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Problem Description
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Abstract

This work is a study about source localization methods, more pre-
cisely, about beamforming approaches. The necessary background theory is
provided first, and then, further developed to explain the basis of each ap-
proach. The studied problem consists in an array of sensors in which the
signal to process is impinging. Several examples of inciding signals are pro-
vided in order to compare the performance of the methods. The goal of the
approaches is to find the Incident Signal Power and the Direction Of Arrival
of the Signal (or Signals) Of Interest. With these information, the source
can be located in angle and range. After the study, the conclusions will show
which methods to chose depending on the application pursued. Finally, some
ideas or guidelines about future investigation on the field, will be given.
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Chapter 1

Motivation and Purpose

Array signal processing has wide applications in sonar, radar, wire-
less communications, radioastronomy, seismology, medical-imaging, speech
acquisition, etc. Sources localization is one of the most important tasks in
array signal processing and has been an active research area for many years.

The main objective of this work is to study robust source localization
methods for targets using an array of sensors. Direction Of Arrival (angle)
estimation and Incident Signal Power (range) estimation will be studied, and
then linked to source localization.

The study will include a comparison of the existing source localization
methods, also referred through the work as beamforming approaches, some
solutions to improve their performance, and some simulations showing differ-
ent cases of incident signals. The goal is to chose the most suitable method
in each case and to explain the reason of this choice.



Chapter 2

Introduction to Beamforming

When an array of sensors receive a signal there is an implicit delay
between the signal arriving at the different sensors because the signal has a
finite velocity and the sensors are not located at the same location in space.
This can be used by exploiting the fact that the delay among the sensors
will be different depending on which direction the signal is coming from, and
tuning the array to ”look” in a specific direction. This process is know as
beamforming, and can be used as a source localization method.

2.1 Beamformer Classification

Beamformers can be classified as either data independent or statis-
cally optimum, depending no how the weights are chosen. The weights in
a data independent beamformer do not depend on the array data and are
chosen to present a specified response for all signal/interference scenarios.
The weights in a statiscally optimum beamformer are chosen based on the
statistics of the array data to ”optimize” the array response. In general the
statiscally optimum beamformer places nulls in the directions of interfering
sources in an attempt to maximize the signal to noise ratio at the beam-
former output.

The statistics of the array data are not usually known and may change
over time so adaptive algorithms are typically employed to determine the
weights. The adaptive algorithm is designed so the beamformer response con-
verges to a statiscally optimum solution. Partially adaptive beamformers
reduce the adaptive algorithm computational load at the expense of a loss
(designed to be small) in statistical optimality.
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This work in centered in the statiscally adaptive techniques, that are
most suitable for the demanded task of locating a source.

2.2 Basic Terminology and Concepts

The signal s0(t) arrives at the array of receivers (sensors). It is im-
portant to say, that one of them will be the reference point ; this means that
the delay to this sensor is considered to be null, and the signal is arriving to
the rest of sensors with a delay relative to this one. The signal arrives with
an angle θ0, that is, the Direction of Arrival (DOA).

Because of the DOA there is a delay in the signal arriving at each
receiver of the array,

x0m(t) = s0(t− τ0m) + n(t) (2.1)

or
X0m(ω) = e−jωτ0mS0(ω) + N(ω), (2.2)

where the subscript m represents which receiver in the array; and n(t), N(ω)
in frequency domain, is the noise.

Then, an array of M elements can be characterized by



X01(ω)
X02(ω)

...
X0M(ω)


 =




e−jωτ01

e−jωτ02

...
e−jωτ0M


 S0(ω) + N(ω). (2.3)

Equation (2.3) can be written as



X01(ω)
X02(ω)

...
X0M(ω)


 = A(θ0)S0(ω) + N(ω), (2.4)

where A(θ0) is the array manifold vector which is dependent on θ0, that is,
dependent on the delays that the signal suffers arriving at the different re-
ceivers. A(θ0) is also dependent on the frequency as it can be seen in (2.3).

In time domain, equation (2.4) is

x0(t) = a(θ0)s0(t) + n(t), (2.5)
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but in fact, the sensors are not receiving only one signal but a combination
of several ones, so,

x(t) =
D∑

d=0

a(θd)sd(t) + n(t), (2.6)

where D is the number of signals arriving to the array of receivers; s0(t) is
the Signal Of Interest (SOI) and s1(t), s2(t), . . . , sD(t) are the interfering
ones.

2.2.1 Beamforming and Spatial Filtering

Depending on the nature of the signal (narrowband or broadband) it
is possible to do a first distinction between beamformers [1].

When processing narrowband signals; the beamformer samples the
propagating wave field in space. The output at time k, y(k), is given by a
linear combination of the data at the M sensors at time k

y(k) =
M∑

m=1

w∗
mxm(k), (2.7)

where ∗ represents complex conjugate and wm are the weights of the beam-
former. It is conventional to multiply the data by conjugates of the weights
to simplify notation. It is assumed throughout that the data and weights
are complex since in many applications a quadrature receiver is used at each
sensor to generate in phase and quadrature (I and Q) data. Each sensor is
assumed to have any necessary receiver electronics and an A/D converter if
beamforming is performed digitally.

When processing signals of significant frequency extent (broadband);
the beamformer samples the propagating wave field in both space and time.
The output in this case can be expressed as

y(k) =
M∑

m=1

K−1∑
p=0

w∗
m,pxm(k − p), (2.8)

where K−1 is the number of delays in each of the M sensor channels. If the
signal at each sensor is viewed as an input, then a beamformer represents
a multi-input single out-put system. The remainder of the paper, however,
will be focused on narrowband beamformers.
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To simplify notation, (2.7) and (2.8) can be written as

y(k) = wHx(k) (2.9)

by appropiately defining a weight vector w and data vector x(k). The su-
perscript H represents Hermitian (complex conjugate) transpose and vectors
are assumed to be column vectors. Equation (2.9) can be written as

y = wHx, (2.10)

where the time index has been dropped to make notation easier.

2.2.2 Second Order Statistics

Second order statistics as power or variance play an important role
in the evaluation of the beamformer performance. It will be assumed that
the data received at the sensors is zero mean throughout the paper. In order
to explain this section in a clear way, it will be assumed also that there
is no noise or interferring signals arriving at the sensors, that means that
equation (2.6) will be

x(t) = a(θ)s(t)

just in this subsection.

The variance or expected power of the beamformer output is given by

E{|y|2} = wHE{xxH}w. (2.11)

If the data is wide sense stationary, the data covariance matrix,

Rx = E{xxH}, (2.12)

is independent of time. The wide sense stationary assumption is used in
developing statiscally optimal beamformers and in evaluating steady state
performance.

Suppose x represents samples from a uniformly sampled time series
having a power spectral density S(ω) and no energy outside of the spectral
band [ωa, ωb]. Rx can be expressed in terms of the power spectral density of
the data using the Fourier transform relationship as

Rx =
1

2π

∫ ωb

ωa

S(ω)a(θ)aH(θ)dω, (2.13)



6 Chapter 2. Introduction to Beamforming

where a(θ) is the already known array manifold vector that appeared in equa-
tion (2.5). As it has been said before, it is dependent on frequency, i.e. on
ω.

When a source is narrowband of frequency ω0, Rx can be represented
as

Rx = σ2
sa(θ)aH(θ)

∣∣
ω=ω0

, (2.14)

where σ2
s is the source variance or power, and the array manifold vector is

evaluated at ω = ω0.

The conditions under which a source can be considered narrowband
depend on both the source bandwidth and the time over which the source is
observed.

2.3 Snapshot Model

In order to characterize the arriving signal, not only, but several time
samples will be computed, this is the Snapshot Model [2].

As said before, it is necessary to obtain second order statistics, more
precisely, the data covariance matrix. However, in practical applications, the
matrix Rx is unavailable and is replaced by the sample covariance matrix [3]

R̃x =
1

N

N∑
n=1

x(n)xH(n) =
1

N
XXH , (2.15)

where N is the number of snapshots available. When the number of snap-
shots is big enough, the sample covariance matrix is equivalent to the data
covariance matrix, R̃x −−−→

N→∞
Rx.

Using equation (2.6) into (2.15), the data covariance matrix of the
incoming signal formed by the SOI and the interfering ones can be estimated
by

Rx ≈
D∑

d=0

σ2
da(θd)a

H(θd) + Q, (2.16)

where Q is the noise covariance matrix.
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2.4 Traditional Approaches and State of the

Art

In the simplest case of beaforming (Delay and Sum), the weights
are

w = a(θ). (2.17)

Substituting this weights in (2.10), and using also (2.6),

y = wHx = aH(θ)

(
D∑

d=0

a(θd)sd + n

)
. (2.18)

Comparing this result with the estimated data covariance matrix,
(2.16), it can be seen a clear correspondance between the beamformer output
y and the estimated data covariance matrix Rx.

As it can be seen in the figure, by changing the angle θ in the weights,
the beamformer output varies as well. This output will be maximum when
θ = DOA of the SOI; in other words, this is a way of finding out the direction
of arrival in which the source is emitting.

The estimated data covariance matrix can be used also to figure out
the Incident Signal Power (ISP), and with this the range, it is, the distance
between the source and the sensors.

Although the idea is simple this beamformer is not very commonly
used in practical applications because it do not work too well. The main
disadvantage is that no nulls are placed directly in jamming signal locations.
The Delay and Sum beamformer seeks only to enhance the signal in the
direction to which the array is currently steered, and therefore, it is not pos-
sible to resolve power of two sources placed closer than a beamwidth.

In order to improve the above beamformer, researchers proposed the
Standard Capon Beamformer (SCB). The idea is try to minimize the
power contributing by noise and any signals coming from other directions
than the DOA of the SOI while mantaining a fixed gain in the direction of
interest. This way the SCB has better resolution and much better interfer-
ence rejection capability than the DAS beamformer.

The traditional techniques commented before are ad hoc techniques.
In theory they are suppose to work well, but in practical applications the
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desired signal can be present during the beamformer training data, and also
the assumptions on the nature of the desired signal and/or interference can
be violated. In the case of the SCB, the problem arises when the array
steering vector is not accurately known. This problems combined with the
finite sample support, the inherent nonstationary nature of the underlying
environmental processes, array manifold errors, etc. may lead to the need of
a robust adaptive beamforming [4].

As commented before, one of the main problems that occur in prac-
tical adaptive array processing is the mismatch between the desired signal
steering vector and the actual steering vector, that results in a steering vec-
tor uncertainty. Adaptive array techniques are known to be very sensitive to
even slight mismatches of such a type that may occur due to signal pointing
errors, imperfect array calibration, source local scattering, wavefront dis-
tortions, etc. All these effects result in suppression of the desired signal
component. This phenomenon is commonly referred to as signal self-nulling.

There are several ad hoc approaches existing to overcome arbitrary
desired signal mismatches, such as the diagonal loading of the sample co-
variance matrix, widely used for its simplicity.

However, how to select the loading level remains a crucial and open
problem; the chosen loadings are not directly related to the steering vector
uncertainty, so they are not guaranteed to be always optimal when the un-
certainty changes [5].

One of the recent theoretically rigorous and powerful approaches to
robust beamforming in the presence of an arbitrary unknown steering sig-
nal mismatch is based on worst-case performance optimization. These
methods determine the optimal loading by defining the so-called uncertainty
set [6, 7]. Adaptively choosing the loading according to the steering vec-
tor uncertainty, these approaches tend to outperform the ad hoc techniques
previously mentioned. However, optimal loading is still solved mainly by
iteration at present (by a Newton’s method1 for example). The iterative
methods may suffer from slow convergence or nonconvergence unless the ini-
tial point for searching is selected very carefully. These slow convergence or
non-convergence cases mean a heavy computational burden; and also, these
iterative methods help little in revealing what factors can affect the optimal
loading and how to affect it.

1More information about this method will be provided in Chapter 3 Approaches.
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Since the essence of these worst-case performance methods is
to improve robustness by imposing a diagonal matrix onto the covariance
matrix, it is still useful and necessary to study how to determine the optimal
loading according to such parameters as the steering vector uncertainty, the
noise power, the source power, and so on. Recent advances on the field
are focused on trying to obtain the optimal loading, and on finding out the
parameters that affect this loading.



Chapter 3

Approaches

As seen in the introduction1, several methods exist that implement
beamforming. The goal of this chapter is to explain in detail these meth-
ods. For further information, the appendix includes the complete code of
all programs used in this work. In the following chapter, several numerical
examples will be given in order to compare the different approaches and the
advantages and disadvantages of using each one.

3.1 Delay And Sum Beamformer

The underlying idea of Delay and Sum (DAS) beamforming is that
when an electromagnetic signal impinges upon the aperture of the antenna
array, the element outputs, added together with appropriate amounts of de-
lays, reinforce signals with respect to noise or signals arriving at different
directions. The delays required depend on the physical spacing between the
elements in the array. The geometrical arrangement of elements and weights
associated with each element are crucial factors in defining the array’s char-
acteristics.

As commented before, the weights in the DAS beamformer2 are w =
a(θ0). This idea is exploded to obtain the ISP as

ISP = a(θ0)
HR̃xa(θ0). (3.1)

where R̃x is the already seen sample covariance matrix.

1Chapter 2 Introduction to Beamforming.
2In this chapter, the subscript 0, as in a(θ0), references the SOI.
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This is a very simple method but it seeks only to enhance the signal
in the direction to which the array is currently steered, and so the limitations
can be seen in the experimental results.

3.2 Standard Capon Beamformer

The Standard Capon Beamformer has better resolution and much bet-
ter interference rejection capability than the data-independent beamformer
when the array steering vector corresponding to the SOI is accurately known.

The undelying idea of this beamformer is try to minimize the power
contributing by noise and any signals coming from other directions than the
DOA of the SOI while mantaining a fixed gain in the direction of interest (this
can be viewed as a sharp spatial bandpass filter) [8]. The optimal weights can
be found using for example, the technique of Lagrange multipliers, resulting
in

w =
R̃−1

x a(θ0)

aH(θ0)R̃−1
x a(θ0)

, (3.2)

and the power is therefore

ISP =
1

aH(θ0)R̃−1
x a(θ0)

. (3.3)

Although this method works better than the former one, it lacks robut-
ness in the presence of array steering vector errors.

3.3 Robust Capon Beamforming

Robust Capon Beamforming is a natural extension of the Standard
Capon Beamforming to the case of uncertain steering vectors. This beam-
former can no longer be expressed in a closed form, but it can be efficiently
computed [9].

As it has been said, the problem can be stated as follows: extend the
SCB so as to be able to accurately determine the power of the SOI even
when only an imprecise knowledge of its steering vector, a(θ0), is available.
In other words, it is assumed that the only knowledge about a(θ0) is that it
belongs to the following uncertainty ellipsoid

[a(θ0)− ā]∗C−1 [a(θ0)− ā] ≤ 1 (3.4)
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where ā and C (a positive definite matrix) are given.

A particular case of equation (3.4) will be considered in the numerical
examples. This consideration can be assumed when the array calibration
errors are relatively small (and can be neglected) but the knowledge of the
DOA is inaccurate, in other words, the DOA of the SOI is assumed to be
θ0 + ∆ instead of θ0. In this case ā is set to ā = a(θ0 + ∆). If also C is
choosen as C = εI, equation (3.4) becomes

‖a(θ0)− ā‖2 ≤ ε ā = a(θ0 + ∆) (3.5)

To avoid ambiguities, it will be assumed also that

‖a(θ0)‖2 = M (3.6)

and
‖ā‖2 = M (3.7)

where ‖·‖ denotes the Euclidean norm and M the number of sensors in the
array.

These assumptions are reasonable for many scenarios including the
cases of the look direction error and phase perturbations. They are violated
when the array response vector also has gain perturbations. However, if the
gain perturbations are small, the norm constraint still holds approximately.

3.3.1 Diagonal Loading

Diagonal Loading3 has been a popular approach to improve the ro-
bustness of the Standard Capon Beamformer. The Diagonal Loading ap-
proaches are derived by imposing an additional quadratic constraint either
on the Euclidean norm of the weight vector itself or on its difference from a
desired weight vector. In this work, the constraint is imposed on the differ-
ence, so using equation (3.5) it can be stated the following quadratic problem
[6]:

min
a

a∗R−1a ‖a− ā‖2 = ε. (3.8)

This problem can be solved by using the Lagrange multiplier method-
oly, which is based on the function

f = a∗R−1a + λ
(‖a− ā‖2 − ε

)
(3.9)

3To simplify notation, in this subsection a(θ0) is a, and R̃x is R.
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where λ ≥ 0 is the Lagrange multiplier [10].

From equation (3.9) it can be obtained

g(λ) =
M∑

m=1

|zm|2
(1 + λγm)

= ε. (3.10)

In this equation zm denote the mth element of z, where z = U∗ā and
R = UΓU∗. The columns of U contain the eigenvectors of R, and the
diagonal elements of the diagonal matrix Γ, γ1 ≥ γ2 ≥ · · · ≥ γM are the
corresponding eigenvalues.

The goal is to determine λ, it is, the quantity of Diagonal Loading. To
do that, it is assumed that the solution λ > 0 is unique and that it belongs
to the following interval:

‖ā‖ − √ε

γ1

√
ε

≤ λ ≤ min





(
1

ε

M∑
m=1

|zm|2
γ2

m

)1/2

,
‖ā‖ − √ε

γM

√
ε



 . (3.11)

The problem can be solved by a Newton’s method. From equation
(3.10) it can be stated

f(λ) = g(λ)− ε = 0. (3.12)

Applying Newton’s method to f(λ) leads to

λn+1 = λn − f(λn)

f ′(λn)
. (3.13)

where the subscript n represents the nth iteration. The value of λ can be
obtained by iteration in a very simple way. The only difficulty is that it can
be hard to find the correct starting value λ0 that makes the method converge.

Once the Lagrange multiplier λ is determined, the weights can be
obtained as

w =
(R + λI)−1 a

aH (R + λI)−1 a
, (3.14)

and the power is

ISP =
1

ā∗UΓ (λ−2I + 2λ−1Γ + Γ2)−1 U∗ā
. (3.15)
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3.3.2 Norm Constrained Capon Beamformer

As it has been said before, SCB has better resolution and much better
interference rejection capability than the DAS Beamformer, although it lacks
robustness in the presence of array steering vector errors. Diagonal Loading
method improves the robustness of the SCB, but it is not clear how to choose
the diagonal loading level based on information about the uncertainty of the
array steering vector.

Norm Constrained Capon Beamformer (NCCB) approach [7] uses a
norm constraint on the weight vector to improve the robustness against array
steering vector errors and noise, more precisely, it imposes an additional
constraint on the Euclidean norm of w. Consequently, the beamforming
problem is formulated as follows:

min
w

w∗Rw subject to w∗ā = 1

‖w‖2 ≤ ζ.
(3.16)

Let S be the set defined by the constraints in (3.16). In addition, let

g1 (w, λ, µ) = w∗Rw + λ
(‖w‖2 − ζ

)
+ µ (−w∗ā− ā∗w + 2) (3.17)

where λ and µ are the real-valued Lagrange multipliers with µ being arbitrary
and λ ≥ 0 satisfying R + λI > 0 so that g1 (w, λ, µ) can be minimized with
respect to w. Then

g1 (w, λ, µ) ≤ w∗Rw for any w ∈ S (3.18)

with equality on the boundary of S.

As in the former approach, also in this one it is necessary to solve a
problem using a Newton’s Method. The problem is the following:

M∑
m=1

|zm|2
(γm + λ̂)2

[
M∑

m=1

|zm|2
(γm + λ̂)

]2 = ζ (3.19)

that must be solved only when the condition

ζ <
ā∗R−2ā

[ā∗R−1ā]2
(3.20)
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is satisfied.

As in DL, zm denote the mth element of z. Also, z = U∗ā and
R = UΓU∗. The columns of U contain the eigenvectors of R, and the
diagonal elements of the diagonal matrix Γ, γ1 ≥ γ2 ≥ · · · ≥ γM are the
corresponding eigenvalues.

The value of λ̂ is obtained from (3.19) by a Newton’s Method4 using
also the knowledge that λ̂ is upper bounded by

λ̂ ≤ γ1 − (Mζ)1/2γM

(Mζ)1/2 − 1
(3.21)

and lower bounded by 0.

Then, the obtained λ̂ is used in

ŵ =
U(Γ + λ̂I)−1U∗ā

ā∗U(Γ + λ̂I)−1U∗ā
(3.22)

to obtain the weights of the beamformer.

The SOI power estimate of NCCB is

ISP =
ā∗U(Γ + λ̂I)−2ΓU∗ā[
ā∗U(Γ + λ̂I)−1U∗ā

]2 (3.23)

which is easily obtained using ISP = ŵ∗Rŵ.

3.3.3 Doubly Constrained Robust Capon Beamformer

The problem with NCCB is that the choice of ζ is not easy to make.
In particular, this choice is not directly linked to the ε in equation (3.5) or
the uncertainty of the SOI steering vector. The Doubly Constraint Robust
Capon Beamformer (DCRCB) algorithm does not suffer from this problem.

DCRCB is a natural extension of the SCB, which it has been obtained
via covariance matrix fitting, to the case of uncertain steering vectors by en-
forcing a double constraint on the array steering vector, it means, a constant
norm constraint, equation (3.6), and a spherical uncertainty set constraint,

4See (3.12) and (3.13).
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equation (3.5). This way, it can be obtained a robust estimate of σ2
0, where

σ2
0 is the ISP of the SOI, without any intermediate calculation of a vector w

[7]:

max
σ2,a

σ2 subject to R− σ2aa∗ ≥ 0

‖a− ā‖2 ≤ ε

‖a‖2 = M

(3.24)

where ā is given and satisfies (3.7), and ε is also given and satisfies ε > 0.

Using the fact that, for given a, the solution of (3.24), σ2, is obtained
by σ2

0 = 1/ (a∗R−1a), the DCRCB problem can be reduced to:

min
a

a∗R−1a subject to ‖a− ā‖2 ≤ ε

‖a‖2 = M.
(3.25)

Let â denote the solution to the above optimization problem. The
SOI power estimate is then calculated as

σ̂2
0 =

1

â∗R−1â
. (3.26)

Using ‖a‖2 = ‖ā‖2 = M in (3.25) leads to

min
a

a∗R−1a subject to Re (ā∗a) ≥ M − ε

2

‖a‖2 = M
(3.27)

which is a problem that somewhat resembles the NCCB type of problem,
and therefore can be solved in a similar way.

As in NCCB, when the condition

Re (ā∗ã) < M − ε

2
(3.28)

is satisfied, equation
M∑

m=1

|zm|2(
1

γm
+ λ̂

)2




M∑
m=1

|zm|2(
1

γm
+ λ̂

)



2 = ρ (3.29)
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must be solved by a Newton’s Method, using the knowledge that the solution
is unique and it is lower bounded by −1/γ1 and upper bounded by

λ̂ ≤
1

γM
− (Mρ)1/2

(
1
γ1

)

(Mρ)1/2 − 1
. (3.30)

In the condition stated in equation (3.28), ã = M1/2u1e
jφ, where

φ = arg (u∗1ā), and u1 is the principal eigenvector in U corresponding to the
largest eigenvalue of R. If the condition is not satisfied, σ̂2

0 = γ1/M .

The weights of the DCRCB can be obtained using

w =
R−1â

â∗R−1â
(3.31)

which is equivalent to

w =
1

M − ε
2

[
ā∗

(
R +

1

λ̂
I

)−1

Rā

]

·

(
R + 1

λ̂
I
)−1

ā

ā∗
(
R + 1

λ̂
I
)−1

R
(
R + 1

λ̂
I
)−1

ā
.

(3.32)

The ISP can be computed as

σ̂2
0 =

1(
M − ε

2

)2

[
ā∗U(I + λ̂Γ)−1ΓU∗ā

]2

ā∗U(I + λ̂Γ)−2ΓU∗ā
. (3.33)



Chapter 4

Results and Discussion

In this chapter, a short introduction will be given in order to explain
the problem formulation. Several approaches of source localization1 will be
studied and compared. The methods explained have been programmed using
MATLAB2. Numerical examples are given in order to explain and clarify the
differences between the approaches and also the different results that can be
obtained by means of the methods. The examples are focused in estimation
of the DOA and ISP, but can be extended to signal waveform estimation3.

4.1 Problem Formulation

Consider an array comprising M sensors, and let R denote the the-
oretical covariance matrix of the array output vector. It is assumed that
R > 0 (positive definite) has the following form:

R = σ2
0a0a

∗
0 +

K∑

k=1

σ2
kaka

∗
k + Q (4.1)

where (σ2
0, {σ2

k}K
k=1) are the powers of the (K+1) uncorrelated signals imping-

ing on the array, (a0, {ak}K
k=1) are the so-called steering vectors that depend

on the array geometry and are functions of the location parameters of the
sources emitting the signals, ( )∗ denotes the conjugate transpose, and Q is
the noise covariance matrix. This equation is equivalent to equation (2.16),

1See Chapter 3 Approaches.
2Numerical computing environment and programming language created by The Math-

Works.
3For further information see Chapter 5, Section 5.1 Applications.
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introduced in Chapter 2, Section 2.3 Snapshot Model. It is assumed as well
that the first term in (4.1) corresponds to the Signal Of Interest (SOI) and
the remaining rank-one terms to K interferences. However, in the following
examples the attention is centered not only in detecting one signal, but all
the signals impinging in the array; although it is also discussed the behaviour
of the methods, when the application demand is detecting the signal with
highest incident power.

The array has half-wavelength sensor spacing. As it will be com-
mented in Chapter 5, Section 5.2 Further Investigation, the election of this
spacing determines the work frequency in a real implementation.

The true steering vector error is defined by ε0 = minα ‖a0e
jα − ā‖2

,
where a0 is the true steering vector, and ā is the assumed steering vector.

To simulate the array calibration error (the sensor amplitude and
phase error as well as the sensor position error), each element of the steering
vector for each incident signal is perturbed with a zero-mean circularly sym-
metric complex Gaussian random variable normalized so that ε0 = 1. The
perturbing Gaussian random variables are independent of each other.

4.2 Examples

As commented before, some examples are provided in order to com-
pare the performance of the studied beamformers in different situations, and
so can judge which one is the best one depending on the application4.

4.2.1 One Single Inciding Signal

The first example provided to compare the features of the beamformer
approaches consists in a single signal inciding in an array of 10 sensors, with
an angle of incidence of −30◦ and a power of 30dB. There’s a Gaussian error
affecting the measures with a variance of 0.06.

As it can be seen in the figures in 4.1, all the methods point quite pre-
cisely to the DOA of the incoming signal, however they differ in the estimation
of the ISP. DAS and DCRC beamformer give a more accurate estimation of
the incident power, RCB gives a little too much, and NCCB and SCB are

4In the examples of this chapter, the Diagonal Loading method is referred as, simply,
Robust Capon Beamforming.
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(b) Polar coordinates plot.

Figure 4.1: The figures represent the response of the different beamformers
to an incident signal of 30dB power. Its direction of arrival to the array of
sensors is of −30◦ and the Gaussian error affecting the measures in the array
has 0.06 variance.

the less right ones.

DAS beamforming presents secondary lobes that can be confused with
incoming signals, this is the clear disadvantage of this method, however, if
the variance is incremented to 0.1 as in the next example, figures in 4.2, DAS
turns into be the most accurate in detecting the ISP.

If the noise is quite big and/or the incident power too small, as it will
be seen later on, neither the DOA can be estimated with these approaches.

Next example consists in a single signal inciding in an array of 10
sensors, with an angle of incidence of −30◦ and a power of 30dB. There’s a
Gaussian error affecting the measures with a variance of 0.8.

As it can be seen in the figures in 4.3, with so high noise is difficult
to detect the desired incoming signal. DAS beamformer is in this case the
only one which approaches more precisely to the correct ISP. This is because
DAS beamformer seeks only to enhance the signal in the direction to which
the array is currently steered, so if only one signal is impinging the array, it
can estimate the DOA quite precisely.

In the DAS beamformer response, it can be distinguished a bigger
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Figure 4.2: The figures represent the response of the different beamformers
to an incident signal of 30dB power. Its direction of arrival to the array of
sensors is of −30◦ and the Gaussian error affecting the measures in the array
has 0.1 variance.
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Figure 4.3: The figures represent the response of the different beamformers
to an incident signal of 30dB power. Its direction of arrival to the array of
sensors is of −30◦ and the Gaussian error affecting the measures in the array
has 0.8 variance. First example.

lobe that points with quite precission to the DOA. But the difference be-
tween this main lobe and the secondary one is not so big. There are several
other lobes that can be confused with other incoming signals. This is a clear
inconvenience of this method; when there are not only one but several signals
inciding with different powers and locations, is not possible to determine all
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these by the number of lobes, because some of these lobes represent not in-
ciding signals but noise.

However, with this high noise there can be the case that is not possible
even to determine the DOA of the single incoming signal, as it can be seen
in the figures in 4.4.
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Figure 4.4: The figures represent the response of the different beamformers
to an incident signal of 30dB power. Its direction of arrival to the array of
sensors is of −30◦ and the Gaussian error affecting the measures in the array
has 0.8 variance. Second example.

In this case, neither of the studied approaches offers a solution to the
problem. It is necessary to search or other methods of detecting signals with
extremely low signal-to-noise ratio.

4.2.2 Several Inciding Signals

After have seen the examples with one signal, these next sections
pretend to be more realistic, with not only but several signals that can be
associated, in a practical implementation, with having a Signal Of Interest
and some others that act as interferences.

Equally Distributed Signals

In the first example of this section, see 4.5, there is not one but sev-
eral inciding signals arriving to the array of 10 sensors. These are equally
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distributed, what it means that the difference between the angles of arrival
is approximately constant, or in other words, there are no signals ”closer” to
ones rather than anothers.

The signals are arriving with DOA −35◦, 0◦ and 40◦, and ISP of 30,
60 and 10 dB, respectively. The variance of the Gaussian error is of 0.06.
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Figure 4.5: The figures represent the response of the different beamformers
to 3 signals arriving to the array with DOA −35◦, 0◦ and 40◦, and ISP of 30,
60 and 10 dB, respectively. The variance of the Gaussian error is of 0.06.

In this scenario, DAS beamformer is no longer useful because it cannot
detect several but only one signal, in this case, the one with higher power, as
it can be seen in the represented beamformer response. However, RCB and
DCRCB detect quite precissely both DOA and ISP, although RCB tends to
outperform the the real power of the signals. SCB and NCCB can detect
DOA but they fail to detect the incident power.

When there is more noise affecting the incoming signals, the beam-
formers performed as it can be seen in the figures in 4.6.

In this example, the variance of the error is of 0.1. DAS again doesn’t
offer good response, and the rest of methods are not as precise as before.
There is a good estimation of the DOA based on the peak locations but the
estimates of the incident signal powers are way off. In this case, the highest
signal power is better estimated with NCCB.
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Figure 4.6: The figures represent the response of the different beamformers
to 3 signals arriving to the array with DOA −35◦, 0◦ and 40◦, and ISP of
30, 60 and 10 dB, respectively. The variance of the Gaussian error is of 0.1.
First example.

With this high variance, it can be the case that even the methods
suppress the signal with higher power, as it can be seen in the figures 4.7.
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Figure 4.7: The figures represent the response of the different beamformers
to 3 signals arriving to the array with DOA −35◦, 0◦ and 40◦, and ISP of
30, 60 and 10 dB, respectively. The variance of the Gaussian error is of 0.1.
Second example.

When the noise is extremely high, as in 4.8, and there are several
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signals inciding, is possible to determine the DOA but not the ISP. RCB in
this case points better to the angle of incidence of the signals.
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(a) Linear 2D plot.
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Figure 4.8: The figures represent the response of the different beamformers
to 3 signals arriving to the array with DOA −35◦, 0◦ and 40◦, and ISP of
30, 60 and 10 dB, respectively. The variance of the Gaussian error is of 0.8.
First example.

It can be possible that even DOA response tries to suppress one of
the incoming signals, as it can seen in 4.9.

Close Signals

When the inciding signals are close, not only in space (there is little
difference between their angles of arrival) but also when the difference be-
tween their ISPs is not big, the accuracy of the approaches decreases. The
array of next examples has also 10 sensors.

In next example there are 4 inciding signals with DOA −45◦, −35◦,
0◦ and 10◦, and ISP of 30, 35, 20 and 45 dB, respectively. The variance of
the Gaussian error is of 0.06.

As it can be seen in 4.10, the signals with little power difference be-
tween them are hard to distinguish by the peak level with RCB or DCRCB,
and it seems there is only on signal arriving with DOA around −40◦. On the
other hand, NCCB and SCB are capable of differenciate between the close
signals; it can be appreciate peak levels around −45◦ and −35◦, 0◦ and 10◦,
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Figure 4.9: The figures represent the response of the different beamformers
to 3 signals arriving to the array with DOA −35◦, 0◦ and 40◦, and ISP of
30, 60 and 10 dB, respectively. The variance of the Gaussian error is of 0.8.
Second example.
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Figure 4.10: The figures represent the response of the different beamformers
to 4 signals arriving to the array with DOA −45◦, −35◦, 0◦ and 10◦, and ISP
of 30, 35, 20 and 45 dB, respectively. The variance of the Gaussian error is
of 0.06.

but the power level is way off the real one.

When the error is higher, the beamformers have the response in the
figures 4.11. In this example, NCCB locate better the signals with high power
difference, than the other methods, but no method is able to differenciate
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between the signals with little power difference.
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Figure 4.11: The figures represent the response of the different beamformers
to 4 signals arriving to the array with DOA −45◦, −35◦, 0◦ and 10◦, and ISP
of 30, 35, 20 and 45 dB, respectively. The variance of the Gaussian error is
of 0.1. First example.

On the other hand, with this noise variance, it can be obtained a
totally different result as it can be seen in 4.12. RCB and DCRCB give a
good solution to the signals arriving in 0◦ and 10◦, but it is not possible to
differenciate between the other two signals.

When the noise is even higher, variance of 0.8, the response quality of
the methods is really poor, as it can be seen in 4.13.

In this case, it is necessary to find some solution to improve the reso-
lution of the methods, in order to distinguish close signals. In next section, it
is proposed an average measurements solution, that achieves a better beam-
former response when there is high noise.

If the signals are arriving with closer incident angles, the approaches
cannot distinguish them as it can be seen in the figures in 4.14.

In next section it is also proposed another solution to alleviate this
other problem.
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(a) Linear 2D plot.

ISP [dB] vs. DOA degree

0 15

30

45

60

75

90−90

−75

−60

−45

−30

−15

10
30

50

real values
DASB
SCB
RCB
NCCB
DCRCB

(b) Polar coordinates plot.

Figure 4.12: The figures represent the response of the different beamformers
to 4 signals arriving to the array with DOA −45◦, −35◦, 0◦ and 10◦, and ISP
of 30, 35, 20 and 45 dB, respectively. The variance of the Gaussian error is
of 0.1. Second example.
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(a) Linear 2D plot.
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Figure 4.13: The figures represent the response of the different beamformers
to 4 signals arriving to the array with DOA −45◦, −35◦, 0◦ and 10◦, and ISP
of 30, 35, 20 and 45 dB, respectively. The variance of the Gaussian error is
of 0.8.

4.3 Improving Solutions

This section presents some ideas that can be used in a practical sit-
uation to obtain better results with these methods and be more accurate in
the detection.
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Figure 4.14: The figures represent the response of the different beamformers
to 4 signals arriving to the array with DOA −45◦, −40◦, 0◦ and 5◦, and ISP
of 30, 35, 20 and 45 dB, respectively. The variance of the Gaussian error is
of 0.06.

4.3.1 Average Measurements

When it comes to being accurate, one way to achieve that is taking
several measurements and calculating the average of these measurements. As
the nature of the noise is random, some measurements will be more accurate
than others, and they will tend to compensate somehow the error.

This section includes the average measurements of the examples given
in the previous section. The average has been calculated evaluating 50 times
each example; each time the random noise has been different but with the
same variance, trying to simulate a real scenario where the environmental
conditions may change.

In the examples with only one signal arriving, when the noise was high
enough the ISP was no longer detected accurately. The result of evaluating
those examples with the average solution can be seen in figures 4.15 and 4.16.

When the variance is of 0.8, taking the average really improves the
response of the methods. Comparing figures in 4.3 and 4.16, it can be seen
the improvement in the accuracy, especially in the DAS beamformer, whose
highest peak points to the incident signal and has the best approximation to
its real ISP.
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Figure 4.15: The figures represent the response of the different beamformers
to an incident signal of 30dB power. Its direction of arrival to the array of
sensors is of −30◦ and the Gaussian error affecting the measures in the array
has 0.1 variance. The plots have been calculated evaluating 50 times the
example and taking the average of the responses.
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Figure 4.16: The figures represent the response of the different beamformers
to an incident signal of 30dB power. Its direction of arrival to the array of
sensors is of −30◦ and the Gaussian error affecting the measures in the array
has 0.8 variance. The plots have been calculated evaluating 50 times the
example and taking the average of the responses.

In the case of several incident equally distributed signals, taking the
average, as it can be seen in 4.17 and 4.18, allows a better detection of the
signals. In the example with variance 0.1, RCB and DCRCB have the best
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performance in the peak detection; however, if the application demand is to
detect just the higher power signal, the peak detection that DAS offers is
more accurate in incident power than the other methods. When the noise is
extremely high, like in the example with variance 0.8, the signals are slightly
detected, but the estimation of the power is not correct at all. For this case
it is better to find an alternative method or solution that better estimates
the ISP.
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Figure 4.17: The figures represent the response of the different beamformers
to 3 signals arriving to the array with DOA −35◦, 0◦ and 40◦, and ISP of
30, 60 and 10 dB, respectively. The variance of the Gaussian error is of 0.1.
The plots have been calculated evaluating 50 times the example and taking
the average of the responses.

When the signals are not equally distributed but can be closer to ones
rather than others, or in small groups, taking the average can be an advan-
tage from just using the regular methods. It can be seen in 4.19 that the
performance is better than in 4.11 or 4.12, in fact, it achieves a tradeoff be-
tween detecting close signals with little power difference and detecting close
signals with high power difference.

However, when the noise affecting the signals has higher variance, 0.8,
taking the average does not present any advantage; this can be seen in the
figures in 4.20. For this case, as commented before, it should be used an
alternative method to better detect the signals. Next subsection gives an
idea to improve the response of the beamformers in this sense.
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Figure 4.18: The figures represent the response of the different beamformers
to 3 signals arriving to the array with DOA −35◦, 0◦ and 40◦, and ISP of
30, 60 and 10 dB, respectively. The variance of the Gaussian error is of 0.8.
The plots have been calculated evaluating 50 times the example and taking
the average of the responses.
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Figure 4.19: The figures represent the response of the different beamformers
to 4 signals arriving to the array with DOA −45◦, −35◦, 0◦ and 10◦, and ISP
of 30, 35, 20 and 45 dB, respectively. The variance of the Gaussian error is
of 0.1. The plots have been calculated evaluating 50 times the example and
taking the average of the responses.

4.3.2 Number of Sensors

As it was seen in 4.14, when the signals are arriving with extremely
close incident angles, the approaches cannot distinguish them. The proposed
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Figure 4.20: The figures represent the response of the different beamformers
to 4 signals arriving to the array with DOA −45◦, −35◦, 0◦ and 10◦, and ISP
of 30, 35, 20 and 45 dB, respectively. The variance of the Gaussian error is
of 0.8. The plots have been calculated evaluating 50 times the example and
taking the average of the responses.

solution to that is to increase the number of sensors in the array. By doing
this, the resolution also increases, and so, closer signals can be distinguished.

Figures in 4.21 prove that with 20 receivers, the response of the beam-
formers is much better for the case of close signals. It can be appreciate also
that NCCB gives the best approximation of the signal arriving with highest
power. This can be used in applications where the main point is locating one
single signal, and the rest of signals are considered interfering ones.

It was seen that when the noise variance was high, 0.8, the methods
were not a good solution to discriminate the inciding signals (see 4.8, 4.9 and
4.13). Increasing the number of sensors can help in this sense as it can be
seen in 4.22.

Although there is an improvement, determining the power peaks is
not immediately clear. Increasing even more the number of sensors, as in the
figures in 4.23 gives a better result in peak detection, but the power detection
is way off. With this example it can be seen the existing duality DOA-ISP.
This will be explained later on, in next chapter. Also there is an underlying
problem with this technique, because it is not always possible to use a big
number of sensors in the array. This will be discussed later on, as well.
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Figure 4.21: The figures represent the response of the different beamformers
to 4 signals arriving to the array with DOA −45◦, −40◦, 0◦ and 5◦, and ISP
of 30, 35, 20 and 45 dB, respectively. The variance of the Gaussian error is
of 0.06 and the number of sensors is 20.

−60 −40 −20 0 20 40 60
−20

−10

0

10

20

30

40

50

DOA degree

IS
P

 [d
B

]

real values
DASB
SCB
RCB
NCCB
DCRCB
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Figure 4.22: The figures represent the response of the different beamformers
to 4 signals arriving to the array with DOA −45◦, −40◦, 0◦ and 5◦, and ISP
of 30, 35, 20 and 45 dB, respectively. The variance of the Gaussian error is
of 0.8 and the number of sensors is 20.

Anyway, combining both explained techniques, taking the average,
and increasing the number of sensors, can give good results in adverse envi-
ronmental situations. But it is important not to forget the practical applica-
tion behind all the theory, because it determines the solutions that must be
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Figure 4.23: The figures represent the response of the different beamformers
to 4 signals arriving to the array with DOA −45◦, −40◦, 0◦ and 5◦, and ISP
of 30, 35, 20 and 45 dB, respectively. The variance of the Gaussian error is
of 0.8 and the number of sensors is 50.

applied in each case.



Chapter 5

Findings and Future
Investigation

The aim of this chapter is being a summary of the realized work;
extracting the main concluding ideas in an organized way for the reader. This
chapter also points out the lines that can be follow in a future to continue
the development of the work.

5.1 Applications

As it has been said several times through the work, the final applica-
tion which is the goal of the beamforming, determines which method is more
suitable for the proposit. Here, the work has been centered in DOA and ISP
estimation, which are the important parameters when reciving a signal, that
must be taken into account to locate the source position. The DOA gives the
direction from which the source is emitting, and the ISP determines how far
it is, i. e., the range. In general lines, more ISP indicates a closer source, and
the other way round; but to accurately determine the range, it is necessary
to use matched-field processing, in which the existing models for the waves
propagation can be used directly. But this is beyond the scope of this work
and can be considered as a future line of investigation.

The final application determines the method to use; that has been
shown by the examples. When there was only one signal impinging in the
array, and the goal was to determine the DOA and ISP of it, RCB was quite
precise in DOA estimation, although DAS gave the most accurate received
power (by looking to the power peak level).
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However, this situation is an idealized one and this conclusions must
not be used in a practical implementation. In a real scenario there can be al-
ways interferences; they cannot be controlled, so it is not possible to trust in
having only one inciding signal. Because of this, the robust methods are used.

There are several observations that have been concluded by the ex-
amples. When the difference between the powers of the inciding signals was
big and there was quite noise, the methods were not working properly. That
is, it was not possible to determine the ISP of the high power signal and of
the low power one, with enough accuracy. This can be also another line of
further investigation. However, if the application goal is not to detect all the
signals but there is only one SOI, the methods are giving a good approxima-
tion in most of the cases.

In general through the work, the DOA has been estimated quite pre-
cisely, but there have been always problems when estimating the ISP. In other
words, it has been easier to say in which direction was the source than how
far it was. In fact, there is a duality ISP accuracy — DOA accuracy
which means that there must be a tradeoff between the detection of ISP and
DOA; trying to obtain both as precisely as possible, but knowing that if the
effort is made in detecting one, the other one will be less accurate. In the
work, there were some examples where the number of sensors in the array
was high; this was a solution to fight the noise, but the power was way off.
Also, using a high number of sensors entail some other problems, as it will
be commented later on.

5.2 Conclusions

This section summarizes the conclusions extracted through this work.
It is centered in explaining where and when each method should be used
depending on the demands of the application.

DCRCB is the preferred choice for applications requiring high signal-
to-noise ratio, whereas RCB is the favored one for applications demanding
accurate signal power estimation. As this paper wants to be focused in esti-
mating range and DOA; RCB is the best election.

SCB is clearly more affected by the noise than the rest of methods;
when in the examples the noise was being increased, SCB was the first one
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that was not detecting the incident power properly.

As said before, big differences in the incident power of the signals
make that the higher power signal peaks are not well estimated. However
when the signals are about the same incident power but are inciding with
a similar direction of arrival, it is not possible to determine if there is one
signal arriving or several ones, and the response of the beamformers is just
one wide peak. This problem can be solved increasing the number of sensors
in the array to increase also the resolution.

NCCB is the method that better works to detect one single signal,
when this signal has strong power and the rest interfering ones are arriving
with little power. This approach is the one that better detects the power, i.
e., the range of the inciding signal. Because of this, it can be used when the
application demand is detecting just one signal.

With high noise and several inciding signals, the beamformers re-
sponses show that sometimes the signals with little difference power are well
detected but not the ones with high difference power, and sometimes it hap-
pens just the other way round. This is dependant on the noise, and can be
alleviate by using several measures and taking the average.

Whith extremely high noise it is difficult to detect the incident signals.
Increasing the number of sensors can help in the detection, but also presents
the problem that the detection of the ISP is less accurate.

Anyway, combining both explained techniques, taking the average,
and increasing the number of sensors, can give good results in adverse envi-
ronmental situations. But it is important not to forget the practical applica-
tion behind all the theory, because it determines the solutions that must be
applied in each cases.

To help the reader to better understand the conclusions, it has been
chosen to summarize the main findings in tables. The first table, see 5.1,
shows the better approach in each case when the noise is low, taking into
account that the goals are DOA and ISP detection, so the method must be
a tradeoff between them. To arrive to this conclusions it has been also con-
sidered the use of the improving solutions to have more accurate responses.

Table 5.2 shows also the better approach to use in each case, but when
the noise is high.
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Table 5.1: Table showing the most suitable approach in each case. Low noise.

Single Signal Several Signals

Equally-Spaced Close

Big Diff. Power Little Diff. Power

DCRCB DCRCB NCCB DCRCB

Table 5.2: Table showing the most suitable approach in each case. High
noise.

Single Signal Several Signals

Equally-Spaced Close

Big Diff. Power Little Diff. Power

DAS RCB RCB RCB

5.3 Further Research

As it has been said, in general lines more ISP indicates a closer source,
and the other way round; but to accurately determine the range, it is nec-
essary to use matched-field processing, in which the existing models for the
waves propagation can be used directly. This can be a future research line;
matching the obtained results with a propagation model, so they can be used
in a practical application.

The future research can also be centered in finding other applications
in which the beamformers can be used. In many applications, such as in
communications or the global positioning system, the focus is on SOI wave-
form estimation. This is different from what it has been studied, but the
work can also be used and extended to this field.

In the work, there were some examples where the number of sensors in
the array was high. This was a solution to fight the high noise and detecting
in an accurate way the DOA, but there is an evident problem; in a physical
implementation it is not possible to have as many sensors as the theoretical
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simulations demands, because of problems of space, and also of monetary
cost. So once more, it is necessary to find a tradeoff between number of
sensors (accuracy) and cost (space, money).

The election of the spacing in the array determines the work frequency
in a practical implementation. This limitates the applications; the sensor will
be calibrated to a certain frequency, and it will be costly changing to another
one. There can be an investigation in this direction, to study the relation
between the array spacing and the detecting frequency, the effects of chang-
ing it, the possibility of reuse the same array with several frequencies by just
changing some parameters in the algorithms, etc.

Further investigation can be related to the array geometry. In a prac-
tical implementation having a 2D-array supposes an advantage in precission.
With the studied 1D-array the angle of incidence was obtained, but of course,
this angle was contained in the perpendicular plane to the line of sensors. A
surface of arrays gives the possibility of detecting sources in the space.

After taking into account all this theoretical results, the next logi-
cal step is to implement the application. It is necessary first to look for
an appropiate type of sensor to use, matching its characteristics with the
requirements the approaches need.
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Appendix A

MATLAB Functions

This appendix includes the complete code of all the MATLAB func-
tions used through this work.

A.1 Approaches

The different approaches code.

A.1.1 Delay And Sum Beamformer

% Syntax:

% [theta,ISPdB] = DASB_ISPdB(M,aR);

%

% This MATLAB function simulates a Delay And Sum Beamformer.

% It obtains the Incident Signal Power as a function of the

% angle of arrival, theta.

%

% Input:

% M - number of receivers in the array

% aR - sample covariance matrix

%

% Output:

% theta - angle of arrival, theta (degrees -90 to +90)

% ISPdB - Incident Signal Power (dB)

%

%

% EXAMPLE1:
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%

% M = 10;

function [theta,ISPdB] = DASB_ISPdB(M,aR);

beta = 1;

% When beta = 1, NCCB becomes the DAS beamformer, and hence, it

% uses the assumed array steering vector divided by M as the

% weight vector.

i = 1;

ISP = zeros(1,241);

for theta = -60+90:1/2:60+90,

theta = theta*pi/180;

a = ones(M,1);

for rec = 1:M,

a(rec) = exp(-j*(rec-1)*pi*cos(theta));

end

w = a./M;

wct = w’;

% Incident Signal Power:

ISP(i) = wct*aR*w;

i = i + 1;

end

theta = -60:1/2:60;

ISPdB = 10*log10( real(ISP) );

% -------------------------------------------------------------
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A.1.2 Standard Capon Beamformer

% Syntax:

% [theta,ISPdB] = SCB_ISPdB(M,aR);

%

% This MATLAB function simulates a Standard Capon Beamformer.

% It obtains the Incident Signal Power as a function of the

% angle of arrival, theta.

%

% Input:

% M - number of receivers in the array

% aR - sample covariance matrix

%

% Output:

% theta - angle of arrival, theta (degrees -90 to +90)

% ISPdB - Incident Signal Power (dB)

%

%

% EXAMPLE1:

%

% M = 10;

function [theta,ISPdB] = SCB_ISPdB(M,aR);

% Compute the eigendecomposition of R (or, in practice, of ^R):

[U,Gamma,V] = svd(aR);

Uct = U’;

% We know that R^(-1) = U*(1/Gamma)*U’.

R_1 = U*diag(1./diag(Gamma))*Uct;

i = 1;

ISP = zeros(1,241);

for theta = -60+90:1/2:60+90,

theta = theta*pi/180;

a = ones(M,1);
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for rec = 1:M,

a(rec) = exp(-j*(rec-1)*pi*cos(theta));

end

act = a’;

% Incident Signal Power:

ISP(i) = 1/(act*R_1*a);

i = i + 1;

end

theta = -60:1/2:60;

ISPdB = 10*log10( real(ISP) );

% -------------------------------------------------------------

A.1.3 Diagonal Loading

% Syntax:

% [theta,ISPdB] = RCB_ISPdB(M,aR);

%

% This MATLAB function simulates a Robust Capon Beamformer.

% It obtains the Incident Signal Power as a function of the

% angle of arrival, theta.

% It uses the function ’lambda310.m’.

%

% Input:

% M - number of receivers in the array

% aR - sample covariance matrix

%

% Output:

% theta - angle of arrival, theta (degrees -90 to +90)

% ISPdB - Incident Signal Power (dB)

%

%

% EXAMPLE1:

%
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% M = 10;

function [theta,ISPdB] = RCB_ISPdB(M,aR);

theta = 0;

ISPdB = 0;

% Step 1) Compute the eigendecomposition of R (or more

% practically of ^R).

[U,Gamma,V] = svd(aR);

Uct = U’;

gamma = zeros(1,M);

gamma(1) = Gamma(1,1);

for i = 2:M,

gamma(i) = Gamma(i,i);

end

gamma = gamma.’;

% Example with M = 10:

%gamma = [Gamma(1,1) Gamma(2,2) Gamma(3,3) Gamma(4,4)...

%Gamma(5,5) Gamma(6,6) Gamma(7,7) Gamma(8,8) Gamma(9,9)...

%Gamma(10,10)].’;

% Step 2) Solve equation (3.10) for landa, e.g., by a Newton’s

% method, using the knowledge that the solution is unique and

% it belongs to the interval in (3.11).

epsilon = 1.0;

i = 1;

ISP = zeros(1,241);

for theta = -60+90:1/2:60+90,

theta = theta*pi/180;

a = ones(M,1);

for rec = 1:M,

a(rec) = exp(-j*(rec-1)*pi*cos(theta));



48 Appendix A. MATLAB Functions

end

act = a’;

z = Uct*a;

% Lower bound on lambda:

lblambda = ( norm(a) - sqrt(epsilon) )/...

( gamma(1)*sqrt(epsilon) );

% Upper bound on lambda:

ublambda = min([ ( ((1/epsilon)*sum((abs(z).^2)./...

gamma.^2))^(1/2) )( (norm(a)-sqrt(epsilon))/...

(gamma(M)*sqrt(epsilon)) ) ]);

[lambda] = lambda310(epsilon,z,gamma,lblambda,ublambda);

% Step 3)

dmatrix = eye(M) + lambda*Gamma;

idmatrix = diag(1./diag(dmatrix));

a0 = a - U*idmatrix*Uct*a;

% Step 4)

longdmatrix = lambda^(-2)*eye(M) + 2*lambda^(-1)*Gamma +...

Gamma^2;

ilongdmatrix = diag(1./diag(longdmatrix));

ISP(i) = 1 / ( act*U*Gamma*ilongdmatrix*Uct*a ) ;

i = i + 1;

end

theta = -60:1/2:60;

ISPdB = 10*log10( real(ISP) );

% -------------------------------------------------------------
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A.1.4 Norm Constrained Capon Beamformer

% Syntax:

% [theta,ISPdB] = NCCB_ISPdB(M,aR);

%

% This MATLAB function simulates a Norm Constrained Capon

% Beamformer. It obtains the Incident Signal Power as a

% function of the angle of arrival, theta.

% It uses the function ’lambda319.m’.

%

% Input:

% M - number of receivers in the array

% aR - sample covariance matrix

%

% Output:

% theta - angle of arrival, theta (degrees -90 to +90)

% ISPdB - Incident Signal Power (dB)

%

%

% EXAMPLE1:

%

% M = 10;

function [theta,ISPdB] = NCCB_PvsTheta(M,aR);

% Step 1) Compute the eigendecomposition of R (or, in practice,

% of ^R).

[U,Gamma,V] = svd(aR);

% Step 2) If (3.20) is satisfied, solve (3.19) for ^landa,

% e.g., by a Newton’s method, using the knowledge that the

% solution is unique and it is lower bounded by 0 and upper

% bounded by (3.21); otherwise, set ^landa = 0.

% (3.20) == zeta < cond

beta = 6.0;

% so that the peak widths of the NCCB and DCRCB are about the

% same.
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zeta = beta / M;

Uct = U’;

dGamma = diag(Gamma);

R_1 = U*diag(1./dGamma)*Uct;

R_2 = R_1*R_1;

% (3.21)

% Lower bound on lambda:

lblambda = 0;

% Upper bound on lambda:

ublambda = ( dGamma(1) - ((M*zeta)^(1/2))*dGamma(M) )/...

( ((M*zeta)^(1/2)) - 1 );

i = 1;

ISP = zeros(1,241);

for theta = -60+90:1/2:60+90,

theta = theta*pi/180;

a = ones(M,1);

for rec = 1:M,

a(rec) = exp(-j*(rec-1)*pi*cos(theta));

end

act = a’;

cond = real( (act*R_2*a)/(act*R_1*a)^2 );

z = Uct*a;

if zeta < cond

[lambda]=lambda319(M,zeta,z,dGamma,lblambda,ublambda);

else

lambda = 0;

end

dmatrix = Gamma + lambda*eye(M);
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idmatrix = diag(1./diag(dmatrix));

w = U*idmatrix*z / (act*U*idmatrix*z);

wct = w’;

% Incident Signal Power:

ISP(i) = wct*aR*w;

i = i + 1;

end

theta = -60:1/2:60;

ISPdB = 10*log10( real(ISP) );

% -------------------------------------------------------------

A.1.5 Doubly Constrained Robust Capon Beamformer

% Syntax:

% [theta,ISPdB] = DCRCB_ISPdB(M,aR);

%

% This MATLAB function simulates a Doubly Constrained Robust

% Capon Beamformer.

% It obtains the Incident Signal Power as a function of the

% angle of arrival, theta.

% It uses the function ’lambda329.m’.

%

% Input:

% M - number of receivers in the array

% aR - sample covariance matrix

%

% Output:

% theta - angle of arrival, theta (degrees -90 to +90)

% ISPdB - Incident Signal Power (dB)

%

%

% EXAMPLE1:

%

% M = 10;
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function [theta,ISPdB] = DCRCB_ISPdB(M,aR);

theta = 0;

ISPdB = 0;

% Step 1) Compute the eigendecomposition of R (or, in practice,

% of ^R).

[U,Gamma,V] = svd(aR);

Uct = U’;

% Step 2) If (3.28) is satisfied, solve (3.29) for ^landa,

% e.g., by a Newton’s method, using the knowledge that the

% solution is unique and it is lower bounded by -1/gamma1 and

% upper bounded by (3.30), and then continue to Step 3;

% otherwise, compute ^sigma0_2 = gamma1/M and stop.

% Let u1 denote the first eigenvector in U:

u1 = U(:,1);

epsilon = 1.0;

cond = M - epsilon/2;

rho = M/(cond^2);

% A vector containing the main diagonal of inv(Gamma):

iGamma = 1./diag(Gamma);

% Lower bound on lambda:

lblambda = -iGamma(1);

% Upper bound on lambda:

ublambda = ( iGamma(M) - ((M*rho)^(1/2))*iGamma(1) )/...

( ((M*rho)^(1/2)) - 1 );

i = 1;

s_a = zeros(1,241);

ISP = zeros(1,241);

for theta = -60+90:1/2:60+90,
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theta = theta*pi/180;

a = ones(M,1);

for rec = 1:M,

a(rec) = exp(-j*(rec-1)*pi*cos(theta));

end

act = a’;

% angle(x) returns the phase angles, in radians, of a

% matrix with complex elements:

phi = angle(u1’*a);

est_a = M^(1/2)*u1*exp(j*phi);

R_a_times_a = real(act*est_a);

z = Uct*a;

% (3.28) == Re(a*·est_a) < M - epsilon/2

if R_a_times_a < cond

[lambda] = lambda329(M,rho,z,iGamma,lblambda,ublambda);

else

lambda = 0;

ISP(i) = Gamma(1,1)/M;

% Continue to the next iteration:

i = i + 1;

continue

end

dmatrix = eye(M) + lambda*Gamma;

idmatrix = diag(1./diag(dmatrix));

idmatrix2 = idmatrix*idmatrix;

ISP(i) = (1 / cond^2) * ((act*U*idmatrix*Gamma*z)^2) /...

( act*U*idmatrix2*Gamma*z );

i = i + 1;

end
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theta = -60:1/2:60;

ISPdB = 10*log10( real(ISP) );

% -------------------------------------------------------------

A.2 Auxiliar Functions

This section includes the auxiliar functions, as the ones used to plot
and compare the results obtained with the different approaches1, and the
ones that implement a Newton’s Method.

A.2.1 Plotting

% Syntax:

% [DOA,ISPdB] = ISPdBvsDOA(M,var,theta,sigma);

%

% This MATLAB function obtains and plots the Incident Signal

% Power (ISP) as a function of the Direction Of Arrival (DOA).

% It uses the functions ’ArrayRec.m’ and ’mmpolar.m’.

%

% Input:

% M - number of receivers in the array

% var - variance of the white Gaussian error produced in the

% array

% theta - row vector containing the DOA of the different

% sources (degrees -90 to +90)

% sigma - row vector containing the ISP of the different

% sources (dB)

%

% Output:

% DOA - Direction Of Arrival (degrees -90 to +90)

% ISPdB - Incident Signal Power (dB)

%

%

% EXAMPLE1:

%

% M = 10;

1For information about the function ‘mmpolar.m’ see reference [11].
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% var = 0.06;

% theta = [-35 -15 0 10 40];

% sigma = [30 60 40 35 10];

function [DOA,ISPdB] = ISPdBvsDOA(M,var,theta,sigma);

DOA = 0;

ISPdB = 0;

aR = ArrayRec(M,var,theta,sigma);

% -------------------------------------------------------------

[theta1,ISPdB1] = DASB_ISPdB(M,aR);

[theta2,ISPdB2] = SCB_ISPdB(M,aR);

[theta3,ISPdB3] = RCB_ISPdB(M,aR);

[theta4,ISPdB4] = NCCB_ISPdB(M,aR);

[theta5,ISPdB5] = DCRCB_ISPdB(M,aR);

DOA = [theta1 ; theta2 ; theta3; theta4; theta5];

ISPdB = [ISPdB1 ; ISPdB2 ; ISPdB3; ISPdB4; ISPdB5];

% Plotting:

close all hidden

clf;

hold on;

box on;

xlabel(’DOA (angle \theta in degrees)’);

ylabel(’ISP [dB]’);

% The real signals arriving to the array:

plot(theta,sigma,’ok’);

plot(theta1,ISPdB1,’g’);

plot(theta2,ISPdB2,’c’);

plot(theta3,ISPdB3,’m’);

plot(theta4,ISPdB4);

plot(theta5,ISPdB5,’r’);
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h = legend(’real values’,’DASB’,’SCB’,’RCB’,’NCCB’,’DCRCB’);

thetapolar = theta.*pi./180;

thetapolar1 = theta1.*pi./180;

thetapolar2 = theta2.*pi./180;

thetapolar3 = theta3.*pi./180;

thetapolar4 = theta4.*pi./180;

thetapolar5 = theta5.*pi./180;

figure;

% The real signals arriving to the array:

mmpolar(thetapolar,sigma,’ok’);

hold on;

mmpolar(thetapolar1,ISPdB1,’g’);

mmpolar(thetapolar2,ISPdB2,’c’);

mmpolar(thetapolar3,ISPdB3,’m’);

mmpolar(thetapolar4,ISPdB4);

mmpolar(thetapolar5,ISPdB5,’r’);

mmpolar(’TTickDelta’,15,’TLimit’,[-pi/2 pi/2]);

view(90,-90);

ylabel(’ISP [dB] as a function of the DOA [degrees]’);

k = legend(’real values’,’DASB’,’SCB’,’RCB’,’NCCB’,’DCRCB’);

% -------------------------------------------------------------

% Syntax:

% aR = ArrayRec(M,var,theta,sigma);

%

% This MATLAB function simulates the ARRAY OF RECEIVERS.

% It obtains the SAMPLE COVARIANCE MATRIX as a function of the

% number of receivers (M), the direction or angle of arrival

% (theta) and the received power (sigma), adding an error

% (white Gaussian noise) that simulates the finite sample

% support, imperfect array calibration, etc.

% It uses the function ’aassumed.m’.
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%

% Input:

% M - number of receivers in the array

% var - variance of the white Gaussian error produced in the

% array

% theta - row vector containing the DOA of the different

% sources (degrees -90 to +90)

% sigma - row vector containing the ISP of the different

% sources (dB)

%

% Output:

% aR - sample covariance matrix

%

%

% EXAMPLE1:

%

% M = 10;

% var = 0.06;

% theta = [-35 -15 0 10 40];

% sigma = [30 60 40 35 10];

function aR = ArrayRec(M,var,theta,sigma);

aR = 0;

% Number of signals arriving to the receiver:

n = max(size(theta));

% Signal directions in degrees (0 to +180):

thetad = theta + 90;

% Signal directions in radians:

thetar = thetad.*pi./180;

% Signal powers (linear):

sigmal = 10.^(sigma./10);

% TRUE Steering vectors:

a = ones(n,M);

for i = 1:n,
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for rec = 1:M,

a(i,rec) = exp(-j*(rec-1)*pi*cos(thetar(i)));

end

end

a = a.’;

% We define the true steering vector ERROR

% epsilon0 = min_alpha norm( a*exp(j*alpha) - aa )^2 ,

% where a is the true steering vector, and aa is the assumed

% one.

% ASSUMED Steering vectors:

aa = aassumed(var,a);

% ASSUMED Steering vectors (conjugate transpose):

aact = aa’;

% Noise covariance matrix:

Q = eye(M);

% Theoretical covariance matrix of the array output vector

% (assumed one):

aR = Q;

for i = 1:n,

aR = aR + sigmal(i)*aa(:,i)*aact(i,:);

end

% -------------------------------------------------------------

% Syntax:

% aa = aassumed(var,a);

%

% This MATLAB function obtains the real array manifold vector.

% Each element of the steering vector for each incident signal

% is perturbed with a zero-mean circularly symmetric complex

% Gaussian random normalized variable.

%

% Input:
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% var - variance of the white Gaussian error produced in the

% array

% a - array manifold vector (theoretical one)

%

% Output:

% aa - array manifold vector (real one)

%

% EXAMPLE1:

%

% var = 0.06;

function aa = aassumed(var,a);

[M,n] = size(a);

% M - number of sensors.

% n - number of signals.

z = sqrt(var)*( randn(M,n) + j*randn(M,n) );

aint = a + z;

aa = aint./norm(aint).*sqrt(M);

% -------------------------------------------------------------

A.2.2 Newton’s Method

% This program solves (3.10) by the Newton’s Method

function lambda0 = lambda310(epsilon,z,gamma,lblambda,ublambda);

% Initial guess of lambda:

lambda0 = 0;

dif = 1;

while dif > 1e-12,

g = sum( abs(z).^2 ./ (1 + lambda0*gamma).^2 );
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f = g - epsilon;

f_der = -2 * sum( gamma.*(abs(z).^2) ./...

(1+lambda0*gamma).^3 );

lambda1 = lambda0 - f/f_der;

dif = abs(lambda1 - lambda0);

lambda0 = lambda1;

end

% IS IT WORKING?

%g = sum( abs(z).^2 ./ (1 + lambda0*gamma).^2 );

%f = g - epsilon

if (lambda0 < lblambda) | (lambda0 > ublambda),

lambda0 = NaN;

end

% -------------------------------------------------------------

% This program solves (3.19) by the Newton’s Method

function [lambda0]=lambda319(M,zeta,z,Gamma,lblambda,ublambda);

% Initial guess of lambda:

lambda0 = 0;

dif = 1;

while dif > 1e-9,

numerator = sum( abs(z).^2 ./ (Gamma + lambda0).^2 );

denominator = (sum( abs(z).^2 ./ (Gamma + lambda0) )).^2;

f = numerator/denominator - zeta;

num_der = -2 * sum( abs(z).^2 ./ (Gamma + lambda0).^3 );

den_der = 2 * sum( abs(z).^2 ./ (Gamma +lambda0) ) * ...

( -sum( abs(z).^2 ./ (Gamma + lambda0).^2 ) );

f_der = ( num_der*denominator - numerator*den_der )...
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/ denominator^2;

lambda1 = lambda0 - f/f_der;

dif = abs(lambda1 - lambda0);

lambda0 = lambda1;

end

% IS IT WORKING?

%numerator = sum( abs(z).^2 / (Gamma + lambda0).^2 );

%denominator = (sum( abs(z).^2 / (Gamma + lambda0) )).^2;

%f = numerator/denominator - zeta

if (lambda0 < lblambda) | (lambda0 > ublambda),

lambda0 = NaN;

end

% -------------------------------------------------------------

% This program solves (3.29) by the Newton’s Method

function [lambda0]=lambda329(M,rho,z,iGamma,lblambda,ublambda);

% Initial guess of lambda:

lambda0 = 0;

dif = 1;

while dif > 1e-9,

numerator = sum( abs(z).^2 ./ (iGamma + lambda0).^2 );

denominator = (sum( abs(z).^2 ./ (iGamma + lambda0) )).^2;

f = numerator/denominator - rho;

num_der = -2 * sum( abs(z).^2 ./ (iGamma + lambda0).^3 );

den_der = 2 * sum( abs(z).^2 ./ (iGamma +lambda0) ) *...

( -sum( abs(z).^2 ./ (iGamma + lambda0).^2 ) );

f_der = ( num_der*denominator - numerator*den_der ) /...

denominator^2;
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lambda1 = lambda0 - f/f_der;

dif = abs(lambda1 - lambda0);

lambda0 = lambda1;

end

% IS IT WORKING?

%numerator = sum( abs(z).^2 / (iGamma + lambda0).^2 );

%denominator = (sum( abs(z).^2 / (iGamma + lambda0) )).^2;

%f = numerator/denominator - rho

if (lambda0 < lblambda) | (lambda0 > ublambda),

lambda0 = NaN;

end

% -------------------------------------------------------------


	Title Page
	Problem Description
	masteroppgave.pdf

