@ NTNU

Norwegian University of
Science and Technology

Low-power microcontroller core

Stein Ove Eriksen

Master of Science in Electronics
Submission date: June 2009
Supervisor: Einar Johan Aas, IET

Co-supervisor: @yvind Janbu, Energy Micro

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Problem Description

Low Power Microcontroller Core

Today’s “System on Chip” microcontroller solutions are mostly implemented as an RTL (typically
VHDL or Verilog) description that is run through synthesis and lay-out. The design must be able to
meet tight constraints on power consumption, chip area and timing. It is of major importance that
the entire design flow is optimized for low-power to ensure the best results on the final
microcontroller system. It is equally important that the microcontroller core itself is optimized
with respect to the design flow, to meet all constraints.

This theses focuses on optimizing the dynamic power consumption for an available
microcontroller core, the ZPU:

http://www.opencores.org/projects.cgi/web/zpu/overview

The ZPU does not have a low power design focus (but is rather focused on small size in an FPGA),
and should hence have room for improvements when it comes to power consumption. Additionally,
the ZPU design is relatively small and it should therefore be possible to get a good overview over
the microcontroller system during the work of this thesis.

The work can be split into three phases:

Literature study to evaluate existing low-power design techniques for a digital design flow, for
example

Design partitioning / system design

Clock gating / data gating

Power consumption evaluation

Run the microcontroller core through synthesis for a selected silicon process

Evaluate the power consumption of the selected microcontroller core both before synthesis [at
RTL) and after synthesis.

Power consumption improvements

Evaluate the microcontroller design versus the design techniques found during the literature
study

Make improvements to the microcontroller design and the design flow with respect to power
consumption, and show how these improvements reduce the dynamic power consumption.
Evaluate the correctness of the power consumption estimates. How close can we expect the
results to be compared with the actual silicon?

It is expected that the ZPU core will have weaknesses with respect to power consumption.
Describe these fundamental weaknesses, and suggest architectural improvements to ZPU to
improve this.

Veileder: @yvind Janbu (o.janbul@energymicro.com }

Fagleerer: Einar Aas (einar.aas(@iet.ntnu.no)

Low-power Microcontroller Core
Stein Ove Eriksen

Master’s thesis
Department of Electronics and Telecommunications, NTNU

June 23, 2009

ii

Abstract

Energy efficiency in embedded processors is of major importance in order to achieve
longer operating time for battery operated devices. In this thesis the energy effi-
ciency of a microcontroller based on the open source ZPU microprocessor is eval-
uated and improved. The ZPU microprocessor is a zero-operand stack machine
originally designed for small size FPGA implementation, but in this thesis the core
is synthesized for implementation with a 180nm technology library. Power estima-
tion of the design is done both before and after synthesis in the design flow, and
it is shown that power estimates based on RTL simulations (before synthesis) are
35x faster to obtain than power estimates based on gate-level simulations (after
synthesis). The RTL estimates deviate from the gate-level estimates by only 15%
and can provide faster design cycle iterations without sacrificing too much accuracy.
The energy consumption of the ZPU microcontroller is reduced by implementing
clock gating in the ZPU core and also implementing a tiny stack cache to reduce
stack activity energy consumption. The result of these improvements show a 46%
reduction in average power consumption. The ZPU architecture is also compared to
the more common MIPS architecture, and the Plasma CPU of MIPS architecture is
synthesized and simulated to serve as comparison to the ZPU microcontroller. The
results of the comparison with the MIPS architecture shows that the ZPU needs
on average 15x as many cycles and 3x as many memory accesses to complete the
benchmark programs as the MIPS does.

iii

v

@

Low Power Microcontroller Core

Today’s “System on Chip” microcontroller solutions are mostly implemented as an RTL (typically
VHDL or Verilog) description that is run through synthesis and lay-out. The design must be able
to meet tight constraints on power consumption, chip area and timing. It is of major importance
that the entire design flow is optimized for low-power to ensure the best results on the final
microcontroller system. It is equally important that the microcontroller core itself is optimized
with respect to the design flow, to meet all constraints.

micro

This theses focuses on optimizing the dynamic power consumption for an available
microcontroller core, the ZPU:

http://www.opencores.org/projects.cgi/web/zpu/overview

The ZPU does not have a low power design focus (but is rather focused on small size in an FPGA),
and should hence have room for improvements when it comes to power consumption.
Additionally, the ZPU design is relatively small and it should therefore be possible to get a good
overview over the microcontroller system during the work of this thesis.

The work can be split into three phases:
¢ Literature study to evaluate existing low-power design techniques for a digital design

flow, for example
o Design partitioning / system design
o Clock gating / data gating
* Power consumption evaluation
o Run the microcontroller core through synthesis for a selected silicon process
o Evaluate the power consumption of the selected microcontroller core both
before synthesis (at RTL) and after synthesis.
* Power consumption improvements
o Evaluate the microcontroller design versus the design techniques found during
the literature study
o Make improvements to the microcontroller design and the design flow with
respect to power consumption, and show how these improvements reduce the
dynamic power consumption.
o Evaluate the correctness of the power consumption estimates. How close can we
expect the results to be compared with the actual silicon?
o Itis expected that the ZPU core will have weaknesses with respect to power
consumption. Describe these fundamental weaknesses, and suggest
architectural improvements to ZPU to improve this.

Veileder: @yvind Janbu (o.janbu@energymicro.com)
Fagleaerer: Einar Aas (einar.aas@iet.ntnu.no)

Www.energymicro.com ...the world most energy friendly microcontroller

vi

Preface

This Master’s thesis in electrical engineering has been written at NTNU spring/-
summer 2009 as a continuation of my project work autumn 2008. The assignment
was given by Energy Micro in Oslo and involves power estimation and energy con-
sumption improvements in a microcontroller system.

During this work I have spent much time on studying microprocessor design and low
power design methodology. All the small steps and processes needed to achieve the
end results and conclusions have also been time consuming, for instance configuring
cross compilers, or getting design tools by different manufacturers to cooperate with
each other. These kinds of problems are seldom described in detail or solved in user
guides or literature, and they often stall work progress when they occur. Making
the workflow of a design process mostly glitch free and automated has also been
something I have striven for throughout this work. Scripting and automation is
time consuming at first, but the pay-off is tremendous in the long run, and it boosts
designer productivity.

I would like to thank Professor Einar Aas at NTNU and @Qyvind Janbu at En-
ergy Micro for invaluable guidance during this whole last year. I would also like to
thank my fellow students for great collaboration and lots of fun. And last but not
least thanks to my family and Mari for everything else.

-Stein Ove Eriksen
Trondheim, 23.06.2009

vil

viii

Contents

1 Introduction 1
1.1 Motivation 1

1.2 Problem description 1
1.3 Report structure 2

2 Embedded systems power consumption 3
2.1 Programmable processors vs hardwired ASICs. 3
2.2 Energy efficiency in programmable processors 4

3 Low power design theory 5
3.1 Power dissipation in CMOS technology 5
3.2 Power and energy definitions 0oL 5
3.3 Dynamic power consumption 6
3.4 Static Power consumption L. 8

4 Low power design techniques 9
4.1 Clock gating e 9
4.2 Power gating e 9
4.3 Multi-Voltage design 12
4.4 Multi-V; designo 13

5 Microprocessor architecture 15
5.1 General computer organization theory 15
5.1.1 The Processor 16

5.1.2 Pipelining oo 16

5.2 The ZPU microprocessor v o v it i 17
5.3 The Plasma MIPS microprocessor 18

6 Microcontroller configurations 21
6.1 Configuration 1: ZPU original microcontroller 21
6.2 Configuration 2: Plasma MIPS microcontroller 22
6.3 Configuration 3: Improved ZPU microcontroller 22

X

7 Synthesis 25

7.1 Artisan Sage-X 0.180um technology library 25
7.2 Synopsys synthesis toolso 26
7.2.1 Library Compilero 26
7.2.2 Design Compiler 27
723 Power Compiler. L 28

7.3 Configuration 1 core synthesisresults 29
7.3.1 VHDL-code modifications 29

7.4 Configuration 2 core synthesisresults 31
7.5 Configuration 3 core synthesisresults 32
7.6 SRAM memory synthesis results 33
8 Simulation and power estimation 35
81 Benchmarks L Lo 35
8.1.1 Dhrystone 35
8.1.2 AES-128 e 36
8.1.3 Piapproximation 36
8.1.4 While(1) spinlocko L 36

8.2 Compilers 36
821 GCCforZPU 37
822 GCCfor MIPS 37

8.3 Simulation and power estimation 38
8.3.1 Configuration 1 simulation results 38
8.3.2 Configuration 2 simulation results 45
8.3.3 Configuration 3 simulation results 48

9 Estimation method evaluation 53
9.1 RTL vs gate-level power estimation accuracy 53
9.2 RTL vs gate-level power estimation speed 56

9.3 Gate-level power estimation vs actual silicon chip power consumption 56

10 Evaluation of ZPU design 59
10.1 Comparison with MIPS architecture 59
10.2 ZPU power weaknesseso 59

11 Energy consumption improvements to ZPU microcontroller design 63
11.1 Memory improvementso 64
11.2 Control 66

12 Discussion 69
12.1 Power estimation accuracy and speed 69
12.2 ZPU architectural improvement potential 69
12.3 Compiler considerations L. 70
12.4 Implemented ZPU microcontroller improvements 70

13 Conclusion 71

14 Further work 73

A Design-flow scripts and programs 77
A.1 Modelsim simulation scripts 77
A.1.1 ZPU simulation script 7

A.1.2 Plasma CPU simulation script 77

A.2 Synopsys synthesis and power estimation scripts 78
A.2.1 Library Compiler script 78

A.2.2 Synthesis with Design Compiler scripts 78

A.2.3 Power estimation with Power Compiler scripts 79

A.3 Stack cache memory iterator 79

B VHDL code 81
B.1l ZPUcore e 81
B.2 ZPU memory module 92
B.3 ZPU testbench 93
B.4 Plasma CPUcore. 95
B.5 Plasma memory module L. 99
B.6 Plasma test bench 0. 102

xi

List of Abbreviations

.saif
AES
ASIC
CMOS
CPU
DMIPS
FPGA
GCC
I/0
ISA
MCU
RAM
RISC
SRAM
UART

switching activity interchange format
Advanced Encryption Standard

Application Specific Integrated Circuit
Complementary metal-oxide-semiconductor
Central Processing Unit

Dhrystone loops per second divided by 1757
Field-Programmable Gate Array

GNU Compiler Collection

Input/Output

Instruction Set Architecture
Microcontroller Unit

Random Access Memory

Reduced Instruction Set Computer

Static Random Access Memory

Asynchronous Reciever/Transmitter

xil

Chapter 1

Introduction

1.1 Motivation

A microcontroller unit (MCU) is a system-on-chip with a processing unit (CPU),
memory (RAM) and peripheral devices (I/O) all in the same IC-package. The mar-
ket for microcontrollers is huge and they are found in everything everywhere from
cars and industrial motor controllers to pacemakers and smoke detectors. In many
of these applications the microcontroller system is battery powered. The operating
time of the system then relies on the battery capacity and energy consumption of
the MCU. It is of major importance to minimize the energy consumption of the
MCU in such a system to improve the life-time for a given battery capacity.

1.2 Problem description

In this Master’s thesis an open-source microcontroller core, the ZPU, is synthesized
and evaluated with respect to dynamic power consumption. Improvements to lower
the energy consumption of the ZPU microcontroller are also implemented and shown
to actually reduce the energy consumption of the system. Another main goal of this
work has been to establish an efficient and automated low-power oriented design
flow to improve designer productivity.

Three microcontroller configurations are described in this thesis: Configuration 1 is
the original ZPU microcontroller, configuration 2 is a MIPS-based microcontroller
and configuration 3 is the improved ZPU microcontroller. Configuration 1 and 3
implementations, simulations and power estimations are direct answers to the assign-
ment given for this thesis. Configuration 2 with its MIPS architecture is introduced
to serve as a comparison to the ZPU microcontrollers.

1.3

Report structure

A brief overview of this thesis can be given as:

In chapter 2 the energy consumption distribution of embedded systems are
described.

Chapter 3 contains key concepts for CMOS technology.
In chapter 4 low-power design techniques are described.

Chapter 5 gives an overview of general microprocessor design and presents the
two architectures used in this thesis.

Chapter 6 presents the three microcontroller configurations that are synthe-
sized and simulated in this thesis; the ZPU and the Plasma.

In chapter 7 the synthesis process and results of the three microcontroller
configurations are presented.

In chapter 8 the results of simulation an power estimation of the three micro-
controller configurations are presented.

In chapter 9 the power estimation methods are evaluated.

In chapter 10 the ZPU architecture is discussed and compared with MIPS
architecture.

In chapter 11 improvements are implemented to the ZPU microcontroller to
reduce the energy consumption of the system.

Chapter 12 contains a discussion of the main results in this thesis.
Chapter 13 concludes this thesis.

Chapter 14 contains suggestions to further work.

Chapter 2

Embedded systems power
consumption

2.1 Programmable processors vs hardwired ASICs

General programmable processors (CPUs) are due to their programmability far more
flexible than application specific integrated circuit (ASIC) implementations, though
this flexibility comes with a cost. An ASIC spends all of its total energy on the
specific arithmetics or algorithms it is hardwired to perform, making it highly en-
ergy efficient within its limited capabilities. CPUs on the other hand, can perform
virtually any algorithm with its instruction set architecture (ISA) once the algo-
rithm is compiled to a sequence of data and instructions. This sequence of data
and instructions is stored in system memory, and needs to be fetched from memory
to be executed by the ISA in the processor core. This implies that to perform the
same algorithms an ASIC is hardwired to do, a CPU has a large energy consumption
overhead caused by fetching instructions and data from memory [1].

Other comparable metrics are development cost and time. ASICs meet the en-
ergy demands of embedded applications, but they typically have two year design
schedules with a typical cost of 20 million dollars or more. This makes them eco-
nomically feasible only for high volume applications. During this relatively long
development period it is also a challenge to keep up with the development on the
algorithms, protocols and codecs the ASIC needs to work with when it is to be
released into market [1].

Closing the gap between ASIC and CPU energy efficiency is therefore highly fa-
vorable when developing embedded systems for an ever changing market. In the
next section it is described where the energy is spent during execution of software
in programmable processors, and suggestions on how energy consumption can be
reduced is given.

2.2 Energy efficiency in programmable processors

Data
supply
28%
Instruction
supply
Arithmetic ﬂ
Clock +
control logic

Figure 2.1: Embedded processor efficiency. 70 percent of the processor’s energy is
consumed by instruction and data supply. Control and arithmetics makes up for
the remaining 30 percent [1].

Embedded processors spend most of their energy on fetching instructions and
data from memory as shown in figure 2.1. Dally et. al. [1] shows that 70 percent of
the energy is consumed by memory access, with the remaining 30 percent consumed
by control logic, clock distribution and arithmetics. Because of additional overhead
on the arithmetics such as updating loop indices and calculating memory addresses,
only 59 percent of the total arithmetic energy is spent on useful arithmetics. The
energy consumption by the useful arithmetics in the CPU is comparable to the ASIC
hardware implementation, but only makes up 3.5 percent of the total CPU energy.
This large energy overhead by performing arithmetics in CPUs is caused by the
the way it supplies data and instructions to the arithmetic units in the ISA. The
processor needs to spend 119pJ on instruction and data fetching to control a 10pJ
arithmetic operation, and only 59 percent of these operations are useful ones [1].

The energy consumed by instruction and data supply from memory ranges from
15 to 50 times the energy of actually performing the arithmetic instruction in the
ISA. Reducing the energy consumed by the memory subsystem is because of this of
great importance in order to close the gap between ASIC and CPU energy efficiency.

Chapter 3

Low power design theory

3.1 Power dissipation in CMOS technology

Power dissipation in CMOS technology has three sources: Piuitching, Pshort—circuit
and Pgqtie- The total power dissipation P,y is the sum of these three components
as stated in the equation:

Pavg = Pswitching + Pshart—circuit + Pstatic (31)
= (040—>1fclockCvad) + (tscImaxfclkad) + (Ileakagevdd)7

where Vyq is the supply voltage [2] [3]. Pswitching is the power required to charge and
recharge the output capacitance on a gate. Piport—circuit 1S caused by short-circuit
currents when signal transitions occur. Pyt is the power contribution from leakage
currents in the transistors. The power components are further explained in sections
3.3 and 3.4.

The delay through a CMOS gate can be modeled with a first-order derivation given
by:

CrVaa CrVaa
Ty = = 2
I I k(Vaa — Vi)%’ (3:2)

where Ty is the delay and k is a technology dependent constant [2].

It follows from 3.1 and 3.2 that lowering the supply voltage reduces the total power
consumption and also increases transition delay through the gates in a circuit. This
implies that there has to be a trade-off between power consumption and performance
for a given design in general.

3.2 Power and energy definitions

Power and energy are interconnected terms. Power is the instantaneous power
dissipated in a circuit. The energy required to complete a certain task is the integral

of the power function over time:
Energy = /Power dt (3.3)

Figure 3.1 shows the same task running at two different power levels, where the low-
power approach requires longer time to complete, but consumes the same amount
of energy as the high-power approach.

power [W]

time [s]

Figure 3.1: The low-power (2) approach could just be slower than the high-power
approach (1) while both requires the the same amount of energy.

The correlation between power consumption and computation speed indicates
a relation between low-power and high-performance design techniques. The work
in this report is concentrated on using the techniques available to save energy. For
battery operated devices, the battery-life is directly connected to the energy con-
sumption as batteries holds only a finite amount of energy.

3.3 Dynamic power consumption

The dynamic power consumption is the power dissipated in a circuit when it is in
an active state, which means internal signals are changing values. Dynamic power
consists of the two components Pyyitching and Psport—cireuit from equation 3.1.

Switching power

The switching power component Psyitching is the power required to charge and
recharge the output capacitance on a gate during signal transitions as shown in
figure 3.2. It is the main contributor to the dynamic power and is given by the
following equation:

Pswitching = aOHlfcloakCLVde (34)

where «ag_,1 is the number of transitions from 0 to 1 per clock cycle, feock is the
clock frequency, C7, is the output capacitance and Vg, is the supply voltage [2].

N —[
in vout

wo/ AT

Figure 3.2: Switching power in a CMOS inverter.

Short-circuit power

The short-circuit power component Psport—circuit 18 caused by the NMOS and PMOS
transistors both conducting a current through the channels during signal transitions
as shown in figure 3.3. Because of this a temporary current Isport—circuit flows from
Via to ground during input transitions. The expression for Psport—circuit Can be
written as:

Pshort—circuit = 75scIma:cfclkvvdd7 (35)

where t4. is the time duration of the short-circuit current, I,,.. is max internal
switching current, fq is clock frequency and V4 is the supply voltage. The dura-
tion tg. will depend on the transition time of the input signals, and as long as the
transition time is kept low, the dynamic power dissipation will be dominated by the
switching power Psyitching [3]-

Vad

e/

in

—[I

l Cout
e]

Figure 3.3: Short-circuit power in CMOS, caused by the NMOS and PMOS tran-
sistor both being partially open during signal transition.

3.4 Static Power consumption

The static power dissipation is due to leakage currents in CMOS transistors, and in-
creases as the transistor dimension and threshold voltage decreases. The three main
components are sub-threshold leakage, gate tunneling leakage, and drain diode leak-
age currents as shown in figure 3.4 [4].

Vg
Vs Vo
—_— l oxide |
- N+ |< N+
ds P v
Igate
ldiode
Ids - sub-threshold leakage current _j__
-V
Igate - gate tunneling leakage current bulk
lgiode - drain diode leakage current

Figure 3.4: Three sources of static power consumption in CMOS

The sub-threshold leakage current can be approximated by

Vas—Vr

w
Toup :Mcoxvt%zfe "Vin , (36)

where W and L are transistor dimensions, V7 is threshold voltage, V;;, is the thermal
voltage and p, Cyp and n are fabrication process parameters.

This means that scaling Vg and Vr down to limit dynamic power will make
leakage power exponentially worse, as the leakage current I,,; depends exponentially
on the difference between Vg and Vip.

The oxide thickness for 90nm technology is so small that the gate tunneling
leakage current is nearly 1/3 of I,p, but the sub-threshold current remains the
main contributer to static power dissipation [3].

Chapter 4

Low power design techniques

4.1 Clock gating

As 50% or more of the total dynamic power can be dissipated in clock buffers,
an effective method for decreasing the dynamic power consumption is to disable
the clock of a system component when not in use [3]. Clock gating decreases the
switching activity in the clock tree, flip-flops and in the fanout gates of the flip-flops
in a circuit, and decreases by equation 3.4 the switching power Psyitching. This way
clock gating also serves as data gating for clouds of combinatorial logic with registers
at the input [5].

Clock gating is implemented with the synthesis tool as shown in figure 4.1,
where the HDL code description is compiled with and without clock gating cells.
This approach requires no change to the HDL code. In [3], it is referred to a power
reduction project by K. Pokhrel in 180nm technology where power savings of 34%
to 43% are achieved on parts of a system with clock gating. Pokhrel finds that
clock gating on one-bit registers is not power efficient and uses clock gating only on
registers with a bit-width of three or more.

Clock gating theory is further described in [5], chapter 13, and implementation
with Synopsys tools is described in [6].

4.2 Power gating

The static power component Pitqt;. contributes more and more to the total power
dissipation of a circuit for each generation of CMOS technology. Power gating
techniques are about powering down blocks of the design when not in use, and by
this reducing the static power dissipation caused by leakage currents. The use of
different power modes such as an active mode and a sleep mode is essential for
battery operated devices [3].

A sleep mode implementation as in figure 4.2 has SLEEP and WAKE events to
initiate entry to sleep mode S and return to active mode A. The figure shows the
power consumption for a sub-system with the sleep mode implemented in different
ways. First, (1) has clock gating only, where the leakage power is equal for both

Typical compile
HDL code
always@ (posedge CLK) register cells
if (ENABLE)
Q <= D;
M AN
U — Q
D —\‘— X
AN
ENABLE
CLK c——————
Compile with clock gate insertion
clock gating cells register cells
ENABLE AND
latch D_\F _\‘_ Q
I
CLK JAN

Figure 4.1: Compile of design without and with clock gate insertion.

active mode and sleep mode. In (2) a simplyfied model for sleep mode entry /return
is used, with instant leakage reduction on the SLEEP event and a time penalty only
on the WAKE event. (3) has the most realistic model, showing that the leakage
power decreases over some time, not instantly, to reach power saving levels after a
SLEEP event.

In addition to the sleep mode entry/exit penalties shown in figure 4.2 (3), one
needs to take into account the extra energy required to enter and exit sleep mode,
mainly the energy used to store the system register contents on SLEEP and load
back the system register contents on WAKE.

Based on the energy and time penalties mentioned above and in figure 4.2, it is
possible write an expression for the minimum sleep time to conserve energy. Tpuin
is the minimum time the system must stay in sleep mode to save energy on an
active—sleep—active mode transition and is given by:

T Ejy s+ Es_a—Pa(Tams +Ts—4)
min — PA — Ps

(4.1)

where F4_,g and Eg_,4 are energy amounts used to store/load on SLEEP and
WAKE events, T4_,s and Ts_, 4 are the transition times between active and sleep
mode and P4 and P; are total power dissipated in active and sleep state.

Physical implementation of power gating has two approaches in general, fine

10

¢ P e, &
$ R K %" Y
200mwW
Dynamic Dynamic Dynamic
Power Power Power Power
@ Activity 1 Activity 2 S
20mw
10mW Leakage Power Leakage Power Leakage Power
Activity 1 (e.g. Clock Gated) Activity 2
Time >
A} N\
% E B %
? % & % R)
200mW/ D | 3
Dynamic Dynamic Dg‘r::’r:ric
Power Power Power
@ Activity 1 Activity 2 A’“;‘”W
20mW
10mwy | Leakage Power Leakage Power
Activity 1 Leakage (Power Gated) Activity 2
H Time
©® % © L @
A @ 74 CNEA S
% 53 % W R
200mw LI “ A
/ 1 Dynami
Dynamic Dynamic
Power gower I‘?(ower ¢ Power
Activi
@ Activity 1 Activity 2 c ;‘”ty
20mwW . A -
10mwW Lezj;(st?‘:zitziwer ~_ LeiliAk:t!i]‘zt:ozwer 4
Leakage (Power Gated 4
Time o

Figure 4.2: Comparison of entry/exit sleep mode in a system with (1): no power

gating, (2): ideal power gating and (3): realistic power gating. [3].

grain and coarse grain power gating. These approaches are explained in the two

following subsections.

11

Fine grain power gating

In fine grain power gating power switching transistors are placed inside each cell in
the technology library as shown in figure 4.3. High Vr sleep transistors are used
to create virtual Vg and virtual ground to the lower Vp main logic transistors [5].
Fine grain power gating can be implemented by changing just the cell library in
a traditional design flow, but the approach has a large area overhead of 2x-4x the
original cell size. Because the area penalty has not proven worth the savings in
design effort, most designs today uses coarse grain power gating [3].

Vad
ID- SLEEP
Virtual Vdd
P

IN I— ouT low V; logic transistors

high V; sleep transistors

N

Virtual ground
|— SLEEP

Figure 4.3: Fine grain power gating.

Coarse grain power gating

The coarse grain power gating approach uses a collection of switch cells to switch off
the power for a whole block of the system as shown in figure 4.4. The coarse grain
switching network is more difficult to implement than the transparent fine grain from
a designers point of view, but coarse grain gating has less area overhead and is most
frequently used today [3]. Detailed explanation of power gating implementation is
given in [3], chapter 5.

4.3 Multi-Voltage design

Different blocks in a SoC design has different performance constraints, and exploiting
this by partitioning the design into multiple power domains is called Multi-voltage
design. Lowering Vy,; on design blocks that are not critical to performance as in
figure 4.5 can decrease total power dissipation without decreasing performance of
the system. In figure 4.5, the cache RAM runs at 1.2V, the highest voltage possible
because it is the most critical component to performance. The CPU can then run
at at 1V while the cache at 1.2V is still the limiting factor, and the rest of the chip
can run at 0.9V without impacting the system performance.

12

VDD :
Y

Power Switching Fabric v
A Y
P q Isol q
ower
Gating Power Gated ?::xilz;
Control _*Controller a Fu;cl:tlo:al Block
oc
Y
VSS
......................... >

Figure 4.4: Coarse grain power gating. [3]

Multi-voltage designs needs level shifter interfaces between the power domains
that causes an area overhead. The level shifters makes timing analysis and floor plan-
ning more complex than for a single power domain. Each power domain also needs
its own power supply rail, and so the SoC will have to contain voltage regulators|3].

CACHE RAM
1.2v

<> SOC
0.9v

CPU ®
1.0v

Figure 4.5: Multi-voltage design. [3]

4.4 Multi-V; design

In CMOS technology sizes 130nm and downward, static power dissipation caused by
leakage currents becomes a main contributor to the total power consumption. From
equation 3.4 it follows that increasing Vi reduces the sub-threshold leakage, and

13

from equation 3.2 that gate delay increases with increasing Vr. Figure 4.6 shows
the leakage current as a function of gate delay for a 90nm process. Many libraries
contain three different cell versions: low-Vp, standard-Vp and high-Vp. In Figure
4.7 the leakage and delay for these three cell types are plotted relative to each other.

Libraries with multiple threshold voltages V7 can be used to optimize timing and
reduce static power dissipation for a design. System components with low timing
constraints can be implemented with the slower high-V cells, while timing critical
components can be implemented with the faster low-Vr cells. By using cells with
appropriate V to the given timing constraint for a system component, static power
dissipation can be significally reduced [3].

1000
U

__100
g .
z 10 .
< ; "5 = loffn
° -\(= loffp

0.1 \\

0.01 > -

0'0015 10 15 20 25 30

Gate Delay (ps)

Figure 4.6: Leakage current as a function of gate delay for a 90nm process. [3]

+ ¢ ¢+ Leakage —— Delay |
100% -

80% S /F
60% =

40% -~

20% -

0% —®

LVt SVt HVt

Figure 4.7: Leakage and delay for three different Vi cell types: low-Vr, standard-Vr
and high-Vp. [3]

14

Chapter 5

Microprocessor architecture

5.1 General computer organization theory

Patterson & Hennessy [7] states five classical components of a computer as shown
in figure 5.1. Data to be processed and processed data is put into memory by 1/0.
The control unit controls the data processing in the datapath. Both instructions
and data are fetched from memory to the processor.

Interface g

et Datapath
Evaluating s

performance

Qutput -

Processor Memory

Figure 5.1: The five classic components of a computer [7].

15

5.1.1 The Processor

This section describes the basic function of the MIPS processor, a common micro-
processor architecture. The processor executes the instructions it has implemented
in its ISA. Instructions start by supplying the instruction address to the instruction
memory from the program counter (PC). After fetching the instruction, the register
operands to be used by are specified by decoding the instruction word. Now the
register operands can be operated on to compute a memory address (load/store
instructions), compute an arithmetic result, or do a compare (for a branch). If the
instruction is an arithmetic instruction, the data is fed to the ALU from registers
and the result is written back to a register in the register file. The function of the
MIPS processor can thus be summarized in five steps:

1. Fetch instruction from memory

2. Read registers while decoding instruction

3. Execute the operation or calculate an address
4. Access an operand in data memory

5. Write the results to a register

For more information see [7], chapter 5.

L Data
 —
Register #
- PC Address Instruction Registers Address
. Register # Data
Instruction |
memory
memory Register # T
Data

Figure 5.2: Abstract view of the MIPS processor [7].

5.1.2 Pipelining

Pipelining is an implementation technique in which instructions are overlapped in
execution. The five-step execution of each instruction described in the previous
section is plotted in the top part of figure 5.3. A pipelined version the five-step
execution is shown at the bottom of figure 5.3. The pipelining technique provides

16

performance and energy consumption improvements as the instruction rate is in-
creased by a factor 4 for the example in figure 5.3. Examples of how to improve
performance and energy efficiency with pipelining are described in [7] chapter 6.

Program
execution 200 400 600 800 1000 1200 1400 1600 1800
order Time T T T T T T T T T
(in instructions)
Iw $1, 100($0) |"SIucton| peg| ALy | D28 | peg
w $2, 200(50) 800 ps "een " [Res| AW | o J“eg
w $3, 300($0) 800 ps e
—
800 ps
Program
execution 200 400 600 800 1000 1200 1400
order Time T T T T T T T
(in instructions)
w $1,100(80) "™ [Rea| AW | 0% |Reg
—p] :
w $2, 200(80) 200 ps|"men"| [Rea| AW | oxa |Reo
R "
w $3, 300(30) 200 ps || |Reg| AL | D33 |Reg
200 ps 200 ps 200 ps 200 ps 200 ps

Figure 5.3: Comparing nonpipelined (top) and pipelined (bottom) execution of three
load word instructions.

5.2 The ZPU microprocessor

Overview

The ZPU is an open source 32-bit RISC CPU developed by Zylin AS based in
Stavanger, Norway, and it also has a development project at OpenCores.org [8].
Originally designed for FPGA implementation, the philosophy behind the ZPU is
to take up as little FPGA resources as possible, and leave as much FPGA real
estate as possible for other hardware modules [9]. The ZPU is a zero operand CPU
with stack computer architecture and no register file. The stack is allocated in
main memory and all instructions are performed on the top-of-stack. The ZPU is
distributed with a GCC tool-chain, and the source code is written in VHDL. Figure
5.4 shows a block diagram of the ZPU core. The stack-machine architecture has no
register file. Further information about the ZPU is found on the ZPU developement
web pages [9].

Instruction set architecture

The ZPU instruction set is configurable. A base set of the instructions must be
implemented in the ISA, but the rest can be implemented either in the ISA or as
microcode (emulated instructions). This is to allow a trade-off of core size vs. code
size and performance.

17

Y

SP

¥
\
ap
? offset
Y
MUX

—»
—>
> / RAM

module

decode

MUX

¥
\
inc

PC

%

A\ MUX

D/

Figure 5.4: ZPU processor block diagram. All instructions are performed on top-
of-stack, the stack is located in memory, and the processor has no register file.

5.3 The Plasma MIPS microprocessor

Overview

The Plasma CPU is an open source synthesizable 32-bit RISC microprocessor de-
veloped at OpenCores.org. It has MIPS architecture and is serving as a comparison
for the ZPU in this thesis. The block diagram of the Plasma core is shown in fig-
ure 5.5. Further information about the Plasma processor is found on the Plasma
OpenCores.org project web page [13].

Instruction set architecture

The Plasma CPU implements all MIPS-I instructions except unaligned load and
store operations. This is due to the patent issued on these instructions.

18

d_write

pc_source

rs_index

rt_index

rd_index

reg_source

a_source

b_source

mem_source

c_source

branch_func

Address
4

\ A A

alu/shift/m|

fu

pit|

Figure 5.5: Plasma processor block diagram.

19

20

Chapter 6

Microcontroller configurations

Three microcontroller configurations will be synthesized and simulated in this thesis:
Configuration 1 is the ZPU core with an on-chip 32kB SRAM memory. A part of
the assignment given is to improve the energy efficiency of this design. Configuration
2 is another CPU core called Plasma with an on-chip 32kB SRAM memory. The
Plasma CPU is of MIPS architecture and will serve as a reference versus the ZPU
architecture. Configuration 8 is an improved version of the ZPU microcontroller in
Configuration 1, and this configuration will further discussed in chapter 11.

6.1 Configuration 1: ZPU original microcontroller

Configuration 1: ZPU original

32

Figure 6.1: Configuration 1: microcontroller with ZPU core and 32 kB SRAM main
memory.

Processor core

To trade chip area for low power, the ZPU core in configuration 1 is configured to
have the entire instruction set implemented in the ISA.

Memory

Configuration 1 has 32kB of on-chip SRAM memory synthesized by the TSMC
0.18um High Speed/Density Single-Port SRAM Generator. Read and write currents
for the 32kB SRAM are given in table 7.6.

21

6.2 Configuration 2: Plasma MIPS microcontroller

Configuration 2: Plasma MIPS

32

Figure 6.2: Configuration 2: microcontroller with Plasma MIPS core and 32 kB
SRAM main memory.

Processor core

Configuration 2 has the Plasma 32-bit MIPS processor implemented as its core.

Memory

Configuration 2 has 32kB of on-chip SRAM memory synthesized by the TSMC
0.18um High Speed/Density Single-Port SRAM Generator. Read and write currents
for the 32kB SRAM are given in table 7.6.

6.3 Configuration 3: Improved ZPU microcontroller

Configuration 3: improved ZPU

32

ZPU core .
(clock gated) Main memory
Architecture: 32-bit stack-machine 32 kB SRAM

Clock frequency: 10 MHz

Stack cache

128 bytes SRAM

Figure 6.3: Configuration 3: microcontroller with clock gated ZPU core, 32 kB
SRAM main memory and 128 bytes SRAM stack cache.

Processor core

To trade chip area for low power, the ZPU core in configuration 3 is configured to
have the entire instruction set implemented in the ISA.

22

Memory

Configuration 3 has 32kB of on-chip SRAM memory and another 128 bytes of on-
chip SRAM for stack cache. Both SRAMs are synthesized with the TSMC 0.18mum
High Speed/Density Single-Port SRAM Generator. Read and write currents for the
32kB SRAM and the 128 bytes SRAM are given in table 7.6.

23

24

Chapter 7

Synthesis

The processor core of the three configurations are synthesized with Synopsys synthe-
sis tools and the Artisan Sage-X 0.180um process for TSMC. The SRAM elements
are synthesized with the TSMC 0.18um High Speed/Density Single-Port SRAM
Generator.

7.1 Artisan Sage-X 0.180um technology library

The technology library used for synthesis is the Artisan Sage-X 0.180um process
for TSMC. Only the best case and worst case libraries were available for use in this
thesis, the typical library was not available. The worst case library was chosen for
synthesis because this ensures that timing constraints will hold for all chips in a
production batch and thus provide higher production yield. While the worst case
library is worst case for timing, it will give lower power estimates than when using
the typical library, as the worst case library is operating at a lower voltage. The
worst case voltage and temperature is given as the minimum voltage and maximum
temperature in figure 7.1.

Parameter Minimum Maximum
DC Supply Voltage (Vdd) 1.62V 1.98 VvV
Junction Temperature -40°C 125°C

Figure 7.1: Minimum and maximum operating voltage and temperature for the
Artisan Sage-X 0.180 pm cell library [10].

To compute the NAND2 gate equivalent area for the synthesized designs, the
NAND2 data from the library documentation [10] is shown in figure 7.2. NAND2
gate area for the Sage-X library can then be calculated to be:

Arean anp2 = 5.04um - 1.98um = 9.9792um?

25

©oO~DU s WN -

Logic Symbol
A p—

Y
B 7}

Drive Strength Height (um) | Width (um)
NAND2XL 5.04 1.98

Cell Size

Figure 7.2: NAND2 gate information from the Artisan Sage-X 0.180 um cell library
documentation [10].

7.2 Synopsys synthesis tools

Three Synopsys tools are used for the synthesis process: Library Compiler, Design
Compiler and Power Compiler. These tools are accessible from the dc_shell in a
terminal window or from the command prompt window in Design Vision. Design
Vision is a graphical user interface for the Synopsys tools, and it outputs every
command executed with mouse-clicks in the GUI as text-based commands in a log
window. This makes it possible to explore the tools trough the GUI interface as well
as the user manuals, and then use the text-commands to write work flow scripts.
Once the work flow in a design project is established, tcl-scripts can be written to
speed up productivity. The scripts are executable from either the dc_shell or from
within Synopsys Design Vision.

7.2.1 Library Compiler

Library Compiler is used to read the technology library in .lib format and compile
the library to Synopsys database .db format. This is done in the dc_shell with the
commands read_1ib and write_lib as shown in the script compile_library.tcl
below. The .db libraries are used in Synopsys Design Compiler synthesis and the
.vhdl libraries are used in MentorGraphics Modelsim gate-level simulations. Further
information can be found in the Library Compiler Reference Manual [11].

From compile_library.tcl

READ .LIB LIBRARY TO MEMORY
read_lib slow.lib

COMPILE HUMAN READABLE .LIB LIBRARY TO SYNOPSYS .DB
write_lib slow —format db —output slow.db

COMPILE COMPONENT, VITAL AND FUNC .VHDL MODELS
FOR USE IN MODELSIM SIMULATION
write_lib slow —format vhdl

26

U W N

Description of the compile library.tcl script: Library Compiler first reads
the human readable .lib technology library. The library is compiled and a Synopsys
database .db format is written. Finally, VHDL model libraries are output for use in
gate-level simulations in MentorGraphics Modelsim.

7.2.2 Design Compiler

Design Compiler is used for synthesis, which is converting the design description
written in VHDL into an optimized gate-level netlist mapped to the spescific tech-
nology library. Figure 7.3 shows the Design Compiler design flow. The synthesis
workflow used in this thesis is shown in the synthesize.tcl-script below

In general, the steps in the synthesis process are:

Constraints HDL Compiler
(SDC)
_ . .
N ¢ Design Compiler
IP DesignWarel T Timing & power
Library | | analysis
il
Timing | Datapath | Power
optimization | optimization |optimization
Technology | |
Library R - — - —
T l Formal
_ = ! verification

Area | Test | Timing
Symbol optimization | synthesis | closure
Library | | A
.

SDF
PDEF

Optimized netlist

Back-annotation
Place & route

Figure 7.3: Design flow using Synopsys Design Compiler [12].

1. Input design files are read by Design Compiler.

2. Design Compiler uses technology libraries and DesignWare libraries to imple-
ment the design.

3. The synthesized gate-level design is optimized to the constraints set by the
designer based on specifications.

4. The optimized gate-level netlist is output and is ready for gate-level simulation
or place-and-route.

From synthesize.tcl:

CLEAR MEMORY
remove_design —all

SET CELL LIBRARY
set target_library {/home/steinoe/CELL_LIB/sc/synopsys/slow/slow.db}

27

~ O Ul W N =

=
o © 0o

11

12
13

set link_library {/home/steinoe/CELL_LIB/sc/synopsys/slow/slow.db}
lappend search_path {.}

READ FILES

analyze —library WORK —format vhdl \

{ /home/steinoe/zpu/zpu/hdl/example_medium/zpu_config_trace.vhd \
/home/steinoe/zpu/zpu/hdl/zpu4/core/zpupkg.vhd \
/home/steinoe /zpu/zpu/hdl/zpud/core/zpu_core.vhd

ELABORATE
elaborate ZPU.CORE —architecture BEHAVE —library WORK

CONSTRAINTS
create_clock clk —name clock —period 100

CLOCK GATING
insert_clock_gating —global

MINIMIZING POWER
set_max_dynamic_power 0
set-max_total_power 0

COMPILE
compile —map_effort medium —area_effort medium

WRITE NETLIST

change_names —rules vhdl —hierarchy

set power_preserve_rtl_hier_names TRUE

write —hierarchy —format vhdl —output ../ zpu_core_reference_netlist.vhdl

Description of the synthesize.tcl script The target library is first set. Then
the .vhdl files for the module to be synthesized is read with the analyze command.
The top entity is then elaborated using the elaborate command. Then the design
constraints are set with the create_clock and set_max_dynamic_power commands.
Clock gating for configuration 3 is set with the insert_clock_gating command.
Finally the design is compiled with the compile command and a netlist .vhdl file is
output with the write command.

7.2.3 Power Compiler

Power Compiler analyzes switching information and propagates the switching in-
formation through the synthesized design. The switching information is generated
while running simulations of the design in MentorGraphics Modelsim as described
in chapter 8. The workflow for reading switching activity and reporting power con-
sumption is shown in the script below and is graphically presented in figure 8.1 and
figure 8.2.

From analyze_and report.tcl

READ SWITCHING ACTIVITY FROM MODELSIM SIMULATION

set find-ignore_case TRUE

read-saif —verbose —input ../simulate_aes_encrypt-RTL /simulation_aes_encrypt_-RTL.saif —
instance fpga_top/zpu

set find-ignore_-case FALSE

WRITE POWER REPORT
report_power —analysis_effort high >> ../simulate_aes_encrypt_-RTL/
ReportPower_aes_encrypt_RTL . txt

WRITE CELL, TIMING, AREA AND SAIF REPORTS

report_cell >> ../simulate_aes_encrypt_RTL/ReportCell_aes_encrypt_RTL . txt

report_timing —path full —delay max —nworst 1 —max_paths 1 —significant_digits 2 —sort_by
group >> ../simulate_aes_encrypt-RTL/ReportTiming_aes_encrypt_-RTL . txt

report_area —nosplit >> ../simulate_aes_encrypt-RTL/ReportArea_aes_encrypt-RTL.txt

report_saif >> ../simulate_aes_encrypt-RTL/ReportSaif_aes_encrypt_-RTL.txt

28

W=

oo

10

11

13
14

16
17
18
19
20
21

22
23
24
25

26

Description of the analyze_and report.tcl script: The .saif file containing
switching activity from Modelsim simulation is read with the read_saif command.
Power compiler then propagates the switching activity in the synthesized design
and outputs a power report. Reports are also written on cells, timing, area and the
switching activity annotation in the synthesized design.

7.3 Configuration 1 core synthesis results

Configuration 1 is a microcontroller with a ZPU core and 32kB SRAM main memory
as described in section 6.1. A screenshot of Design Vision with the synthesized
configuration 1 core is found in figure 7.4 and the synthesis area results are found
in table 7.1.

7.3.1 VHDL-code modifications

The behavioral description of the two ZPU instructions Loadb2 and Storeb2 in the
original zpu_core.vhd code are not accepted by Design Compiler when running syn-
thesis. The reason for this is that the ZPU is developed on an FPGA platform with
Xilinx synthesis tools. These tools uses a different sub-set of the VHDL standard
than the Synopsys tools and accepts the more compact description in the original
code. The one-line compact code of the original zpu_core.vhd was re-written with
case structures to satisfy the standards of the Synopsys tools. The re-written code
is shown below.

Code rewritten to be synthesizable with Synopsys tools:

when State_Loadb2 =>

if in_mem_busy="0" then

stackA <= (others => ’07);

——stackA (7 downto 0) <= wunsigned (mem_read (((wordBytes—I1—to_integer (stackA (byteBits—1
downto 0)))*8+7) downto (wordBytes—I—to_integer (stackA (byteBits—1 downto 0)))
*8));

—HAVE TO WRITE LINE ABOVE AS CASE STRUCTURE TO COMPILE SUCCESSFULLY

case stackA (byteBits—1 downto 0) is

when ”00” => stackA (7 downto 0) <= unsigned (mem._read (((wordBytes —1—-0)%*8+47) downto
wordBytes —1—0)*8)) ;

when ”01” => stackA (7 downto 0) <= unsigned (mem._read (((wordBytes —1—1)%*8+47) downto
wordBytes —1—1)%8)) ;

when ”10” => stackA (7 downto 0) <= unsigned (mem_read (((wordBytes —1-2)%*8+47) downto
wordBytes —1—2)%8)) ;

when ”11” => stackA (7 downto 0) <= unsigned (mem_read (((wordBytes—1-3)%8+47) downto
wordBytes —1—3)%8)) ;

when others => null;

end case;

——CASE RE-WRITE ENDS HERE

pc <= pc + 1;

state <= State_Execute;

end if;

when State_Storeb2 =>

if in.mem_busy=’0" then

mem._addr <= std_-logic_-vector (stackA (maxAddrBitIncIO downto minAddrBit));

mem-_write <= mem-read;

——mem_write (((wordBytes—1—to_integer (stackA (byteBits —1 downto 0)))x8+7) downto (
wordBytes—I1—to_integer (stackA (byteBits —1 downto 0)))*8) <= std_-logic_vector (
stackB (7 downto 0));

——HAVE TO WRITE LINE ABOVE AS CASE STRUCTURE TO COMPILE SUCCESSFULLY

case stackA (byteBits—1 downto 0) is

when ”00” => mem_write (((wordBytes —1—0)*8+7) downto (wordBytes—1-0)x8) <=
std_logic_-vector (stackB (7 downto 0));

when 701”7 => mem_write (((wordBytes—1—1)%x8+7) downto (wordBytes—1—1)%8) <=
std_logic_vector (stackB (7 downto 0));

when ”10” => mem_write (((wordBytes —1-2)%8+47) downto (wordBytes—1—-2)%8) <=
std_logic_-vector (stackB (7 downto 0));

29

27

28
29
30
31
32
33
34
35

when ”11” => mem_write (((wordBytes —1—3)*8+7) downto (wordBytes—1-3)x8) <=
std_logic_-vector (stackB (7 downto 0));

when others => null;

end case;

——CASE RE-WRITE ENDS HERE

mem_writeEnable <= ’17;

pc <= pc + 1;

sp <= inclncSp;

state <= State_Resync;
end if;

000 X] Design Vision - TopLevel.1 - [Schematic.1_zpu_core] -- zpu_core
Elle Edit View Select Highight List Hierarchy Design Attributes Schematic Timing Test Window Help
lzre| |aaa-a@|@caa|- @0 @@ (BEE ||[zpucre &l

5

@, [Logical Hierarchy Cells (Hierarcrical)

Q[=D==>zpu_cors Cel Name [Fef Name [Cell Pain

o] s set [Dsub_591 Zpu_core_DWO1_sub_0 sub_501
[Dadd 785 [oadd 785 2pu_core_DWO1_add_0 add 785

[Dadd 858 2pu_core_DWO1_add_1 add 658
[-add_{_root_add_845_2 2pu_core_DWO1_add_2 add_1_root_add_845_2
[osub_226 Zpu_core_DWO1_dec_0 sub_23%
D add_225 2pu_core_DWO1_add_8 add_225
D add 224 2pu_core_DWO1_inc_0 add_224
[ora76 2pu_core_DWO1_cmp6_0 76
[pra75 2pu_core_DWO1_cmp6_1 75
[ora7a Zpu_core_DWO1_add_&

lpra73 2pu_core_DWO1_add_5

lpra72 2pu_core_DWO1_add_6

[prase Zpu_core_DWO1_inc_1{

SDmu_254 o mutt_254

= zpu_core

= e e o
- (o
1 a
1 aan
1 aan
1 aan
1 =
Log [History Options: =
design visionxg-t> |
Drag to scroll the view contents up/downlefuright Selected: | B

Table 7.1: Configuration 1 core synthesis results

Figure 7.4: Screenshot of Synopsys Design Vision showing the ZPU core of Config-
uration 1 synthesized with the Artisan Sage-X 0.180 pm cell library.

| Architecture

Area | pm? | NAND2 gate equivalent | % of total area

ZPU original | Combinational | 127291 12756 77.6
Sequential 36760 3684 22.4

Total 164055 16440 100

30

7.4 Configuration 2 core synthesis results

Configuration 2 is a microcontroller with the Plasma CPU core and 32kB of SRAM
main memory as described in section 6.2. A screenshot of Design Vision with the
synthesized configuration 2 core is found in figure 7.5 and the synthesis area results
are found in table 7.2.

X Design Vision - TopLevel.1 - (Schematic.1_miite_cpul - miite_cpu
Eile Edit View Select Highiight List Hierarchy Design Attrbutes Schematic Timing Test Window Help

[[&] o @ - B EE &R 7Jmme’cpu
BEIE| -

[[o[x]
E Cls (Hierarchica) E|
Qo= ou |[CelName [RefName [cerpan |
5] [DuT_pe_next UT_pe_next
pe_ X e

alu_alu_typeDEFAULT X
snifter_shifter_typeDEFAULT 1i7_shifter
1 muit_muit_typeDEFAULT — ug_mult
u8_pipeline pipeline ug_pipeline
o]

H L lo
Du ppeline [,

Log [History Options: =
design_visionxg-t> |
" Drag to scroll the view contents up/dowrVieft/right [Selected: B

Figure 7.5: Screenshot of Synopsys Design Vision showing the Plasma MIPS core
of Configuration 2 synthesized with the Artisan Sage-X 0.180 um cell library.

Table 7.2: Configuration 2 core synthesis results

Architecture [Area [wm? [NAND2 gate equivalent [% of total area
Plasma MIPS | Combinational | 49340 4944 72.1
Sequential 19070 1911 27.9
Total 68411 6855 100

31

7.5 Configuration 3 core synthesis results

Configuration 3 is a microcontroller with a clock gated implementation of the ZPU
core, 32kB SRAM main memory and a 128 bytes SRAM cache memory as described
in section 6.3. The total area is about 900 gates smaller than for the original ZPU.
A screenshot of Design Vision with the synthesized configuration 3 core is found in
figure 7.6 and the synthesis area results are found in table 7.3.

0600 X! Design Vision - TopLevel.1 - [Schematic.1 2zpu_core] -- zpu_core
File Edit View Select Highlight List Hierarchy Design Attibutes Schematic Timing Test Window Help
|zae |aea-a@|@ca (@ S |enE [z E

C [o[x]

o [LogeaiHeracry R

Q| &D==> zpu_core Cell Name [Ref Name [Cell Path

[0 Dok gate state_reg 5 ck_gate_stato_reg SNPS_CLOCK_GATE_HIGH _2pu_core_0 ck_gate_siate_reg
Dek_gate_sp_reg o ck_gate_sp_reg SNPS_CLOCK_GATE_HIGH 2pu_core 9 ck_gate_sp_reg
Dek_gate_pe_reg o ck_gate_pc_reg SNPS_CLOCK_GATE_HIGH 2pu_core 8 ck_gate_pe_reg
Dek_gate_mutResult3_reg |5 ck_gate_multResUIt3_reg SNPS_CLOCK_GATE_HIGH 2pu_core 7 ck_gate_multResults_reg
“Dok_gate_decodedOpeode regx0x | oy "gate_decodedOpcode_regr0x SNPS_CLOCK_GATE HIGH_2pu_core 6 ck_gate_decodedOpeode_regi0x
Wk _gais_stackA,_reg o ck_gate_stackA_reg SNPS_CLOCK_GATE_HIGH 2pu_core 5 ck_gate_stack,_rag
Wk _gate_stackB_reg |9 ck _gate_stackB_reg SNPS_CLOCK_GATE_HIGH_zpu_core_4 ck_gate_stackB_reg
“Wck_gate_insn_reg ook _gate_insn_reg SNPS_CLOCK_GATE_HIGH _zpu_core_3 ck_gate_nsn_reg
“Wck_gate_binayOpResult_reg |2 ck _gate_binaryOpResult_reg SNPS_CLOCK_GATE_HIGH zpu_core_2 ck_gate_binaryOpResuit_reg
Dok gate_decodeiord_reg o ck_gate_decadetord_reg SNPS_CLOCK_GATE_HIGH _zpu_core_1 ck_gate_decode\Ward_reg
Dab_591 losub 591 2pu_core_DWOT_sub_0 sub_591
Dadd 785 o add 785 2pu_core_DWO1_add_0 add_785
Dadd 858 o add 558 2pu_core_DWO1 add_858
“Badd_1_root_add_845_2 loadd_1_root_add_845_2 2Zpu_core_DWO1 add_1_root_add_845_2
Dsub_226 fosub_226 Zpu_core_DWO1 sub_226

Dadd_225 loadd_225 2pu_cors_DWO1_add_3 add_225
Dadd_224 loadd_2o1 2pu_cors_DWO1_| add_224
D76 lora76 2pu_cors_DWO1_cmp6_0 76
DTS lora7s 2pu_cors_DWO1_cmp6_1 75
DT lora7a 2pu_cors_DWO1_add_4 74
DTS lora73 2pu_cors_DWO1_add_5 73
D72 lora72 2pu_cors_DWO1_add_6 72
D6y lorase 2pu_core_DWO1 inc_1 69
D 25 o mut_254 Zpu_core_DWO02_muit_0 mut_254

Log [Fiistory Options: =]
design_visionxg-t> |
Drag to scroll the view contents up/down/leftright [Selected: | &

Figure 7.6: Screenshot of Synopsys Design Vision showing the clock gated ZPU core
of Configuration 3 synthesized with the Artisan Sage-X 0.180 um cell library.

Table 7.3: Configuration 3 core synthesis results
‘ Architecture ‘ Area ‘ um? ‘ NAND2 gate equivalent ‘ % of total area ‘

Clock gated ZPU | Combinational | 126253 12652 81.5
Sequential 28743 2880 18.5
Total 155000 15532 100

32

7.6 SRAM memory synthesis results

Synthesis of on-chip SRAM memory is done with TSMC 0.18um High Speed/Density
Single-Port SRAM Generator. Two SRAM array sizes are compiled, a 32kB SRAM
to be used as main memory in configuration 1, 2 and 3, and a 128 byte SRAM to be
used as a stack cache in the improved ZPU configuration 3. The SRAM synthesis
results are provided by @Qyvind Janbu at Energy Micro. The read and write energy
per word is estimated on the assumption that the average memory access lasts one
clock cycle with equation 7.1, and the values are found in table 7.6.

1
Eread = Iread : thlobal : fi (71)

clk

Table 7.4: Read and write currents for a 32kB SRAM and a 128byte SRAM gener-

ated by TSMC 0.18um High Speed/Density Single-Port SRAM Generator.
| [32kB SRAM [128byte SRAM |

Read Current @ 10MHz [mA] 1.57 0.155
Write Current @ 10MHz [mA] 2.07 0.200
Read energy pr word @ 10MHz [pJ] 254.3 25.1
Write energy pr word @ 10MHz [pJ] 335.3 32.4

33

34

Chapter 8

Simulation and power
estimation

Simulation of the three microcontroller configurations in this thesis are done with
Mentor Graphics Modelsim. The switching activity from the simulations are used by
Synopsys Power Compiler to estimate the power consumption of the respective syn-
thesized core. The memory subsystem energy consumption is calculated by logging
memory read and write signals during simulation of the benchmarks programs, and
combined with the memory read and write energy provided by the SRAM synthesis
tool in section 7.6.

8.1 Benchmarks

8.1.1 Dhrystone

Dhrystone is a benchmark program developed in 1984 by Reinhold P. Weicker to
measure the performance of a computer system. It was written on the basis of a
study of different programs, and contains procedure calls, pointer indirections and
assignments. Dhrystone version 2.1 was written in 1989 and is the version used in
this thesis. The DMIPS value is the number of Dhrystone main loops the processor
can execute per second divided by the reference value 1757. The reference value
originates from the VAX11/78 computer that could execute 1757 main loops per
second, and was used as a reference 1 DMIPS machine.

The benchmark is a measure of compiler and CPU efficiency combined, and many
microprocessor manufacturers optimize their compiler to achieve a higher score in
the Dhrystone benchmark. Although it is an old benchmark and gives a very narrow
performance measurement, Dhrystone is still widely used as a performance indicator
for microprocessors, and DMIPS/MHz is often stated in data sheets.

The Dhrystone 2.1 source code has been slightly modified for use in this thesis.

The ZPU is simulated while running 100 main Dhrystone loops, and the printf ()
calls in the beginning and end of the benchmark measurement has been commented

35

out. The reason for this is that the text written by printf() to the ZPU UART
(Universal Asynchronous Reciever/Transmitter) has almost as long runtime as the
100 main loops themselves. In real-time on a physical CPU the Dhrystone bench-
mark would run millions of loops, and the printf () runtime would only be a small
fraction of the total runtime. Such a Modelsim simulation would take weeks, and
so to isolate only the benchmark loops and get the most accurate performance mea-
surement, the printf () parts have been commented out.

8.1.2 AES-128

AES (Advanced Encryption Standard) is a symmetrical block sipher crypto algo-
rithm. AES encrypts 128 bits of data at a time with either 128, 192 or 256 bit key
size, and is one of the most widely used algorithms used in symmetric key cryptog-
raphy.

In this thesis AES encryption and decryption is performed with a 128-bit key size.
The algorithm is also compiled to run on the Plasma MIPS CPU and serves as a
comparison between ZPU and MIPS architectures on this kind of algorithm. The
software implementation of AES used in this thesis is written by @Qivind Ekelund, a
fellow student at NTNU who is comparing AES hardware and software implemen-
tations in his Master’s thesis spring 2009.

8.1.3 Pi approximation

To compare another program execution between the ZPU and MIPS architecture,
a numerical approximation to 7 is used. The program uses the James Gregory
approximation given by

(="

T =4 1/341/5 = 1/T+1/9.+)

The series is calculated with 100 iterations which gives the value 7 = 3.151493.

8.1.4 While(1) spinlock

The while(1) spinlock is used to compare how much power the ZPU and MIPS
microcontroller configurations consumes while busy waiting. The while (1) program
is run 10ms on each configuration.

8.2 Compilers

The ZPU and Plasma microprosessors are simulated in Modelsim while running
the benchmarks in section 8.1. The Benchmark programs are written in C and
compiled to binaries for the respective architecture. These binaries are inserted into
the RAM module .vhdl file of the microcontroller. The ZPU is distributed with
a complete Linux tool chain which is used in this thesis to compile the programs
for the ZPU. The tool chain distributed by the Plasma Project is incomplete with

36

no support for standard C libraries. Because of this a GCC cross compiler for the
MIPS architechture is configured and used in this thesis to compile the benchmark
programs for the Plasma CPU.

8.2.1 GCC for ZPU

The ZPU distribution from OpenCores.org comes with a complete Linux tool chain,
including a compiled version of GCC cross compiler for the ZPU. The GCC-ZPU
includes Newlib and Libstdc++ libraries which means many C/C++ programs can
be compiled without modifications.

8.2.2 GCC for MIPS

The Plasma distribution from OpenCores.org comes with a GCC-MIPS compiler
with no library support, and with a cumbersome tool chain based on Linux emulation
in Windows with Cygwin. Because of this a new GCC for MIPS is compiled and
configured for use in this thesis. This self compiled GCC cross compiler for MIPS
includes the Newlib libraries to widely extend program compatibility.

Building and configuring GCC as a cross compiler for MIPS

To be able to compile programs that includes the basic C libraries for the Plasma
MIPS architecture, it is needed to build GCC as a cross compiler for the MIPS
architecture. Cross compiling means making GCC able to run on an x86 Linux
machine and compile binaries for the MIPS architecture. The configuration of GCC
as a cross compiler for MIPS is basically done in four steps:

1. Build GNU Binutils.

2. Build GNU MPFR (Multiple-Precision Floating-point with Round-
ing).

3. Build Newlib.

4. Build GNU GCC.

Steps 1, 2 and 4 are explained i further detail on the GNU GCC tab on the Plasma
CPUs OpenCores.org webpage [13]. Step 3 is explained in the DOCS section of the
Newlib webpage [14]. A short explanation of the tools listed in steps 1 to 4 are given
below.

GNU Binutils The GNU binutils is a collection of binary tools for the manipula-
tion of object code in object file formats. Binutils include 1d, the GNU linker, and
as, the GNU assembler. For more information, see the GNU binutils webpage [15].

GNU MPFR (Multiple-Precision Floating-point with Rounding) The
GNU MPFR is a C library for for binary floating-point computation with correct
rounding. For more information see the MPFR library web page [16].

37

Newlib Newlib is a C standard library intended for us on embedded systems, and
can be compiled for a wide array of processors. Newlib is written by the Redhat
Project. For more information see the Newlib webpage [14].

GNU GCC The GNU GCC (compiler collection) is a compiler system written by
the GNU Project and supports many programming languages. It can be configured
as a cross compiler, which means it can run on one system architecture while com-
piling for another architecture. For more information see the GNU GCC webpage

7.

8.3 Simulation and power estimation

The three microcontroller configurations described in chapter 6 are simulated in
MentorGraphics Modelsim. The simulations are done on RTL and gate-level with
configuration 1, on RTL level with configuration 2 and on gate-level with con-
figuration 3. The RTL and gate-level simulation and power estimation workflow
are shown in figure 8.2 and figure 8.1. The compiled benchmark programs described
in section 8.1 are compiled with the compilers described in section 8.2 and the bi-
nary codes are inserted into memory module .vhdl files.

The switching activity during simulation is captured by Modelsim and written to a
.saif file (switching activity interchange format). The .saif file is read by Synop-
sys Power Compiler and is used to estimate the power consumption of the respective
microprocessor while running a benchmark program.

8.3.1 Configuration 1 simulation results

Microcontroller configuration 1 as described in section 6.1 has a ZPU core and 32kB
of SRAM main memory. This configuration is simulated both at RTL and gate-level
to compare the power consumption estimates before and after synthesis. The total
microcontroller energy consumption and distribution is found in table 8.4 and in
figures 8.4 and 8.5.

Core simulation

The ZPU core in configuration 1 is simulated both at RTL and gate-level. The core
energy consumption for each benchmark is calculated as shown in equation 8.1. The
power estimation results based on RTL and gate-level simulation are found in table
8.1 and figure 8.3. Core energy consumption per benchmark for configuration 1 is
found in table 8.2.

Ecore = Lcore * texecution (81)

Memory simulation

The Modelsim simulation output .saif file for each benchmark includes the internal
read and write signal toggle count. This toggle count is divided by 2 to get the

38

Core synthesis and power estimation design-flow

based on gate-level simulation
Cell library Design & testbench
T

D Synthesis tool

DesignVision
cell_library.db »| Synthesize.tcl

< core.vhd tb_core.vhd

h Simulator y
ModelSim

core_netlist. runsim.do
vhd
compiled v
behavioral_
model.vhd
core_netlist.
ved

Synthesis tool

DesignVision
synthesize.tcl
report.icl

core_netlist.
saif

power_report.
txt

1. Synthesize design and generate core_netlist.vhdl with DesignVision. (DesignVision - File - Execute script... -
synthesize.tcl)

2. Compile core_netlist.vhdl together with rest of project in ModelSim and simulate. (Modelsim - do runsim.do)
3. Run ved2saif.sh script to generate a .saif from the .ved and replace brackets in file. (Bash - sh vcd2saif.sh)
4. Read simulation info from .saif-file and report power. (DesignVision - File - Execute script... - report.tcl)

Figure 8.1: Synthesis and power estimation design flow with gate-level simulation.

39

Cell library

cell_library.db

behavioral_
model.vhd

RTL-level power estimation

Synthesis tool

DesignVision
synthesize.tcl <

Design & testbench

core.vhd tb_core.vhd

Simulator y

ModelSim
runsim.do

core.ved

core.saif

report.tcl

power_report.
txt

1. Compile core.vhd and tb_core.vhd in ModelSim and simulate. (Modelsim - do runsim.do)
2. Run vcd2saif.sh script to generate a .saif from the .vcd and replace brackets in file. (Bash - sh vcd2saif.sh)
3. Read simulation info from .saif-file and report power. (DesignVision - File - Execute script... - report.tcl)

40

Figure 8.2: RTL-level power estimation flow.

number of reads/writes, and then multiplied with the 32kB SRAM read and write
energy values to get the total memory energy consumption for configuration 1 as
shown in equation 8.2. The energy per read/write is described in section 7.6 and
found in table 7.4. Memory energy consumption for each benchmark is found in
table 8.3. The stack pointer trace for each benchmark is shown in figure 8.6 and the
stack looping depth and max depth are found in table 8.5.

Ememory - ER(SZkB) ’ (memReadS)+ (8 2)
By (32xB) - (memWrites) '

Table 8.1: Configuration 1 core power estimates based on gate-level and RTL sim-
ulation.

Gate-level | RTL | Deviation
Benchmark [uW] [pW] (%]
AES encrypt 390 334 14.4
AES decrypt 389 331 14.9
Dhrystone 386 325 15.8
Pi approximation 380 322 15.6
While(1) 431 362 16.0
Average 395 335 15.3

Dynamic power ZPU core [puW]

GL simulation

RTL simulation

100 200 300 400

Figure 8.3: Configuration 1 core power estimates based on gate-level and RTL
simulation.

41

Table 8.2: Configuration 1 core total energy for each benchmark.

Core power | Runtime | Total core energy
Benchmark (W] [ms] [J]
AES encrypt 334 7.12 2.38
AES decrypt 331 9.16 3.03
Dhrystone (1 loop) 325 9.42 0.306
Pi approximation 322 0.957 0.308
While(1) (1 ms) 362 1.00 0.362

Table 8.3: Configuration 1 total memory energy consumed for each benchmark.

Memory reads | Memory writes | Total memory energy
Benchmark [uJ]
AES encrypt 15734 7786 6.61
AES decrypt 20619 10195 8.66
Dhrystone (1 loop) 2269 1217 0.985
Pi approximation 2373 1194 1.00
While(1) (1 ms) 2724 1363 1.15

Table 8.4: Configuration 1 total memory energy consumed for each benchmark.

Total energy | Core energy | Memory energy
Benchmark (1] (%] (%]
AES encrypt 8.99 26.5 73.5
AES decrypt 11.7 25.9 74.1
Dhrystone (1 loop) 1.29 23.7 76.3
Pi approximation 1.31 23.5 76.4
While(1) (1 ms) 1.51 23.9 76.1
Average percentage 24.7 75.3

Total energy for configuration 1 [pJ]
(nJ]

AESdecrypt Dhrystone d While(1)
(1 loop) (1 ms)

Figure 8.4: Configuration 1 energy distribution.

42

Average energy distribution for configuration 1.

Figure 8.5: Configuration 1 average energy distribution.

Table 8.5: Stack pointer trace for configuration 1.

Stack max depth | Loop depth
Benchmark [words] [words|
AES encrypt 168 73
AES decrypt 169 75
Dhrystone (1 loop) 127 25
Pi approximation 21 6
While(1) (1 ms) 10 2

43

Figure 8.6: Plot of stack pointer trace for the benchmarks executed on configuration
1.

max depth
168 words

max depth
127 words

max depth
10 words

5 % ¥ 3 8

AES encrypt

I

05 1 15

Dhrystone

aaaaaa

sssss

555555

77777

|

While(1)

loop depth

5268
5268
a264
az62
a2
0z o 6 18

73 words

max depth
169 words

5 % ¥ ¥ 8 % % 3%

loop depth
25 words

max depth
21 words

L 52745

loop depth
2 words

a2 loop depth
oo 75 words

AES decrypt

55555

55555

| loop depth
6 words

44

8.3.2 Configuration 2 simulation results

Microcontroller configuration 2 as described in section 6.2 has a Plasma MIPS core
and 32kB of SRAM main memory. This configuration is simulated at RTL level.
The total microcontroller energy consumption and distribution is found in table
8.10, and shown in figure 8.8 and figure 8.9.

Core simulation

The Plasma MIPS CPU core in configuration 2 is simulated at RTL level. The core
power estimation for each benchmark is found in table 8.6 and figure 8.7, and the
total energy for each benchmark is calculated with equation 8.3 and found in table
8.7.

Ecore = Lcore * texecution (83)

Memory simulation

The memory controller module in the Plasma CPU core, mem_ctrl, is modified with
three additional signals: one signal toggles every time the CPU reads from memory,
another signal toggles every time the CPU writes to memory, and a third signal
toggles every time the CPU fetches an instruction. The Modelsim simulation output
.saif file includes the toggle count of these signals. This toggle count is multiplied
with the 32kB SRAM read and write energy values to get the total memory energy
consumption for configuration 2. The energy per read/write is described in section
7.6 and found in table 7.4. The number of data memory read and writes and
the number of instruction fetches are found in table 8.8. The data memory and
instruction memory energy consumption for each benchmark is found in table 8.9.

EqataMem = ER(?,QkB) . (dataMemReads)+
Ew 321B) - (dataM emW rites)

EinstructionMem = ER(32I<:B) : (instructionMemReads)

Ememory = EdataMem + EinstructionMem

Table 8.6: Configuration 2 core power estimates based on RTL simulation.

RTL
Benchmark [uWV]
AES encrypt 262
AES decrypt 265
Pi approximation 266
While(1) 167
Average 240

45

Dynamic power Plasma core [uW]

50 100

150 200

250

Figure 8.7: Configuration 2 core power estimates based on RTL simulation.

Table 8.7: Configuration 2 core total energy for each benchmark.

Core power | Runtime | Core energy
Benchmark (W] [ms] (]
AES encrypt 262 0.465 0.122
AES decrypt 265 0.510 0.135
Pi approximation 266 0.080 0.0213
While(1) (1 ms) 167 1.00 0.167

Table 8.8: Configuration 2 data memory reads/writes and instruction fetches.

Benchmark

Data memory reads

Data memory writes

Instruction fetches

AES encrypt
AES decrypt

Pi approximation
While(1) (1 ms)

1613
1600
53
0

1434
1409
551
519

4604
5530
804
149646

Table 8.9: Configuration 2 data memory and instruction memory energy consump-

tion for each benchmark.

Data memory energy | Instruction memory energy
Benchmark (1] [uJ]
AES encrypt 0.891 1.17
AES decrypt 0.879 1.40
Pi approximation 0.198 0.204
While(1) (1 ms) 0.0174 3.81

Table 8.10: Configuration 2 total memory energy consumed for each benchmark.

Total energy | Core energy | Data energy | Instruction energy
Benchmark (] (%] (%] (%]
AES encrypt 2.18 5.6 40.8 53.6
AES decrypt 2.42 5.6 36.3 58.1
Pi approximation 0.424 5.0 46.8 48.2
While(1) (1 ms) 3.99 4.2 0.4 95.4
Average percentage 5.1 31.1 63.8

46

Total energy for configuration 2 [zJ]

[pJ]

[l Core energy
[Data memory energy
[l [Instruction memory energy

AES encryption AES decryption Pi while(1)
(1 ms)

Figure 8.8: Configuration 2 energy distribution.

Average energy distribution for configuration 2.

B Core energy
I pata memory energy

B 1nstruction memory energy

Figure 8.9: Configuration 2 average energy distribution.

47

8.3.3 Configuration 3 simulation results

Microcontroller configuration 2 as described in section 6.3 has a clock gated ZPU
core, 32kB of SRAM main memory and a 128 bytes SRAM stack cache. This con-
figuration is simulated at gate-level. The total microcontroller energy consumption
and distribution is found in table 8.15, and shown in figure 8.11 and figure 8.12.

Core simulation

The ZPU core in configuration 3 has implemented clock gating in the synthesis
process, and therefore simulation is done at gate-level (after synthesis). The core
power estimation results for each benchmark are found in table 8.11. The core
energy consumption is calculated with equation 8.5 and found in table 8.12.

Ecore = Lcore * texecution (85)

Memory simulation

The memory subsystem of configuration 3 is improved with a small stack cache
based on the findings in simulation of configuration 1. The stack cache controller is
described in section 11.1. The stack pointer output from simulations is run through
a Python script which simulates the stack cache controller. This script is found in
Appendix A.3. Simulation output from this script includes how many writes/reads
that has occurred to the stack cache, and also how many read/write-backs to main
memory has occurred during the execution of a benchmark. The number of read-
s/writes for main memory is multiplied with the 32kB SRAM read/write energy
values to get the main memory energy consumption for configuration 3. The read-
s/writes for the stack cache is multiplied with the 128 bytes SRAM read/write
energy values to get the stack cache memory consumption for configuration 3. The
energy per read/write for both SRAM sizes are described in section 7.6 and found
in table 7.4. The main memory and stack memory reads and writes are found in
table 8.13. The main memory and stack memory energy consumption is calculated
with equation 8.6 and the results are found in table 8.14.

Erainvem = ER32kB) - (mainMemReads — stackReads + readBacks)+

By (32kp) - (mainMemWrites — stackWrites + write Backs)

EstackCache = ERr(128B) - (stack Reads + write Backs)+ (8.6)
Eyw(128p) - (stackWrites + read Backs)

Ememory = EmainMem + EstackC’ache

48

Table 8.11: Configuration 3 core power estimates based on gate-level simulation.

Core power
Benchmark (W]
AES encrypt 246
AES decrypt 245
Dhrystone 236
Pi approximation 228
While(1) 273
Average 246

Dynamic power clock gated ZPU core [uW]

50

100 150 200 250

Figure 8.10: Configuration 3 core power estimates based on gate-level simulation.

Table 8.12: Configuration 3 core total energy for each benchmark.

Core power | Runtime Total core energy
Benchmark [uW] [ms] [nJ]
AES encrypt 246 7.12 1.75
AES decrypt 245 9.16 2.24
Dhrystone (1 loop) 236 9.42 0.222
Pi approximation 228 0.957 0.218
While(1) (1 ms) 273 1.00 0.273

Table 8.13: Configuration 3 memory subsystem reads/writes for each benchmark.

Main memory | Main memory | Stack cache | Stack cache
Benchmark reads writes reads writes
AES encrypt 10340 2493 6431 6330
AES decrypt 13268 2947 8454 8351
Dhrystone (1 loop) 1252 201 1022 1021
Pi approximation 1386 223 987 971
While(1) (1 ms) 1363 2 1361 1360

Table 8.14: Configuration 3 main memory and stack cache energy consumed for
each benchmark.

Main memory | Stack cache | Total memory
Benchmark energy [uJ] energy [uJ] energy [uJ]
AES encrypt 3.77 0.367 4.14
AES decrypt 4.69 0.483 5.17
Dhrystone (1 loop) 0.388 0.0588 0.446
Pi approximation 0.427 0.0562 0.483
While(1) (1 ms) 0.347 0.0782 0.426

49

Table 8.15: Configuration 3 total energy consumed for each benchmark.

Total energy | Core energy | Memory energy
Benchmark (] (%] (%]
AES encrypt 5.89 29.7 70.3
AES decrypt 7.41 30.3 69.7
Dhrystone (1 loop) 0.669 33.2 66.8
Pi approximation 0.702 31.1 68.9
While(1) (1 ms) 0.699 39.1 60.9
Average percentage 32.7 67.3

Total energy consumption for configuration 3 [pJ]

[wJ]

AESencrypt AESdecrypt Dhrystone While(1)

(11oop) (1 ms)

Figure 8.11: Configuration 3 energy consumption distribution.

50

Average energy consumption distribution for configuration 3.

Figure 8.12: Configuration 3 average energy consumption distribution.

51

52

Chapter 9

Estimation method evaluation

9.1 RTL vs gate-level power estimation accuracy

Synopsys Power Compiler calculates power consumption in a design based on switch-
ing activity from simulations. The switching activity .saif file output from RTL
simulations contains information only about the signals in the RTL description of the
design. This means that Power Compiler only gets to know the switching activity
for the flip-flops in the synthesized design. All the other cells cells in the synthesized
design are called unannotated cells, as they are not part of the RTL simulation, and
hence have unknown switching activity. The switching activity of these unanno-
tated cells are calculated by Power Compiler by propagating the switching activity
through the circuitry. Figure 9.1 shows graphically the information that the power
estimate is based on when doing RTL estimation.

Simulation at gate-level captures switching activity for all cells in the synthesized
design. Power Compiler uses this information to calculate a more accurate power
consumption estimate than the RTL estimate. Figure 9.2 shows graphically the
information that the power estimate is based on when doing gate-level estimation.

53

Power estimation based on switching activity
from RTL-level simulations.

Switching activity Cell model from
information technology library
only for flip-flops in the for all the cells in the

synthesized design synthesized design.

Power Compiler

power estimation tool
combining information
from simulation and
synthesis

Power estimate

based on RTL-level
simulation

Figure 9.1: Power estimate based on switching activity for the flip-flops only in the
synthesized design.

54

Power estimation based on switching activity
from gate-level simulations.

Switching activity Cell model from
information technology library
for all the cells in the for all the cells in the

synthesized design synthesized design

Power Compiler

power estimation tool
combining information
from simulation and
synthesis

Power estimate

based on gate-level
simulation

Figure 9.2: Power estimate based on switching activity for all the cells in the syn-
thesized design.

55

9.2 RTL vs gate-level power estimation speed

Gate-level simulations are a lot more time consuming than RTL simulations. This
is because the gate-level simulation is done with the synthesized netlist containing
every cell of the design. RTL simulation is done with the HDL description of the
design, and so no cells are simulated. Comparing the simulation runtime in table 9.2
and figure 9.3, shows that RTL simulations are 35x faster than gate-level simulations
for the ZPU.

Table 9.1: Simulation runtime for RTL and gate-level simulation of the Dhrystone
benchmark executing on the ZPU.

l Simulation level [Runtime [s] ‘
RTL simulation 41
Gate-level simulation 1464

gate level simulation

RTL simulation [seconds]

200 400 600 800 1000 1200 1400

Figure 9.3: Comparison of simulation runtime for the Dhrystone benchmark on
configuration 1.

9.3 Gate-level power estimation vs actual silicon chip

power consumption
The gate-level power estimation is more accurate than the RTL power estimation
because the whole netlist is simulated and switching information on every gate is
obtained during simulation. However, at gate-level, the design has not been through
the layout step, and the power estimation tools have no information about how much
metal interconnect there is between the gates in the synthesized design. The metal

interconnect capacitance adds to the total gate input capacitance that the output
of every gate is connected to as equation 9.1 shows.

The total output capacitance of a gate on a real silicon chip is given by:

Cgate output — Cfcmout input + C"metal wnterconnect (91)

Where Cranoutinput i the total input capacitances of the connected gates, and
Chnetalinterconnect 18 the total capacitance of the metal interconnect of the fanout.

Combining the switching power equation 3.4 with the real silicon chip capacitance

56

equation 9.1 leads to:

2
Pswitching = (Cfanout input + Cmetal interconnect) : Vdd (92)

Equation 9.2 shows that the dynamic power consumption of the design implemented
on an actual silicon chip will be higher than the power estimate done at gate-level.
How much higher depends on the total area of metal interconnect, and this area will
be obtained in the layout step of the design process. The layout process is outside
the scope of this work, and therefore an accurate measure of how close the power
consumption estimate at gate-level is to the actual silicon chip power consumption
cannot be derived from the simulations in this thesis.

57

58

Chapter 10

Evaluation of ZPU design

10.1 Comparison with MIPS architecture

Table 10.1 and figure 10.1 shows how many cycles the ZPU and the Plasma micro-
processor needs to execute some of the benchmark programs. The ZPU uses on an
average 15x as many cycles on executing the benchmarks as the Plasma CPU. Table
10.1 shows how many memory accesses is done during execution of the benchmark
programs on the ZPU and the Plasma. The ZPU has an average of 3.1x as many

memory accesses as the Plasma CPU.

Table 10.1: Number of cycles needed to finish the benchmark programs for the ZPU

and the Plasma microprocessor.

Benchmark ZPU cycles

Plasma cycles

Difference factor

AES encrypt 71200
AES decrypt 91600
Pi approximation 9570

4650
5100
800

15.3
18.0
12.0

Average

15.1

Table 10.2: Number of memory accesses while running the benchmark programs for

the ZPU and the Plasma microprocessor.

Benchmark ZPU memory accesses

Plasma memory accesses

Difference factor

AES encrypt 23520 7651 3.1
AES decrypt 30814 8531 3.6
Pi approximation 4087 1408 2.9
Average 3.2

10.2 ZPU power weaknesses

The ZPU has three major power consumption weaknesses.

1. Memory access

2. Cycle efficiency

3. Stack-machines cannot be pipelined

99

Dhrystone
AES decrypt
AES encrypt

Plasma

Dhrystone

ZPU AES decrypt

AES encrypt
[number of cycles]

20000 40000 60000 80000

Figure 10.1: Execution cycles for benchmark programs on ZPU and Plasma.

All three weaknesses are interconnected and caused by the fact that the ZPU has
a stack-machine architecture. In order to execute a simple add instruction with to
variables from memory and store the result back to memory, the ZPU needs to:

1. read data from memory and write to top of stack (fetch variablel)
2. read data from memory and write it to top of stack (fetch variable2)

3. read instruction from memory and write it to top of stack (fetch add instruc-
tion)

4. read from stack (decode instruction)

5. read from stack (feed variablel to ALU)
6. read from stack (feed variable2 to ALU)
7. write to stack (add result)

8. write to memory (store result in memory)

As the stack is also located in main memory, the execution of the add instruction
needs 6 reads and 5 writes to memory. The Plasma MIPS would need to fetch
the instruction word and the two variables stored in memory, do the arithmetics
and then store result to memory. This gives the total of 4 memory accesses for an
isolated add instruction on the Plasma as opposed to 11 memory accesses for the
isolated add instruction on the ZPU.

The register file in the Plasma also gives room to reuse of variables stored in reg-
isters. The Plasma CPU register file can also be used to store temporary values.
All instructions in the ZPU are done on top of stack and temporary values needs to
be stored in memory with by pushing a store instruction to stack, and reading it
back from memory with a load instruction. Because of this, the ZPU has an a
memory access overhead by a factor of 3 when compared to the Plasma, as shown in
table 10.1. Table 10.1 shows how many more cycles it takes to execute a benchmark

60

program on the ZPU versus the Plasma. On average the ZPU requires 15x as many
cycles. This is a combination of compiler efficiency and architecture efficiency. The
MIPS architecture has been a very popular architecture over the last twenty years,
and so the The MIPS GCC compiler used to compile programs for the Plasma prob-
ably has many more man-hours into its development than the ZPU GCC compiler
used for the ZPU.

A major improvement that can be done with conventional RISC microprocessors
with respect to energy consumption is pipelining, as shown in section 5.1.2. This
cannot be done with single-stack stack-machines, as instruction fetching, data fetch-
ing and the arithmetics results needs the top of stack for one instruction before the
next instruction can be fetched.

61

62

Chapter 11

Energy consumption
improvements to ZPU
microcontroller design

The microcontroller configuration 1 is used as the reference ZPU microcontroller
implementation in this thesis. Microcontroller configuration 3 is the improved mi-
crocontroller. Based on the observations in chapter 2 and the simulation and power
estimation results of chapter 8, the main efforts to reduce energy consumption have
been on reducing memory access energy consumption and the energy consumption
of the control logic in the processor core.

The two main implementation changes to achieve lower energy consumption are:
1. a 128 bytes SRAM stack cache memory
2. clock gating implementation of the ZPU core

The implementation details of these two improvements are described in the two
following subsections. Table 11.1 shows the original energy consumption per bench-
mark of configuration 1. Table 11.2 shows the energy consumption of the improved
configuration 3, and table 11.3 shows the reduction in percent for each benchmark.
Figure 11.1 compares the energy consumption of configuration 1 and configuration
3.

Table 11.1: Energy consumption of microcontroller configuration 1, the original
ZPU microcontroller.

Config. 1 core | Config. 1 memory | Config. 1 total
Benchmark energy [uJ] energy [uJ] energy [uJ]
AES encrypt 2.78 6.61 9.39
AES decrypt 3.56 8.66 12.2
Dhrystone (1 loop) 0.364 0.985 1.35
Pi approximation 0.363 1.00 1.37
While(1) (1ms) 0.431 1.15 1.58

63

Table 11.2: Energy consumption of microcontroller configuration 3, the improved
ZPU microcontroller.

Config. 3 core | Config. 3 memory | Config. 3 total
Benchmark energy [uJ] energy [uJ] energy [uJ]
AES encrypt 1.75 4.14 5.89
AES decrypt 2.24 5.17 7.42
Dhrystone (1 loop) 0.222 0.446 0.669
Pi approximation 0.218 0.483 0.702
While(1) (1ms) 0.273 0.426 0.699

Table 11.3: Energy consumption improvements in percent, difference between con-
figuration 1 and configuration 3.

Core energy | Memory energy | Total energy
Benchmark reduction [%)] reduction [%] reduction [%]
AES encrypt 36.9 37.4 37.2
AES decrypt 37.0 40.3 39.3
Dhrystone (1 loop) 38.9 54.7 50.4
Pi approximation 40.0 51.8 48.7
While(1) (1ms) 36.7 63.0 55.8
Average 37.9 49.4 46.3

Total energy consumption [pJ]

Whilel
Pi

Configuration 3 Dhrystone
AES decrypt

AES encrypt

Whilel
Pi

Configuration 1 Dhrystone
AES decrypt

AES encrypt

Figure 11.1: Energy consumption of microcontroller configurations 1 and 3 based
on gate-level simulation.

11.1 Memory improvements
The stack in configuration 1 is located in main memory. Simulations results in figure

8.6 shows the stackpointer address for the benchmarks executed. During most of
the execution time, the stack is looping around a given depth. A 128 bytes SRAM

64

has only about %th of the energy consumption per read/write as a 32kB SRAM
as shown in the SRAM synthesis results in section 7.6. Configuration 3 therefore
has implemented an additional 128 bytes of SRAM as a top of stack cache to re-
duce power consumption for the stack reads and writes. This 32-word stack cache
is implemented as a circular buffer that writes the oldest 16 words back to main
memory if it becomes full, and reads the 16 words on top of stack in main memory
if it becomes empty. The state diagram of the stack cache is shown in figure 11.2.
A python script that simulates the behavior of the stack cache memory module is
used to iterate through simulation output and determine how many readbacks and
writebacks that occurs for each benchmark program. The memory energy consump-
tion for configuration 3 then can be calculated with equation 8.6. The stack cache
memory module python script is found in appendix A.3. On average the memory
energy consumption is reduced with 49 % with the stack cache implementation.

Figure 11.3 and 11.4 shows how the stack cache module behaves when it becomes
full or empty. The start pointer is used to implement the SRAM memory addresses
as a circular buffer.

when Pop -> fill-- ﬁr:npush > fill++

Read/write stack

cache

when 16 writes complete
P when 16 reads complete

if fill = 32

Wl:jtgnb:"cl:“to iffill =0 Read from
ai el main mem

do 16 main mem reads

do 16 main mem writes

Configuration 1

Configuration 3

32kB SRAM

main memory 32kB SRAM 128byte SRAM
main memory cache memory
Compiled
program Compiled Stack
program
Available
memory Available
memory

Stack

Figure 11.2: State machine of the stack cache controller and memory space of con-
figuration 1 and configuration 3.

Initial stack cache E

1 STIRT

Filling up stack cache
by writing to stack

If stack write occurs
when stack cache is full

16 words are written back to main mem
i SP S JPCE
bl g ‘ —— R

Then the bottom 16
words of stack cache is
written to main memory

START

Figure 11.3: Writeback.

If stack read occurs
when stack cache is empty

Then the 16 words on
top of stack is
read from main memory

Figure 11.4: Readback.

11.2 Control

The ZPU core in configuration 3 is synthesized with global clock gating to reduce the
energy consumption. The clock gating is implemented with Synopsys Design Com-
piler as shown in the synthesize.tcl script in section 7.2.2. On average the core
energy consumption is reduced with 38% with clock gating implementation. Figure
11.5 shows compares the power dissipation in the original ZPU microcontroller, the
MIPS microcontroller, and the improved ZPU microcontroller.

66

Figure 11.5: Comparison of the core dynamic power dissipation of the three different
configurations.

67

68

Chapter 12

Discussion

12.1 Power estimation accuracy and speed

When comparing the power estimation results in table 8.3.1 it is shown that the
gate level power estimations are at an average 15% higher than the RTL power
estimations for the ZPU core. The simulation speed presented in section 9.2 shows
that gate level simulation of the ZPU core lasts over 24 minutes while RTL simula-
tion lasts 41 seconds, making RTL simulation 35x faster than gate level simulation.
While gate level simulations are more accurate, they makes design flow iterations
far slower.

To compare the power estimate based on gate-level simulations with actual sili-
con chip power consumption one would have to do layout of the design in order to
get the value of the interconnect capacitance as described in section 9.3. Taking the
design through the layout process was not in the scope of this thesis, and reliable
sources on how much the metal interconnect adds to the dynamic power consump-
tion has not been found during an extensive article search. It is relatively certain
however, that the gate-level power estimate is an under-estimate as equation 9.2
shows.

12.2 ZPU architectural improvement potential

The ZPU has a stack machine architecture that uses on average 15x as many clock
cycles and 3x as many memory accesses as a MIPS processor to complete the bench-
mark programs, as shown in chapter 10. Also, the single-stack ZPU cannot be
pipelined as conventional RISCs to improve throughput and energy efficiency. Ad-
dressing the clock cycle and memory access overhead is probably the way to go
when attempting to improve the energy efficiency of the ZPU. Two architectural
proposals can thus be suggested for future work: implementing multiple stacks to
enable pipelining and re-organizing the memory space into a Harvard architecture.

Multiple stack machines are discussed in [18] chapter 3. A plausible architectural

69

exploration would be to implement the ZPU with two stacks and a 2-stage pipeline.
Energy consumption estimation would then show if the multiple stack implementa-
tion improves energy efficiency.

Splitting up the memory space into separate instruction and data memory spaces will
make it easier to implement traditional caching and loop caching to further reduce
memory energy consumption. In [19] it is shown that loop caching the instruction
memory reduce energy consumption of instruction fetches.

12.3 Compiler considerations

When comparing the ZPU and the Plasma MIPS in number of cycles needed to
execute the benchmark programs, a very important factor is the compiler used for
each processor. The MIPS GCC compiler has been under development for decades
by a large community, as opposed to the ZPU GCC compiler mostly created by a
single developer over a shorter timespan.

The ZPU spends on average 15x as many cycles on executing the benchmark pro-
grams as the MIPS. If the ZPU compiler is rewritten and optimized for certain coding
styles such as recursive algorithms, the compiler can possibly greatly increase the
energy efficiency of the processor. Recursive code is highly optimizable for a stack
machine, as nesting in recursive code is compatible with the stack machine way of
executing code.

12.4 Implemented ZPU microcontroller improvements

The energy distribution for embedded processors is shown in chapter 2, and memory
access, clock distribution and control logic are identified as the main contributers to
the energy consumption of an embedded system. The simulations of configuration
1 in chapter 8 confirms these observations. During the planning and the imple-
mentation of the improvements in configuration 3, stack memory access and the
core control logic were identified as the best places to attack in order to reduce the
energy consumption of a ZPU microcontroller. As shown in chapter 11, memory
access energy consumption is reduced with 49% by stack caching, and core energy
consumption is reduced with 38% by clock gating. This adds to a total average
energy consumption reduction of 46% for the ZPU microcontroller.

70

Chapter 13

Conclusion

A ZPU microcontroller has been synthesized and evaluated with respect to energy
consumption. A workflow for power estimation during low-power design has been
established to assist decision making and provide faster design cycle iterations dur-
ing a low-power design process. The ZPU microprocessor has also been compared
with a MIPS microprocessor, and the energy consumption weaknesses of the ZPU
architecture have been described an discussed. Improvements to the ZPU microcon-
troller are implemented with the end result of a 46% reduction of the total energy
consumption compared to the original microcontroller. Key results of this thesis
are:

e Power estimates based on RTL simulations are 35x faster to produce than
power estimates based on gate-level simulation, and the RTL estimates devi-
ates by only 15% from the gate-level estimates. Thus RTL power estimates
provides faster design cycle iterations without sacrificing too much accuracy.

e The ZPU processor needs 15x as many cycles as the Plasma MIPS processor
to execute the benchmark programs used in this thesis. The ZPU also does 3x
as many memory accesses as the Plasma MIPS while running the benchmarks.

e The ZPU microcontroller is improved with respect to energy consumption by
implementing stack memory caching and processor core clock gating. These
improvement measures attack the major energy consumption contributors of
embedded systems and reduces total energy consumption with 46%.

e The power consumption estimates produced in this thesis are most likely
under-estimates compared to the actual silicon chip implementation power
consumption. This is because the metal interconnect capacitance between all
the gates in the design is not yet modeled at the gate-level stage in the design
flow.

71

72

Chapter 14

Further work

Implementing multiple stacks

In order to reduce the energy consumption of the ZPU processor, implementation of
a pipelined design should be investigated in future work. This can possibly be done
with multiple stacks, and a place to start research on multiple stacks is chapter 3 in
[18].

Reorganizing memory space as in Harvard architecture

The current ZPU design is of Von Neumann architecture as the instructions and data
are stored in the same memory space. The implementation of separate memory space
for instructions and data should be investigated in future work, as this can make
implementation of other energy reduction measures possible, such as instruction
caching. A place to start research on instruction caching after the memory space is
split up into separate instruction and data memory would be [19].

Rewriting ZPU compiler

The current ZPU GCC compiler is not optimized for recursive code. Recursive code
is highly optimizable for stack machine architecture. In future work on making the
ZPU more energy efficient it should be looked into rewriting the ZPU compiler.
It may also be possible to define some coding style that can be recognized by the
compiler to produce highly efficient stack-machine code.

73

74

References

1]

[12]
[13]

[14]

[15]

W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. C. Harting, V. Parikh,
J. Park, and D. Sheffield, “Efficient embedded computing,” IEEE Computer
Magazine, vol. 41, pp. 27-32, July 2008.

A. P. Chandrakasan and R. Brodersen, Low Power Digital CMOS Design.
Springer, 1995.

M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power Method-
ology Manual. Springer, 2007.

A. Chandrakasan, Leakage in Nanometer CMOS Technologies. Springer, 2006.

M. Pedram and J. M. Rabaey, Power Aware Design Methodologies. Springer,
1st edition ed., 2002.

Synopsys, Synopsys Power Compiler User Guide, version y-2006.06 ed., 2006.

D. A. Patterson and J. L. Hennessy, Computer Organization and Design. Mor-
gan Kaufmann, third edition ed., 2007.

www.opencores.org, “Opencores.org web page.” 13.06.09.

http://opensource.zylin.com/zpudocs.html, “Zpu processor documentation
web page.” 13.06.09, 2009.

Artisan Components, TSMC 0.18um Process 1.8-Volt Sage-X Standard Cell
Library Databook, 2003.

Synopsys, Synopsys Library Compiler Reference Manual, version y-2006.06 ed.,
2006.

Synopsys, Synopsys Design Compiler User Guide. Version Y-2006.06, 2006.

http://www.opencores.org/?do=projectwho=plasma, “Plasma processor open-
cores.org documentationn page.” 13.06.09, 2009.

http://sourceware.org/newlib/, “Newlib library web page.” 13.06.09, 2009.

http://www.gnu.org/software/binutils/, “Gnu binutils library web page.”
13.06.09, 2009.

75

[16] http://www.mpfr.org/, “Mpfr library web page.” 13.06.09, 2009.
[17] http://gce.gnu.org/, “Gnu gee web page.” 13.06.09, 2009.
[18] J. Philip Koopman, Stack computers - the new wave. Ellis Horwood, 1989.

[19] A. Gordon-Ross, S. Cotterell, and F. Vahid, “Tiny instruction caches for low
power embedded systems,”

76

©oO~DU s WN -

QU W N

Appendix A

Design-flow scripts and
programs

A.1 Modelsim simulation scripts

A.1.1 ZPU simulation script

simulate_zpu.do

SET TO BREAK WHEN DONE
set BreakOnAssertion 1

SET LIBRARY
vlib work

COMPILE ZPU TO WORK

vcom —93 —explicit /home/steinoe/zpu/zpu/hdl/example_medium/zpu_config_trace.vhd

vcom —93 —explicit /home/steinoe/zpu/zpu/hdl/zpud/core/zpupkg.vhd

vcom —93 —explicit /home/steinoe/zpu/zpu/hdl/zpud/src/txt_util.vhd

vcom —93 —explicit /home/steinoe/zpu/zpu/hdl/zpud/core/zpu-core.vhd

vcom —93 —explicit /home/steinoe/zpu/zpu/hdl/example_medium/sim_fpga_top.vhd

vcom —93 —explicit /home/steinoe/zpu/sim/roms/V09/dhrystone/dram_-dhrystone_noprintf.vhd
vcom —93 —explicit /home/steinoe/zpu/zpu/hdl/zpud/src/timer.vhd

vcom —93 —explicit /home/steinoe/zpu/zpu/hdl/zpu4d/src/io.vhd

vcom —93 —explicit /home/steinoe/zpu/zpu/hdl/zpu4/src/trace.vhd

RUN ZPU SIM

vsim fpga_top

view wave

add wave —recursive fpga_top/zpu/x*
#add wave —recursive fpga_top/*
view structure

#view signals

WRITE SWITCHING ACTIVITY TO .VCD FILE
ved file simulation.ved

ved add —r sim:fpga_top/zpu/*

power add —r sim:fpga_-top/zpu/x*

RUN SIMULATION
run 1000 ms

A.1.2 Plasma CPU simulation script

simulate_plasma.do

SET LIBRARY
vlib work

COMPILE PACKAGE USED IN ALL .VHDL FILES
vcom —93 —explicit mlite_pack.vhd

77

10

12
13

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

©Ooo~DU s WN -

COMPILE SUBMODULES OF MLITE_CPU
vcom —93 —explicit pc-next .vhd
vcom —93 —explicit mem_ctrl.vhd
vcom —93 —explicit control.vhd
vcom —93 —explicit reg_bank .vhd
vcom —93 —explicit bus_mux . vhd
vcom —93 —explicit alu.vhd

vcom —93 —explicit shifter .vhd
vcom —93 —explicit mult . vhd

vcom —93 —explicit pipeline.vhd
vcom —93 —explicit mlite_cpu.vhd

COMPILE SUBMODULES OF PLASMA
vcom —93 —explicit ram.vhd
vcom —93 —explicit uart .vhd
vcom —93 —explicit eth_dma .vhd
vcom —93 —explicit plasma . vhd

COMPILE TESTBENCH
vcom —93 —explicit tbench .vhd

RUN SIMULATION

vsim tbench

view wave

add wave —recursive tbench/ul_plasma/x%
view structure

WRITE SWITCHING ACTIVITY TO .VCD FILE
ved file simulation.ved
ved add —r sim:tbench/ul_plasma/ul_cpu/*
#RUNTIME FOR BENCHMARKS
AES endecrypt

run 1050000ns

AES key expansion
run 480000ns

AES encrypt
run 465000ns
run 510000ns

whilel
run 10ms

#
#
#
#
#
AES decrypt
#
#
#
#

pi
run 80000ns

quit —sim

A.2 Synopsys synthesis and power estimation scripts

A.2.1 Library Compiler script
A.2.2 Synthesis with Design Compiler scripts

CLEAR MEMORY
remove_design —all

SET CELL LIBRARY
set target_library {/home/steinoe/CELL_LIB/sc/synopsys/slow/slow.db}
set link_library {/home/steinoe/CELL_LIB/sc/synopsys/slow/slow.db}

lappend search_path {.}

READ FILES

analyze —library WORK —format vhdl \

{ /home/steinoe/zpu/zpu/hdl/example_-medium/zpu_-config_trace.vhd \
/home/steinoe /zpu/zpu/hdl/zpud/core/zpupkg.vhd \
/home/steinoe /zpu/zpu/hdl/zpud/core/zpu_core.vhd

ELABORATE
elaborate ZPU.CORE —architecture BEHAVE —library WORK

CONSTRAINTS
create_clock clk —name clock —period 100

78

22
23
24
25

27
28
29
30
31
32
33
34
35
36

QO OWTDU B WN -

-

N O Ut W N =

=
o ©

11

12
13

© OO U s WN

CLOCK GATING
insert_clock_gating —global

MINIMIZING POWER
set_max_dynamic_power 0
set-max_total_power 0

COMPILE
compile —map_effort medium —area_effort medium

WRITE NETLIST

change_names —rules vhdl —hierarchy

set power_preserve_rtl_hier_names TRUE

write —hierarchy —format vhdl —output ../ zpu_-core_reference_netlist.vhdl

A.2.3 Power estimation with Power Compiler scripts

VCD to .saif conversion script

#!/bin /bash

#convert from ved to saif
vcd2saif —format vhdl —input simulation.vcd —output simulation.saif

#replace square brackets in saif—file
sed —i ’s/\[/(/g’ simulation.saif
sed —i ’s/\]/)/g’ simulation.saif

rm simulation.ved

Analyze and report

READ SWITCHING ACTIVITY FROM MODELSIM SIMULATION

set find-ignore_case TRUE

read_saif —verbose —input ../simulate_aes_encrypt_-RTL/simulation_aes_encrypt_-RTL.saif —
instance fpga_top/zpu

set find_ignore_case FALSE

WRITE POWER REPORT
report_power —analysis_effort high >> ../simulate_aes_encrypt_-RTL/
ReportPower_aes_encrypt_RTL . txt

WRITE CELL, TIMING, AREA AND SAIF REPORTS

report_cell >> ../simulate_aes_encrypt-RTL/ReportCell_aes_encrypt_-RTL . txt

report_timing —path full —delay max —nworst 1 —max_paths 1 —significant_digits 2 —sort_by
group >> ../simulate_aes_encrypt_-RTL/ReportTiming_aes_encrypt-RTL . txt

report_area —nosplit >> ../simulate_aes_encrypt-RTL/ReportArea_aes_encrypt_-RTL . txt

report_saif >> ../simulate_aes_encrypt-RTL/ReportSaif_aes_encrypt-RTL . txt

A.3 Stack cache memory iterator

#!/usr/bin/env
#init values
toc=131064

spinc = 0
spdec = 0
cachelevel =1
writebacks = 0

readbacks = 0
#cache size
maxcachelevel 1024

mincachelevel = 0

#cache tuning parameters

readbacksize = 16

writebacksize = 16

writebackthreshold = maxcachelevel —writebacksize
readbackthreshold = mincachelevel+readbacksize

79

20
21
22
23

25
26

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

for 1 in open(’sp-aes_encrypt.txt’).read().split(’\n’):
try:

newtoc = int (1)
jumps=((toc—newtoc) /4)
absjumps = abs(jumps)

#print newtoc
if (cachelevel < maxcachelevel) & (cachelevel > mincachelevel):
if jumps < O:
spdec=spdec+absjumps
cachelevel=cachelevelt+absjumps
elif jumps > 0:
spinc=spinct+absjumps
cachelevel=cachelevel —absjumps

elif (cachelevel <= mincachelevel):
cachelevel = readbackthreshold
readbacks=readbacks+readbacksizet+absjumps
if jumps < O:
spdec=spdec+absjumps
#cachelevel=cachelevel+absjumps
elif jumps > 0:
spinc=spinct+absjumps
#cachelevel=cachelevel —absjumps
elif (cachelevel >= maxcachelevel):
cachelevel = writebackthreshold
writebacks=writebacks+writebacksizedtabsjumps
if jumps < O:
spdec=spdec+absjumps
#cachelevel=cacheleveld+absjumps
elif jumps > 0:
spinc=spinc+absjumps
#cachelevel=cachelevel —absjumps
toc = newtoc
except: pass
readbacks=readbacks —119

sp=open(’cache.txt’, r+4")

print >> sp, ”SPdec_count.”, spdec

print >> sp, ”SPinc_count.”, spinc

print >> sp, ”"Number_of_writebacks.”, writebacks
print >> sp, ”"Number_of_readbacks.”, readbacks

80

©OND U WN -

Appendix B

VHDL code

B.1 ZPU core

zpucore.vhdl

ZPU

Copyright 2004—2008 oharboe — yvind Harboe —

The FreeBSD license

use in source
permitted provided

and
are

Redistribution
modification ,
are met:

that the

— 1. code must retain

and the fo

Redistributions of
notice , this list
Redistributions
copyright notice ,
disclaimer 1in the
provided with the

source
of conditions
— 2.
this list of conditions
documentation and/or oth
distribution .

THIS SOFTWARE 1S PROVIDED BY THE ZPU PROJECT

and binary forms,

in binary form must reproduce

oyvind. harboe@zylin .com

or without
conditions

with
following

the above copyright
llowing disclaimer.
the above

and the following

er materials

fYAS IS’’’ AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE

ZPU PROJECT OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,

INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

contained in the
and should not be
erxpressed or

and conclusions
of the authors
policies , either

The views
are those
official

software and documentation
interpreted as representing
implied , of the ZPU Project.

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

use

ieee.numeric_std . all;

library work;
use work.zpu-config.all;
use work.zpupkg.all;

set to 17
mem-_write
set to 1’7

mem_-writeEnable — for a single cycle
is wvalid only while

for a single cycle

to send off a write
mem_writeEnable ="1"
to send off a read request.

request
mem-readEnable —

mem_busy — It is tillegal to send off a read/write request when mem_busy="1
Set to 0’ when mem_read is wvalid after a read request.

If it goes to ’'17(busy), it is on the cycle after mem_read/write
is 17,

address for read/write
read data. Valid only on
mem_readEnable="1" for a

data to write

mem_addr —
mem_read —

request
the cycle after
single cycle.

mem_busy="0" after

mem_write —

81

B

Enable

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

—— mem_writeMask — set to ’'1’ for those bits that are to be written
—_ write request

— break — set to ’1° when CPU hits break instruction

— interrupt — set to ’1’ wuntil interrupts are cleared by CPU.

entity zpu_core is
Port (clk : in std_-logic;

areset : in std-logic;

enable : in std-logic;

in_mem_busy : in std-logic;

mem_read : in std-logic_vector (wordSize—1 downto 0);
mem_write : out std-logic-vector (wordSize—1 downto 0);
out_-mem_addr : out std_logic_vector (maxAddrBitIncIO downto 0);
out_mem_writeEnable : out std_logic;

out_mem_readEnable : out std_logic;

mem_writeMask: out std_logic_vector (wordBytes—1 downto 0);
interrupt : in std_logic;

break : out std_logic);
end zpu_core;

architecture behave of zpu_core is
type InsnType is

(

State_AddTop,
State_Dup ,
State_-DupStackB ,
State-Pop ,
State-Popdown ,
State_Add ,
State_Or ,
State_And ,
State_Store ,
State_AddSP ,
State_Shift ,
State_Nop ,
State_Im ,
State_LoadSP ,
State_StoreSP ,
State_Emulate ,
State_Load ,
State_PushPC ,
State_PushSP ,
State_PopPC ,
State_-PopPCRel,
State_Not ,
State_Flip ,
State_PopSP ,
State_Negbranch ,
State_Eq ,
State_Loadb ,
State_Mult ,
State_Lessthan ,
State_Lessthanorequal ,
State_Ulessthanorequal ,
State_Ulessthan ,
State_-Pushspadd ,
State_Call ,
State_-Callpcrel ,
State_-Sub ,
State_Break ,
State_Storeb ,
State_InsnFetch

type StateType is

(

State_-Load2,
State_Popped,
State_LoadSP2,
State_LoadSP3,
State_AddSP2,
State_Fetch ,
State_-Execute ,
State_Decode ,
State_Decode?2 ,
State-Resync ,

State_-StoreSP2 ,
State-Resync2 ,
State-Resync3 ,
State-Loadb2 ,
State_Storeb2 ,
State_Mult2 ,

82

to memory

upon

143 State_Mult3 ,

144 State_Mult5 ,

145 State_Mult4 ,

146 State_BinaryOpResult2 ,
147 State_BinaryOpResult ,
148 State_Idle

149 |);

150

151

152 | signal pc : unsigned (maxAddrBitIncIO downto 0);

153 | signal sp : unsigned (maxAddrBitIncIO downto minAddrBit) ;
154 | signal incSp : unsigned (maxAddrBitIncIO downto minAddrBit) ;
155 | signal incIncSp : unsigned (maxAddrBitIncIO downto minAddrBit) ;
156 | signal decSp : unsigned (maxAddrBitIncIO downto minAddrBit) ;
157 | signal stackA : unsigned (wordSize—1 downto 0);

158 | signal binaryOpResult : unsigned (wordSize—1 downto 0);

159 signal binaryOpResult2 : unsigned (wordSize—1 downto 0);

160 | signal multResult2 : unsigned (wordSize—1 downto 0);

161 signal multResult3 : unsigned (wordSize—1 downto 0);

162 signal multResult : unsigned (wordSize—1 downto 0);

163 signal multA : unsigned (wordSize—1 downto 0);

164 signal multB : unsigned (wordSize—1 downto 0);

165 signal stackB : unsigned (wordSize—1 downto 0);

166 signal idim_flag : std_logic;

167 signal busy : std_logic;

168 | signal mem_writeEnable : std_logic;

169 signal mem_readEnable : std_-logic;

170 | signal mem_addr : std_logic_-vector (maxAddrBitIncIO downto minAddrBit);
171 signal mem_delayAddr : std_-logic_-vector (maxAddrBitIncIO downto minAddrBit);
172 signal mem_delayReadEnable : std_-logic;

173

174 | signal decodeWord : std_-logic-vector (wordSize—1 downto 0);
175

176

177 signal state : StateType;

178 signal insn : InsnType;

179 type InsnArray is array(0 to wordBytes—1) of InsnType;
180 signal decodedOpcode : InsnArray;

181
182 | type OpcodeArray is array(0 to wordBytes—1) of std_-logic_vector (7 downto 0);
183
184 signal opcode : OpcodeArray;

185

186

187

188

189 signal begin_inst : std-logic;

190 | signal trace_opcode : std-logic_vector (7 downto 0);

191 signal trace_pc : std_-logic-vector (maxAddrBitIncIO downto 0);
192 signal trace-sp : std-logic-vector (maxAddrBitIncIO downto minAddrBit) ;
193 signal trace_topOfStack : std_logic_vector (wordSize—1 downto 0);
194 signal trace_topOfStackB : std_logic_vector (wordSize—1 downto 0);
195

196 | —— state machine.

197

198 begin

199

200

201 traceFileGenerate:

202 if Generate_Trace generate

203 trace_file: trace port map (

204 clk => clk,

205 begin_inst => begin_inst ,

206 pc => trace_pc,

207 opcode => trace_opcode,

208 sp => trace-sp,

209 memA => trace_-topOfStack ,

210 memB => trace_topOfStackB,

211 busy => busy,

212 intsp => (others => ’'U’)

213)

214 end generate;

215

216

217 —— the memory subsystem will tell us one cycle later whether or
218 —— not it is busy

219 out-mem_writeEnable <= mem_writeEnable;

220 out-mem_readEnable <= mem_readEnable;

221 out-mem_addr (maxAddrBitIncIO downto minAddrBit) <= mem_addr;
222 out_-mem_addr (minAddrBit—1 downto 0) <= (others => ’0’);

223
224 incSp <= sp + 1;

225 incIncSp <= sp + 2;
226 decSp <= sp — 1;
227

228

229 opcodeControl:

83

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

process(clk, areset)

variable tOpcode : std_logic_vector (OpCode_Size—1 downto 0);
variable spOffset : unsigned (4 downto 0);

variable tSpOffset : unsigned (4 downto 0);

variable nextPC : unsigned (maxAddrBitIncIO downto 0);
variable tNextState : InsnType;

variable tDecodedOpcode : InsnArray;

variable tMultResult : unsigned(wordSizex2—1 downto 0);
begin
if areset = ’1’ then

state <= State_Idle;
break <= ’07;
sp <= unsigned (spStart (maxAddrBitIncIO downto minAddrBit));

pc <= (others => ’0’);
idim_flag <= ’0
begin_inst <= 0
mem_writeEnable <= ’07;
mem_readEnable <= ’07;

multA <= (others => ’0);

multB <= (others => '0’);
mem_writeMask <= (others => ’17);

elsif (clk’event and clk = ’1’) then
—— we must multiply unconditionally to get pipelined multiplication
tMultResult := multA * multB;

multResult3 <= multResult2;
multResult2 <= multResult;
multResult <= tMultResult (wordSize—1 downto 0);

binaryOpResult2 <= binaryOpResult; — pipeline a bit.

multA <= (others => DontCareValue);
multB <= (others => DontCareValue);

mem_addr <= (others
mem._readEnable <=’
mem_writeEnable <= H

mem_write <= (others => DontCareValue) ;

=> DontCareValue) ;

if (mem_writeEnable = ’'1’) and (mem_readEnable = ’1’) then
report ”"read/write_collision” severity failure;
end if;

spOffset (4):=not opcode(to-integer (pc(byteBits—1 downto 0))) (4);
spOffset (3 downto 0):=unsigned (opcode(to_integer (pc(byteBits—1 downto 0))) (3 downto 0))

3
nextPC := pc + 1;

—— prepare trace snapshot

trace_opcode <= opcode(to_-integer (pc(byteBits—1 downto 0)));
trace_pc <= std_-logic_vector (pc);

trace_.sp <= std_logic_vector (sp);

trace_topOfStack <= std_logic_vector (stackA);
trace_topOfStackB <= std_logic_vector (stackB);

begin_inst <= ’0’;

case state is
when State_Idle =>
if enable=’1" then
state <= State_Resync;
end if;
—— Initial state of ZPU, fetch top of stack + first instruction
when State_Resync =>
if in_mem_busy="0’ then
mem_addr <= std_logic_vector (sp);

mem_readEnable <= ’17;
state <= State_Resync2;
end if;

when State_Resync2 =>
if in_mem_busy="0" then
stackA <= unsigned (mem_read) ;
mem_addr <= std_logic_vector (incSp);

mem_readEnable <= ’17;
state <= State_Resync3;
end if;

when State_Resync3 =>
if in-mem_busy="0" then
stackB <= unsigned (mem_read) ;
mem_addr <= std_logic_vector (pc(maxAddrBitIncIO downto minAddrBit)) ;
mem_readEnable <= ’17;

84

316 state <= State_Decode;

317 end if;

318 when State_Decode =>

319 if in_mem_busy="0’ then

320 decodeWord <= mem_read;

321 state <= State_Decode2;

322 end if;

323 when State_Decode2 =>

324 —— decode 4 instructions in parallel

325 for i in 0 to wordBytes—1 loop

326 tOpcode := decodeWord ((wordBytes—1—i+1)*8—1 downto (wordBytes—1—1i)*8);
327

328 tSpOffset (4):=not tOpcode(4);

329 tSpOffset (3 downto 0):=unsigned (tOpcode(3 downto 0));
330

331 opcode (i) <= tOpcode;

332 if (tOpcode(7 downto 7)=OpCode_.Im) then

333 tNextState:=State_Im;

334 elsif (tOpcode(7 downto 5)=OpCode_StoreSP) then
335 if tSpOffset = 0 then

336 tNextState := State_Pop;

337 elsif tSpOffset=1 then

338 tNextState := State_PopDown;

339 else

340 tNextState :=State_StoreSP;

341 end if;

342 elsif (tOpcode(7 downto 5)=OpCode_LoadSP) then
343 if tSpOffset = 0 then

344 tNextState :=State_Dup;

345 elsif tSpOffset = 1 then

346 tNextState :=State_DupStackB;

347 else

348 tNextState :=State_-LoadSP;

349 end if;

350 elsif (tOpcode(7 downto 5)=OpCode_Emulate) then
351 tNextState :=State_Emulate;

352 if tOpcode(5 downto 0)=OpCode_Negbranch then
353 tNextState :=State_Negbranch;

354 elsif tOpcode(5 downto 0)=OpCode_Eq then

355 tNextState :=State_Eq;

356 elsif tOpcode(5 downto 0)=OpCode_Lessthan then
357 tNextState :=State_Lessthan;

358 elsif tOpcode(5 downto 0)=OpCode_Lessthanorequal then
359 ——tNextState :=State_Lessthanorequal;

360 elsif tOpcode(5 downto 0)=OpCode_Ulessthan then
361 tNextState :=State_Ulessthan;

362 elsif tOpcode(5 downto 0)=OpCode_Ulessthanorequal then
363 ——tNextState :=State_-Ulessthanorequal;

364 elsif tOpcode(5 downto 0)=OpCode_-Loadb then
365 tNextState :=State_Loadb;

366 elsif tOpcode(5 downto 0)=OpCode_Mult then

367 tNextState :=State_Mult;

368 elsif tOpcode(5 downto 0)=OpCode_Storeb then
369 tNextState :=State_Storeb;

370 elsif tOpcode(5 downto 0)=OpCode_Pushspadd then
371 tNextState :=State_Pushspadd;

372 elsif tOpcode(5 downto 0)=OpCode_Callpcrel then
373 tNextState :=State_Callpcrel;

374 elsif tOpcode(5 downto 0)=OpCode_Call then

375 ——tNextState :=State_Call;

376 elsif tOpcode(5 downto 0)=OpCode_-Sub then

377 tNextState :=State_Sub;

378 elsif tOpcode(5 downto 0)=OpCode_-PopPCRel then
379 —tNextState :=State-PopPCRel;

380 end if;

381 elsif (tOpcode(7 downto 4)=OpCode-AddSP) then
382 if tSpOffset = 0 then

383 tNextState := State_Shift;

384 elsif tSpOffset = 1 then

385 tNextState := State_AddTop;

386 else

387 tNextState :=State_AddSP;

388 end if;

389 else

390 case tOpcode(3 downto 0) is

391 when OpCode_Nop =>

392 tNextState :=State_Nop;

393 when OpCode_PushSP =>

394 tNextState :=State_PushSP;

395 when OpCode_PopPC =>

396 tNextState :=State_PopPC;

397 when OpCode_Add =>

398 tNextState :=State_Add;

399 when OpCode_-Or =>

400 tNextState :=State_-Or;

401 when OpCode_And =>

402 tNextState :=State_And;

85

403 when OpCode_Load =>

404 tNextState :=State_Load;

405 when OpCode_Not =>

406 tNextState :=State_Not;

407 when OpCode_Flip =>

408 tNextState :=State_Flip;

409 when OpCode_Store =>

410 tNextState :=State_Store;

411 when OpCode_PopSP =>

412 tNextState :=State_PopSP;

413 when others =>

414 tNextState := State_Break;

415

416 end case;

417 end if;

418 tDecodedOpcode (i) := tNextState;

419

420 end loop;

421

422 insn <= tDecodedOpcode(to_integer (pc(byteBits—1 downto 0)));

423

424 —— once we wrap, we need to fetch

425 tDecodedOpcode (0) := State_InsnFetch;

426

427 decodedOpcode <= tDecodedOpcode;

428 state <= State_Execute;

429

430

431

432 —— FEach instruction must:

433 —

434 — 1. set idim-_flag

435 —— 2. increase pc if applicable

436 — 3. set next state if appliable

437 — 4. do it ’s operation

438

439 when State_Execute =>

440 insn <= decodedOpcode(to_integer (nextPC(byteBits —1 downto 0)));

441

442 case insn is

443 when State_InsnFetch =>

444 state <= State_Fetch;

445 when State_Im =>

446 if in_mem_busy='0" then

447 begin_inst <= ’17;

448 idim_flag <= ’17;

449 pc <= pc + 1;

450

451 if idim_-flag=’1" then

452 stackA (wordSize—1 downto 7) <= stackA (wordSize—8 downto 0);

453 stackA (6 downto 0) <= unsigned (opcode(to_integer (pc(byteBits—1 downto 0))) (6
downto 0));

454 else

455 mem_writeEnable <= ’17;

456 mem_addr <= std_logic_vector (incSp);

457 mem_write <= std_logic_vector (stackB);

458 stackB <= stackA;

459 sp <= decSp;

460 for i in wordSize—1 downto 7 loop

461 stackA (i) <= opcode(to_integer (pc(byteBits—1 downto 0))) (6);

462 end loop;

463 stackA (6 downto 0) <= unsigned (opcode(to_integer (pc(byteBits—1 downto 0))) (6
downto 0));

464 end if;

465 end if;

466 when State_StoreSP =>

467 if in_mem_busy=’'0" then

468 begin_inst <= ’17;

469 idim_flag <= ’07;

470 state <= State_StoreSP2;

471

472 mem_writeEnable <= ’17;

473 mem_addr <= std_-logic_vector (sp+spOffset);

474 mem_write <= std_logic_-vector (stackA);

475 stackA <= stackB;

476 sp <= incSp;

477 end if;

478

479

480 when State_LoadSP =>

481 if in_mem_busy=’'0" then

482 begin_inst <= '17;

483 idim_flag <= ’07;

484 state <= State_-LoadSP2;

485

486 sp <= decSp;

487 mem_writeEnable <= '1’;

86

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

mem_addr <= std_logic_vector (incSp);
mem_write <= std_logic_vector (stackB);
end if;
when State_Emulate =>
if in.mem_busy=’'0" then
begin_inst <= ’17;
idim_flag <= ’0’;
sp <= decSp;
mem_writeEnable <= ’17;
mem_addr <= std_logic_vector (incSp);
mem_write <= std_logic_vector (stackB);
stackA <= (others => DontCareValue) ;
stackA (maxAddrBitIncIO downto 0) <= pc + 1;
stackB <= stackA;

—— The emulate address is:

—_— 98 7654 3210

— 0000 0O0aa aaal 0000

pc <= (others => ’0’);

pc(9 downto 5) <= unsigned (opcode(to_integer (pc(byteBits—1 downto 0))) (4 downto 0)

5
state <= State_Fetch;
end if;
when State_Callpcrel =>
if in_mem_busy=’0" then
begin_inst <= ’17;
idim_flag <= ’07;
stackA <= (others => DontCareValue) ;
stackA (maxAddrBitIncIO downto 0) <= pc + 1;

pc <= pc + stackA (maxAddrBitIncIO downto 0);
state <= State_-Fetch;
end if;
when State_Call =>
if in_mem_busy="0" then
begin_inst <= ’17;
idim_flag <= ’07;
stackA <= (others => DontCareValue) ;
stackA (maxAddrBitIncIO downto 0) <= pc + 1;
pc <= stackA (maxAddrBitIncIO downto 0) ;
state <= State_Fetch;
end if;
when State_AddSP =>
if in_mem_busy='0" then
begin_inst <= ’17;
idim_flag <= ’07;
state <= State_AddSP2;

mem-_readEnable <= ’17;
mem_addr <= std-logic_-vector (sp+spOffset);
end if;

when State_PushSP =>
if in_mem_busy='0" then
begin_inst <= ’17;
idim_flag <= ’07;
pc <= pc + 1;

sp <= decSp;
stackA <= (others => '0’);
stackA (maxAddrBitIncIO downto minAddrBit) <= sp;
stackB <= stackA;
mem_writeEnable <= ’17;
mem_addr <= std_logic_.vector (incSp);
mem_write <= std_-logic_vector (stackB);
end if;
when State_PopPC =>
if in_mem_busy=’'0" then
begin_inst <= ’17;
idim_flag <= ’07;
pc <= stackA (maxAddrBitIncIO downto 0);
sp <= incSp;

mem_writeEnable <= ’17;
mem_addr <= std_-logic_vector (incSp);
mem_write <= std_logic_-vector (stackB);
state <= State_Resync;

end if;

when State_PopPCRel =>

if in_mem_busy=’'0" then
begin_inst <= ’17;
idim_flag <= ’07;
pc <= stackA (maxAddrBitIncIO downto 0) + pc;
sp <= incSp;

mem-_writeEnable <= ’17;

mem_addr <= std_logic_vector (incSp);
mem_write <= std_logic_vector (stackB);

87

574 state <= State_Resync;

575 end if;

576 when State_Add =>

577 if in_mem_busy=’'0" then

578 begin_inst <= '17;

579 idim_flag <= ’0’;

580 stackA <= stackA 4 stackB;

581

582 mem_readEnable <= ’17;

583 mem_addr <= std_-logic_vector (incIncSp);
584 sp <= incSp;

585 state <= State_-Popped;

586 end if;

587 when State_Sub =>

588 if in_mem_busy=’'0" then

589 begin_inst <= ’17;

590 idim_flag <= ’07;

591 binaryOpResult <= stackB — stackA;

592 state <= State_BinaryOpResult;

593 end if;

594 when State_Pop =>

595 if in_mem_busy=’0" then

596 begin_inst <= ’'17;

597 idim_flag <= ’0’;

598 mem_addr <= std_logic_vector (incIncSp);
599 mem_readEnable <= ’17;

600 sp <= incSp;

601 stackA <= stackB;

602 state <= State_-Popped;

603 end if;

604 when State_PopDown =>

605 if in_mem_busy=’'0" then

606 —— PopDown leaves top of stack unchanged
607 begin_inst <= ’17;

608 idim_flag <= ’07;

609 mem_addr <= std_logic_vector (incIncSp);
610 mem_readEnable <= ’17;

611 sp <= incSp;

612 state <= State_Popped;

613 end if;

614 when State_Or =>

615 if in_mem_busy=’'0" then

616 begin_inst <= ’17;

617 idim_flag <= '07;

618 stackA <= stackA or stackBj;

619 mem_readEnable <= ’17;

620 mem._addr <= std_-logic_-vector (incIncSp);
621 sp <= incSp;

622 state <= State_Popped;

623 end if;

624 when State_And =>

625 if in.mem_busy=’'0" then

626 begin_inst <= ’17;

627 idim_flag <= ’07;

628

629 stackA <= stackA and stackB;

630 mem_readEnable <= ’17;

631 mem_addr <= std_-logic_vector (incIncSp);
632 sp <= incSp;

633 state <= State_Popped;

634 end if;

635 when State_.Eq =>

636 if in_mem_busy=’'0" then

637 begin_inst <= ’17;

638 idim_flag <= ’07;

639

640 binaryOpResult <= (others => ’0’);
641 if (stackA=stackB) then
642 binaryOpResult (0) <= ’17;
643 end if;

644 state <= State_BinaryOpResult;

645 end if;

646 when State_Ulessthan =>

647 if in.mem_busy=’'0" then

648 begin_inst <= ’17;

649 idim_flag <= ’0’;

650

651 binaryOpResult <= (others => ’07);
652 if (stackA<stackB) then
653 binaryOpResult (0) <= ’17;
654 end if;

655 state <= State_BinaryOpResult;

656 end if;

657 when State_-Ulessthanorequal =>
658 if in_mem_busy=’'0" then

659 begin_inst <= ’17;

660 idim_flag <= ’07;

88

661

662 binaryOpResult <= (others => ’07);
663 if (stackA<=stackB) then
664 binaryOpResult (0) <= ’17;
665 end if;

666 state <= State_BinaryOpResult;

667 end if;

668 when State_Lessthan =>

669 if in_mem_busy='0" then

670 begin_inst <= ’17;

671 idim_flag <= ’0’;

672

673 binaryOpResult <= (others => ’0’);
674 if (slgned(stdeA)<blgned(5tackB)) then
675 binaryOpResult (0) <=

676 end if;

677 state <= State,BinaryOpResult;

678 end if;

679 when State_Lessthanorequal =>
680 if in.mem_busy=’'0" then

681 begin_inst <= ’17;

682 idim_flag <= ’0’;

683

684 binaryOpResult <= (others => ’0’);
685 if (sngned(staCkA)<—s1gned(stackB)) then
686 binaryOpResult (0) <= ’
687 end if;

688 state <= State,BinaryOpResult;

689 end if;

690 when State_Load =>

691 if in_mem_busy=’'0" then

692 begin_inst <= '17;

693 idim_flag <= ’07;

694 state <= State_Load2;

695

696 mem_addr <= std_logic_vector (stackA (maxAddrBitIncIO downto minAddrBit));
697 mem_readEnable <= ’17;

698 end if;

699

700 when State_Dup =>

701 if in.mem_busy=’'0" then

702 begin_inst <= ’17;

703 idim_flag <= ’07;

704 pc <= pc + 1;

705

706 sp <= decSp;

707 stackB <= stackA;

708 mem_write <= std_-logic_vector (stackB);
709 mem-_addr <= std_-logic_vector (incSp);

710 mem_writeEnable <= ’17;

711 end if;

712 when State_DupStackB =>

713 if in_mem_busy='0" then

714 begin_inst <= ’17;

715 idim_flag <= ’0;

716 pc <= pc + 1;

717

718 sp <= decSp;

719 stackA <= stackB;

720 stackB <= stackA;

721 mem_write <= std_logic_vector (stackB);
722 mem_addr <= std_logic_vector (incSp);

723 mem_writeEnable <= ’17;

724 end if;

725 when State_Store =>

726 if in_mem_busy=’'0" then

727 begin_inst <= '17;

728 idim_flag <= ’07;

729 pc <= pc + 1;

730 mem_addr <= std_logic_vector (stackA (maxAddrBitIncIO downto minAddrBit));
731 mem_write <= std_logic_vector (stackB);
732 mem_writeEnable <= ’17;

733 sp <= inclncSp;

734 state <= State_Resync;

735 end if;

736 when State_PopSP =>

737 if in_mem_busy=’'0" then

738 begin_inst <= ’17;

739 idim_flag <= ’07;

740 pc <= pc + 1;

741

742 mem_write <= std_logic_vector (stackB);
743 mem-_addr <= std_logic_vector (incSp);

744 mem-_writeEnable <= ’17;

745 sp <= stackA (maxAddrBitIncIO downto minAddrBit) ;
746 state <= State_Resync;

74T end if;

89

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

when State_Nop =>
begin_inst <= ’17;
idim_flag <= ’07;
pc <= pc + 1;

when State_Not =>
begin_inst <= ’17;
idim_flag <= ’07;
pc <= pc + 1;

stackA <= not stackA ;
when State_Flip =>
begin_inst <= ’17;
idim_flag <= ’07;

pc <= pc + 1;

for i in 0 to wordSize—1 loop
stackA (i) <= stackA (wordSize—1—i);
end loop;
when State_AddTop =>
begin_inst <= ’17;
idim_flag <= ’07;
pc <= pc + 1;

stackA <= stackA 4 stackB;
when State_Shift =>
begin_inst <= ’17;
idim_flag <= ’07;

pc <= pc + 1;

stackA (wordSize—1 downto 1) <= stackA (wordSize—2 downto 0);
stackA (0) <= '0’;
when State_Pushspadd =>

begin_-inst <= ’17;

idim_flag <= ’07;

pc <= pc + 1;

stackA <= (others => ’07);
stackA (maxAddrBitIncIO downto minAddrBit) <= stackA (maxAddrBitIncIlO—minAddrBit
downto 0)+sp;
when State_Negbranch =>
—— branches are almost always taken as they form loops
begin_inst <= ’17;
idim_flag <= ’07;
sp <= inclncSp;
if (stackB/=0) then
pc <= stackA (maxAddrBitIncIO downto 0) + pc;
else
pc <= pc + 1;
end if;
—— need to fetch stack again.
state <= State_Resync;
when State_Mult =>
begin_inst <= ’17;
idim_flag <= ’07;

multA <= stackA;

multB <= stackB;

state <= State_Mult2;
when State_Break =>

report ”"Break_instruction_encountered” severity failure;
break <= '1";

when State_Loadb =>
if in_mem_busy=’'0" then
begin_inst <= '17;
idim_flag <= ’07;
state <= State-Loadb2;

mem_addr <= std_logic_vector (stackA (maxAddrBitIncIO downto minAddrBit));
mem_readEnable <= ’'17;
end if;
when State_Storeb =>
if in.mem_busy=’'0" then
begin_inst <= ’17;
idim_flag <= ’07;
state <= State_Storeb2;

mem_addr <= std_logic_vector (stackA (maxAddrBitIncIO downto minAddrBit));
mem_readEnable <= ’17;
end if;

when others =>
sp <= (others => DontCareValue) ;
report ”"Illegal .instruction” severity failure;
break <= ’17;

end case;

90

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

870
871
872

873

874

875

876
877
878
879
880
881
882
883
884
885
886

887
888
889

890

891

892

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908

when State_StoreSP2 =>
if in_mem_busy=’0’ then
mem_addr <= std_logic_vector (incSp);

mem_readEnable <= ’17;
state <= State_Popped;
end if;

when State_LoadSP2 =>
if in_mem_busy='0’ then
state <= State_LoadSP3;

mem_readEnable <= ’17;
mem_addr <= std_-logic_vector (sp+spOffset+1);
end if;

when State_LoadSP3 =>

if in-mem_busy=’0" then

pc <= pc + 1;

state <= State_Execute;

stackB <= stackA;

stackA <= unsigned (mem_read) ;

end if;

when State_AddSP2 =>

if in_mem_busy=’0" then

pc <= pc + 1;

state <= State_Execute;

stackA <= stackA 4+ unsigned (mem-_read) ;

end if;

when State_Load2 =>

if in.mem_busy=’0" then

stackA <= unsigned (mem_read) ;

pc <= pc + 1;

state <= State_-Execute;

end if;

when State_Loadb2 =>

if in.mem_busy="0" then

stackA <= (others => ’0);

——stackA (7 downto 0) <= unsigned (mem_read (((wordBytes—I—to_integer (stackA (byteBits—1
downto 0)))*8+7) downto (wordBytes—I—to_integer (stackA (byteBits—1 downto 0)))
* 8 H

——HAVE TO WRITE LINE ABOVE AS CASE STRUCTURE TO COMPILE SUCCESSFULLY

case stackA (byteBits—1 downto 0) is

when 700”7 => stackA (7 downto 0) <= unsigned (mem_read (((wordBytes—1—0)*8+7) downto (
wordBytes —1—0)%8)) ;

when 701”7 => stackA (7 downto 0) <= unsigned (mem_read (((wordBytes—1—1)%x8+7) downto (
wordBytes —1—1)%8)) ;

when ”10” => stackA (7 downto 0) <= unsigned (mem_read (((wordBytes —1—-2)%8+47) downto (
wordBytes —1—2)%8)) ;

when ”11” => stackA (7 downto 0) <= unsigned (mem_read (((wordBytes —1-3)%*8+7) downto (
wordBytes —1—3)%8)) ;

when others => null;

end case;

——CASE RE-WRITE ENDS HERE

pc <= pc + 1;

state <= State_Execute;

end if;

when State_Storeb2 =>

if in_mem_busy="0’ then

mem_addr <= std_logic_vector (stackA (maxAddrBitIncIO downto minAddrBit));

mem_write <= mem_read;

——mem_write (((wordBytes—I—to_integer (stackA (byteBits —1 downto 0)))*x8+7) downto (
wordBytes—I1—to_integer (stackA (byteBits —1 downto 0)))*8) <= std_logic_vector (
stackB (7 downto 0));

——HAVE TO WRITE LINE ABOVE AS CASE STRUCTURE TO COMPILE SUCCESSFULLY

case stackA (byteBits—1 downto 0) is

when ”00” => mem_write (((wordBytes —1—-0)*8+47) downto (wordBytes—1—0)*8) <=
std-logic_-vector (stackB (7 downto 0));

when ”01” => mem_write (((wordBytes—1—1)*8+47) downto (wordBytes—1—1)x8) <=
std-logic-vector (stackB (7 downto 0));

when ”10” => mem_write (((wordBytes —1—2)*8+7) downto (wordBytes—1—2)x8) <=
std_logic_vector (stackB (7 downto 0));

when ”11” => mem_write (((wordBytes —1—3)*8+7) downto (wordBytes—1-3)x8) <=
std_logic_-vector (stackB (7 downto 0));

when others => null;

end case;

——CASE RE-WRITE ENDS HERE

mem_writeEnable <= ’17;

pc <= pc + 1;

sp <= inclncSp;

state <= State_Resync;

end if;

when State_Fetch =>
if in-mem_busy=’0" then
mem-_addr <= std_-logic_-vector (pc(maxAddrBitIncIO downto minAddrBit)) ;

mem_readEnable <= ’17;
state <= State_Decode;
end if;

when State_Mult2 =>
state <= State_Mult3;

91

909 when State_Mult3 =>
910 state <= State_-Mult4;

911 when State_Multd =>
912 state <= State_Mult5;

913 when State_Multbh =>
914 if in.mem_busy=’0" then

915 stackA <= multResult3;
916 mem_readEnable <= ’17;

917 mem_addr <= std_logic_vector (incIncSp);
918 sp <= incSp;

919 state <= State_-Popped;

920 end if;

921 when State_BinaryOpResult =>

922 state <= State_BinaryOpResult2;
923 when State_BinaryOpResult2 =>
924 mem_readEnable <= '17;

925 mem_addr <= std_logic_vector (incIncSp);
926 sp <= incSp;

927 stackA <= binaryOpResult2;

928 state <= State_Popped;

929 when State_Popped =>

930 if in_mem_busy=’0’ then

931 pc <= pc + 1;

932 stackB <= unsigned (mem_read) ;
933 state <= State_Execute;

934 end if;

935 when others =>

936 sp <= (others => DontCareValue);
937 report ”"Illegal_state” severity failure;
938 break <= ’17;

939 end case;

940 end if;

941 end process;

942

943

944

945 | end behave;

B.2 ZPU memory module

dram.vhdl

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

library work;
use work.zpu-config.all;
use work.zpupkg.all;

OO U s WN -

10 entity dram is
11 | port (clk : in std-logic;

12 areset : std-logic;

13 mem-_writeEnable : in std_-logic;

14 mem_readEnable : in std_logic;

15 mem_addr : in std_logic_vector (maxAddrBit downto 0);
16 mem_write : in std_logic_vector (wordSize—1 downto 0);
17 mem_read : out std_logic_vector (wordSize—1 downto 0);
18 mem_busy : out std_logic;

19 mem_writeMask : in std_logic_vector (wordBytes—1 downto 0));
20 | end dram;

21

22 | architecture dram_arch of dram is

23

24

25 | type ram_type is array(natural range 0 to ((2x**(maxAddrBitDRAM+1))/4)—1) of
std_logic_-vector (wordSize—1 downto 0);

26

27 shared variable ram : ram-_-type :=
28 | (

29 0 => x”0b0b0Ob0Ob” ,
30 1 => x”82700b0b” ,
31 2 => x”780f8e40c”,
32 3 => x”73a0b0b80” ,
33 4 => x7e7e20400” ,
34 5 => x700000000” ,
35 6 => x”700000000” ,
36 7 => x”00000000” ,
37 8 => x”780088408” ,
38 9 => x”788080b0b” ,

92

39 10 => x”80e8af2d”,
40
41 and so on down to...
42
43 | 4368 => x” ffffffff”
44 | 4369 => x”7000000007” ,
45 | 4370 => x” ffffffff”
46 | 4371 => x”7000000007” ,
47 | 4372 => x”7000000007 ,
48 others => x”700000000”

49 |)
50

51 begin

52

53 | mem_busy<=mem.readEnable; — we’re done on the cycle after we serve the read request
54

55 process (clk, areset)

56 | begin

57 if areset = ’1’ then

58 elsif (clk’event and clk = ’1’) then

59 if (mem_writeEnable = ’'1’) then

60 ram(to_integer (unsigned (mem_addr (maxAddrBit downto minAddrBit)))) := mem_write;
61 end if;

62 if (mem_readEnable = ’1’) then

63 mem_read <= ram(to_integer (unsigned (mem_addr(maxAddrBit downto minAddrBit))));

64 end if;

65 end if;

66 |end process;
67
68
69
70
71 end dram-arch;

B.3 ZPU testbench

sim_fpga top.vhdl

1

2 |—— Company:

3 |—— Engineer:

4 | —

5 |—— Create Date: 20:15:31 04/14/05
6 | —— Design Name:

7 |—— Module Name: fpga_-top — behave
8 |—— Project Name:

9 |—— Target Device:

10 |—— Tool wersions:

11 |— Description :

12 | —

13 |— Dependencies:

14 | —

15 | — Rewision:

16 |— Rewvision 0.01 — File Created

17 |— Additional Comments:

18 | —

19

20 library IEEE;
21 | use IEEE.STD_LOGIC_1164.ALL;

22

23 | —— Uncomment the following library declaration if instantiating
24 | —— any Xilinz primitives in this code.

25 |——library UNISIM;

26 |——use UNISIM.VComponents. all ;

27

28 library work;
29 use work.zpu_config.all;

31 entity fpga_-top is
32 |end fpga-top;

34 | use work.zpupkg. all;

36 architecture behave of fpga_top is

39 signal clk : std_logic;

41 signal areset : std_-logic = ’17;

93

44 | component zpu_io is

45 generic (

46 log_file: string = "log.txt”

47)

48 port (

49 clk : in std_logic;

50 areset : in std_-logic;

51 busy : out std_-logic;

52 writeEnable : in std_-logic;

53 readEnable : in std_-logic;

54 write : in std_logic_vector (wordSize—1 downto 0);

55 read : out std_logic_vector (wordSize—1 downto 0);

56 addr : in std-logic_-vector (maxAddrBit downto minAddrBit)
57) s

58 | end component;

59

60

61

62

63

64 signal mem_busy : std_logic;

65 signal mem_read : std_-logic_vector (wordSize—1 downto 0);
66 signal mem_write : std_logic_-vector (wordSize—1 downto 0);
67 signal mem_addr : std_-logic_-vector (maxAddrBitIncIO downto 0);
68 signal mem_writeEnable : std_-logic;

69 signal mem_readEnable : std_-logic;

70 signal mem_writeMask: std_logic_-vector (wordBytes—1 downto 0);
71

72 signal enable : std-logic;

73

74 signal dram_mem_busy : std_-logic;

75 | signal dram_mem_read : std_-logic-vector (wordSize—1 downto 0);
76 signal dram_mem_write : std-logic_-vector (wordSize—1 downto 0);
T signal dram_mem_writeEnable : std_logic;

78 signal dram_mem_readEnable : std_logic;

79 signal dram_mem_writeMask: std_logic_vector (wordBytes—1 downto 0);
80

81

82 signal io_busy : std_-logic;

83

84 | signal io-mem_read : std-logic_-vector (wordSize—1 downto 0);
85 signal io.mem_writeEnable : std_-logic;

86 signal io_mem_readEnable : std_-logic;

87

88

89 signal dram_ready : std-logic;

90 signal io_ready : std-logic;

91 signal io_reading : std-logic;

92

93

94 signal break : std_logic;

95

96 | begin

97 zpu: zpu-core port map (

98 clk => clk ,

99 areset => areset ,

100 enable => enable,

101 in.mem_busy => mem_busy,

102 mem_read => mem-_read,

103 mem_write => mem_write ,

104 out-mem_addr => mem-_addr,

105 out-mem_writeEnable => mem_writeEnable ,

106 out-mem_readEnable => mem_readEnable,

107 mem_writeMask => mem_writeMask,

108 interrupt => 07,

109 break => break);

110

111 dram_imp: dram port map (

112 clk => clk ,

113 areset => areset ,

114 mem_busy => dram_mem_busy ,

115 mem_read => dram_mem_read,

116 mem_write => mem_write ,

117 mem_addr => mem_addr (maxAddrBit downto 0) ,

118 mem_writeEnable => dram_mem_writeEnable,

119 mem_readEnable => dram_mem_readEnable,

120 mem_writeMask => mem_writeMask) ;

121

122

123 ioMap: zpu-io port map (

124 clk => clk,

125 areset => areset ,

126 busy => io_busy,

127 writeEnable => io-mem_writeEnable ,

128 readEnable => io-mem_readEnable ,

129 write => mem_write (wordSize—1 downto 0),

130 read => io_mem_read,

94

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

OO U A WN -

addr => mem_addr (maxAddrBit downto minAddrBit)
)

dram_mem_writeEnable <= mem_writeEnable and not mem_addr(ioBit);
dram_mem_readEnable <= mem_readEnable and not mem_addr(ioBit);
io-mem_writeEnable <= mem_writeEnable and mem_addr(ioBit);
io_mem_readEnable <= mem_readEnable and mem_addr(ioBit);
mem_busy <= io_busy or dram_mem_busy or io_busy;

—— Memory reads either come from IO or DRAM. We need to pick the right
memorycontrol:
process (dram_mem-_read, dram_ready, io-ready , io_mem_read)
begin
mem_read <= (others => ’'U’);
if dram_ready=’1" then
mem_read <= dram_mem-_read;
end if;

if io_ready=’1" then
mem_read <= io_mem_read ;
end if;
end process;

io_ready <= (io_-reading or io_mem_readEnable) and not io_busy;

memoryControlSync:

process(clk, areset)

begin

if areset = ’1’ then

enable <= ’07;
io_reading <= ’0’;

dram_ready <= ’07;

elsif (clk’event and clk = ’1’) then
enable <= ’17;
io_reading <= io_busy or io_mem._readEnable;
dram_ready<=dram_mem_readEnable;

end if;
end process;

— wiggle the clock @ 100MHz
"ROCESS

clock
begin
clk <= ’07;
wait for 5 ns;
clk <= '17;

wait for 5 ns;
areset <= ’'0’;
end PROCESS clock;

end behave;

configuration CfgTestBench of fpga_top is
for behave
for zpu: zpu_core
use entity work.zpu_core(SYN_behave);
end for;
end for;
end CfgTestBench;

one .

B.4 Plasma CPU core

mlite_cpu.vhd

—— TITLE: Plasma CPU core

—— AUTHOR: Steve Rhoads (rhoadss@yahoo.com)

—— DATE CREATED: 2/15/01

—— FILENAME: mlite_cpu .vhd

—— PROJECT: Plasma CPU core

—— COPYRIGHT: Software placed into the public domain by the author.

—_ Software ’as is ' without warranty. Author liable for mnothing.
—— NOTE: MIPS(tm) and MIPS I(tm) are registered trademarks of MIPS
— Technologies . MIPS Technologies does mot endorse and is mnot

—_ associated with this project.

—— DESCRIPTION :

—_ Top level VHDL document that ties the mnine other entities together.

95

14 | —

15 |—— Ezecutes all MIPS I(tm) opcodes but exceptions and mon—aligned

16 | —— memory accesses. Based on information found in:

17 | — "MIPS RISC Architecture” by Gerry Kane and Joe Heinrich

18 | — and "The Designer 's Guide to VHDL” by Peter J. Ashenden

19 |—

20 |—— The CPU is implemented as a two or three stage pipeline.

21 |— An add instruction would take the following steps (see cpu.gif):
22 | —— Stage #O0:

23 |— 1. The "pc-mext” entity passes the program counter (PC) to the
24 | — "meme-ctrl” entity which fetches the opcode from memory.

25 | —— Stage #1:

26 |— 2. The memory returns the opcode.

27 | —— Stage #2:

28 |— 3. "Mem_ctrl” passes the opcode to the ”"control” entity.

29 | — 4. ?Control” converts the 32— bit opcode to a 60—bit VLWI opcode
30 |— and sends control signals to the other entities.

31 | — 5. Based on the rs_index and rt_index control signals, "reg_bank”
32 | — sends the 32— bit reg_source and reg_-target to “bus_muzx”.

33 | — 6. Based on the a_-source and b_source control signals, ”bus_-mux”
34 | — multiplexes reg-source onto a_-bus and reg_-target onto b_bus.
35 | —— Stage #3 (part of stage #2 if wusing two stage pipeline):

36 | — 7. Based on the alu_-func control signals, ”alu” adds the wvalues
37 | — from a_-bus and b_bus and places the result on c_bus.

38 |— 8. Based on the c_source control signals, "bus_bux” multiplexes
39 | — c-bus onto reg-dest.

40 | — 9. Based on the rd-index control signal, ”reg-bank” saves

41 | — reg-dest into the correct register.

42 | —— Stage #3b:

43 | — 10. Read or write memory if mneeded.

44 | —

45 |— All signals are active high.

46 |—— Here are the signals for writing a character to address O0zffff

47 | — when wusing a two stage pipeline:

48 | ——

49 | —— Program:

50 |— addr value opcode

51 |—

52 | — 8c: 00000000 mop

53 | — 40: 84040041 li $a0,0x41

54 | —— 44: 3405 ffff li $al,0zffff

55 | — 48: a0a40000 sb $a0,0(%al)

56 | — 4c: 00000000 nop

57 | — 50: 00000000 mnop

58 | —

59 | — intr_in mem-pause

60 |— reset-in byte_we Stages

61 |— ns address data_-w data_-r 40 44 48 4c¢ 50
62 | — 83600 0 0 00000040 00000000 84040041 0 0 1

63 | — 8700 0 0 00000044 00000000 8405FFFF 0 0 2 1

64 | — 8800 0 0 00000048 00000000 A0A40000 0 0O 2 1

65 | — 8900 0 0 0000004C 41414141 00000000 0 0 2 1

66 | —— 4000 0 0 O0O000FFFC 41414141 XXXXXX41 1 0 8 2

67 | — 4100 0 0 00000050 00000000 00000000 0 1
68

69 library ieee;

70 use work.mlite_pack.all;

71 use ieee.std_logic_1164.all;

72 | use ieee.std_logic_unsigned.all;

73

74 entity mlite_cpu is

75 generic (memory_type : string ?XILINX_16X” ; ——ALTERA_LPM, or DUAL_PORT-
76 mult_type : string "DEFAULT” ; —ARFEA_OPTIMIZED
s shifter_type : string "DEFAULT” ; —ARFEA_OPTIMIZED
78 alu_type : string "DEFAULT” ; —ARFEA_OPTIMIZED
79 pipeline_stages : natural := 3); —2 or 8

80 port (clk : in std-logic;

81 reset_in : in std_logic;

82 intr_in : in std_logic;

83

84 address_next : out std_logic_vector (31 downto 2); ——for synch ram
85 byte_we_next : out std_-logic_-vector (3 downto 0);

86

87 address : out std_logic_vector (31 downto 2);

88 byte_we : out std_logic_vector (3 downto 0);

89 data_-w : out std-logic-vector (31 downto 0);

90 data_r : in std_logic_vector (31 downto 0);

91 meme_pause : in std_-logic);

92 |end; ——entity mlite_cp

93

94 architecture logic of mlite_cpu is

95 ——When wusing a two stage pipeline 7sigD <= sig”.

96 ——When wusing a three stage pipeline 7sigD <= sig when rising-edge(clk)”,
97 —— so sigD is delayed by one clock cycle.

98 signal opcode : std-logic_-vector (31 downto 0);

99 signal rs_index : std_logic_vector (5 downto 0);

100 signal rt_index : std_logic_vector (5 downto 0);

96

101 signal rd_index : std_logic_vector (5 downto 0);
102 signal rd_indexD : std_logic_vector (5 downto 0);
103 signal reg_source : std_logic_vector (31 downto 0);
104 signal reg_target : std_logic_-vector (31 downto 0);
105 signal reg_dest : std_logic_vector (31 downto 0);
106 signal reg_destD : std_-logic_-vector (31 downto 0);
107 signal a_bus : std-logic_-vector (31 downto 0);
108 signal a_busD : std-logic_-vector (31 downto 0);
109 signal b_bus : std_-logic_vector (31 downto 0);
110 signal b_busD : std_-logic_vector (31 downto 0);
111 signal c_bus : std-logic_vector (31 downto 0);
112 signal c_alu : std-logic_vector (31 downto 0);
113 signal c_shift : std-logic_vector (31 downto 0);
114 signal c_mult : std-logic_-vector (31 downto 0);
115 signal c-memory : std-logic_-vector (31 downto 0);
116 signal imm : std_logic_vector (15 downto 0);
117 signal pc_future : std_logic_vector (31 downto 2);
118 signal pc_current : std_logic_vector (31 downto 2);
119 signal pc_plus4 : std_logic_vector (31 downto 2);
120 signal alu_func : alu_function_type;

121 signal alu_funcD : alu_function_type;

122 signal shift_func : shift_function_type;

123 signal shift_funcD : shift_function_type;

124 signal mult_func : mult_function_type;

125 signal mult_funcD : mult_function_type;

126 signal branch_func : branch_function_type;

127 signal take_branch : std_-logic;

128 signal a_source : a-source_-type;

129 signal b_source : b_source_-type;

130 signal c_source : c-source_type;

131 signal pc_source : pc-source-type;

132 signal mem_source : mem._source_-type;

133 signal pause_mult : std-logic;

134 signal pause_ctrl : std_logic;

135 signal pause_pipeline : std_logic;

136 signal pause_any : std_logic;

137 signal pause_non_ctrl : std_logic;

138 signal pause_bank : std_-logic;

139 signal nullify_op : std_-logic;

140 signal intr_enable : std_-logic;

141 signal intr_signal : std_logic;

142 signal exception_sig : std_-logic;

143 signal reset_reg : std-logic_-vector (3 downto 0);
144 signal reset : std_-logic;

145 | begin ——architecture

146

147 pause_any <= (mem_pause or pause_ctrl) or (pause_-mult or pause_pipeline);
148 pause_non-ctrl <= (mem_pause or pause_mult) or pause_pipeline;
149 pause_-bank <= (mem_pause or pause-ctrl or pause_mult) and not pause_pipeline;
150 nullify_op <= ’'1’ when (pc-source = FROMLBRANCH and take_branch = ’0’)
151 or intr_signal = ’1’ or exception_sig = ’'1°
152 else ’'07;

153 c_bus <= c_alu or c_shift or c_mult;

154 reset <= ’1’ when reset_in = ’1’ or reset_reg /= 711117 else ’'07;
155

156 ——synchronize reset and interrupt pins

157 intr_proc: process(clk, reset_in, reset_-reg, intr_in, intr_enable ,
158 pc-source , pc_current , pause_any)

159 begin

160 if reset_in = ’1’ then

161 reset_.reg <= 70000”;

162 intr_signal <= ’07;

163 elsif rising_edge(clk) then

164 if reset_reg /= 711117 then

165 reset_reg <= reset_reg + 1;

166 end if;

167

168 ——don’t try to interrupt a multi—cycle instruction
169 if pause_any = ’0’ then

170 if intr_in = ’'1’ and intr_enable = ’1’ and
171 pc-source = FROMINC4 then

172 ——the epc will contain pc+4

173 intr_signal <= ’17;

174 else

175 intr_signal <= ’0’;

176 end if;

177 end if;

178

179 end if;

180 end process;

181

182 ul_pc_next: pc-next PORT MAP (

183 clk => clk,

184 reset_in => reset ,

185 take_-branch => take_branch,

186 pause_in => pause_any ,

187 pc_new => c.bus (31 downto 2),

97

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

opcode25_0 => opcode (25 downto 0),

pc.source => pc.source,
pc_-future => pc_future,
pc-current => pc.current ,
pc-plus4 => pc_plus4);

u2_mem_ctrl: mem_ctrl
PORT MAP (

clk => clk,
reset_in => reset ,
pause_in => pause-non_ctrl,
nullify_op => nullify_op ,
address_pc => pc-future ,
opcode_-out => opcode,
address_in => c_bus,
mem_source => mem_source ,
data_write => reg_target ,
data_read => c_memory ,
pause_out => pause_ctrl ,
address_next => address_next ,
byte_we_next => byte_we_next ,
address => address,
byte_we => byte_we,
data_-w => data_-w,
data_r => data_r);
u3_control: control PORT MAP (
opcode => opcode,
intr_-signal => intr.signal,
rs_index => rs-index ,
rt_index => rt_index ,
rd_index => rd.index ,
imm_out => imm,
alu_func => alu_func,
shift_func => shift_func,
mult_func => mult_func,
branch_func => branch_func,
a_source_out => a_source ,

b_source_out => b_source,
c_source_out => c.source ,
pc-source_out=> pc_source ,
mem._source-out=> mem-._source,
exception_out=> exception_sig);

ud_reg-bank: reg_bank
generic map(memory_-type => memory_type)
port map (

clk = clk,

reset_in => reset ,

pause => pause_bank,
s_index => rs_.index,
rt_index => rt_index,
rd_index => rd_indexD ,
reg_source_.out => reg_source ,
reg_target_out => reg_target ,
reg_dest_new => reg-destD ,
intr_enable => intr_enable);

u5_bus_mux: bus.mux port map (

imm_in => imm,
reg._source => reg-source ,
a-mux => a.source ,
a_out => a_bus,
reg_target => reg_target ,
b_mux => b_source ,
b_out => b_bus,
c_bus => c_bus,
c_memory => c_memory ,
c-pc = pc-current ,
c_pc-plus4 => pc-plus4 ,
c_mux => c.source ,

reg_dest_out => reg_dest ,

branch_func => branch_func,
take_branch => take_branch);

u6_-alu: alu
generic map (alu_-type => alu_-type)
port map (
a_in => a-busD,
b_in => b_busD,
alu_function => alu_funcD ,

98

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

WU WN -

c_alu => c.alu);
u7_shifter: shifter
generic map (shifter_type =>
port map (

shifter_type)

value => b_busD,
shift_amount => a_busD (4 downto 0),
shift_func => shift_funcD ,
c_shift => c-shift);

u8_mult: mult

generic map (mult_-type => mult_type)
port map (

clk => clk,
reset_in => reset ,

a => a_busD,

b => b_busD,
mult_func => mult_funcD,
c_mult => c_mult ,

pause_out => pause_mult);
pipeline2: if pipeline_stages
a_busD <= a_bus;
b_busD <= b_bus;
alu_funcD <= alu_-func;
shift_funcD <= shift_func;
mult_funcD <= mult_func;

<= 2 generate

rd_indexD <=
reg.destD <=

rd_index;
reg-dest;

pause_pipeline <=
end generate;

pipeline3: if pipelin
——When operating

in

07

—pipeline?2

e_.stages > 2 generate
three stage pipeline

——are
——c.source ,

delayed by one

clock cycle: a_bus ,
and rd_index .

u9_pipeline:

pipeline port map (

mode ,
b_bus ,

the

following signals
alu/shift/mult_func,

clk => clk,
reset = reset ,
a_bus => a_bus,
a_busD => a_busD,
b_bus => b_bus,
b_busD => b_busD,
alu_func => alu_func,
alu_funcD => alu_-funcD ,
shift_func => shift_func ,
shift_funcD => shift_funcD ,
mult_func => mult_func,
mult_funcD => mult_-funcD ,
reg-dest => reg-_dest ,
reg_destD => reg.destD ,
rd_index => rd_index,
rd_indexD => rd_indexD ,
s_index => rs_.index ,
rt_index => rt_.index ,
pc_source => pc_source ,
mem_source => mem_source ,
a_source => a_source ,
b_source => b_source,
c_source => c._source ,
c_bus => c-bus,
pause_any => pause.any ,
pause_pipeline => pause_pipeline);
end generate; ——pipelines
end; —architecture logic

B.5 Plasma memory module

ram.vhd

TITLE: Random Access Memory

AUTHOR: Steve Rhoads (rThoadss@yahoo.com)

DATE CREATED: 4/21/01

FILENAME: ram.vhd

PROJECT: Plasma CPU core

COPYRIGHT: Software placed
Software ’as is’ without

into the public domain by the author.

warranty . Author liable

99

for mothing.

10
11
12

14
15

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

—— DESCRIPTION :

— Implements the RAM, reads the ezecutable from either ”code.tzt”,
—_ or for Altera 7code[0—3]. hex”.

— Modified from 7The Designer s Guide to VHDL” by Peter J. Ashenden

library ieee;

use ieee.std_logic_-1164.all;

use ieee.std_logic_misc.all;

use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use ieee.std_-logic_-textio.all;
use std.textio.all;

use work.mlite_pack. all;

entity ram is

generic (memory_type : string := "DEFAULT”);

port (clk : in std_logic;
enable : in std_logic;
write_byte_enable : in std_logic_vector (3 downto 0);
address : in std_logic_-vector (31 downto 2);
data_write : in std_logic_vector (31 downto 0);
data_read : out std_logic_vector (31 downto 0));

end; —entity ram

architecture logic of ram is
constant ADDRESS_WIDTH : natural := 13;
begin

generic_ram:
if memory_type /= "ALTERALPM” generate
begin
——Simulate a synchronous RAM
ram_proc: process(clk, enable, write_byte_enable,
address , data_write) ——mem_write, mem_sel
variable mem_size : natural := 2 xx ADDRESS_WIDTH;
variable data : std_logic_vector (31 downto 0);
subtype word is std_logic_vector (data_write 'length —1 downto 0);
type storage_array is

array (natural range 0 to mem_size/4 — 1) of word;
variable storage : storage_array;
variable index : natural := 0;
file load_file : text open read_-mode is ”code.txt”;
variable hex_file_line : line;

begin

——Load in the ram executable image
if index = 0 then
while not endfile(load_file) loop
——The following two lines had to be commented out for synthesis

readline (load_file, hex_file_line);
hread (hex_file_line , data);
storage (index) := data;
index := index 4+ 1;
end loop;
end if;

if rising_edge(clk) then

index := conv_integer (address (ADDRESS WIDTH—1 downto 2));
data := storage (index);
if enable = ’1’ then
if write_byte_enable(0) = 1’ then
data (7 downto 0) := data_write (7 downto 0);
end if;
if write_byte_enable (1) = 1’ then
data (15 downto 8) := data_write (15 downto 8);
end if;
if write_byte_enable(2) = 1’ then
data (23 downto 16) := data_write (23 downto 16);
end if;
if write_byte_enable(3) = ’1’ then
data (31 downto 24) := data_write (31 downto 24);
end if;
end if;

if write_byte_enable /= 70000” then
storage (index) := data;
end if;
end if;

data_-read <= data;

end process;
end generate; ——generic_ram

altera_ram :
if memory_type = "ALTERA_LPM” generate

100

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

signal byte_we : std_logic_vector (3 downto 0);

begin
byte.we <= write_byte_enable when enable = ’1’ else
lpm_ram_io_component0 : lpm_ram_dq

GENERIC MAP (
intended_device_family => ”"UNUSED” ,
Ipm_width => 8,
Ipm_widthad => ADDRESS_WIDTH-2,
Ilpm_indata => "REGISTERED” ,
Ipm_address_control => "REGISTERED” ,
Ipm_outdata => ”"UNREGISTERED” ,
Ipm_file => ”code0.hex” ,
use_eab => "ON” |
lpm_type => "LPM_RAMDQ”)

PORT MAP (
data => data_write (31 downto 24),
address => address (ADDRESS_WIDTH—1 downto 2),
inclock => clk,

we => byte_.we(3),
q => data.read (31 downto 24));
lpm_ram_io_componentl : lpm_ram_dq

GENERIC MAP (
intended_device_family => ”"UNUSED” ,
Ipm_width => 8,
Ipm_widthad => ADDRESS_-WIDTH-2,
Ipm_indata => "REGISTERED” ,
Ilpm_address_control => "REGISTERED” ,
lpm_outdata => ”UNREGISTERED” ,
Ipm_file => ”codel.hex”,
use_eab => "ON” |
lpm_type => "LPM_RAMDQ”)

PORT MAP (
data => data_write (23 downto 16),
address => address (ADDRESS_WIDTH—1 downto 2),
inclock => clk,

we => byte_.we(2),
q => data_read (23 downto 16));
Ilpm_ram_io_component2 : lpm_ram_dq

GENERIC MAP (
intended_device_family => ”"UNUSED” ,
Ilpm_width => 8,
lpm_widthad => ADDRESS.WIDTH-2,
Ilpm_indata => "REGISTERED” ,
Ilpm_address_control => "REGISTERED” ,
Ipm_outdata => ”UNREGISTERED” ,
Ipm_file => ”code2.hex”,
use_eab => "ON” |
lpm_type => "LPM_RAMDQ”)

PORT MAP (
data => data_write (15 downto 8),
address => address (ADDRESS_WIDTH—1 downto 2),
inclock => clk,

we => byte_.we (1),
q => data_read (15 downto 8));
Ilpm_ram_io_component3 : lpm_ram_dq

GENERIC MAP (
intended_device_family => ”"UNUSED” ,
Ipm_width => 8,
lpm_widthad => ADDRESS_WIDTH-2,
Ipm_indata => "REGISTERED” ,
Ilpm_address_control => "REGISTERED” ,
Ipm_-outdata => ”"UNREGISTERED” ,
Ipm_file => ”code3.hex”,
use_eab => ”"ON” |
lpm_type => "LPM_RAMDQ”)

PORT MAP (
data => data_write (7 downto 0),
address => address (ADDRESS_WIDTH—1 downto 2),
inclock => clk,

we => byte_we (0),
q => data_read (7 downto 0));
end generate; ——altera_-ram

——For XILINX see ram_zilinz.vhd

end;

——architecture logic

700007 ;

101

© WU A WN -

B.6 Plasma test bench

tbench.vhd

— TITLE: Test Bench

—— AUTHOR: Steve Rhoads (rhoadss@yahoo.com)

—— DATE CREATED: 4/21/01

—— FILENAME: tbench.vhd

—— PROJECT: Plasma CPU core

—— COPYRIGHT: Software placed into the public domain by the author.

— Software ’as is’ without warranty. Author liable for mnothing.

—— DESCRIPTION :

— This entity provides a test bench for testing the Plasma CPU core.

library ieee;

use ieee.std_logic_-1164.all;

use work.mlite_pack.all;

use ieee.std_logic_unsigned.all;

entity tbench is
end; —entity tbench

architecture logic of tbench is
constant memory_type : string :=
?”TRI.PORT X" ;

—_— "DUAL_PORT.”;

—_— 7"ALTERA_LPM” ;

—_ ?XILINX_16X7;

constant log_file : string :=
— "UNUSED” ;
Poutput.txt”;

——magical memory signals

——signal mem_fetching : std_-logic := ’07;
——signal mem_reading : ostd_-logic := ’07;
——signal mem_writing : std-logic := 7'07;
signal clk : std-logic
signal reset : std-logic
signal interrupt : std-logic :
signal mem_write : std_logic;
signal address : std_logic_vector (31 downto 2);
signal data_write : std_logic_vector (31 downto 0);
signal data_read : std_logic_vector (31 downto 0);
signal pausel : std_-logic := ’07;
signal pause2 : std_-logic := ’'07;
signal pause : std_logic;
signal no_ddr_start: std_-logic;
signal no_ddr_stop : std_logic;
signal byte_we : std-logic_vector (3 downto 0);
signal uart_write : std-logic;
signal gpioA_in : std-logic_vector (31 downto 0) := (others => ’07);
begin ——architecture
——Uncomment the line below to test interrupts
interrupt <= ’1’ after 20 us when interrupt = 0’ else ’'0’ after 445 ns;

clk <= not clk after 50 ns;
reset <= ’'0’ after 500 ns;

pausel <= ’1’ after 700 ns when pausel = ’0’ else ’0’ after 200 ns;

pause2 <= ’'1’ after 300 ns when pause2 = ’0’ else ’0’ after 200 ns;

pause <= pausel or pause2;

gpioA_in (20) <= not gpioA_in(20) after 200 ns; —E_RX_CLK

gpioA_in (19) <= not gpioA_in(19) after 20 us; ——E_RX_ DV

gpioA_in (18 downto 15) <= gpioA_in(18 downto 15) + 1 after 400 ns; —E_RX_RXD
gpioA_in (14) <= not gpioA_in(14) after 200 ns; —E_.TX_CLK

ul_plasma: plasma
generic map (memory_type => memory_type,

ethernet = 17,
use_cache = 0",
log-file => log-file)
PORT MAP (
clk => clk,
reset => reset ,
uart_read => uart_write ,
uart_write => uart_write ,
address => address,
byte_we => byte_we,
data_write => data_write ,
data_read => data_read,
mem_pause_in => pause,
no_ddr_start => no_ddr_start ,

102

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

no_ddr_stop => no._ddr_stop ,
gpioO_out => open,
gpioA_in => gpioA_in);

——introducing mem counter signals to keep track of how many instruction
—mem reads and mem writes that has occured

——mem_fetching => mem_fetching ,

——mem-_reading => mem-_reading ,

—mem_writing => mem_writing) ;

dram_proc: process(clk, address, byte_we, data_write, pause)
constant ADDRESSWIDTH : natural := 16;
type storage_array is
array (natural range 0 to (2 xx ADDRESSWIDTH) / 4 — 1) of
std-logic_-vector (31 downto 0);

variable storage : storage_array;
variable data : std_logic_vector (31 downto 0);
variable index : natural := 0;
begin
index := conv_.integer (address (ADDRESS.WIDTH—1 downto 2));
data := storage (index);
if byte.we(0) = ’1’ then
data (7 downto 0) := data_write (7 downto 0);
end if;
if byte.we(l) = ’1’ then
data (15 downto 8) := data_write (15 downto 8);
end if;
if byte-we(2) = ’1’ then
data (23 downto 16) := data_-write (23 downto 16);
end if;
if byte-we(3) = ’1’ then
data (31 downto 24) := data-write (31 downto 24);
end if;
if rising_edge(clk) then
if address (30 downto 28) = ”"001” and byte_we /= 70000” then
storage (index) := data;
end if;
end if;
if pause = 0’ then
data_read <= data;
end if;

end process;

end; —architecture logic

fetches ,

103

	Title Page
	Problem Description
	masteroppgave.pdf

