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Problem Description

Earlier projects have shown that dynamic run time reconfiguration is possible on a Xilinx FPGA
using bus-macros for communication between the static and run-time reconfigurable modules.
This task is a continuation and broadening of that work.

The main objective will be to propose and develop a framework for a self reconfigurable system on
a Xilinx FPGA. Special focus will be on:

Defining a procedure or method for generating the reconfigurable modules to be used in run
time reconfiguration.

Defining a method for communication with and between the modules, this can be a Network on
Chip (NoC) or other equivalent system solutions.

Specification and partial design of an underlying hardware operation system (os] controlling the
loading/unloading and communication with the modules needs to be done. This 0S should be
able to run on an embedded processor within the FPGA (e.g. MicroBlaze) that can communicate
directly with the reconfigurable modules.

Analysing a few applications to determine restrictions concerning design of reconfigurable
modules.

In addition, a suggestion for a method of swapping modules while the application is running
should be proposed.

If time allows, the framework and system should be tested with real applications.

Assignment given: 15. January 2009
Supervisor: Kjetil Svarstad, IET






Summary.

Sverre Hamre

Partial self reconfigurable hardware has not yet become main stream, even though
the technology is available. Currently FPGA manufacturer like Xilinx has FPGA
devices that can do partial self reconfiguration. These and earlier FPGA devices
were used mostly for prototyping and testing of designs, before producing ASICS,
since FPGA devices was to expensive to be used in final production designs. Now as
prices for these devices are coming down, it is more and more normal to see them in
consumer devices. Like routers and switches where protocols can change fast. Using
a FPGA in these devices, the manufacturer has the possibility to update the device if
there are protocol updates or bugs in the design. But currently this reconfiguration is
of the complete design not just modules when they are needed.

The main problem why partial self reconfiguration is not used currently, is the lack
of tools, to simplify the design and usage of such a system. In this thesis different
aspects of partial self reconfiguration will be evaluated. Current research status are
evaluated and a proof of concept incorporating most of this research are created.
Trying to establish a framework for partial self reconfiguration on a FPGA.

In the work the Suzaku-V platform is used, this platform utilizes a Virtex-II or
Virtex-IV FPGA from Xilinx. To be able to partially reconfigure these FPGA's the
configuration logic and configuration bitstream has been researched. By
understanding the bitstream a program has been developed that can read out or insert
modules in a bitstream.

The partial reconfiguration in the proof of concept is controlled by a CPU on the
FPGA running Linux. By running Linux on the CPU simplifies many aspects of
development, since many programs and communication methods are readily
available in Linux.

Partial self reconfiguration on a FPGA with a hard core powerPC running Linux is a
complicated task to solve. Many problems were encounter working with the task,
hopefully were many of these issues addressed and answered, simplifying further
work. Since this is only the beginning, showing that it is possible and how it can be
done, but more research must be done to further simplify and enhance the
framework.

06/11/09 I



Table of Contents

SUIMIMIATY. ...ttt ettt e st e et e s bt e e bt e sat e e bt e sab e e b e e sabeeabeesbteebeesateeeennneeeas I
0311016 10Tt 10 ) FO ST 1
2.1.Ambient Hardware, Embedded Architectures on Demand.............ccccceeevviiiieieniiieeeniieee e 1
2.2.Contributions derived from my work with this project:........ccccceceevieriiinieniieeinieeeneee. 2
BaCKZIOUNA. ...ttt sttt et et be e et e s bt e e e e e e e 3
3.1.Reconfigurable hardware NEed............ccoouiiiiiiiiiiiiiii e 3
PrEVIOUS WOTK......eeiiiieiee ettt ettt e e e st e e e sttt e e e sesbaeeeennnsaeesenssaeeessnnnsnnns 9
ATWOTK @t NTINU ..ottt ettt ettt et s bt sbe e s e s e eaneesaeeeaes 9
A1 INEAT HAUZE. ..cooiiieeiiiieeiieeee ettt e s e e st e e st e e ettt e e e e e e anbaeeee s 9
4.1.2.5t1an REINETSEN ATNESEIL......ccccuiiieieeeeiieeeieeeeteeesteeestaeeesseeeensseessaeesseeessseeessseeensseeensssssees 9
4.1.3.Fredrik Gravdal..........ccciieeiiiiiiie ettt e e e st e e st e e s baeesnaeaeeeeennraeaeas 9
4.1.4.Anders E. Vestnes, Torbj@rn @VIebeKK..........c.ccevuiriirririeieiieieieiesiesiesie e 10
A.1.5.SVErre HAMITE. .....cooiiiiiiiiieice ettt ettt et 10
4.2.Work regarding dynamic reCONfigUIAtioN..........c.eeevuiierriieeriiieeniiieenieeerieeesieeesreeeeaeeeeaeesneeees 10
4.3.Work regarding hardware Operating SYSteIMN..........cccveeerureeriureeriiieeriieeenieeesreeseesenreeeesesssnnseees 12
METNOAOLOZY ...ttt ettt ettt et s e et e st et san e e s e e e e e e e e e e 13
5.1.A collection of theories, CONCEPLS OF 1ACAS.........eeruririiiriirieenieeeeeee e e 13
5.2.Comparative study of different approaches............ccccueeeriieiniieiniiieeiieeeeee e 13
5.3.Critique of the individual Methods...........coviiiiiiiiiiiiieeeeee e e 14
TREOTY ...ttt ettt ettt e eh e e bt e s bt e s bt e e s bt e e e bt e e eabe e e e abbbeeeeeeaaannee 15
6.1.SUZAKU-V ...ttt ettt et et e st e et e et 15
6.2.Xilinx Virtex-IV Configuration Control LOZIC........cceevruiiiiiiiiiiieiiieeieeeieeeiireee e 15
6.3.Xilinx Internal Configuration Access Port (ICAP)......ccccovciiiriiiiiiiiiieeeeeeee e 18
6.4.Runtime self reCONTIZUIATION. ......ciuiiiiiiiiieiie ettt et e e e 18
6.5.Linux CHNUX ATMARK-AIST...coiuviiiiiiieiieeieee ettt 18
6.6.Virtex BitStream deSIZN.......ceoruiiiiiiieiiie ettt ettt e st e st e st e e st e e sabbaeeeeeseenneeeee 19
6.6.1.VITTEX Tl ettt ettt e et 19
6.60.2. VITTEX TV .ottt ettt ettt e st e it e e e 20
6.7.SUZAKU-V SCLUP.....eeetiieitieeiiieeeteeerieeerteeeetteesteeesbeeessseeessseeesseeasseeansseesnsseessseesnssssaeessssnnssens 22
6.7.1.NEtWOTK FIle SYSIEIM...c..eiiiiiiiiiiiiiiieieee e 22
6.7.2.Adding hardware to the Suzaku-V FPGA design.......c..ccccceeviiriiiniiiiienieneenieceeneeae 23
6.7.3.Accessing hardware on Suzaku-V with Linux 2.6.X........cccceevveeniiieniieeeniieeieee e 24
6.7.4.Adding ICAP hardware module to Suzaku-V FPGA design..........ccccceeevvirvieeeeennnnnnnennn. 24
6.7.5.Getting HWICAP driver to work for Linux kernel 2.6.18-at11...........ccooceeriiiiniiennnnnen. 28
6.7.6.Using the HWICAP LinuxX dIiVeTrS.......ccoiuiiiiiiiiiiiiiiiiiiniieeriteeeeeeee e 31

IMLY WOTK ettt ettt e e st e et e e et ee e et e e sabb e e sabbeesabteesabteeeabeeeeeennbbaaeeeas 33
7.1.Difficulties with dynamic self reconfiguration on FPGAS...........ccoooviiviiiiniieiiiiiiieee e 33
7.2. My work relative t0 Previous WOTK........oc.ueiiiiiiiiiiiiiiieiieeiee ettt e 33
7.3.Design of reconfigurable MOdULES..........cc.eeiiieiiiiiiiiiiieee e 34
7.4 .Procedure/method for generating reconfigurable modules............cccoevviiiniiiiiniiiinieinniieennns 36
7.5.Reconfigurable module back-end design............coocuiiriiiiiniiiiniiiiiie e 37
7.6.Method for communication with and between modules.............cccoooeriiiniiiiiiinicniieniceeeeee 38
TTHATAWAre OS......oiiiiiiiiiiiieee ettt ettt e et esbteesbteesbae e s eeanee 39

T L DESIZN .ttt ettt et et st e he e et e snre e e e e 39

772 The LAUNCRET........oiiiiiiiieecee ettt ettt e e et e e e enaa e e e e e nnsaaeeennsneeas 40

7.7.3 . COMMUNICATION. ... .uteeutteiieette ettt ee ettt et stt et e sbt e et esat e e bt essteeabeesbeeeabeesseeebeesaneeeannreeeannns 40

774 THE SChEAUICT......ooueiiiiiiiieie ettt ettt e 41
B T N 1 T o B T PSPPSRt 42

II 06/11/09 Sverre Hamre



7.8.Analysis Of @ feW apPlICAIONS. .......eiiiiiiiiiiieiiie ettt e e 42
7.9.Suggestion of method for swapping modules while running...........c.cccooceevviiiiiniiiiiiniceneens 43
7.10.Proof of concept run-time reCONfiGUIAtION. .......cccuveirruiieriiieeriieenieeeriee ettt eeeeeeriiereeee s e 44

T L1UCOAC. ..ttt ettt et e h e ettt st b e et e beesane e neeeas 45
7.11.1.Hardware Modules connected to the OPB bus...........coociiiiiiiiiiiiiiiiiiiiiiccecee 46
711.2.ModifiedCLBREAd. ........ooiiiiiiiie ettt s 46
7.11.3.1Cap_WIIte AN 1CAP_LEST....eeiiiiieiiieiiiie ittt ettt ettt e et e et e e sabeeesabeeesibeeenas 47
T11A.GENDILIILE. ...ttt e e 48
RESULLS. ..ttt et h e et sh e et e bt e et e e sbb e et e e bt e e e e abeeeeas 49
DDISCUSSION. ...ttt ettt e b e et e bt e e ab e e bt e eab e e bt e eab e e bt e eabeebeeebbeeeeanbaeeean 53
CONCIUSION. ¢ttt et ettt e ae e st e s bt et e bt s ateesaeeeabeeeate e e e nanneeennneeeeans 56
FULUIE WOTK ...ttt et ettt et e e e e s e e 57
RETETEIICES. ...ttt e a e ettt e e sb e et e e e bt e e e eabaeeean 58

Figure Index

Figure 1: AHEAD VErSion 1.0.....c..oiiiiiiiiiiieeiie ettt ettt ste et e e seve e e v e snaeesnnneesnnneaaeens 1
Figure 2: Standard platform setup, CPU and peripheral...........cccccooiiiiiiiiiiiniiiiiieiiecceeeee 3
Figure 3: Multi-functional reprogramable logic PCI card............cccoovuiiiiiiiniiiiniiiiniiceeeeeiieeeeeee 4

Figure 4: Complete reconfigurable platform with CPU and peripherals on a reconfigurable device..6

Figure 5: Reconfigurable platform overview, including reconfigurable modules with and without

I/O capabilities. ICAP (internal configuration access port) for enabling self reconfiguration............ 7
Figure 6: Logic Transistors vs. Logic ProduCtiVIty.........ccccoviiriiriiiiniiniieniceiecieeeeeeee e 8
Figure 7: Suzaku Board configuration OVEIVIEW.........c.c.eeiuiiiiieiieniieiie ettt 15
Figure 8: VirtexII XC2VP4 logic modules 11IUStration...........ccocueeveeriieiieniiinienieeieee e 19
Figure 9: VirtexIV 4FX12 logic module diStribution..............coceerieeiiinieriienieeieesieeeeeee e 21
Figure 10: Virtex-4fx12 FPGA 1021C MOAUIES........ccceeruiiriiiiiiiiiiieeieeeeteeeeee et 21
Figure 11: Virtex-4fx12 bitfile frame organization.............ccocceeeviuieiriieiniieinieeiiee e eeiieeee e 21
Figure 12: EDK screenshot with the Suzaku-V fpga_project. With a user module added................ 23
Figure 13: EDK screen shot showing address range, for modules in the Suzaku-V fpga_project.....24
Figure 14: Planahead screen shot with placement restrictions and resource usage shown................ 26
Figure 15: Screen shot of routed design with hwicap module and reconfigurable module in top right
[&0] 4 1 1<) SO OO PSP P PRSP 27
Figure 16: Reconfigurable module with busmacros in top right corner of fpga........c.cccccvvveeernnnnenn. 28
FIgUIE 17: SYSLEIM OVETVIEW. ...ttt ettt ettt ettt e b e ettt e st e e et e e e e abeeeeeanaeeas 35
Figure 18: Reconfigurable module deSi@n..........cccuuiiiiiiiiiiiiiiieeiieeeiieeeeeeee et 36
Figure 19: Flowchart for designing reconfigurable module..............ccooeiiiiiiniiiiniieiniieeeiiieeee e 37
Figure 20: Reconfigurable module back-end..............cccoiiiiiiiiiiiiiiniieeee e 38
Figure 21: HWOS 2lUSTIAION. ......eoiiiiiiiiiiieiieette ettt ettt ettt s i e s 40
Figure 22: HWOS taSK STALES....c.ueiruieriieiiiiieeieeeit ettt ettt ettt ettt e e s sbeesane s 41

Index of Tables

Table 1: Typel Packet header format. “R” means reserved for further use..........ccoccceevveiniienninnnn. 16
Table 2: Type 2 packet header. "R" means reserved for further use..........ccccooeeeniiniiiniiniiiinieens 16
Table 3: OPCOAE TOTMIAL. ... ...eiiiiiiiiiieiie ettt ettt e et e e bt e e e aaeeeeeeeens 16

Sverre Hamre 06/11/09 I



Table 4: Configuration REZISIETS. .......iiiiuiiiiiiieiiieeeiee ettt ettt ettt e se e e s be e e sbeeesabeeesnsaeeee s 17

Table 5: FAR register COMPOSILION. .......ccoutiriierieiriieiienteeieeeee et et et see et saeesreesaeeeneeseneseenneeeas 17
Table 6: FAR addressing details eXplained.............ccocuieiiiiiiiiiiniiiicnieeeceeeeee et 17
Table 7: Frames and location in bitstream, bitstream location start to end, left to right. For XC2VP4
............................................................................................................................................................ 20
Table 8: CLB logic frame format, from left to right are top to bottom on FPGA and first to last in
DIEETLE. ...ttt h ettt b et et h ettt b bbbttt e e e 20
Table 9: BRAM logic frame format, from left to right are top to bottom on FPGA and first to last in
DIEETILE. .ottt ettt ettt et eab e e bt e hb e e bt e bbb e e e anteeean 20

I\Y 06/11/09 Sverre Hamre



Introduction

This project is an extension to an earlier EU commissioned project called
AmbieSense [1].

AmbieSence focuses on Ambient Intelligence where the surroundings can contribute
with context information. Using context tags that can communicate with mobile
devices in the area and distribute local information. This local information will be
available at once without unnecessary interaction from the user. The tags can be
remotely uploaded with new information continuously.

2.1.Ambient Hardware, Embedded Architectures on Demand

Sverre Hamre

AHEAD is an extension to the AmbieSense project. In general AHEAD uses tags as
in AmbieSense but instead of contextual information they includes processing power
to reduce the strain on mobile devices. This enables mobile devices to do more
complex tasks or reduce the energy consumption thus increasing battery life.

The concept and version 1.0 of AHEAD is shown in Figure 1.
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{ B T,
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| = "I T
-, o o Data e
T T
._‘\. .-""\_
- Tag
T Instantiation ™

Trancefere the
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station

Figure 1: AHEAD version 1.0

To reduce the cost and size of the tags a solution with reconfigurable hardware was
chosen instead of a complete computer. This is possible since hardware is usually a
faster and more efficient way of running algorithms. The problem with this solution
is the integration and generation of the programs to be run on the tag. The first
version 1.0 shown in Figure 1 one has to develop a configuration in HDL, compile
this to a configuration file and store this on the mobile device. When the program is
to be executed the configuration file needs to be uploaded to the tag, the tag then
needs to configure the FPGA with this configuration. This solution will only allow
one configuration to run simultaneously, on the tag, the overhead from transferring
complete configurations to the tag will be large.

To make the system more scalable and dynamic a second version of the system
includes partial reconfiguration of the FPGA enabling multiple configurations to
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exist simultaneously. By using a partial reconfigurable system the configuration files
that the mobile user needs to have stored will be smaller, since they only contain the
necessary task configuration.

This thesis will focus on the framework and what is necessary to have a self
reconfigurable system continuing the work done in [2]. The focus will be on
different aspects: how modules are designed, interface between static design and
reconfigurable modules and a hardware operating system controlling everything.

2.2.Contributions derived from my work with this project:

2/59

Bitstream composition for Xilinx Virtex-II and Virtex-IV FPGA's.

Programs utilizing the bistream composition for reading out writing in
configurations from/to a bitstream.

Configuration principles for Xilinx FPGA's, custom read and write programs for
partial configuration of the FPGA.

How to create a reconfigurable module connected to the OPB bus enabling a module
to be reconfigurable and connected to a static design by using bus-macros.

Placement constraints, rerouting and inspection of a hardware module to ensure that
the module can be reconfigured, defining the module borders.

A prof of concept for self reconfiguration on the Suzaku-V platform using the
Virtex-IV FPGA.

Linux driver examples for accessing hardware and program utilizing these drivers.

A concept framework for a HWOS.

06/11/09 Sverre Hamre



Background

3.1.Reconfigurable hardware need.

Sverre Hamre

The advancements in hardware and programming has come a long way. Current
systems can do calculations and tasks unimaginable not many years ago. The x86
processor is a old processor design that has been extended, tuned and modified inn
all directions to increase speed and efficiency. The x86 and other similar processor
types uses instruction-setts to create a general purpose processor. Until recently the
way to increase speed on the processor was done mostly by increasing clock speed.
In later years designs has moved towards multi core designs to increase processing
speed/capacity.

These processors computation capabilities continues to increase and are able to do
practically “anything”, they are general and will not be the best or most efficient way
to do certain tasks. Also these general purpose processors needs to connect to a
multitude of peripherals to have real functionality. Peripherals here can range from
communication modules to graphics accelerators. As an example Error: Reference
source not found shows a general purpose CPU connected with some peripherals on
a bus.

Figure 2: Standard platform setup, CPU and peripheral

These peripherals normally apply to some protocol or functionality, trying to solve a
problem in the most efficient way. Normally this implies that the peripheral device
has specialized logic doing one task and one task only. When new functionality is
needed, support for new protocols, or when bugs are found in the logic are currently
an expensive problem. The solutions is if possible trying to do workarounds in
software, with the connected processor (if any), or create new logic.

Workarounds in software is not the best solution, unnecessary processing overhead
are induced on the CPU and software developer. Sometimes it is not even possible to
make workarounds in software due to openness and so on, sometimes a given
software has too big market share (no name...) so workarounds are actually done in
hardware to comply with the software bugs.

Creating new logic is a costly and time consuming task. The new logic needs to be
produced, tested and integrated in the final product. If bugs/faults are found in
testing the process needs to be repeated further increasing the cost and time.
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To simplify this process and also enable the possibility of fixing ad-hoc solutions,
reprogrammable logic can be used. The most used reprogrammable logic design
used is the FPGA (field programmable gate array). The FPGA design normally uses
LUT (look up tables) to set logic functions for input signals.

SRAM based FPGA™s has to be programmed when power is cycled on, normally a
specialized chip does the programming when cycling the power on.

These reprogrammable logic chips were/are mostly used to prototype logic design as
they have been expensive. In later years prices on these reprogrammable devices has
gone down and designs incorporating reprogrammable devices has increased. By
using reprogrammable logic on a device it is possible to update the logic in case of
protocol changes or bugs. Thus it is possible to release a product that will be
compliant with a protocol before the protocol is fully defined. If bugs are found a
simple update of the configuration can fix the bug.

The next step when using reconfigurable devices are the possibility to use the
reconfigurable device as a multi purpose device, in the same way as illustrated in
Figure 4 where one reconfigurable device can be configured to many other types of
devices.

The reconfigurable platform as illustrated in Figure 4 could be configured to

Figure 3: Multi-functional reprogramable logic PCI card

function as one of the other cards when the functionality is needed. When other
functionalities are needed the platform could be reconfigured.

Just as software on the CPU these hardware tasks could be scheduled, when the
functionality are needed the card can be configured for the task.

The previous solution by timesharing the reconfigurable logic are not plausible for
all types of devices. Since many of these devices works on a continuous stream of
data in one or both directions.

A solution to the constant stream of data to and from the device can be solved by
loading the different configurations simultaneously. This means that the
reconfigurable device will be shared for multiple logic designs simultaneously. As
long as there is enough “area” on the device to have all the configuration logic
loaded simultaneously this will work. There needs to be provided a framework
controlling the partial configuration of the device for this to work.

06/11/09 Sverre Hamre



Sverre Hamre

The framework needs to control the parameters of the reconfigurable device, “area”
available on the device, physical pin arrangement for communication in and out and
also communication with the CPU or other modules.

In Error: Reference source not found the design is taken a step further from what is
illustrated in Error: Reference source not found and Figure 2, the complete system is
integrated on a reconfigurable device. The CPU can be used to control
reconfiguration of modules and other normal tasks.

Figure 4: Complete reconfigurable platform with CPU and peripherals on a
reconfigurable device

With the system shown in Figure 4 it is actually possible to upgrade the
configuration system as this is on the same reconfigurable logic.

Figure 5 illustrates a module design idea for utilization of a reconfigurable device.
Here one assumes that the CPU is the main module, controlling reconfiguration and
communication local and external. The design is thought to have reconfigurable
modules connected to the pins on the device RIO (reconfigurable I/O module) and
reconfigurable logic modules (R*... in figure).

06/11/09 5/59
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Figure 5: Reconfigurable platform overview, including reconfigurable modules with and without 1/0
capabilities. ICAP (internal configuration access port) for enabling self reconfiguration.

6/59

The main idea here is that all aspects are reconfigurable, but there will be some
physical limitations. Depending on the design of the reconfigurable device (FPGA)
the input pins can be located in a defined location on the reconfigurable device, this
will create some limitations. Also the external connections of the device can not
easily be reconfigured (physical connections to sensors and so on).

As an example a serial interface that are connected to one sett of pins can not change
pins used. The serial interface will probably also be listening for incoming
commands so there needs to be logic always available for handling incoming data.
When the serial interface is not used or in listening mode, most of the logic can be
removed. This results in a possibility to reduce unused logic, for sending data, thus
having only the basic functionality available at all times.

As illustrated in Figure 5 the reconfigurable 10 modules are connected with a
network to the reconfigurable logic modules. Using some flavor of network system
the modules can communicate without direct addressing, resulting in absolute
position of modules not being a necessity.

A driving force for reconfigurable systems are the increasing gap in utilization of
transistors versus available transistors. As shown in Figure 6 from [3] one can
clearly see that the gap between available complexity and productivity are
increasing. This gap can be reduced by having a reconfigurable system. The reason
is that a specific design does not need to utilize the maximum available complexity.
A number of designs and functionality from different designers can be combined in
a reconfigurable design, utilizing the available complexity and allowing modification
while in use when functionality or need changes. This is the same concept as with
NoC [4], just further enhanced.

06/11/09 Sverre Hamre
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Figure 6: Logic Transistors vs. Logic Productivity.

As can be seen from these trends and the increased demands from the public for
systems with increased functionality and reduced power consumption a
reconfigurable system can be the best solution. The framework that wraps this
together in a complete package giving a hardware module interface for developers to
work against, in a similar fashion as API (application programmer interface) does for
software.

Key concepts, what is done and what can be done are points that will be further
discussed in this thesis.

Sverre Hamre 06/11/09 7/59



Previous work.

41 .Work at NTNU

41.1.Ingar Hauge

Ingar Hauges master thesis from 2006 [5] explains in detail how the bitfile for Xilinx
Spartan-3 FPGA is composed. With the details of the bitfile Hauge created a
program able to convert the bitfile into a bmp image file. This enables one to use a
standard picture program to “cut and paste” modules in a bitstream file.

In his thesis he also shows how to use Xilinx tools to ones advantage and explains
some limitations in the tools. By using manual routing in the design steps he shows
how different designs can be joined together since the same “signal wires” are used.

Ingar Hauges work on the bitfile composition and FPGA details is a major
contribution to the work done by Sverre Hamre in [2].

4.1.2.Stian Reinersen Arntsen

The thesis from Stian Reinersen Arntsen [6] describes work on a reconfigurable
system where the CPU on the reconfigurable device reconfigures the device. This is
done by writing a new bitstream to the flash where the configuration is loaded from,
when powering up the device.

As a result, the device needs to be reset for the new configuration to be uploaded.
The solution works and shows that it is possible to reconfigure the device on demand
with a CPU on the device. A negative point with this solution is that the device
needs to be restarted resulting in a full configuration and long boot up time when
Linux is used.

Since Linux and the device is restarted, the solution does not allow for multiple users
using the device simultaneously.

The resulting reconfiguration time was approximately 70 seconds.

41.3.Fredrik Gravdal

8/59

Fredrik Gravdal continued working with partial reconfiguration by manipulating the
bitstream for Spartan-3 FPGA. His thesis [7] is a continuation of the work done by
Ingar Hague [8], [5] creating a program to do the read-out and write-in of logic
instead of using a graphic manipulation program.

These small programs created: CLBread and CLBwrite work on the CLB level in the
bitfile. By using these programs a CLB or range of CLB"s can be read to and from a
file.

Fredrik Gravdal showed how to reconfigure a module connected to some 1O pins on
the Suzaku-S platform. In his thesis Fredric Gravdal did not show how to make
connections to a reconfigurable module for communication between reconfigurable
modules, or between reconfigurable modules and the static design.
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4.1.4.Anders E. Vestnes, Torbjorn @vrebekk

The project report by Anders E. Vestnes and Torbjgrn @vrebekk [9] shows some of
the problems that are apparent when trying to set up complex systems. Anders and
Torbjgrn had problems getting the tools working setting up the system. It is a
difficult task to understand and sett up a complex system consisting of CPU,
memory, communication modules and so on. Also, getting Linux to work with the
system requires a deep system understanding which is hard to acquire in the short
time available.

41.5.Sverre Hamre

The work done in the project report by Sverre Hamre [2] is a continuation of the
previous work done in the AHEAD project at NTNU.

Because of problems described in earlier work [9] and the general complexity of the
system a couple of tutorials was developed. These tutorials were meant to have a
basic approach for getting the system to work, reducing the frustration of not getting
even a basic system to work.

The work done in [5] and [7] (by Ingar Hauge and Fredrik Gravdal) abut the
composition of the bitfile and the program to read out logic was further enhanced.
By using the LUT-based bus-macro proposed by Michael Hiiebner, Tobias Becker
and Jiiergen Becker [10]. It was shown how a module connected to a static design
could be reconfigured.

Because of the underlying reconfigurable device used, Spartan-3, it was not possible
to do runtime reconfiguration. The functionality and proof of consent was shown by
modifying the bitsream off-line and uploading the modified version. With this
experiment, it was shown that modules could be located in bitstreams, cut out and
inserted in another bitstream changing the functionality of the configuration.

4.2 Work regarding dynamic reconfiguration

Sverre Hamre

Dynamic self reconfiguration is becoming more and more of interest because of the
technology vs. productivity gap. Also because of the decrease in production cost for
reconfigurable devices like FPGAs. When better design methodology becomes
available for hardware software co-design the price of these devices will be further
reduced, partly by mass production and partly by competition.

There is much research done regarding run-time dynamic self reconfiguration and
some of the work, used in this thesis, will be described here. One of the major
contributors is the work done at Jiirgen Becker's Embedded Systems Group [11] at
the institute for information processing technology, in the university of Karlsruhe.

A reconfigurable system needs to have special design elements, enabling
communication to and from reconfigurable modules. In [10] Michael Hiibner et al.
describes a LUT based network replacing the TBUF elements previously used, a
example with NoC and TBUF bus macros are shown in [12]. The TBUF elements
are not available in newer devices like the Virtex-IV and also not as flexible as the
LUT based design. The LUT based network are created as hard macros that can be
included in designs. By including hard macros the connections are prerouted so all
instances of the macro will utilize the same signal wires/routing. This LUT based
network hard macro is most commonly known as the Bus macro.

Jiirgen Becker et al. have worked a lot with Xilinx Spartan-3 FPGA because of low
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price and power consumption. To further decrease the power consumption, partial
reconfiguration has been utilized. [13] and [14] explores how dynamic
reconfiguration can be used as a method for reduction of power consumption. In
[14], Katarina Paulsson et al. shows that using dynamic reconfiguration on a system
can reduce the dynamic power usage. The amount of reduction depends on the
application, but a result of these measurements is that reconfiguration time is
important for the efficiency of the method. The usage of an internal configuration
port is therefore highly recommended.

A problem with Spartan-3 is that it does not have a internal configuration access
port (ICAP) for self reconfiguration. As a solution to this, a virtual internal
configuration access port (JCAP) has been developed [15]. This module uses
external pins on the Spartan-3 to connect to the external configuration ports,
enabling self reconfiguration. In [16] it is also shown an example of a self
reconfiguration access port for Spartan-3. The cPCAP (compressed parallel
configuration access port) core design is stated to be able to configure the device at a
speed of up to 5S0Mbyte/s. Usage, extension and first results from implementation of
the JCAP design is shown in [17].

With a working system able to partially reconfigure parts of the device, more issues
becomes apparent. One problem is the placement and fragmentation that will follow
when modules of varying size are used. Also, the priority of modules becomes
important when the system is not “large” enough to support the complete system at
once. Michael Ullmann et al. proposed a run-time system for dynamic
reconfiguration with adaptive priorities in [18]. Here a 1d placement is used for the
reconfigurable modules. The 1d model will result in unused area since no module
will perfectly utilize the available area of one or more module units. In [19], Michael
Hiibner et al. proposed a new 2d placement technique. The technique uses a NoC
design with router modules spanning the height of the device (Virtex-II) where
reconfigurable modules can be placed next to a router module and connect to the
router module. Jiirgen Becker et al. also described 1d and 2d placements in [20] and
also how reconfigurable systems can be used for increased availability, by the
redundancy caused by multi-adaptive systems. In [21] Love Singhal et al. proposed a
technique for floorplanning in the design steps that reuses components of different
parts of the reconfigurable design, reducing reconfiguration time and wire length
this can give a improvement in clock period.

Manipulating placement on reconfigurable devices can be a complex operation
depending on the device. Much work has been done on manipulating bit-streams for
Xilinx FPGAs, [22], [23], [24], [25], [26], [27], [28] and [29] all describes bit-stream
composure in more or less detail for Xilinx FPGAs.

One problem with dynamic reconfiguration is debugging the system, as a step
towards better debugging of run-time reconfigurable systems Michael Hiibner et al.
in [30] proposes a on-line visualization of the current configuration on a Xilinx
Virtex-II FPGA. The visualizer shows an image similar to the overview image in
Xilinx FPGAeditor. This is done by reading out the current configuration, interpret
the data and showing it on a VGA output. With this system, it is possible to see
placement of modules, fragmentation issues and logic utilization at run-time.

There is also work done on coarse-grained reconfigurable systems, where the
reconfigurable modules are on a higher level then what is done with fine grained
reconfigurable systems like a FPGA. In [31] Jirgen Becker et al. explores the
integration of the general-purpose, Sparc-compliant Leon processor with the
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extreme processing platform reconfigurable data path, resulting in a course grained
reconfigurable platform.

To be able to easily design and utilize reconfigurable systems the need for modeling
and simulation is of utmost importance. In [32] a modified version of the SytemC
kernel is used to include reconfiguration in the simulation with software hardware
co-design. Florian Dittmann et al. introduces a synthesis methodology in [33] for
reconfigurable systems. This system respects the specific requirements of run-time
reconfiguration which is vital for the correctness when modeling a reconfigurable
system.

It is possible to simplify and generalize reconfiguration of device if the
reconfiguration uses abstraction layers. A solution to this is to connect the
reconfiguration hardware module to a general purpose CPU, drivers for the module
can then be written more generally and be compiled for the CPU used. An example
of this is shown in [34], [35] and [36], here different approaches to reconfiguration
controlled by a CPU is shown.

Self reconfiguration is not just meant like a technology for the next generation of
devices, many devices currently used included reconfigurable devices that can be
utilized without physical change. [37] Show an example of how partial
reconfiguration can be made available to devices without modifications required
with current methodologies.

4.3.Work regarding hardware operating system

Sverre Hamre

The work done in this thesis relies on a operating system running on a CPU
controlling the hardware. There are some work done in the area using Linux as a
platform for dynamic reconfiguration, [35] shows the simplicity of reconfiguration
using Linux as the operating system. The examples shown in [35] are only basic
commands and does not integrate in the Linux Kernel for scheduling of hardware
tasks in the same manner as for software tasks. For further details concerning
scheduling with respect to real time in Linux [38] is a good place to start.

In [39] Rodolf Pellizzoni et al. describes a system where software tasks running on a
CPU can coexist with hardware tasks. Also the system incorporates the possibility
for hardware tasks to migrate to software and vice versa.

Christoph Steiger et al. discusses design issues for reconfigurable hardware
operating systems in [40]. The scheduling, placement and other aspects of
reconfiguration is discussed. The runtime scheduler used is shown to have a low
overhead. Herbert Walder et al. also discuss an hardware operating system in [41].

The scheduling of tasks is one of the most important aspects in an os. Klaus Danne
et al. in [42] explores different schedulers for scheduling real time tasks on
reconfigurable hardware.
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Methodology

5.1.A collection of theories, concepts or ideas.

The work done in this thesis is mainly experimental work. Most if not all of the
methods and theories used in this work are from existing work concerning
reconfiguration.

One of the big issues with this work is the complexity. The base system used here is
more or less a complete computer with hardware and operating system details to
worry about. To get the system to work the hardware has to be set up for
reconfiguration with all necessary modules and so on, to get this correct and
understand the system takes quite some time.

When the hardware is set up correctly and one has a good understanding of how it is
connected, the operating system used (Linux) needs to be configured for the
specified hardware. Drivers and test programs for the different specialized modules
needs to be created.

One major issue is that one can not be tested without the other. So to test the
hardware system and ensure that it is correct the OS, drivers and test programs needs
to be working correctly. This is the same for the OS, drivers and test programs to be
tested the hardware needs to be available.

With these limitations and uncertainties at different stages the approach taken is to
first do a massive literature search. With a deep understanding and recognition of
what is done within different areas, it is possible with more or less certainty to
understand what will and will not work on a given platform.

As the case with many articles explaining and proposing ideas the implementation is
not available. As shown in the previous work section there is done a substantial work
in the reconfigurable computing area. The issue is that it is not so simple to get a
similar system up and running as the implementation details are not available.

5.2.Comparative study of different approaches.

12/59

The approach taken in this thesis are a very focused approach. With a other tasks it is
often possible to do a more general study of a system taking choices for the given
system. The difference are since the work in this thesis tries to solve a problem with
a currently available system, in difference from creating a system to solve the task.

When creating a system to solve a task, a constructive approach, one can do design
evaluations for the different stages in the system. For this kind of task it is much
easier to do a hypotheses, test and result approach.

In the constructive task where a system is designed to do a task every part of the
design can be evaluated and tested with following results that can be summed up for
the final product.

With the task in this thesis since a solution are to be given using a existing system it
is not possible to reliably test the individual parts separately giving grounds for the
complete system. Here all parts needs to function to be able to test the other parts.
As an example a Linux driver for a hardware module can not be tested without the
module, and the module can not be tested without the driver.
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5.3.Critique of the individual methods.

Sverre Hamre

The method used in this project is focused around experimentation. Understanding
what is done and how it is done, then try to do the same. This results in much work
trying to understand the undocumented features and getting functionality not related
directly to the work but essential for getting results.

To get the base system running cannot be done in much different ways. It is straight
forward get the data, code the algorithms and test the system.

To be able to propose a framework for a self reconfigurable system on a Xilinx
FPGA with ICAP (internal configuration access port) there are first a couple of
design points that needs to be tested and proven. If these 3 points are not confirmed
to be working with each other the system and framework can not be proven to be
correct.

1. A hardware design needs to be created for the FPGA including connection to the
ICAP and a reconfigurable module connected to the CPU with bus macros.

2. The bitstream for the given FPGA needs to be understood, addressing algorithms
in the bitstream needs to be developed and a program to “cut and past” from the
bitstream are needed.

3. Drivers for accessing the ICAP and reconfigurable module needs to be developed
for the Linux kernel running on the plattform.

With all these points working together one has a self reconfigurable system. With the
base system it is simpler to test further designs.

The main method of work in this thesis is to understand what is done how this is
done and then implement this on the Suzaku-V platform.

The system has not been evaluated completely from the beginning, trying to make a
design spec of the system from start without knowing all aspects are difficult at best.
But without a very detailed design goal it is easy to get stuck when problems arises.
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Theory

6.1.Suzaku-V

The Suzaku-V, board computer, is based on the Xilinx Virtex-II Pro or Virtex-IV fx
FPGA. These FPGA's include a hard-core processor ‘“PowerPC405” and also
additional peripheral cores on the FPGA. As default, the Suzaku-V uses Linux as
operating system.

The configuration that the system arrives with, can be built with the Xilinx EDK
(Embedded Development Kit). It is also possible her to customize the configuration,
if necessary.
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Figure 7: Suzaku Board configuration overview

Figure 7 shows the Suzaku platform original setup and where the platform can be
expanded. The platform incorporates 70 external I/O pins that the user can use.

For communication the platform includes LAN and serial communication. Linux
includes all necessary protocols, so setup and usage of the different communication
methods are quite simple. More detailed information can be found in [43] and [44].

By using a board computer that is configured with peripherals and a working Linux
kernel my work is simplified. Setting up a complete system and getting all aspects to
work, is a major task and not really possible in the short timespan available. A minus
with the Suzaku platform, is that the FPGA used is very small and expansion
possibilities are limited.

6.2.Xilinx Virtex-IV Configuration Control Logic

14/59

The Virtex-IV FPGA integrates a package processor controlling the configuration
logic. By writing commands and data to the FPGA over the configuration interfaces
(SelecctMAP, JATAG, Serial), the package processor interprets the commands and
uses the data to configure, analyze or read out the configuration of the device. The
registers accessed by the package processor controls all aspects of configuration.

Configuring the FPGA 1s done with two types of packages, sent to the package
processor, Typel and Type2.
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Sverre Hamre

A typel packet is used for register reads and writes. In Virtex-4 FPGA only 5 out of
14 register address bits are used. After a Typel packet a Data section follows, the
data sections consists of a sequence of 32 bit words, specified in the Typel package.

Header Opcode Register Address Reserved Word Count
Type

[31:29] [28:27] [26:13] [12:11] [10:0]
001 XX RRRRRRRRRxxxxx RR XXXXXXXXXXX

Table 1: Typel Packet header format. “R” means reserved for further use.

A type2 packet must follow a Typel packet and extends the amount of data that can
be written. No addressing is done in a Type2 packet as this is done in the Typel
packet before the Type2 packet. The data following a Type2 package has the amount
of 32 bit words specified in the Type2 header.

Header Type Opcode Word Count
[31:29] [28:27] [26:0]
010 RR XXXXXXXXXXXXXXXXXXXXXXXXXXX

Table 2: Type 2 packet header. "R" means reserved for further use.

Opcode Function
00 NOP

01 Read

10 Write

11 Reserved

Table 3: Opcode format

There are 14 registers accessible from the package processor, shown in Table 4.
These registers are written or read from, to configure the FPGA.
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Reg. Name Read/Write Address Description

CRC Read/Write 00000 CRC register

FAR Read/Write 00001 Frame Address Register

FDRI Write 00010 Frame Data Register, Input (write configuration data)

FDRO Read 00011 Frame Data Register, Output register (read configuration
data)

CMD Read/Write 00100 Command Register

CTL Read/Write 00101 Control Register

MASK Read/Write 00110 Masking Register for CTL

STAT Read 00111 Status Register

LOUT Write 01000 Legacy Output Register (DOUT for daisy chain)

COR Read/Write 01001 Configuration Option Register

MFWR Write 01010 Multiple Frame Write

CBC Write 01011 Initial CBC value register

IDCODE Read/Write 01100 Device ID register

AXSS Read/Write 01101 User bitstream access register

Table 4: Configuration Registers

The FAR register is of special interest, as addressing on the FPGA is used when
writing modules to the FPGA.

31 28|27 24|23 20|19 16|15 12 11 817 413
0000|0000/ 0fx[xx|Xxxxx|X X|x X|X XX X|X X[X X|[X X X X
Reserved T/ | Block Row Column Minor
B
Table 5: FAR register composition
Top/Bottom (bit 22) Sets if top or bottom of FPGA is addressed.
0 = Top, 1 = Bottom.
Block Type CLB/IO/CLK = 000
BRAM interconnect = 001
BRAM Content = 010
(CFG_CLB 011 CFG_BRAM 100)
Row Address Selects a row of frames. Addressing starts at center of
FPGA and increases outwards, defined by Top/Bottom
bit.
Column Address Addresses columns of given block type. (Major
address).
Minor Address Selects a minor address within major address, (frames
in a CLB).

16/59

Table 6: FAR addressing details explained.

The full configuration description and register description can be found in [45].
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6.3.Xilinx Internal Configuration Access Port (ICAP)

The Internal Configuration Access Port (ICAP) gives access to the FPGA
configuration, in the same manner as the SelectMAP. ICAP uses the same interface
signals as SelectMAP, apart from the bus. ICAP uses a separate bus for read and
write signals.

The bus width of ICAP can be configured to 8 or 32 bits, this is the same as
SelectMAP and SelectMAP32.

For Virtex-IV devices there are two possible sites for the ICAP: TOP and BOTTOM.
These connections uses the same underlying logic, the difference is the location on
chip and the interconnect they can be connected with. For future info refer to [45].

6.4.Runtime self reconfiguration

Runtime self reconfiguration are simply put: the concept of something changing its
function by it self, while running. To be able to change the functionality, the base
design needs to be configurable. An example on a reconfigurable system is the
FPGA (Field Programmable Gate Array). A FPGA can be configured to do any
number of logic functions, by its LUT (Look Up Table) design. These LUT's can be
reprogrammed and the interconnects connecting the signals can be reconfigured any
number of times. Some of the FPGA designs available can reconfigure parts of the
FPGA, wile the rest is running.

Runtime reconfiguration can result in less hardware needed for some designs, tasks
can be time sliced, instead of always available but not running.

Runtime reconfiguration can also result in longer lifetime of products, bugs can be
fixed, protocols can be updated and new services can be made available.

6.5.Linux pClinux ATMARK-dist

Sverre Hamre

In this thesis much work are done around the Linux kernel, with the simplifications
and complications the Linux system gives. The Linux kernel in it self is not of much
use without a basic system, utilizing the kernel. In the same way as Ubuntu is a
distro for desktop computers, collecting a big sett of user programs, setting up and
making the system work; ATMARK-dist is a distribution for embedded systems.

ATMARK-dist builds on the uClinux-dist which is a lightweight operating system,
first built for processors without MMU but now support a wide range of processors.
pClinux-dist can even be used on a x86 processor.

The "uClinux-dist" software package contains libraries, applications and tools. It
can be configured and built into a kernel with root file system. It was first released
by Greg Ungerer in 1999 as the uClinux-coldfire package. In the following years it
came to support many architecture families, and now can even build standard Linux
architectures (such as x86) as well.

The "uClinux-dist" userland utilities contain tiny http servers, a small 'sh like' shell,
and even a fun ASCII art Star Wars film. It also contains many other well known
Open Source packages, like Samba and FreeS/WAN, all of which run on uClinux
systems. -From WWW.absoluteastronomy.com/topics/UClinux
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When developing and crating programs for the Suzaku platform, the programs are
included in the uClinux image and not compiled into the Linux kernel. Of course the
Kernel and distro goes hand in hand and the programs are dependent on the Kernel.
But the distinction can be important, to understand how the system works.

Understanding how the complete system work are of utmost importance in this
project.

6.6.Virtex Bitstream design

6.6.1.Virtex Il

18/59

The configuration bitstrem configures the device, setting all the interconnects and
logic used in the design. The VirtexII device series configuration bitstream, consists
of frames spanning the total height of the device. So for all devices, the frame length
depends on the number of rows with logic (the hight of the FPGA logic). An
example of the logic placements are shown in Figure 8, for the XC2VP4 FPGA. This
FPGA contains a hard core powerpc, the black box in the figure. The powerpc will
not have an impact on the frames in the reconfiguration bitstrem. The configuration
bits for logic where the powerpc is, are included in the bitstream but they are not
used (making the bitstream consistent). In Figure 8 the IOBs are highlighted (red),
these surrounds the logic on left, right, top and bottom side. The BRAM modules
can be seen in Figure 8 (blue), are placed in columns on the FPGA.
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Figure 8: VirtexIl XC2VP4 logic modules illustration

The configuration bitstream is organized with first the initializing commands, for the
FPGA, then the configuration frames and finally the finishing commands, (starting
the FPGA). The frames organization, in the configuration frames section, in the
bitstream is shown in Table 7. Using Table 7, one can find the frame location in the
bitfile, for a specific logic element. Each CLB column consists of 22 frames,
stretching from top to bottom of the device. On the XC2VP4 there are 22 CLB
columns, resulting in 484 frames for CLB logic. Table 8 and Table 9 shows the
frame composition for CLB and BRAM logic. Using this information it is possible
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to locate where in a frame a certain logic element is located.

Frame type: GCLK (03] CLB+IOB (03] BRAM

Frames: 4 26 484 26 344
Table 7: Frames and location in bitstream, bitstream location start to end, left to right. For XC2VP4

Logic type: | Pad/CLK |10B CLB X.,Y CLB X.,Y, IOB | Pad/CLK
Bits: 16 80 | 40Slice 40Slice | ...| 40Slice | 40Slice | 80 16
Table 8: CLB logic frame format, from left to right are top to bottom on FPGA and first to last in
bitfile.
Logic type: | Pad/CLK | Top DCM RAM X,Yma| ... | RAM X,Y, | Bottom DCM | Pad/CLK
Bits: 16 80 320 320 80 16
Table 9: BRAM logic frame format, from left to right are top to bottom on FPGA and first to last in
bitfile.
6.6.2.Virtex IV

The VirtexIV architecture is different from the VirtexIl architecture. Unlike the
VirtexII platform, where the configuration frame size depends on the device size,
VirtexIV configuration frames are equal for all devices. On all VirtexVI devices one
frame is 16 CLBs, which gives the smallest reconfigurable unit on a VirtexIV to be
16CLBs. Figure 10 Shows how the logic modules are organized on the Virtex-4fx12
FPGA.

Figure 9 shows the logic distribution on the Virtex 4FX12 FPGA, including the hard
core powerpc located on the left side. In Figure 9 IOB's are read, BRAM are blue
and DSP are marked as green. The frames in the bitfile located where the power pc
is will not be truncated.

The configuration is different from the VirtexIl in many ways, for one: there are no
IOBs on the top and bottom row. Instead VirtexIV has extra IOB columns on the
device, (one extra collumn for the Virtex-4fx12 FPGA). In the configuration
bitstream the data is organized as shown in Figure 11. A note to Figure 11 is that the
overhead comes after all rows, so row O shown in Figure 10 comes first in the
configuration bit stream. Then follows row 1, 2 and 3 then the overhead frames.
Figure 11 Shows that BRAM interconnect are separated from the BRAM data, this is
an important point. The DSP frames are not separated like the BRAM interconnect
and data in the bitfile.
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Figure 11: Virtex-4fx12 bitfile frame organization
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Figure 11 one can also see that BRAM interconnect consists of 20 frames. These
frames can be interchanged, as the interconnect for CLB, DSP and BRAM are equal.

If logic is to be read out from the bitfile, the routing in the BRAM interconnect or

In the bitstream the CLBs consist of 22 frames
are for the logic. The DSP also has 20 frames

Figure 10: Virtex-4fx12 FPGA logic modules

Frames/col

Frames/col

Frames/col
Major Columns

20/59



DSP routing has to be included. If the logic in the DSP or the data in the BRAM is
not used a module placed at a location utilizing the DSP interconnect can be moved
to a location with BRAM interconnect, this results in more processing of the bitfile
when reconfiguring.

A frame in the bitstream is 41 words, 1312 bits, this is equal to 16 CLBs plus one
word in the center of the bitstream for global logic. The configuration bitstream bits
are all relative to the center of the FPGA. So the bottom half is a mirror image of the
top half, minus the center word which is for the global routing, this word is
symmetric by design.

6.7.Suzaku-V setup

6.7.1.Network File System

When working with the Suzaku platform, experimenting with code, it is time
consuming to upload a new Linux image with the program/module each time
modifications are made. This can be simplified by using a network file system (nfs).
By using a nfs one can instantly share the program compiled with a cross-compiler,
on a host machine with the Suzaku platform. The Linux configuration for the
Suzaku-v platform in the atmark-dist-20080717 distribution is set up to
including nfs support. Only modification one might want to do is to remove the
dhcp-new module, in the vendor configurations, to use a static IP on the Suzaku.
This is explained in the howtos on Atmark Techno's web-page (http://suzaku-
en.atmark-techno.com/dev/howto/software). Here booting from a nfs is also
explained, this is smart if experimenting with modifications in the kernel.

A nfs-server needs to be running on the host, setup of this depends on the distro
used. The best way to get it correctly configured is to find a tutorial for the given
distro (google is a good tool here). The Linux-box I used as host, used Archlinux and
the nfs setup tutorial (http://wiki.archlinux.org/index.php/Nfs) were used to
configure the nfs-server.

When the server is running and connection with the Suzaku is established, (it is
possible to ping the Suzaku, from the host and the host from the Suzaku) the nfs can
be mounted with the following command:

mount -0 nolock -t nfs server:/location/ /mnt/

This mounts the server (change to ip address) /location/ (change to path of nfs share)
to /mnt on the Suzaku. /mnt can be changed to another folder on the Suzaku. Now it
is possible to access files shared on the nfs, and store files if the server is configured
for it.

This is also useful for kernel drivers built as modules, making it possible to change
drivers without uploading a complete new kernel. The kernel needs be built with
module support for this to be possible.

6.7.2.Adding hardware to the Suzaku-V FPGA design

Sverre Hamre

The Suzaku-V comes with the base design project for Xilinx EDK. Using EDK it is

easy to extend the project, using modules either from Xilinx or modules created by
the user. The Suzaku-V 410 board, using the Virtex-IV FPGA, only uses the PLB
bus. So modules added that needs to communicate with the PPC, needs to use the
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PLB bus.
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Figure 12: EDK screenshot with the Suzaku-V fpga_project. With a user module
added.

To add a module to the fpga_project, for the Suzaku-V platform, is quite simple. The
screen shot of EDK shown in Figure 12, shows the IP catalog on the left side and the
current configuration and bus connections on the right side. To add a module from
the IP catalog is as simple as a right click and chose Add IP. The module will now
appear on the right side, with the other modules in the design. But the module will
not be connected to anything.

On the Suzaku-V platform, with the Virtex-IV FPGA, the module should connect
with the PLB bus. In the fpga_project for the Suzaku the plb_peripheral bus are
available for peripherals. To be able to address the module, from the PPC, the
module address range needs to be set. This is done under the Addresses tab in EDK
shown in Figure 13. Here the base address and size can be set, (high address will be
calculated from base address and size). The address given to a module included in
the fpga_project, for the Suzaku-V platform, should be check to not conflict with any
other modules. The addresses of the other modules can be seen in the same window
and are also included in [43], under memory map.
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Figure 13: EDK screen shot showing address range, for modules in the Suzaku-V
Jpga_project

The address given the module, is needed when the module is accessed from
software.

6.7.3.Accessing hardware on Suzaku-V with Linux 2.6.x

The hardware modules connected to the PPC on the Suzaku-V, when running a
Linux kernel, can not simply be accessed using a pointer to a given address. It is
possible to access the modules in user space, but this is not recommended, the best
way is to create a device driver. The driver should take care to restrict access, so only
one process reads or writes to the device . Implementing a char driver, the driver will
work as a file, where the usual file functions open, read, write and close will work
on the driver. The Linux device drivers [46] book, is a good reference when writing
device drivers for Linux.

Using a driver for accessing hardware modules, are a smart solution. The user space
program does not need to know how the hardware works, or how to access it. The
driver can just be opened as a file and written/read from as necessary. An example
driver used in this project is included in the .zip file, (under /code/linux_drv/Addet/).

The example driver module can be compiled with the following command:
make -C ~/kernel-2.6 M="pwd™ modules

Where kernel-2.6 is the build directory for the kernel, for the Suzaku this is the
atmark-dist folder, used to build the Linux image the module will be used against.
Pwd gives the current folder, where the module is.

6.7.4.Adding ICAP hardware module to Suzaku-V FPGA design

Sverre Hamre

In Xilinx EDK, there are two HWICAP modules that can be included in the design.
The modules might not show with standard configuration of EDK, if the modules
does not show in the IP catalog they need to be included. This is done in preferences,
under IP catalog and IP config dialog, cross of Display “Available” IP cores
(including legacy PLB/OPB cores) in IP catalog.

The HWICAP modules should be under the FPGA reconfiguration tab, in the IP
catalog. There are two modules, one connecting to the OPB bus and one connecting
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to the PLB bus. For sz410 only the PLB bus is available, so the xps_hwicap module
is used. The xps_hwicap needs 4K of address space, so ensure that the chosen base

address and high address does not conflict with other modules. The memory map
can be found in [43].

Xps_hwicap module uses the ICAP found inside Virtex-4 and Virtex-5 devices. The
ICAP port interface is similar to the SelectMAP interface, but is accessible from
general interconnects rather than the device pins. The JTAG or “Boundary Scan”
configuration mode pin setting (M2:M0 = 101) will disable the ICAP interface.
Therefore, when using the HWICAP core, another mode pin setting must be selected
to avoid disabling the ICAP interface. JTAG configuration will remain available
because it overrides other means of configuration, and the HWICAP core will
function as intended. Besides being disabled by the Boundary Scan mode pin
setting, the ICAP will also be disabled if the persist bit in the device configuration
logic's control register is set. When using bitgen, the Persist option must be set to
No, which is the default. -From [47].

In the Suzaku fpga_project project files the bitgen.ut file was changed for M2:MO
settings, Here M2:MO were sett to M2:MO0=110 which is Slave SelectMAP. The
JTAG/Boundary-scan configuration interface is always available, regardless of the
MODE pin setting. The JTAG/Boundary-scan configuration mode (M2:M0=101)
disables all other configuration modes. This is to prevent conflicts between
configuration interfaces.

With the standard configuration and the xps_hwicap module the design should take
approximately 90% of the resources on the FPGA, when using the Suzaku-S sz410.
When the modules are not restricted in placement the modules will be placed as best
the placer can, but it is not possible to know where the modules are. So with this
configuration it is possible to test read-back of configuration on the FPGA, but one
should not try to program the FPGA since it is not possible to know what is
overwritten.

To use the HWICAP to write modules to the FPGA, the basic/static configuration
needs to be constraint in placement. So it is known where it is possible to write new
modules, without overwriting the basic configuration.

Figure 14 is a screen shot from planahead, a tool from Xilinx, with this tool it is easy
to create constraints for the design. From planahead it is possible to export the
constraints, for inclusion in the design. This is important as the design needs to be
run through bitinit to initialize the ram of the CPU with Bboot, for the Suzaku
platform, else it will not boot.
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Figure 14: Planahead screen shot with placement restrictions and resource
usage shown.

In Figure 14 a reconfigurable module is included, the module is placed in the top
right corner. The bus-macros connecting the module to the PLB bus can be seen as
red dots in the top right corner. Here there are no placement constraints on the logic
in the reconfigurable module connected to the bus-macros. Since the connected logic
is small and will be placed next to the bus-macros, but constraints could be created if

necessary.

Place and route can be done in planahead and it is nice to run to ensure that the
constraints are possible. But to ensure that everything follows the steps necessary for
the Suzaku platform, the constraints placed were exported and used in the Suzaku

project in EDK.
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Figure 15: Screen shot of routed design with hwicap module and reconfigurable
module in top right corner

In Figure 15 the routed design with the constraints seen in Figure 14 are shown. In
Figure 15 one can see that the placement constraints does not constraint the routing,
only the logic. So for the reconfigurable module area one has to ensure that no
routing crosses the module border. If any routing crosses the boarder this needs to be
rerouted, easily done in fpga editor.

Figure 16 shows the reconfigurable module in more close up. Her one can see the
bus-macros placed and also that no routing crosses the the middle of the bus-macros
but the bus-macro routing. The last three CLBs with the full height of one frame (16
CLBs) can be reconfigured in this module.

26/59 06/11/09 Sverre Hamre



Figure 16: Reconfigurable module with busmacros in top right corner of fpga

6.7.5.Getting HWICAP driver to work for Linux kernel 2.6.18-at11

Sverre Hamre

The internal configuration access port (ICAP) can be connected with a soft or hard
core microprocessor, using the HWICAP module supplied from Xilinx. The
HWICAP module connects the ICAP to a bus so the microprocessor can
communicate with it. To be able to use the HWICAP module from Linux, the driver
for the module needs to be included/built for the kernel.

The Xilinx HWICAP driver was included upstream in the Linux kernel from 2.6.25,
but it is not included in the Linux kernel that are included with the Suzaku platform,
(kernel used here is the 2.6.18-atll). The driver used in this example is from the
Linux kernel 2.6.28.7 but the driver included in the 2.6.29 kernel is identical. To get
the driver to compile, using the 2.6.18atll kernel headers, some files needs to be
patched.

The “include/linux/cdev.h” file needs to be patched:
The following is the diff between 2.6.18at11 original and 2.6.18at11 modified kernel.
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diff linux-2.6.18-atll/include/linux/cdev.h linux-2.6.18-atll-
mod/include/linux/cdev.h

4a5,12
> #include <linux/kobject.h>
> #include <linux/kdev_t.h>

> #include <linux/list.h>

> struct file operations;
> struct inode;

> struct module;

Source 1: Diff for cdev.h in the Linux kernel. Patch to get the HWICAP driver to work.

The patch shown in Source 1 can be found on the kernel mailing list. After using
this patch the xilinx_hwicap module should be able to compile. To compile the
module as a module outside the kernel build system some modifications is needed to
be done on the Makefile for the module. Modifications shown in Source 3.

There are two HWICAP modules in EDK IP library, one for the OPB bus and one
for the PLB bus. On the Virtex-IV there are only PLB bus available, so the PLB
module needs to be used. In the Linux driver there are two configurations, one for
the OPB bus module and one for the PLB bus module. Since the OF PLATFORM
system is not supported in the 2.6.18 kernel, the configuration is not automatically
selected. In Source 2 the patch to support the HWICAP xps PLB bus module is
shown. Also the patch to downgrade the device_create() call to the kernel 2.6.18
version are shown here.

diff modified/xilinx hwicap.c original/xilinx hwicap.c
677c658
< device create(icap_class, dev, devt, "%s%d", DRIVER NAME, id);

> device create(icap class, dev, devt, NULL, "%s%d",
DRIVER NAME, id);

759c740

< &fifo icap config, regs); // Changed by sverre to fifo for
the xps hwicap module

> &buffer icap config, regs);

Source 2: Patch to get the driver to support the xps PLB bus module, and patch the
device_create() function call.

When the driver is loaded the driver will ask the kernel to connect to a specific
device, the HWICAP module on the bus. For the driver to be loaded, the kernel
needs to know if the device is connected to the bus. The device instantiation is
normally done in the platform section of the Linux kernel, as this will be specific to
the platform. The device instantiation sets the address of the device and the driver
name, for the driver that can use it. To simplify the process I have included this
instantiation in the driver instantiation shown in Source 4.
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diff modified/Makefile original/Makefile
4,6d3

< ifneq ($ (KERNELRELEASE),)

< #0bj-$ (CONFIG XILINX HWICAP) += xilinx hwicap m.o
< obj-m += xilinx hwicap m.o

8,17c5,7

< xilinx hwicap m-y := xilinx hwicap.o fifo icap.o

buffer icap.o

<

< else

< KERNELDIR ?= /home/atmark/project/suzaku-v/linux/atmark-
dist-20090318

< PWD := $(shell pwd)

<

< default:

< $ (MAKE) -C $(KERNELDIR) M=$ (PWD) modules

<

< endif

\ No newline at end of file

> obj—$(CONFIG7XILINX7HWICAP) = xilinx hwicap m.o
>
> xilinx hwicap m-y := xilinx hwicap.o fifo icap.o buffer icap.o

Source 3: Diff for xilinx_hwicap driver Makefile. To be able to compile module outside kernel
build system.
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diff modified/xilinx hwicap.c original/xilinx hwicap.c

115,124d111
< struct platform device *icap_ dev;
<

< struct resource icap res = {

< .start = 0xFQOF00000,

< .end = 0xXFOFOOFFF,

< .name = DRIVER NAME,

< .flags = IORESOURCE MEM,
< };

<

<

875,876d855

< icap dev = platform device register simple (DRIVER NAME,
0, &icap res, 1); // register hwmodule added by Sverre

<

Source 4: Patch for device instantiation, setts the address of the device as specified in EDK.

With the driver patched for the 2.6.18-at11 kernel the module should compile. If the
Suzaku platform has been configured to be modular and have nfs, the module can be
tested without uploading a new Linux image to the platform. Before initializing the
kernel module a node needs to be created in the /dev file system that the driver can
be associated with. This can be done with the following command:

mknod /dev/icap ¢ 259 0

This creates a “file” in the dev directory associating a char driver, with major
number 259 and minor number 0. The major and minor numbers needs to be the
same as the driver is instantiated with in the code. The name also needs to be the
same as the driver name, which is the same name as the device uses to associate with
the driver.

When all this is done the driver can be instantiated with the insmod command.

6.7.6.Using the HWICAP Linux drivers

30/59

The HWICAP driver simply reads from or writes to the HWICAP module, the driver
does not take into account setting up the FPGA for read out or write in. Setting up
the FPGA for read out or write in of frames are meant to be done in user space.

When the icap driver is instantiated, using it to write a configuration can be done by
simply piping a bitfile to the device. This can be done with the following command:
cat bitfile.bit > /dev/icap (not tested). Here the bitfile needs to contain the
setup commands for the FPGA, the frames to be written and the closing commands
to the FPGA.

To read out data from the icap driver one first has to write some commands to the
icap driver to initiate a read back operation. The following read back configuration
details can be found in [45].
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Sverre Hamre

1. Write the synchronization word to the device.

2. Write 1 NOOP command.

3. Write the RCFG command to the CMD register.
4. Write the starting frame address to the FAR.

5. Write the read FDRO register packet header to the device. The FDRO read length
is given by:

FDRO read length = (words per frame) x (frames to read + 1) +1

One extra frame is read to account for the frame buffer. The frame buffer
produces one dummy frame at the beginning of the read and one at the end.

6. Write two dummy words to the device to flush the packet buffer.

7. Read the FDRO register. The FDRO read length is the same as in step 5.
8. Write NOOP instruction.

9. Write DESYNCH command.

The register descriptions are described in the FPGA configuration section.

The test program created for usage of the ICAP Linux driver are somewhat modified
from the steps here. After some tests the driver seemed to work correctly only when
one or two frames where read, (this is most likely a bug in the test program). Also
more NOOP commands where used between FPGA commands. Following the driver
example files in EDK for HWICAP driver (these example codes are for running
directly on the processor without a OS).
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My work

7.1.Difficulties with dynamic self reconfiguration on FPGAs

As expressed in earlier work [9], the complexity of a complete reconfigurable system
consisting of reconfigurable logic, a CPU and a OS running on the CPU is large. To
be able to test a hypothesis or theories, by ones own making or from the research
community takes a great deal of work.

Also the issue with available implementation from the research community is an
issue:

Even though all the key ideas are available in a paper, re-using
the ideas in such a document takes a lot more time than working
with the software directly. You can reuse software without fully
understanding it, but you can't re-implement software without fully

understanding it! - From [48].

In the work done here, the underlying reconfigurable hardware is FPGAs from
Xilinx, these devices supports reconfiguration. The problem with the FPGAs from
Xilinx is that even though the hardware have supported run-time reconfiguration a
long time, the software does not fully support it. Much of the details about
reconfiguration is poorly documented, if at all. So to be able to utilize the
reconfiguration possibilities, on the devices, in a new and innovative way new tool
sets needs to be developed.

7.2.My work relative to previous work

32/59

In Work regarding dynamic reconfiguration on page 9, a lot of background work has
been summarized. Most of the work explained is of interest and the work done here
tries to realize some of the concepts proposed for the FPGA device used in this
project.

For the reconfigurable module, the bus macros proposed by Jiiergen Becker et al. in
[10] are used. The bus macros and some design ideas used in this work are proposed
in [49], where Xilinx early access tools are described. If other bus macro designs
than the ones gained from Xilinx early access program are needed, then a more
thorough explanation of the bus macro can be found in [2].

There are many articles describing reconfiguration of Xilinx FPGAs, but not all uses
manipulation of the bitstream and very few of the ones that uses bitstream
manipulation describes the algorithms, or design in details. For Xilinx FPGAs
[28] explains more in detail bitstream design and how modules can be relocated in a
bitstream.

In the work done here the bitstream of both Virtex-II and IV has been examined. The
concept of reading out modules from the bitstream and writing in the module in
another design has been tested and proven. Relocation has not been possible to test
because the platform and device used were not capable, (there were not enough logic
on the device for two reconfigurable modules).
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Using Linux to simplify dynamic reconfiguration as done in [35], is shown to work
in this project. The reconfiguration is done by using the ICAP drivers in Linux to
read out and write in partial design modules. The scheduling and placement
programs running under Linux are just for proof of concept, these areas are well
researched in OS theory. Placement algorithms can use similar concepts as for
virtual memory since this is a similar concept.

7.3.Design of reconfigurable modules

Sverre Hamre

The hardware modules that are to be used as reconfigurable modules in this
framework needs some extra considerations:

«  Number input/output signals.

+  Bus-macro version.

«  Bus-macro relative position.

+  Size limited, logic and routing.
«  Swappable.

«  Clock demands.

- I/O

The reason for these considerations comes from the way the system is designed. The
framework here is based on manipulation of the bitstream for configuration of the
FPGA.

A bitstream is the configuration bits for a FPGA and the lowest level one can go
when manipulating hardware modules.

In the bitstream the logic are placed and routed, in the framework design used here it
is not possible to reroute signals by manipulating bits in the bitstream.

In the static design, where the reconfigurable module will be connected, connections
are prepared for reconfigurable modules. These connections are based on CLB slice
based bus-macros. The bus-macros are prerouted hard macros that will not change
the routing when running place and route tools. These bus-macros can thus be
viewed as sockets that modules connect to.

The sockets in the module needs to be of the same type, have equal size and placed
at the same position relative to each other as in the static design.

Since the static design is a general design, the number of inputs and outputs to a
reconfigurable module will be set to a given number and all reconfigurable modules
will have this constraint. Because of this the back-end to the modules will shift data
words in and out of the module serially, implying that a serial data flow controller
needs to be implemented in the module, at least if more then one word of the defined
length is needed as input or output.

Module size is an important factor with height, width and position of bus-macros.
The maximum size a reconfigurable module can have, will be defined by the FPGA
and the static design where the module will be loaded. Needless to say this can wary
as there are different sized FPGAs, but as long as the static design has the same
version bus-macros and same relative position of these A small module can work on
a small, medium and large system while a medium module will only work on a
medium and large system and so on. Given that modules are designed in defined size
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increments, not free size.

Depending on the static design, it is possible to decide that a small module is the
smallest design that can be inserted and all other sizes are defined by a number of
small modules. In this sense a small system can have one module and a medium
system can have two small modules or one medium module. If designed properly
this also gives the possibility to increase the amount of inputs and outputs from the
module when sizes increase. A bigger module can use two or more set of
connections, where the connections are designed for one small module.

If the module is to be swappable while it is working, the module needs to be
designed for it. For a module to be swappable, the state of the module and data it is
working on needs to be stored before the module is removed. So a swappable
reconfigurable module needs to incorporate a way to flush the state and data it is
holding and also a way to restore the data and state to continue working on it, when
reinserted.

FPGA
Static design

AHH#\

Hit— ~cPU

Reconfigurable Module Bus
module I \\H Back-end

Bus-macros

Figure 17: System overview

Reconfigurable modules can be inserted in different systems and this can potentially
lead to modules being designed with a lower clock speed constrain and thus not
function properly when instantiated. A guard for this shortest delay issue is to
include, in the repacking of the module, speed constraints for the module. These
constraints will have to be checked by the static design before the module is inserted
into the system. Further enhancements could be to include a clock divider in the
module back-end, resulting in a possibility for varying clock speed for modules.

Physical inputs outputs to the system is also an issue to tackle with reconfigurable
modules. There are different possible solutions to the I/O case.

One solution can be to create a I/O module that connects to the I/O pins one needs
and then connect this to the processor, controlling reconfiguration, letting the
processor control access. Thus reducing it to a software problem.

The software I/O component can be removed if the reconfigurable module back-end
has a network on chip architecture and direct communication between modules can
be achieved.
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Another solution is to create a reconfigurable module that has the inputs/outputs in
the module, this of course means that the module can not be relocated.

7.4.Procedure/method for generating reconfigurable modules

Sverre Hamre

Design and generation of reconfigurable modules can be done mostly by following
standard design flow and tools. The design can be done using normal HDL language

Reconfigurable mocdule

Control By —
5e 58 — ——
User logic nput
Module Cutput
Module

Figure 18: Reconfigurable module design

and synthesis, but some extra considerations needs to be made since the module will
connect to an already existing system.

«  Number of inputs/outputs to the module are set.
«  Bus-macro type/version used.

- Bus-macro relative position.

« Size limitations of module.

«  Ensure correct routing.

It is assumed that the design follows the standards used in the static design,
following the same protocols for getting data in/out of the module and the control
signals.

The target FPGA, for the design, needs to be the same FPAG used when
implementing the module. The size of the FPGA does not mater, but it must be
bigger than the reconfigurable area on the target device. For the Virtex-1V there are
also limitations concerning designs crossing the center of the FPGA, as the
configuration bits are mirrored on top vs. bottom.

Simulations on the design can be done with or without the bus-macros, also a final
test using a test bench simulating the back-end should be used. This test bench
simulates the back-end, that the module is connected to and will thus transfer the
data into and out of the module the same way as the back-end. The test-bench will
also simulate the control signals that the back-end is designed to use. This test bench
needs to be implemented by the people designing the static design, so it is equal in
functionality.
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When place and route tools is run, placement constraints must be set for the module,
this can be done by editing a User Constraint File (UCF). A UCF can easily be
created in a tool like Xilinx planahead, where the FPGA layout is viewed from above
and a constraint can be added, moved around and edited with ease in a visual
manner.

Bus-macro type/version and relative position are absolute essential points. This is
since the bus-macros have a defined routing so the same signal path is used in and
out of the reconfigurable module. If another bus-macro type/version or the relative
position of the bus-macros are used the routing will probably be different and the
module will not be connected with the static design. This can result in short circuits
in the FPGA, this can damage the FPGA.

When the design is placed, following the placement constraints and routed the
routing needs to be checked, this is because the placement constraints does not
constrain routing. The routing must be inspected so it does not cross the boundaries
of the reconfigurable module. Also wires from the outside can not cross into the
module, this is less of a problem when only the module is synthesized. The bus-
macros should have the only wires crossing the boundaries, if other wire cross they
need to be rerouted. The inspection and rerouting can be done with a tool like the
fpga-editor from Xilinx.

When the design is finished routed and run through a bitfile generation tool, like
bitgen from Xilinx, the reconfigurable module can be read out. This is done with a
small programm developed for this framework, (modifiedCLBRead can be found in
the zip file). Giving this program the module placement boundaries the module will
be read out and written to a new file, this file can be used in the framework to insert
the module in another design. Since just the module is extracted the file will be
much smaller than the complete bitfile.

Design start

v

Simulate/test

\ \
v

Place and route ||
| |
v

Check routing, —

reroute

\ \
v

Read out module| |

\ \
v

Design finished | |

\
Figure 19: Flowchart for designing reconfigurable module

7.5.Reconfigurable module back-end design

36/59

The reconfigurable module back-end is the logic that connects the module with the
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7.6.Method

Sverre Hamre

CPU. The CPU connection can be a bus as used in the proof of concept, or a direct
connection.

The module back-end has different tasks that it must serve, for the reconfigurable
system to work properly. The reconfigurable modules are connected to the system
using bus-macros. Because of this all reconfigurable modules will have the same
amount of input/output signals. Since different module designs will have a varying
demand on data in/out of the module, the back-end need to implement a serial
transfer of data words. This can not be handled directly from the CPU as long as the
module and CPU are connected with a non deterministic connection.

A simple solution to this is to have a control module in the module back-end that can
buffer data words from the module and CPU. This module will also control serial
communication with modules. This control module would also control flushing and
restoring the state of a module for replacement.

If the back-end had a local memory cash, it would be much easier for fast flushing
and restoring of modules, given that they are restored to the same module. This
would have to be controlled by the HWOS. If designed properly with regard to
HWOS and module back-end, this should result in shorter reconfiguration times.

for communication with and between modules

Communication between modules are an important issue that are not easily solved
for a self reconfigurable system. When the system controls removal and insertion of
modules, the modules does not know if the modules they want to communicate with

Module
Back-end Input/Output
Control | Cpu bus
Serial Memory
Input/Output Module

Figure 20: Reconfigurable module back-end

are available. So communication between modules will not be as simple using up a
“dumb” network on chip. By dumb I mean the system is not dynamic, data gets sent
to an address and addresses are related to a module position, not the module.

With the proof of concept the reconfigurable module are connected to the PLB bus
and other modules connected to the bus, could be made able to communicate with
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each other on that bus. For this to work, the HWOS configuring modules needs to
tell the modules where the other module are, or if the module is available at all. This
solution makes the communication less dumb, since addresses and availability will
change dynamically, controlled by the CPU.

The easiest solution, will be to communicate to other modules through the HWOS,
where the HWOS controls all communication. Some issues with this are an increase
in load on the CPU and no determinism for when the message will be delivered.
Since the communication goes through the HWOS, depending on the
implementation, the message will be delivered to the module when the module gets
reinserted, if the module is removed at the time of the communication.

For communication between modules in a reconfigurable system I propose that the
system use communication through the HWOS as a starting point. There needs to be
much more research in this field, to determine good solutions. As the proof of
concept system developed only includes one reconfigurable module and there were
not enough time to implement a version of the HWOS, an implementation of
communication with modules were not developed. One of the issues with
communication between modules are how to address modules that always keep
changing. How modules address data sent to other modules not instantiated in
hardware yet can be an issue when the HWOS gives addresses to modules.

Addressing of packages could be done with ipv6 addressing, where every module
created would have a specific ip address. Or the addressing could be name based,
where modules have names that are given to the HWOS when instantiated. This will
depend on implementation and are not in the scope of this thesis.

7.7.Hardware OS

7.71.Design

38/59

The hardware OS depict in the Work regarding hardware operating system section
are mostly focused toward an OS in hardware. By OS in hardware one means that the
OS is not running on a sequential designed processor, as normal software OS are.

The OS design concept here is a simple one, building on normal software OS
designs. Also the design idea is meant as an extension for a normal software OS, so
the OS is designed to run under a software OS, or be integrated with the software
OS.

As a test implementation for the concept described here a user process program
where coded for Linux. The use of Linux as a “base” OS simplifies many aspects.
Especially since a proof of concept for dynamic self reconfiguration has been
developed using Linux device drivers, for accessing the FPGA ICAP. Also, Linux
already has the IP stack implemented and other communication protocols, this
enables and simplifies initiation of hardware tasks from remote locations.

The hardware OS design uses most of the same ideas as a software OS. As for a
software OS, the OS are supposed to control tasks that wants to execute, do memory
management, resource control and so on. The hardware OS, needs to control
hardware tasks that are to be executed, control resources, schedule the hardware
tasks and placement of tasks in hardware.

To design and create a prototype of a complete hardware OS is a task much to
complex for this project. Instead a simple design is proposed, where the hardware
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OS is a user space program running under Linux. Since the hardware OS is running
under Linux many abstractions from Linux can be utilized.

The hardware OS consists mainly of four parts:

. The Scheduler

. The Placer

. The Launcher

. Communication

Most of the other concepts, that are needed for a HWOS are available from Linux.
This includes locking, communication, software memory management and so on.

Following will be a short description of the four main parts.

7.7.2.The Launcher

The launcher handles new incoming tasks, checking that they are able to run on the
system. The main task here is to check if the hardware module is ready to be placed
on the FPGA. To be able to place the task there are some parameters that needs to be
checked for the current platform. The hardware task needs to be created for the
FPGA used, a hardware task synthesized for another platform can not be placed. The
size of the module are important the module must be able to fit in the available
reconfigurable area. The hardware task also needs to state what mode it wants to run
in, continuously, one time, periodic and what deadline demands it might have.

Depending on how the task is delivered to the launcher, the mentioned data needs to
be included.

The launcher is the outward interface for accessing the hardware OS. The launcher
should ask the scheduler if the task can be executed, find out if there are available
hardware slots and processing time for the module.

In Figure 22 the launcher is illustrated as a separate part of the HWOS with IP
communication to the Scheduler and Placer processes. This is only for illustration,
the Launcher could be a part of or separate depending on the implementation. But it
is important to have IP communication at some stage to allow external processes to
initiate hardware tasks, using [P communication.

HWOS o HWOS External
IP communication Applications
Scheduler Launcher
Placer
Communication

Figure 21: HWOS illustration

7.7.3.Communication

Sverre Hamre

The communication part of the HWOS are to serve communication to and from the
reconfigurable modules, when placed in hardware. As shown in Figure 22 there are
IP communication to the launcher and conceptually the launcher does not need to be
on the same platform as the reconfigurable system.

In the proof of concept the, communication to and from the reconfigurable module
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are done with a driver in Linux. A driver will be the underlying means of
communication. The communication has to take into account which reconfigurable
module is used (if many are available). Also if the module are removed and placed
again the communication access method to the module will change.

The communication part of the OS should abstract this away from the external
program. This can be done by deciding on a specific API (Application Programmer
Interface) in the implementation, letting the communication part of the OS control
the actual addressing of data.

7.7.4. The Scheduler

40/59

The main task for the scheduler is to give tasks run time on the hardware. There are
much work done in scheduling, for software OS and there will not be a big
discussion here about different scheduling algorithms, as many can easily found in
many text books.

The scheduler should accept tasks if it is possible to run the task, with the timing
demands the task has. A task might want to run continuously, periodic, aperiodic and
SO on.

There are some points of interest for the hardware scheduler that differs from a
software scheduler.

. Reconfiguration time.
. Preemption possibilities.

Reconfiguration time is important to incorporate in the scheduler model. If the
scheduler switches tasks to often, the reconfiguration overhead will become
significant. Having long periods between scheduling will result in a system where
tasks have long delays between execution.

Depending on the system it might not be plausible to have hardware tasks swapped
in and out periodically. This is because the task might be working on a constant
stream of data, with real time demands.

erminated

Preemption is also an important aspect for the scheduler. If a task with higher
priority wants to execute and there are no available hardware spots, a running task
needs to be interrupted and removed. A issue with this is how to store the internal
state of a preempted task. Different approaches can be taken to this problem, but the
main point is that it will generate a overhead that needs to be taken into account.

Figure 22: HWOS task states
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7.7.5.The Placer

The placer is a part of the HWOS that are not a part of a software OS. As hardware
modules will differ in demand on resources/area, the placer needs to control
resources available and place new tasks as best possible. Depending on the
reconfigurable module design solution, the placers complexity will vary greatly. If a
1 dimensional placement is used the complexity will be much less compared to a 2
dimensional placer. Also the smallest reconfigurable unit size will have a big impact
on the placer algorithm complexity.

When modules can be reconfigured, swapped in and out, the system will suffer from
fragmentation. For 1D approach the research done on fragmentation in memory can
be used, since this is a very similar case.

7.7.6.Prototype

A framework/prototype for a HWOS was implemented and are included in the zip
file following this thesis. The framework is only meant as a test for some concepts in
Linux that can simplify the HWOS.

Since there were many complications in researching and implementing the prof of
concept for self reconfiguration on a FPGA, there were not much time for
implementation and testing of the HWOS. Also because the prof of concept only
were able to have one reconfigurable module and only two reconfigurable modules
were created, the HWOS was only tested on the development computer.

The HWOS implementation given are only meant as a starting point for future work
showing some key concepts.

Some of the Linux based programming concepts that might ease further
development are threaded functions with communication through message queues.
These can be used for communication between processes, if some parts of the code
are separated out, like the launcher function.

For the system a simple linked list were developed, this were used for task queues
used by the scheduler.

The framework also includes code example for launching an external process,
making it possible to incorporate the test program in the reconfiguration proof of
concept for writing a configuration to the ICAP driver.

The code for the HWOS are by no means finished or functional, but can serve as a
starting point, incorporating some coding techniques that might reduce the time to
get a system working. For experienced coders I would recommend starting from
scratch with a better design, trying to better incorporate the functionality with the
Linux kernel.

7.8.Analysis of a few applications

Sverre Hamre

The reconfigurable system discussed here, has some limitations for designs that are
to be integrated/used in the system. Most obvious of these limitations are the
interface to the reconfigurable modules.

The interface to a reconfigurable module consists of signals in and out of the
module, connecting the module to the static design. When the LUT based bus-
macros are used, the signals are one directional and it is not possible for an
application to adjust the amount of input-signals vs. output-signals. For all modules
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the amount of input-signals and output-signals will be fixed.

A further limiting factor are the clock signal that the module wants to use.
Depending on implementation of the reconfigurable system, there might be only one
clock signal that will have a given period. With this limitation, modules that are
designed to run at a lower or higher clock can fail. This is an important point and
designers of reconfigurable modules needs to design robust system, following
specifications given for the reconfigurable system.

Another big issue with reconfigurable modules are that they can be swapped out.
This is not a big issue for modules that complete their task in one clock period, like
the simple example modules used in the proof of concept. For a module taking
several hundred of clock cycles, to finish a task, the module should be able to store
its internal state. So when the overlaying system wants to switch it out it can be
done. Dumping the data from a reconfigurable module could become a security risk,
if a en/de cryption module are told to dump its half en/decrypted data, getting the
en/decryption keys could become trivial. This is definitely an issue that will need
more study and analysis.

A enhancement for a reconfigurable system, is that modules could be further
divided. Manny applications has some parts for debugging or parts of the design
seldom used. These parts could further be separated in other modules, creating a
more compact system that can become more reliable, enhancing the reconfigurable
platform concept.

7.9.Suggestion of method for swapping modules while running

42/59

As the system are able to reconfigure it self, while it runs, the need to replace
hardware tasks while they run will be essential. There can be tasks with higher
priority, that only needs to run some times or load balancing of available tasks. To be
able to execute these or other interchanging tasks without having to restart the tasks
each time, the system needs to be able to store the state of the module before it is
reconfigured.

The reconfigurable module that are to support being swapped in and out during
execution, can not be of asynchronous design. A asynchronous designed module will
have to be restarted if it is swapped.

The design ideas here, are for reconfigurable modules that utilizes a control flow,
running through determinable states. When the system has determinable states, it is
possible to store the state and the data sett currently being worked on. This makes it
possible to restore the state and data sett later.

A solution is to just read out the configuration bits, storing the complete module in
the current state, like a snapshot. To do this correctly the module needs to be stopped
so that the module are in a stable state. The overhead from reading out the module
will be deterministic and depend on the size of the module. This is given by clock
speed and bit width of the configuration port. A minus with this approach, is that the
data read out will mainly be composed of interconnect data and not logic or state
data.

A CLB in Virtex-4 is composed of 22 frames where 20 of these are interconnect. 2
frames are for LUT logic. This results in a massive overhead of unnecessary data as
the interconnects will not change.

It is possible to read out just the LUT logic but this will result in extra processing

06/11/09 Sverre Hamre



time, when reconfiguring the module, as the logic needs to be reinserted with the
original module data.

I propose a different solution, as the actual data and data sett being worked on will
always be less then the logic frames in a CLB (some of the logic will be just logic).
To minimize the data having to be moved around, the module will dump the state
and data when a signal from the control unit are sent. For this approach to work the
modules needs to be designed for it.

The data being dumped from the reconfigurable module could be dumped to the
CPU and stored in CPU memory if needed, but this might take to long. I propose a
memory system for storing data from the reconfigurable module that are swapped
out. When the HWOS initiates a hardware task, the task must state how much
memory it needs for storing data when stopped. This will also give the
reconfiguration time, time to dump date. The HWOS can then schedule tasks
depending on speed of reconfiguration. The HWOS will allocate memory, at the
reconfigurable module back-end, for the module. The memory allocated will be
available depending on the state of the task. Task state example are shown in 36.
When the task is terminated the HWOS will reclaim the memory.

With this approach, the time to store the state of a module depends on the amount of
data to store and speed to transfer the data. The speed to transfer data depends on
clock speed and bit width, (bits pr clock period). As the ICAP normally uses 8 bit
and the system clock, a module using 32 bit or more reading out less data will be
more efficient.

7.10.Proof of concept run-time reconfiguration

Sverre Hamre

The basis for this project and most of the developed concepts depends on the point
that self reconfiguration is possible, for the given device/platform.

As discussed earlier, the difficulties with self reconfiguration on a FPGA are many.
The complexity of the FPGA device, difficulties with synthesize tools and how to
utilize the tools in new and undocumented ways are difficult. Working with Linux,
understanding how a complex OS like Linux works, utilizing its design and
functionality to simplify the design. These are time consuming tasks not directly
leading to any results.

Because of these difficulties, a lot of time in this project has been used to get a proof
of concept, utilizing self reconfiguration, to work. The proof of concept incorporates
a lot of work done by other researchers, as explained in Work regarding dynamic
reconfiguration on page 9. The concept shows that it can be done on the Suzaku
platform used here.

The proof of concept incorporates a hardware design in FPGA, consisting of a static
design part and a reconfigurable module. The reconfigurable module are only 3x16
CLBs in size and can thus not really fit any modules with more extended
functionality. The reconfigurable modules designed for the test are simple addition
and subtraction modules. The reconfigurable modules are connected to the static
design with bus-macros, these bus-macros are placed with the same placement
constraints for both modules. Since the bus-macros are placed in the same location
the connecting wires used are the same.

The static design used are the standard Suzaku FPGA design with the HWICAP
module added to allow self reconfiguration. The static design has placement
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711.Code

44/59

constraints added, so it will not be placed in the reconfigurable module area. To
ensure that the routing does not cross the reconfigurable module border the design
was viewed in the Xilinx fpga editor software and the design was rerouted where
necessary.

Two complete designs were created, one with the subtraction module and one with
the addition module. The modules with system could thus be tested to ensure correct
operation before any modification.

The functionality of the modules were tested with a test program running under
Linux that used a driver developed for accessing the hardware modules. The driver
and test program are included in the zip-file, (/code/linux_drv/adder/ and
/code/adder/).

When the module functionality was determined correct, by running some simple
tests checking that the result were as expected, the modules were read out of the
bitfile. By using a program with algorithms for accessing and locating the different
logic in the bitfile (modifiedCLBRead), derived from the theory and data of bitfile
design, the modules were read out. The program for reading out modules is included
in the zip-file, but the program has some bugs and should not be used blindly. The
program access algorithms work correctly for the top right corner of the FPGA
bitfile, not including routing connected to the BRAM and DSP.

With the modules read out another program was developed to use the ICAP driver in
Linux to read and write configurations. As the module read out from the bitfile is
just the configuration, there are some more data that needs to be written to the FPGA
configuration logic for correct configuration. The test program for reading and
writing configurations to the FPGA using the ICAP driver are included in the zip-
file, (/code/icap_test/ and /code/icap_write/).

To ensure correctness of the program, that reads out modules and the ICAP driver,
the module read out from the FPGA was compared with the module read out from
the bitfile. This ensures that the addressing are equal for both programs, and that
there has not been any changes to the configuration when configuring the FPGA.

After ensuring that the different parts were working correctly the final test was to
write the modules to the reconfigurable area changing the functionality. The
modules were tested with the same test program using the same driver accessing the
hardware.

The prof of concept was running on the Suzaku-V platform on the sz410 board using
the Virtex-4 FPGA. The FPGA design, placements constraints and bitstream
generation was done as explained in Suzaku-V setup on page 21. The test procedures
and commands that were run are shown in the results chapter.

With the read out of configuration from the FPGA working as intended, the
possibility to read out “stopped” modules are available. This makes it possible to
read out a module when it is stopped and thus saving its state. This will only be
possible for Virtex-4 as it is not possible to read out memory elements from Virtex-
IL.

The program code explained in this section will be included in the zip file. In the zip
file the program code will be in folders similar to most of the headings in this
section, where the code functionality is explained.
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711.1.Hardware Modules connected to the OPB bus

It is relatively simple to create a module connected to the OPB bus, since Xilinx
EDK creates a template with all necessary logic for you. It is somewhat more
difficult when the bus-macros are used and the logic are placed in another file.
Following will be an explanation of the file structure of the module created from
Xilinx EDK and what parts need modifications, so that the module will work when
included in a design.

When a module is created by EDK there will be a folder named the same as the
module, under the pcores folder where the design is stored. Under this folder there
are three folders named: data, devl and hdl.

The hdl folder contains the logic vhdl or verilog files.

The devl folder contains some creation log files, a README.txt file explaining some
of the files involved and synthesis script files.

The data folder contains the .pao file (Peripheral Analysis Order), if some logic are
placed in another file, the file needs to be included here so it gets synthesized.

When bus-macros are included in the design, the files needs to be available when
synthesized. I have not been able to find the script, or file, to include the bus-macro
files. So when bus-macros are used these files needs to moved to the implementation
folder when synthesizing. In the Suzaku project this has to be done after synthesis is
started, since the implementation folder is not created before. Also each time the
clean commando is used the folder is deleted, so the files needs to be moved again.
There are most likely a file where the bus-macro can be included automating this
procedure, this is just an issue that has not been given any time to solve.

The implementation can be done as any other hdl design. Xilinx expects all user
logic to go into the user_logic.vhd file. I found it easier to visualize a border between
reconfigurable module and static design by having them in separate files. The
instantiation and connection for the bus-macros, user_logic and reconfigurable
module design, where done in the top design file created by the wizard and named as
the module name given in the wizard. For an example of a top file in the module see
the file:

hdl/cores/MyProcessorIPLib/pcores/opbbusmacrointerface_v1_00_a/hdl/vhdl in the
included zip file.

7.11.2.ModifiedCLBRead

Sverre Hamre

The ModifiedCLBRead program reads out and writes in frames from/to a bitfile.
The ModifiedCLBRead program, builds on the bitstream theory with algorithms for
locating the different logic in a bitstream and reading this out.

The VirtexIV version is the one mostly worked on. But this has some known bugs in
the algorithm for locating correct position in the bitstream and also probably some
unknown bugs. The code should not be used as is, but after understanding the code it
can be used, this is to reduce the probability of making some mistake. When
manipulating the bitstream a mistake can definitely render the FPGA defect. Wrong
manipulations can create internal shorts in the design which can lead to a defective
FPGA.

The program is created to take a complete bitstream as input and read out a frame
range and write these to a new file. This new file can then be used for partial
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reconfiguration, by the icap_write program or modifiedCLBRead can read the
frames from this file and insert them in another complete bitstream.

If a module read out are to be inserted in another complete bitstream, the complete
bitstream needs to have CRC turned of since modifiedCLBRead does not calculate a
new CRC value.

The VirtexIV version also has a print CLB snippet when issuing the
modifiedCLBRead with -sc [mr] command the CLB number nr will be printed.
This can be handy when comparing the wiring in FPGAeditor with the CLB frames,
making it easier to understand how the CLB data are coded in the bitstream.

7.11.3.icap_write and icap_test
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The icap_write and icap_test programs are written to utilize the Linux icap driver.
These are just test programs, especially since they have hard coded the addressing
and has a lot of printf() for debugging.

Important points to note in these test programs are the configuration setup used, with
configuration details of the FPGA explained previously. The configuration used in
these test programs are tested and works, so they are a good starting point for further
optimization and inclusion in a HWOS.

When writing to the FPGA, addressing can be a bit tricky. This is done with a packet
to the FAR (Frame Address Register) in the FPGA control logic. In icap_write this is
set in the write_header(..) function.

// Top/bottom bit, block type, row address, column, frame
address = (0<<22) | (0<<19) | (row<<1l4) | (column<<6) | frame;
// Setup FAR

data[10] = FAR_PAC’KET;

// address (top, CLB, row, column, minor)

data[ll] = address;

In this code snippet from write_header(..) in icap_write.c the addressing are set for
the FPGA. For the Virtex-IV FPGA the FAR register is composed as follows:

Reserved, bit 23 to 31.

Top/Bottom bit, bit 22.

Block Type, bit 19 to 21.

Row address, bit 14 to 18.

Column address, bit 6 to 13.

Minor address, bit O to 5.

Definitions:

Top/Bottom bit: 0=Top, 1=Bottom.

Block Type: CLB/IO/CLK = 000.
BRAM interconnect = 001.
BRAM Context = 010.
(CFG_CLB 011, CFG_BRAM 100)

Row Address: Selects a row of frames, 16 CLB's in height. Increases away from the
middle in both directions, Depending on Top/Bottom bit.
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Column Address: Selects a major column CLB, IOB, CLK, DSP, ... Starts at 0 on
the left and increases to the right.

Minor Address: Selects a memory cell address line within a major column, (frame in
a CLB).

Data from [45].

711.4.Genbitfile

Sverre Hamre

The genbitfile program was developed for merging a module in to other frames
especially meant for the VirtexIl since one configuration frame here spans the
complete height of the FPGA.

Since the ICAP driver for the VirtexII FPGA did not work, the work on this program
is incomplete. In the VirtexIV the frame length is always 16 CLB's so the need for
merging frames are not so apparent.
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Following will be the execution of codes done to test the proof of concept. First the
modifiedCLBRead is built and run on a bitfile where a reconfigurable module is
placed in the top right corner, (shown in previous chapter).

(please overlook spelling in code).

[unknown@archbox virtexIV]$ uname -a

Linux archbox 2.6.29-ARCH #1 SMP PREEMPT Wed May 20 06:42:43 UTC
2009 x86 64 AMD Athlon (tm) 64 FX-62 Dual Core Processor
AuthenticAMD GNU/Linux

[unknown@archbox virtexIV]$ pwd

/home/unknown/project/school master/code/modifiedCLBRead/virtexIV
[unknown@Rarchbox virtexIV]$ make

gcc -Wall -c -o main.o main.c

gcc -Wall -c -o CLBRead.o CLBRead.c

gcc -Wall -o testing/test main.o CLBRead.o

[unknown@archbox virtexIV]$ cd testing/

[unknown@archbox testing]$ ls

adder module.bit sub-modified-to-adder.bit sz4l10-adder-32in-32out-
bm.bit sz410-sub-32in-32out-bm.bit

orig module.bit sub module.bit sz410-hwicap-adder.bit test
[unknown@archbox testing]$ ./test -version -author

Version: 0.2

Author: Sverre Hamre

[unknown@archbox testing]$ ./test -h

Usage: [comand]...

-1 [filename] Input file name

-0 [filename] Output file name

-verbose Explain what is beeing done
-fmR Frames mode (reads out frames)
—fmw Frames mode (writes out frames)
-sc [nr] Start CLB

-ec [nr] End CLB

-version Prints version

-author Prints author of code

[unknown@archbox testing]$ ./test -i sz410-adder-32in-32out-bm.bit
-o temp adder module.bit -fmR -sc 21 -ec 23 -verbose
Input file name: sz410-adder-32in-32out-bm.bit
Output file name: temp adder module.bit

Frame mode, reading out frames

read frame: acessing

read frame: Memory alocated

locateFrameStart: Synch word = aa995566
locateFrameStart: FDRI word = 30004000
locateFrameStart: word = 50024090

locateFrameStart: Typel header detected
locateFrameStart: Word count: 147600

locateFrameStart: Number of configuration bits: 4723200
locateFrameStart: Configuration bytes = 4803
locateFrameFromCLBnr: frame: 644

locateFrameFromCLBnr: CLBcol: 21

locateFrameFromCLBnr: frame: 1190

read frame: frames to read out: 66

read frame: frameStart: 199963

read frame: Read out CLBs startCLB: 21 endCLB: 23

read frame: startCLB >= 16 startCLB < 24

warning BRAM/DSP connections read out not implemented
read frame: Closing files

[unknown@archbox testing]$ ./test -i sz410-sub-32in-32out-bm.bit -o
temp sub module.bit -fmR -sc 21 -ec 23 -verbose

Input file name: sz410-sub-32in-32out-bm.bit
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Output file name: temp sub module.bit

Frame mode, reading out frames

read frame: acessing

read frame: Memory alocated

locateFrameStart: Synch word = aa995566
locateFrameStart: FDRI word = 30004000
locateFrameStart: word = 50024090

locateFrameStart: TypelZ header detected
locateFrameStart: Word count: 147600

locateFrameStart: Number of configuration bits: 4723200
locateFrameStart: Configuration bytes = 4803
locateFrameFromCLBnr: frame: 644

locateFrameFromCLBnr: CLBcol: 21

locateFrameFromCLBnr: frame: 1190

read frame: frames to read out: 66

read frame: frameStart: 199963

read frame: Read out CLBs startCLB: 21 endCLB: 23

read frame: startCLB >= 16 startCLB < 24

warning BRAM/DSP connections read out not implemented
read frame: Closing files

[unknown@archbox testing]$ ls

adder module.bit sub-modified-to-adder.bit sz410-adder-32in-32out-
bm.bit sz410-sub-32in-32out-bm.bit temp sub module.bit
orig module.bit sub module.bit sz410-hwicap-adder.bit
temp adder module.bit test

First step finished, the addition module is read out of its bitfile and the subtracter
module read out of its bitfile. These files are copied to the nfs_share folder. The rest
of the work is done on the Suzaku-V. The Suzaku-V is loaded initially with the
design including the subtraction module.

# uname -a

Linux SUZAKU-V.S5Z410 2.6.18-atll #6 Tue Apr 21 16:46:57 JST 2009
ppc unknown

# mount

/dev/mtdblock7 on / type romfs (ro)

/proc on /proc type proc (rw)

none on /var type ramfs (rw)

none on /etc/config type ramfs (rw)
192.168.0.1:/home/unknown/project/nfs share on /mnt type nfs
(rw,vers=3,rsize=32768,wsize=32768,hard,nolock,proto=udp, timeo=7)
# cd mnt

# 1s

adder icap read temp.hex

adder. ko icap write xilinx hwicap m.ko
adder module.bit orig module.bit

frames.bit sub_module.bit

# insmod adder.ko

# ./adder

Adds two numbers.
Type inn numbers A: 33

A is: 33

Type inn numbers B: 55
B is: 55

input = 33

Access Hardware

FPGA Memory accessing

write fpga: writing data 33005500 to address c5002200
ret: 4

fpga read: reading data 33005500 fom address c5002200
fpga read: reading data 2200 fom address c5002204
fpga read: reading data 0 fom address c5002208

ret: 12
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output = 33 0 55 0

output 00 22 0

output = 0 0 0 0

# insmod xilinx hwicap m.ko

icap icap.0: Xilinx icap port driver
icap icap.0: ioremap f0f00000 to c5008000 with size 1000

# ./icap write -h

icap write -i [filename] -f [frames]

This program has the address hardcoded inn.
Frames will be written to CLB 21 and on,
# ./icap write -i adder module.bit -f 66

Frames: 66

Access Hardware

icap icap.0: initializing
icap icap.0: Reset...

icap icap. Desync. ..

icap icap.0: Reading IDCODE...
icap icap. IDCODE = 21e58093
icap icap. Desync. ..

FPGA Memory accessing

Writing frames

Finished writing frames
Postconfig

Getting Status of FPGA

Stat acces word 2800E001
Status: 78FC

closing device

# ./adder

Adds two numbers.

Type inn numbers A: 55

QOO DO O

A is: 55

Type inn numbers B: 33
B is: 33

input = 55

Access Hardware
FPGA Memory accessing

write fpga: writing data 55003300 to address c5002200

ret: 4

fpga read: reading data 55003300 fom address c5002200
fpga read: reading data 8800 fom address c5002204
fpga read: reading data 0 fom address c5002208

ret: 12

output = 55 0 33 0
output = 0 0 88 0
output = 0 0 0 0

# date; ./icap write -i sub _module.bit -f 66, date

Thu Jan 1 00:17:27 UTC 1970
Frames: 66

Access Hardware

icap icap.0: initializing
icap icap.0: Reset...

icap icap. Desync. ..

icap icap. Reading IDCODE. ..
icap icap. IDCODE = 21e58093
icap icap. Desync. ..

FPGA Memory accessing

Writing frames

Finished writing frames
Postconfig

Getting Status of FPGA

Stat acces word 2800E001
Status: 78FC

closing device

Thu Jan 1 00:17:27 UTC 1970

QO DO O
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# ./adder
Adds two numbers.
Type inn numbers A: 38

A is: 38

Type inn numbers B: 49
B is: 49

input = 38

Access Hardware

FPGA Memory accessing

write fpga: writing data 38004900 to address c5002200
ret: 4

fpga read: reading data 38004900 fom address c5002200
fpga read: reading data 1100 fom address c5002204
fpga read: reading data 0 fom address c5002208

ret: 12

output = 38 0 49 0
output 00 11 0
output 00 0 0

In the code here one can see that the output from the adder program, which accesses
the hardware changes functionality. When the adder module is inserted the returned
data in the test program shows an addition (the code has bad formating and the
numbers are in hex for debugging). When the subtraction module is inserted, the
output when accessing the same hardware module changes from addition to
subtraction.

In the last example where the sub_module is inserted the command is run with a
simple date before and after (; separates commands). This gives only a vague
indication on configuration time. Other commands for measuring execution time was
not available. As seen the time is less then a second for reconfiguration, this includes
the printf() commands, so the configuration program is not optimal.

The example shows reconfiguration of modules done in under a second, without
rebooting Linux. This is a major improvement over previous reconfiguration time of
over 70 seconds (including reboot of Linux) [6].

The main time differences in the two examples are that the 70 second is mostly
because of rebooting Linux, but also because of a full configuration of the FPGA.
The example here only reconfigures a part of the FPGA and Linux does not have to
reboot. Since Linux does not have to reboot other users could be connected to the
platform and would not notice any difference, unless they were using that hardware
module.
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A self reconfigurable system is complex, when using current technology to realize it.
Understanding visualizing, conceptualizing and implementing are time consuming.
With only 20 weeks there are limits to what can be done, especially when one has to
understand the FPGA device used, its development tools, the Linux kernel and distro
with tools.

The problem is not that the different issues or tasks are hard to do or difficult to
understand. It's the amount of information to go through to find the correct data and
also the lack of documentation.

Problems aside dynamic self reconfiguration is an interesting field that can enhance
many systems and tasks. Some enhancements are the ability to remove bugs in
hardware, after shipment, ability to comply to not yet defined protocols, reduced
hardware need. Since not all tasks are needed to be in the final configuration,
leading to power saving advantage and less complexity.

The ability to remove hardware bugs after shipment can be seen as a good and bad
thing. As a positive side a device with faults can be updated fast, without having to
change the device. The developer can easily change a defect in the design without it
taking 3+ months to run a new batch of the device, resulting in faster time to market.
As a negative side, products can be rushed even more then what is done currently,
further building on the beta society that rules now. With this I mean products will be
rushed to the customer even earlier as it is possible to fix problems, further
implement functionality in the system after the customer gets the system. This can
result in devices not functioning as anticipated before some time after arrival, further
enhancing peoples distrust and frustration on devices not functioning as good as they
should.

The ability to adjust to new protocols is really important for users, this can make
devices work seamlessly when entering a new environment. An example can be
when traveling to different countries and the cellphone will automatically update the
protocols and system for that country, without having extensive hardware capable of
this.

As a result of this project a proof of concept has been created demonstrating self
reconfiguration on the Suzaku-V platform utilizing a Virtex-IV FPGA. The
prototype has a small reconfigurable area, 16x3 CLB's, so the modules implemented
for test has simple functionalities, addition and subtraction. As the system can
reconfigure it self and the modules can be used with communication from the CPU it
is shown a method for self reconfiguration on a Xilinx FPGA.

The proof of concept does not have multiple reconfigurable modules, so it is not
tested how reconfigurable modules can be moved/replaced. With the structure of the
bitfile explained in the theory section, one can see the problems related to moving
modules in the bitstream. Just moving CLB data is not a problem as these are
uniform, but when a bigger module consisting of multiple CLB's and spanning over
other logic, like BRAM or DSP the problem changes. If BRAM or DSP logic are
used the module can only be moved to places where these elements are available.
When a module uses routing in a DSP or BRAM slice but not the logic, the module
can be moved to a location without this logic, since the 20 first frames for a CLB,
DSP or BRAM are the interconnects. The interconnects are equal for all logic. Even
if it is possible, this will result in more processing as the bitstream needs to be
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modified when uploaded, not just preprocessed at creation.

Dynamic self reconfiguration is of most interest when it is possible to reconfigure a
part of a design that connects to a design that does not change, static design. This
gives the most flexibility and enhancement to a system. In this thesis it is shown how
the bus-macros can give this flexibility and also the possibility to design modules
without knowing or caring about the static design.

The bus-macro design used here is the LUT based design as earlier explained. This
design gives a great deal of flexibility as these can be created in all sizes and
directions . An issue with the LUT based bus-macro is that it uses LUT's that could
be used for logic, giving a logic usage overhead to the reconfigurable module size.
There is only one reason for the bus-macros need to use LUT's and that is that LUT's
are the smallest unit that can be set as a hard macro by Xilinx tools. It could be as
simple as Xilinx patching their tools to enable hard macros defining wires or switch
boxes. By just defining wires crossing a border, a reconfigurable module would have
no logic overhead.

With reference to Xilinx tools it is possible to set area constraints limiting logic
inside a “box”. Also using Xilinx own partial reconfiguration tool flow, it is possible
to limit routing for a reconfigurable module inside the same “box”. A limitation with
Xilinx tools is that the static design routing can not be limited to not cross into a
reconfigurable module, so the static routing cross into the reconfigurable module.
Xilinx partial reconfiguration tools thus has to compile all reconfigurable modules at
the same time, since routing used in the reconfigurable module for the static design
has to be included in all modules.

In a reconfigurable system a network solution for communication to and from the
modules are absolute necessary. Since the modules are not always present in the
configuration, this network becomes more complex. Modules trying to communicate
with each other, one module can not know if the other module is present. A solution
to this is to route all communication through the configuration controller (CPU), the
messages can then be routed to the correct address or put on hold if the module is
not present.

Controlling a self reconfigurable system is a complex task. The HWOS ideas and
framework work done in this thesis are only a scratch on the surface on this
important subject. The lack of a functioning system, for testing of different solutions
is mostly the reason for this, more time was given to getting actual self
reconfiguration working, on a Virtex-IV FPGA. With a functioning system for self
reconfiguration more work can be done concerning the HWOS aspects. Important
focus points here are scheduling of tasks, placement and fragmentation of modules,
communication between modules and to external applications. Integration of the
HWOS in Linux can simplify much work, by using available resources and
implementations done in Linux, the IP-stack, network protocols, scripting and so on.

Swapping of modules are essential for the self reconfigurable system. The swapping
of a module will take some time, resulting in a overhead for execution of tasks in
hardware. It is not possible to start a task before it has been fully configured. This is
in difference to software where parts of the program can be loaded from memory
and executed. Smaller module sizes could be achieved by dividing a module and thus
reducing some of the overhead. But this will most likely not be possible in most
designs. Storing the work done in a module when switching it out, can be time
consuming. This can be done by stopping the module, then read the complete
module out and writing it in again when execution can be continued. As proposed
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earlier, designing a module so it can flush data when signaled, the time it takes to
store the state of a module can be reduced greatly. The actual processed data in a
module will be much less then logic and routing data, if the complete module
configuration is read out.
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Difficulties:

As described throughout this thesis, self reconfiguration is a complex task. The
system is complex and to prove correctness the complete system needs to be tested. It
is not possible to correctly prove functionality by separately testing concepts.

Bus-Macro:

To be able to realize a partially reconfigurable system, where modules and static
design can communicate with each other, bus-macros were used. Bus macros are
prerouted modules included in a design, ensuring that the same “wires” are used.
The bus-macro are a vital part of the partial reconfigurable system. Bus-macros uses
the smallest unit that can be defined in a macro. Further enhancement to Xilinx tools
could enable wiring to be the smallest definable unit, this would be really useful.

Proof of concept:

To test and show the bitstream data composition of the FPGA, a partial self
reconfiguration proof of concept was created for the Suzaku-V platform. Because of
the limited size on the FPGA, only one reconfigurable module was included. The
concept was proven to work with two simple modules, an addition and a subtraction
module. The proof of concept is a excellent starting point for further enhancements,
as it is a working system, but it is only a proof of concept and should not be used as
is. The proof of concept realized reconfiguration without rebooting Linux, a module
was reconfigured and ready for use in less then a second.

Many aspects needs more work:

The main focus of the work done in this thesis, has been to get a system working and
how to create the system with available tools. There are many aspects of this that
needs more work. Creating reconfigurable modules now demands a lot from the
designer, checking and rerouting a FPGA design is tiresome. The concept of reading
out and writing in modules has been shown, the programs doing this needs further
work to be more dynamic and bug free. The HWOS needs much thought and design
to be made more generic and optimal. Manny ideas and concepts has been shown or
described in this thesis, most of these are in early stages and needs more work.

I feel the work done in this thesis will be of great value for further work. Some
concepts has been proven and they are shown how to implement. There has also been
proposed some ideas and concepts for further work. Hopefully this will simplify the
process of further development and research regarding self reconfigurable systems.
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There are multiple areas that needs more work in the area of dynamic self
reconfiguration. Following are some points that can be of interest as a continuation
of the work done in this thesis.

Upgrade platform to use a FPGA with more logic enabling multiple bigger
reconfigurable module areas.

Work with placement, the possibility of hardware modules accelerating the
bitstream modification. Making this module a reconfigurable module.

Creating models in SystemC for testing placement and scheduling algorithms for
the system. This can reduce the time consuming task of getting the system to
work, and also a testbed for new concepts.

Other platforms? Work in this thesis are for the Xilinx FPGA, make a survey of
possible systems.

Thorough study on Xilinx tools, what is possible with regards to limit routing
and placement of logic.

Reverse engineer the Xilinx bitstream for the ability to modify logic, read out
data and check routing conflict cross reconfigurable module borders.
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