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Problem Description

The classical front-end analysis in speech recognition is a spectral analysis which produces
features vectors consisting of mel-frequency cepstral coefficients [MFCC). MFCC are based on a
standard power spectrum estimate which is first subjected to a log-based transform of the
frequency axis (the mel transform), and then decorrelated using a modified discrete cosine
transform.

An interesting issue is how much information relevant to speech recognition that is lost in this
analysis. Thus, this project is concerned with synthesizing speech from different parametric
representations (e.g. MFCC and linear prediction coefficients) and to conduct an investigation on
the intelligibility of the synthesized speech as compared to natural speech.
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ABSTRACT

The classical front end analysis in speech recognition is a spectral analysis which
parameterizes the speech signal into feature vectors; the most popular set of them is the
Mel Frequency Cepstral Coefficients (MFCC). They are based on a standard power
spectrum estimate which is first subjected to a log-based transform of the frequency axis
(mel- frequency scale), and then decorrelated by using a modified discrete cosine transform.

Following a focused introduction on speech production, perception and analysis, this paper
gives a study of the implementation of a speech generative model; whereby the speech is
synthesized and recovered back from its MFCC representations. The work has been
developed into two steps: first, the computation of the MFCC vectors from the source
speech files by using HTK Software; and second, the implementation of the generative
model in itself, which, actually, represents the conversion chain from HTK-generated
MFCC vectors to speech reconstruction.

In order to know the goodness of the speech coding into feature vectors and to evaluate
the generative model, the spectral distance between the original speech signal and the one
produced from the MFCC vectors has been computed. For that, spectral models based on
Linear Prediction Coding (LPC) analysis have been used. During the implementation of the
generative model some results have been obtained in terms of the reconstruction of the
spectral representation and the quality of the synthesized speech.
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This Master Thesis was developed at the Departmeint Electronics and
Telecommunications (Faculty of Information TechmypoMathematics and Electrical
Engineering) at NTNU University (Trondheim, Norwayjom February 2009 to July
2009. The Master Thesis was callggeech Analysis for Automatic Speech Recognition

This Master Thesis is connected to the researcjeqirSIRKUS. The aims of
SIRKUS project is to investigate structures ancdatetries for automatic speech
recognition; both in terms of what type of linguesiinits it uses as the basic unit (today,
phonemes, which are perceptually defined, are usddgh acoustic properties to look
for in the speech waveform, or which classifieus® (Hidden Markov Models (HMM)
are predominantly used today).

The classical front end analysis in speech retimgnis a spectral analysis
which parameterizes the speech signal into feateotors. The most popular set of
feature vectors used in recognition systems isgvbeFrequency Cepstral Coefficients
(MFCC). They are based on a standard power spe@stimate which is first subjected
to a log-based transform of the frequency axigstlts in a spectral representation on a
perceptually frequency scale, based on the respoindee human perception system.
After, they are decorrelated by using a modifiestite cosine transform, which allows
an energy compaction in its lower coefficients.

An interesting issue is how much relevant infoioratrelated to speech
recognition is lost in this analysis. Thus, this d#a& Thesis is concerned with
synthesizing speech from different parametric regméations (MFCCs and Linear
Prediction coefficients), and to conduct an inwggion on the intelligibility of the
synthesized speech as compared to natural speech.

According to this aim, the five principal objed of the Master Thesis are:

1. Study speech analysis processing and theories lmsageech production
and speech perception.

2. Investigate on the implementation of MFCC compotatin the Hidden
Markov Toolkit (HTK), a standard research and depgient tool for HMM-
based speech recognition.

3. Develop a speech generative model based on thesmnegpitation of the
conversion chain from HTK-generated MFCC repreganta to speech
reconstruction.

4. Employ objective measures for an intermediate etadn of the generative
model.

5. Present a subjective interpretation of the intadllgy of the synthesized
speech.

! More informationwww.iet.ntnu.no/projects/sirkus
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All investigation works crash often with certaimitations which avoid a deeply
study of the results obtained. In this Master Téiehie main limitation has been the
ignorance of the characteristics of source speatdwhich could make the recognition
performance more difficult. In the other hand, #hgdio system used for listening
synthesized speech was the audio system of a siogoienercial laptop; so, slight
differences within synthesized speech could natbeetified.

To carry out of this Master Thesis, the reportIb@sn divided into five sections
briefly described below.

The first one, in which the reader is, introduttess Master Thesis, its motivation
and its objectives and limitations.

The documentation of this report starts in theosdcsection. It is a presentation
of the theoretical concepts in speech producti@nception and analysis. Thus, this
theoretical section pretends to give an essengiekdground about the speech analysis
involved in recognition tasks, in order to undemstahe basic principles in which the
procedures and implementations carried out duhiggNlaster Thesis are based on.

The implementation of the speech generative misd®tplained in section three.
This includes an investigation on the implementatad the MFCC computation in
HTK, and a thorough explanation of the implemenptatof the generative mode,
making relationships with the based theories.

Later, the results extracted during the implenteraof the generative model
are analyzed in section four. Also, an objectiveasuee for intermediate evaluation of
the generative model is performed.

Finally, the conclusions are drawn in section five

1. Introduction 3
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The theoretical section pretends to give an esdebtckground about the speech
analysis involved in recognition tasks, in orderutederstand the basic principles in
which the procedures and implementations carrigddoung this Master Thesis are
based on.

The theoretical section is divided into three sedi In the first one, the speech
signal and its characteristics are described; dversd one is an introduction to front-
end analysis for automatic speech recognition, e/ilee important feature vectors of
speech signal are explained; and the third is @noagh of distance measures based on
spectral measures for speech processing.

2.1. THE SPEECH SIGNAL

A brief introduction to how the speech signal isguced and perceived by the human
system can be regarded as a starting point in dalego into the field of speech
recognition.

The process from human speech production to huspeech perception,
between the speaker and the listener, is showiguré-1.

SPEAKER
Vocal Communica-  Auditory LISTENER

tion path system Brain

I

Brain svstizm%
T o
SR ﬁ ‘
bR
e
:j-..-l:‘

Ii,:.‘;‘-lannc:-‘;ms _"-'.‘;"‘I j[ .
My ' oY il e
[+4yw  Words b ;—-;-I'. '”\f'
T L ) e \

= 14 TR

S L el ; ) J/,/__L_'-_',;

M/

—
P

Figure 1: Human speech communication (Holmes & H@n2001)

Speech recognition systems try to establish alamiityi to the human speech
communication system. A source-channel model fep@ech recognition system is
illustrated in Figure 2, proposed by Huang et200(Q).

Communication Channel

-----------------------------------------------

Text | Speech Signal : Speech a
Generator : | Generator Processing |: Decoder ;

Speech Recognizer

Figure 2: Source-channel model for a speech retiogrsystem (Huang et al., 2001)
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The different elements from the human commurocaesystem are related below
to the modules or components of the source-chamoelel, giving a short explication
of how human speech communication and speech regmrgaystems are performed.

The aim of human speech communication is to teansfeas. They are made
within the speaker’s brain and then, the sourcedwsmquencéV is performed to be
delivered through her/higxt generatarThe human vocal system, which is modeled by
the speech generataromponent, turns the source into the speech swaakform that
Is transferred via air (a noigommunication channeto the listener, being able to be
affected by external noise sources. When the aicalstignal is perceived by the
human auditory system, the listener’'s brain stagnscessing this waveform to
understand its content and then, the communicatiae been completed. This
perception process is modeled by thignal processingand thespeech decoder
components of thepeech recognizewhose aim igo process andecode the acoustic
signal X into a word sequenck, which is hopefully close to the original word
sequence WHuang et al., 2001).

Thus, speech production and speech perceptiob&aeen as inverse processes
in the speech recognition system.

2.1.1. Speech Production

As said before, it is important to know and to usteEnd how humans generate the
speech. Since a speech generative model, in adddigpeech production knowledge,
can itself form a useful basis of speech synthegsem. In this way, a schematic
diagram of the human speech production apparailisssated in Figure 3.

_ oy

Figure 3: Human speech production apparatus

2. Theoretical Concepts for Speech Analysis 6



Speech Analysis for Automatic Speech Recognition

Speech is produced by air-pressure waves emanéimg the mouth and the
nostrils of a speakeas it is defined by Huang et al. (2001).

The main organs involved into the speech prodocpmocess are the lungs,
larynx, nose and various parts of the mouth. Theeapelled from the lungs is
modulated in different ways to produce the acoystiwer in the audio frequency range.
After, the rest of the vocal organs, such as vooalds, vocal tract, nasal cavity, tongue,
and lips, modify the properties of the resultingirsd to produce the speech waveform
signal. These properties can be principally deteatei thanks to the acoustical
resonance process performed into the vocal trdu. rilain resonant modes are known
as formants being the two lowest frequency formants the miogbortant ones in
determining the phonetics properties of speechdmun

This resonant system can be viewed as a filter that ehdlpe spectrum of the
source sound to produce speegtiolmes & Holmes, 2001). This is modulated by
source-filter models of speech production

Source-filter Models of Speech Production

The source-filter model consists of an excitatiggnal that models the sound source,
e(n); passing through all-pole fileh(n); to produce the speech signal, s(n); ascane
see in Figure 4.

e[n] —— h[n] [———>s[n]

Figure 4: Basic source-filter of speech signal

The speech sounds can be presented in three states
« Silence — No speech is produced.

* Unvoiced sounds — Vocal cords are not vibratingulteng in no periodic
random speech waveform.

* Voiced sounds — Vocal cords are tensed and vilygaariodically, resulting
in a quasi-perioditspeech waveform.

2 An all-pole filter is a filter whose transfer fuian contains only poles (roots of the denominator)
without zeros (roots of the numerator).

% Quasi-periodic speech waveform means that thecepeaveform can be seen as periodic over a short-
time period (5-100 ms), where the signal is assust&tibnary.

2. Theoretical Concepts for Speech Analysis 7
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For voiced sounds, the excitation signal is anuisg train convolved with the
glottal pulse (see Figure 5); while for unvoicediisads, the excitation signal is random
noise. Both of them with a gain factor G in order dontrol the intensity of the

excitation.
| | | | | Glﬂga[llnp]ulse u.,:[n]

Impulse trzin

Figure 5: Glottal excitation model for voiced sound

For a complete source-filter model, as is showirigure 6, the glottal pulse,
vocal tract and radiation have to be individuallpdeled as linear filter (Fant, 1960).
The transfer function, V(z), represents the resoesf the vocal tract, and the transfer
function, R(z), models the air pressure at the lips

P
Pitch period G
Voiced Impulse L G(z)
sounds Train Glottal
filter ug[n] _
Viz) R(z)
— Vocal — Radiation
tract filter filter s[n]
Unvoiced Random Speech
sounds noise signal
G

Figure 6: General discrete-time model of speeckyction

Combining G(z), V(z) and R(z), a single all-poliéef, H(z), is obtained,
resulting in a new simple diagram shown in Figure 7

i Vaiced

sounds | | | t —.
e[n]‘t - O\_'_ H(z) > S
sounds w‘% —@

Figure 7: Source-filter model for speech production
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The transfer function of H(z) is given by Eq. (Md@mmone et al., 1996), where
p is the filter's order. An enough number of paes a good approximation for speech
signals.

H(z) =G(=2)V(2)R(2) = ¢ (1)

—YP q. 770
1 =1 @i Z

With this transfer function, a difference equatimm synthesizing the speech
samples s(n) can be proposed (Mammone et al., 1996)

p

s[n] = Z a;is(n —i) + Ge|[n] (2)

i=1

2.1.2. Speech Perception

Without going into any further details, this sentjost presents the auditory perception
system and emphasizes its non-linear frequencyonsgp Anymore details are not
necessary for the understanding of this Masteri$hes

The auditory perception system can be split in twajor components: the
peripheral auditory system (ears), and the auditeryous system (brain). The received
acoustic pressure signal is processed by periplarmditory system into two steps:
firstly, it is transformed into a mechanical vibeet pattern on the basilar membrane;
and then, is represented by a series of pulseg toabsmitted by the auditory nerve.
Finally, the auditory nervous system is responsitide extracting the perceptual
information.

The human ear, as shown in Figure 8, is made upreé parts: the outer ear,
the middle ear, and the inner ear. The outer easists of the external visible part and
the external auditory canal is where sound waveetsa The length of the auditory
canal is such that performs as an acoustic resowaitwse principal effect is to increase
the ear’'s sensitivity to sounds in the 3-4 KHz mn@/hen the sound arrives at the
eardrum, it vibrates at the same frequency asnbeming sound pressure wave. The
vibrations are transmitted through the middle €Ene main structure of the inner ear is
the cochlea which communicates with the auditomv@éedriving a representation of
sound to the brain. The cochlea can be seen éegrabiank,whose outputs are ordered
by location, so that a frequency-to-place transfation is accomplished. The filters
closest to the cochlear base respond to the hifleguencies, and those closest to its
apex respond to the low@ruang et al., 2001).

2. Theoretical Concepts for Speech Analysis 9
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X Semicircular
'8 canals.

Cochlea

i r?-— Auditory nerve

o3

. Auditory canal =

' ES—

Figure 8: Peripheral auditory system

The main issue to model for one speech generatigdel is the nonlinear
character of the human hearing system. That ispglyghoacoustic experimental works
have been undertaken to find frequency scalextdramodel the natural response of the
human perceptual system.

Fletcher (1940) introduced for the first time teem of critical bands pointing
the existence of them in the cochlear responseceSinat moment, several different
experiments have been carried out to investigaitecair band phenomena and to
estimate critical bandwidth. There are two outsitagatlasses of critical band scales:
Bark frequency scale and Mel frequency scale. Metiency scale has been widely
used in modern speech recognition system.

Mel Scale

Mel-frequency scale is a perceptually motivatedles¢®tevens & Volkman, 1940)
which is linear below 1 kHz, and logarithm abovathwequal numbers of samples
below and above 1 kHz. It represetie pitcH (perceived frequency) of a tone as a
function of its acoustics frequenfyolmes, 2001).

One mel is defined as one thousandth of the pitehlokHz tondHuang et al.,
2001). Mel-scale frequency can be approximate hy(&q

B(f) = 2595 logio(1 + 7/ /00) 3)

“ Pitch, in psychophysics, is the perceptual corestdi the frequency of a sound wave. It medms pitch
of a complex sound is related to its fundamentddiency, but the pitch is a subjective attribifelmes
& Holmes, 2001).

2. Theoretical Concepts for Speech Analysis 10
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This non-linear transformation can be seen in dgaurlt shows that equally
spaced values on mel-frequency scale correspombrieequally spaced frequencies.
This is the inverse function of the Eq. (3) whislgiven by Eq. (4):

f =700 (10""2595 — 1) (4)

3000

2500

2000

1500

Mel Frequency

1000

500

0 \ | \ |
0 1000 2000 3000 4000 5000 6000 7000 8000

Linear Frequency (Hz)

Figure 9: Mel-to-Linear Frequency scale transfoiamat

So, it is hoped that mel scale more closely motledssensitivity of the human
ear than a purely linear scale, and provides feaigr discriminatory capability between
speech segments.

2.1.3. Speech Signal Representation

Although some information about phonetic content ba extracted from waveforms
plots, this is not useful in order to illustratestproperties of speech that are most
important to the general sound quality or to petiogpof phonetic detail.

The large significance of resonances and theie twariations, responsible for
carrying the phonetic information, makes necessafyave some means of displaying
these features. The short-time spectrum of theakignmore suitable for displaying
such features.
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Short-time Fourier Analysis

The short-time spectrum of the signal is the magigitof a Fourier Transform of the
waveform after it has been multiplied by a time daw function of appropriate
duration (Holmes & Holmes, 2001).

Thus, the short-time analysis is based on therdposition of the speech signal
into short speech sequences, called frames, amgsenaf each one independently. For
analyzing frames, the behavior (periodicity or edike appearance) of the signal in
each one of them has to be stationary.

The width and the shape of the time window is ofghe most important
parameter in short-time Fourier analysis. In tigaifebelow, the short-time spectrum of
voiced speech obtained with rectangular window "Hadiming window of 25ms and
10ms can be compared.
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Figure 10: (a) Time signal and its Short-time speuntobtained with: (b) 10ms rectangular window; (c)
25ms rectangular window; (d) 10 ms Hamming windangl () 25ms Hamming window.
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One can conclude that for better stationary reégwiy rectangular window is
more appropriately; however, the Hamming windowerdf a better frequency
resolution. In practice, window lengths are arotdto 30 ms and the Hamming
window is chosen. This choice is a compromise betwthe stationary assumption
within each frame and the frequency resolution.

An efficient representation of the speech sigradeol on short-time Fourier
analysis is spectrograms. A spectrogram of a tilgeas is a special two-dimensional
representation that displays time in the horizoaxad and frequency in the vertical axis.
Then, in order to indicate the energy in each tiregliency point, a grey scale is
typically used, in which white represents low enegrnd black, high energy (Huang et
al., 2001). Sometimes, spectrograms can be refegséy a color scale; as Figure
11, where darkest blue parts represent low enargyJightest red parts, high energy.

(a)
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2000
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Figure 11: Spectrogram (a) of the speech waveftniNilsson & Ejnarsson, 2002)

Parametric Representation of the Spectral Analysis

When speech is produced in the sense of a timengasygnal, its characteristics can be
represented via a parameterization of the spemttality.

This speech representation is usedfriopnt-end Automatic Speech Recognition
systemswhere the frame sequence is converted into areaectors that contains the
relevant speech information.
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The main feature vectors are LPC coefficients, thase speech production
models, and MFCC coefficients, based on speechepgon models. They will be
explained in the next section within the featurtramtion process.

2.2. INTRODUCTION TO FRONT-END ANALYSIS FOR AUTOMATIC
SPEECH RECOGNITION

Front-end analysiss the first stage of Automatic Speech Recogni(il@8R), whereby
the acoustic signal is converted into a sequencacofistic feature vectors. Figure 12
illustrates the different stages that take pladhénfeature extraction process.

Frame bloking
—3 Pre-emphasis =N and =4

windowing

Feature
extraction

Figure 12: General feature extraction process

In this section, each stage of the above procékbavexplained in a subsection
in order to draw a complete vision of the system.

Feature extractiorstage is the most important one in the entire ggecsince it
is responsible for extracting relevant informatimom the speech frames, as feature
parameters or vectors. Common parameters used e@clsprecognition aréinear
Predictive Coding (LPC) coefficientand Mel Frequency Cepstral Coefficients
(MFCC). These parameters have been widely used in reamysiystem partly to the
following reasons:

» The calculation of these parameter leads to a edfilter separation.
* The parameters have an analytically tractable model

» Experience proves that these parameters work well recognition
applications.

Due to their significance, they will be describedtwo different subsections.
Another subsection will be devoted to dynamic fezdu They are thelelta and
accelerationcoefficients, that mean to add the first or secdadvate approximation,
respectively, to some feature parameters (LPC ioosits).

2.2.1. Pre-emphasis

In order to flatten speech spectrum, a pre-emphises is used before spectral
analysis. Its aim is to compensate the high-frequerart of the speech signal that was
suppressed during the human sound production mechan
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The most used filter is a high-pass Fliter described in Eq. (5), and whose
transfer function correspondsFkmure 13.

Hpreem(z) =1- apreemz_1 (5)

Magnitude Frequency Response

Magnitude (dB)

02 5
Normalized Frequency (radians/sample)

Figure 13: Pre-emphasis Filter, a=0.97.

2.2.2. Frame Blocking and Windowing

As explained in Section 2.1.3, the speech signdivigled into a sequence of frames
where each frame can be analyzed independentlyeprdsented by a single feature
vector. Since each frame is supposed to havestati behaviour, a compromise, in
order to make the frame blocking, is to use a 205 window applied at 10 ms
intervals (frame rate of 100 frames/s and overlapvben adjacent windows of about
50%), as Holmes & Holmes exposed in 2001. One earitss in Figure 14.
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Speech Vectors or Frames

Figure 14: Frame blocking (Young et al., 2006)

® FIR = Finite Impulse Response.
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In order to reduce the discontinuities of the spesignal at the edges of each
frame, a tapered window is applied to each one. mbset common used window is
Hamming window, described in Eq. (6) and showFRigure 15.

2n(n — 1)) (6)

= 0.54 — 0.46 (
w(n) cos N1

normalizad magnitude

Time (s)

Figure 15: 25ms Hamming window (fs=16Khz)

2.2.3. Me-Cepstrum

Davis & Mermelstein (1980) pointed the Mel Frequen€epstrui Coefficients
(MFCC) representation as a beneficial approactsfarech recognition (Huang et al.,
2001).The MFCC is a representation of the speech sigatihdd as the real cepstrum
of a windowed short-time signal derived from thél'FdF that signa{Huang et al, 2001)
which, is first subjected to a log-based transfafmthe frequency axis (mel-frequency
scale), and then decorrelated using a modified rBiscCosine Transform (DCT-II).
Figure 16 illustrates the complete process to ekttee MFFC vectors from the speech
signal. It is to be emphasized that the procesdeCC extraction is applied over each
frame of speech signal independently.

® Cepstrum is the inverse Fourier Transform of tigedpectrum. The name comes from to reversing the
first syllable of the word spectrum and was invdrttg Bogert et al. (1963).
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Speech waveform

|

Pre-emphasis

h 4

Frame blocking and
windowing (Hamming)
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Mel filterbank
M filterbank channels
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log energy
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DCT

l L coefficients (L<M\I)

MFCC

Figure 16: MFCC extraction process

After the pre-emphasis and the frame blocking wimdiowing stage, the MFCC
vectors will be obtained from each speech frame fitocess of MFFC extraction will
be described below considering in any instant #lathe stages are being applied over
speech frames.

The first step of MFCC extraction process is tanpate the Fast Fourier
Transform (FFT) of each frame and obtain its magigt The FFT is a computationally
efficient algorithm of the Discrete Fourier Transfo(DFT). If the length of the FFT, is
a power of two (K=2), a faster algorithm can be used, so a zero-pgddithe nearest
power of two within speech frame length is perfodme

The next step will be to adapt the frequency rgsmh to a perceptual frequency
scale which satisfies the properties of the humans éMolau et al., 2001), such as a
perceptually mel-frequency scale. This issue cpords to Mel filterbank stage.

The filter-bank analysis consists afset of bandpass filter whose bandwidths
and spacings are roughly equal to those of crititahds and whose range of the centre
frequencies covers the most important frequen@essppeech perceptioHolmes &
Holmes, 2001).
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The filterbank is a set of overlapping triangutandpass filter, that according to
mel-frequency scale, the centre frequencies ofettigi®rs are linear equally-spaced
below 1 kHz and logarithmic equally-spaced abovee el filterbank is illustrated in
Figure 17 It is interesting to emphasize that these ceméguiencies correspond to mel
centre frequencies uniformly spaced on mel-frequetmmain, as was shown in Figure
9 in Section 2.1.2.

A
H\[k] Hi[k] Hi[k] HKY H K] Hk]

AOY AN A1 A31 f41 AS] fle) A7

Figure 17: Mel filterbank (Huang et al., 2001)

Thus, the input to the mel filterbank is the povepectrum of each frame,
X#amdK], such that for each frame a log-spectral-enefggtor, Eamdm], is obtained as
output of the filterbank analysis. Such log-spdetreergy vector contains the energies
at centre frequency of each filter. So, the fileatk samples the spectrum of the speech
frame at its centre frequencies that conform thefrequency scale.

Let's define H,[k] to be the transfer function of the filter m,ettog-spectral-
energy at the output of each filter can be compaedth Eq. (7) (Huang et al., 2001);
where M (m=1, 2, ..., M) is the number of mel fiiank channels. M can vary for
different implementations from 24 to 40 (Huanglet2001).

K-1
E[m] = Z In[|X[k]|2 H, []] m=1,2, ... M (7)
k=1

The choice of the filterbank energies as inpufiltérbank analysis has been
widely used in early recognition system. Howevegther approaches based on further
transformations have been nowadays proposed to sgdustantial advantages respect
the filterbank energies input (Holmes & Holmes, 2P0

Using the mel filterbank is subjected to two prpatireasons:

* Smooth the magnitude spectrum such that the pitch speech signal is
generally not presented in MFCCs.
* Reduce the size of the features involved.
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The last step involved in the extraction processM#CC is to apply the
modified DCT to the log-spectral-energy vector,add as input of mel filterbank,
resulting in the desired set of coefficients caldéel Frequency Cepstral Coefficients.

The most widely DCT used for speech processin@@I-Il because of its
energy compaction, which results in its coefficeebting more concentrated at lower
indices than the DFT. This property allows appraadimg the speech signal with fewer
coefficients (Huang et al., 2001).

In order to compute the MFCCs for one frame, ti&&TBI is applied to the log-
spectral-energy vector of such frame and is giweBdp (8) (Young et al., 2008)

c;i = \/%mi_l Ecos (% (m — %)) (8)

Cepstral coefficients have the property that bibid variance and the average
numerical values decrease as the coefficient imgeneaseq{Holmes & Holmes, 2001).
The zero cepstral coefficients, ds proportional to the mean of the log spectrargy
channels angbrovides an indication of overall level for the spk frame(Holmes &
Holmes, 2001).

As explained above, discarding the higher cepstaéfficients can be
advantageous. In this way, the M filterbank chasnen be become into only L
MFCCs (L < M) used in the final feature vectdhe truncation of the cepstral sequence
has a general spectral smoothing effect that isadly desirable because it tends to
remove phonetically irrelevant detgdiolmes & Holmes, 2001).

Although MFCC vectors is a beneficial approachesgure vectors for speech
recognition, the extraction of them from speecmaignvolves much loss information
due to the followings reasons:

« Phase information is removed at the magnitude tipera

* The filtering process reduces the initial frequenegolution obtained from
the FFT and more spectral detail is lost due totthecation from M to L
(L<M) coefficients after the DCT stage.

2.2.4. Linear Prediction

In order to represent the short-time spectrum etheranother alternative to filterbank
analysis based on deriving linear prediction ceedfits which comes from Linear
Predictive Coding (LPC) analysis (Holmes & Holm&§01). LPC analysis is an
effective method to estimate the main parametespeéch signals.

"The HTK uses DCT-II to compute the MFCC.
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In Section 2.1.1, the source-filter model for sge@roduction was presented
and finally schematized in Figure The conclusion extracted was that an all-polerfilte
H(z) in Figure 7, is a good approximation to estenthe speech signals. Its transfer
function was described by Eq. (1). In this waynirthe filter parameters (coefficients,
{a}; and gain,G), the speech samples could be synthesized byferafite equation
given by Eq. (2).

Thus, the speech signal resulting from Eq. (2) maseen alinear combination
of the previous p samples. Therefore, the speeatiupgtion model can be often called
linear prediction model, or the autoregressive mo@déammone et al., 1996). From
here,p, in Eg. (1) and (2), indicates the order of theCL&nalysis; and, the excitation
signal, e[n], of the speech production model carcdléed prediction error signalor
residual signafor LPC analysis.

The LPC coefficients, as well for MFFC coefficisntare obtained for each
frame independently one of each other.

According to Eq. (2), the prediction errory,,Hor one frame can be defined in
Eqg. (9) as (Huang et al., 2001):

p 2

E, = z eZ [n] = Z Xm[n] — Z ajXm[n —j] 9)

n n j=1

where x,[n] is a frame of the speech signal gnthe order of the LPC analysis. For one
speech frame its LPC coefficients are estimatedhose that minimize the prediction
error Ey, (Huang et al., 2001)

Estimating LPC coefficients from speech frame, ahthogonality principl& is
assumed and the Yule Walker Equations are obtained:

p

Zaj o[ ] = P i, 0] i=1,2,...p (10)

j=1
where®[i,j] is the correlation coefficients defined as:

dmlif1 = ) [m = [ ] (11)

n

Solution of thep linear equations gives thpeLPC coefficients that minimize the
prediction error, such that the set @f}{satisfies Eq. (2) to generate the speech signal
through speech production model.

8 Orthogonality principle says that the predictor ffigents that minimize the predictor error are buc
that the error must be orthogonal to the past vectpluang et al, 2001).
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In order to resolve the Yule Walker Equationsfelént algorithms can be
presentedthe covariance method, the autocorrelation methad the lattice methad
The algorithm that will be used in this Master Tikesill be the autocorrelation method.

The autocorrelation method corresponds to resalvieasic matrix equation
expressed as Eqg. (12), wheReis the autocorrelation matrix of the speech signal
(R(@1,))=R«( |i-j| ) ); r is the autocorrelation vector of the speech sigm@)=R.(i) ) and
ais the vector of the LPC coefficients.

RXa=r (12)

This matrix equation is resolved yevinson-Durbin recursioralgorithm in
which the recursion finds the solution of all pdin coefficients of order less than
In the computing of this algorithm, other intermegdi variables, calledeflection
coefficients, {§, are calculated.

Finally, Figure 18 illustrates the extraction prss of the LPC coefficients.

Speech waveform

Pre-emphasis

J

Frame blocking and
windowing (Hamming)

k
Obtaining Yule
Waller Equations

'y
Auntocorrelation method

k

Levinson Durbin recursion

l

LPC coefficients

{G, a1, 8z, e, 82}

Figure 18: LPC coefficients extraction process
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After the LPC analysis, the power spectrum of #peech frame can be
calculated from its LPC parameters. Let's define) A¢ be the inverse transfer function
of the filter given by Eq. (1) as:

p

A(z) =1- Z a;z7¢ (13)

i=1

From this inverse filter, A(z), a new speech sgsth model is proposed in
Figure 19 which can be considered as inverse model of speeotiuction model
described on Figure. 7

s[n]
Speech waveform A@)

LPC analysis |

;
{G.as a3, -, 2,

¢[n]
Fesidual signal

Figure 19: Synthesis LPC filter

The power spectrum of one signal can be obtairyepassing one input signal
through a filter. If the input signal is the speeifinal and the filter is the inverse LPC
filter A(z); the power spectrum of the output sina this case the residual signal or
prediction error signal, can be obtained as:

S()A(W)|* = a2 (14)

Then, one can see that the power spectrum of pleeck signal can be
approximated by theesponseof a sampled-data-filter, whose all-pole-filter tisfer
function is chosen to give a least-squared erromiaveform prediction(Holmes &
Holmes, 2001). So, in Eg. (15), the power spectainthe speech frame is obtained
from its LPC coefficieents.

%

S(w) = —
( ) Il_ ?=1aie—](ul|2

(15)

LPC analisysproduces an estimate smoothed spectrum, which rotiche
influence in the excitation remov@dolmes & Holmes, 2001)

LPC-derived features have been used by many ré@amgrsystems, being its
performance comparable whit the one obtained fr@mognizers using filterbank
methods. However, later, LPC-derived cepstral ooefts has begun to be considered
since the addtion of ceptral tranformation improkesogntion performance (Holmes &
Holmes, 2001).
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Ending this section, It bears mentioning anothedr of features vector called
Perceptual Linear PredictiofPLP) coefficients (Hermansky, 1990). PLP analysis
based on LPC analysis incorporating a non-lineaguency scale and other
psychophysics properties of the human perceptistesy.

PLP analysis is more similar to MFCC analysis, thét incorporation of more
perceptual properties makes it more related to hpgyleysical results. In Table the
comparison between the properties of both methadse seen.

Table 1: Comparison between the properties of MBBE PLP coefficients

MFCCs PL P coefficients
Cepstrum-based spectral smoothing LPC-based spectomthing
Pre-emphasis applied to speech wavefarm Pre-engpaypgiied to spectrum
Triangular mel filterbank Critical-band filterbank
Logarithmic amplitude compression Cube root amgétaompression

2.2.5. Dynamic Features: Delta Coefficients

In order to improve the recognition performanceiesv stage in the feature extraction
process can be added, see Figure RPnamic featuregonsist of the incorporation of
temporal derivatives to the feature vectors obthindhe last stage.

Frame
blocking and
windowing

Feature
extraction

Dynamic 3
Features

=] Pre-emphasis

h 4

h 4
h 4

Figure 20: Feature vectors extraction and its dyodeatures

As explained in Section 2.1.the speech signal is converted into a sequence of
speech frames such that each one of them is assstawdohary in its short interval.
Therefore, each frame can be analyzed independemtly represented by an
independent single feature vector.

In spite of the above assumpti@m acoustic feature vector representing part of
a speech signal is highly correlated with its ndigts (Holmes & Holmes, 2001).
However, these correlations can be captured apgplyie dynamic features to tatic
feature vectors (such as MFFCs or LPC coefficierdg)ce they can measure the
change in thetaticfeatures (Holmes & Holmes, 2001).

The dynamic features referred to the first orderetderivatives are called as
delta coefficientgnd to the second order time derivativea@sleration coefficients.
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The dynamics features can be compubgdsimple differencing between the
feature values for two frames either side of theremt frame (Holmes & Holmes,
2001). However, differencing method results monesgeve to random fluctuations in
the original features and tends to be noisy. Thathy another robust dynamic measure
can be applied based on linear regression overqaesee of frames (Holmes &
Holmes, 2001).

As said before, including the dynamics featuresst(fecond order time
derivatives) generally improves recognition perfanoe. Delta features gives a large
gain on this improvement while the acceleratioriuezs adds a smaller one.

The majority recognition systems incorporate dyicarfeatures applied,
generally, to a set of MFCC vectors or LPC coeéintivectors.

23. DISTANCE MEASURE FOR SPEECH PROCESSING: RMS LOG
SPECTRAL MEASURE

After the front-end analysis in automatic speedogaition, thereby the speech signal
Is converted into a sequence of feature vectoesn#xt issue is to measure the quality
of the recovered speech from such features vecidrs.measures of interest in this

Master Thesis are those calldidtance measurggspeciallyspectral distance measures

between the smoothed spectrums obtained from #tartevectors, LPC coefficients or

MFCCs.

As explained in past sections, an estimate p@pectrum of the speech frame
can be obtained from its features vectors. LPC fimbexits provide an estimate
smoothed spectrum of the speech signal accordiriggta(15). In another hand, the
MFCCs transform the FFT of the speech frame toragmually mel-frequency scale,
using the mel filterbank method. The result is asthed magnitude mel spectrum in
which the harmonics have been flattened in ordebtain the envelope of the spectrum
of the original speech frame. Also the LPC coeéints can be derived from the MFFC
coefficients and estimating the spectrum from B§) (

Distance measures based upon transformations mretaily the smoothed
spectral behavior of the speech signal have begthiexpin recognition taskéGray et
al., 1976. So, the distance measurealled root mean square (rms) log spectral
measurewill be used in the implementation work of this $fler Thesis, to measure the
spectral distortion between the spectrums obtdiroed feature vectors.
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RMS Log Spectral Measure

Let's defineS and Sk« to be two spectral models. The error o differenegvben them
is defined by (Gray & Markel, 1976):

V(®) = ISy (@) = IS’ e (@) (16)
In order to measure the distance between thest¢rapeodels, a set af, norms

has been defined as by (Gray & Markel, 1976):

T dw
@ = | WP an

the rms log spectral measuiis defined wherp takes the value of 2. THg, norm is
typically evaluated for smoothed spectra modelsth&s smoothed power spectrum
computed from LPC coefficients. Then, the two sgaehodelsS,, and Sk are defined
according to Eqg. (15).

The L, measures are related to decibel variations irldgespectra domain by
using the multiplicative factor 10/In(10) = 4.34.
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The work developed in this Master Thesis consisthe implementation of a speech
generative model; whereby the speech is synthesinedrecovered from its MFCC
representation. Synthesizing speech from paramegpiesentations allows performing
an investigation on the intelligibility of the sym@sized speech as compared to natural
speech. So, two steps were performed: the compntafithe MFCCs vectors from the
speech signal and the generative model in itself.

The tool used for computing the MFCCs from theespesignal in this Master
Thesis was thélTK Software Toolkjtdeveloped by the Cambridge University (Young
et al., 2006). The speech signal processing, basdtie conversion chain from HTK-
generated MFCC representation to the generativeelnoslas supported by the
mathematical tooMatlab.

This conversion chain tends to simulate the irwvegpsocess to the feature
extraction process described in Section 2.2, ireotd recover the speech signal, and
measure how much information relevant to speeabgration is lost in this analysis.

This section is divided into two sections. Thetfione offers an introduction to
the HTK Software and an investigation on the immatation of the MFCC
computation in HTK. The second one describes al steps that take places in the
generative model, making relationships with theotles-based, and giving an
explanation of the approximation methods and algors used in its implementation.
The results will be put forward in the AnalysisRésults and Discussion Section.

3.1. MFCC COMPUTATION INHTK

The initials of HTK correspond tlidden Markov Toolkjtwhich is a standard research
and development tool for buildingidden Markov Models (HMMpased on speech
recognition.

The HMM has become one of the most powerful staishethods for modeling
the speech signals and its principles have beenesstully used in automatic speech
recognition (Huang et al., 2001).For the work developed in this Master Thesis, no
more details about the concept of HMM are required.

The Software architecture of HTK is principallyilbwver library modules with
which HTK tools operate. The HTK tools are execufsmm commands into the
operating system shell. These commands consishafrder of input files and optional
input arguments (in order to control more in detlad behavior of the tool). Every tool
uses a set of standard library modules that aghasterface between various files types
and with outside world. These modules are, usuallgtomized by setting parameters
in a configuration file. Finally, there is anotheat of parameters that are specified by
using environment variables (Young, et al., 2006).
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In the MFCC computation, the HTK toblCopy and theconfiguration fileplay
an important role in the parameterization of theegih signal into a sequence of feature
vectors. The next sections will be focus in thiésms.

3.1.1. HCopy and Coding Speech Datato MFCC Vectors

HCopy is the tool of HTK responsible for copyingdamanipulating the speech files
(Young et al., 2006).

By specifying an appropriate configuration fileCblpy can be seen as a speech
coding tool, available to parameterize the speaghat into a sequence of feature
vectors. Thus, HCopy parameterizes the source bpekta according to the
configuration file, and copies the target speecha dato the output file. This is
schematized in Figure 21.

For the experimental work of this Master Thesissea of 10 audio files on
waveform format flles.way was given as source speech data. The texts sk the
utterances are contained in AppendixTAe speech files were taken at random from the
TIMIT databas@ The configuration file created was nantempy.confand was set-up
to convert source waveform data to MFCC coeffigelvery output file, generated by
HCopy, contains the MFCC vectors of its correspngdsource waveform file. The
source waveform files used and the output HCopyegeard MFCC files are listed in
the Figure 21.

Configuration file

heopy. conf
/'S_nu rce waveform files (611 tput MFCC ﬂl;a-s\II
zal wav mfcel htk
sa? wav mfce? htk
51048 wav mfccsi648. hik
s11027 wav mfcesi1027. hik
511657 wav HCopy mfecsil657. htk
37 wav mfcesx37. hik
sx127 wav mfeesx127. htk
sx217 wav mfeesx217. htl
sx307 wav mfeesx 307 htl
\\_ =307 wav / \ mfeesx307. hik Y,

Figure 21: Parameterization of the speech data®gy; and list of the source waveform files and its
corresponding MFCC files generated

° TIMIT database is a standard database of uttesagc@mples for speech recognition experiments.
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The configuration parameters withimcopy.conf file will specify the
characteristics of the MFCC extraction process sedfigure 16. Once it was created,
the coding data from the source speech data to M#Xrs was done by executing
the following command line in a Linux shell:

HCopy —C hcopy.conf source-file mfcc-file

where—C is a standard option used to indicate tiaipy.confile is the configuration
file used. Thesource-fileargument input indicates the file name that castahe
source speech data; and, th&ec-fileargument input is the file name where HTK will
copy the output MFCC vectors data. HCopy was runeieery pair of the source
waveform file and its output file.

3.1.2. Configuration Fileto Computethe MFCC Vectors

As said before, the configuration file created watied hcopy.confand is added in
Appendix B.The generative model was based on the way in tleatMFCC vectors
were computed by HTK; i.e., the whole speech signatessing and the characteristics
of the generative model are controlled by confioraparameters.

The MFCC extraction process of Figure 16 will bédwed in the description of
the most important configuration parameters. Tablshows the setting of those
configuration parameters related to such MFCC etitra process.

Table 2: Configuration parameters related to MFQtagetion process
(* expressed on units of 100ns)

Configuration Value
parameters
SOURCEKIND waveform
SOURCERATE 625" MFCC extraction
Process

TARGETKIND mfce_0

PREEMCOEF 0.97 } Pre-emphasis

TARGETRATE 100000°

WINDOWSIZE 250000.0° Frameblocking and
Hamming windowing

USEHAMMING true

NUMCHANS 24 Filterbank and

N-[_]T\"ICEPS 12 WCC CUEfﬁdEﬂtS
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Thesourcekindandtargetkindare the configuration parameters used to indicate
which parameterization should be done; since, thefine the source and the target
parameter kinds. Usingcopy.conffile, with the configuration above, the waveform
data was converted to MFCC_O using tbeas the energy component. The sample
frequency of the source waveform data was set mgube configuration parameter
sourcerateto 16 kHz.

As it was seen in Section 2.2.1, a pre-emphds$gs f6 required before spectral
analysis. The value of this pre-emphasis filterfiement in Eqg. (5) was specified by
setting the parametpreemcoetfo 0.97.

The process of the frame blocking and Hamming wwvidg (see Figures 14 and
15) is described by the followings configurationgraeterstargetrate, windowsizand
usehammingThey were configured to apply a Hamming window2bfns every 10ms
(frame rate of 100frames/s), resulting an overlapSms. If the frequency sample was
16 kHz, the size of the frames generated was ofséd@ples (25ms * 16 kHz) with an
overlap of the 60%. The Hamming window performedHiK corresponds to the one
described by Eq. (6).

Finally, for computing the MFCC coefficients, HTptovides a simple Fourier
Transform based filterbankyoung et al., 2006) method and calculates the ®§C
using the DCT-II described by Eq. (8). The numbikethe filterbank channels was set
by the configuration parametaumchango 24. As it was explained in Section 2.2.3,
they are equally spaced along the mel-frequendsg ¢sae Figure 9). The number of the
MFCC coefficients was specified by the configuratparametenumcepgo 12.

In short, the source speech signal is passedghraufirst order pre-emphasis
filter with a coefficient of 0.97. The FFT shouldeua Hamming window of 25ms with
a frame period of 10ms. The filterbank has 24 ck&nand for each speech frame 13
components (12 MFCC coefficients plus thecGmponent) are generated and copied in
the output file.

3.2. GENERATIVE MODEL

The generative model in itself is the conversioaighwhich synthesizes speech from
HTK-generated MFCC representation.

All the speech processing involved within the ierpentation of the generative
model was support by Matlab. In order to proces=esp signals, successful Matlab
toolbox were incorporated, suchVasicebox® andAuditory ToolboX".

1 Brookes, M.,Voicebox: Speech Processing Toolbox for Mafia line], Imperial College, London,
available on the World Wide Webttp://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voiogthtml.

1 Slaney, M. (1998)Auditory Toolboxon line], Interval Research Corporation, Califarravailable on
the World Wide Web:http://cobweb.ecn.purdue.edu/~malcolm/interval/1938!/.
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The generative model was implemented in a Matlainction called
generative_model.jrenclosed in Appendix .CThe algorithm can be divided into five
steps (schematized in Figure 22) in order to béa@xed.

Firstly, The MFCC files were exported to Matlaktracting the MFCC vectors.
Secondly, in order to further on implementing thmurse-filter model for speech
production (see Section 2.1.1, Figure 7), the LBE&ffients were computed from the
MFCCs vectors. In this process an inverse DCT (Ip@&d to be approximated.
Thirdly, the source-filter model for speech prodmctof Figure 7 was implemented.
The filter was estimated by the LPC coefficientsnpated from MFCCs according to
Eq. (1); and the excitation signal was modeledviced and unvoiced sounds. Finally,
the speech signal produced was filtered by an ssvepre-emphasis filter (de-
emphasized filter). Moreover, the dynamic featyiksta coefficients) were added to
LPC coefficients in order to achieve better perfance recognition.

For the speech processing, a set of constants defieed according to the
above configuration parameters. The based theanésnvestigations to implement the
algorithms ingenerative_model.riunction will be explained in detail.

HTK MATLAB
—————————— === == ———
Source speech data I wrFccal |
_|_, e - —
(waveform file) I MFCC extraction ; : RLadHH:Ei_; B
————————— ol | i) I VaClofs
: IDCT
___________ 1 W
_________________ Obtaining LPC
________ L parameters

|

|

! I

I | Dynamic features .

'\ extraction : .
: bemeome- Te—————-- Source-filter model
|

|

|

|

|

i

implementation

b

De-emphasize filter

Figure 22: Conversion chain from HTK-generated MR€fresentation to the generative model

The generative_model.rfunction contains other secondary functions with th
algorithms of the different items to be implementefihey are: idct_htk.m,
mfcc2spectrum.m, mfcc2spectrum2.m, LPC_filtemohdeltacoef.mThey are enclosed
in Appendix D.
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3.2.1. Conversion from MFCC Vectorsto L PC Parameters

The process followed in the conversion from MFCCtues to PC parameters is
described below:

Read the MFCC vectors from the MFCC file generagtiTK.

Make the IDCT of MFCCs vectors to obtain the mel pmwer spectrum.

Exponentiation to obtain the mel power spectrum.

Convert the mel power spectrum to power spectrunlirear frequency

domain.

5. Apply the inverse Fourier Transform (FT) to get theocorrelation function
estimate.

6. Solve the Yule Walker equations by autocorrelatioethod to obtain the

LPC coefficients. They are the filter coefficients.

pwbnE

The entire process above is implemented in thetimms mfcc2spectrum.rand
mfcc2spectrum2.nisee the code in Appendix D). The difference betwéhese two
algorithms falls on that the extraction of the @otoelation coefficients from the mel
power spectrum was dealt by two different wayssTgenerated two approaches for the
generative model that will be explained after. Eacte can be chosen by an input
argument in thegenerative_model.nfunction (see code ofenerative_model.nin
Appendix C).

For reading the HTK-MFCC files, the functiogadhtk.mfrom Voicebox library
was usedThe MFCC vectors were stored in a matrix calefdcof size [13, number-
frames] (12 MFCC coefficients plus thg €mponent were generated per frame).

I nverse Discrete Cosine Transform

The IDCT had to be approximated since a directsfam was not possible because of
the number of MFCC coefficients was lower thanrthmber of filterbank channels.

The DCT employed by HTK to compute the MFFC caséts is the DCT-II
given by Eq. (8), in Section 2.2.B was explained that the DCT-II is applied to tbg
spectral energies at frequencies uniformly sampled mel-frequency domain, to
produce the MFCCs. So, the inverse transform ofokats will provide K samples of
mel log power spectrum at frequencies equally spacemel-frequency domain.

The inverse transform of DCT-II is given belowsasing that, is computed in
the same fashion ag, n>0.

Syy(k) = fz c(n) cos (n — 1/2)) (18)
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where N=13 is the number of MFCC coefficients inihg the ¢ component, and K is
the number of points on mel-frequency domain reglirfor the spectrum
reconstruction. Comparing with the forward tramsfan Eq. (8), one can see that in
Eq. (18) the term into the cosine is divided bynktead of N (K>N and K>M, where M
is the number of filterbank channels). This fadsdike an interpolation in order to get
a smoothed mel log power spectrum. That's why Ktbdse in the interval [129, 256]
points. It was chosen to be 256 points (a numbepadfits power of two allows an
efficient algorithm for the inverse Fourier Transf).

The K points on mel-frequency domain represenktloentre frequencies of the
mel filterbank. They are easily calculated dividihg mel bandwidth (calculate the mel
frequency corresponding to the Nyquist sample feegy, /2, by Eq. (3)) between K
and taking the mel centre frequencies.

The algorithm that makes the inverse DCT, inspagdiTK performs the DCT-
I, is written in the functionidct_htk.m(see code in Appendix D) according to the
method below. Thedct_htk.mfunction is called from the functiomafcc2spectrum.m
andmfcc2spectrum2.m

The forward transform can be performed as a mattkiplication c=AE, where
E is the log spectral energies and A the transfoatrix whose elements are defined as:

R fri-v, i=1,...N
{aij}—\/;cos< e G- /2)) 21K (19)

Then, the inverse transform matrix-&an be calculated by Eq. (20), where D is
a diagonal matrixas D ={1/2, 1, 1, ,.1}.

A1 =ATD (20)

Finally, if c is the vector of MFCC coefficients of one frame tnverse DCT is
performed as:

Syy = A'Dc (21)

In short, the inverse DCT provides samples of rhog power spectrum
uniformly spaced on the bandwidth of mel-frequedoynain, which according to Eq.
(4) corresponds to samples no uniformly spacednaat-frequency domain.

Finally, the mel power spectrum is basically dbyemaking the exponentiation
to the log mel power spectrum.
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Autocorrelation Function Estimate and LPC Coefficients

In Section 2.2.4, the LPC analysis was explaineztofding to this analysis, the LPC
coefficients can be calculated by solving the YWalker Equations described by Eq.
(10), using the autocorrelation method. By thishodt the Yule Walker Equations are
transformed to a basic matrix equation expressedtdpy(12), which needs that the
autocorrelation function estimate is to be apprated. This matrix equation is
resolved finally by the Levinson Durbin's algorithonobtain the LPC coefficients.

It is studied that the power spectrum is the FThef autocorrelation function.
So, the autocorrelation coefficients of the spesghal are given by the inverse FT of
its power spectrum as:

rinl = % . S 22)

However, the mel power spectrum obtained by thverse DCT has samples
related to frequencies non uniformly spaced onlitear frequency scale. This fact
makes that the inverse FT of Eq. (22) cannot becty applied to the mel power
spectrum.

As said before, the functiomsfcc2spectrum.mndmfcc2spectrum?2.raontains
two different algorithms to approximate the autoetation function and solving this
problem; so, they can define two different appreasclor a generative model:

» Generative model:Infcc2spectrum.m

The algorithm of this function is a lineal interpbbn of the mel power
spectrum in order to find the sample values atfthquencies uniformly
spaced on linear frequency. With a mel power spattsamples equally
spaced on linear frequency, the inverse FT destribe Eq. (22) can be
performed to obtain the autocorrelation coefficgent

The number of equally spaced linear frequency poivds fixed up to 256
points in order to get a smooth spectral repretienta

» Generative model:2Znfcc2spectrum2.m

In this algorithm, instead of obtaining equally spéh samples of mel power
spectrum, the inverse FT was applied to the noalggmel power spectrum

samples considering the bandwidth at each mel ém®gjas to obtain the

autocorrelation coefficients.

In the figure of the filterbank representation itireear frequency scale (see
Figure 17), one can see that the filter bandwidthvider as higher centre
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frequency. So, each mel centre frequency has areiff bandwidth on the
linear frequency scale.

It was commented before that the K mel power spattsamples provided
by the inverse DCT are related at the centre fnreges of the filterbank on a
linear frequency scale. Let's defidk to be the bandwidth of the filter at the
frequencyfy, the inverse FT can be applied directly to the melver
spectrum obtained considering the bandwidth at &adguency as:

1 .
r[n] = Ez Sxx(fk)ejznfknAfk (23)
This is the generalization of Eq. (22), in whicl frequency increasdfy, is

normalized to one because of the samples are adstonbe uniformly
spaced on a linear frequency domain.

When the autocorrelation coefficients are estimatieel matrix equation of Eq.
(12) can be solved by the Levinson Durbin's alganito obtain the LPC coefficients.
This algorithm is implemented by a Matlab functicalled levinson.mand returns the
LPC coefficients and the filter gain. This functioras used in the generative model
algorithm for a P order LPC coefficients equal to 12 (segcc2spetrum.mand
mfcc2spectrum2.mm Appendix D).

Finally, according to the explanation in Sectia2.2, the power spectrum of
every speech frame was computed from its LPC pasamas described in Eq. (15).

3.2.2. Implementation of Source-Filter Model for Speech Production

The source-filter model for speech production shawhigure 7 was implemented into
the LPC_filter.mfunction (see code iAppendix D). The filter was estimated by the
LPC coefficients computed from MFCCs according tp @&); and the excitation signal
was modeled for voiced and unvoiced sounds, asag described in Section 2.1.1.
Some considerations that were supposed to be takgiresented below.

The excitation signal was modeled for voiced andoiced sounds as a pulse
train and random noise, respectively. They wetteréld separately, using the Matlab
functionfilter.m, to produce the synthesized speech from differedels of sound.

The speech is synthesized back from the LPC paeasnsequence computed
from the MFCC vectors. In this way, the excitatgignal must be considered in speech
windows or segments. Every segment acts as thwagan signal for one frame of the
speech signal such that, the coefficients of therfare the LPC parameters derived for
this frame. Therefore, the sequence of excitatignad segments is passed through the
LPC filter, which varies frame to frame, to prodube sequence of synthesized speech
frames. They are consecutively concatenated to mpkke synthesized speech signal.
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Since the synthesized speech is performed by ssizihg successive segments
of excitation signal, the LPC filter must avoid thdscontinuities between the
consecutive segments. For solving this problemwas necessary to consider the use of
the initial conditions of the filter in the Matldbnctionfilter.m. Hence, in the change of
the filter from one frame to the next one, the lfioanditions of one filter keep as the
initial conditions of the next filter.

3.2.3. Incorporation of Dynamic Features: Delta Coefficients

As said before, the speech synthesis is perfornyed bPC filter whose coefficients
change frame to frame; and the final conditionsrad filter are the initial conditions of
the next filter. This avoids discontinuities in thikered of the successive segments of
the excitation signal. However, there is not a geddransition between the LPC
parameters of consecutive frames.

The incorporation of temporal derivatives to Htatic feature vectors, in this
case to the LPC parameters, makes possible a nonsntransition between the LPC
parameters of consecutive frames. As said in Sec®@.5, dynamic features can
measure the change in thimaticfeatures.

Delta coefficients are first order time derivasvand they were the dynamic
features added in the generative model. The algorito approximate the delta
coefficients was implemented in a Matlab functicalled deltacoef.m enclosed in
Appendix D. The algorithm was based on a lineakrplation between the LPC
parameters (filter gain and filter coefficients)aminsecutive frames.

Each frame was divided into four subframes, whd3€ parameters were the
lineal interpolation between the LPC parameterthefcurrent frame and the next one.
Since it was impossible to make an interpolatiorthia last frame; it was decided to
repeat the value of its LPC parameters for the taat subframes. With this linear
interpolation the total number of frames was inseeaby a factor of four. Hence, the
change of the filter frame to frame was perforntadugh intermediates frames, whose
LPC parameters were the interpolation between tihginal frames such that, the
transition between them was smoothed.

Whereas for the filter gain interpolation it wasly necessary a lineal
interpolation within 4 points between the consa@difilter gains, for the interpolation
of the filter coefficients, some aspects had tetmesidered.

The lineal interpolation of the filter coefficientwwas performed between the
umpteenth coefficient of the framreand the umpteenth coefficient of the next frame
n+1. Furthermore, the interpolation was not direcpplied to the filter coefficients
{a}, but to other coefficients callegkflection coefficients{k;}. These coefficients are
as well calculated in the computing of the Levingarbin recursion algorithm as
intermediate variables in the calculation of LP@fficients. The reflection coefficients
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are bounded by the range in Eq. (24); and thisnsc@ssary and sufficient condition for
all poles of the LPC filter to be inside the unitte, guaranteeing a stable filter (Huang
et al., 2001).

1<k <1 (24)

The fact of interpolating the reflection coeffiote instead of the LPC filter
coefficients is that they guaranty the stabilitytiog filter after the interpolation. When
one implements a linear interpolation of the reftac coefficients|f the coefficient of
both frames are in the range kq. (24),the linearly interpolated reflection coefficients
also have that property, and thus the filter isof¢gHuang et al., 2001). The LPC filter
coefficients do not have this property.

Thus, the LPC filter coefficients were convertedheir corresponding reflection
coefficients. Then, a lineal interpolation withirpdints was applied to them. Later, the
linearly interpolated reflection coefficients wereonverted back to LPC filter
coefficients, guarantying that the filter was ssithble within all the news frames. The
conversion from the filter coefficients to reflemti coefficients and vice versa was
performed by using the Matlab functiomgcar2rf.m and Ipcrfr2ar.m respectively.
They belong to the Voicebox Matlab toolbox.

As said above, the result of the lineal interpolatvas an increase of the total
number of frames in a factor of 4, because thealifrgerpolation could be considered
as a division of each frame into four subframesatTls why some processing
parameters had to be modified in the functid?C_filter.mto be able to be used for
delta features. In this case, the mode of the padaoce of thd.PC_filter.mfunction
must be set to 1 (see codelsfC_filter.min Appendix D). Then, the frame shift is a %2
of the original frame shift.

3.2.4. De-emphasize Processing

When the features extraction process was presantgelction 2.2, it was explained that
the speech signal is passed through a pre-empfilgsisbefore the spectral analysis.
That is why, finally, the synthesized speech muestphssed through a de-emphasize
filter. It is a low-pass filter, whose transfer @fion (Eq. (25)) is the inverse to Eq. (5)
and corresponds to Figure &e that it is the inverse transfer function commggawith
Figure 13).

1 1

Hpreem(z) - 1- apreemz_1

Hieem = (25)

The de-emphasize coefficient must have an equaleviddan the pre-emphasis
coefficient, that was set to 0.97.

3. Implementation: Generative Model of Speech 37



Speech Analysis for Automatic Speech Recognition

[ap] spnuuben

Normalized Frequency

=0.97)

Figure 23: De-emphasized filter (a

38

3. Implementation: Generative Model of Speech



4. ANALYSISOF RESULTSAND DISCUSSION



Speech Analysis for Automatic Speech Recognition

This section is an analysis of the results extthdte the implementation of the
generative model described in the previous sectionshort, the generative model
returns the synthesized speech from its MFCC reptasion.

One way to make an objective evaluation of theegiive model is to compute
the spectral distance between the original signdlthe one produced from the MFCC
coefficients. That can be done by developing twecspal models based on the LPC
coefficients from the original signal and the omesnputed from the MFCCs. That is
why; previously to the evaluation of the signalgwoed from the MFCC coefficients, a
LPC analysis of the original waveform speech sigve developed.

In the other hand, for a subjective evaluationtled generative model, it is
interesting to present an interpretation of theliigibility of the synthesized speech
versus the original signal.

This section is divided into five sections. Fiystthe LPC analysis of the
waveform speech signal is presented. Secondly,eaeptation of the MFCC files
generated by HTK Software and an analysis of th&€NMectors are done. In the third
section, the two approaches for the generative tren@éecompared and discussed. The
fourth section is devoted to an evaluation of theametric representation, based on the
spectral distance measure. Finally, the intelllgiobf the reconstructed speech by the
generative model is commented and discussed.

4.1. LPC ANALYSISOF THE WAVEFORM SPEECH SIGNAL

The algorithm for LPC analysis was implemented inMatlab function called
waveform_analysis.nand it is enclosed ippendix D. This function follows the
process shown in Figure 18, implementing the Bltleof the speech signal through the
pre-emphasis filter, the frame blocking and Hammingdowing and the LPC feature
extraction.

The algorithmwaveform_analysis.nwas executed for a LPC analysis of"12
order. The LPC parameters (filter gaigr, and LPC filter coefficients, g}) were
computed by using the Matlab functipnoclpc.m which belongs to Matlab Auditory
Toolbox.

In order to show the performance of the differsteps involved in LPC
extraction process, the following figures were ened forsal.wavfile. In Figure 24,
the original speech waveform and how is affectetrathe pre-emphasis filter is
illustrated. Figure 25 presents the effect of ussnglamming window, and Figure 26
shows the Linear Predictor spectrum of one frameampared with its magnitude
spectrum.
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Figure 24: Original speech waveform and originaesgh waveform after the pre-emphasis filter with
coefficient equal to 0.9%4&1.wav file)
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Figure 25: Effect of multiplying one speech framyesbHamming window (frame 115 frosal.way
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Figure 26: Comparison of the power spectrum contpfran LPC coefficients with the original
magnitude spectrum (frame 115safl.way

As one can see in Figure 25, the use of a Hammimglow makes that
magnitude of the speech frame tapers from the eearftthe window to the edges. This
fact reduces the discontinuities of the signahate¢dges of each frame.

Figure 26 shows the Linear Prediction (LP) powmcsrum compared with the
magnitude spectrum of a speech frame. One carhaethe power spectrum computed
from LPC coefficients is actually representing gpectral envelopef the magnitude
spectrum of this frame. This spectral envelope sdnke peaks of the formants of the
speech frame.

More examples that illustrate this fact can be dddiegure 27corresponds to
the frames 84 and 176 of the same waveform $gé. vay.
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sal.wav for the frame 84 sal.wav for the frame 176
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Figure 27: Comparison of the power spectrum contpfrian LPC coefficients with the original
magnitude spectrum (frames 84 and 176adf.way

4.2. MFCC VECTORSCOMPUTED INHTK

In the Section 3.1, the HCopy tool was presentetth@sool to parameterize the speech
signal into a sequence of feature vectors. Thenpeterization was defined by setting
the configuration parameters of the configuratide, fcalled hcopy.conf(enclosed in
Appendix B).

In this section an analysis of the output fileeeyated by HTK can been done in
order to explore how HTK performs the output MFCilest The set of source
waveforms files given and the output MFCC files gyated in HTK were listed in
Figure 21. For example, the command line to créaecorresponding output MFCC
file of the source filssal.wawvas:

HCopy -C hcopy.conf sal.wav mfccl.htk

It is important, for the later processing of thé&®C vectors, to know how the
structure of the output file executed by HTK isgdda check that the input conversions
are being performed properly. For this task, thexea HTK tool which allows
examining the contents of the speech data filesHthist tool (Young et al., 2006). The
HList tool was executed to check the conversioifigpered in the previousal.wawile:
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HList -C hcopy.conf -0 -h -t -s 113 -e 115 sal.wav

The options-h and—t are used to print the source header and the thegater
information. The optionss and—e indicate the range of sample vectors to displdnge T
option —o is used to show the observation structure whi@ntifles the role of each
item in each sample vector (Young et al., 2006 fidsults are display below:

——————————————————————————————————— Jource: sal.wav ---——————--mmmmmm e

Sample Bytes: 2 Sample Kind:  WAVEFORM
Hum Comps: 1 Sample Period: £2.5 us
Num Samples:  4&797 File Format: WAV
———————————————————————————————————————— Target —=—===—==— s
Sample Bytes: 52 Sample Kind:  HFCC D
Hum Comps: 13 Sample Period: 10000.0 us
Num Samples: 290 File Format:  HTE
———————————————————————————————— Chservation Jtructure ——--—--—-—-—--——--——m——m
X MFCC-1 MFCC-2  MFCC-3  MNFCC-4 MFCC-5 MFCC-£ MFCC-7 MFCC-B MFCC-9 MFCC-10
NFCC-11 MFCC-12 ca
—————————————————————————————————— Samples: 113-»115 —==—-—-mmmm e
113: -8.294 -4,822 -3.38& -15.831 -25.019 -17.790 -20.292 -0.808 -20.792 -4.383
-15.564 4.213 5E.708
114: -7.377 -4,108 0.308 -13.e0e -19.973 -15.3284 -14.265  £.377 -1le.882 2.1M1
-10.880  7.017 57.4&3
115: -7.040 -3.334 0.g52 -14.712 -19.80¢ -14.£23 -14.213  7.083 -1e.690  4.210

-10.035 5.303 56.754

The source header information confirms that thercodile calledsal.wav
containswaveformdata with 2 byte samples and 46797 samples ih D@ samples
period is 62.5us which corresponds to a sample frequency of 16. kMith this data,
one can know that the duration of the speech wawefile is the 2.923 seconds
(46797samples/16kHz).

The target header information confirms that speetdta have been
parameterized to a sequence of 290 MFCC vectodudimg, each one, th€,
component as the energy component. Each MFCC veotuains 13 components and
Is 52 bytes in size. The frame period is 10 ms tvisimrresponds to an output frame rate
of 100 frames/second. Since the speech file is @2 seconds, the number of frames
and consequently the parameter vectors performed vectors.

The observation structure describes the structioaitput data. One can see that
the 13 components of the parameter vectors arggobinto 12 MFCC coefficients and
the last component is the energy compon@gtFinally, for this example, the values of
the MFCC coefficients for three frames are dispthye
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Some aspects have to be considered before progddsiCC vectors in Matlab.
The output MFCC files place th&, component in the last position of the parameter
vector. When the MFCC vectors are processed tmgooent has to be changed to the
first position into the parameter vector. In thbesthand, it is worth highlighting that
HTK considers the first sample vector with indear@l Matlab does not have the index
zero and starts in index 1.

Another example of the output MFCC files can bevamn by using another
source waveform filesx37.wav:

HList -C hcopy.conf -0 -h -t -s 40 -e 41 sx37.wav

——————————————————————————————————— Jource: 3x3T.UAV --—---mm-mmmmmmmmmmmmmm oo

Sample Bytes: 2 Sample Kind:  WAVEFORM
Hum Comps: 1 Sample Period: £2.5 us
Num Samples: 36250 File Format: WAV
———————————————————————————————————————— Target —--—---——————
Sample Bytes: 52 Jample Kind:  MFCC D
Hum Comps: 13 Sample Period: 10000.0 us
Num Samples: 225 File Format: HTK
———————————————————————————————— (haervation Structure —------—----—--—--m—mmmmmo
X WFCC-1 MNFCC-Z NFCC-3  NFCC-4 NFCC-5 NFCC-g MFCC-7  NFCC-8  MFCC-S MFCC-10

MFCC-11 MFCC-12 o
——————————————————————————————————— Samples: 40-»41 -———————-mmmmm
40: -12.614 -£.304 -19.824 -19.633 5.511 -4.47¢ -&.925 -1.830 -3.798 11.280
-0.2987 -4.124 47,195
41: -7.308 -0.321 -11.791 -17.542 3.2e8 -13.308 -15.855 -8.029 -19.180 -5.943
-8.695 -5.36E 48,39

Energy Compaction within the MFCC Coefficients

As explained in Section 2.2.3, the MFCC coefficsertre the DCT-Il of the log-

spectral-energies at the centre frequencies ofniklefilterbank. The Fourier Transform

of a speech frame is transformed to a mel-frequestaye by the filterbank analysis
with M channels. The output of this process isNhig-spectral-energies at mel centre
frequencies. The DCT-II allows an energy compaciits lower coefficients. So, the

use of the DCT-II makes that the M filterbank chaelsncan be reduced to L (L<M)

MFCC coefficients. This truncation into the ceplstamponents allows recovering a
smoothed spectral representation in which phorigtigerelevant detail has been

removed.
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Despite of the MFCC computation was performed lsng 24 filterbank
channels (see configuration parameters in AppeBjjxa mel power spectrum of a
speech frame can be computed from its 13 MFCCs digguthe inverse DCT-II
(functionidct_htk.menclosed in Appendix D). This is illustrated imgéie 28.
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Figure 28: Mel power spectrum of one speech fraompared with its magnitude spectrum (frame 115
from sal.way

Figure 28demostrates that the mel power spectrum is the s$radaospectral
envelope of the magnitude spectrum of the speechdr In this case, the harmonics of
the speech spectrum are flattened because ofethuetion of the frequency resolution
performed wtihin mel-filterbank analysis and, thentation of higher-order coeffcients
in the DCT-II computation.

4.3. ANALYSISOF TWO APPROACHESFOR THE GENERATIVE MODEL

Section 3.2.1 deals the computation of the LPCfuoefits from the MFCC vectors. It
was seen that the LPC coefficients come from thietisa of the Yule Walker
equations. They can be solved by the autocorrelatieethod, for which the
autocorrelation coefficients must be calculated.tHis point, two approaches were
proposed to estimate the autocorrelation coefftsibased on the IFT of the mel power
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spectrum. These approaches were implemented @gbeathmsmfcc2spectrum.rand
mfcc2spectrum?2.ifsee code in Appendix D).

In this section, the results of both algorithmd i exposed and discussed. So,
the power spectrum computed from the LPC parametersompared with the mel
power spectrum will be plotted by executing botpalthms.

Figure 29 is obtained by executing tmefcc2spectrum.mfunction. This
algorithm makes a linear interpolation of the mewpr spectrum to get samples
uniformly spaced in a linear frequency scale ineortb use the inverse Fourier
Transform of Eq. (22).

Magnitude (dB)

0
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency (HZ)

Linearized Mel Spectrum
LP Power Spectrum from MFCCs

Figure 29: LP power spectrum computed from MFCCgdayerative model Infcc2spectrum.rfframe
115 fromsal.way

One can see that the LP power spectrum computed M&CC coefficients is
approximated to the mel power spectrum. Both oftlhepresent the spectral envelope
of the magnitude spectrum of the speech frame.

Following Figure 30 is obtained by executing th&cc2spectrum2.rfunction.
This algorithm applies the inverse Fourier Transfaf Eq. (23) directly to the mel
power spectrum at frequencies on a mel scale cemsgltheir bandwidth.
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Figure 30: LP power spectrum computed from MFCCgdyerative model 2nfcc2spectrum2.m
(frame 115 fromsal.wav)

The results are equal to the ones obtained weHitkt algorithm, since both of
them can be considered as a linear interpolationvhich, finally, the mel power
spectrum samples have to correspond to a deterrfriegaency separation.

The algorithm oimfcc2spectrum?2.ns faster than thenfcc2spectrum.nirhat is
because of, the first one computes the autocoielabefficients of one frame in one
matrix multiplication; whereas, the second one toasmake one linear interpolation for
each equally-spaced frequency sample. That is Wheyresults of the generative model
will be performed by using thafcc2spectrum?2.@lgorithm.

4.4. SPECTRAL DISTANCE MEASURE

As was introduced before, the goal of the genezatiodel is to implement a system or
method to be able to synthesize speech from its ®p&rametric representation. The
goodness of the synthesized speech can be medsucednputing the spectral distance
between the original signal and the one producath the MFCC coefficients. For that,
the two spectral models used were the one obtafremd the LPC coefficients
computed from the original signal and the one olet@difrom the LPC coefficients
computed from the MFCCs.
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The spectral distance measure and Lisspectral norm r(ns log spectral
distance were explained in Section 2.3. An algorithm toaswwe thespectral distance
between two spectral models was implemented in atlablafunction called
spectral_distance.iand it is enclosed in Appendix Ehe algorithm follows Eq. (16)
and Eq. (17).

Several examples will be given to show a graphsoahparison between the two
spectral models.

Magnitude (dB)

‘ 1
1000 2000 3000 4000 5000 6000 7000 8000
Frequency (Hz)

Mel Spectrum
LP Power Spectrum from MFCCS
— LP Power Spectrum from speech waveform

Figure 31: Comparison of spectral models from ttigimal speech waveform and from the MFCC
vectors (fame 115 frorsal.way

It was said before that the LP power spectrum cdetpfrom speech waveform
as well as from MFCCs coefficients, representedspiextral envelope of the magnitude
spectrum of the speech frame. However, in FigureoB& can see that the harmonics or
formants peaks are marked in the LP power spectrom speech waveform whereas,
they are more flattened when is computed from theCRIs coefficients. This gives a
spectral distortion between them of 0.87dB.

Another example can be shown by using $l&8.mfile. Figure 32 illustrates
the comparison of the LP spectrums whose speastartion computed is of 0.35 dB.
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Magnitude (dB)
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Figure 32: Comparison of spectral models from tigimal speech waveform and from the MFCC
vectors (fame 133 fromsi648.way

The generative model can be evaluated more inl éigt@omputing the spectral
distance for every frames of each speech wavefdemHence, it is possible to give an
overview of the minimum and maximum spectral diseanthat were computed by the
model. Also, the mean spectral distortion of evepgech file is calculated. Table 3
shows the results of these measures.

Table 3: Study of spectral distortion computed lemvLP power spectrum from original waveform
speech signal and the one computed from MFCCs

Sourcewaveform | Minimum spectral | Maximum spectral M ean spectral
files distortion (dB) distortion (dB) distortion (dB)
sal.wav 0.11 2.09 0.76
sa2.wav 0.14 2.11 0.67
si648.wav 0.09 1.67 0.57
si1027.wav 0.11 2.12 0.62
sil657.wav 0.09 1.71 0.67
sx37.wav 0.10 2.18 0.58
sx127.wav 0.14 2.56 0.68
sx217.wav 0.11 1.83 0.77
sx307.wav 0.16 2.01 0.61
sx397.wav 0.10 1.93 0.72
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From the above table, one can extract that he numinspectral distortion
computed is 0.09 dB and the maximum is 2.56 dB.tBe,results of the generative
model depend of the utterances which have to béhegized. If one computes the mean
of the mean spectral distortion of every speeah ¢hn give a mean estimate of the
generative model. Doing that, it is possible to fagt the generative model has a
spectral distortion mean of 0.66 dB. This mean ddpestrongly on the speech data that
were used for the experimental results.

45. STUDY OF THE INTELLIGIBILITY OF THE RECONSTRUCTED
SPEECH

This section is proposed to give an interpretatmhn the intelligibility of the
reconstructed speech.

The speech synthesis is based on the implememiattia source-filter model for
speech production (Figure 7). As explained in $ec8.2.2, for the generative model
implementation, the filter was estimated by using LPC coefficients computed from
the MFCCs; and the excitation signal was modeleddeced and unvoiced sounds.

After, adding to the generative model, two testrevproposed to synthesize
speech from other two different excitation signals:

» Predictor error signal or residual signal of theCL&nalysis of the waveform
speechtestl.mn Appendix F).

« A mixed model for voiced and unvoiced sounds basedthe pitch
information of the original waveform speec¢hst2.min Appendix F).

Thus, this section is divided into two. The fioste presents an interpretation of
the intelligibility of the reconstructed speech whenvoiced and voiced excitation
signals are used; and in the second one, the sesluthe tests for different excitation
signals are discussed.

4.5.1. Speech Synthesisfrom Voiced and Unvoiced Excitation Signals

The excitation signal models unvoiced sounds amdam noise and the voiced sounds
as a pulse train repeating at a fixed constantpiitie difference in the synthesized
speech, when it is computed from the two diffextitations, will be discussed in this

section.

The speech synthesis was performed from its ME€€esentation; in which
much information is lost in the extraction proceSs, as said in the previous sections,
the recovered spectrum is smoothed since the hacsand formants of the speech
signal are flattened in that process. This fact entltht resulting synthesized speech
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sound as monotone voice. Moreover, the subjectinadityy of the speech was limited by
annoying buzzes, thumbs and tonal noises.

In the experimental work, when the speech was sgibd from a white
random noise (all unvoiced excitation), it soundmwspered voice. Thumps could be
perceived due to the erroneous noise burst withioed segments. Whereas, when the
speech was synthesized from a pulse train (all eebiexcitation), it seemed to be
affected by a tonal noise, perceived as hums omidgosounds which degraded the
subjective quality. In both cases, the resultinge tended to be a monotone voice, as
was concluded above. This perceived noise andrticgianade that the resulting voice
was not clearly understandable.

In order to compare the resulting synthesized dpethe LPC filter was also
implemented from the LPC coefficients of the orajispeech waveform. In this case,
the speech synthesized sound much better and textgable. The following Figures,
33 and 34, show the synthesized speech waveforusibg the LPC filter implemented
from the LPC coefficients computed from MFCC vestoas compared to the one
resulting by using the LPC filter implemented frahee LPC coefficients from the
original speech waveform. The original speech vi@we signal is plotted in Figure 24.
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Figure 33: Synthesized speech from an unvoicedadian signal when the filter is implemented by (a)
the LPC coefficients computed from the originalesgfewaveform and (b) the LPC coefficients computed
from the MFCCs vectorsél.wav filg
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Figure 34: Synthesized speech from an voiced diantgignal when the filter is implemented by (2@ t
LPC coefficients computed from the original speeeveform and (b) the LPC coefficients computed
from the MFCCs vectorsél.wav filg

One can see, from the above figures, a greatertio is presented when the
filter model is implemented from the MFCC represdion. The synthesized speech is
clearer when is performed from the LPC coefficietitan when is performed by
transforming the MFCCs into LPC coefficients thatrg out more approximations.
However, it has to be emphasized that the MFCCesgmtation contains more
perceptually information than the LPC coefficients.

Further on, Figures 35 and 36 show the spectrag@nthe synthesized speech
waveforms as compared with the spectrogram of tiggnal speech waveform.
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Figure 35: Spectrogram of (a) original speech wanref and synthesized speech from (b) unvoiced
excitation signal and (c) voiced excitation sigridie filter is implemented with LPC parameters
computed form original speech waveforsal.way
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excitation signal and (c) voiced excitation sigridie filter is implemented with LPC parameters
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As was said in Section 3.2, the delta coefficidatsthe LPC coefficients were
added in order to achieve a better recognitiongoerdnce. These coefficients were
approximated by a linear interpolation as descrilme&ection 3.2.3. It was expected
that the incorporation of these features causeibstibjective quality or intelligibility
of the synthesized speech. However, the improvenuenid not be noted. The
synthesized speech sound like the one computed amith LPC coefficients or even
worse in some cases. This can be due to both riererf implementation of the LPC
filter for delta coefficients or a poor developmémtthe approximation method of the
delta coefficients.

4.5.2. Speech Synthesisfrom Different Excitation Signals
As presented above, the two excitation signalsgseg were:

» Predictor error signal or residual signal of theCL&nalysis of the waveform
speech testl.min Appendix F). The residual signal is obtainedewtthe
original speech signal is filtered through the L#l@r, whose coefficients
are those that minimize the prediction error (sigeiie 19)

« A mixed model for voiced and unvoiced sounds basedthe pitch
information of the original waveform speec¢hst2.min Appendix F).

For the first test, the predictor error or residsignal was calculated by using
the Matlab function callegroclpc.mfrom Auditory Toolbox. It returns the predictor
error for every frame of the speech signal. Thelmgized speech from this excitation
signal could be heard more clear although not aataral voice. This is because of the
speech is synthesized frommeal excitation signal.

For the second test, the estimate of the pitdhefsignal was also calculated by
the proclpc.mfunction; whose algorithm for that is based ordiiiy the peak in the
residual's autocorrelation for each frame.

The frames of the speech signal were classifital voiced frames or unvoiced
frames considering the value of the pitch estincat@puted. Frames with a pitch value
of zero were considered as unvoiced frames; inother hand, frames with different
values of zero were labeled to voiced frames.

Thus, knowing the pitch of the signal on each fathey could be classified as
voiced or unvoiced frames and then the appropvaieed or unvoiced excitation signal
must be used for each frame. That reduces the tamsé¢ or thumps that appear when
unvoiced frames are synthesized from voiced segmamd vice versa. Anyway, this
synthesized speech sound more closely to the aiaéneld from all unvoiced excitation
signal.
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The work developed in this Master Thesis consisfetthe implementation of a speech
generative model; whereby the speech is synthesinedrecovered from its MFCC
representation. Synthesizing speech from paramegpiesentations allows performing
an investigation on the intelligibility of the sym@sized speech as compared to natural
speech.

The first part of the implementation work consist# extracting the MFCCs
feature vectors from a set of speech waveform.fileshe HTK Software, the feature
parameterization of speech was performed accorttirtpe parameter settings in the
configuration file. After, the generative model ilmented the conversion chain from
HTK-generated MFCC vectors to speech reconstruction

During the MFCC extraction process, much relewaformation was lost due to
reduction of the spectral resolution in the filenk analysis and the next truncation into
the MFCC components. However, that allowed recogera smoothed spectral
representation in which phonetically irrelevantailebhad been removed. For that, the
log mel power spectrum could be computed from i80@s by an inverse DCT. This
mel power spectrum actually represented the eneeldpthe magnitude spectrum,
where the harmonics appeared flattened.

In the generative model implementation was necgssa derive LPC
coefficients from MFCC vectors. In one hand to iempént the source-filter model for
speech production; and in the other hand, to coenpuspectral model that could be
compared with the one derived directly from themal speech waveform.

Previously to the subjective evaluation of theegative model, the goodness of
the synthesized speech was measured by compuengptctral distance between the
original signal and the one produced from the MF&efficients. The two spectral
models used were the one obtained from the LPCficeeits computed from the
original signal, and the one obtained from the L&sefficients computed from the
MFCC coefficients. In this evaluation was extractdtht the minimum spectral
distortion computed was of 0.09 dB and the maxinama was of 2.5 dB. A spectral
distortion mean of the generative model was caledlavith a result of 0.66 dB.
Although it seems a good result, even regardedaasgarent quality, the final results
obtained within speech synthesis indicated a stabsigprtion which avoided the entire
intelligibility of reconstructed speech.

Both spectral models were also compared grapkic#ls the mel power
spectrum, both LP spectral models representednedape of the magnitude spectrum.
Whereas, the LP power spectrum computed from MFQ@Efficients was really
approximate to the smoothed mel power spectrumibhgower spectrum computed
from the LPC coefficients of the original signalosled the representation of the
formants peaks.
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The source-filter model for speech production waslemented; where the filter
was estimated by the LPC coefficients computed ftben MFCCs vectors, and the
excitation signal was modeled for voiced and unedisounds.

In the experimental work, when the speech washggited from a white
random noise (all unvoiced excitation), it soundwsspered voice. Thumps could be
perceived due to the erroneous noise burst withioed segments. Whereas, when the
speech was synthesized from a pulse train (all eebiexcitation), it seemed to be
affected by a tonal noise, perceived as hums onidgosounds that degraded the
subjective quality. In both cases, the resultingcedended to be a monotone voice
because of the smoothing of the harmonics and faisna the LP power spectrum
computed from the MFCC coefficients. This perceiveise and distortion made that
the resulting voice was not clearly understandable.

In order to compare the resulting synthesized dpethe LPC filter was also
implemented by the LPC coefficients of the origispkech waveform. In this case, the
speech synthesized sound much better and undemblandHowever, it has to be
emphasized that the MFCC representation containg perceptually information than
the LPC coefficients.

Delta coefficients for the LPC coefficients werddad in order to achieve a
better recognition performance. It was expected ttia incorporation of these features
caused better subjective quality of the synthesgeekch. However, the synthesized
speech sound like one computed with only LPC coefiiis, even worse in some cases.
This could be due to both non efficient implementatof the LPC filter for delta
coefficients or a poor development in the approgtiom method of the delta
coefficients.

Finally, two tests were proposed to study the tsysized speech from other
excitation signals. In the first one, the excitatgignal used was the predictor error or
residual signal obtained within the LPC analysishef waveform speech. In the second
one, the excitation signal used consisted of a thixedel for voiced and unvoiced
sounds based on the pitch information of the oaliwaveform speech

For the first test, the synthesized speech coeltidard more clear although not
as a natural voice. This was because of the speesh synthesized from eeal
excitation signal more closely for achieving thgimral speech waveform.

For the second test, the frames were classifia@ed or unvoiced frames and
then, synthesized from the appropriate voiced ovoioed excitation signal. That
reduced the tonal noise or thumps that appearedn wiresoiced frames were
synthesized from voiced segments and vice versgwAy, this synthesized speech
sound more closely to the one obtained from all oiced excitation signal.
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APPENDIX A: TEXTSOF UTTERANCES OF SPEECH DATA

1) sal.wav: She had your dark suit in greasy wash water all year.

2) sa2.wav: Don’t ask me to carry an oily rag like that.

3) si648.wav: A sailboat may have a bone in her teeth one minute and lie
becalmed the next.

4) sil027.wav: Even then, if she took one step forward he could catch her.

5) sil657.wav: Or borrow some money from someone and go home by bus?

6) sx37.wav: Critical equipment needs proper maintenance.

7) sx127.wav: The emperor had a mean temper.

8) sx217.wav: How permanent are their records?

9) sx307.wav: The meeting is now adjourned.

10) sx397.wav: Tim takes Sheila to see movies twice a week.
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APPENDIX B: CONFIGURATION FILE hcopy.conf

SOURCEKIND = WAVEFORM
SOURCEFORMAT = WAVE
SOURCERATE = 625

ZMEANSOURCE = FALSE
TARGETKIND = MFCC_O
#TARGETFORMAT = HTK
TARGETRATE = 100000

#SAVECOMPRESSED = TRUE
#SAVEWITHCRC = TRUE

WINDOWSIZE = 250000.0
USEHAMMING = TRUE
PREEMCOEF = 0.97

#USEPOWER = FALSE
NUMCHANS = 24
#LOFREQ =-1.0
#HIFREQ =-1.0

#LPCORDER =12
#CEPLIFTER = 22
#NUMCEPS = 12

#RAWENERGY = TRUE
#ENORMALISE = TRUE
#ESCALE = 1.0
#SILFLOOR = 50.0

#DELTAWINDOW = 2
#ACCWINDOW =2
#SIMPLEDIFFS = FALSE

#USESILDET = TRUE
#SPEECHTHRESH = 0.0
#SILTHRESH = 0.0
#MEASURESIL = TRUE

#OUTSILWARN = TRUE
#SILMEAN = 0.0
#SILSTD = 0.0
#AUDIOSIG =0
#V1COMPAT = FALSE
#VQTABLE =""
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APPENDIX C: GENERATIVE MODEL

function  generative_model(filewav,filehtk,nf,model)

L

% Name: generative_model.m

% Author: Noelia Alcaraz

%

% Description: Implement the conversion chain from HTK-generated
% MFCC representations to generat ive model.

L

% Set processing parameters

fs=16000; %Frequency samples

Nshift=160; %Frame period of 10ms --> 10ms*16KHz=160 samples

Nfrm=400; %Frame length of 25 ms --> 25,5=16jHz=400 samples

preem=0.97; %Pre-emphasis coefficient

p=12; %LPC Filter order.

M=24; %Number of filterbank channels

Nfreq=256; %Number of frequency points for spectral representa tion

f=fs*(0:Nfreq-1)/(2*(Nfreq-1));

%LPC Analysis and representation from the original speech waveform.
[x,fs,X,aCoef,G,LPspectrum]=waveform_analysis(file wav,nf);

%Generative Model:
%Read the MFCCs HTK file (mfcc vectors).
%Convert the MFCCs to Power Spectrum.

%Generative Model 1:
if (model==1)
%Find samples of Magnitude Mel Spectrum at uniforml y spaced linear
%frequencies by linear interpolation method: (Syy)
%Produce the LPC parameters (g,aa) and the Power Sp ectrum (Sxx).
[mfce,Syy,Sxx,aa,g]=mfcc2spectrum(filehtk,M,p,n f);
figure
plot(f,10*log10(abs(Syy(:,nf))))

%Generative Model 2:
else
%0Obtain the LPC parameters (g,aa) from MFCCs by app lying the IFFT
%to the Mel Spectrum on mel scale
%( non-equally spaced linear frequencies)
%considering the bandwidth at each mel frequency.

%Obtain the Power Spectrum (Sxx) from these LPC coe fficients.
[mfcc,ymel,fsamp,Sxx,aa,g]=mfcc2spectrum2(fileh tk,M,p,nf);
figure

plot(fsamp,10*log10(abs(ymel(:,nf))))
end

%Plot Power Spectrum

hold on

plot(f,Sxx(:,nf), ‘9" )
plot(f,LPspectrum(:,nf), ™)
grid

xlabel( 'Frequency (Hz)' )
ylabel( 'Magnitude (dB)' )
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legend( 'Mel Spectrum’ , 'LP Power Spectrum from MFCCS'
Spectrum from speech waveform’ , 'Location’

%Implementation the LPC Filter.
%The excitation signal is filtered to obtain the sp

%21. Speech signal from LPC analysis of original wav
[sw,sv]=LPC filter(G,aCoef',x,Nshift,Nfrm,p,2);

%2. Speech signal from LPC from the generative mode
[sw2,sv2]=LPC filter(g,aa,x,Nshift,Nfrm,p,2);

%3. First Time derivatives of LP parameters of gene
[gd,ad]=deltacoef(g,aa);
[sw2_d,sv2_d]=LPC_filter(gd,ad,x,Nshift,Nfrm,p,1);

% de-emphasize
sw=filter(1,[1 -preem],sw);
sv=filter(1,[1 -preem],sv);

sw2=filter(1,[1 -preem],sw2);
sv2=filter(1,[1 -preem],sv2);

sw2_d=filter(1,[1 -preem],sw2_d);
sv2_d=filter(1,[1 -preem],sv2_d);

%Pay
soundsc(sw,fs);
soundsc(sv,fs);

soundsc(sw2,fs);
soundsc(sv2,fs);

soundsc(sw2_d,fs);
soundsc(sv2_d,fs);

, 'LP Power

, 'SouthOutside' )

eech signal.

eform.

|1lor2

rative model 1 or 2
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APPENDIX D: FUNCTIONSUSED IN THE GENERATIVE MODEL

Appendix D.1: waveform_analysism
function  [x,fs,X,aa,G,Sxx]=waveform_analysis(filesignal,nf)

O/ffmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmemmee
% Name: waveform_analysis.m

% Author: Noelia Alcaraz

%

% Description: Represent the Frequency Respons e (X) of the frame
% number nf and is compare with t he Power Spectrum
% (Sxx) of the such frame obtaine d from LPC analysis
% of the original speech waveform .

L
%Data from the configuration file of HTK to generat e the MFCC_CO
Nfreq=256; %number of frequency points in spectral representat ion
p=12; %LPC analysis order

Tfrm=25; %frame size for analysis (ms)

Tshft=10; %frame shift for analysis (ms)

preem=0.97; %pre-emphasis coefficient

%Read the speech signal

[x,fs,wmode,fidx]=readwav(filesignal);

Nfrm=Tfrm*fs/1000; %number of samples of frame size (400)
Nshft=Tshft*fs/1000; %number of samples of frame shift (160).

% Pre-emphasis filter.
preem=0.97;
xpre=filter([1, -preem], 1, x);

%Frame blocking.

%There is an overlape of 15ms (400-160=240 samples)
frames=enframe(xpre,Nfrm,Nshft);

frames=frames"; %one frame per column
[Iframe,numframes]=size(frames);

%Entire process is applied over each frame.

%Hamming Windowing
xw=[];
w=hamming(lframe);
for i=l:numframes

xw(:,i)=frames(:,i).*w;
end

%fft of each frame
X=10*log10(abs(rfft(xw,510,1)));

%LPC analysis of original speech waveform.
Sxx=[];
[aa,e,P,G]=proclpc(x,fs,p, Tshft, Tfrm,preem);
for i=l:numframes
dbspec=lpcar2db(aa(:,i),Nfreq-2);
dbspec=dbspec+10*log10(G(i));

Sxx=[Sxx dbspec];

end
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t=0:1/fs:(length(x)-1)/fs;
tframe=linspace(0,0.25,lframe);
f=fs*(0:Nfreq-1)/(2*(Nfreq-1));

%1. Plot Speech Waveform Signal

figure

subplot(2,1,1)

plot(t,x)

title(  'Original speech waveform' )
xlabel(  'Time (s)' )

ylabel( 'Magnitude’ )

grid

subplot(2,1,2)

plot(t,xpre)

title(  'Original speech waveform after pre-emphasys filter ")
xlabel(  'Time (s)' )

ylabel(  'Magnitude’ )

grid

%2. Plot the pre-processing steps of the selected f rame nf
figure

subplot(2,1,1)

plot(tframe, frames(:,nf))

title(sprintf( 'speech waveform of frame %d' .nf));
xlabel(  'Time (s)' )

ylabel( 'Magnitude’ )

grid

subplot(2,1,2);

plot(tframe,xw(:,nf))

titte(  'Hamming windowed frame' );

xlabel(  'Time (s)' )

ylabel( 'Magnitude’ )

grid

%3. Plot the Power Spectrum of the selected frame n f

figure

plot(f,X(:,nf));

hold on

plot(f,Sxx(:,nf), ‘9" )

grid

titte(  'Power Spectrum'’ )

xlabel(  'Frequency (Hz)' )

ylabel( 'Magnitude (dB)' )

legend( 'Power Spectrum (rfft)' , 'LP Power Spectrum' , 'Location’ ,
'SouthOutside' )

Appendix D.2: mfcc2spectrum.m
function  [mfcc,Syy,Sxx,aa,g]=mfcc2spectrum(filehtk,M,p,nf)

L

% Name: mfcc2spectrum.m

% Author: Noelia Alcaraz

%

% Description: Calculate the Power Spectrum fr om MFCCs vectors
% Input parameters:

% M -->  Number of filterbank channels

% p --> Order of LPC analysis

L o
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%Initial values

fs=16000; %sample frequency

Nfreq=256; %number of frequency points in spectral representat ion
K=256; %number of mel-frequency points in spectral reconst ruction
%0Obtaining the Mel-Frequency Cepstral Coefficients from HTK program.
[d,fp,dt,tc,t]=readhtk(filehtk);

mfcc=d";

COs=mfcc(end,:);
mfcc=[CO0s; mfcc(l:end-1,:)];
[ncof,nframes]=size(mfcc);

Syy=zeros(Nfreq,nframes);

%Convert MFCCs to Log Magnitude Mel Spectrum
const=log(32768)*sqrt(M/K);

coeffadj=0.5*ncof/M;
ylogmel=coeffadj*idct_htk(mfcc,K)-const;

%Calculate Mel Power Spectrum
ymel=exp(2*ylogmel);

%K equally-spaced samples on mel scale converted to linear frequency
scale
fent=mel2frq(frq2mel(fs/2)*((1:K)-0.5)/K);

%Nfreq equially-spaced points on linear frequency s cale.
flinear=linspace(0,fs/2,Nfreq);

%Find the value of Mel Power Spectrum of frame j fo r samples
%equally-spaced on linear frequency scale.

for i=1:Nfreq

dif=fcnt-flinear(i);

[value,pos]=min(abs(dif));

value=dif(pos);

if (flinear(i)<fcnt(1))
ylinear(i)=ymel(1,j);

elseif  (flinear(i)>fcnt(end))
ylinear(i)=ymel(end,j);

elseif  (value==0) %fcnt(pos)=flinear(i)
ylinear(i)=ymel(pos,));
elseif  (value<0) %flinearl(i) --> [fmel(pos),fmel(pos+1)]
ylinear(i)=interp1([fcnt(pos),fcnt(pos+ ,
[ymel(pos,j),ymel(pos+1,j)], flinear(i));
else %flinearl(i) --> [fmel(pos-1),fmel(pos)]
ylinear(i)=interp1([fcnt(pos-1),fcnt(po s)],
[ymel(pos-1,j),ymel(pos,j)], flinear(i));
end
end
Syy(:,j)=ylinear;
end
%The Autocorrelation Coefficients are obtained appl ying the IDFT over
%Mel Power Spectrum on linear frequency scale.
r=irfft(Syy);
[aa,g]=levinson(r,p); %aa(nframes,p+1)
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%Calculate Power Spectrum
Sxx=zeros(Nfreq,nframes);

for i=1:nframes
ff=rfft(aa(i,:).",2*(Nfreqg-1)).";
Sxx(:,i)=-10*log10((1/g(i))*real(ff.*con|(ff)));
end

%PIlot Spectra for the selected frame nf
%21.Plot Linearized Mel Spectrum
figure
plot(flinear,10*log10(abs(Syy(:,nf))))
ylabel( 'Magnitude (dB)' )
xlabel(  'Frequency (HZ)' )

hold on

grid

%2.Plot Spectrum produced by transforming MFCCs to LP coefficients

plot(flinear,Sxx(:,nf), 'g'

legend( ‘Linearized Mel Spectrum’ , 'LP Power Spectrum from MFCCs' ,
‘Location’ , 'SouthOutside' )

Appendix D.3: mfcc2spectrum2.m

function  [mfcc,ymel,fsamp,Sxx,aa,g]l=mfcc2spectrum2(filehtk, M,p,nf)

L

% Name: mfcc2spectrum2.m

% Author: Noelia Alcaraz

%

% Description: Calculate the Power Spectrum fr om MFCC vectors
L

% Initial values

fs=16000; %sample frequency.

Nfreq=256; %number of frequency points in spectral representat ion.
K=256; %number of mel-frequency points in spectral reconst ruction
%Obtaining the Mel-Frequency Cepstral Coeficients f rom HTK program.
[d,fp,dt,tc,t]=readhtk(filehtk);

mfcc=d";

COs=mfcc(end,));
mfcc=[CO0s; mfcc(l:end-1,:)];
[ncof,nframes]=size(mfcc);

%Convert MFCCs to Log Magnitude Mel Power Spectrum
const=log(32768)*sqrt(M/K);

coeffadj=0.5*ncof/M;
ylogmel=coeffadj*idct_htk(mfcc,K)-const;

%Calculate Magnitude Mel Power Spectrum
ymel=exp(2*ylogmel);

%In order to obtain the LP coefficients from MFCCs, The IFFT will be
%applied to the mel spectrum over mel frequency sca le considering
%the bandwidth corresponding to each mel frequency.

%Find the size of the equisized mel bins in Hz
melbnd=(0:K)*frg2mel(fs/2)/K;
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fdelta=zeros(1,K);
for i=1:K
fdelta(i)=mel2frg(melbnd(i+1))-mel2frg(melbnd(i ));
end
fdelta=fdelta/(fs/2);
%Find the center frequency of the mel bins
melcnt=((1:K)-0.5)*frg2mel(fs/2)/K;
fsamp=mel2frg(melcnt);
%Calculate the inverse DFT transform matrix
A=cos(((0:K-1)*fsamp*(2*pi/fs)));
%Do the inverse transformation (weighted by bin siz e)
% to obtain the autocorrelation coefficients.
for i=1:nframes
r(;,i)=A*(fdelta".*ymel(:,i));
end
% Levinson recursion to obtain LP coefficients
[aa,g,K]=levinson(r,p);
% Calculate power spectrum
for i=l:nframes
ff=rfft(aa(i,:).",2*(Nfreq-1)).";
Sxx(:,1)=-10*1og10((1/g(i))*real(ff.*conj(ff))) ;
end

f=fs*(0:Nfreq-1)/(2*(Nfreq-1));

%PIlot Spectra for the selected frame nf

%1.Plot Magnitude Mel Spectrum

figure

plot(fsamp,10*log10(abs(ymel(:,nf))), ™)
ylabel( 'Magnitude (dB)' )

xlabel(  'Frequency (HZ)' )

hold on

%2.Plot Power Spectrum by converting the MFCCs to L P coefficients

plot(f,Sxx(:,nf), ‘9 )

grid

legend( 'Magnitude Mel Spectrum’ , ' LP Power Spectrum from MFCCs' ,
‘Location’ , 'SouthOutside' )

Appendix D.4: LPC _filter.m
function  [sw,sv]=LPC_filter(g,a,x,Nshift,Nfrm,p,mode)

O/ffmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmee
% Name: LPC_filter.m

% Author: Noelia Alcaraz

%

% Description: Implement source-filter model for speech production.
% Generate speech from the LP coeffi cients when

% excitation signal modulates voiced sounds, sw, and
% unvoiced sounds, sw.

% Input parameters:

% g --> Filter Gain

% a--> a(;,p+1)LP Coefficients

% X --> speech waveform.

% mode --> 1 filter is implemented by delta c oefficients.

% --> 2 filter is implemented by LPC coe fficients.

L

[nframes,ncoef]=size(a);

Appendix 71



Speech Analysis for Automatic Speech Recognition

%Unvoiced excitation (white noise)

Zi=zeros(p,1); %initial conditions
Zf=zeros(p,1); %final conditions
if mode==1

Nshift=Nshift/4;

shft=(Nfrm-Nshift)/2-2;

shft=round(shft/4);
else

shft=(Nfrm-Nshift)/2-2;
end

exw=randn(size(x,1)+Nshift,1);
=L
for i=l:nframes
[sw(j:j+shft),zf]=filter(g(i),a(i,:),exw(j:j+sh ft),Zi);
j=jrshft+1;
shft=Nshift-1;
Zi=Zf;
end

%Voiced excitation with fixed FO (pulse train)
Zi=zeros(p,1);

if mode==1
shft=(Nfrm-Nshift)/2-2;
shft=round(shft/4);
else
shft=(Nfrm-Nshift)/2-2;
end

exv=zeros(size(x,1)+Nshift,1);

for i=1:120:size(exv,1)
exv(i)=1;

end

=L

for i=l:nframes
[sv(j:j+shft),zf]=filter(g(i),a(i,:),exv(j:j+sh ft),Zi);
j=jtshft+1;
shft=Nshift-1;
Zi=Zf;

end

end

Appendix D.5: deltacoef.m
function [gd,ad]=deltacoef(g,a)
%

% Name: deltacoef.m
% Author: Noelia Alcaraz

%

% Description: Delta coefficients are the firs t time derivatives
% that can be obtained by polynom ial approximation
% (linear interpolation).

% e
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[nframes,ncoef]=size(a);

%The interpolation of the gain, g:
x=1:nframes;

xi=1:0.25:nframes;
gd=interp1(x,g,xi);

% gd will now have (N-1)*4-1 samples, i.e. that all original frames
% except the last one will need to be divided in 4 subframes; while
% for the last frame its gain value will be repeate d for 4 times.

gd=[gd gd(end) gd(end) gd(end)];

%Interpolation of the filter coefficients.

%First a conversion from autoregressive to reflecti on coefficients is
% needed to ensure the filter stability after the i nterpolation.
rf=Ipcar2rf(a); %rf(;,p+1) Reflection coefficients with rf(;,1)=1

%Interpolation of reflection coefficients
rfi=zeros(4*nframes,ncoef);

rfi(;,1)=1;

for i=2:ncoef

y=interp1(x,rf(;,i),xi);

rfi(;,i)=[y";rf(end, i);rf(end,i); rf(end,i)];
end

%Finally, convert the reflections to autoregressive coefficients.
[ad,arp,aru,gr]=Ipcrf2ar(rfi);

Appendix D.6: idct_htk.m

function  y=idct_htk(x,K)

O/ffmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmee
% Name: idct_htk.m
% Author: Noelia Alcaraz

%

% Description: Backward DCT as used by HTK (DC T-II)

% y=A"*D*x, where

% a(i,j)=sqrt(2/K)*cos(pi*(i-1)*( j-1/2)/K)

% and D is a diagonal matrix, dia g([0.51 ... 1)).

% Produces K log power spectrum s amples from the
% input cepstral vector x, which is a (Nx1) column
% vector

L o
N=size(x,1);

A=sgrt(2/K)*cos(((0:N-1)*((1:K)-0.5))*(pi/K));
D=diag([0.5 ones(1,N-1)]);
y=A"*D*x;
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APPENDIX E: SPECTRAL DISTANCE MEASURE

function  d2db=spectral_distance(LPspectrum,Sxx)

O/ffmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmemmee
% Name: spectral_distance.m

% Author: Noelia Alcaraz.

%

% Description: distance measure for speech rec ognition based on

% rms Log Spectral measure.

% Input parameters:(two spectral models)

% LPspectrum --> LP Power Spectrum from origi nal speech waveform
% Sxx --> LP Power Spectrum by transfo rming MFCCs into LP
% parameters

% Output parameters:

% d2db --> spectral distance or distort ion in dB.

L

[Nfreq,nframes]=size(Sxx);

%The error or difference between the spectra models
V=log(LPspectrum)-log(Sxx);

%In order to measure the distance between the spect ral models, the Lp
%norm is chosen. For p=2, the rms log spectral meas ure is defined by:

L2=sum(abs(V)."2)/(Nfreq);
d2db=sqrt(L2);

%As the spectra models are in db-spectra domain, th e spectral
%(distortion is obtained in dB.
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APPENDIX F: EXCITATION SIGNAL TEST

Appendix E.1: testl.m

function testl(filewav,filehtk,nf)

%
% Name: testl.m

% Author: Noelia Alcaraz

%

% Description: Modify the generative model usi

% signal the residual signal obta
% parameters from original wavefo
% Test will use generative model

%

%Data from the configuration file of HTK to generat

p=12; %LPC analysis order

Tfrm=25; %frame size for analysis (ms)
Tshft=10; %frame shift for analysis (ms)
preem=0.97; %pre-emphasis coefficient
M=24; %Number of filterbank channels

%Read the speech signal
[x,fs,wmode,fidx]=readwav(filewav);

%LPC analysis to get the residual signal
[aCoef,e,P,G]=proclpc(x,fs,p, Tshft, Tfrm,preem);
%e --> LPC residual. One column of fs*Tfrm samples
%the excitation or residual of the LPC filter for o

%MFCCs and LPC parameters for the LPC filter.
[mfcec,ymel,fsamp,Sxx,aa,g]=mfcc2spectrum2(filehtk,M
[ncof,nframes]=size(mfcc);

%Implementation LPC-filter (Modified)
Zi=zeros(p,1); %initial conditions
s_resid=[];
for i=1:nframes
[sre,zf]=filter(g(i),aa(i,:),e(:,i),Zi);
s_resid=[s_resid; sre];
Zi=Zf;
end

% de-emphasize
s_resid=filter(1,[1 -preem],s_resid);

% Play
soundsc(s_resid,fs);

Appendix E.2: test2.m

function test2(filewav,filehtk,nf)
%
% Name: test2.m

% Author: Noelia Alcaraz
%

ng as excitation
ined with LPC
rm signal.

e the MFCC_CO

representing
ne frame.

,p,nf);
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% Description: Modify the generative model usi ng as excitation
% signal one created from the pit ch information.
% Test will use generative model 2.
72
%Data from the configuration file of HTK to generat e the MFCC_CO
p=12; %LPC analysis order

Tfrm=25; %frame size for analysis (ms)

Tshft=10; %frame shift for analysis (ms)

preem=0.97;  %pre-emphasis coefficient

M=24; %Number of filterbank channels

%Read the speech signal

[x,fs,wmode,fidx]=readwav(filewav);

Nfrm=Tfrm*fs/1000; %number of samples of frame size
Nshft=Tshft*fs/1000; %number of samples of frame shift.

%LPC analysis to get the residual signal
[aCoef,e,P,G]=proclpc(x,fs,p, Tshft, Tfrm,preem);
%pitch - A frame-by-frame estimate of the pitch of the signal,
%calculate by finding the peak in the residual's au tocorrelation

%MFCCs and LPC parameter for the LPC filter.
[mfce,ymel,fsamp,Sxx,aa,g]=mfcc2spectrum2(filehtk,M ,p,nf);
[ncof,nframes]=size(mfcc);

%Implementation LPC-filter (Modified)
Zi=zeros(p,1); %initial conditions
shft=(Nfrm-Nshft)/2-2;
exw=randn(size(x,1)+Nshft,1); %unvoiced excitation
exv=zeros(size(x,1)+Nshft,1); %voiced excitation
for i=1:120:size(exv,1)
exv(i)=1;
end
=1
for i=1:nframes
if P(i)==
%unvoiced excitation
[s_pitch(j:j+shft),zf]=filter(g(i),aa(i,:), exw(j:j+shft),Zi);
else
%voiced excitation
[s_pitch(j:j+shft),zf]=filter(g(i),aad(i,:), exw(j:j+shft),Zi);
end
j=i+shft+1;
shft=Nshft-1;
Zi=Zf;
end

% de-emphasize
s_pitch=filter(1,[1 -preem],s_pitch);

% Play
soundsc(s_pitch,fs);
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