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Problem Description
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standard power spectrum estimate which is first subjected to a log-based transform of the
frequency axis (the mel transform), and then decorrelated using a modified discrete cosine
transform.

An interesting issue is how much information relevant to speech recognition that is lost in this
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ABSTRACT 

 

The classical front end analysis in speech recognition is a spectral analysis which 

parameterizes the speech signal into feature vectors; the most popular set of them is the 

Mel Frequency Cepstral Coefficients (MFCC). They are based on a standard power 

spectrum estimate which is first subjected to a log-based transform of the frequency axis 

(mel- frequency scale), and then decorrelated by using a modified discrete cosine transform. 

Following a focused introduction on speech production, perception and analysis, this paper 

gives a study of the implementation of a speech generative model; whereby the speech is 

synthesized and recovered back from its MFCC representations.  The work has been 

developed into two steps: first, the computation of the MFCC vectors from the source 

speech files by using HTK Software; and second, the implementation of the generative 

model in itself, which, actually, represents the conversion chain from HTK-generated 

MFCC vectors to speech reconstruction. 

In order to know the goodness of the speech coding into feature vectors and to evaluate 

the generative model, the spectral distance between the original speech signal and the one 

produced from the MFCC vectors has been computed. For that, spectral models based on 

Linear Prediction Coding (LPC) analysis have been used. During the implementation of the 

generative model some results have been obtained in terms of the reconstruction of the 

spectral representation and the quality of the synthesized speech. 
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This Master Thesis was developed at the Department of Electronics and 
Telecommunications (Faculty of Information Technology, Mathematics and Electrical 
Engineering) at NTNU University (Trondheim, Norway), from February 2009 to July 
2009. The Master Thesis was called Speech Analysis for Automatic Speech Recognition. 

 This Master Thesis is connected to the research project SIRKUS1. The aims of 
SIRKUS project is to investigate structures and strategies for automatic speech 
recognition; both in terms of what type of linguistic units it uses as the basic unit (today, 
phonemes, which are perceptually defined, are used), which acoustic properties to look 
for in the speech waveform, or which classifier to use (Hidden Markov Models (HMM) 
are predominantly used today). 

 The classical front end analysis in speech recognition is a spectral analysis 
which parameterizes the speech signal into feature vectors. The most popular set of 
feature vectors used in recognition systems is the Mel Frequency Cepstral Coefficients 
(MFCC). They are based on a standard power spectrum estimate which is first subjected 
to a log-based transform of the frequency axis; it results in a spectral representation on a 
perceptually frequency scale, based on the response of the human perception system. 
After, they are decorrelated by using a modified discrete cosine transform, which allows 
an energy compaction in its lower coefficients. 

 An interesting issue is how much relevant information related to speech 
recognition is lost in this analysis. Thus, this Master Thesis is concerned with 
synthesizing speech from different parametric representations (MFCCs and Linear 
Prediction coefficients), and to conduct an investigation on the intelligibility of the 
synthesized speech as compared to natural speech. 

 According to this aim, the five principal objectives of the Master Thesis are: 

1. Study speech analysis processing and theories based on speech production 
and speech perception.   

2. Investigate on the implementation of MFCC computation in the Hidden 
Markov Toolkit (HTK), a standard research and development tool for HMM-
based speech recognition. 

3. Develop a speech generative model based on the implementation of the 
conversion chain from HTK-generated MFCC representations to speech 
reconstruction. 

4. Employ objective measures for an intermediate evaluation of the generative 
model. 

5. Present a subjective interpretation of the intelligibility of the synthesized 
speech. 

 

                                                 
1 More information: www.iet.ntnu.no/projects/sirkus 
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 All investigation works crash often with certain limitations which avoid a deeply 
study of the results obtained. In this Master Thesis, the main limitation has been the 
ignorance of the characteristics of source speech data which could make the recognition 
performance more difficult. In the other hand, the audio system used for listening 
synthesized speech was the audio system of a simple commercial laptop; so, slight 
differences within synthesized speech could not be identified.  

 To carry out of this Master Thesis, the report has been divided into five sections 
briefly described below. 

 The first one, in which the reader is, introduces the Master Thesis, its motivation 
and its objectives and limitations. 

 The documentation of this report starts in the second section. It is a presentation 
of the theoretical concepts in speech production, perception and analysis. Thus, this 
theoretical section pretends to give an essential background about the speech analysis 
involved in recognition tasks, in order to understand the basic principles in which the 
procedures and implementations carried out during this Master Thesis are based on. 

 The implementation of the speech generative model is explained in section three. 
This includes an investigation on the implementation of the MFCC computation in 
HTK, and a thorough explanation of the implementation of the generative mode, 
making relationships with the based theories.  

 Later, the results extracted during the implementation of the generative model 
are analyzed in section four. Also, an objective measure for intermediate evaluation of 
the generative model is performed. 

 Finally, the conclusions are drawn in section five.  



 

 

 

 

 

 

 

 

 

 

 

2. THEORETICAL CONCEPTS FOR SPEECH 
ANALYSIS 
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The theoretical section pretends to give an essential background about the speech 
analysis involved in recognition tasks, in order to understand the basic principles in 
which the procedures and implementations carried out during this Master Thesis are 
based on. 

The theoretical section is divided into three sections. In the first one, the speech 
signal and its characteristics are described; the second one is an introduction to front-
end analysis for automatic speech recognition, where the important feature vectors of 
speech signal are explained; and the third is an approach of distance measures based on 
spectral measures for speech processing. 

 

2.1. THE SPEECH SIGNAL 

A brief introduction to how the speech signal is produced and perceived by the human 
system can be regarded as a starting point in order to go into the field of speech 
recognition. 

 The process from human speech production to human speech perception, 
between the speaker and the listener, is shown in Figure 1.  

 

Figure 1: Human speech communication (Holmes & Holmes, 2001) 

 

 Speech recognition systems try to establish a similarity to the human speech 
communication system.  A source-channel model for a speech recognition system is 
illustrated in Figure 2, proposed by Huang et al. (2001). 

 

Figure 2: Source-channel model for a speech recognition system (Huang et al., 2001) 
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  The different elements from the human communication system are related below 
to the modules or components of the source-channel model, giving a short explication 
of how human speech communication and speech recognition systems are performed. 

 The aim of human speech communication is to transfer ideas. They are made 
within the speaker’s brain and then, the source word sequence W is performed to be 
delivered through her/his text generator. The human vocal system, which is modeled by 
the speech generator component, turns the source into the speech signal waveform that 
is transferred via air (a noisy communication channel) to the listener, being able to be 
affected by external noise sources. When the acoustical signal is perceived by the 
human auditory system, the listener’s brain starts processing this waveform to 
understand its content and then, the communication has been completed. This 
perception process is modeled by the signal processing and the speech decoder 
components of the speech recognizer, whose aim is to process and decode the acoustic 
signal X into a word sequence Ŵ, which is hopefully close to the original word 
sequence W (Huang et al., 2001). 

 Thus, speech production and speech perception can be seen as inverse processes 
in the speech recognition system. 

 

2.1.1. Speech Production 

As said before, it is important to know and to understand how humans generate the 
speech. Since a speech generative model, in addition to speech production knowledge, 
can itself form a useful basis of speech synthesis system. In this way, a schematic 
diagram of the human speech production apparatus is illustrated in Figure 3. 

 

Figure 3: Human speech production apparatus 
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 Speech is produced by air-pressure waves emanating from the mouth and the 
nostrils of a speaker, as it is defined by Huang et al. (2001). 

 The main organs involved into the speech production process are the lungs, 
larynx, nose and various parts of the mouth. The air expelled from the lungs is 
modulated in different ways to produce the acoustic power in the audio frequency range.  
After, the rest of the vocal organs, such as vocal cords, vocal tract, nasal cavity, tongue, 
and lips, modify the properties of the resulting sound to produce the speech waveform 
signal. These properties can be principally determinate thanks to the acoustical 
resonance process performed into the vocal tract. The main resonant modes are known 
as formants, being the two lowest frequency formants the most important ones in 
determining the phonetics properties of speech sounds. 

 This resonant system can be viewed as a filter that shapes the spectrum of the 
source sound to produce speech (Holmes & Holmes, 2001). This is modulated by 
source-filter models of speech production. 

 

Source-filter Models of Speech Production 

The source-filter model consists of an excitation signal that models the sound source, 
e(n); passing through all-pole filter2, h(n); to produce the speech signal, s(n); as one can 
see in Figure 4. 

 

Figure 4: Basic source-filter of speech signal 

 

 The speech sounds can be presented in three states: 

• Silence – No speech is produced. 

• Unvoiced sounds – Vocal cords are not vibrating, resulting in no periodic 
random speech waveform. 

• Voiced sounds – Vocal cords are tensed and vibrating periodically, resulting 
in a quasi-periodic3 speech waveform. 

                                                 
2 An all-pole filter is a filter whose transfer function contains only poles (roots of the denominator), 
without zeros (roots of the numerator). 
3 Quasi-periodic speech waveform means that the speech waveform can be seen as periodic over a short-
time period (5-100 ms), where the signal is assumed stationary. 
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 For voiced sounds, the excitation signal is an impulse train convolved with the 
glottal pulse (see Figure 5); while for unvoiced sounds, the excitation signal is random 
noise. Both of them with a gain factor G in order to control the intensity of the 
excitation. 

 

Figure 5: Glottal excitation model for voiced sound 

 

 For a complete source-filter model, as is shown in Figure 6, the glottal pulse, 
vocal tract and radiation have to be individually modeled as linear filter (Fant, 1960).  
The transfer function, V(z), represents the resonances of the vocal tract, and the transfer 
function, R(z), models the air pressure at the lips. 

 

Figure 6: General discrete-time model of speech production 

 

 Combining G(z), V(z) and R(z), a single all-pole filter, H(z), is obtained, 
resulting in a new simple diagram shown in Figure 7. 

 

Figure 7: Source-filter model for speech production 
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The transfer function of H(z) is given by Eq. (1) (Mammone et al., 1996), where 
p is the filter's order. An enough number of poles give a good approximation for speech 
signals. 

���� = ������������ = �1 − ∑ �
 ��
�
��  

With this transfer function, a difference equation for synthesizing the speech 
samples s(n) can be proposed (Mammone et al., 1996): 

���� = � �
��� − �� +  ���

��

��� 
 

2.1.2. Speech Perception 

Without going into any further details, this section just presents the auditory perception 
system and emphasizes its non-linear frequency response. Anymore details are not 
necessary for the understanding of this Master Thesis. 

 The auditory perception system can be split in two major components:  the 
peripheral auditory system (ears), and the auditory nervous system (brain). The received 
acoustic pressure signal is processed by peripheral auditory system into two steps: 
firstly, it is transformed into a mechanical vibration pattern on the basilar membrane; 
and then, is represented by a series of pulses to be transmitted by the auditory nerve. 
Finally, the auditory nervous system is responsible for extracting the perceptual 
information. 

 The human ear, as shown in Figure 8, is made up of three parts: the outer ear, 
the middle ear, and the inner ear. The outer ear consists of the external visible part and 
the external auditory canal is where sound wave travels. The length of the auditory 
canal is such that performs as an acoustic resonator whose principal effect is to increase 
the ear’s sensitivity to sounds in the 3-4 KHz range. When the sound arrives at the 
eardrum, it vibrates at the same frequency as the incoming sound pressure wave. The 
vibrations are transmitted through the middle ear.  The main structure of the inner ear is 
the cochlea which communicates with the auditory nerve, driving a representation of 
sound to the brain. The cochlea can be seen as a filter bank, whose outputs are ordered 
by location, so that a frequency-to-place transformation is accomplished. The filters 
closest to the cochlear base respond to the higher frequencies, and those closest to its 
apex respond to the lower (Huang et al., 2001).  

 

(1) 

 

(2) 
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Figure 8: Peripheral auditory system 

 

 The main issue to model for one speech generative model is the nonlinear 
character of the human hearing system. That is why psychoacoustic experimental works 
have been undertaken to find frequency scales that can model the natural response of the 
human perceptual system.  

 Fletcher (1940) introduced for the first time the term of critical bands, pointing 
the existence of them in the cochlear response. Since that moment, several different 
experiments have been carried out to investigate critical band phenomena and to 
estimate critical bandwidth. There are two outstanding classes of critical band scales: 
Bark frequency scale and Mel frequency scale. Mel-frequency scale has been widely 
used in modern speech recognition system. 

 

Mel Scale 

Mel-frequency scale is a perceptually motivated scale (Stevens & Volkman, 1940) 
which is linear below 1 kHz, and logarithm above, with equal numbers of samples 
below and above 1 kHz. It represents the pitch4 (perceived frequency) of a tone as a 
function of its acoustics frequency (Holmes, 2001).  

One mel is defined as one thousandth of the pitch of a 1 kHz tone (Huang et al., 
2001). Mel-scale frequency can be approximate by Eq. (3): 

���� = 2595  log�#�1 + � 700& � 

                                                 
4 Pitch, in psychophysics, is the perceptual correlate of the frequency of a sound wave. It means, the pitch 
of a complex sound is related to its fundamental frequency, but the pitch is a subjective attribute (Holmes 
& Holmes, 2001). 

(3) 
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This non-linear transformation can be seen in Figure 9. It shows that equally 
spaced values on mel-frequency scale correspond to non-equally spaced frequencies. 
This is the inverse function of the Eq. (3) which is given by Eq. (4): 

� = 700 '10()*+ ,-.-& − 1/ 

 

Figure 9: Mel-to-Linear Frequency scale transformation 

 

So, it is hoped that mel scale more closely models the sensitivity of the human 
ear than a purely linear scale, and provides for greater discriminatory capability between 
speech segments.  

 

2.1.3. Speech Signal Representation 

Although some information about phonetic content can be extracted from waveforms 
plots, this is not useful in order to illustrate the properties of speech that are most 
important to the general sound quality or to perception of phonetic detail. 

 The large significance of resonances and their time variations, responsible for 
carrying the phonetic information, makes necessary to have some means of displaying 
these features. The short-time spectrum of the signal is more suitable for displaying 
such features. 

 

 

(4) 
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Short-time Fourier Analysis 

The short-time spectrum of the signal is the magnitude of a Fourier Transform of the 
waveform after it has been multiplied by a time window function of appropriate 
duration (Holmes & Holmes, 2001). 

 Thus, the short-time analysis is based on the decomposition of the speech signal 
into short speech sequences, called frames, and analysis of each one independently.  For 
analyzing frames, the behavior (periodicity or noise-like appearance) of the signal in 
each one of them has to be stationary. 

 The width and the shape of the time window is one of the most important 
parameter in short-time Fourier analysis. In the figure below, the short-time spectrum of 
voiced speech obtained with rectangular window and Hamming window of 25ms and 
10ms can be compared. 

 

 

Figure 10: (a) Time signal and its Short-time spectrum obtained with: (b) 10ms rectangular window; (c) 
25ms rectangular window; (d) 10 ms Hamming window; and (e) 25ms Hamming window. 
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 One can conclude that for better stationary resolution, rectangular window is 
more appropriately; however, the Hamming window offers a better frequency 
resolution. In practice, window lengths are around 20 to 30 ms and the Hamming 
window is chosen. This choice is a compromise between the stationary assumption 
within each frame and the frequency resolution. 

 An efficient representation of the speech signal based on short-time Fourier 
analysis is spectrograms. A spectrogram of a time signal is a special two-dimensional 
representation that displays time in the horizontal axis and frequency in the vertical axis. 
Then, in order to indicate the energy in each time/frequency point, a grey scale is 
typically used, in which white represents low energy, and black, high energy (Huang et 
al., 2001). Sometimes, spectrograms can be represented by a color scale; as in Figure 
11, where darkest blue parts represent low energy, and lightest red parts, high energy. 

 

Figure 11: Spectrogram (a) of the speech waveform (b) (Nilsson & Ejnarsson, 2002) 

 

Parametric Representation of the Spectral Analysis 

When speech is produced in the sense of a time-varying signal, its characteristics can be 
represented via a parameterization of the spectral activity.   

This speech representation is used by front-end Automatic Speech Recognition 
systems, where the frame sequence is converted into a feature vectors that contains the 
relevant speech information.  
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The main feature vectors are LPC coefficients, based on speech production 
models, and MFCC coefficients, based on speech perception models. They will be 
explained in the next section within the feature extraction process. 

 

2.2. INTRODUCTION TO FRONT-END ANALYSIS FOR AUTOMATIC 
SPEECH RECOGNITION 

Front-end analysis is the first stage of Automatic Speech Recognition (ASR), whereby 
the acoustic signal is converted into a sequence of acoustic feature vectors. Figure 12 
illustrates the different stages that take place in the feature extraction process. 

 
Figure 12: General feature extraction process 

 

 In this section, each stage of the above process will be explained in a subsection 
in order to draw a complete vision of the system. 

 Feature extraction stage is the most important one in the entire process, since it 
is responsible for extracting relevant information from the speech frames, as feature 
parameters or vectors. Common parameters used in speech recognition are Linear 
Predictive Coding (LPC) coefficients, and Mel Frequency Cepstral Coefficients 
(MFCC). These parameters have been widely used in recognition system partly to the 
following reasons: 

• The calculation of these parameter leads to a source-filter separation. 

• The parameters have an analytically tractable model. 

• Experience proves that these parameters work well in recognition 
applications.  

 Due to their significance, they will be described in two different subsections. 
Another subsection will be devoted to dynamic features. They are the delta and 
acceleration coefficients, that mean to add the first or second derivate approximation, 
respectively, to some feature parameters (LPC coefficients). 

 

2.2.1. Pre-emphasis 

In order to flatten speech spectrum, a pre-emphasis filter is used before spectral 
analysis. Its aim is to compensate the high-frequency part of the speech signal that was 
suppressed during the human sound production mechanism. 
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 The most used filter is a high-pass FIR5 filter described in Eq. (5), and whose 
transfer function corresponds to Figure 13. 

��0112��� = 1 − ��0112��� 

 

Figure 13: Pre-emphasis Filter, a=0.97. 

 
2.2.2. Frame Blocking and Windowing 

As explained in Section 2.1.3, the speech signal is divided into a sequence of frames 
where each frame can be analyzed independently and represented by a single feature 
vector.  Since each frame is supposed to have stationary behaviour, a compromise, in 
order to make the frame blocking, is to use a 20-25 ms window applied at 10 ms 
intervals (frame rate of 100 frames/s and overlap between adjacent windows of about 
50%), as Holmes & Holmes exposed in 2001. One can see this in Figure 14. 

 

Figure 14: Frame blocking (Young et al., 2006) 

                                                 
5 FIR = Finite Impulse Response. 
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 In order to reduce the discontinuities of the speech signal at the edges of each 
frame, a tapered window is applied to each one. The most common used window is 
Hamming window, described in Eq. (6) and shown in Figure 15. 

3��� = 0.54 − 0.46 cos 92:�� − 1�N − 1 < 

 
Figure 15: 25ms Hamming window (fs=16Khz) 

 

2.2.3. Mel-Cepstrum 

Davis & Mermelstein (1980) pointed the Mel Frequency Cepstrum6 Coefficients 
(MFCC) representation as a beneficial approach for speech recognition (Huang et al., 
2001). The MFCC is a representation of the speech signal defined as the real cepstrum 
of a windowed short-time signal derived from the FFT of that signal (Huang et al, 2001) 
which, is first subjected to a log-based transform of the frequency axis (mel-frequency 
scale), and then decorrelated using a modified Discrete Cosine Transform (DCT-II). 
Figure 16 illustrates the complete process to extract the MFFC vectors from the speech 
signal. It is to be emphasized that the process of MFCC extraction is applied over each 
frame of speech signal independently. 

                                                 
6 Cepstrum is the inverse Fourier Transform of the log-spectrum.  The name comes from to reversing the 
first syllable of the word spectrum and was invented by Bogert et al. (1963). 
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Figure 16: MFCC extraction process 

 

 After the pre-emphasis and the frame blocking and windowing stage, the MFCC 
vectors will be obtained from each speech frame. The process of MFFC extraction will 
be described below considering in any instant that all the stages are being applied over 
speech frames. 

 The first step of MFCC extraction process is to compute the Fast Fourier 
Transform (FFT) of each frame and obtain its magnitude. The FFT is a computationally 
efficient algorithm of the Discrete Fourier Transform (DFT). If the length of the FFT, is 
a power of two (K=2n), a faster algorithm can be used, so a zero-padding to the nearest 
power of two within speech frame length is performed. 

 The next step will be to adapt the frequency resolution to a perceptual frequency 
scale which satisfies the properties of the human ears (Molau et al., 2001), such as a 
perceptually mel-frequency scale. This issue corresponds to Mel filterbank stage.  

 The filter-bank analysis consists of a set of bandpass filter whose bandwidths 
and spacings are roughly equal to those of critical bands and whose range of the centre 
frequencies covers the most important frequencies for speech perception (Holmes & 
Holmes, 2001).  
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 The filterbank is a set of overlapping triangular bandpass filter, that according to 
mel-frequency scale, the centre frequencies of these filters are linear equally-spaced 
below 1 kHz and logarithmic equally-spaced above. The mel filterbank is illustrated in 
Figure 17. It is interesting to emphasize that these centre frequencies correspond to mel 
centre frequencies uniformly spaced on mel-frequency domain, as was shown in Figure 
9 in Section 2.1.2. 

 

Figure 17: Mel filterbank (Huang et al., 2001) 

 

 Thus, the input to the mel filterbank is the power spectrum of each frame, 
Xframe[k], such that for each frame a log-spectral-energy vector, Eframe[m], is obtained as 
output of the filterbank analysis. Such log-spectral-energy vector contains the energies 
at centre frequency of each filter. So, the filterbank samples the spectrum of the speech 
frame at its centre frequencies that conform the mel-frequency scale.  

 Let’s define Hm[k] to be the transfer function of the filter m, the log-spectral-
energy at the output of each filter can be computed as in Eq. (7) (Huang et al., 2001); 
where M (m=1, 2, ..., M) is the number of mel filterbank channels. M can vary for 
different implementations from 24 to 40 (Huang et al., 2001). 

=�>� = � ln�|A�B�|, �2�B��C��
D��  

 The choice of the filterbank energies as input of filterbank analysis has been 
widely used in early recognition system. However, another approaches based on further 
transformations have been nowadays proposed to gain substantial advantages respect 
the filterbank energies input (Holmes & Holmes, 2001). 

Using the mel filterbank is subjected to two principal reasons: 

• Smooth the magnitude spectrum such that the pitch of a speech signal is 
generally not presented in MFCCs.  

• Reduce the size of the features involved. 

 

(7) 

 

m=1, 2, ..., M 
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The last step involved in the extraction process of MFCC is to apply the 
modified DCT to the log-spectral-energy vector, obtained as input of mel filterbank, 
resulting in the desired set of coefficients called Mel Frequency Cepstral Coefficients. 

 The most widely DCT used for speech processing is DCT-II because of its 
energy compaction, which results in its coefficients being more concentrated at lower 
indices than the DFT. This property allows approximating the speech signal with fewer 
coefficients (Huang et al., 2001). 

 In order to compute the MFCCs for one frame, the DCT-II is applied to the log-
spectral-energy vector of such frame and is given by Eq. (8) (Young et al., 2006)7: 

E
 = F 2M � EIcos JπiM 9m − 12<NO
I��  

 Cepstral coefficients have the property that both the variance and the average 
numerical values decrease as the coefficient index increases (Holmes & Holmes, 2001). 
The zero cepstral coefficient, c0, is proportional to the mean of the log spectral energy 
channels and provides an indication of overall level for the speech frame (Holmes & 
Holmes, 2001). 

 As explained above, discarding the higher cepstral coefficients can be 
advantageous. In this way, the M filterbank channels can be become into only L 
MFCCs (L < M) used in the final feature vector. The truncation of the cepstral sequence 
has a general spectral smoothing effect that is normally desirable because it tends to 
remove phonetically irrelevant detail (Holmes & Holmes, 2001).  

 Although MFCC vectors is a beneficial approach as feature vectors for speech 
recognition, the extraction of them from speech signal involves  much loss information 
due to the followings reasons: 

• Phase information is removed at the magnitude operation. 

• The filtering process reduces the initial frequency resolution obtained from 
the FFT and more spectral detail is lost due to the truncation from M to L 
(L<M) coefficients after the DCT stage. 

  

2.2.4. Linear Prediction 

In order to represent the short-time spectrum, there is another alternative to filterbank 
analysis based on deriving linear prediction coefficients which comes from Linear 
Predictive Coding (LPC) analysis (Holmes & Holmes, 2001). LPC analysis is an 
effective method to estimate the main parameters of speech signals. 

                                                 
7 The HTK uses DCT-II to compute the MFCC. 

 

(8) 
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 In Section 2.1.1, the source-filter model for speech production was presented 
and finally schematized in Figure 7. The conclusion extracted was that an all-pole filter, 
H(z) in Figure 7, is a good approximation to estimate the speech signals. Its transfer 
function was described by Eq. (1). In this way, from the filter parameters (coefficients, 
{ ai}; and gain, G), the speech samples could be synthesized by a difference equation 
given by Eq. (2). 

 Thus, the speech signal resulting from Eq. (2) can be seen as linear combination 
of the previous p samples. Therefore, the speech production model can be often called 
linear prediction model, or the autoregressive model (Mammone et al., 1996). From 
here, p, in Eq. (1) and (2), indicates the order of the LPC analysis; and, the excitation 
signal, e[n], of the speech production model can be called prediction error signal or 
residual signal for LPC analysis. 

 The LPC coefficients, as well for MFFC coefficients, are obtained for each 
frame independently one of each other. 

 According to Eq. (2), the prediction error, Em, for one frame can be defined in 
Eq. (9) as (Huang et al., 2001): 

EI = � eI,Q �n� = � RxI�n� − � aUxI�n − j�W
U�� X

,
Q  

where xm[n] is a frame of the speech signal and p the order of the LPC analysis. For one 
speech frame its LPC coefficients are estimated as those that minimize the prediction 
error Em (Huang et al., 2001)-  

 Estimating LPC coefficients from speech frame, the orthogonality principle8 is 
assumed and the Yule Walker Equations are obtained: 

� aU
W

U�� ϕI�i, j� = ϕI�i, 0� 
where Φm[i,j] is the correlation coefficients defined as: 

ϕI�i, j� = � xIQ
�m − i�xI�n − j� 

 Solution of the p linear equations gives the p LPC coefficients that minimize the 
prediction error, such that the set of {ai} satisfies Eq. (2) to generate the speech signal 
through speech production model. 

                                                 
8 Orthogonality principle says that the predictor coefficients that minimize the predictor error are such 
that the error must be orthogonal to the past vectors (Huang et al, 2001). 

 

(9) 

 

i=1, 2, ..., p 

 

(10) 

 

(11) 
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 In order to resolve the Yule Walker Equations, different algorithms can be 
presented: the covariance method, the autocorrelation method and the lattice method. 
The algorithm that will be used in this Master Thesis will be the autocorrelation method. 

 The autocorrelation method corresponds to resolve a basic matrix equation 
expressed as Eq. (12), where R is the autocorrelation matrix of the speech signal 
(R(i,j)=Rxx( |i-j| ) ); r is the autocorrelation vector of the speech signal ( r(i)=Rxx(i) ) and 
a is the vector of the LPC coefficients. 

� × � = \ 

 This matrix equation is resolved by Levinson-Durbin recursion algorithm in 
which the recursion finds the solution of all prediction coefficients of order less than p. 
In the computing of this algorithm, other intermediate variables, called reflection 
coefficients, {ki}, are calculated. 

 Finally, Figure 18 illustrates the extraction process of the LPC coefficients. 

 

Figure 18: LPC coefficients extraction process 

 

 

(12) 
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 After the LPC analysis, the power spectrum of the speech frame can be 
calculated from its LPC parameters. Let's define A(z) to be the inverse transfer function 
of the filter given by Eq. (1) as: 

]��� = 1 − � �

�


�� ��
 
 From this inverse filter, A(z), a new speech synthesis model is proposed in 
Figure 19, which can be considered as inverse model of speech production model 
described on Figure 7. 

 

Figure 19: Synthesis LPC filter 

 

 The power spectrum of one signal can be obtained by passing one input signal 
through a filter. If the input signal is the speech signal and the filter is the inverse LPC 
filter A(z); the power spectrum of the output signal, in this case the residual signal or 
prediction error signal, can be obtained as: 

^�_�|]�_�|, = `a,  

 Then, one can see that the power spectrum of the speech signal can be 
approximated by the response of a sampled-data-filter, whose all-pole-filter transfer 
function is chosen to give a least-squared error in waveform prediction (Holmes & 
Holmes, 2001). So, in Eq. (15), the power spectrum of the speech frame is obtained 
from its LPC coefficieents. 

^�_� ≈ `a,|1 − ∑ �
�
�� ��ca
|, 

 LPC analisys produces an estimate smoothed spectrum, which much of the 
influence in the excitation removed (Holmes & Holmes, 2001). 

 LPC-derived features have been used by many recognition systems, being its 
performance comparable whit the one obtained from recognizers using filterbank 
methods. However, later, LPC-derived cepstral coeffcients has begun to be considered 
since the addtion of ceptral tranformation improves recogntion performance (Holmes & 
Holmes, 2001). 

 

(13) 

(14) 

 

(15) 
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 Ending this section, It bears mentioning another set of features vector called 
Perceptual Linear Prediction (PLP) coefficients (Hermansky, 1990). PLP analysis is 
based on LPC analysis incorporating a non-linear frequency scale and other 
psychophysics properties of the human perception system. 

 PLP analysis is more similar to MFCC analysis, but the incorporation of more 
perceptual properties makes it more related to psychophysical results. In Table 1, the 
comparison between the properties of both methods can be seen. 

Table 1: Comparison between the properties of MFCC and PLP coefficients 

MFCCs PLP coefficients 
Cepstrum-based spectral smoothing LPC-based spectral smoothing 

Pre-emphasis applied to speech waveform Pre-emphasis applied to spectrum 

Triangular mel filterbank Critical-band filterbank 

Logarithmic amplitude compression Cube root amplitude compression 
 

 

2.2.5. Dynamic Features: Delta Coefficients 

In order to improve the recognition performance, a new stage in the feature extraction 
process can be added, see Figure 20.  Dynamic features consist of the incorporation of 
temporal derivatives to the feature vectors obtained in the last stage. 

 

Figure 20: Feature vectors extraction and its dynamic features 

 

 As explained in Section 2.1.3, the speech signal is converted into a sequence of 
speech frames such that each one of them is assumed stationary in its short interval. 
Therefore, each frame can be analyzed independently and represented by an 
independent single feature vector. 

 In spite of the above assumption, an acoustic feature vector representing part of 
a speech signal is highly correlated with its neighbors (Holmes & Holmes, 2001). 
However, these correlations can be captured applying the dynamic features to the static 
feature vectors (such as MFFCs or LPC coefficients); since they can measure the 
change in the static features (Holmes & Holmes, 2001). 

 The dynamic features referred to the first order time derivatives are called as 
delta coefficients and to the second order time derivatives as acceleration coefficients. 
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   The dynamics features can be computed by simple differencing between the 
feature values for two frames either side of the current frame (Holmes & Holmes, 
2001). However, differencing method results more sensitive to random fluctuations in 
the original features and tends to be noisy. That is why another robust dynamic measure 
can be applied based on linear regression over a sequence of frames (Holmes & 
Holmes, 2001). 

 As said before, including the dynamics features (first-second order time 
derivatives) generally improves recognition performance. Delta features gives a large 
gain on this improvement while the acceleration features adds a smaller one. 

 The majority recognition systems incorporate dynamic features applied, 
generally, to a set of MFCC vectors or LPC coefficient vectors. 

  

2.3. DISTANCE MEASURE FOR SPEECH PROCESSING: RMS LOG 
SPECTRAL MEASURE  

After the front-end analysis in automatic speech recognition, thereby the speech signal 
is converted into a sequence of feature vectors; the next issue is to measure the quality 
of the recovered speech from such features vectors. The measures of interest in this 
Master Thesis are those called distance measures, especially spectral distance measures 
between the smoothed spectrums obtained from the feature vectors, LPC coefficients or 
MFCCs. 

  As explained in past sections, an estimate power spectrum of the speech frame 
can be obtained from its features vectors. LPC coefficients provide an estimate 
smoothed spectrum of the speech signal according to Eq. (15).  In another hand, the 
MFCCs transform the FFT of the speech frame to a perceptually mel-frequency scale, 
using the mel filterbank method. The result is a smoothed magnitude mel spectrum in 
which the harmonics have been flattened in order to obtain the envelope of the spectrum 
of the original speech frame. Also the LPC coefficients can be derived from the MFFC 
coefficients and estimating the spectrum from Eq. (15).  

 Distance measures based upon transformations retain only the smoothed 
spectral behavior of the speech signal have been applied in recognition tasks (Gray et 
al., 1976).  So, the distance measure called root mean square (rms) log spectral 
measure will be used in the implementation work of this Master Thesis, to measure the 
spectral distortion between the spectrums obtained from feature vectors. 
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RMS Log Spectral Measure 

Let's define Sxx and S'xx to be two spectral models. The error o difference between them 
is defined by (Gray & Markel, 1976): 

��ω� = ln ^ee�_� −  ln ^fee�_� 

 In order to measure the distance between these spectral models, a set of Lp norms 
has been defined as dp by (Gray & Markel, 1976): 

�g��� = h |��_�|�i
�i

d_ 2:  

the rms log spectral measure is defined when p takes the value of 2.  The Lp norm is 
typically evaluated for smoothed spectra models, as the smoothed power spectrum 
computed from LPC coefficients. Then, the two spectral models Sxx and S'xx are defined 
according to Eq. (15). 

 The Lp measures are related to decibel variations in the log spectra domain by 
using the multiplicative factor 10/ln(10) = 4.34. 

(16) 

 

(17) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. IMPLEMENTATION: GENERATIVE MODEL OF 
SPEECH  
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The work developed in this Master Thesis consists of the implementation of a speech 
generative model; whereby the speech is synthesized and recovered from its MFCC 
representation. Synthesizing speech from parametric representations allows performing 
an investigation on the intelligibility of the synthesized speech as compared to natural 
speech. So, two steps were performed: the computation of the MFCCs vectors from the 
speech signal and the generative model in itself. 

 The tool used for computing the MFCCs from the speech signal in this Master 
Thesis was the HTK Software Toolkit, developed by the Cambridge University (Young 
et al., 2006). The speech signal processing, based on the conversion chain from HTK-
generated MFCC representation to the generative model, was supported by the 
mathematical tool Matlab. 

 This conversion chain tends to simulate the inverse process to the feature 
extraction process described in Section 2.2, in order to recover the speech signal, and 
measure how much information relevant to speech recognition is lost in this analysis.  

 This section is divided into two sections. The first one offers an introduction to 
the HTK Software and an investigation on the implementation of the MFCC 
computation in HTK. The second one describes all the steps that take places in the 
generative model, making relationships with the theories-based, and giving an 
explanation of the approximation methods and algorithms used in its implementation. 
The results will be put forward in the Analysis of Results and Discussion Section. 

 

3.1. MFCC COMPUTATION IN HTK 

The initials of HTK correspond to Hidden Markov Toolkit, which is a standard research 
and development tool for building Hidden Markov Models (HMM) based on speech 
recognition. 

 The HMM has become one of the most powerful statistical methods for modeling 
the speech signals and its principles have been successfully used in automatic speech 
recognition (Huang et al., 2001).  For the work developed in this Master Thesis, no 
more details about the concept of HMM are required.   

 The Software architecture of HTK is principally built over library modules with 
which HTK tools operate. The HTK tools are executed from commands into the 
operating system shell. These commands consist of a number of input files and optional 
input arguments (in order to control more in detail the behavior of the tool). Every tool 
uses a set of standard library modules that act as an interface between various files types 
and with outside world. These modules are, usually, customized by setting parameters 
in a configuration file. Finally, there is another set of parameters that are specified by 
using environment variables (Young, et al., 2006). 
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 In the MFCC computation, the HTK tool HCopy and the configuration file play 
an important role in the parameterization of the speech signal into a sequence of feature 
vectors.  The next sections will be focus in these items. 

  

3.1.1. HCopy and Coding Speech Data to MFCC Vectors 

HCopy is the tool of HTK responsible for copying and manipulating the speech files 
(Young et al., 2006). 

 By specifying an appropriate configuration file, HCopy can be seen as a speech 
coding tool, available to parameterize the speech signal into a sequence of feature 
vectors. Thus, HCopy parameterizes the source speech data according to the 
configuration file, and copies the target speech data into the output file. This is 
schematized in Figure 21. 

 For the experimental work of this Master Thesis, a set of 10 audio files on 
waveform format (files.wav) was given as source speech data. The texts of these 
utterances are contained in Appendix A. The speech files were taken at random from the 
TIMIT database9. The configuration file created was named hcopy.conf and was set-up 
to convert source waveform data to MFCC coefficients. Every output file, generated by 
HCopy, contains the MFCC vectors of its corresponding source waveform file. The 
source waveform files used and the output HCopy-generated MFCC files are listed in 
the Figure 21. 

 

Figure 21: Parameterization of the speech data by HCopy; and list of the source waveform files and its 
corresponding MFCC files generated 

 

                                                 
9 TIMIT database is a standard database of utterances examples for speech recognition experiments. 
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 The configuration parameters within hcopy.conf file will specify the 
characteristics of the MFCC extraction process seen in Figure 16. Once it was created, 
the coding data from the source speech data to MFCC vectors was done by executing 
the following command line in a Linux shell: 

HCopy  –C  hcopy.conf  source-file  mfcc-file 

where –C is a standard option used to indicate that hcopy.conf file is the configuration 
file used.  The source-file argument input indicates the file name that contains the 
source speech data; and, the mfcc-file argument input is the file name where HTK will 
copy the output MFCC vectors data. HCopy was run for every pair of the source 
waveform file and its output file. 

 

3.1.2. Configuration File to Compute the MFCC Vectors  

As said before, the configuration file created was called hcopy.conf and is added in 
Appendix B. The generative model was based on the way in that the MFCC vectors 
were computed by HTK; i.e., the whole speech signal processing and the characteristics 
of the generative model are controlled by configuration parameters.  

 The MFCC extraction process of Figure 16 will be followed in the description of 
the most important configuration parameters. Table 2 shows the setting of those 
configuration parameters related to such MFCC extraction process. 

Table 2: Configuration parameters related to MFCC extraction process                                                       
(* expressed on units of 100ns)  
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 The sourcekind and targetkind are the configuration parameters used to indicate 
which parameterization should be done; since, they define the source and the target 
parameter kinds. Using hcopy.conf file, with the configuration above, the waveform 
data was converted to MFCC_0 using the C0 as the energy component. The sample 
frequency of the source waveform data was set by using the configuration parameter 
sourcerate to 16 kHz. 

 As it was seen in Section 2.2.1, a pre-emphasis filter is required before spectral 
analysis. The value of this pre-emphasis filter coefficient in Eq. (5) was specified by 
setting the parameter preemcoef to 0.97. 

 The process of the frame blocking and Hamming windowing (see Figures 14 and 
15) is described by the followings configuration parameters: targetrate, windowsize and 
usehamming. They were configured to apply a Hamming window of 25ms every 10ms 
(frame rate of 100frames/s), resulting an overlap of 15ms. If the frequency sample was 
16 kHz, the size of the frames generated was of 400 samples (25ms * 16 kHz) with an 
overlap of the 60%. The Hamming window performed by HTK corresponds to the one 
described by Eq. (6). 

 Finally, for computing the MFCC coefficients, HTK provides a simple Fourier 
Transform based filterbank (Young et al., 2006) method and calculates the MFCCs 
using the DCT-II described by Eq. (8). The number of the filterbank channels was set 
by the configuration parameter numchans to 24. As it was explained in Section 2.2.3, 
they are equally spaced along the mel-frequency scale (see Figure 9). The number of the 
MFCC coefficients was specified by the configuration parameter numceps to 12. 

 In short, the source speech signal is passed through a first order pre-emphasis 
filter with a coefficient of 0.97. The FFT should use a Hamming window of 25ms with 
a frame period of 10ms. The filterbank has 24 channels and for each speech frame 13 
components (12 MFCC coefficients plus the C0 component) are generated and copied in 
the output file. 

 

3.2. GENERATIVE MODEL 

The generative model in itself is the conversion chain which synthesizes speech from 
HTK-generated MFCC representation.  

 All the speech processing involved within the implementation of the generative 
model was support by Matlab. In order to process speech signals, successful Matlab 
toolbox were incorporated, such as Voicebox10 and Auditory Toolbox11. 

                                                 
10 Brookes, M., Voicebox: Speech Processing Toolbox for Matlab [on line], Imperial College, London, 
available on the World Wide Web: http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html. 
11 Slaney, M. (1998), Auditory Toolbox [on line], Interval Research Corporation, California, available on 
the World Wide Web:  http://cobweb.ecn.purdue.edu/~malcolm/interval/1998-010/. 
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 The generative model was implemented in a Matlab function called 
generative_model.m, enclosed in Appendix C. The algorithm can be divided into five 
steps (schematized in Figure 22) in order to be explained. 

 Firstly, The MFCC files were exported to Matlab, extracting the MFCC vectors. 
Secondly, in order to further on implementing the source-filter model for speech 
production (see Section 2.1.1, Figure 7), the LPC coefficients were computed from the 
MFCCs vectors. In this process an inverse DCT (IDCT) had to be approximated. 
Thirdly, the source-filter model for speech production of Figure 7 was implemented. 
The filter was estimated by the LPC coefficients computed from MFCCs according to 
Eq. (1); and the excitation signal was modeled for voiced and unvoiced sounds. Finally, 
the speech signal produced was filtered by an inverse pre-emphasis filter (de-
emphasized filter). Moreover, the dynamic features (delta coefficients) were added to 
LPC coefficients in order to achieve better performance recognition.  

 For the speech processing, a set of constants were defined according to the 
above configuration parameters. The based theories and investigations to implement the 
algorithms in generative_model.m function will be explained in detail. 

 

Figure 22: Conversion chain from HTK-generated MFCC representation to the generative model 

 

The generative_model.m function contains other secondary functions with the 
algorithms of the different items to be implemented. They are: idct_htk.m, 
mfcc2spectrum.m, mfcc2spectrum2.m, LPC_filter.m and deltacoef.m. They are enclosed 
in Appendix D. 
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3.2.1. Conversion from MFCC Vectors to LPC Parameters  

The process followed in the conversion from MFCC vectors to PC parameters is 
described below: 

1. Read the MFCC vectors from the MFCC file generated by HTK. 
2. Make the IDCT of MFCCs vectors to obtain the mel log power spectrum. 
3. Exponentiation to obtain the mel power spectrum. 
4. Convert the mel power spectrum to power spectrum on linear frequency 

domain. 
5. Apply the inverse Fourier Transform (FT) to get the autocorrelation function 

estimate. 
6. Solve the Yule Walker equations by autocorrelation method to obtain the 

LPC coefficients. They are the filter coefficients. 

 The entire process above is implemented in the functions mfcc2spectrum.m and 
mfcc2spectrum2.m (see the code in Appendix D). The difference between these two 
algorithms falls on that the extraction of the autocorrelation coefficients from the mel 
power spectrum was dealt by two different ways. This generated two approaches for the 
generative model that will be explained after. Each one can be chosen by an input 
argument in the generative_model.m function (see code of generative_model.m in 
Appendix C). 

 For reading the HTK-MFCC files, the function readhtk.m from Voicebox library 
was used. The MFCC vectors were stored in a matrix called mfcc of size [13, number-
frames] (12 MFCC coefficients plus the C0 component were generated per frame). 

 

Inverse Discrete Cosine Transform 

The IDCT had to be approximated since a direct transform was not possible because of 
the number of MFCC coefficients was lower than the number of filterbank channels.  

 The DCT employed by HTK to compute the MFFC coefficients is the DCT-II 
given by Eq. (8), in Section 2.2.3. It was explained that the DCT-II is applied to the log 
spectral energies at frequencies uniformly sampled on mel-frequency domain, to 
produce the MFCCs. So, the inverse transform of K points will provide K samples of 
mel log power spectrum at frequencies equally spaced on mel-frequency domain. 

 The inverse transform of DCT-II is given below, assuming that c0 is computed in 
the same fashion as cn, n>0. 

^kk�B� =  F2l � E��� cos m:Bl n� − 1 2& opq
r��  

 

(18) 
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where N=13 is the number of MFCC coefficients including the c0 component, and K is 
the number of points on mel-frequency domain required for the spectrum 
reconstruction.  Comparing with the forward transform in Eq. (8), one can see that in 
Eq. (18) the term into the cosine is divided by K instead of N (K>N and K>M, where M 
is the number of filterbank channels). This fact acts like an interpolation in order to get 
a smoothed mel log power spectrum. That's why K has to be in the interval [129, 256] 
points. It was chosen to be 256 points (a number of points power of two allows an 
efficient algorithm for the inverse Fourier Transform). 

 The K points on mel-frequency domain represent the K centre frequencies of the 
mel filterbank. They are easily calculated dividing the mel bandwidth (calculate the mel 
frequency corresponding to the Nyquist sample frequency, fs/2, by Eq. (3)) between K 
and taking the mel centre frequencies.  

 The algorithm that makes the inverse DCT, inspired as HTK performs the DCT-
II, is written in the function idct_htk.m (see code in Appendix D) according to the 
method below. The idct_htk.m function is called from the functions mfcc2spectrum.m 
and mfcc2spectrum2.m. 

 The forward transform can be performed as a matrix multiplication c=AE, where 
E is the log spectral energies and A the transform matrix whose elements are defined as: 

s�
ct =  F2l cos m:�� − 1�l nu − 1 2& op 

 Then, the inverse transform matrix A-1 can be calculated by Eq. (20), where D is 
a diagonal matrix as D = {1/2, 1, 1, … , 1}. 

]�� = ]vw 

 Finally, if c is the vector of MFCC coefficients of one frame, the inverse DCT is 
performed as: 

^kk = ]′wE 

 In short, the inverse DCT provides samples of mel log power spectrum 
uniformly spaced on the bandwidth of mel-frequency domain, which according to Eq. 
(4) corresponds to samples no uniformly spaced on linear-frequency domain. 

 Finally, the mel power spectrum is basically done by making the exponentiation 
to the log mel power spectrum. 

 

 

 

 

(19) 
i=1,...,N 

j=1,...,K 

 

(20) 

 

(21) 
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Autocorrelation Function Estimate and LPC Coefficients 

In Section 2.2.4, the LPC analysis was explained. According to this analysis, the LPC 
coefficients can be calculated by solving the Yule-Walker Equations described by Eq. 
(10), using the autocorrelation method. By this method, the Yule Walker Equations are 
transformed to a basic matrix equation expressed by Eq. (12), which needs that the 
autocorrelation function estimate is to be approximated. This matrix equation is 
resolved finally by the Levinson Durbin's algorithm to obtain the LPC coefficients. 

 It is studied that the power spectrum is the FT of the autocorrelation function. 
So, the autocorrelation coefficients of the speech signal are given by the inverse FT of 
its power spectrum as: 

\��� = 1l � ^ee����c,i(r 

 However, the mel power spectrum obtained by the inverse DCT has samples 
related to frequencies non uniformly spaced on the linear frequency scale. This fact 
makes that the inverse FT of Eq. (22) cannot be directly applied to the mel power 
spectrum.   

 As said before, the functions mfcc2spectrum.m and mfcc2spectrum2.m contains 
two different algorithms to approximate the autocorrelation function and solving this 
problem; so, they can define two different approaches for a generative model: 

 

� Generative model 1: mfcc2spectrum.m 
 
The algorithm of this function is a lineal interpolation of the mel power 
spectrum in order to find the sample values at the frequencies uniformly 
spaced on linear frequency. With a mel power spectrum samples equally 
spaced on linear frequency, the inverse FT described by Eq. (22) can be 
performed to obtain the autocorrelation coefficients. 
The number of equally spaced linear frequency points was fixed up to 256 
points in order to get a smooth spectral representation. 

 

� Generative model 2: mfcc2spectrum2.m 
 
In this algorithm, instead of obtaining equally spaced samples of mel power 
spectrum, the inverse FT was applied to the non equally mel power spectrum 
samples considering the bandwidth at each mel frequencies to obtain the 
autocorrelation coefficients. 
In the figure of the filterbank representation in a linear frequency scale (see 
Figure 17), one can see that the filter bandwidth is wider as higher centre 

 

(22) 
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frequency. So, each mel centre frequency has a different bandwidth on the 
linear frequency scale.  
It was commented before that the K mel power spectrum samples provided 
by the inverse DCT are related at the centre frequencies of the filterbank on a 
linear frequency scale. Let's define ∆fk to be the bandwidth of the filter at the 
frequency fk, the inverse FT can be applied directly to the mel power 
spectrum obtained considering the bandwidth at each frequency as: 

\��� = 1l � ^ee��D��c,i(yr∆�D 

This is the generalization of Eq. (22), in which the frequency increase, ∆fk, is 
normalized to one because of the samples are assumed to be uniformly 
spaced on a linear frequency domain. 

 

When the autocorrelation coefficients are estimated, the matrix equation of Eq. 
(12) can be solved by the Levinson Durbin's algorithm to obtain the LPC coefficients. 
This algorithm is implemented by a Matlab function called levinson.m and returns the 
LPC coefficients and the filter gain. This function was used in the generative model 
algorithm for a pth order LPC coefficients equal to 12 (see mfcc2spetrum.m and 
mfcc2spectrum2.m in Appendix D).  

 Finally, according to the explanation in Section 2.2.4, the power spectrum of 
every speech frame was computed from its LPC parameters as described in Eq. (15). 

 

3.2.2. Implementation of Source-Filter Model for Speech Production 

The source-filter model for speech production shown in Figure 7 was implemented into 
the LPC_filter.m function (see code in Appendix D).  The filter was estimated by the 
LPC coefficients computed from MFCCs according to Eq. (1); and the excitation signal 
was modeled for voiced and unvoiced sounds, as it was described in Section 2.1.1.  
Some considerations that were supposed to be taken are presented below. 

 The excitation signal was modeled for voiced and unvoiced sounds as a pulse 
train and random noise, respectively. They were filtered separately, using the Matlab 
function filter.m, to produce the synthesized speech from different models of sound.  

 The speech is synthesized back from the LPC parameters sequence computed 
from the MFCC vectors. In this way, the excitation signal must be considered in speech 
windows or segments.  Every segment acts as the excitation signal for one frame of the 
speech signal such that, the coefficients of the filter are the LPC parameters derived for 
this frame. Therefore, the sequence of excitation signal segments is passed through the 
LPC filter, which varies frame to frame, to produce the sequence of synthesized speech 
frames. They are consecutively concatenated to make up the synthesized speech signal.  

 

(23) 
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 Since the synthesized speech is performed by synthesizing successive segments 
of excitation signal, the LPC filter must avoid the discontinuities between the 
consecutive segments. For solving this problem, it was necessary to consider the use of 
the initial conditions of the filter in the Matlab function filter.m. Hence, in the change of 
the filter from one frame to the next one, the final conditions of one filter keep as the 
initial conditions of the next filter. 

 

3.2.3. Incorporation of Dynamic Features: Delta Coefficients 

As said before, the speech synthesis is performed by a LPC filter whose coefficients 
change frame to frame; and the final conditions of one filter are the initial conditions of 
the next filter. This avoids discontinuities in the filtered of the successive segments of 
the excitation signal. However, there is not a gradual transition between the LPC 
parameters of consecutive frames. 

 The incorporation of temporal derivatives to the static feature vectors, in this 
case to the LPC parameters, makes possible a continuous transition between the LPC 
parameters of consecutive frames. As said in Section 2.2.5, dynamic features can 
measure the change in the static features. 

 Delta coefficients are first order time derivatives and they were the dynamic 
features added in the generative model. The algorithm to approximate the delta 
coefficients was implemented in a Matlab function called deltacoef.m, enclosed in 
Appendix D. The algorithm was based on a lineal interpolation between the LPC 
parameters (filter gain and filter coefficients) of consecutive frames.  

 Each frame was divided into four subframes, whose LPC parameters were the 
lineal interpolation between the LPC parameters of the current frame and the next one. 
Since it was impossible to make an interpolation in the last frame; it was decided to 
repeat the value of its LPC parameters for the four last subframes. With this linear 
interpolation the total number of frames was increased by a factor of four. Hence, the 
change of the filter frame to frame was performed through intermediates frames, whose 
LPC parameters were the interpolation between the original frames such that, the 
transition between them was smoothed. 

 Whereas for the filter gain interpolation it was only necessary a lineal 
interpolation within 4 points between the consecutives filter gains, for the interpolation 
of the filter coefficients, some aspects had to be considered. 

 The lineal interpolation of the filter coefficients was performed between the 
umpteenth coefficient of the frame n and the umpteenth coefficient of the next frame 
n+1.  Furthermore, the interpolation was not directly applied to the filter coefficients 
{ ai}, but to other coefficients called reflection coefficients, {ki}. These coefficients are 
as well calculated in the computing of the Levinson-Durbin recursion algorithm as 
intermediate variables in the calculation of LPC coefficients. The reflection coefficients 
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are bounded by the range in Eq. (24); and this is a necessary and sufficient condition for 
all poles of the LPC filter to be inside the unit circle, guaranteeing a stable filter (Huang 
et al., 2001). 

-1 < ki  < 1 

 The fact of interpolating the reflection coefficients instead of the LPC filter 
coefficients is that they guaranty the stability of the filter after the interpolation. When 
one implements a linear interpolation of the reflection coefficients, if the coefficient of 
both frames are in the range in Eq. (24), the linearly interpolated reflection coefficients 
also have that property, and thus the filter is stable (Huang et al., 2001). The LPC filter 
coefficients do not have this property. 

 Thus, the LPC filter coefficients were converted to their corresponding reflection 
coefficients. Then, a lineal interpolation within 4 points was applied to them. Later, the 
linearly interpolated reflection coefficients were converted back to LPC filter 
coefficients, guarantying that the filter was still stable within all the news frames. The 
conversion from the filter coefficients to reflection coefficients and vice versa was 
performed by using the Matlab functions lpcar2rf.m and lpcrfr2ar.m, respectively.  
They belong to the Voicebox Matlab toolbox.  

 As said above, the result of the lineal interpolation was an increase of the total 
number of frames in a factor of 4, because the lineal interpolation could be considered 
as a division of each frame into four subframes. That is why some processing 
parameters had to be modified in the function LPC_filter.m to be able to be used for 
delta features. In this case, the mode of the performance of the LPC_filter.m function 
must be set to 1 (see code of LPC_filter.m in Appendix D). Then, the frame shift is a ¼ 
of the original frame shift. 

 

3.2.4. De-emphasize Processing 

When the features extraction process was presented in Section 2.2, it was explained that 
the speech signal is passed through a pre-emphasis filter before the spectral analysis. 
That is why, finally, the synthesized speech must be passed through a de-emphasize 
filter. It is a low-pass filter, whose transfer function (Eq. (25)) is the inverse to Eq. (5) 
and corresponds to Figure 23 (see that it is the inverse transfer function comparing with 
Figure 13). 

�{112 = 1��0112��� = 11 − ��0112��� 

The de-emphasize coefficient must have an equal value than the pre-emphasis 
coefficient, that was set to 0.97. 

(24) 

 

(25) 
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Figure 23: De-emphasized filter (a=0.97) 
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4. ANALYSIS OF RESULTS AND DISCUSSION 
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This section is an analysis of the results extracted in the implementation of the 
generative model described in the previous section. In short, the generative model 
returns the synthesized speech from its MFCC representation.  

 One way to make an objective evaluation of the generative model is to compute 
the spectral distance between the original signal and the one produced from the MFCC 
coefficients. That can be done by developing two spectral models based on the LPC 
coefficients from the original signal and the ones computed from the MFCCs. That is 
why; previously to the evaluation of the signal produced from the MFCC coefficients, a 
LPC analysis of the original waveform speech signal was developed.   

 In the other hand, for a subjective evaluation of the generative model, it is 
interesting to present an interpretation of the intelligibility of the synthesized speech 
versus the original signal. 

 This section is divided into five sections. Firstly, the LPC analysis of the 
waveform speech signal is presented. Secondly, a presentation of the MFCC files 
generated by HTK Software and an analysis of the MFCC vectors are done. In the third 
section, the two approaches for the generative model are compared and discussed. The 
fourth section is devoted to an evaluation of the parametric representation, based on the 
spectral distance measure. Finally, the intelligibility of the reconstructed speech by the 
generative model is commented and discussed.  

 

4.1. LPC ANALYSIS OF THE WAVEFORM SPEECH SIGNAL 

The algorithm for LPC analysis was implemented in a Matlab function called 
waveform_analysis.m and it is enclosed in Appendix D. This function follows the 
process shown in Figure 18, implementing the filtered of the speech signal through the 
pre-emphasis filter, the frame blocking and Hamming windowing and the LPC feature 
extraction.  

 The algorithm waveform_analysis.m was executed for a LPC analysis of 12th 
order. The LPC parameters (filter gain, g; and LPC filter coefficients, {ai}) were 
computed by using the Matlab function proclpc.m, which belongs to Matlab Auditory 
Toolbox.  

 In order to show the performance of the different steps involved in LPC 
extraction process, the following figures were executed for sa1.wav file. In Figure 24, 
the original speech waveform and how is affected after the pre-emphasis filter is 
illustrated. Figure 25 presents the effect of using a Hamming window, and Figure 26 
shows the Linear Predictor spectrum of one frame as compared with its magnitude 
spectrum. 
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Figure 24: Original speech waveform and original speech waveform after the pre-emphasis filter with 
coefficient equal to 0.97 (sa1.wav file) 

 

 

Figure 25: Effect of multiplying one speech frame by a Hamming window (frame 115 from sa1.wav)  

0 0.5 1 1.5 2 2.5 3
-0.1

-0.05

0

0.05

0.1
Original speech waveform

Time

M
ag

ni
tu

de

0 0.5 1 1.5 2 2.5 3
-0.05

0

0.05

0.1

0.15
Original speech waveform after pre-emphasys filter

Time

M
ag

ni
tu

de

0 0.05 0.1 0.15 0.2 0.25
-0.01

-0.005

0

0.005

0.01
speech waveform of frame 115

Time (s)

M
ag

ni
tu

de

0 0.05 0.1 0.15 0.2 0.25
-5

0

5

10
x 10

-3 Hamming windowed frame

Time (s)

M
ag

ni
tu

de



Speech Analysis for Automatic Speech Recognition 
 

4. Analysis of Results and Discussion 42 
 

 

Figure 26: Comparison of the power spectrum computed from LPC coefficients with the original 
magnitude spectrum (frame 115 of sa1.wav) 

 

 As one can see in Figure 25, the use of a Hamming window makes that 
magnitude of the speech frame tapers from the centre of the window to the edges. This 
fact reduces the discontinuities of the signal at the edges of each frame.  

 Figure 26 shows the Linear Prediction (LP) power spectrum compared with the 
magnitude spectrum of a speech frame. One can see that the power spectrum computed 
from LPC coefficients is actually representing the spectral envelope of the magnitude 
spectrum of this frame. This spectral envelope marks the peaks of the formants of the 
speech frame.  

 More examples that illustrate this fact can be added. Figure 27 corresponds to 
the frames 84 and 176 of the same waveform file (sa1.wav). 
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Figure 27: Comparison of the power spectrum computed from LPC coefficients with the original 
magnitude spectrum (frames 84 and 176 of sa1.wav) 

 

4.2. MFCC VECTORS COMPUTED IN HTK 

In the Section 3.1, the HCopy tool was presented as the tool to parameterize the speech 
signal into a sequence of feature vectors. The parameterization was defined by setting 
the configuration parameters of the configuration file, called hcopy.conf (enclosed in 
Appendix B).  

 In this section an analysis of the output files generated by HTK can been done in 
order to explore how HTK performs the output MFCC files. The set of source 
waveforms files given and the output MFCC files generated in HTK were listed in 
Figure 21. For example, the command line to create the corresponding output MFCC 
file of the source file sa1.wav was: 

HCopy -C hcopy.conf sa1.wav mfcc1.htk 

 It is important, for the later processing of the MFCC vectors, to know how the 
structure of the output file executed by HTK is, and to check that the input conversions 
are being performed properly. For this task, there is a HTK tool which allows 
examining the contents of the speech data files, the HList tool (Young et al., 2006). The 
HList tool was executed to check the conversion performed in the previous sa1.wav file:  
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HList -C hcopy.conf -o -h -t -s 113 -e 115 sa1.wav 

 The options –h and –t are used to print the source header and the target header 
information. The options –s and –e indicate the range of sample vectors to display. The 
option –o is used to show the observation structure which identifies the role of each 
item in each sample vector (Young et al., 2006). The results are display below: 

 

  

The source header information confirms that the source file called sa1.wav 
contains waveform data with 2 byte samples and 46797 samples in total. The samples 
period is 62.5 µs which corresponds to a sample frequency of 16 kHz. With this data, 
one can know that the duration of the speech waveform file is the 2.923 seconds 
(46797samples/16kHz). 

 The target header information confirms that speech data have been 
parameterized to a sequence of 290 MFCC vectors, including, each one, the C0 
component as the energy component. Each MFCC vector contains 13 components and 
is 52 bytes in size. The frame period is 10 ms which corresponds to an output frame rate 
of 100 frames/second. Since the speech file is of 2.923 seconds, the number of frames 
and consequently the parameter vectors performed are 290 vectors. 

 The observation structure describes the structure of output data. One can see that 
the 13 components of the parameter vectors are grouped into 12 MFCC coefficients and 
the last component is the energy component, C0. Finally, for this example, the values of 
the MFCC coefficients for three frames are displayed. 
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 Some aspects have to be considered before processing MFCC vectors in Matlab. 
The output MFCC files place the C0 component in the last position of the parameter 
vector. When the MFCC vectors are processed this component has to be changed to the 
first position into the parameter vector. In the other hand, it is worth highlighting that 
HTK considers the first sample vector with index 0 and Matlab does not have the index 
zero and starts in index 1. 

 Another example of the output MFCC files can be shown by using another 
source waveform file, sx37.wav: 

HList -C hcopy.conf -o -h -t -s 40 -e 41 sx37.wav 

 

  

Energy Compaction within the MFCC Coefficients 

As explained in Section 2.2.3, the MFCC coefficients are the DCT-II of the log-
spectral-energies at the centre frequencies of the mel filterbank. The Fourier Transform 
of a speech frame is transformed to a mel-frequency scale by the filterbank analysis 
with M channels. The output of this process is the M log-spectral-energies at mel centre 
frequencies. The DCT-II allows an energy compaction in its lower coefficients. So, the 
use of the DCT-II makes that the M filterbank channels can be reduced to L (L<M) 
MFCC coefficients. This truncation into the cepstral components allows recovering a 
smoothed spectral representation in which phonetically irrelevant detail has been 
removed.  
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 Despite of the MFCC computation was performed by using 24 filterbank 
channels (see configuration parameters in Appendix B); a mel power spectrum of a 
speech frame can be computed from its 13 MFCCs by using the inverse DCT-II 
(function idct_htk.m enclosed in Appendix D). This is illustrated in Figure 28.  

 

Figure 28: Mel power spectrum of one speech frame compared with its magnitude spectrum (frame 115 
from sa1.wav) 

 

 Figure 28 demostrates that the mel power spectrum is the smoothed spectral 
envelope of the magnitude spectrum of the speech frame. In this case, the harmonics of 
the speech spectrum are flattened because of, the reduction of the frequency resolution 
performed wtihin mel-filterbank analysis and, the truncation of higher-order coeffcients 
in the DCT-II computation.   
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was seen that the LPC coefficients come from the solution of the Yule Walker 
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spectrum.  These approaches were implemented in the algorithms mfcc2spectrum.m and 
mfcc2spectrum2.m (see code in Appendix D).  

 In this section, the results of both algorithms will be exposed and discussed. So, 
the power spectrum computed from the LPC parameters as compared with the mel 
power spectrum will be plotted by executing both algorithms. 

 Figure 29 is obtained by executing the mfcc2spectrum.m function. This 
algorithm makes a linear interpolation of the mel power spectrum to get samples 
uniformly spaced in a linear frequency scale in order to use the inverse Fourier 
Transform of Eq. (22).  

 

Figure 29: LP power spectrum computed from MFCCs by generative model 1: mfcc2spectrum.m (frame 
115 from sa1.wav) 

  

One can see that the LP power spectrum computed from MFCC coefficients is 
approximated to the mel power spectrum. Both of them represent the spectral envelope 
of the magnitude spectrum of the speech frame. 

 Following Figure 30 is obtained by executing the mfcc2spectrum2.m function. 
This algorithm applies the inverse Fourier Transform of Eq. (23) directly to the mel 
power spectrum at frequencies on a mel scale considering their bandwidth.  
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Figure 30: LP power spectrum computed from MFCCs by generative model 2: mfcc2spectrum2.m   
(frame 115 from sa1.wav) 

 

 The results are equal to the ones obtained with the first algorithm, since both of 
them can be considered as a linear interpolation in which, finally, the mel power 
spectrum samples have to correspond to a determined frequency separation. 

 The algorithm of mfcc2spectrum2.m is faster than the mfcc2spectrum.m. That is 
because of, the first one computes the autocorrelation coefficients of one frame in one 
matrix multiplication; whereas, the second one has to make one linear interpolation for 
each equally-spaced frequency sample. That is why; the results of the generative model 
will be performed by using the mfcc2spectrum2.m algorithm. 
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method to be able to synthesize speech from its MFCC parametric representation. The 
goodness of the synthesized speech can be measured by computing the spectral distance 
between the original signal and the one produced from the MFCC coefficients. For that, 
the two spectral models used were the one obtained from the LPC coefficients 
computed from the original signal and the one obtained from the LPC coefficients 
computed from the MFCCs. 
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 The spectral distance measure and its L2 spectral norm (rms log spectral 
distance) were explained in Section 2.3. An algorithm to measure the spectral distance 
between two spectral models was implemented in a Matlab function called 
spectral_distance.m; and it is enclosed in Appendix E.  The algorithm follows Eq. (16) 
and Eq. (17). 

 Several examples will be given to show a graphical comparison between the two 
spectral models. 

 

Figure 31: Comparison of spectral models from the original speech waveform and from the MFCC 
vectors (fame 115 from sa1.wav) 

  

It was said before that the LP power spectrum computed from speech waveform 
as well as from MFCCs coefficients, represented the spectral envelope of the magnitude 
spectrum of the speech frame. However, in Figure 31, one can see that the harmonics or 
formants peaks are marked in the LP power spectrum from speech waveform whereas, 
they are more flattened when is computed from the MFCCs coefficients.  This gives a 
spectral distortion between them of 0.87dB. 

 Another example can be shown by using the si648.m file. Figure 32 illustrates 
the comparison of the LP spectrums whose spectral distortion computed is of 0.35 dB. 
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Figure 32: Comparison of spectral models from the original speech waveform and from the MFCC 
vectors (fame 133 from si648.wav) 

  

 The generative model can be evaluated more in detail by computing the spectral 
distance for every frames of each speech waveform file. Hence, it is possible to give an 
overview of the minimum and maximum spectral distances that were computed by the 
model. Also, the mean spectral distortion of every speech file is calculated. Table 3 
shows the results of these measures. 

Table 3: Study of spectral distortion computed between LP power spectrum from original waveform 
speech signal and the one computed from MFCCs 

Source waveform 
files 

Minimum spectral 
distortion (dB) 

Maximum spectral 
distortion (dB) 

Mean spectral 
distortion (dB) 

sa1.wav 0.11 2.09 0.76 
sa2.wav 0.14 2.11 0.67 
si648.wav 0.09 1.67 0.57 
si1027.wav 0.11 2.12 0.62 
si1657.wav 0.09 1.71 0.67 
sx37.wav 0.10 2.18 0.58 
sx127.wav 0.14 2.56 0.68 
sx217.wav 0.11 1.83 0.77 
sx307.wav 0.16 2.01 0.61 
sx397.wav 0.10 1.93 0.72 
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From the above table, one can extract that he minimum spectral distortion 
computed is 0.09 dB and the maximum is 2.56 dB. So, the results of the generative 
model depend of the utterances which have to be synthesized. If one computes the mean 
of the mean spectral distortion of every speech file can give a mean estimate of the 
generative model. Doing that, it is possible to say that the generative model has a 
spectral distortion mean of 0.66 dB. This mean depends strongly on the speech data that 
were used for the experimental results.  

 

4.5. STUDY OF THE INTELLIGIBILITY OF THE RECONSTRUCTED 
SPEECH   

This section is proposed to give an interpretation of the intelligibility of the 
reconstructed speech. 

 The speech synthesis is based on the implementation of a source-filter model for 
speech production (Figure 7). As explained in Section 3.2.2, for the generative model 
implementation, the filter was estimated by using the LPC coefficients computed from 
the MFCCs; and the excitation signal was modeled for voiced and unvoiced sounds.  

 After, adding to the generative model, two tests were proposed to synthesize 
speech from other two different excitation signals: 

• Predictor error signal or residual signal of the LPC analysis of the waveform 
speech (test1.m in Appendix F). 

• A mixed model for voiced and unvoiced sounds based on the pitch 
information of the original waveform speech (test2.m in Appendix F). 

 Thus, this section is divided into two. The first one presents an interpretation of 
the intelligibility of the reconstructed speech when unvoiced and voiced excitation 
signals are used; and in the second one, the results of the tests for different excitation 
signals are discussed.  

 

4.5.1. Speech Synthesis from Voiced and Unvoiced Excitation Signals 

The excitation signal models unvoiced sounds as a random noise and the voiced sounds 
as a pulse train repeating at a fixed constant pitch. The difference in the synthesized 
speech, when it is computed from the two different excitations, will be discussed in this 
section. 

  The speech synthesis was performed from its MFCC representation; in which 
much information is lost in the extraction process. So, as said in the previous sections, 
the recovered spectrum is smoothed since the harmonics and formants of the speech 
signal are flattened in that process. This fact made that resulting synthesized speech 
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sound as monotone voice. Moreover, the subjective quality of the speech was limited by 
annoying buzzes, thumbs and tonal noises. 

In the experimental work, when the speech was synthesized from a white 
random noise (all unvoiced excitation), it sound as whispered voice.  Thumps could be 
perceived due to the erroneous noise burst within voiced segments. Whereas, when the 
speech was synthesized from a pulse train (all voiced excitation), it seemed to be 
affected by a tonal noise, perceived as hums or droning sounds which degraded the 
subjective quality.  In both cases, the resulting voice tended to be a monotone voice, as 
was concluded above. This perceived noise and distortion made that the resulting voice 
was not clearly understandable. 

 In order to compare the resulting synthesized speech, the LPC filter was also 
implemented from the LPC coefficients of the original speech waveform. In this case, 
the speech synthesized sound much better and understandable. The following Figures, 
33 and 34, show the synthesized speech waveform by using the LPC filter implemented 
from the LPC coefficients computed from MFCC vectors, as compared to the one 
resulting by using the LPC filter implemented from the LPC coefficients from the 
original speech waveform.  The original speech waveform signal is plotted in Figure 24. 

 

Figure 33: Synthesized speech from an unvoiced excitation signal when the filter is implemented by (a) 
the LPC coefficients computed from the original speech waveform and (b) the LPC coefficients computed 

from the MFCCs vectors (sa1.wav file) 
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Figure 34: Synthesized speech from an voiced excitation signal when the filter is implemented by (a) the 
LPC coefficients computed from the original speech waveform and (b) the LPC coefficients computed 

from the MFCCs vectors (sa1.wav file) 

  

 One can see, from the above figures, a greater distortion is presented when the 
filter model is implemented from the MFCC representation. The synthesized speech is 
clearer when is performed from the LPC coefficients than when is performed by 
transforming the MFCCs into LPC coefficients that carry out more approximations. 
However, it has to be emphasized that the MFCC representation contains more 
perceptually information than the LPC coefficients. 

 Further on, Figures 35 and 36 show the spectrograms of the synthesized speech 
waveforms as compared with the spectrogram of the original speech waveform.  
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Figure 35: Spectrogram of (a) original speech waveform; and synthesized speech from (b) unvoiced 
excitation signal and (c) voiced excitation signal. The filter is implemented with LPC parameters 

computed form original speech waveform (sa1.wav) 

 

 

Figure 36: Spectrogram of (a) original speech waveform; and synthesized speech from (b) unvoiced 
excitation signal and (c) voiced excitation signal. The filter is implemented with LPC parameters 

computed from MFCC vectors (sa1.wav) 
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 As was said in Section 3.2, the delta coefficients for the LPC coefficients were 
added in order to achieve a better recognition performance. These coefficients were 
approximated by a linear interpolation as described in Section 3.2.3. It was expected 
that the incorporation of these features caused better subjective quality or intelligibility 
of the synthesized speech. However, the improvement could not be noted. The 
synthesized speech sound like the one computed with only LPC coefficients or even 
worse in some cases. This can be due to both non efficient implementation of the LPC 
filter for delta coefficients or a poor development in the approximation method of the 
delta coefficients. 

 

4.5.2. Speech Synthesis from Different Excitation Signals 

As presented above, the two excitation signals proposed were: 

• Predictor error signal or residual signal of the LPC analysis of the waveform 
speech (test1.m in Appendix F). The residual signal is obtained when the 
original speech signal is filtered through the LPC filter, whose coefficients 
are those that minimize the prediction error (see Figure 19). 

• A mixed model for voiced and unvoiced sounds based on the pitch 
information of the original waveform speech (test2.m in Appendix F). 

 For the first test, the predictor error or residual signal was calculated by using 
the Matlab function called proclpc.m from Auditory Toolbox. It returns the predictor 
error for every frame of the speech signal. The synthesized speech from this excitation 
signal could be heard more clear although not as a natural voice. This is because of the 
speech is synthesized from a real excitation signal.  

 For the second test, the estimate of the pitch of the signal was also calculated by 
the proclpc.m function; whose algorithm for that is based on finding the peak in the 
residual's autocorrelation for each frame.  

 The frames of the speech signal were classified into voiced frames or unvoiced 
frames considering the value of the pitch estimate computed. Frames with a pitch value 
of zero were considered as unvoiced frames; in the other hand, frames with different 
values of zero were labeled to voiced frames.   

 Thus, knowing the pitch of the signal on each frame, they could be classified as 
voiced or unvoiced frames and then the appropriate voiced or unvoiced excitation signal 
must be used for each frame. That reduces the tonal noise or thumps that appear when 
unvoiced frames are synthesized from voiced segments and vice versa. Anyway, this 
synthesized speech sound more closely to the one obtained from all unvoiced excitation 
signal.



 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSION 
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The work developed in this Master Thesis consisted of the implementation of a speech 
generative model; whereby the speech is synthesized and recovered from its MFCC 
representation. Synthesizing speech from parametric representations allows performing 
an investigation on the intelligibility of the synthesized speech as compared to natural 
speech.  

 The first part of the implementation work consisted of extracting the MFCCs 
feature vectors from a set of speech waveform files. In the HTK Software, the feature 
parameterization of speech was performed according to the parameter settings in the 
configuration file. After, the generative model implemented the conversion chain from 
HTK-generated MFCC vectors to speech reconstruction.  

 During the MFCC extraction process, much relevant information was lost due to 
reduction of the spectral resolution in the filterbank analysis and the next truncation into 
the MFCC components. However, that allowed recovering a smoothed spectral 
representation in which phonetically irrelevant detail had been removed. For that, the 
log mel power spectrum could be computed from its MFCCs by an inverse DCT. This 
mel power spectrum actually represented the envelope of the magnitude spectrum, 
where the harmonics appeared flattened. 

 In the generative model implementation was necessary to derive LPC 
coefficients from MFCC vectors. In one hand to implement the source-filter model for 
speech production; and in the other hand, to compute a spectral model that could be 
compared with the one derived directly from the original speech waveform.  

 Previously to the subjective evaluation of the generative model, the goodness of 
the synthesized speech was measured by computing the spectral distance between the 
original signal and the one produced from the MFCC coefficients. The two spectral 
models used were the one obtained from the LPC coefficients computed from the 
original signal, and the one obtained from the LPC coefficients computed from the 
MFCC coefficients. In this evaluation was extracted that the minimum spectral 
distortion computed was of 0.09 dB and the maximum one was of 2.5 dB. A spectral 
distortion mean of the generative model was calculated with a result of 0.66 dB. 
Although it seems a good result, even regarded as transparent quality, the final results 
obtained within speech synthesis indicated a strong distortion which avoided the entire 
intelligibility of reconstructed speech.  

 Both spectral models were also compared graphically. As the mel power 
spectrum, both LP spectral models represented the envelope of the magnitude spectrum. 
Whereas, the LP power spectrum computed from MFCC coefficients was really 
approximate to the smoothed mel power spectrum; the LP power spectrum computed 
from the LPC coefficients of the original signal allowed the representation of the 
formants peaks. 
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 The source-filter model for speech production was implemented; where the filter 
was estimated by the LPC coefficients computed from the MFCCs vectors, and the 
excitation signal was modeled for voiced and unvoiced sounds. 

 In the experimental work, when the speech was synthesized from a white 
random noise (all unvoiced excitation), it sound as whispered voice.  Thumps could be 
perceived due to the erroneous noise burst within voiced segments. Whereas, when the 
speech was synthesized from a pulse train (all voiced excitation), it seemed to be 
affected by a tonal noise, perceived as hums or droning sounds that degraded the 
subjective quality. In both cases, the resulting voice tended to be a monotone voice 
because of the smoothing of the harmonics and formants in the LP power spectrum 
computed from the MFCC coefficients. This perceived noise and distortion made that 
the resulting voice was not clearly understandable. 

 In order to compare the resulting synthesized speech, the LPC filter was also 
implemented by the LPC coefficients of the original speech waveform. In this case, the 
speech synthesized sound much better and understandable. However, it has to be 
emphasized that the MFCC representation contains more perceptually information than 
the LPC coefficients.  

 Delta coefficients for the LPC coefficients were added in order to achieve a 
better recognition performance. It was expected that the incorporation of these features 
caused better subjective quality of the synthesized speech. However, the synthesized 
speech sound like one computed with only LPC coefficients, even worse in some cases. 
This could be due to both non efficient implementation of the LPC filter for delta 
coefficients or a poor development in the approximation method of the delta 
coefficients. 

 Finally, two tests were proposed to study the synthesized speech from other 
excitation signals. In the first one, the excitation signal used was the predictor error or 
residual signal obtained within the LPC analysis of the waveform speech. In the second 
one, the excitation signal used consisted of a mixed model for voiced and unvoiced 
sounds based on the pitch information of the original waveform speech 

 For the first test, the synthesized speech could be heard more clear although not 
as a natural voice. This was because of the speech was synthesized from a real 
excitation signal more closely for achieving the original speech waveform. 

 For the second test, the frames were classified as voiced or unvoiced frames and 
then, synthesized from the appropriate voiced or unvoiced excitation signal. That 
reduced the tonal noise or thumps that appeared when unvoiced frames were 
synthesized from voiced segments and vice versa. Anyway, this synthesized speech 
sound more closely to the one obtained from all unvoiced excitation signal.
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APPENDIX A: TEXTS OF UTTERANCES OF SPEECH DATA 

1) sa1.wav: She had your dark suit in greasy wash water all year. 

2) sa2.wav: Don’t ask me to carry an oily rag like that. 

3) si648.wav: A sailboat may have a bone in her teeth one minute and lie 

becalmed the next. 

4) si1027.wav: Even then, if she took one step forward he could catch her. 

5) si1657.wav: Or borrow some money from someone and go home by bus? 

6) sx37.wav: Critical equipment needs proper maintenance. 

7) sx127.wav: The emperor had a mean temper. 

8) sx217.wav: How permanent are their records? 

9) sx307.wav: The meeting is now adjourned. 

10) sx397.wav: Tim takes Sheila to see movies twice a week. 
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APPENDIX B: CONFIGURATION FILE hcopy.conf 

SOURCEKIND = WAVEFORM                                                                               

SOURCEFORMAT = WAVE                                                                                           

SOURCERATE = 625 

 

ZMEANSOURCE = FALSE                                                                                               

TARGETKIND = MFCC_0                                                                                               

#TARGETFORMAT = HTK 

 TARGETRATE = 100000 

 

#SAVECOMPRESSED = TRUE 

#SAVEWITHCRC = TRUE 

 

 WINDOWSIZE = 250000.0 

 USEHAMMING = TRUE 

 PREEMCOEF = 0.97 

 

#USEPOWER = FALSE 

 NUMCHANS = 24 

#LOFREQ = -1.0 

#HIFREQ = -1.0 

 

#LPCORDER = 12 

#CEPLIFTER = 22 

#NUMCEPS = 12 

 

#RAWENERGY = TRUE 

#ENORMALISE = TRUE 

#ESCALE = 1.0 

#SILFLOOR = 50.0 

 

#DELTAWINDOW = 2 

#ACCWINDOW = 2 

#SIMPLEDIFFS = FALSE 

 

#USESILDET = TRUE 

#SPEECHTHRESH = 0.0 

#SILTHRESH = 0.0 

#MEASURESIL = TRUE 

 

#OUTSILWARN = TRUE 

#SILMEAN = 0.0 

#SILSTD = 0.0 

#AUDIOSIG = 0 

#V1COMPAT = FALSE 

#VQTABLE = ""  
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APPENDIX C: GENERATIVE MODEL 

function  generative_model(filewav,filehtk,nf,model)  
  
%-------------------------------------------------- -------------------  
%   Name:   generative_model.m  
%   Author: Noelia Alcaraz  
%    
%   Description:    Implement the conversion chain from HTK-generated  
%                   MFCC representations to generat ive model.  
%-------------------------------------------------- -------------------  
  
% Set processing parameters  
fs=16000;   %Frequency samples  
Nshift=160; %Frame period of 10ms   --> 10ms*16KHz=160 samples  
Nfrm=400;   %Frame length of 25 ms  --> 25,s=16jHz=400 samples  
preem=0.97; %Pre-emphasis coefficient  
p=12;       %LPC Filter order.  
M=24;       %Number of filterbank channels  
Nfreq=256;  %Number of frequency points for spectral representa tion  
  
f=fs*(0:Nfreq-1)/(2*(Nfreq-1));  
  
%LPC Analysis and representation from the original speech waveform.  
 [x,fs,X,aCoef,G,LPspectrum]=waveform_analysis(file wav,nf);  
  
%Generative Model:  
%Read the MFCCs HTK file (mfcc vectors).  
%Convert the MFCCs to Power Spectrum.  
  
%Generative Model 1:  
if (model==1)  
    %Find samples of Magnitude Mel Spectrum at uniforml y spaced linear  
    %frequencies by linear interpolation method: (Syy)  
    %Produce the LPC parameters (g,aa) and the Power Sp ectrum (Sxx).  
    [mfcc,Syy,Sxx,aa,g]=mfcc2spectrum(filehtk,M,p,n f);  
    figure  
    plot(f,10*log10(abs(Syy(:,nf))))  
  
%Generative Model 2:  
else  
    %Obtain the LPC parameters (g,aa) from MFCCs by app lying the IFFT 
    %to the Mel Spectrum on mel scale  
    %( non-equally spaced linear frequencies)  
    %considering the bandwidth at each mel frequency.  
    %Obtain the Power Spectrum (Sxx) from these LPC coe fficients.  
    [mfcc,ymel,fsamp,Sxx,aa,g]=mfcc2spectrum2(fileh tk,M,p,nf);  
    figure  
    plot(fsamp,10*log10(abs(ymel(:,nf))))  
     
end  
  
%Plot Power Spectrum  
hold on 
plot(f,Sxx(:,nf), 'g' )  
plot(f,LPspectrum(:,nf), 'r' )  
grid  
xlabel( 'Frequency (Hz)' )  
ylabel( 'Magnitude (dB)' )  
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legend( 'Mel Spectrum' , 'LP Power Spectrum from MFCCS' , 'LP Power    
   Spectrum from speech waveform' , 'Location' , 'SouthOutside' )  
  
  
%Implementation the LPC Filter.  
%The excitation signal is filtered to obtain the sp eech signal.  
  
%1. Speech signal from LPC analysis of original wav eform.  
[sw,sv]=LPC_filter(G,aCoef',x,Nshift,Nfrm,p,2);  
  
%2. Speech signal from LPC from the generative mode l 1 or 2  
[sw2,sv2]=LPC_filter(g,aa,x,Nshift,Nfrm,p,2);  
  
%3. First Time derivatives of LP parameters of gene rative model 1 or 2  
[gd,ad]=deltacoef(g,aa);  
[sw2_d,sv2_d]=LPC_filter(gd,ad,x,Nshift,Nfrm,p,1);  
  
  
% de-emphasize  
sw=filter(1,[1 -preem],sw);  
sv=filter(1,[1 -preem],sv);  
  
sw2=filter(1,[1 -preem],sw2);  
sv2=filter(1,[1 -preem],sv2);  
  
sw2_d=filter(1,[1 -preem],sw2_d);  
sv2_d=filter(1,[1 -preem],sv2_d);  
  
%Pay 
soundsc(sw,fs);  
soundsc(sv,fs);  
  
soundsc(sw2,fs);  
soundsc(sv2,fs);  
  
soundsc(sw2_d,fs);  
soundsc(sv2_d,fs);  
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APPENDIX D: FUNCTIONS USED IN THE GENERATIVE MODEL 

Appendix D.1: waveform_analysis.m 

function  [x,fs,X,aa,G,Sxx]=waveform_analysis(filesignal,nf)  
 
%-------------------------------------------------- -------------------  
%   Name:   waveform_analysis.m  
%   Author: Noelia Alcaraz  
% 
%   Description:    Represent the Frequency Respons e (X) of the frame 
%                   number nf and is compare with t he Power Spectrum    
%                   (Sxx) of the such frame obtaine d from LPC analysis 
%                   of the original speech waveform .  
%-------------------------------------------------- -------------------  
  
%Data from the configuration file of HTK to generat e the MFCC_C0  
Nfreq=256;  %number of frequency points in spectral representat ion  
p=12;       %LPC analysis order  
Tfrm=25;    %frame size for analysis (ms)  
Tshft=10;   %frame shift for analysis (ms)  
preem=0.97; %pre-emphasis coefficient  
  
%Read the speech signal  
[x,fs,wmode,fidx]=readwav(filesignal);  
Nfrm=Tfrm*fs/1000;      %number of samples of frame size (400)  
Nshft=Tshft*fs/1000;    %number of samples of frame shift (160).  
  
% Pre-emphasis filter.  
preem=0.97;  
xpre=filter([1, -preem], 1, x);  
  
%Frame blocking.  
%There is an overlape of 15ms (400-160=240 samples) .  
frames=enframe(xpre,Nfrm,Nshft);  
frames=frames'; %one frame per column  
[lframe,numframes]=size(frames);  
  
%Entire process is applied over each frame.  
  
%Hamming Windowing  
xw=[];  
w=hamming(lframe);  
for  i=1:numframes  
    xw(:,i)=frames(:,i).*w;  
end  
  
%fft of each frame  
X=10*log10(abs(rfft(xw,510,1)));  
  
%LPC analysis of original speech waveform.  
Sxx=[];  
[aa,e,P,G]=proclpc(x,fs,p,Tshft,Tfrm,preem);  
for  i=1:numframes  
dbspec=lpcar2db(aa(:,i),Nfreq-2);  
dbspec=dbspec+10*log10(G(i));  
Sxx=[Sxx dbspec];  
end  
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t=0:1/fs:(length(x)-1)/fs;  
tframe=linspace(0,0.25,lframe);  
f=fs*(0:Nfreq-1)/(2*(Nfreq-1));  
  
%1. Plot Speech Waveform Signal  
figure  
subplot(2,1,1)  
plot(t,x)  
title( 'Original speech waveform' )  
xlabel( 'Time (s)' )  
ylabel( 'Magnitude' )  
grid  
subplot(2,1,2)  
plot(t,xpre)  
title( 'Original speech waveform after pre-emphasys filter ' )  
xlabel( 'Time (s)' )  
ylabel( 'Magnitude' )  
grid  
  
%2. Plot the pre-processing steps of the selected f rame nf  
figure  
subplot(2,1,1)  
plot(tframe, frames(:,nf))  
title(sprintf( 'speech waveform of frame %d' ,nf));  
xlabel( 'Time (s)' )  
ylabel( 'Magnitude' )  
grid  
subplot(2,1,2);  
plot(tframe,xw(:,nf))  
title( 'Hamming windowed frame' );  
xlabel( 'Time (s)' )  
ylabel( 'Magnitude' )  
grid  
  
%3. Plot the Power Spectrum of the selected frame n f  
figure  
plot(f,X(:,nf));  
hold on 
plot(f,Sxx(:,nf), 'g' )  
grid  
title( 'Power Spectrum' )  
xlabel( 'Frequency (Hz)' )  
ylabel( 'Magnitude (dB)' )  
legend( 'Power Spectrum (rfft)' , 'LP Power Spectrum' , 'Location' ,    
   'SouthOutside' )  
 

Appendix D.2: mfcc2spectrum.m 

function  [mfcc,Syy,Sxx,aa,g]=mfcc2spectrum(filehtk,M,p,nf)  
  
%-------------------------------------------------- -------------------  
%   Name:   mfcc2spectrum.m  
%   Author: Noelia Alcaraz  
% 
%   Description:    Calculate the Power Spectrum fr om MFCCs vectors  
%   Input parameters:  
%       M -->   Number of filterbank channels  
%       p -->   Order of LPC analysis  
%-------------------------------------------------- -------------------  
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%Initial values  
fs=16000;   %sample frequency  
Nfreq=256;  %number of frequency points in spectral representat ion  
K=256;      %number of mel-frequency points in spectral reconst ruction      
  
%Obtaining the Mel-Frequency Cepstral Coefficients from HTK program.  
[d,fp,dt,tc,t]=readhtk(filehtk);  
mfcc=d';  
C0s=mfcc(end,:);  
mfcc=[C0s; mfcc(1:end-1,:)];  
[ncof,nframes]=size(mfcc);  
  
Syy=zeros(Nfreq,nframes);  
  
%Convert MFCCs to Log Magnitude Mel Spectrum  
const=log(32768)*sqrt(M/K);  
coeffadj=0.5*ncof/M;  
ylogmel=coeffadj*idct_htk(mfcc,K)-const;  
  
%Calculate Mel Power Spectrum  
ymel=exp(2*ylogmel);  
  
%K equally-spaced samples on mel scale converted to  linear frequency 
scale  
fcnt=mel2frq(frq2mel(fs/2)*((1:K)-0.5)/K);  
  
%Nfreq equially-spaced points on linear frequency s cale.  
flinear=linspace(0,fs/2,Nfreq);  
  
%Find the value of Mel Power Spectrum of frame j fo r samples  
%equally-spaced on linear frequency scale.  
    for  i=1:Nfreq    
        dif=fcnt-flinear(i);  
        [value,pos]=min(abs(dif));  
         value=dif(pos);  
     
        if (flinear(i)<fcnt(1))  
            ylinear(i)=ymel(1,j);  
        elseif  (flinear(i)>fcnt(end))  
            ylinear(i)=ymel(end,j);  
        elseif  (value==0)   %fcnt(pos)=flinear(i)  
            ylinear(i)=ymel(pos,j);  
        elseif  (value<0)    %flinearl(i) --> [fmel(pos),fmel(pos+1)]  
            ylinear(i)=interp1([fcnt(pos),fcnt(pos+ 1)],  
                       [ymel(pos,j),ymel(pos+1,j)], flinear(i));  
        else                %flinearl(i) --> [fmel(pos-1),fmel(pos)]  
            ylinear(i)=interp1([fcnt(pos-1),fcnt(po s)],  
                       [ymel(pos-1,j),ymel(pos,j)], flinear(i));  
        end  
    end  
    Syy(:,j)=ylinear;  
  end  
  
%The Autocorrelation Coefficients are obtained appl ying the IDFT over  
%Mel Power Spectrum on linear frequency scale.  
r=irfft(Syy);  
[aa,g]=levinson(r,p); %aa(nframes,p+1)  
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%Calculate Power Spectrum  
Sxx=zeros(Nfreq,nframes);  
for  i=1:nframes  
ff=rfft(aa(i,:).',2*(Nfreq-1)).';     
Sxx(:,i)=-10*log10((1/g(i))*real(ff.*conj(ff)));  
end  
  
%Plot Spectra for the selected frame nf  
%1.Plot Linearized Mel Spectrum  
figure  
plot(flinear,10*log10(abs(Syy(:,nf))))  
ylabel( 'Magnitude (dB)' )  
xlabel( 'Frequency (HZ)' )  
hold on 
grid  
%2.Plot Spectrum produced by transforming MFCCs to LP coefficients  
plot(flinear,Sxx(:,nf), 'g' )  
legend( 'Linearized Mel Spectrum' , 'LP Power Spectrum from MFCCs' ,    
  'Location' , 'SouthOutside' ) 

 

Appendix D.3: mfcc2spectrum2.m 

function  [mfcc,ymel,fsamp,Sxx,aa,g]=mfcc2spectrum2(filehtk, M,p,nf)  
  
%-------------------------------------------------- -------------------  
%   Name:   mfcc2spectrum2.m  
%   Author: Noelia Alcaraz  
% 
%   Description:    Calculate the Power Spectrum fr om MFCC vectors  
%-------------------------------------------------- -------------------  
  
%Initial values  
fs=16000;   %sample frequency.  
Nfreq=256;  %number of frequency points in spectral representat ion.  
K=256;      %number of mel-frequency points in spectral reconst ruction  
  
%Obtaining the Mel-Frequency Cepstral Coeficients f rom HTK  program.  
[d,fp,dt,tc,t]=readhtk(filehtk);  
mfcc=d';  
C0s=mfcc(end,:);  
mfcc=[C0s; mfcc(1:end-1,:)];  
[ncof,nframes]=size(mfcc);  
  
 
%Convert  MFCCs to Log Magnitude Mel Power Spectrum  
const=log(32768)*sqrt(M/K);  
coeffadj=0.5*ncof/M;  
ylogmel=coeffadj*idct_htk(mfcc,K)-const;  
  
%Calculate Magnitude Mel Power Spectrum  
ymel=exp(2*ylogmel);  
  
%In order to obtain the LP coefficients from MFCCs,  The IFFT will be  
%applied to the mel spectrum over mel frequency sca le considering  
%the bandwidth corresponding to each mel frequency.  
  
%Find the size of the equisized mel bins in Hz  
melbnd=(0:K)*frq2mel(fs/2)/K;  
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fdelta=zeros(1,K);  
for  i=1:K  
    fdelta(i)=mel2frq(melbnd(i+1))-mel2frq(melbnd(i ));  
end  
fdelta=fdelta/(fs/2);  
%Find the center frequency of the mel bins  
melcnt=((1:K)-0.5)*frq2mel(fs/2)/K;  
fsamp=mel2frq(melcnt);  
%Calculate the inverse DFT transform matrix  
A=cos(((0:K-1)'*fsamp*(2*pi/fs)));  
%Do the inverse transformation (weighted by bin siz e)  
% to obtain the autocorrelation coefficients.  
for  i=1:nframes  
    r(:,i)=A*(fdelta'.*ymel(:,i));  
end  
% Levinson recursion to obtain LP coefficients  
[aa,g,k]=levinson(r,p);  
% Calculate power spectrum  
for  i=1:nframes  
    ff=rfft(aa(i,:).',2*(Nfreq-1)).';  
    Sxx(:,i)=-10*log10((1/g(i))*real(ff.*conj(ff))) ;  
end  
  
f=fs*(0:Nfreq-1)/(2*(Nfreq-1));  
  
%Plot Spectra for the selected frame nf  
%1.Plot Magnitude Mel Spectrum  
figure  
plot(fsamp,10*log10(abs(ymel(:,nf))), 'r' )  
ylabel( 'Magnitude (dB)' )  
xlabel( 'Frequency (HZ)' )  
hold on 
%2.Plot Power Spectrum by converting the MFCCs to L P coefficients  
plot(f,Sxx(:,nf), 'g' )  
grid  
legend( 'Magnitude Mel Spectrum' , ' LP Power Spectrum from MFCCs' ,   
  'Location' , 'SouthOutside' ) 

 

Appendix D.4: LPC_filter.m 

function  [sw,sv]=LPC_filter(g,a,x,Nshift,Nfrm,p,mode)  
  
%-------------------------------------------------- -------------------
%   Name:   LPC_filter.m  
%   Author: Noelia Alcaraz  
% 
%   Description: Implement source-filter model for speech production.  
%                Generate speech from the LP coeffi cients when  
%                excitation signal modulates voiced  sounds, sw, and  
%                unvoiced sounds, sw.  
%   Input parameters:  
%       g -->   Filter Gain  
%       a -->   a(:,p+1)LP Coefficients  
%       x -->   speech waveform.  
%       mode --> 1 filter is implemented by delta c oefficients.  
%            --> 2 filter is implemented by LPC coe fficients.  
%-------------------------------------------------- -------------------  
  
[nframes,ncoef]=size(a);  
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%Unvoiced excitation (white noise)  
Zi=zeros(p,1); %initial conditions  
Zf=zeros(p,1); %final conditions  
  
if  mode==1  
    Nshift=Nshift/4;  
    shft=(Nfrm-Nshift)/2-2;  
    shft=round(shft/4);  
else  
    shft=(Nfrm-Nshift)/2-2;  
end  
  
exw=randn(size(x,1)+Nshift,1);  
j=1;  
for  i=1:nframes  
    [sw(j:j+shft),Zf]=filter(g(i),a(i,:),exw(j:j+sh ft),Zi);  
    j=j+shft+1;  
    shft=Nshift-1;  
    Zi=Zf;  
end  
  
%Voiced excitation with fixed F0 (pulse train)  
Zi=zeros(p,1);  
  
if  mode==1  
    shft=(Nfrm-Nshift)/2-2;  
    shft=round(shft/4);  
else  
shft=(Nfrm-Nshift)/2-2;  
end  
  
exv=zeros(size(x,1)+Nshift,1);  
for  i=1:120:size(exv,1)  
    exv(i)=1;  
end  
j=1;  
for  i=1:nframes  
    [sv(j:j+shft),Zf]=filter(g(i),a(i,:),exv(j:j+sh ft),Zi);  
    j=j+shft+1;  
    shft=Nshift-1;  
    Zi=Zf;  
end  
  
end  
 

Appendix D.5: deltacoef.m 

function  [gd,ad]=deltacoef(g,a)  
  
%-------------------------------------------------- -------------------  
%   Name:   deltacoef.m  
%   Author: Noelia Alcaraz  
% 
%   Description:    Delta coefficients are the firs t time derivatives                                         
%                   that can be obtained by polynom ial approximation  
%                   (linear interpolation).  
%-------------------------------------------------- -------------------  
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[nframes,ncoef]=size(a);  
  
%The interpolation of the gain, g:  
x=1:nframes;  
xi=1:0.25:nframes;  
gd=interp1(x,g,xi);  
% gd will now have (N-1)*4-1 samples, i.e. that all  original frames   
% except the last one will need to be divided in 4 subframes; while   
% for the last frame its gain value will be repeate d for 4 times.  
gd=[gd gd(end) gd(end) gd(end)];  
  
%Interpolation of the filter coefficients.  
  
%First a conversion from autoregressive to reflecti on coefficients is  
% needed to ensure the filter stability after the i nterpolation.  
rf=lpcar2rf(a); %rf(:,p+1)  Reflection coefficients with rf(:,1)=1  
%Interpolation of reflection coefficients  
rfi=zeros(4*nframes,ncoef);  
rfi(:,1)=1;  
for  i=2:ncoef  
y=interp1(x,rf(:,i),xi);  
rfi(:,i)=[y';rf(end, i);rf(end,i); rf(end,i)];  
end  
  
%Finally, convert the reflections to autoregressive  coefficients.  
[ad,arp,aru,gr]=lpcrf2ar(rfi);  
 

Appendix D.6: idct_htk.m 

function  y=idct_htk(x,K)  
  
%-------------------------------------------------- -------------------  
%   Name:   idct_htk.m  
%   Author: Noelia Alcaraz  
% 
%   Description:    Backward DCT as used by HTK (DC T-II)  
%                   y=A'*D*x, where                
%                   a(i,j)=sqrt(2/K)*cos(pi*(i-1)*( j-1/2)/K)  
%                   and D is a diagonal matrix, dia g([0.5 1 … 1]).    
%                   Produces K log power spectrum s amples from the   
%                   input cepstral vector x, which is a (Nx1) column  
%                   vector  
%-------------------------------------------------- -------------------  
  
N=size(x,1);  
A=sqrt(2/K)*cos(((0:N-1)'*((1:K)-0.5))*(pi/K));  
D=diag([0.5 ones(1,N-1)]);  
y=A'*D*x;  
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APPENDIX E: SPECTRAL DISTANCE MEASURE 

function  d2db=spectral_distance(LPspectrum,Sxx)  
  
%-------------------------------------------------- -------------------  
%   Name:   spectral_distance.m  
%   Author: Noelia Alcaraz.  
%    
%   Description:    distance measure for speech rec ognition based on  
%                   rms Log Spectral measure.  
%   Input parameters:(two spectral models)  
%       LPspectrum --> LP Power Spectrum from origi nal speech waveform  
%       Sxx        --> LP Power Spectrum by transfo rming MFCCs into LP  
%                      parameters  
%   Output parameters:  
%       d2db       --> spectral distance or distort ion in dB.  
%-------------------------------------------------- -------------------  
 
[Nfreq,nframes]=size(Sxx);  
  
%The error or difference between the spectra models .  
V=log(LPspectrum)-log(Sxx);  
  
%In order to measure the distance between the spect ral models, the Lp  
%norm is chosen. For p=2, the rms log spectral meas ure is defined by:  
  
L2=sum(abs(V).^2)/(Nfreq);  
d2db=sqrt(L2);  
  
%As the spectra models are in db-spectra domain, th e spectral  
%distortion is obtained in dB.  
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APPENDIX F: EXCITATION SIGNAL TEST 

Appendix E.1: test1.m 

function  test1(filewav,filehtk,nf)  
  
%-------------------------------------------------- -------------------  
%   Name:   test1.m  
%   Author: Noelia Alcaraz  
% 
%   Description:    Modify the generative model usi ng as excitation  
%                   signal the residual signal obta ined with LPC  
%                   parameters from original wavefo rm signal.  
%                   Test will use generative model 2.  
%-------------------------------------------------- -------------------  
  
%Data from the configuration file of HTK to generat e the MFCC_C0  
p=12;       %LPC analysis order  
Tfrm=25;    %frame size for analysis (ms)  
Tshft=10;   %frame shift for analysis (ms)  
preem=0.97; %pre-emphasis coefficient  
M=24;       %Number of filterbank channels  
  
%Read the speech signal  
[x,fs,wmode,fidx]=readwav(filewav);  
  
%LPC analysis to get the residual signal  
[aCoef,e,P,G]=proclpc(x,fs,p,Tshft,Tfrm,preem);  
    %e --> LPC residual. One column of fs*Tfrm samples representing  
    %the excitation or residual of the LPC filter for o ne frame.                 
        
%MFCCs and LPC parameters for the LPC filter.  
[mfcc,ymel,fsamp,Sxx,aa,g]=mfcc2spectrum2(filehtk,M ,p,nf);  
[ncof,nframes]=size(mfcc);  
  
%Implementation LPC-filter (Modified)  
Zi=zeros(p,1); %initial conditions  
s_resid=[];  
for  i=1:nframes  
    [sre,Zf]=filter(g(i),aa(i,:),e(:,i),Zi);  
    s_resid=[s_resid; sre];  
    Zi=Zf;  
end 
 
% de-emphasize  
s_resid=filter(1,[1 -preem],s_resid);  
  
% Play  
soundsc(s_resid,fs); 

 

Appendix E.2: test2.m 

function  test2(filewav,filehtk,nf)  
%-------------------------------------------------- -------------------  
%   Name:   test2.m  
%   Author: Noelia Alcaraz  
% 
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%   Description:    Modify the generative model usi ng as excitation  
%                   signal one created from the pit ch information.  
%                   Test will use generative model 2.  
%-------------------------------------------------- -------------------  
  
%Data from the configuration file of HTK to generat e the MFCC_C0  
p=12;       %LPC analysis order  
Tfrm=25;    %frame size for analysis (ms)  
Tshft=10;   %frame shift for analysis (ms)  
preem=0.97; %pre-emphasis coefficient  
M=24;       %Number of filterbank channels  
  
%Read the speech signal  
[x,fs,wmode,fidx]=readwav(filewav);  
Nfrm=Tfrm*fs/1000;      %number of samples of frame size  
Nshft=Tshft*fs/1000;    %number of samples of frame shift.  
  
%LPC analysis to get the residual signal  
[aCoef,e,P,G]=proclpc(x,fs,p,Tshft,Tfrm,preem);  
    %pitch - A frame-by-frame estimate of the pitch of the signal,  
    %calculate by finding the peak in the residual's au tocorrelation  
     
%MFCCs and LPC parameter for the LPC filter.  
[mfcc,ymel,fsamp,Sxx,aa,g]=mfcc2spectrum2(filehtk,M ,p,nf);  
[ncof,nframes]=size(mfcc);  
     
%Implementation LPC-filter (Modified)  
Zi=zeros(p,1); %initial conditions  
shft=(Nfrm-Nshft)/2-2;  
exw=randn(size(x,1)+Nshft,1); %unvoiced excitation  
exv=zeros(size(x,1)+Nshft,1); %voiced excitation  
for  i=1:120:size(exv,1)  
    exv(i)=1;  
end  
j=1;  
for  i=1:nframes  
    if  P(i)==0  
        %unvoiced excitation  
        [s_pitch(j:j+shft),Zf]=filter(g(i),aa(i,:), exw(j:j+shft),Zi);  
    else  
        %voiced excitation  
        [s_pitch(j:j+shft),Zf]=filter(g(i),aa(i,:), exw(j:j+shft),Zi);  
    end  
    j=j+shft+1;  
    shft=Nshft-1;  
    Zi=Zf;  
end  
 
% de-emphasize  
s_pitch=filter(1,[1 -preem],s_pitch);  
 
% Play  
soundsc(s_pitch,fs);



 

 

 
 

 
 

 

 

 


