleep mode stops the CPU. All peripherals are running an can wake up the CPU by
issuing an interrupt.

2. Stop mode stops the CPU and all peripherals while retaining the contents of the RAM
and registers.

3. Standby mode switches off the voltage regulator, stopping the CPU and peripherals.
RAM and register contents are lost in this mode.
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The general trend associated with low power modes is that lower power consumption is
achieved at the cost of reduced functionality. This is also the case for the above mentioned
example. In Sleep mode, all peripherals are active enabling the MCU to perform tasks which
does not involve the CPU. In the two other low-power modes, no functionality is available.

4.6 Introduction to ARM Cortex M3

The Cortex M3 processor from ARM has been specified for comparison with the hardware
solution in this thesis. This section will give a brief introduction to the ARM Cortex M3.

The Cortex M3 is 32-bit processor based on a Harvard architecture. It is designed to de-
liver high performance while maintaining low cost and power consumption. The core, which
occupies an area of approximately 33000 gates, incorporates a 3-stage pipeline, consisting
of Instruction fetch, instruction decode, and instruction execute. Hardware support for di-
vision and single cycle multiplication is included in the Arithmetic Logic Unit, ALU. These
features, among others, results in a performance of 1.25 DMIPS

MHz when evaluated using the
Dhrystone benchmark. The Thumb-2 instruction set architecture, which is a blend of 16-
and 32-bit instructions, delivers the performance of 32-bit ARM instructions and matches
the code density of the 16-bit Thumb instruction set. For more details regarding the ARM
Cortex M3, refer to [27]. Figure 4.3 shows an overview of the ARM Cortex M3.
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Figure 3. The Cortex-M3 processor   

 

 
The core pipeline has 3 stages: Instruction Fetch, 
Instruction Decode and Instruction Execute. When 
a branch instruction is encountered, the decode 
stage also includes a speculative instruction fetch 
that could lead to faster execution. The processor 
fetches the branch destination instruction during 
the decode stage itself. Later, during the execute 
stage, the branch is resolved and it is known 
which instruction is to be executed next. If the 
branch is not to be taken, the next sequential 
instruction is already available. If the branch is to 
be taken, the branch instruction is made available 
at the same time as the decision is made, 
restricting idle time to just one cycle.  
 
The Cortex-M3 core contains a decoder for 
traditional Thumb and new Thumb-2 instructions, 
an advanced ALU with support for hardware 
multiply and divide, control logic, and interfaces to 
the other components of the processor.  
 
The Cortex-M3 processor is a 32-bit processor, 
with a 32-bit wide data path, register bank and 
memory interface. There are 13 general-purpose 
registers, two stack pointers, a link register, a 
program counter and a number of special 
registers including a program status register. 
 
The Cortex-M3 processor supports two operating 
modes, Thread and Handler and two levels of 
access for the code, privileged and unprivileged, 
enabling the implementation of complex and open 
systems without sacrificing the security of the 

application. Unprivileged code execution limits or excludes access to some resources like certain 
instructions and specific memory locations. The Thread mode is the typical operating mode and 
supports both privileged and unprivileged code. The Handler mode is entered when an exception 
occurs and all code is privileged during this mode. In addition, all operation is categorized under 
two operating states, Thumb for normal execution and Debug for debug activities. 
 
The Cortex-M3 processor is a memory mapped system with a simple, fixed memory map for up to 4 
gigabytes of addressable memory space with predefined, dedicated addresses for code 
(code space), SRAM(memory space), external memories/devices and internal/external peripherals. 
There is also a special region to provide for vendor specific addressability. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.3: ARM Cortex M3, [27]
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Chapter 5

Software Solution

An alternative to implementing AES in a dedicated hardware module is to implement it
in software. Advantages with this approach are reduced design time and saved area as no
additional hardware is required. Although no extra hardware is required, the code itself
requires memory space which might be considered an additional cost. Another advantage
with implementing the algorithm in software is flexibility. Software can be changed after
production and corrected if any bugs should occur, this is not possible in hardware im-
plementations. The drawback with implementing AES in software is that microprocessors
are not particularly suited to perform the operations needed in the algorithm and therefore
leading to decreased speed and increased energy dissipation.

5.1 Software implementation

As part of this thesis, a software version of AES was implemented based on the technique
described in [2]. The main idea is to transpose the state matrix allowing the MixColumns
operation to be parallelized. In order to produce the correct result, the roundkeys also needs
to be transposed. [2] describes how the transposed keys can be computed directly. Alterna-
tively, the roundkeys can be calculated as described in Section 2.3.5 and then transposed.
The key expansion implemented in this thesis computes the transposed roundkeys directly
and takes 939 cycles in AES128 and 1204 cycles in AES256. Transposing the state- and key
matrix allows the AES processing to be executed fast and with relatively modest demands
to code size as only two 256 byte look up tables are needed.

[1] presents another implementation utilizing ten 256 byte look up tables avoiding hard-
ware computation of MixColumns and its inverse. This decreases execution time, but in-
creases the code size dramatically. The version based on transposing the state was chosen
for implementation as it combines fast execution and relatively low code size.

SubBytes and ShiftRows

The SubBytes operation substitutes each byte in the state, as described in Section 2.3.2.
ShiftRows is implemented by proper selection of the bytes chosen for substitution. The sub-
stitution is implemented using two 256 byte look up tables, storing the values for SubBytes
and its inverse. Since this implementation operates on a transposed version of the state,
ShiftRows has to be performed on the columns, not the rows. SubBytes is unchanged as it
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is a bytewise operation. Simulations show that substituting and shifting a whole state takes
68 cycles which averages to 4.25 cycles per byte.

MixColumns

Transposing the matrix enables the multiplications in MixColumns to be executed in parallel,
dramatically reducing execution time. Equations 5.1 through 5.4 shows how MixColumns
is performed on the transposed state. xi denotes column i in the transposed state before
MixColumns is applied, yi denotes column i after transformation.

y0 = {02} ∗ x0 ⊕ {03} ∗ x1 ⊕ x2 ⊕ x3 (5.1)
y1 = x0 ⊕ {02} ∗ x1 ⊕ {03} ∗ x2 ⊕ x3 (5.2)
y2 = x0 ⊕ x1 ⊕ {02} ∗ x2 ⊕ {03} ∗ x3 (5.3)
y3 = {03} ∗ x0 ⊕ x1 ⊕ x2 ⊕ {02} ∗ x3 (5.4)

The difference compared to the original MixColumns is that the multiplications are per-
formed on entire words, not bytes. The symbol ∗ denotes a set of four ordinary multi-
plications over the field GF (28) performed on each byte of the word in parallel. Inverse
MixColumns is performed in the same manner, substituting the multiplication coefficients
to form the inverse of MixColumns.

Straightforward NSR
MixColumns 334 52
MixColumns−1 667 86

Table 5.1: MixColumns and NSR

Numerical strength reduction, described in Section 3.3.4, was applied in order to fur-
ther reduce execution time. The simplified equations shown in Appendix C were used to
reduce the complexity of the computations needed. As seen in Table 5.1, applying numer-
ical strength reduction reduces the cycle count significantly opposed to a straightforward
implementation. The code for the different implementations can be viewed in Appendix
D. Simulations show that MixColumns transformation on the entire state takes 52 cycles,
resulting in 13 cycles per column. Inverse MixColumns uses higher order multiplications
and therefore consumes more time: 86 cycles per state, averaging to 21.5 cycles per column.

5.2 Evaluation on ARM Cortex M3

As discussed in Section 3.4.3, there exists different approaches for estimation for energy
consumption during software execution. As the available tools only could provide cycle
counts, the energy estimation was performed using this information in combination with the
average power consumption of the ARM Cortex M3, provided by [27]. This approach should
be sufficiently accurate as [26] concludes that such an approach provides an accuracy within
8% with 99% confidence.

The software implementation was evaluated using IAR Embedded Workbench 5.4, which
provided cycle counts and code size. STMicroelectronics’ MCU STM32F101C6 was used
during the simulations. STM32F101C6 was chosen for simulation as it is an ARM Cortex
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M3 based MCU [31]. Two 256 and one 10 byte (containing the roundconstants) look up
tables were used, resulting in 524 bytes of read only data (RO data). RAM usage varies with
the key size, 192 bytes for AES128 and 256 bytes for AES256. The state needs 16 bytes and
the roundkeys need 176 and 240 bytes in AES128 and AES256, respectively. The evaluation
results are summarized in Table 5.2. The cycle count and energy figures are based on en- or
decryption of a 128 bit data block.

Cycles Code size RO data RAM footprint nJ/datablock
AES128 encryption 1388 1374 524 192 333
AES128 decryption 1697 1374 524 192 407
AES256 encryption 1956 1374 524 256 469
AES256 decryption 2401 1374 524 256 576

Straightforward implementation, from [38]
AES128 encryption 3509 972 524 192 842
AES128 decryption 5014 972 524 192 1203

Table 5.2: Performance and cost for AES software

The lower part of Table 5.2 summarizes key figures for the straightforward software im-
plementation of AES used in [38]. As can be observed, the cycle counts are significantly
larger. This is due to the fact that the implementation used in [38] was not optimized for
32 bit architectures, performing MixColumns bytewise instead of on whole words simulta-
neously.

The ARM Cortex M3 uses 0.24 × 10−6 mW
Hz when synthesized using the 180nm ARM

SAGE-X standard cell library [27]. Combining this with cycle counts for the different modes
provides the amount of energy needed for en- or decryption. Equation 5.5 was used to
calculate the energy figures. E is the energy consumed, P is power and f is the frequency.

E = #cycles× 1
f
× P = #cycles× 1

f
× 0.24× 10−6 × f = #cycles× 0.24× 10−6 (5.5)
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Figure 5.1: Cycle counts for software AES on ARM Cortex M3
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Figure 5.1 shows the contribution of the different parts of the algorithm to the cycle
count. AddRoundKey and SubBytes/Shiftrows use the same amount of cycles both in en-
and decryption mode. InvMixColumns needs more cycles than MixColumns as higher order
multiplications are needed. Cycle counts scale linearly with increasing key size as the only
difference is the number of rounds applied.

It should be noted that the energy figures in Table 5.2 does not include memory accesses.
The contribution of memory accesses to total energy consumption is discussed in Section
3.2. As no information regarding the memory system is available, energy consumption due
to memory accesses is hard to predict. Because of this, the figures in Table 5.2 will be used
for comparison in this thesis. These figures represent a lower bound for the actual energy
consumption as they only include energy dissipated in the core and not energy consumed in
memory transfers.

This evaluation was done to serve as a performance benchmark in order to be able to
compare hardware- versus software solutions.
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Chapter 6

Existing hardware solutions

Important aspects to be considered when implementing an AES module is width of the
datapath, implementation of MixColumns and SubBytes and how key expansion is to be
performed. Numerous AES hardware modules have been implemented based on different
design goals, for instance low area, low power or high throughput. [32], [16], [11], and [28]
present different architectures for different optimization goals. In order to give the reader
insight in how AES modules can be optimized for different design goals, [11] and [28] are
given a brief presentation in Sections 6.1 and 6.2.

6.1 8 bit datapath example

[11] presents an architecture optimized for low area and low power consumption. It is based
on an 8 bit datapath and supports en- and decryption with 128 bit keys. The AES module
consists of a datapath, a 32 x 8 bit RAM array, control circuitry and a I/O module. Support
for 192- and 256 bits keys could be implemented using the same datapath, but would require
additional storage and more complex control circuitry. Figure 6.1 shows an overview of the
architecture.

the number of rounds to ten and the required memory
for the State plus the round key does not exceed
256 bits. The low-power requirements of our chip are
too restrictive to allow using 128-bit operations to be
used. Even a 32-bit implementation of AES would
not fit our needs. Therefore, the decision was to
implement an 8-bit architecture of AES, where all
operations consume significantly less power than 32-bit
operations do. Our architecture of the AES can be seen
in Fig. 2.

The main parts of the AES are the controller, the
RAM, the datapath, and the IO module. The IO module
has a microcontroller interface that allows the AES
module to be used as a coprocessor. The controller
accepts commands from the IO module and provides
control signals for RAM and the datapath to sequence
AES operations. The controller is realised as a hard-
wired finite-state machine. This allows the optimisation
of efficiency in terms of low power consumption and low
die size. It mainly consists of a 4-bit round counter and
address registers for addressing rows and columns of the
RAM. These counters are implemented as shift registers
using one-hot encoding. One-hot encoding ensures that
changes of the state cause only two signal transitions.
Moreover, one-hot encoding reduces the undesired
glitching activity of control signals.

The finite-state machine sequences the ten rounds
consisting of the operations AddRoundKey, ShiftRows,
SubBytes, MixColumns, or their inverse operations.
Additionally, all round keys are generated in time for
every round of the AES. This on-the-fly round key
generation helps to reduce the necessary storage
capacity of the RAM block to 256 bits. The first
128 bits store the actual State and the second 128 bits
store the current round key. As no spare memory is
present for storing intermediate values, the controller
has to ensure that no State byte or key byte is
overwritten if it is needed again during calculation.

The RAM is single ported to ease silicon implementa-
tion. It is realised as a flip-flop-based memory. The
extensive use of clock gating lowers the power con-
sumption. Additionally, this standard-cell-based
approach eases the physical realisation compared with
using a dedicated RAM macro block.

4.2 Datapath implementation
The datapath of the AES module contains combina-
tional logic to calculate the AES transformations
SubBytes, MixColumns, and AddRoundKey and their
inverse operations (see Fig. 2). The ShiftRows/InvShift-
Rows transformation is implemented by appropriate
addressing of the RAM. It is executed when results of
the S-Box operation are written back.

The remaining components of the datapath are the
submodule Rcon, some XOR gates, and an 8-bit register
to store intermediate results during key scheduling.
Rcon is a circuit which provides constants needed for
the key schedule. The XOR gates are needed for round
key generation and are reused to add the State with the
round key during the AddRoundKey transformation.
Additionally, the data input and key input are handled
by the data path.

A design goal was to equalise the power consumption
of all datapath operations occurring during the execu-
tion of the AES algorithm. The equalisation is very
important for contactless devices because the most
power-demanding operation might cause a reset of the
whole circuit. This reset may be triggered by the supply
voltage dropping below a defined minimum. As
a consequence, submodules of the datapath like the
S-Box or MixColumns were designed such that their
power consumption is nearly the same.

The encryption or decryption of 16-byte blocks works
as follows. The 16 bytes of input data are successively
written to the RAM through the 8-bit microcontroller
interface followed by the 16 bytes of keys. The initial
AddRoundKey operation is performed during the
loading of the key. For decryption, the inverse cipher
key must be loaded because all round keys are
calculated in reverse order. Issuing the start command
to the control input starts encryption or decryption.
The ten AES rounds with the functions SubBytes,
ShiftRows, MixColumns for encryption and the func-
tions InvSubBytes, InvShiftRows, InvMixColumns for
decryption are performed according to the algorithm
specification. While computing AddRoundKey, which is
equal for encryption and decryption, the subsequent
round key is derived from its predecessor using the
S-Box, Rcon, and the XOR functionality of the
datapath. Encryption can be done within 1032 clock
cycles including the IO operation. Decryption needs
1165 clock cycles because of its more complicated key
schedule.

4.2.1 S-Box implementation A significant advantage
of the 8-bit architecture of the design is to reduce
the number of S-Boxes from four or more of a 32-bit
implementation to one instance. This reduces the
required silicon resources. The single S-Box is used for
the SubBytes and the InvSubBytes operation as well as
for key scheduling. The S-Box is the biggest part of the
AES datapath. There are several options for implement-
ing an AES S-Box. The most obvious option is a 512�
8-bit ROM to implement the 8-bit table look-up for
encryption and decryption. Unfortunately, ROMs do
not have good properties in terms of low-power design.

A particularly suitable option is to calculate the
substitution values using combinational logic as pre-
sented in [11]. One feature of this S-Box is that it can be
pipelined by inserting register stages. Our S-Box
implementation uses one pipeline stage which shortens
the critical path of the S-Box and lowers glitching
activity. Furthermore, this pipeline register is used as
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Figure 6.1: AES architecture with 8 bit datapath, [18]

The datapath includes an Sbox, a MixColumns module, 2 x 8 bit XOR arrays, an Rcon
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module and an 8 bit register used to store intermediate values during key expansion and
AddRoundKey. This AES module uses on-the-fly key expansion, meaning that the round-
keys are computed during en- or decryption. On-the-fly key expansion saves a considerable
amount of area as only one roundkey (16 bytes) needs to be stored at a time, opposed to
storing all the roundkeys which would require 176 bytes in AES128. The Sbox is able to
substitute one byte per cycle and is based on direct computation using combinational logics.
A pipeline stage is also incorporated in the Sbox to shorten the critical path and reduce
glitching. MixColumns is computed one byte at a time. As the MixColumns operation takes
four bytes as input, a pre-loading phase of three cycles is needed. Performing MixColumns
on an entire state takes 28 cycles. The 8 bit architecture enables Shiftrows to be performed
using appropriate addressing to the RAM. The datapath is controlled using a finite state
machine which also controls which part of the RAM that is to be written to at a given time.
This implementation performs encryption and decryption in 1032 and 1165 cycles, respec-
tively. These cycle counts include I/O operations. The total area of the implementation is
3400 gates. For further details, refer to [11].

6.2 32 bit datapath example

[28] proposes an AES module utilizing a 32 bit datapath. A 32 bit datapath enables a
whole column to be processed simultaneously. The datapath consists of modules performing
three of the four basic steps of AES in one cycle, namely MixColumns, SubBytes and
AddRoundKey. The fourth step, Shiftrows, is performed in the dataregister. As the AES
state consists of four columns, one round takes 4+1 = 5 cycles. SubBytes, MixColumns, and
AddRoundKey are performed columnwise in the first four cycles while Shiftrows is performed
on the entire state in the fifth cycle. Figure 6.2 depicts the architecture presented in [28].

Like the architecture presented in Section 6.1, this implementation utilizes on-the-fly key
expansion. The circuitry used in key expansion can be seen on the top right hand side of
Figure 6.2. In consists of four 32 bit arrays of XOR’gates and four 32 bit 2:1 muxes. This
enables the next roundkey to be computed in one cycle, both in en- and decryption mode.
The fixed datapath in this architecture performs SubBytes, MixColumns and AddroundKey,
in that order. In decryption mode, the order should be SubBytes followed by AddroundKey
and MixColumns. To compensate for this switch in decryption mode, [28] proposes to use an
extra MixColumns module performing inverse MixColumns on the roundkey. This produces
correct result because MixColumns and InvMixColumns are linear operations [22]. Equation
6.1 shows equality due to the linear property of MixColumns.

MixColumns(state⊕roundkey) = MixColumns(state)⊕MixColumns(roundkey) (6.1)

This implementation supports AES128, needs 54 cycles for both en- and decryption, exclud-
ing I/O operations. The area consumption is approximately 5400 gates [28]. For further
details, refer to [28].

An implementation of this architecture was made for comparison with the proposed
architecture presented in Chapter 7. The proposed architecture was developed using this
architecture as a basis.
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3.3 Factoring in MixColumns and InvMixColumns

MixColumns and InvMixColumns are modular multiplications with constant
polynomials (2) and (3) that can be written as the constant matrix multiplica-
tions shown in Equations (4) and (5) respectively.
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Figure 6.2: AES architecture with 32 bit datapath, [28]
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Chapter 7

Hardware implementation

An important design choice to be made when implementing AES in hardware is the width
of the datapath. The width of the datapath has great influence on execution time, power
consumption, area, and throughput. Due to the organization of data in the AES algorithm,
natural choices for datapath widths are 8, 32, 64, or 128 bits, capable of processing one byte,
one column, two columns, or the entire state simultaneously. In Section 3.3.5, optimization of
the datapath based on the computation to be done was discussed. In AES, most operations
are byte oriented with exception of the MixColumns operation. This operation takes 32 bits
as input favoring a 32 bit (or larger) datapath, in terms of energy consumption.

In Chapter 6, two architectures were presented utilizing 8- and 32 bit datapaths. It is
obvious that the 8 bit datapath consumes less power, at the expense of increased execution
time. As execution time of the 8 bit solution is approximately twenty times as large as in the
32 bit architecture, the 8 bit architecture would have to use 20 times less power than the 32
bit solution in order for the two solutions to be equivalent in terms of energy consumption.
As the same computations are made in both architectures, the 32 bit architecture would
probably consume approximately four times as much power as the 8 bit solution due to
the fact that the datapath is four times as wide. These assumptions indicate that the 32
bit solution would consume roughly five times less energy than the 8 bit solution. Also,
the 8 bit architecture would require a more complex control module in addition to having
significantly lower throughput.

As the main design goal in this thesis is low energy consumption, a 32 bit architecture was
chosen for implementation. The architecture presented in Section 6.2, was chosen as a basis
because it combines short execution time with relatively modest demands to the control
circuitry. As discussed in Section 2.5, wider datapaths comes with inherently improved
protection against power analysis attacks giving yet another argument for using a 32 bit
datapath. An even wider datapath could be used, but this would result in increased area
and power consumption. In addition, a wider datapath would require key expansion to be
performed faster, leading to more complex circuitry for key expansion. This will be discussed
in Section 7.1.4.

While the architecture presented in Section 6.2 only supports 128 bit keys, the proposed
architecture was extended to support 256 bit keys. This allows the AES module to be
used in applications where AES128 does not provide sufficient security. AES256 can be
implemented with small alterations in the data- and keypath, as described in Section 7.1.1
and 7.1.4. AES192 could also be implemented using mainly the same datapath, but the
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key expansion- and control circuitry would need significant alterations resulting in increased
area and energy consumption.

In addition to the extended functionality, alterations in the datapath were made resulting
in smaller area as well as lower power consumption. These alterations are described in
Section 7.1.1. This architecture allows en- and decryption to be performed in 55 and 75
cycles in AES128 and AES256 mode, respectively.

7.1 AES core

The AES module is intended to be incorporated in a microcontroller as a peripheral. A
peripheral would need a bus interface in order to communicate with the CPU in the micro-
controller. Due to lack of time, this interface has not been implemented, but Figure 7.10
shows an overview of how the AES peripheral could be structured. This thesis concentrates
on the contents of the AES core.

7.1.1 Datapath

The proposed architecture utilizes a 32 bit datapath, able to perform MixColumns, Ad-
dRoundKey and SubBytes in one cycle. These operations are performed on one column (32
bits) at a time, enabling a whole state to be processed in 4 cycles. A fifth cycle is used
to perform (Inv)ShiftRows. During this fifth cycle, the Sboxes in the datapath are used
to compute a part of the next roundkey. More details on computation of roundkeys are
presented in Section 7.1.4. The datapath is mainly the same as the one presented in Section
6.2, but some alterations were made:

• MixColumns and the Sbox have switched place

• The InvMixColumns module used on roundkeys has been removed

• The circuitry for key expansion has been simplified

Figure 7.1 depicts the proposed data- and keypath.
As the Sbox produces a lot of glitches [38], it was moved to the end of the datapath to

prevent these glitches from propagating through the rest of the datapath consuming energy
along the way. To compensate for this switch, SubBytes is performed in the initial round
and not in the final round.

In decryption mode, the AddRoundKey operation is supposed to be performed prior to
InvMixColumns. In the fixed datapath depicted in Figure 7.1, this is not the case. [28] solves
this by performing a InvMixColumns operation on the roundkey. The proposed architecture
solves the problem by adding the roundkey in the MixColumns module, presented in section
7.1.2. The XOR-gates performing AddRoundKey after MixColumns is omitted by means of
multiplexing in decryption mode. This solution allows the InvMixColumns and the following
mux seen on the right hand side in Figure 6.2 to be removed, saving both area and energy.

The simplifications in the key expansion circuitry will be presented in Section 7.1.4.
A few changes had to be done in the datapath to accommodate 256 bit keys. In AES256,

the Sbox is applied to two different parts of the key during key expansion. To allow this,
the mux prior to the Sbox was expanded to a 4:1 mux (3:1 is sufficient when only AES128
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is implemented). The mux after the Sbox also has to be expanded to a 3:1 mux in order to
be able to omit the addition of roundconstant during key expansion.

Like in [28], the Sboxes are used in both the key- and datapath. This sharing of the
Sboxes lowers the requirement from eight to four Sboxes. The drawback is that the cycle
count for each round increases from four to five. As low area is one of the design goals and
the number of Sboxes have great impact on area, sharing was implemented.

AddRoundKey

Keypath

4:1

MC / MC
-1

2:1

4:1

4 x Sbox

3:1

8
:1

Rcon[i]

Shiftrows
-1

Shiftrows

2:1

Data_in[127:0] Key_in[255:0]

4 x 2:1

Data_out[127:0] Key_out[255:0]

32 bit

128 bit

Rotate

roundkey

256 bit

Figure 7.1: Data- and keypath

ShiftRows, InvShiftRows, and Rotate, seen in Figure 7.1 are implemented by means of
wiring.

7.1.2 MixColumns

In [38], different implementations of MixColumns were explored. As the datapath in this
AES module is 32 bits wide, the 32-bit versions from [38] were evaluated for use. The
difference between the three MixColumns implementations evaluated in [38] is the way In-
vMixColumns is performed. The straightforward way to calculate InvMixColumns is to
calculate M−1 directly as is the case in the implementation seen in Figure 7.2. M and M−1

represent multiplication with the matrices seen in Equations 2.3 and 2.4, respectively. The
drawback with the straightforward implementation is that multiplication with M−1 is rela-
tively complex, compared to the multiplications needed in the two other implementations.
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decrypt

Figure 7.2: MixColumns, straightforward

In Figure 7.3, an implementation which calculates M−1 by adding M−1 −M and M is
shown. As M−1−M requires less complex computations than M−1, this implementation is
more energy friendly and requires less area than the straightforward implementation. The
matrix M−1 −M can be viewed in Appendix A.

M

M
-1
-M

decrypt

data_in

data_out

Figure 7.3: MixColumns, parallell

Figure 7.4 shows a third approach for calculating M−1. Multiplication with (M−1)2

prior to multiplication with M results in multiplication with M−1. This implementation
requires less area than the other implementations as the matrix (M−1)2, which can be
viewed in Appendix A, is a matrix containing multiple zeros and no high order coefficients.
The XOR-gates seen in Figure 7.4 were added in order to perform AddRoundKey prior to
InvMixColumns in decryption mode.

M

1
  
  
  
 0

(M
-1
)
2

data_in

data_out

decryptroundkey

Figure 7.4: MixColumns, serial with AddRoundKey

In [38], the three implementations were synthesized using a 90 nm library and evaluated
with regards to area, delay and power consumption. Table 7.1 summarizes the results. Note
that the XOR-gates in Figure 7.4 were not included during these evaluations.
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Area (NAND2 eq.) Power (Enc/dec) Delay
Straightforward 630 62.68/62.57 µW 0.96 ns
Parallel 422 17.45/42.10 µW 0.95 ns
Serial 354 26.96/37.75 µW 1.07 ns
Serial, without NSR 393 30.15/44.94 µW -

Table 7.1: Comparison of MixColumns implementations

The evaluation indicated that the two implementations not performing straightforward
computation of M−1 are preferable both in terms of area and energy consumption. As
mentioned in section 7.1.1, it is desirable to do AddRoundKey prior to InvMixColumns
in decryption mode. This can easily be implemented in the MixColumns implementation
utilizing the serial architecture. The only alterations needed are the added XOR-gates prior
to the block performing multiplication with (M−1)2, as seen in Figure 7.4. This will only
have effect in decryption mode, as desired. In order to include the same functionality in the
parallel architecture, an extra mux would have to be added in addition to the XOR-gates.
Based on this, and the fact that this implementation has low area and power consumption,
the MixColumns module utilizing the serial architecture was used in the AES module.

MixColumns and numerical strength reduction

When a 32 bit datapath is utilized, the MixColumns operation can be performed on a whole
column in a single cycle. This can be taken advantage of in order to simplify the hardware
needed. Numerical strength reduction (described in Section 3.3.4) is proposed applied to
the matrices used in MixColumns.

The example presented in Section 3.3.4 shows how the block performing multiplication
with (M−1)2 can be simplified, leading to reduction both in area and energy consumption. In
order to adapt the equations for the matrix multiplication to finite field arithmetics, addition
has to be substituted with XOR and multiplication has to be substituted with finite field
multiplication. The equations used to perform multiplication with M were derived using
the same procedure and can be seen in Appendix C. As can be seen in Table 7.1, applying
numerical strength reduction reduces area with 10% and power consumption with 11% and
16% in en- and decryption mode, respectively.

7.1.3 Sbox

Designing a compact and energy efficient Sbox is one of most important tasks when imple-
menting AES in hardware. Especially, when a 32 bit datapath is used, the Sbox has to be
well designed as four of them are needed. In [38], three different strategies for performing
SubBytes were explored. One of the implementations was an architecture based on two 256
byte look up tables. One look up table contained pre computed values for the multiplicative
inversion in sequence with the affine transformation, Srd. The other look up table contained
the values for inverse affine transformation in sequence with multiplicative inversion, S−1

rd .
The outputs from these look up tables were muxed in order to choose between SubBytes
and InvSubBytes. Figure 7.5 depicts the architecture.

41



Srd

Srd
-1

1
  
  
  
 0data_in data_out

decrypt

Figure 7.5: Sbox with two look up tables

The main disadvantage with the implementation in Figure 7.5 is that the two look up
tables requires a considerable amount of area. Combinational logics was used to implement
the look up tables. Using ROM instead might lead to a better result, but ROM generation
has to be done using special tools which were not available.

The second architecture evaluated in [38] utilized one 256 byte look up table. This table
contained the multiplicative inverses for each element in GF (28). The affine transformation
and its inverse were computed using combinational logics after and before the multiplicative
inversion. The architecture can be viewed in Figure 7.6.
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Figure 7.6: Sbox with one look up table
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Figure 7.7: Sbox with inversion in GF (24)

A third architecture was explored utilizing isomorphic mapping to compute the mul-
tiplicative inverses without using large look up tables. Theory concerning multiplicative
inversion using isomorphic mapping is presented in Section 2.4. Mapping to the lower order
field can be interpreted as a matrix multiplication, similar to the affine transforms. This
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enables these to be combined in order to simplify the hardware. Figure 7.7 depicts the
architecture. The matrices used during mapping and affine transforms can be viewed in
Appendix A.

The three architectures were synthesized using 90 nm technology and evaluated with
regards to area, delay and power consumption in [38]. Table 7.2 summarizes the results.

Area (NAND2 eq.) Power Delay
2 LUTs 1408 95.49 µW 1.15 ns
1 LUT 821 88.43 µW 2.30 ns
Mapped to GF (24) 300 64.19 µW 2.93 ns

Table 7.2: Comparison of SubBytes implementations

The evaluation in [38] clearly indicates that the architecture utilizing isomorphic mapping
is preferable both in terms of area and power consumption. The delay in this architecture is
somewhat larger than the delay in the other implementations. Lowering the voltage supply
on the implementation using two look up tables such that its delay matches the delay of
the implementation using isomorphic mapping might lead to a different conclusion. This
would require multiple voltage domains which is not always available in microcontrollers.
As long as the target frequency is reached with the version using isomorphic mapping, this
architecture is preferred.

Another important aspect to be considered when choosing Sbox architecture is the area.
In an AES module with 32 bit wide datapath, four Sboxes are needed to fully utilize the
architecture. As the implementation using isomorphic mapping is considerably smaller than
the others, this will lead to a relatively large area reduction. Based on this, the Sbox utilizing
isomorphic mapping was chosen for the AES module.

7.1.4 Key expansion

On-the-fly key expansion was implemented as this dramatically reduces the amount of stor-
age needed. Calculating the roundkeys prior to en- or decryption would require 240 bytes to
be stored in AES256 mode. Using on-the-fly key expansion lowers the storage requirement
to 32 bytes. A consequence of on-the-fly key expansion is that the key provided to the AES
module in decryption mode needs to be last roundkey used in encryption mode, not the
original cipherkey. This small disadvantage is acceptable as the reduction in hardware cost
is relatively large.

[28] presents an on-the-fly key expander which computes the entire 128 bit roundkey in
one cycle both in en- and decryption mode. In encryption mode, one column in the roundkey
is constructed using the previous key column as an input, as seen in Equations 7.1 through
7.4. In order to compute the whole roundkey in one cycle, each roundkey column needs to
propagate to the next, creating a relatively long combinational path. As the output from
the Sbox (containing a lot of glitches, [38]) is used as an input to these calculations, these
glitches will propagate through the combinational logics used in key expansion consuming
energy along the way.

In this architecture, the order in which the data columns are processed has no impact on
the result, which also enables the columns in the roundkeys to be computed in an arbitrary
order and not necessarily simultaneously. This fact can be taken advantage of, simplifing
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the combinational logics needed for key expansion.
An alternative architecture for the key expander is proposed, computing the roundkey

over four cycles, removing the need for muxes in key expansion circuitry in addition to
shortening the combinational path to one XOR-gate opposed to four XOR-gates and three
2:1 muxes, as used in [28]. This alteration does not reduce the overall speed of the AES
module as the key expansion is performed in parallel with the data processing.

In Equations 7.1 through 7.8, Ki
cj represents column j in roundkey i while Ki+1

cj repre-
sents column j in the next roundkey (i + 1). The function rsc() rotates the input column
one byte before using the Sbox to substitute the column byte by byte and finally adding the
roundconstant. Equations 7.1 through 7.4 describes the relationship between Ki

cj and Ki+1
cj

in encryption mode while Equations 7.5 through 7.8 describes the relationship between Ki+1
cj

and Ki
cj in decryption mode.

Ki+1
c3 = Ki

c3 ⊕ rsc(Ki
c0) (7.1)

Ki+1
c2 = Ki

c2 ⊕Ki+1
c3 (7.2)

Ki+1
c1 = Ki

c1 ⊕Ki+1
c2 (7.3)

Ki+1
c0 = Ki

c0 ⊕Ki+1
c1 (7.4)

Ki
c3 = Ki+1

c3 ⊕ rsc(Ki
c0) (7.5)

Ki
c2 = Ki+1

c2 ⊕Ki+1
c3 (7.6)

Ki
c1 = Ki+1

c1 ⊕Ki+1
c2 (7.7)

Ki
c0 = Ki+1

c0 ⊕Ki+1
c1 (7.8)

Examining these equations, keeping in mind that the columns can be calculated in an ar-
bitrary order, reveals that the key expansion circuitry seen in Figure 6.2 can be simplified.
Figure 7.8 shows an illustration on how the roundkeys can be computed using only XOR-
gates. The columns in each step shows which roundkey words are present in the keyregister
at a given time. During encryption, the initial contents of the keyregister is Ki and the
next roundkey Ki+1 is to be calculated. In decryption mode, the roundkeys are calculated
in reverse order, starting with Ki+1.
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Figure 7.8: Key expansion in AES128
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Altering the order in which each column in the next roundkey is computed, the muxes
[28] uses in key expansion can be omitted. This does not only save area, it also eliminates
the relatively long path through the muxes and XOR-gates seen on the top right hand
side of Figure 6.2. Shortening the combinational path in key expansion circuitry prevents
propagation of glitches from the Sbox resulting in lower energy consumption.

A similar approach is used in AES256 mode, keeping the combinational logics needed to
a minimum. An illustration of key expansion with 256 bit keys can be viewed in Appendix
B. The circuitry for key expansion can be viewed on the lower right hand side of Figure 7.1.

7.1.5 Sequencer

The sequencer is the module controlling the datapath and which parts of the key- and
dataregisters that are to be written to at a given time. It consists of a finite state machine,
FSM, and a counter keeping track of the en- or decryption progress. The FSM controls when
the counter is to be incremented as well as the control signals to the datapath, and write
strobes, data we and key we, to the registers. The roundconstants used in key expansion
are also computed in this module. Using the three most significant bits of the counter as a
selectsignal, the roundconstants are calculated using combinational logics. Figure 7.9 shows
the states in the FSM.
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Round complete

Round complete

Main rounds completed

DEC128_INIT_RND DEC128_SHROW
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Start AES128 encryption Start AES128 decryption
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Start AES256 encryption
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DEC256_SHROW1
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Round complete

Round complete Round complete

Main rounds completed

Start AES256 decryption

Figure 7.9: Sequencer, finite state machine

In all states named XXX RNDX and XXX FINAL, the counter is incremented, a round
is complete when the two least significant bits in the counter is {11}. In states named
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XXX SHROWX, the Shiftrows operation is performed and the state machine will only reside
in these states for one cycle at a time. Table B.1 in Appendix B shows an overview of the
states and brief descriptions of the actions taken in each state.

In order to reduce power consumption, clock gating is used on all registers in the design.
Both the state- and counter register are equipped with clock gates. In addition, the signals
key we and data we are used as enable signals for clock gates in the data- and key registers.
The sequencer is shown on the lower right hand side in Figure 7.10.

7.2 AES peripheral module

The AES module is intended to be incorporated in a microcontroller as a peripheral module.
In order to access the data- and keyregister through the system bus, an interface module
has to be made. In this thesis, only the AES core has been implemented, but an example
of an interface module and its features will be presented to give the reader an image of how
the complete AES peripheral module might be organized. Figure 7.10 depicts an example
peripheral, the interface module consists of everything but the AES core and bus.

The control-, data-, and keyregisters would be memory mapped for easy access through
the bus interface. A simple control module handles interaction between the control module
in the AES core (the sequencer) and the control register. The control module would also
handle DMA- and interrupt requests to the system.

AES CORE

SEQUENCER

DATAREGISTER [127:0]

DATAPATH

KEYPATH

CONTROLREGISTER

Control signals

BUS

AES CONTROL

decrypt

done

KEYREGISTER [255:0]

start
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128

256

data_we [3:0]

key_we [7:0]

Figure 7.10: AES module

DMA support

In a microcontroller with low power mode functionality, autonomous AES processing could
lead to a potentially large reduction in energy consumption. If the DMAC could be pro-
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grammed to applying AES on large datablocks without inferring the CPU, the CPU could
reside in a low power mode, saving energy.

Features in the AES module which could simplify DMA operation need to be specialized
for the DMAC which is to be used, but the following examples would most likely ease DMA
operation.

• Key buffering. In AES128, half the key register is used as a buffer.

• Datastart. Writing 128 bits to the data register starts AES processing.

• Xorwrite. When writing to the data register, the new content is XOR’ed with the old.

When on-the-fly key expansion is being used, the contents of the key registers are altered
during AES processing. In order to use the same key multiple times without writing it
through the bus interface each time, one part of the 256 bit key register could be used as a
buffer in AES128. This limits the need for energy consuming data transfers between each
en- or decryption in addition to simplifying DMA operation.

Ability to start AES processing automatically when new data is written to the data
registers is another feature which would ease DMA operation. This eliminates the need for
writing an additional start command to the control register for each data block.

Four of the five modes of AES presented in Section 2.3.6 requires XOR’ing of the new
and old data in the data registers. This could be performed by the CPU, but adding this
functionality in the AES peripheral requires few modifications (32 XOR-gates and a mux in
a 32 bit system) and enables other modes than ECB to be performed autonomously using
DMA.

Figure 7.11 illustrates how AES128 in CBC mode can be performed using DMA. Enabling
datastart, xorwrite, and keybuffering allows encryption in CBC mode to be performed using
only two DMA channels. The AES peripheral would issue a DMA request upon completion
of a datablock and DMA channel two places the ciphertext in a specified memory location.
DMA channel one will then write the new plaintext block to the peripheral where it is
XOR’ed with the ciphertext. When 128 bits of plaintext is written to the data registers,
AES processing automatically begins as datastart is enabled. This is repeated until all
data is encrypted and the DMAC issues a request to the CPU. The other modes can be
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Figure 7.11: AES using DMA in CBC mode

implemented in a similar manner. When AES256 is to be performed, keybuffering can not
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be used and a third DMA channel will need to be configured to updating the keyregister
between each block en- or decryption.

7.3 AES core with 128 bit datapath

AES is an algorithm which easily can be parallelized and the architecture presented in this
thesis needs very few modifications in order to expand the datapath resulting in a significant
speedup. An AES module utilizing a 128-bit datapath was implemented using basically the
same architecture as the one with 32 bit datapath, the difference being that the datapath is
four times as wide. The 128 bit architecture uses 20 Sboxes and four MixColumns modules.
16 Sboxes are used in the main datapath while 4 Sboxes are used in key expansion. The
delay through the datapath remains approximately the same as in the 32 bit version as the
only change in the datapath is duplication of the processing elements. The architecture is
depicted in Figure 7.12.

AddRoundKey
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16 x Sbox

2:1

Shiftrows-1 Shiftrows

data_in[127:0]

128 bit

roundkey[127:0]

3:1

data_out[127:0]

Figure 7.12: 128 bits datapath

Utilizing a 128 bit datapath enables en- and decryption to be performed in 11 cycles in
AES128 mode. This results in a significant increase in throughput, at the cost of increased
area and power consumption. As one round is completed in one cycle, computation of
roundkeys also has to be performed in one cycle. Hence, the simplified key expansion
circuitry presented in Section 7.1.4 can not be used. To enable single cycle key expansion,
the key expansion circuitry presented in Section 6.2 was utilized.
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Chapter 8

Verification and synthesis

8.1 Verification

In this work, initial verification of the AES core has been performed on different levels
throughout the design process. The submodules MixColumns and Sbox were both verified
using randomly generated stimuli in [38]. Golden devices were used to verify correctness.
This verification was performed both on RTL code and netlist.

The different implementations of the AES core went through initial verification using
a Verilog testbench. This testbench performed encryption 100 times, before 100 decryp-
tions. Contents of the data- and keyregisters were compared to precomputed correct values
between each en- and decryption. The precomputed correct values were derived using the
software version of AES presented in Chapter 5.

As the large key and datablock sizes used in AES makes complete verification of the
module practically impossible, known answer tests provided by [14] were used to verify
correctness. For these tests, an interface module for the proposed AES core was provided
by Energy Micro and it was simulated using a model of a complete system including the
ARM Cortex M3 core, bus and AES peripheral module. The tests were written in C code,
and performed the following verification steps:

• Varying key, constant plaintext, 128 bit key size

• Constant key, varying plaintext, 128 bit key size

• Varying key, constant plaintext, 256 bit key size

• Constant key, varying plaintext, 256 bit key size

No errors were found, indicating that the AES core works correctly.

8.2 Synthesis

The AES core, key- and dataregisters were synthesized with the ARM Sage-X 180 nm
standard cell library using Synopsys’ Design Vision. The synthesis tool was configured for
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synthesis with low power consumption as main goal and a target frequency of 32 MHz. The
synthesis scripts can be viewed in Appendix D.3.

As the cell library only was available in the process corners fast and slow, all versions of
the AES core were evaluated using both. Key attributes for the process corners fast, typical,
and slow are summarized in Table 8.1.

Parameter Fast Typical Slow
Supply Voltage 1.98 V 1.8 V 1.62 V
Temperature -40◦C 25◦C 125◦C
Process derating factor 0.793 1 1.27

Table 8.1: Parameters for libraries

The energy figures for the ARM Cortex M3 (used for comparison in this thesis) are also
based on the ARM Sage-X 180nm library, but most likely using the typical process. As an
approximation to what the result would be using typical, Equation 8.1 was used to derive
the energy figures presented in Chapter 9.

Ptypical =
1
2
×
(
Pfast

V 2
fast

+
Pslow

V 2
slow

)
× V 2

typical (8.1)

Equation 8.1 cancels out the power supply factor from simulations done using slow and fast.
After calculating the average between the two, multiplication with the power supply in the
typical case is done resulting in an approximation of what the power figure would be using
the typical library. An approximation of the power consumption in the typical case is done
in order to give a more just comparison with the energy figures from software.

Maximum operating frequencies are based on delay through the critical path when the
slow version of the library was used.

8.3 Power estimation

As the design in this thesis is relatively small, gate-level simulations on netlist was used in
order to estimate power. This approach gives the most accurate result as every node in the
design is included in the estimations. Delays through logic gates was also included making
it possible for power consumed due to glitches to be included in the estimations. Other
approaches mentioned in Section 3.4 could be used in order to speed up simulations, but
as gate-level simulations on a design of this size are completed in a matter of minutes, the
most accurate approach was chosen.

The netlists provided by the synthesis tool was evaluated using a testbench performing
en- or decryption 100 times. The operating frequency was 32 MHz and Mentor Graphics’
Modelsim. Toggle data in the different modes (AES128 and AES256 en- and decryption)
was collected and evaluated using Synopsys’ Power Compiler.
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Figure 8.1: Design flow

Figure 8.1 depicts the flow from RTL code to generation of netlists and power estimates.
The testbenches used in verification and power estimation can be viewed in Appendix D.
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Chapter 9

Evaluation

In this thesis, multiple hardware implementations of AES has been developed in addition
to a software version. Evaluation and comparison of the different implementations will be
made in this chapter.

9.1 Impact of alterations in data- and keypath

In Chapter 7.1.1, three alterations in the data- and keypath were presented and this section
will evaluate the impact of each of these alterations. Figures 9.1 and 9.2, shows power- and
area figures for different AES implementations. The different versions are:

• V1: An implementation of the AES module described in Section 6.2. Support for
AES128.

• V2: Similar to V1, except the InvMixColumns module used on the key has been
removed as described in Section 7.1.1. Support for AES128.

• V3: Similar to V2, but the combinational logics for key expansion has been simplified
as described in Section 7.1.4. Support for AES128.

• V4: The proposed architecture. Similar to V3, but the Sbox and MixColumns have
switched place. Support for AES128.

• V5: The proposed architecture. Similar to V4. Support for AES128 and AES256.

The same versions of the Sbox and MixColumns has been used in all implementations in
order to give a just comparison.

V1, architecture chosen as basis

V1 is an implementation of the architecture proposed in [28]. The data- and keypath were
adapted to the interface of the AES core, presented in Section 7.2.

V2, Removal of InvMixColumns

In implementation V2, the InvMixColumns module applied to the roundkey in decryption
mode and the subsequent mux has been removed. Consequently, the area was reduced by
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approximately 7.5%. Power consumption is also reduced by 4.5% and 3.3% in en- and
decryption mode, respectively. In encryption mode, InvMixColumns is not used on the
roundkey, but the module would still consume power as its inputs switches. A data gate could
prevent this at the cost of additional area and increased power consumption in decryption
mode. The reduction in decryption mode is due to the fact that it is more efficient to perform
InvMixColumns on the data and roundkey combined rather than performing InvMixColumns
separately before combining the results.
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Figure 9.1: Comparison of power consumption

V3, Simplification of key expansion circuitry

As Figure 9.2 indicates, simplification of the key expansion circuitry reduces the area by
7.6% compared with implementation V2. Power consumption in encryption mode was also
reduced by 6.6% compared to implementation V2. In implementation V2, key expansion
in encryption mode is performed in one cycle requiring propagation of results through a
relatively long combinational path. As input to this computation is output from the Sbox,
the glitches produced in the Sbox will also be propagated through the key expansion circuitry
consuming energy along the way.

In decryption mode however, the power consumption is slightly increased (4.4% compared
to V2). This is due to the fact that key expansion in decryption mode does not require
propagation of results in order to compute the next roundkey. Consequently, the glitches
from the Sbox are not propagated through the key expansion circuitry. The increase of
power consumption in decryption mode is due to the fact that the sequencer has to be
slightly more complicated in order to compute the roundkeys correctly when using the
simplified key expansion circuitry.

V4, Swapping MixColumns and Sbox

Implementation V4 is similar to V3, the difference being that MixColumns and the Sbox
has switched place. In [38] it was shown that the Sbox used in this implementation produces
quite a lot of glitches. As these glitches will propagate through the circuitry following the
Sbox, a swap was made in order to minimize the circuitry which these glitches propagate
through. The effect of this swap is power reduction of 3.8% and 4.8% in en- and decryption
mode, compared to implementation V3. As the swap requires an extra mux, the area is
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increased by 1.1% compared to implementation V3. It should be noted that a different
implementation of the Sbox might yield different results due to this swap.
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Figure 9.2: Comparison of area

V5, support for AES256

Figures 9.2 and 9.1 shows that V5 has both higher power- and area consumption compared
to V4. Support for AES256 requires a slight change in the datapath, duplication of the key
expansion circuitry and a more complex sequencer. In addition, extra registers are needed
to store the key. The combination of these alterations leads to increased area, longer critical
path and slightly increased power consumption.

9.2 Evaluation of architectures

In addition to the proposed 32 bit architecture, an architecture utilizing a 128 bit datapath
was implemented. This implementation allows one round to be completed in one cycle
resulting in a reduction in execution time by a factor of five compared to the proposed 32
bit architecture. Table 9.1 summarizes key figures for four different implementations. The
power figures are based on an average between en- and decryption in AES128 mode.

AES w/128 bit datapath

As can be seen in Table 9.1, the implementation with 128 bit datapath is favorable in
terms of energy. This is due to the simplified datapath and control circuitry. Although
this implementation in the most energy friendly, the area and power consumption could
make this architecture impractical for implementation in a microcontroller, depending on
the budgets for area and power. In addition, if power gating is to be implemented, the size
of the power gate would have to be relatively large in order to supply enough power. This
would increase the overhead energy needed to turn on the gate. If power gating is not used,
the increased area would lead to an increase approximately by a factor of two in leakage
power, as leakage power is proportional to area.

Figure 9.3 shows how the different parts of the design contribute to the critical path in
the proposed 32 bit architecture (V4). In the 128 bit architecture, the delay in the sequencer
will be greatly reduced as no selection of data is needed (the whole state is processed each
round). This leads to an increased maximum frequency.
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The throughput of the 128 bit solution in superior compared with the other architec-
tures. Lowering the throughput to match the 32 bit architectures, for instance by means of
frequency- and/or voltage scaling could lead to an even more energy friendly solution. If
this is possible in the microcontroller in which the AES module is to be incorporated, this
solution should be considered if the area budget allows it.

V1 [28] V4 V5 AES w/128 bit
datapath

Area (NAND2 eq.) 6904 5964 7536 16505
Max frequency 50.4 Mhz 53.4 MHz 43.5 MHz 73.4 MHz
Throughput
@32MHz

74.5 Mbps 74.5 Mbps 74.5 Mbps 372.4 Mbps

nJ/datablock,
AES128 encryption

8.69 7.46 8.03 5.63

nJ/datablock,
AES128 decryption

9.26 8.90 9.14 5.97

nJ/datablock,
AES256 encryption

- - 11.02 -

nJ/datablock,
AES256 decryption

- - 12.80 -

Power @32MHz 5.23 mW 4.76 mW 5.00 mW 16.88 mW

Table 9.1: Key figures for AES implementations

Proposed architecture

Table 9.1 contains key figures for two implementations utilizing the proposed datapath (V4
and V5). The difference between the two being that V4 does not support 256 bit keys.

Comparison of the architecture chosen as a basis (V1) and the proposed architecture (V4)
reveals that the alterations resulted in a significant improvement both in area and energy
consumption. In decryption mode, a 3.9% energy reduction is achieved due to the data- and
keypath alterations. In encryption mode however, the reduction is 14.2%. In three of the five
modes of AES presented in Section 2.3.6, only encryption is performed making the energy
savings in encryption mode the only one of relevance in many applications. The alterations
in the data- and keypath yielded an area reduction of 13.6%, reducing production costs and
leakage currents. As discussed in Section 3.1.3, leakage power does not have great impact on
the overall power consumption in older technologies, but as the transistor sizes continue to
decrease, the contribution of leakage currents should be taken seriously. In addition, leakage
currents increase exponentially with the temperature, making its contribution to total power
larger for applications operating at high temperatures.

When AES256 is to be supported (V5), the area obviously increases as the keyregister
needs to be twice as large. Although V5 has a more complex sequencer than V1, the energy
figures in AES128 are still reduced compared to V1. As seen in Table 9.1, V5 consumes
7.6% and 1.3% less energy in AES128 en- and decryption. This is due to improvements in
the data- and keypath in the proposed architecture.

Figures 9.3 and 9.4 show the contribution of the different parts of the datapath to the
delay in implementations V4 and V5, respectively.
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Figure 9.3: Delay through the datapath, V4

As can be observed, the main contributer to increased delay in V5 is the sequencer. The
increased complexity needed to accommodate AES256 results in additional delay, area, and
energy consumption.
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Figure 9.4: Delay through the datapath, V5

Voltage scaling could be used on the proposed architecture to lower energy consumption.
If the scaling increases the delay in such a way that the target frequency is not reached,
techniques like pipelining could be used to decrease the delay and maintain throughput.
When synthesized with the slow version if the ARM Sage-X 180nm library, with 1.62V
voltage supply, the target frequency is reached for both V4 and V5, and no pipelining is
needed.

Cost/Performance balance

In this thesis, the implementations are to be evaluated in terms of energy, area and speed.
Figure 9.5 shows energy per encryption and area for different implementations.

It is clear that the architecture with 128 bit datapath is favorable in terms of energy.
And as can be seen in Table 9.1, it has superior throughput compared to the 32 bit im-
plementations. However, when area consumption is taken into account, one of the 32 bit
implementations may be seen as a better solution. The proposed architecture without
AES256 functionality (V4) has the lowest energy per encryption and area among the 32 bit
architectures, making this the most favorable solution when area is part of the cost function.
If AES256 is needed, the proposed architecture (V5) still yields better energy per encryption
than V1 in AES128 mode.
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Figure 9.5: Area vs energy

9.3 Hardware versus software

A criterion for incorporating an AES hardware peripheral in a microcontroller is that some
sort of performance gain is achieved, for instance increased throughput or decreased pow-
er/energy consumption. Table 9.2 summarizes energy consumption and throughput for the
hardware and software solutions.

Software Hardware Percentage
AES128 encryption, [nJ/128bits] 333 8.03 2.4%
AES128 decryption, [nJ/128bits] 407 9.14 2.2%
AES256 encryption, [nJ/128bits] 469 11.02 2.3%
AES256 decryption, [nJ/128bits] 576 12.80 2.2%
Throughput, [Mbps] 2.95 74.5 2525%

Table 9.2: Software versus hardware

It should be noted that the hardware figures in Table 9.2 does not account for I/O opera-
tions. Energy consumption due to I/O operations are hard to predict and were therefore not
included in the calculations. As mentioned in Section 5.2, energy due to memory accesses
is not included in the software figures either. Table 9.2 shows that the hardware implemen-
tation is superior to software both in terms of energy consumption and throughput. Energy
consumption is reduced by over 97% while throughput is increased bu a factor of 25.

Furthermore, an AES peripheral greatly reduces the amount of memory accesses needed
for AES processing, leading to even larger energy savings when performing AES in a dedi-
cated hardware module. In addition, a microcontroller with DMA support would allow the
CPU to enter a low power mode while the peripheral can process large amount of data,
issuing a interrupt request upon completion, further increasing the possibilities for saving
energy.

Applications involving AES processing would require significantly less energy resulting
in prolonged battery life if an AES peripheral is included in the microcontroller.

58



In Section 3.2 it was said that only 3.54% of the energy consumed during software
execution was spent on useful arithmetics and that this percentage is comparable to what
a dedicated hardware module would use. This concurs with the percentages presented in
Table 9.2.
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Chapter 10

Conclusions

In this thesis, an AES core intended for incorporation in a microcontroller has been devel-
oped. The main design goal has been low energy consumption while maintaining a good
cost/performance balance. An existing solution utilizing a 32 bit datapath was chosen as a
basis. By simplifying and altering the datapath in the existing solution, area was reduced
by 13.6% while energy consumption was lowered with 14.2% and 3.9% in AES128 en- and
decryption, respectively.

The proposed architecture was also modified in order to accommodate 256 bit keys.
This led to an increase in area by 9.2% compared with the existing solution chosen as basis.
Although the area was increased, energy per encryption was still reduced by 7.6% and 1.3%
in AES128 en- and decryption. The AES module with support for both AES128 and AES256
consumes an area equivalent to 7536 NAND2 gates, has a throughput of 74.5 Mbps @ 32
MHz and an average power consumption of 5 mW during operation.

Further parallelization was also explored by implementation of an AES module utilizing a
128 bit datapath. This solution yielded lowest energy per encryption and highest throughput,
but the relatively large area led to a poor cost/performance balance.

A software solution optimized for 32 bit architectures has been implemented, evaluated
on an ARM Cortex M3 MCU, and compared to the hardware solution. The results in this
thesis indicate that performing AES in a dedicated hardware module leads to reduction in
energy per encryption approximately by a factor of 40. In addition to the dramatic reduce
in energy consumption, the throughput was increased by a factor of 25.

Numerical strength reduction was applied to MixColumns both in the software and
hardware implementations allowing the MixColumns procedure to be performed using sig-
nificantly less energy. In software, an 84% reduction in cycle count was attained leading to
significantly reduced energy consumption. In hardware, energy consumption was reduced by
11% and the area was decreased by 10%. When performing the inverse, InvMixColumns, the
energy savings were even larger with 87% and 16% in software and hardware, respectively.

Further work

An AES core has been implemented in this work. In order to incorporate this core in a
microcontroller, an interface module has to be developed. This module would implement
the bus interface in addition to managing the interrupt- and DMA requests. One of the
main challenges when designing the interface module would be to make DMA operation
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in the different AES modes as simple as possible. Initial verification of the core has been
carried out, but additional verification should be performed on the AES peripheral when
the interface module is included.
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Appendix A

Matrices

Matrices used in the Sbox

Inverse affine + mapping to GF (24)



b0
b1
b2
b3
b4
b5
b6
b7


=



0 0 1 0 0 0 1 1
0 1 0 1 0 1 0 0
0 1 1 0 0 1 1 1
0 0 0 0 0 1 0 1
0 0 0 1 1 1 0 0
1 0 0 0 1 1 1 0
1 1 1 1 0 0 1 1
0 1 1 0 0 0 1 1





a0

a1

a2

a3

a4

a5

a6

a7


⊕



1
0
1
1
1
1
1
0


(A.1)

Mapping to GF (28) + affine



a0

a1

a2

a3

a4

a5

a6

a7


=



1 1 1 0 0 0 1 1
1 0 0 0 0 0 0 1
1 0 1 1 1 1 1 0
1 1 1 0 0 0 0 0
1 1 0 0 1 0 0 1
0 0 1 0 0 0 0 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 0 1





b0
b1
b2
b3
b4
b5
b6
b7


⊕



1
1
0
0
0
1
1
0


(A.2)

Matrices used in MixColumns

M−1 −M 
{0C} {08} {0C} {08}
{08} {0C} {08} {0C}
{0C} {08} {0C} {08}
{08} {0C} {08} {0C}

 (A.3)
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(M−1)2 
{05} {00} {04} {00}
{00} {05} {00} {04}
{04} {00} {05} {00}
{00} {04} {00} {05}

 (A.4)
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Figure B.1: Key expansion, AES256. s() substitutes all bytes in a word using the Sboxes
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State Description
IDLE Idle state, wait for start command

ENC128 INIT RND Initial round of AES128 encryption. Addroundkey and Sub-
Bytes are performed

ENC128 SHROW Shiftrows is performed, Sbox is used in keyexpansion.
KEY3 is expanded

ENC128 RND Main rounds of AES128 encryption. MixColumns, Ad-
droundkey and SubBytes are performed.
KEY2 - KEY0 are expanded

ENC128 FINAL Final round of AES128 encryption. Addroundkey is per-
formed.
KEY2 - KEY0 are expanded

DEC128 INIT RND Initial round of AES128 decryption, Addroundkey and in-
verse SubBytes are performed.
KEY0 - KEY2 are expanded.

DEC128 SHROW Inverse Shiftrows is performed, Sbox used in keyexpansion.
KEY3 is expanded

DEC128 RND Main rounds of AES128 decryption. Addroundkey, inverse
MixColumns and inverse SubBytes are performed.
KEY0 - KEY2 are expanded

DEC128 FINAL Final round of AES128 decryption. Addroundkey is per-
formed

ENC256 INIT RND Initial round of AES256 encryption. Addroundkey and Sub-
Bytes are performed

ENC256 SHROW1 Shiftrows is performed, Sbox used in keyexpansion.
KEY7 is expanded

ENC256 RND1 Part of the main round. MixColumns, Addroundkey and
SubBytes are performed. KEY6 - KEY4 are expanded

ENC256 SHROW2 Shiftrows is performed, Sbox used in keyexpansion.
KEY3 is expanded

ENC256 RND2 Part of the main round. MixColumns, Addroundkey and
SubBytes are performed. KEY2 - KEY0 are expanded

ENC256 FINAL Final round of AES256 encryption. Addroundkey is per-
formed

DEC256 INIT RND Initial round of AES256 decryption. Addroundkey and in-
verse SubBytes are performed

DEC256 SHROW1 Inverse Shiftrows is performed, Sbox used in keyexpansion.
KEY4 - KEY7 are expanded

DEC256 RND1 Part of the main round. Addroundkey, inverse MixColumns
and inverse SubBytes are performed

DEC256 SHROW2 Inverse Shiftrows is performed, Sbox used in keyexpansion.
KEY0 - KEY3 are expanded

DEC256 RND2 Part of the main round. Addroundkey, inverse MixColumns
and inverse SubBytes are performed

DEC256 FINAL Final round of AES256 decryption. Addroundkey is per-
formed

Table B.1: Description of states in FSM.
KEY7 - KEY0 represent the different words in the key register



Appendix C

Numerical Strength Reduction

Matrix multiplication used in MixColumns:


y0

y1

y2

y3

 =


{02} {03} {01} {01}
{01} {02} {03} {01}
{01} {01} {02} {03}
{03} {01} {01} {02}



x0

x1

x2

x3

 (C.1)

y can be computed using the following equations:

C01 = ({02} × x1) + x2 + x3

C23 = x0 + x1 + ({02} × x3)
C03 = {02} × x0

C12 = {02} × x2

y0 = C01 + C03 + x1

y1 = C01 + C12 + x0

y2 = C23 + C12 + x3

y3 = C23 + C03 + x2

(C.2)

Straightforward computation requires eight multiplications and sixteen additions, numerical
strength reduction reduces this to four multiplications and twelve additions.

Matrix multiplication used in InvMixColumns:


y0

y1

y2

y3

 =


{05} {00} {04} {00}
{00} {05} {00} {04}
{04} {00} {05} {00}
{00} {04} {00} {05}



x0

x1

x2

x3

 (C.3)
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y can be computed using the following equations:

C02 = {04} × x0 + {04} × x2 = {04} × (x0 + x2)
C13 = {04} × x1 + {04} × x3 = {04} × (x1 + x3)
y0 = C02 + x0

y1 = C13 + x1

y2 = C02 + x2

y3 = C13 + x3

(C.4)

Straightforward computation requires eight multiplications and four additions, numerical
strength reduction reduces this to two multiplications and six additions.



Appendix D

Code

D.1 C code

1 // //////////////////////////////////////////////////////////
2 // Filename : ae s09 2 . h
3 // Date : 22/05/09
4 // Author : Oiv ind Ekelund
5 // De s c r i p t i o n : Header f i l e f o r ae s09 2 . c
6 // //////////////////////////////////////////////////////////
7
8 #i f n d e f AES09
9 #de f i n e AES09

10
11 #de f i n e UINT32 uns igned i n t
12 #de f i n e BYTE uns igned char
13
14 //Macros f o r i s o l a t i n g b y t e s in a word
15 #de f i n e b3 (x ) ( ( x & 0 xf f000000 )>>24)
16 #de f i n e b2 (x ) ( ( x & 0 x00 f f0000 )>>16)
17 #de f i n e b1 (x ) ( ( x & 0 x0000 f f00 )>>8)
18 #de f i n e b0 (x ) (x & 0 x000000 f f )
19
20 vo i d expand key trans (UINT32∗ rkc , UINT32∗ key , i n t aes256 ) ;
21 vo i d encrypt (UINT32∗ rkc , UINT32∗ data , i n t aes256 ) ;
22 vo i d decrypt (UINT32∗ rkc , UINT32∗ data , i n t aes256 ) ;
23
24 vo i d shrow subbytes (UINT32∗ data ) ;
25 vo i d invshrow invsubbytes (UINT32∗ data ) ;
26 vo i d InvMixColumns (UINT32∗ data ) ;
27 vo i d MixColumns (UINT32∗ data ) ;
28
29 #end i f
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1 #in c l u d e <s t d l i b . h>
2 #in c l u d e <s t d i o . h>
3 #in c l u d e ” aes09 2 . h”
4
5 //Sbox , forward
6 cons t BYTE sbox [ 2 5 6 ] = {
7 //0 1 2 3 4 5 6 7 8 9 A B C D E F
8 0x63 , 0x7c , 0x77 , 0x7b , 0xf2 , 0x6b , 0x6f , 0xc5 , 0x30 , 0x01 , 0x67 , 0x2b , 0 xfe , 0xd7 , 0xab , 0x76 , //0
9 0xca , 0x82 , 0xc9 , 0x7d , 0xfa , 0x59 , 0x47 , 0xf0 , 0xad , 0xd4 , 0xa2 , 0xaf , 0x9c , 0xa4 , 0x72 , 0xc0 , //1

10 0xb7 , 0xfd , 0x93 , 0x26 , 0x36 , 0x3f , 0xf7 , 0xcc , 0x34 , 0xa5 , 0xe5 , 0xf1 , 0x71 , 0xd8 , 0x31 , 0x15 , //2
11 0x04 , 0xc7 , 0x23 , 0xc3 , 0x18 , 0x96 , 0x05 , 0x9a , 0x07 , 0x12 , 0x80 , 0xe2 , 0xeb , 0x27 , 0xb2 , 0x75 , //3
12 0x09 , 0x83 , 0x2c , 0x1a , 0x1b , 0x6e , 0x5a , 0xa0 , 0x52 , 0x3b , 0xd6 , 0xb3 , 0x29 , 0xe3 , 0x2f , 0x84 , //4
13 0x53 , 0xd1 , 0x00 , 0xed , 0x20 , 0 xfc , 0xb1 , 0x5b , 0x6a , 0xcb , 0xbe , 0x39 , 0x4a , 0x4c , 0x58 , 0 xcf , //5
14 0xd0 , 0 xef , 0xaa , 0xfb , 0x43 , 0x4d , 0x33 , 0x85 , 0x45 , 0xf9 , 0x02 , 0x7f , 0x50 , 0x3c , 0x9f , 0xa8 , //6
15 0x51 , 0xa3 , 0x40 , 0x8f , 0x92 , 0x9d , 0x38 , 0xf5 , 0xbc , 0xb6 , 0xda , 0x21 , 0x10 , 0 x f f , 0 xf3 , 0xd2 , //7
16 0xcd , 0x0c , 0x13 , 0xec , 0x5f , 0x97 , 0x44 , 0x17 , 0xc4 , 0xa7 , 0x7e , 0x3d , 0x64 , 0x5d , 0x19 , 0x73 , //8
17 0x60 , 0x81 , 0x4f , 0xdc , 0x22 , 0x2a , 0x90 , 0x88 , 0x46 , 0xee , 0xb8 , 0x14 , 0xde , 0x5e , 0x0b , 0xdb , //9
18 0xe0 , 0x32 , 0x3a , 0x0a , 0x49 , 0x06 , 0x24 , 0x5c , 0xc2 , 0xd3 , 0xac , 0x62 , 0x91 , 0x95 , 0xe4 , 0x79 , //A
19 0xe7 , 0xc8 , 0x37 , 0x6d , 0x8d , 0xd5 , 0x4e , 0xa9 , 0x6c , 0x56 , 0xf4 , 0xea , 0x65 , 0x7a , 0xae , 0x08 , //B
20 0xba , 0x78 , 0x25 , 0x2e , 0x1c , 0xa6 , 0xb4 , 0xc6 , 0xe8 , 0xdd , 0x74 , 0x1f , 0x4b , 0xbd , 0x8b , 0x8a , //C
21 0x70 , 0x3e , 0xb5 , 0x66 , 0x48 , 0x03 , 0xf6 , 0x0e , 0x61 , 0x35 , 0x57 , 0xb9 , 0x86 , 0xc1 , 0x1d , 0x9e , //D
22 0xe1 , 0xf8 , 0x98 , 0x11 , 0x69 , 0xd9 , 0x8e , 0x94 , 0x9b , 0x1e , 0x87 , 0xe9 , 0xce , 0x55 , 0x28 , 0xdf , //E
23 0x8c , 0xa1 , 0x89 , 0x0d , 0xbf , 0xe6 , 0x42 , 0x68 , 0x41 , 0x99 , 0x2d , 0x0f , 0xb0 , 0x54 , 0xbb , 0x16 //F
24 } ;
25
26 //Sbox , i n v e r s e
27 cons t BYTE rsbox [ 2 5 6 ] = {
28 0x52 , 0x09 , 0x6a , 0xd5 , 0x30 , 0x36 , 0xa5 , 0x38 , 0xbf , 0x40 , 0xa3 , 0x9e , 0x81 , 0xf3 , 0xd7 , 0xfb ,
29 0x7c , 0xe3 , 0x39 , 0x82 , 0x9b , 0x2f , 0 x f f , 0x87 , 0x34 , 0x8e , 0x43 , 0x44 , 0xc4 , 0xde , 0xe9 , 0xcb ,
30 0x54 , 0x7b , 0x94 , 0x32 , 0xa6 , 0xc2 , 0x23 , 0x3d , 0xee , 0x4c , 0x95 , 0x0b , 0x42 , 0xfa , 0xc3 , 0x4e ,
31 0x08 , 0x2e , 0xa1 , 0x66 , 0x28 , 0xd9 , 0x24 , 0xb2 , 0x76 , 0x5b , 0xa2 , 0x49 , 0x6d , 0x8b , 0xd1 , 0x25 ,
32 0x72 , 0xf8 , 0xf6 , 0x64 , 0x86 , 0x68 , 0x98 , 0x16 , 0xd4 , 0xa4 , 0x5c , 0xcc , 0x5d , 0x65 , 0xb6 , 0x92 ,
33 0x6c , 0x70 , 0x48 , 0x50 , 0xfd , 0xed , 0xb9 , 0xda , 0x5e , 0x15 , 0x46 , 0x57 , 0xa7 , 0x8d , 0x9d , 0x84 ,
34 0x90 , 0xd8 , 0xab , 0x00 , 0x8c , 0xbc , 0xd3 , 0x0a , 0xf7 , 0xe4 , 0x58 , 0x05 , 0xb8 , 0xb3 , 0x45 , 0x06 ,
35 0xd0 , 0x2c , 0x1e , 0x8f , 0xca , 0x3f , 0x0f , 0x02 , 0xc1 , 0xaf , 0xbd , 0x03 , 0x01 , 0x13 , 0x8a , 0x6b ,
36 0x3a , 0x91 , 0x11 , 0x41 , 0x4f , 0x67 , 0xdc , 0xea , 0x97 , 0xf2 , 0 xcf , 0xce , 0xf0 , 0xb4 , 0xe6 , 0x73 ,
37 0x96 , 0xac , 0x74 , 0x22 , 0xe7 , 0xad , 0x35 , 0x85 , 0xe2 , 0xf9 , 0x37 , 0xe8 , 0x1c , 0x75 , 0xdf , 0x6e ,
38 0x47 , 0xf1 , 0x1a , 0x71 , 0x1d , 0x29 , 0xc5 , 0x89 , 0x6f , 0xb7 , 0x62 , 0x0e , 0xaa , 0x18 , 0xbe , 0x1b ,
39 0xfc , 0x56 , 0x3e , 0x4b , 0xc6 , 0xd2 , 0x79 , 0x20 , 0x9a , 0xdb , 0xc0 , 0 xfe , 0x78 , 0xcd , 0x5a , 0xf4 ,
40 0x1f , 0xdd , 0xa8 , 0x33 , 0x88 , 0x07 , 0xc7 , 0x31 , 0xb1 , 0x12 , 0x10 , 0x59 , 0x27 , 0x80 , 0xec , 0x5f ,
41 0x60 , 0x51 , 0x7f , 0xa9 , 0x19 , 0xb5 , 0x4a , 0x0d , 0x2d , 0xe5 , 0x7a , 0x9f , 0x93 , 0xc9 , 0x9c , 0 xef ,
42 0xa0 , 0xe0 , 0x3b , 0x4d , 0xae , 0x2a , 0xf5 , 0xb0 , 0xc8 , 0xeb , 0xbb , 0x3c , 0x83 , 0x53 , 0x99 , 0x61 ,
43 0x17 , 0x2b , 0x04 , 0x7e , 0xba , 0x77 , 0xd6 , 0x26 , 0xe1 , 0x69 , 0x14 , 0x63 , 0x55 , 0x21 , 0x0c , 0x7d
44 } ;
45
46 // Roundconstants
47 cons t BYTE rcon [ 1 0 ] = {0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0x1b , 0x36 } ;
48
49 //Key expans ion f o r t r an spo s ed keys
50 vo i d expand key trans (UINT32∗ rkc , UINT32∗ key , i n t aes256 ){
51 i n t i , Nb Nr1 , Nk ;
52 i n t r cons t =0;
53
54 i f ( aes256 ) {Nb Nr1 = 60 ; Nk = 8;}
55 e l s e {Nb Nr1 = 44 ; Nk = 4;}
56
57 // F i r s t key i s t h e key i t s e l f
58 f o r ( i =0; i < Nk; i++){
59 rkc [ i ] = key [ i ] ;
60 }
61
62 //Remaining roundkeys
63 f o r ( i=Nk ; i < Nb Nr1 ; i++){
64 i f ( i%Nk==0){
65 rkc [ i ] = rkc [ i − Nk] ˆ ( sbox [ b0 ( rkc [ i − Nk + 1 ] ) ] ˆ rcon [ r cons t++])<<24;
66 }
67 e l s e i f ( i%Nk==3){
68 rkc [ i ] = rkc [ i − Nk] ˆ ( sbox [ b0 ( rkc [ i − Nk − 3])])<<24;
69 }
70 e l s e {
71 rkc [ i ] = rkc [ i − Nk] ˆ ( sbox [ b0 ( rkc [ i − Nk + 1])])<<24;
72 }
73 rkc [ i ] ˆ= ( rkc [ i ] & 0 xf f000000 )>>8;
74 rkc [ i ] ˆ= ( rkc [ i ] & 0 x00 f f0000 )>>8;
75 rkc [ i ] ˆ= ( rkc [ i ] & 0 x0000 f f00 )>>8;
76 }
77 }
78
79
80 //Combined s h i f t r o w s and s u b b y t e s
81 vo i d shrow subbytes (UINT32∗ data ){
82 UINT32 d0t , d1t , d2t , d3t ;
83 d0t = data [ 0 ] ;
84 d1t = data [ 1 ] ;
85 d2t = data [ 2 ] ;
86 d3t = data [ 3 ] ;
87
88 data [ 0 ] = ( sbox [ b3 ( d0t )]<<24) | ( sbox [ b2 ( d0t )]<<16) | ( sbox [ b1 ( d0t )]<<8) | sbox [ b0 ( d0t ) ] ;
89 data [ 1 ] = ( sbox [ b2 ( d1t )]<<24) | ( sbox [ b1 ( d1t )]<<16) | ( sbox [ b0 ( d1t )]<<8) | sbox [ b3 ( d1t ) ] ;
90 data [ 2 ] = ( sbox [ b1 ( d2t )]<<24) | ( sbox [ b0 ( d2t )]<<16) | ( sbox [ b3 ( d2t )]<<8) | sbox [ b2 ( d2t ) ] ;



91 data [ 3 ] = ( sbox [ b0 ( d3t )]<<24) | ( sbox [ b3 ( d3t )]<<16) | ( sbox [ b2 ( d3t )]<<8) | sbox [ b1 ( d3t ) ] ;
92 }
93
94
95 //Combined i n v s h i f t r o w s and s u b b y t e s
96 vo i d invshrow invsubbytes (UINT32∗ data ){
97 UINT32 d0t , d1t , d2t , d3t ;
98 d0t = data [ 0 ] ;
99 d1t = data [ 1 ] ;

100 d2t = data [ 2 ] ;
101 d3t = data [ 3 ] ;
102
103 data [ 0 ] = ( rsbox [ b3 ( d0t )]<<24) | ( rsbox [ b2 ( d0t )]<<16) | ( rsbox [ b1 ( d0t )]<<8) | rsbox [ b0 ( d0t ) ] ;
104 data [ 1 ] = ( rsbox [ b0 ( d1t )]<<24) | ( rsbox [ b3 ( d1t )]<<16) | ( rsbox [ b2 ( d1t )]<<8) | rsbox [ b1 ( d1t ) ] ;
105 data [ 2 ] = ( rsbox [ b1 ( d2t )]<<24) | ( rsbox [ b0 ( d2t )]<<16) | ( rsbox [ b3 ( d2t )]<<8) | rsbox [ b2 ( d2t ) ] ;
106 data [ 3 ] = ( rsbox [ b2 ( d3t )]<<24) | ( rsbox [ b1 ( d3t )]<<16) | ( rsbox [ b0 ( d3t )]<<8) | rsbox [ b3 ( d3t ) ] ;
107 }
108
109 // Mu l t i p l i c a t i o n wi th 2 in GF(256) , b y t e by b y t e
110 UINT32 wxtime (UINT32 x){
111 UINT32 tmp ;
112 tmp = x & 0x80808080 ;
113 tmp |= tmp>>1;
114 tmp |= tmp>>2;
115 tmp |= tmp>>4;
116 tmp ˆ= tmp<<1;
117 tmp &= 0x1b1b1b1b ;
118 r e t u rn x<<1 ˆ tmp ;
119 }
120
121 // Mu l t i p l i c a t i o n in GF(256) , 4 MSBs o f y needs to be 0
122 UINT32 wmult (UINT32 x , UINT32 y){
123 UINT32 tmp1 , tmp2 , tmp3 , tmp = 0 ;
124
125 tmp1 = wxtime (x ) ;
126 tmp2 = wxtime ( tmp1 ) ;
127 tmp3 = wxtime ( tmp2 ) ;
128
129 i f (y>>0 & 1) tmp = x ;
130 i f (y>>1 & 1) tmp ˆ= tmp1 ;
131 i f (y>>2 & 1) tmp ˆ= tmp2 ;
132 i f (y>>3 & 1) tmp ˆ= tmp3 ;
133 r e t u rn tmp ;
134 }
135
136 //MixColumns
137 vo i d MixColumns (UINT32∗ data ){
138 /∗
139 //MixColumns wi th NSR
140 UINT32 d0t , d1t , d2t , d3t , tmp1 , tmp2 , tmp3 , tmp4 ;
141 d0t = data [ 0 ] ;
142 d1t = data [ 1 ] ;
143 d2t = data [ 2 ] ;
144 d3t = data [ 3 ] ;
145
146 tmp1 = wxtime ( d1 t ) ˆ d2 t ˆ d3 t ;
147 tmp2 = wxtime ( d3 t ) ˆ d0 t ˆ d1 t ;
148 tmp3 = wxtime ( d0 t ) ;
149 tmp4 = wxtime ( d2 t ) ;
150
151 data [ 0 ] = tmp1 ˆ tmp3 ˆ d1t ;
152 data [ 1 ] = tmp1 ˆ tmp4 ˆ d0t ;
153 data [ 2 ] = tmp2 ˆ tmp4 ˆ d3t ;
154 data [ 3 ] = tmp2 ˆ tmp3 ˆ d2t ; ∗/
155
156 // S t a r i g h t f o rwa r d MixColumns
157 UINT32 d0t , d1t , d2t , d3t ;
158 d0t = data [ 0 ] ;
159 d1t = data [ 1 ] ;
160 d2t = data [ 2 ] ;
161 d3t = data [ 3 ] ;
162
163 data [ 0 ] = wmult ( d0t , 0x02 ) ˆ wmult ( d1t , 0x03 ) ˆ d2t ˆ d3t ;
164 data [ 1 ] = d0t ˆ wmult ( d1t , 0x02 ) ˆ wmult ( d2t , 0x03 ) ˆ d3t ;
165 data [ 2 ] = d0t ˆ d1t ˆ wmult ( d2t , 0x02 ) ˆ wmult ( d3t , 0x03 ) ;
166 data [ 3 ] = wmult ( d0t , 0x03 ) ˆ d1t ˆ d2t ˆ wmult ( d3t , 0x02 ) ;
167 }
168
169
170 // i n v e r s e MixColumns
171 vo i d InvMixColumns (UINT32∗ data ){
172 /∗
173 //MixColumns wi th NSR
174 UINT32 d0t , d1t , d2t , d3t , tmp1 , tmp2 , tmp3 , tmp4 ;
175 d0t = data [ 0 ] ;
176 d1t = data [ 1 ] ;
177 d2t = data [ 2 ] ;
178 d3t = data [ 3 ] ;
179
180 tmp1 = wxtime ( wxtime ( ( d0 t ˆ d2 t ) ) ) ;



181 tmp2 = wxtime ( wxtime ( ( d1 t ˆ d3 t ) ) ) ;
182
183 d0t ˆ= tmp1 ;
184 d1t ˆ= tmp2 ;
185 d2t ˆ= tmp1 ;
186 d3t ˆ= tmp2 ;
187
188 tmp1 = wxtime ( d1 t ) ˆ d2 t ˆ d3 t ;
189 tmp2 = wxtime ( d3 t ) ˆ d0 t ˆ d1 t ;
190 tmp3 = wxtime ( d0 t ) ;
191 tmp4 = wxtime ( d2 t ) ;
192
193 data [ 0 ] = tmp1 ˆ tmp3 ˆ d1t ;
194 data [ 1 ] = tmp1 ˆ tmp4 ˆ d0t ;
195 data [ 2 ] = tmp2 ˆ tmp4 ˆ d3t ;
196 data [ 3 ] = tmp2 ˆ tmp3 ˆ d2t ; ∗/
197
198 // S t r a i g h t f o rwa r d InvMixColumns
199 UINT32 d0t , d1t , d2t , d3t ;
200 d0t = data [ 0 ] ;
201 d1t = data [ 1 ] ;
202 d2t = data [ 2 ] ;
203 d3t = data [ 3 ] ;
204
205 data [ 0 ] = wmult ( d0t , 0x0e ) ˆ wmult ( d1t , 0x0b ) ˆ wmult ( d2t , 0x0d ) ˆ wmult ( d3t , 0x09 ) ;
206 data [ 1 ] = wmult ( d0t , 0x09 ) ˆ wmult ( d1t , 0x0e ) ˆ wmult ( d2t , 0x0b ) ˆ wmult ( d3t , 0x0d ) ;
207 data [ 2 ] = wmult ( d0t , 0x0d ) ˆ wmult ( d1t , 0x09 ) ˆ wmult ( d2t , 0x0e ) ˆ wmult ( d3t , 0x0b ) ;
208 data [ 3 ] = wmult ( d0t , 0x0b ) ˆ wmult ( d1t , 0x0d ) ˆ wmult ( d2t , 0x09 ) ˆ wmult ( d3t , 0x0e ) ;
209 }
210
211 // Encrypt ion , rkc i s roundkeys
212 vo i d encrypt (UINT32∗ rkc , UINT32∗ data , i n t aes256 ){
213 i n t i , Nr ;
214
215 i f ( aes256 ) {Nr = 14;}
216 e l s e {Nr = 10;}
217
218 // F i r s t round :
219 data [ 0 ] ˆ= ∗( rkc ++);
220 data [ 1 ] ˆ= ∗( rkc ++);
221 data [ 2 ] ˆ= ∗( rkc ++);
222 data [ 3 ] ˆ= ∗( rkc ++);
223
224 //Remaining rounds−1
225 f o r ( i =1; i<Nr ; i++){
226 shrow subbytes ( data ) ;
227
228 MixColumns ( data ) ;
229
230 //Addroundkey
231 data [ 0 ] ˆ= ∗( rkc ++);
232 data [ 1 ] ˆ= ∗( rkc ++);
233 data [ 2 ] ˆ= ∗( rkc ++);
234 data [ 3 ] ˆ= ∗( rkc ++);
235 }
236
237 // F ina l round
238 shrow subbytes ( data ) ;
239
240 //Addroundkey
241 data [ 0 ] ˆ= ∗( rkc ++);
242 data [ 1 ] ˆ= ∗( rkc ++);
243 data [ 2 ] ˆ= ∗( rkc ++);
244 data [ 3 ] ˆ= ∗( rkc ++);
245 }
246
247
248
249 // Decrypt ion , rkc i s roundkeys
250 vo i d decrypt (UINT32∗ rkc , UINT32∗ data , i n t aes256 ){
251 i n t i , Nr ;
252 UINT32∗ pKey ;
253
254 i f ( aes256 ) {Nr = 14;}
255 e l s e {Nr = 10;}
256 pKey = rkc + 4∗(Nr + 1) − 1 ;
257
258 // F i r s t round :
259 data [ 3 ] ˆ= ∗(pKey −−);
260 data [ 2 ] ˆ= ∗(pKey −−);
261 data [ 1 ] ˆ= ∗(pKey −−);
262 data [ 0 ] ˆ= ∗(pKey −−);
263
264 //Remaining rounds−1
265 f o r ( i=Nr−1; i >0; i−−){
266 invshrow invsubbytes ( data ) ;
267
268 //Addroundkey
269 data [ 3 ] ˆ= ∗(pKey −−);
270 data [ 2 ] ˆ= ∗(pKey −−);



271 data [ 1 ] ˆ= ∗(pKey −−);
272 data [ 0 ] ˆ= ∗(pKey −−);
273
274 InvMixColumns ( data ) ;
275 }
276
277 // F ina l round
278 invshrow invsubbytes ( data ) ;
279
280 //Addroundkey
281 data [ 3 ] ˆ= ∗(pKey −−);
282 data [ 2 ] ˆ= ∗(pKey −−);
283 data [ 1 ] ˆ= ∗(pKey −−);
284 data [ 0 ] ˆ= ∗(pKey −−);
285 }



D.2 HDL testbenches

1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 −−
3 −− T i t l e : a e s t b
4 −− Creator : o i v i n d Ekelund
5 −− Date : 25 . 03 . 09
6 −−
7 −− Des c r i p t i on : Tes tbench f o r power e s t ima t i on
8 −−
9 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10
11 l i b r a r y i e e e ;
12 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
13 use i e e e . s t d l o g i c a r i t h . a l l ;
14
15 e n t i t y ae s tb i s
16 end ae s tb ;
17
18
19 a r c h i t e c t u r e tes tbench o f ae s tb i s
20
21 con s t an t PERIOD: time := 31 ns ;
22 con s t an t NR ROUNDS: i n t e g e r := 100 ;
23
24
25 s i g n a l clk , c lk en , r e s e t n , aes256 , s ta r t , decrypt , stop , keybufen : s t d l o g i c := ’ 0 ’ ;
26 s i g n a l done , running : s t d l o g i c ;
27
28 component a e s t o p l e v e l
29 por t ( c lk , c lk en , r e s e t n , aes256 , s ta r t , decrypt , stop , keybufen : in
30 s t d l o g i c ; done , running : out s t d l o g i c ) ;
31 end component ;
32
33
34 b e g in
35
36 −−AES t o p l e v e l module
37 u a e s t o p l e v e l : a e s t o p l e v e l
38 por t map(
39 c lk => clk ,
40 c l k en => c lk en ,
41 r e s e t n => r e s e t n ,
42 aes256 => aes256 ,
43 s t a r t => s ta r t ,
44 decrypt => decrypt ,
45 stop => stop ,
46 keybufen => keybufen ,
47 done => done ,
48 running => running
49 ) ;
50
51
52 c lock : p ro c e s s i s
53 b e g in
54 wai t f o r PERIOD/2 ;
55 c lk <= ’1 ’ ;
56 wai t f o r PERIOD/2 ;
57 c lk <= ’0 ’ ;
58 end p ro c e s s c l ock ;
59
60 r e s e t : p ro c e s s i s
61 b e g in
62 wai t f o r PERIOD;
63 r e s e t n <= ’1 ’ ;
64 wai t ;
65 end p ro c e s s r e s e t ;
66
67 s t imu l i : p ro c e s s i s
68 b e g in
69 c l k en <= ’1 ’ ;
70
71 aes256 <= ’0 ’ ;
72 decrypt <= ’0 ’ ;
73 keybufen <= ’0 ’ ;
74
75 −−Wait f o r r e s e t
76 wai t f o r 2∗PERIOD;
77
78 −−Main loop , do ing NR ROUNDS enc r y p t i o n s
79 f o r i in 0 t o NR ROUNDS−1 l o op
80
81 −−S t a r t
82 −−s t a r t <= ’1 ’ ;
83 wai t f o r PERIOD;
84 s t a r t <= ’0 ’ ;
85
86 −−Wait f o r comp l e t i on
87 wai t u n t i l done = ’ 1 ’ ;



88 wai t f o r PERIOD;
89
90 end l oop ;
91
92 wai t ;
93 end p ro c e s s s t imu l i ;
94
95 end tes tbench ;
96
97
98 CONFIGURATION a e s c o n f i g OF ae s tb IS
99 f o r tes tbench

100 f o r u a e s t o p l e v e l : a e s t o p l e v e l
101 use e n t i t y work . a e s t o p l e v e l ( s yn v e r i l o g ) ;
102 end f o r ;
103 end f o r ;
104 END a e s c o n f i g ;



1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 //
3 // T i t l e : a e s t e s t b e n c h
4 // Creator : Oiv ind Ekelund
5 // Date : 23 . 05 . 09
6 //
7 // De s c r i p t i o n : V e r i f i c a t i o n o f AES128 en− and d e c r y p t i on
8 // I n i t i a l da ta and key i s 0
9 // Encryp t ion i s per formed NR ROUND t imes

10 // Decryp t ion i s per formed NR ROUND t imes
11 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
12
13
14 module ae s t e s tbench ( ) ;
15
16 parameter PERIOD = 10 ;
17 parameter NR ROUNDS = 100 ;
18
19 reg clk , c lk en , r e s e t n , aes256 , keybufen , decrypt , s ta r t , stop ;
20 wire done , running ;
21
22 reg [ 1 2 7 : 0 ] goldendataenc [ 0 : NR ROUNDS ] ;
23 reg [ 1 2 7 : 0 ] goldenkeyenc [ 0 : NR ROUNDS ] ;
24
25 i n t e g e r i =0;
26
27 // Clock
28 a lways #(PERIOD/2) b e g in
29 c lk = 1 ;
30 #(PERIOD/2)
31 c lk = 0 ;
32 end
33
34 // Reset and c l o c k enab l e
35 i n i t i a l b e g i n
36 $readmemh( ” goldendataenc . txt ” , goldendataenc ) ;
37 $readmemh( ” goldenkeyenc . txt ” , goldenkeyenc ) ;
38 c l k en = 1 ;
39 #PERIOD
40 r e s e t n = 0 ;
41 #PERIOD
42 r e s e t n = 1 ;
43 end
44
45 // T e s t s t imu l i
46 i n i t i a l b e g i n
47 s t a r t = 0 ;
48 aes256 = 0 ;
49 decrypt = 0 ;
50 keybufen = 0 ;
51 stop = 0 ;
52 end
53
54 a lways @ ( negedge done ) b e g in
55 i f ( ! decrypt ) b e g in
56 // S t a r t v e r i f i c a t i o n AES128 enc r yp t i on
57 i f ( i==0) b e g in // F i r s t round o f s imu l a t i o n
58 i = i +1;
59 #(3∗PERIOD)
60 s t a r t = 1 ;
61 #(2∗PERIOD)
62 s t a r t = 0 ;
63 end
64 e l s e i f ( i<(NR ROUNDS) && i >0) b e g in //Check r e s u l t s
65 i f ( u a e s t o p l e v e l . da ta in != goldendataenc [ i ] )
66 $ d i s p l a y ( ”∗∗∗ERROR∗∗∗ , data i s : %h , should be : %h” , u a e s t o p l e v e l . data in , goldendataenc [ i ] ) ;
67 i f ( u a e s t o p l e v e l . key in != goldenkeyenc [ i ] )
68 $ d i s p l a y ( ”∗∗∗ERROR∗∗∗ , key i s : %h , should be : %h” , u a e s t o p l e v e l . key in , goldenkeyenc [ i ] ) ;
69
70 #(1∗PERIOD)
71 s t a r t = 1 ;
72 #(2∗PERIOD)
73 s t a r t = 0 ;
74 i = i +1;
75 end
76 e l s e b e g in //Check l a s t en c r yp t i on r e s u l t
77 i f ( u a e s t o p l e v e l . da ta in != goldendataenc [ i ] )
78 $ d i s p l a y ( ”∗∗∗ERROR∗∗∗ , data i s : %h , should be : %h” , u a e s t o p l e v e l . data in , goldendataenc [ i ] ) ;
79 i f ( u a e s t o p l e v e l . key in != goldenkeyenc [ i ] )
80 $ d i s p l a y ( ”∗∗∗ERROR∗∗∗ , key i s : %h , should be : %h” , u a e s t o p l e v e l . key in , goldenkeyenc [ i ] ) ;
81
82 $ d i s p l a y ( ”∗∗∗VERIFICATION, AES128 ENCRYPTION COMPLETE∗∗∗” ) ;
83
84 // S t a r t v e r i f i c a t i o n AES128 d e c r y p t i on
85 decrypt = 1 ;
86 i = i −1;
87 #(1∗PERIOD)
88 s t a r t = 1 ;
89 #(2∗PERIOD)
90 s t a r t = 0 ;



91 end
92
93 end
94
95 e l s e i f ( decrypt ) b e g in
96 i f ( i==0) b e g in //Check l a s t r e s u l t
97 i f ( u a e s t o p l e v e l . da ta in != goldendataenc [ i ] )
98 $ d i s p l a y ( ”∗∗∗ERROR∗∗∗ , data i s : %h , should be : %h” , u a e s t o p l e v e l . data in , goldendataenc [ i ] ) ;
99 i f ( u a e s t o p l e v e l . key in != goldenkeyenc [ i ] )

100 $ d i s p l a y ( ”∗∗∗ERROR∗∗∗ , key i s : %h , should be : %h” , u a e s t o p l e v e l . key in , goldenkeyenc [ i ] ) ;
101
102 $ d i s p l a y ( ”∗∗∗VERIFICATION, AES128 DECRYPTION COMPLETE∗∗∗” ) ;
103
104 end
105 e l s e i f ( i<(NR ROUNDS) && i >0) b e g in //Check r e s u l t s
106 i f ( u a e s t o p l e v e l . da ta in != goldendataenc [ i ] )
107 $ d i s p l a y ( ”∗∗∗ERROR∗∗∗ , data i s : %h , should be : %h” , u a e s t o p l e v e l . data in , goldendataenc [ i ] ) ;
108 i f ( u a e s t o p l e v e l . key in != goldenkeyenc [ i ] )
109 $ d i s p l a y ( ”∗∗∗ERROR∗∗∗ , key i s : %h , should be : %h” , u a e s t o p l e v e l . key in , goldenkeyenc [ i ] ) ;
110 #(1∗PERIOD)
111 s t a r t = 1 ;
112 #(2∗PERIOD)
113 s t a r t = 0 ;
114 i = i −1;
115 end
116 end
117 end
118
119 //DUT
120 a e s t o p l e v e l u a e s t o p l e v e l (
121 . c l k ( c l k ) ,
122 . r e s e t n ( r e s e t n ) ,
123 . c l k en ( c l k en ) ,
124 . s t a r t ( s t a r t ) ,
125 . stop ( stop ) ,
126 . decrypt ( decrypt ) ,
127 . keybufen ( keybufen ) ,
128 . aes256 ( aes256 ) ,
129
130 . done ( done ) ,
131 . running ( running )
132 ) ;
133
134 endmodule



D.3 Synthesis- and simulation scripts

1 ############################################################
2 # Fi lename: s y n t h . t c l
3 # Date : 22/05/09
4 # Author : Oiv ind Ekelund
5 # De s c r i p t i o n : S yn t h e s i s s c r i p t o p t im i z i n g f o r low power
6 # wi th a 32MHz t a r g e t f r e q u e n c y .
7 # Clock g a t i n g i s a l s o per formed
8 ############################################################
9

10 #Analyze t h e d e s i n g p r i r o r to running t h i s s c r i p t
11
12 #Elabo ra t e and l i n k
13 e l abo ra t e a e s t o p l e v e l −arch i tec ture v e r i l o g − l ibrary DEFAULT
14 l i n k
15 i n s e r t c l o c k g a t i n g −global
16
17 #Optimize f o r low power
18 set max dynamic power 0
19 se t max tota l power 0 ””
20
21 #Spe c i f y c l o c k
22 c r e a t e c l o c k c lk −name c l o c k −period 31
23
24 #Compile
25 u p l e v e l #0 compi l e −map ef for t h i gh − a r e a e f f o r t h i gh − incrementa l mapping
26
27 #Change names
28 change names −rules vhdl −hierarchy
29
30 #Check d e s i gn
31 check des ign

1 ############################################################
2 # Fi lename: runs im.do
3 # Date : 22/05/09
4 # Author : Oiv ind Ekelund
5 # De s c r i p t i o n : S imu la t i on s c r i p t , running t h e t e s t b e n c h
6 # con f i g u r a t i o n a e s c o n f i g f o r 170 u s , l o g g i n g
7 # a c t i v i t y in u a e s t o p l e v e l and r e p o r t i n g
8 # to a . v c d .
9 ############################################################

10
11 vsim −nogl itch −t f s −v i ta l2 .2b work . a e s c on f i g
12 vcd f i l e a.vcd
13 vcd add −r s im : a e s tb / u a e s t o p l e v e l /∗
14 run 170000 ns
15 vcd checkpoint
16 qu i t −sim


