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Problem Description

Digital filters contain a greater number of constant coefficient multipliers and the multipliers can
be optimized by using CSD-encoding (Canonical Signed Digit]. This kind of optimization can be
problematic in applications where one changes the filter coefficients when the coefficient-sets not
always are of isomorphic CSD encoding. In reconfigurable hardware (FPGA] this can be solved by
dynamically reconfigure the FPGA for the different coefficient-sets where each configuration
represents a optimized CSD-encoding. The assignment is as follows.

1. Literature study of CSD-encoding and similar techniques
2. Define a case; a filer with coefficient sets that shall be tested

3. Develop CSD-encoding for the coefficient sets, code them in VHDL modules and test them threw
simulation.

4. Test the dynamic CSD-encoding on an FPGA

5. Suggest a method on how to use CSD-encoding if one do not know the coefficients values before
run-time.

6. If time left code and test the suggested method.
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Definition of the project

Digital filters contain a greater number of constant coefficient multipliers and
the multipliers can be optimized by using CSD-encoding (Canonical Signed
Digit). This kind of optimization can be problematic in applications where
one changes the filter coefficients when the coefficient-sets not always are
of isomorphic CSD encoding. In reconfigurable hardware (FPGA) this can
be solved by dynamically reconfigure the FPGA for the different coefficient-
sets where each configuration represents a optimized CSD-encoding. The
assignment is as follows.

1. Literature study of CSD-encoding and similar techniques
2. Define a case; a filer with coefficient sets that shall be tested

3. Develop CSD-encoding for the coefficient sets, code them in VHDL
modules and test them threw simulation.

4. Test the dynamic CSD-encoding on an FPGA

5. Suggest a method on how to use CSD-encoding if one do not know the
coefficients values before run-time.

6. If time left code and test the suggested method.
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Summary

The main idea behind this thesis was to optimize the multipliers in a finite
impulse response (FIR) filter. The project was chosen because digital filters
are very common in digital signal processing and is an exciting area to work
with.

The first part of the text describes some theory behind the digital filter
and how to optimize the multipliers that are a part of digital filters. The
substantial thing to emphasize here is the use of Canonical Signed Digits
(CSD) encoding. CSD representation for FIR filters can reduce the delay
and complexity of the hardware implementation. CSD-encoding reduces the
amount of non-zero digits and will by this reduce the multiplication process
to a few additions/subtractions and shifts.

In this thesis it was designed 4 versions of the same filter, that was imple-
mented on an FPGA, where the substantial and most interesting results were
the differences between coefficients that was CSD-encoded and coefficients
that was represented with 2’s complement. It was shown that the filter ver-
sion that had CSD-encoded coefficients used almost 20% less area then the
filter version with 2’s complement coefficients. The CSD-encoded filter could
run on a maximum frequency of 504,032 MHz compared the other filter that
could run on a maximum frequency of 249,123 MHz. One of the filters that
was designed was designed using the * operator in VHDL, that proved to be
the most efficient when it came to the use of number of slices and speed. The
reason for this was because an FPGA has built-in multipliers, so if one has
the opportunity to use the multiplier they will give the best result instead
of using logic blocks on the FPGA

It was also discussed a filter that has the ability to change the coefficients
at run-time without starting the design from the beginning. This is an
advantage because a constant coefficient multiplier requires the FPGA to be
reconfigured and the whole design cycle to be re-implemented. The drawback
with the dynamic multiplier is that is uses more hardware resources.
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ABBREVIATIONS

OP-AMP Operational Amplifier
LTI Linear Time-Invariant
ADC Analog-to-Digital Converter
DAC Digital-to-Analog Converter
FIR Finite Impulse Response
ITIR Infinite Impulse Response
CSD Canonical Signed Digit

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits

sra Shift Right Arithmetic
FPGA Field-Programmable Gate Array
ASIC Application-Specific Integrated Circuit
LUT Lookup Table

DKCM | Dynamic Constant Coefficient Multiplier

Tab. 0.1: Abbreviations




1. INTRODUCTION

Multiplication by a constant value is very useful in many DSP cores; an ex-
ample is Finite impulse response filters. If the constant values are fixed at
design time, the multiplicand can be hardwired since it will never change.
One can use some shifts and additions/subtractions to perform the operation
instead of using a full multiplier. Smaller, faster and less power consuming
circuits will come out of this. As mentioned Finite impulse response fil-
ters or another example; discrete cosine transform are central operations in
many electrical circuits and applications typically use a large amount of such
operations.

In this thesis it is designed 4 versions of the same filter to find out which
one uses the least resources without losing functionality. Implementing this
on an FPGA gives the opportunity to easily change the coefficients due to the
FPGAs flexibility. The central problem is the substitution of full multipliers
by an optimized sequence of shifts and additions/subtractions.

Two of the designed versions used CSD-encoding represent the coeffi-
cients. These two filters are expected to use less hardware resources then
the two other filters. Since the filters are implemented on to an FPGA the
version that uses a * operator in VHDL will probably use the built-in multi-
pliers and will give some great results which will be shown in section 4, but
since it uses the built in multipliers the filter can not be directly compared
to the 3 other filters. It is also anticipated that the last designed filter with
2’s complement representation of its coefficients will use the most hardware
resources and be slow since 2’s complement will often represent a binary
number with a substantial number of non-zero digits. In other words this
will need to do more calculations and will be slower. A comparison between
CSD and 2’s complement is described in section 4.2.

The filter that is designed is a Direct Form FIR filter and is not the
best structure of a filter but is very easy to design and since the focus is on
the multipliers in the filter the different structures that can be used is only
discussed in the theory part, section 2.

The first part of the report describes the theory of digital filters, FPGAs,
a literature study of CSD-encoding and looks at how to reduce the use of
hardware resources, section 2. Furthermore, the designed filters with the
description of the coefficients sets are described in detail in section 3, both
CSD-encoded and 2’s complement. In section 4 the results are presented
where we look at the CSD-encoded filters on the FPGA and this section



conclude with a suggestion of a method on how to make the filter dynamic
or said in another way a method to easily change the coefficients without
starting the design process form the beginning. My contribution to the
thesis is to prove that CSD-encoding can easily reduce the use of hardware
resources by designing different filters to simulate, implement on an FPGA
and analyze Due to limited time the last parts of the thesis definition is only
discussed in the results and are not designed and simulated together with an
analysis of the results.



2. THEORY

2.1 Digital Filters

In a circuit one often wants to remove noise or extract useful parts of a sig-
nal, such as components lying within a certain frequency range. To do this
one uses filters. There are two kinds of filters, digital and analog. Analog are
build up by resistors, capacitors and op-amps. Analog filters are mathemat-
ically modeled using ordinary differential equations of Laplace transforms.
They are analyzed in the time of Laplace domain. Digital filters perform
numerical calculations on sampled values of a signal. Figure 2.1 shows how
a digital filter can be used. By using an analog to digital converter (ADC)
one can sample and digitized the unfiltered analog signal. The numerical
calculations can then be carried out in a processor. Here the sampled sig-
nal is typically multiplied with some coefficients and added together. If an
analog output is wanted a digital to analog converter (DAC) can be used as
shown in figure 2.1.

— | ADC |/——| PROCESSOR|— | DAC |—

unfiltered zarnpled digitally filtzred
analeg digtised fiktered analeg
signal signal agnal signal

A [ A

Fig. 2.1: Basic setup of a digital filter

v

2.1.1 Advantages and disadvantages

+ Digital filters can realize characteristics that is not so easily done by
analog filters

+ Digital filters have the potential to attain a much better signal-to-noise
ratio.

+ Digital filters are much easier to design, test and implement than an
analog filter.



+ Digital filters can handle low frequency signals accurately

- Digital storage and computation limitations will give deterministic
quantization errors after the ADC stage.

2.1.2 FIR
X[n] z_1 z_l — Z_l
£[0] f[1] f[2] f[L—1]

n S @ T vin]

Fig. 2.2: Direct form FIR filter

The most used digital filter is the LTIfilter (linear time-invariant filter).
LTT digital filters are generally classified as being finite impulse response
(FIR)(shown in figure 2.2) or infinite impulse response (ITR). FIR consists
of a finite number of sample values, giving the following definition [17]:

yln] = zln] = fln] = Y flk]a[n — k] (2.1)

where f[n] is the filter’s impulse response, x[n] is the input signal and
y[n] is the convolved output. f[0] # 0 through f[L — 1] # 0 are the filter’s
L coefficients. y[n| expressed in the z-domain is shown in equation 2.2
Y(z)=F(2)X(2) (2.2)
where F'(z) is the FIR’s transfer function defined in the z-domain by

L—1
P(z) =Y Iz (2.3)
k=0

Figure 2.2 shows a typical FIR filter that we just have described. The
"taps" consists of adders, delay module and a multiplier. Each multiplier
multiplies a coefficient and the input signal z[n — L]

2.1.3  Filter structures
In figure 2.2, [17], one can see a Direct Form FIR filter. The direct form

FIR filter are a structure where the multiplier coefficients are precisely the

4



coefficients of the transfer function. The filter is characterized by L — 1
coefficients and require L+ 1 multipliers and L two input adders. The Direct
Form FIR filter is said to be canonic because the number of delays in the
block diagram representation is equal to the order of the transfer function.
A noncanonic filter is shown in figure 2.3, [18]

» v[n]

Fig. 2.3: Noncanonic digital filter

By doing the following one can get the transposed structure from the
direct form

e Exchanging the input and output
e Inverting the direction of signal flow

e Substituting an adder by a fork and vice versa

x[n] —e B aiia
f[L— 1K7 f[L—2] flL—3]
= Z_l Z_l ........

Fig. 2.4: Transposed structure of a FIR filter

A transposed version of the direct form structure is shown in figure 2.4,
|18].Both the direct form and the transposed structure are canonic with
respect to delays.

Other structures can be Cascade Form, Linear-Phase and Polyphase
structure. We will take a short look at there structures.



A cascade form FIR structures is shown in figure 2.5, [18]. The higher-
order FIR transfer function is realized as a cascade of second-order FIR
sections. H(z) is expressed as shown below and in [18|

K
H(z)=h[0] [ 1+ Biez™" + Bz (2.4)
k=1

where K = L/2if L is even and K = (L +1)/2 if L is odd with fog = 2

h[0]

Fig. 2.5: Cascade Form FIR structure

The linear-Phase FIR structure is used to reduce the number of mul-
tipliers to almost half compared with the direct form. Take a look at the
following transfer function.

H(z) = h[0]+h[1]z" +h[2]z 2 +h[3]2 3+ h[2]z 4+ A1)z +h[0]2¢ (2.5)

Rewriting the transfer function H(z) gives the following H(z)

H(z)=h0](1+ 2" +h[1)(z7  +272) + h2)(z 2+ 274 + h[3]272 (2.6)

this will give the circuit shown in figure 2.6, [18]

This linear-phase structure requires 4 multipliers whereas a direct form
realization requires 7 multipliers.

To show how the Polyphase FIR structures is build up we will take a
look at the transfer function shown in equation 2.7. One takes this function
and decompose it so it leads to a parallel form structure.

H(z) = h[0] + h[1]z7Y + h[2)27% + h[3]273 + h[4]z 74

+ h[5]27° + h[6]27% + A[7)z7 + h[8]z (2.7)

6
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Fig. 2.6: Linear-Phase FIR structure
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v

Odd and even indexed coefficients are split up in a sum of two terms as
shown in equation 2.8

H(z) = (h[0] + [ J27% + h[4]e™ + h[6]z"° + A[8]z )
+ (h[1)z7" 4+ A[3]27% + h[5]2 > + h[7]27) 28)
= (h[0] + h[2)z7% + h[4)z" + h[6]27° + h[8]=7%) '
+ 2 Y (h[1] + h[3]27% + h[5]z~* + K[7)27°)
The polyphase decomposition of H|[z] will then become
H(z) = Eo(2%) + 2 1B (2?) (2.9)
where

Eo(z) = h[0] + h[2]z~" + h[4]z72 + h[6]273 + h[8)z* (2.10)
Ei(2) = h[1] + h[3]z7 1 + h[5]z 72 4 h[7]273 (2.11)

Figure 2.7, [18], shows the polyphase realization of a transfer function
H(z)

2.1.4 Bit-serial vs. bit-parallel architectures

The bit-serial architecture is area-efficient but has a disadvantage in time
efficiency. It may be desirable to combine the area efficiency of a bit-serial
architecture with the time efficiency of a corresponding bit-parallel archi-
tecture into a single area-efficient and time efficient digit serial architecture.

7
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Fig. 2.7: Polyphase FIR Structure

In a digit serial arithmetic implementation, the W bits of a data word are
processed in units of the digit size N in W/N clock cycles. This leads to
arithmetic operators that have smaller area than equivalent parallel arith-
metic designs and have a lager througput than equivalent parallel arithmetic
designs.

Architectures based on the digit-serial approach may offer the best over-
all trade-off between speed, efficient area utilization, throughput, I/O pin
limitations and power consumption. In other words this will be an effective
implementation style for FPGAs.

2.2 Optimizations to reduce the use of hardware resources

When implementing a FIR filter on an FPGA or such one wants to reduce the
total number of 1’s required in the coefficient’s two’s complement represen-
tation. There are two methods that we will take a look at, Booth encoding
and Canonic Signed Digit (CSD). There are also some algorithms that is
used to reduce the hardware which can be studied in detail in [1], [2], [3] and

[4]

2.2.1 Booth encoding

Booth multiplication algorithm multiplies two signed binary numbers in
two’s complement notation. By using the Booth algorithm it is possible
to reduce the number of partial products by half. Instead of shifting and
adding for every column of the multiplier term and multiplying by 1 or 0,
one can take every second column and multiply by £1, +2 or 0. The Booth
algorithms works as shown below and described in [5]

Booth’s algorithm involves repeatedly adding one of two predetermined
values A and S to a product P, then performing a rightward arithmetic shift
on P. Let x and y be the multiplicand and multiplier, respectively; and let
x and y represent the number of bits in x and y.

1. Determine the values of A and S, and the initial value of P. All of
these numbers should have a length equal to (x +y + 1).

(a) A: Fill the most significant (leftmost) bits with the value of x.
Fill the remaining (y + 1) bits with zeros.

8



(b) S: Fill the most significant bits with the value of (—x) in two’s
complement notation. Fill the remaining (y + 1) bits with zeros.

(¢) P: Fill the most significant x bits with zeros. To the right of this,
append the value of y. Fill the least significant (rightmost) bit
with a zero.

2. Determine the two least significant (rightmost) bits of P.

(a) If they are 01, find the value of P + A. Ignore any overflow.
(b) If they are 10, find the value of P + S. Ignore any overflow.
(¢) If they are 00 or 11, do nothing. Use P directly in the next step.

3. Arithmetically shift the value obtained in the previous step by a single
place to the right. Let P now equal this new value.

4. Repeat steps 2 and 3 until they have been done y times.

5. Drop the least significant (rightmost) bit from P. This is the product
of x and y.

We can now look at an example to show that we use Booth to multiply
two numbers and still reduce the number of partial products compared with
regular adding and shifting [5].

We shall find 3% —4, 2 = 3 and y = —4 [5]

A = 001100000 (2.12)
S = 110100000 (2.13)
P = 000011000 (2.14)

We perform the loop four times:
1. P =000011000. The last two bits are 00.

e P =000001100. Arithmetic right shift.
2. P =000001100. The last two bits are 00.

e P =000000110. Arithmetic right shift.
3. P =000000110. The last two bits are 10

e P =110100110. P=P+ S.
e P =111010011. Arithmetic right shift.

4. P =111010011. The last two bits are 11.
e P =111101001. Arithmetic right shift
The product is 11110100, which is —12



2.2.2 C(Canonical Signed Digit

The Canonical Signed Digit (CSD) number system is a signed digit number
system that minimize the number of non-zero digits. This can be used to
reduce the number of adds in a logic circuit. The digit set is ternary and
each digit can be either. —1, 0, or +1. CSD digits that are beside each
other are never both = 1. This implies that for an n-bit number, there are
at most [n/2] non-zero digits. For a 2’s complement number, all the digits
can be ones which is not hardware friendly when it comes to area and power
consumption. It can also be shown that the probability of a digit being
zero is roughly 2/3 for CSD and exactly 1/2 for 2°s complement [14]. The
following table shows an example for n = 3 where 1 represents -1. As can
be seen in Table 2.1, for negative numbers the number of non-zero digits is
less for the CSD representation than the 2°s complement representation, 9
versus 12. [14]

’ Number ‘ 2 s Complement ‘ Canonical Signed Digit

3 011 101
2 010 010
1 001 001
0 000 000
-1 111 001
-2 110 010
-3 101 101
-4 100 100

Tab. 2.1: Three Digit Canonical Signed Digit Numbers.

CSD encoding is similar to Booth encoding and can be accomplished
by analyzing pairs of adjacent digits as shown in 2.2.1. If the number is
negative, the MSB+1 (z}) is 1, otherwise, it is a 0. This can be imple-
mented as a copy of the MSB. Table 2.2 and the flow chart of Figure 2.8
provide a method to convert 2°s complement numbers to CSD numbers [14].
This method was used to create Table 1. The digits x; and z;y; are adja-
cent digits of the 2’s complement number and the digits, ¢;, are the CSD
digits. The flow chart shows the algorithm to convert 2’s complement fil-
ter coefficients, X, to CSD representation of the filter coefficient, C', where
X == *n Tn—1Tn—2Tn—3...T3T2X1T( and C = Cn—1Cp—2Cpn—3...C3C2C1CQ.
14

The following are the properties of CSD numbers:

e No 2 consecutive bits in a CSD number are non-zero.

e The CSD representation of a number contains the minimum possible
number of non-zero bits, thus the name canonic.

10



’ Carry-in ‘ Tit1 ‘ T; ‘ carry-out ‘ ci ‘

0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 -1
1 0 0 0 1
1 0 1 1 0
1 1 0 1 -1
1 1 1 1 0

Tab. 2.2: Three Digit Canonical Signed Digit Numbers.

e The CSD representation of a number is unique.

e CSD numbers cover the range (-4/3,4/3), out of which the values in
the range [-1,1) are of greatest interest.

e Among the W-bit CSD numbers in the range [-1,1), the average num-
ber of non-zero bits is W/3 + 1/9 + O(2-W). Hence, on average, CSD
numbers contains about 33 % fewer non-zero bits than two s comple-
ment numbers.

11



i=0
carry = 0
X*

Fig. 2.8: Flow chart of conversion of two’s complement to CSD
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CSD in filters
Problems with high speed filters:

e Digital Finite Impulse Response (FIR) filters are widely used in digital
processing

e Multipliers in filter are the most complex hardware realization which
increases the cost of filters

e Multiplication is the most time and power consuming process limits
varity of high speed applications.

The solution to the problems mentioned over is to eliminate the multi-
pliers from filter by employing CSD represented filter coefficients to increase
the speed and reduce hardware complexity. CSD representation can help
high speed FIR digital filter design because there will become less nonzero
digits in a CSD form cuts number of addition stages and thereby also reduce
both hardware complexity and power consumption. The number of adder/-
subtracter required to realize a CSD coefficient is one less then the number
of nonzero digits in the code.

For example consider a filter coefficient in 8-bit with value = 0,9921875

0.992187519 = 0.11111115 = 1.0000001eq = 2° — 277 (2.15)

One can observe above that one uses only one subtracter as opposed to
seven adders

2.3 FPGA

An FPGA (field-programmable gate array) is a semiconductor device con-
taining programmable logic components called logic blocks, and programmable
interconnects. Figure 2.9 shows the architecture of an FPGA [16], [9]. Logic
blocks can be programmed to perform the function of basic logic gates, math-
ematical functions or decoders. FPGAs were introduced as an alternative to
custom ICs. With the help of computer aided design tools circuits can be
implemented in a short amount of time. The benefits with FPGAs are no
physical layout process, no mask making and no IC manufacturing.

Figure 2.10 shows how FPGA is more flexible compared to ASICs but
not so flexible compared to processors [9].

There are some different vendors that deliver FPGAs, Xilinx and Altera
is two of the vendors. Families of FPGAs differ in:

e physical means of implementing user programmability

e arrangement of interconnections wires
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Fig. 2.10: FPGA vs. ASIC vs. Processors
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e the basic functionality of the logic blocks

o flexibility of the logic blocks and connections

Figure 2.11 shows how a logic block is built up. It contains of a LUT
(look up table) which implements combinational logic functions, a register
that stores output of LUT (optional), [9].

set by configuration
= bit-stream

Logic Block

INPUTS 4-LUT

—» OUTPUT

\
\ 4-input "look up table"

Fig. 2.11: Logic Block

Figure 2.12 and 2.3 shows how equation 2.16 can be implemented in a
LUT, [8].

q = (apANDa;)OR(a2AN Das) (2.16)

o ——| 4-to-1 bit
o LUT

Fig. 2.12: Logic Block example
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Tab. 2.3: LUT implementation, truth tabel

The design flow on an FPGA is as follows|9]:

e Design Entry:

— Create your design files using schematic editor or hardware de-
scription language (Verilog or VHDL

e Design Implementation
— partition, place and route to create bit-stream file
e Design Verification

— Use simulator to check function
— Load onto FPGA device via data cable from computer

— check operation at full speed in real environment

The design flow is shown graphically in figure 2.13, [9]
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Fig. 2.13: Design Flow to an FPGA
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3. MODELING AND SIMULATION

As shown in the section 2 digital filters consists of a lot of constant multipli-
ers. Multiplying two numbers uses a lot of hardware resources. The central
problem then becomes substituting the full multipliers by an optimized se-
quence of shift, additions and subtractions. In this thesis I have designed 4
version of a digital filter. Each version has its own method to multiply the
coefficient with the input signal. The version is described in details in section
3.1. The whole filter is shown in figure 3.1 The digital filters characteristics
is shown in table 3.1, the frequency response is shown in figure 3.2 and the
filters coefficients is shown in table 3.2 [6].

x(n) x(n-1) x(n-2) x(n-3) x(n-4) x(n-5) x(n-6) x(n-7) x(n-8) x(n-9) x(n-10)
TDFF TDFF TDFF TDFF TDFF T DFF T DFF T DFFT DFFTDF T

"X X

-

h(O)
)

h(")

h(2)
h(3)
h(4)
n(s)
h(6)
h(7)
h(8)
h(9)
h(10

+

+

+

+

-

+

DFF—

Fig. 3.1: The designed digital FIR filter

Filter type Low pass
Window type Hanning
Filter order 10

Passband 0 to 1000 Hz

Stoppband attenuation 44 dB
Transiton bandwidth 2488 Hz

Tab. 3.1: Digital Filter characteristics



h(k)
0,002437094
0,013715162
~0,044250023
~0,044364337
0,28976238
0,5575594
0,28976238
~0,044364337
~0,044250023
0,013715162
0,002437094

OO N[O = | W[ N~ O] &

—_
()

Tab. 3.2: Digital Filter coeflicients

Fig. 3.2: Frequency response of the designed filter
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3.1 Filter Versions

Like mentioned above I have designed 4 versions of the same filter by using
VHDL. All the filters are Direct Form FIR filter as explained in section 2.1.3
and in |7]. The differences of the filters are described below.

All the filters are built up by two main files; one main VHDL file (my _fir.vhd)
that describes the whole filter and one file (my functions.vhd) that returns
the multiplication between the input signal and the coefficients. The whole
code is attached in appendix A to D

The difference between the versions are in the my functions.vhd files
where the multiplications are done. Section 3.1.1 to 3.1.4 describes the dif-
ferences.

The filter coefficients, h(k), are shown in tables 3.3 and 3.4. All the
coefficients are scaled by 10* and rouned to the nearest integrer. This scaling
is done so that the largest coefficient is less then the largest, 16, bit, 2’s
complement number.

3.1.1 Filter version 1

In filter version 1 it is used CSD encoding to represent the coefficients. This
technique is used to reduce the number of 1’'s. The CSD representation is
a signed power-of-two representation where each of the digits is in the set
1,0,1. 1—addition, 0—no operation and 1—subtraction. The theory behind
CSD is described in section 2.2.2. Using CSD representation for the coeffi-
cients implies that the multiplication can be conducted in a shift, subtract
and add fashion using the lowest number of operations. The coeflicients are
shown in table 3.3

k h(k) h(k) scaled | h(k)rounded | h(k) 16-bit, CSD encoded
0 | 0,002437094 | 24,37094 24 0000000000101000
1 | 0,013715162 | 137,15162 137 0000000010001001
2 1 -0,044250023 | -442,50023 -443 0000001001000101
3 | -0,044364337 | -443,64337 -444 0000001001000100
4 0,28976238 2897,6238 2898 0001010101010010
5 0,5575594 5575,594 5576 0010101001001000
6 0,28976238 2897,6238 2898 0001010101010010
7 | -0,044364337 | -443,64337 -444 0000001001000100
8 | -0,044250023 | -442,50023 -443 0000001001000101
9 | 0,013715162 | 137,15162 137 0000000010001001
10 | 0,002437094 | 24,37094 24 0000000000101000

Tab. 3.3: CSD representation of the coefficients

Each function that returns the multiplication between the coeflicient and
the input signal is described in VHDL as show below.

20



FUNCTION coeff 5 (signal

RETURN std_logic

c: in
_vector

std _logic_vector)

1S

VARIABLE temp std logic_vector (23 DOWNTO 0);
VARIABLE shiftl std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift5 :std_logic_vector (23 DOWNIO 0);
BEGIN
temp := ¢ & "0000000000000000";
shiftl := (temp sra 2);
shift2 := (temp sra 4);
shift3 := (temp sra 6);
shift4 := (temp sra 9);
shifts (temp sra 12);
return (shiftl — shift2 — shift3 — shift4d 4+ shift5);

END coeff 5;

Here ¢ (the input signal) is shifted the number of times depending on
the coefficient and then all the shifts are added/subtracted together. One
can see that the sra(shift right arithmetic) opertator is used. The VHDL
code for the shift operators can be found in Appendix E. In the example
above coefficient 5 is used. The multiplication can be described as shown in
equation 3.1

return = (¢ << 2) — (¢ <<4) — (¢ <<6) — (¢ << 9)+ (¢ << 12) (3.1)

All the coefficients are carried out the same way as coefficient 5 and the
whole code for version 1 can be seen in appendix A

3.1.2 Filter version 2

Filter version 2 is nearly identical to version 1. Version 2 uses also CSD
encoding which will give the lowest number of operations. The differences
is that in version 2 no shift operations are used. This is done to find out if
this filter structure will be more area efficient. The function of coefficient 5
will then be coded in VHDL as shown below

FUNCTION coeff 5 (signal c: in std_logic_ vector)

RETURN std _logic_vector IS
VARIABLE shiftl std_logic_vector (17 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (17 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (17 DOWNIO 0);
VARIABLE shift4 :std_logic_vector (17 DOWNIO 0);
BEGIN
shiftl := (c(7)&c(7 downto 0)
&"000000000");
shift2 := (c(7)&c(7)&c(7T)&c(7)
&c (7 downto 0)&"000000");
shift3 := (c(7)&c(7)&c(7)&c(7)
&c(7)&c(7)&c(7)&c (7 downto 0)&"000");
shiftd := (c(7)&c(7)&c(7)&c(T7)
&c(7)&c(7)&c(7)&c(7)&c(7)&c (7 downto 0)&"0");
return (shiftl + shift2 — shift3 — shift4);

END coeff_5;

The whole code can be seen in appendix B
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3.1.3 Filter version 3

Filter version 3 uses the multiplication operator * in VHDL. The reason for
designing with this operator is to find out how much more resources are used
on the FPGA compared to only shifting and adding. Again we look at the
function that returns the multiplication of the input signal and coefficient 5:

FUNCTION coeff_5 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);
BEGIN
temp := ¢ * "0001010111001000";

return temp;

END coeff 5;

Here we just mutiply ¢ with coefficient 5 by using the * operator. The
whole code can be seen in appendix C

3.1.4 Filter version 4

Filter version 4 is implemented with 2’s complement number representatsion.
The binary representation is shown in figure 3.4. Similar to filter version 1
the multiplication can be conducted in a shift, subtract and add fashion.
The multiply functions are carried out in the same way as version 1 using
shift operators as shown in the VHDL code below

FUNCTION coeff 5 (signal c: in std_logic_ vector)
RETURN std_logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNTO 0);

VARIABLE shiftl : std_logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift3 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift5 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift6 :std_logic_vector (23 DOWNIO 0);

BEGIN

temp := c¢ & "0000000000000000";
temp := (temp sra 16);

shiftl := (temp srl 3);

shift2 := (temp srl 6);

shift3 := (temp srl 7);

shift4 := (temp srl 8);

shift5 := (temp srl 10);

shift6 := (temp srl 12);

return (shiftl + shift2 4+ shift3
+ shiftd 4+ shift5 + shift6);

END coeff 5

The multiplication can be described as shown in equation 3.2

return = (¢ << 3)+ (¢ << 6) + (c << 7)
+ (<< 8) + (¢ << 10) + (e << 12)

The whole code can be seen in appendix D
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k h(k) h(k) scaled | h(k)rounded | h(k) 16-bit, 2’s complement
0 | 0,002437094 | 24,37094 24 0000000000011000
1 | 0,013715162 | 137,15162 137 0000000010001001
2 1 -0,044250023 | -442,50023 -443 1111111001000101
3 | -0,044364337 | -443,64337 -444 1111111001000100
4 0,28976238 2897,6238 2898 0000101101010010
5 0,5575594 5575,594 5576 0001010111001000
6 | 0,28976238 | 2897,6238 2898 0000101101010010
7 | -0,044364337 | -443,64337 -444 1111111001000100
8 | -0,044250023 | -442,50023 -443 1111111001000101
9 | 0,013715162 | 137,15162 137 0000000010001001
10 | 0,002437094 24,37094 24 0000000000011000

Tab. 3.4: 2’s complement representation of the coefficients
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4. RESULTS AND COMPARISONS

Simulation, testing of the code and implementation was done in ModelSim
[10] and Xilinx ISE [11]. The device properties is shown in table 4.1. The
area is measured in number of slices. The required area compared to the
4656 available slices in the XC3S500E device. The delays are expressed
in nanoseconds and the number of additions/subtractions is computed by
Xilinx Project Navigator [11].

Property name Value
Product Category All
Family Spartan 3E
Device XC3S500E
Package FG320
Speed -4

Tab. 4.1: Device Properties

4.1 Results from simulation of the filter versions

Table 4.2 and 4.3 shows the utilizations summary of the different versions
of the designed filter. We can clearly observe that version 3 uses the least
number of slices but since the FPGA has built-in multipliers so this will not
give a good picture of the used number of slices. So the interesting versions
to look at are version 1, 2 and 4. Here we can see that version 1 and version
2 are nearly identical since they both use CSD-encoding. Version 2 has an
improvement of 22% when it comes to number of slices compared to version
1. Version 3 that uses 2’s complement uses a lot more of area compared
to the CSD-encoded versions. Version 2 has an improvment of 36% then
version 4.

Table 4.4 shows HDL Synthesis Report from Xilinx Project Navigator
[11]. Again we can observe that version 3 of the designed filter uses the
built-in multipliers so the number of adders and subtractors are low so ver-
sion 3 can not be directly compared to the other versions. Version 1 and
version 2 use CSD-encoding and have a low number of adders and subtrac-
tors compared to version 4 that uses 2’s complement representation of the
coefficients. Version 2 has a 52% improvement compared to version 4. One



can also observe that version 4 do not use subtractors, this because 2’s com-
plement represents each digit with 0 or 1 while version 1 and 2 uses encoding
is ternary and each digit can be either -1, 0 or 1.

Version 1

Version 2

Number of Slices

343 out of 4656 (7,4%)

267 out of 4656 (5,7%)

Number of Slice Flip Flops

99 out of 9312 (1,1%)

92 out of 9312 (0.98%)

Number of 4 input LUTs

628 out of 9312 (6,7%)

484 out of 9312 (5,2%)

Number of 10s

34

34

Number of bonded IOBs

34 out of 232

34 out of 232

Number of MULT18X18SI10s

Number of GCLKs:

1 out of 24

1 out of 24

Tab. 4.2: Device utilization summary, Version 1 and Version 2

Version 3

Version 4

Number of Slices

130 out of 4656 (2,7%)

418 out of 4656 (8,9%)

Number of Slice Flip Flops

88 out of 9312 (0,95%)

121 out of 9312 (1,3%)

Number of 4 input LUTs

227 out of 9312 (2,4%)

728 out of 9312 (7,8%)

Number of 10s 34 34
Number of bonded I0Bs 34 out of 232 34 out of 232
Number of MULT18X18SIOs 11 out of 20 -
Number of GCLKs: 1 out of 24 1 out of 24

Tab. 4.3: Device utilization summary, Version 3 and Version 4

Filter Version | Adders/subtractors | Adders | Subtractors | Registers | Multipliers
1 40 27 13 88 -
2 31 19 12 88 -
3 10 10 - 88 11
4 65 65 - 88 -

Tab. 4.4: HDL Synthesis Report

Table 4.5 and 4.6 shows the timing summary of the filters versions. Before
comparing the filters the expression will shortly explained and can be found

in detail at [11].

e Minimum Period - The maximum delay from any synchronous element

to another.

e Maximum Period - The maximum delay from any synchronous element
to another; displayed in MHz. These paths can run at this frequency.
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e Minimum input arrival time before clock - The minimum global OFF-
SET IN BEFORE.

e Maximum output required time after clock - The maximum global
OFFSET IN AFTER.

In table 4.5 and 4.6 one can see that version 3 of the of filters has the
highest frequency. This again is because the FPGA has built-in multipliers.
Comparing version 1, 2 and 4 one can identify that version 1 and 2, which
uses CSD encoding, has a much higher maximum frequency then version 4
that represent the coefficients with 2’s complement. This is because version
4 has lot more logic and will be a litter slower then version 1 and 2. It should
be mentioned that if one had used another filter structure one had gotten a
lot better timing number. This because the Direct Form that is used, adds
all taps together at the end and takes a lot of time.

Version 1 Version 2
Minimum period 1,984 ns 1,950 ns
Maximum Frequency 504,032 MHz | 512,821 MHz
Minimum input arrival time before clock 1,946 ns 1,973 ns
Maximum output required time after clock 40,720 ns 32,072 ns
Tab. 4.5: Timing Summary, Version 1 and Version 2
Version 3 Version 4
Minimum period 1,346 ns 4,014 ns
Maximum Frequency 742,942 MHz | 249,128 Mhz
Minimum input arrival time before clock 1,946 ns 1,946 ns
Maximum output required time after clock 28,509 ns 49,355 ns

Tab. 4.6: Timing Summary, Version 3 and Version 4

The RTL schematic of version 2 is shown in figure 4.1 and in more depth
in figure 4.2 and 4.3

4.2 2’s complement vs. CSD representation

Tables 4.7 and 4.8 shows the total number of adds and shifts. As one can
observe the former drops from 55 to 30 adds/subtracts and the latter drops
from 62 to 41 that is an improvement of 46% when it comes to adds and
subtracts and 34% when it comes to shifts. This will in other word be a
substantial improvement when it comes to the use of hardware resources. It
should be mentioned that the add and the subtract are considered as the
same cost operation. The improvement is very clearly at coefficient number
2 (k = 2). If one look at the equations 4.1 and 4.2 one can observe that 2’s
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Fig. 4.1: Schematic of FIR filter version 2

Fig. 4.2: RTL schematic of FIR filter version 2, 1/2

k h(k) h(k) 16-bit, 2’s complement | Total Adds | Total Shifts
0 | 0,002437094 0000000000011000 1 2
1 | 0,013715162 0000000010001001 2 2
2 | -0,044250023 1111111001000101 9 9
3 | -0,044364337 1111111001000100 8 9
4 0,28976238 0000101101010010 ) 6
) 0,5575594 0001010111001000 ) 6
6 0,28976238 0000101101010010 ) 6
7 | -0,044364337 1111111001000100 8 9
8 | -0,044250023 1111111001000101 9 9
9 | 0,013715162 0000000010001001 2 2
10 | 0,002437094 0000000000011000 1 2
Total 55 62

Tab. 4.7: Total adds and shifts when using 2’s complement representation of the

coefficients
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Fig. 4.3: RTL schematic of FIR filter version 2, 2/2

k h(k) h(k) 16-bit, CSD encoded | Total Adds/Subtracts | Total Shifts
0 | 0,002437094 0000000000101000 1 2
1 | 0,013715162 0000000010001001 2 3
2 | -0,044250023 0000001001000101 3 4
3 | -0,044364337 0000001001000100 2 3
4 0,28976238 0001010101010010 5 6
5 0,5575594 0010101001001000 4 5
6 | 0,28976238 0001010101010010 5 6
7 | -0,044364337 0000001001000100 2 3
8 | -0,044250023 0000001001000101 3 4
9 | 0,013715162 0000000010001001 2 3
10 | 0,002437094 0000000000101000 1 2
Total 30 41

Tab. 4.8: Total adds and shifts when using CSD representation of the coefficients
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complement representation (equation 4.2) uses a lot more adds and shifts
to multiply the input signal and the coefficient then CSD representation
(equation 4.1). One can also clearly see this in figure 4.4 and 4.5 which shows
the RTL schematics of the coefficient 2 when using CSD and 2’s complement
representation.

Ybinary = —(€c << 6) + (¢ << 9) + (¢ << 13) + (¢ << 15) (4.1)
yosp = (€ << 2) 4 (¢ << 6) + (¢ << 9) + (¢ << 10) + (¢ << 11)
+(c<<12)+ (c << 13) + (c << 14) + (c << 15)

(4.2)

Fig. 4.4: RTL schematic of multiplication with coefficient 2, CSD representation

Fig. 4.5: RTL schematic of multiplication with coefficient 2, 2’s complement repre-
sentation

One can also see from the synthesis report that using CSD representation
on coeflicient 2 reduces the number of slices with 62% and the number of
LUTs with 60% as shown in tabel 4.9

CSD representation | 2’s complement representation
Number of Slices 19 out of 4656 49 out of 4656
Number of 4 input LUTs 36 out of 9312 90 out of 9312
Number of 10s 26 32
Number of bonded IOBs: 26 out of 232 32 out of 232

Tab. 4.9: Device utilization summary, coefficient 2
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4.3 Dynamic Constant Coefficient Multiplier

Until now we have only discussed Constant Coefficient Filters, or in other
words we have looked at how to optimize a multiplier when we know the
coefficients. Some times one need to change the coefficients and then one
will meet a challenge. The change of a coefficient value requires not only the
FPGA to be reconfigured but also the whole design cycle to start over. This
causes the change of a coefficient to take time and this can not be performed
while the circuit is running.

A solution is to make a Dynamic Constant Coefficient Multiplier (DKCM),
[15]. The DKCM implements LUT based Multiplications (figure 4.6 shows a
LUT based multiplier). If one wants to change the coefficients one can change
the LUT memory contents. The solution can implement in-circuit coefficient
reconfiguration. By doing this one do not need to reimply the design fitting
into the FPGA structure. The drawback is that this will use more area on
the chip then a constant coefficient multiplier, which is a substantial draw-
back. As mentioned the idea behind the dynamic change of a coefficient
value is to properly change the contents of the memories. To do this one
needs an extra RAM programming interface[15]. The RAM programming
interface has two functions as described below.

1. Allows the RAMs to be programmed.

2. The RAM programming unit which produces proper data sequences
and control signals for RAM programming

Figure 4.7 shown how a DKCM circuit is built up. One can see that this
is an expansion of figure 4.6.

An alternative solution is programming RAMs using an FPGA partial
reconfiguration instead of the RAM programming unit but this may not be
accepted by a given FPGA. This also requires longer reconfiguration time
and pre-calculated RAM contents.
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5. CONCLUSIONS AND FUTURE WORK

The theory part, section 2, in the text gives a short description of digital
filters. It describes advantages and disadvantages of digital filters among
other factors digital filters are much easier to design, test and implement
than an analog filter.

The primary emphasis of digital filters in this paper is finite impulse
response (FIR) filters. FIR consists of a finite number of sample values, as
shown in equation 2.1. Section 2.1.3 explain different filter structures that
can be used to design a filter. These structures are Direct Form, Transposed
Direct Form, Cascade Form, Linear-Phase and Polyphase. Each structure
has its benefits and drawbacks. Direct Form structure that is used is easy
to design but slow and need more multipliers then for instance the Linear-
Phase structure, so in other words the designed filter can much better but
the assignement was to look at how to improve the multipliers in the filter.

The theory part also explains a little bit about bit-serial architecture vs.
bit-parallel architecture. In section 2.2 we have described two methods to
reduce hardware; booth encoding and canonical signed digit (CSD) represen-
tation. Booth is used to easier multiply two binary numbers that has a two’s
complement notation. CSD number system is a signed digit number system
that minimizes the number of non-zero digits. CSD encoding is ternary so
each digit can be —1, 0 or 1, where as regular digital representation us only
0 and 1. The basic idea is that no non-zero digits are adjacent. This reduces
the hardware since a regular binary number can have a lots of adjacent non-
zero digits. This section describes also a little bit what CSD encoding can
help to reduce hardware in filter. The final section in the theory chapter it
is explained a little bit how an FPGA is built up and how the design flow is
carried out.

In chapter 3 and 4 the four versions of the filter that is design is explained.
The filter that is designed is a low pass filter with filter order equals 10 and
the pass band is 0 to 1000 Hz. The four versions that are designed of the
same filter are used to compare what kind of filter that is most efficient.
Version 1 and 2 has CSD encoded coefficients and are with out doubt the
most efficient when it comes to area and speed, which was also assumed in
advance. The differences between version 1 and 2 are that version 1 uses
shift operators in VHDL code and the other one do not. Version 1 uses some
more area and are a little slower then version 2.

The third version uses the multiplication operator *

. When using this



operator on the FPGA it will use the built-in multipliers which will result in
a low number of slices and a high speed, so if the multipliers not are used in
the FPGA it is an advantage to use them instead of logic blocks. So version
3 can not be directly compared to the other versions of the filter since it uses
the multipliers and not logic blocks.

The most interesting comparison is between version 1 and 4 where the
first one uses CSD encoding and the latter uses 2’s complement representa-
tion. Tt is proven in the thesis that version 1 uses almost 20% less slices of
the FPGA then version 4 and version 1 has a maximum frequency of 504,032
MHz and version 4 only has a maximum frequency of 249,128 MHz. This
shows as expected that CSD-encoding of the coefficients really can improve
digital applications.

Finally in the paper a Dynamic Constant Coefficient Multiplier (DKCM)
is discussed. The DKCM is used if one wants to change the coefficients of
the filter. The DKCM implements LUT based multiplications. The DKCM
offers much quicker reconfigurations but occupies more area in comparison
with a constant coefficient multiplier that is used in the designed filter in
this thesis. If one wants to change the coefficients in a constant coefficient
filter that is designed in this thesis one has to design the circuit from the
beginning.

5.1 Future work
Future work my include:

e The filter that was designed in this thesis was a Direct Form FIR filter,
this as shown in the paper is not the most efficient structure so future
work could also redesign the filter to another structure and identify the
improvements of the new filter.

e Since the time ran out on this master thesis and no Dynamic Constant
Coefficient Multiplier (DKCM) was designed and implemented it could
be interesting in future work to design a DKCM and implement this
on an FPGA.

e Investigation/research of a coefficient multiplier based re-configuration
system with fixed module which is an alternative to DKCM.
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APPENDIX



A. MY FIR FILTER VERSION 1

A.1 my_fir.vhd

LIBRARY ieee ;

USE ieee.std logic 1164 .ALL;

USE ieee.std logic_ unsigned.ALL;
USE work.my package.all;

USE work. my:functions. all;

—— MY FIR filter

—— Version 1.0

— 11 coefficients

—— Author: Vebjgrn Bystrgm, NINU 8.may 2008

ENTITY
ENTITY my fir IS
PORT (
x: IN std_logic_vector (7 downto 0);
clk, rst : IN std_logic;
y: OUT std_ logic_vector(23 downto 0)
)3
END my fir;

- — ARCHITECTURE

ARCHITECTURE rtl of my_fir IS

TYPE registers IS ARRAY (10 downto 0)
OF std_logic_vector (7 downto 0);

SIGNAL reg: registers;

PROCESS

BEGIN

process (clk , rst, reg)

VARIABLE coeff0: std_logic_vector (23 downto 0) ;
VARIABLE coeffl: std_logic_vector (23 downto 0) ;
VARIABLE coeff2: std_logic_vector (23 downto 0) ;
VARIABLE coeff3: std_logic_vector (23 downto 0) ;
VARIABLE coeffd4: std_logic_vector (23 downto 0) ;
VARIABLE coeff5: std_logic_vector (23 downto 0) ;
VARIABLE coeff6: std_logic_vector (23 downto 0) ;
VARIABLE coeff7: std_logic_vector (23 downto 0) ;
VARIABLE coeff8: std_ logic vector(23 downto 0) ;
VARIABLE coeff9: std_ logic vector(23 downto 0) ;
VARIABLE coeff10: std logic_vector(23 downto 0);

BEGIN
——— reset registers ——
if (rst = ’'1’) then

for i in 10 downto O loop
for j in 7 downto 0 loop
reg(i)(j) <= 0%
end loop;
end loop;
—— update registers ——
elsif (clk ’EVENT and clk =’1’) then
for k in 10 downto 1 loop
reg(k) <= reg(k—1);



end loop;
reg (0) <= x;

end if;

——— multiply coeff with x and accumulate ——

coeff0 : coeff 0 (reg(0)(7 downto 0));
coeffl coeff_ 1(reg(1)(7 downto 0));
coeff2 coeff_ 2(reg(2)(7 downto 0));
coeff3 coeff 3 (reg(3)(7 downto 0));
coeff4 coeff_ 4 (reg(4)(7 downto 0));
coeffb coeff_ 5 (reg(5)(7 downto 0));
coeff6 coeff_ 6 (reg(6)(7 downto 0));
coeff?7 coeff 7 (reg(7)(7 downto 0));
coeff8 coeff 8(reg(8)(7 downto 0));
coeff9 := coeff 9(reg(9)(7 downto 0));
coeffl0 := coeff 10(reg(10)(7 downto 0));

y <= coeff0 + coeffl + coeff2 4+ coeff3
+ coeffd + coeff5 + coeff6 + coeff7
+ coeff8 + coeff9 + coeffl0;
END PROCESS;
END rtl;

A.2 my_functions.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE work.my _package.all;

— MY FIR filter

—— Computation of the coefficients

— Version 1.0

—— 11 coefficients

—— Author: Vebjgrn Bystrgm, NTNU 8.may 2008

PACKAGE my functions is

FUNCTION coeff_ 0 (signal c: in std_logic_vector)
RETURN std _logic_vector;

FUNCTION coeff_1 (signal c¢ : std_logic_vector)
RETURN std _logic_vector;

FUNCTION coeff_2 (signal c¢ : std_logic_vector)
RETURN std _logic_vector;

FUNCTION coeff_3 (signal c¢ : std_logic_vector)
RETURN std _logic_vector;

FUNCTION coeff 4 (signal ¢ : std_logic vector)
RETURN std_logic_vector;

FUNCTION coeff 5 (signal ¢ : std_logic vector)
RETURN std_logic_vector;

FUNCTION coeff 6 (signal ¢ : std_logic_ vector)
RETURN std_logic_vector;

FUNCTION coeff 7 (signal ¢ : std_logic vector)
RETURN std_logic_vector;

FUNCTION coeff 8 (signal ¢ : std_logic vector)
RETURN std_logic_vector;

FUNCTION coeff_9 (signal c¢ : std_logic_vector)
RETURN std _logic_vector;

FUNCTION coeff_10 (signal ¢ : std_logic_vector)
RETURN std _logic_vector;

END my _functions;
PACKAGE BODY my _functions is
—————————————— COEFF 0

FUNCTION coeff 0 (signal c: in std logic vector)
RETURN std_logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNTO 0);
VARIABLE shiftl : std_logic_vector (23 DOWNTO 0);
VARIABLE shift2 : std_logic_vector (23 DOWNIO 0);

BEGIN
temp := c¢ & "0000000000000000";
shiftl (temp sra 10);
shift2 (temp sra 12);
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return shiftl — shift2;
END coeff 0;

- COFFF_1
FUNCTION coeff_1 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);

BEGIN
temp := c¢ & "0000000000000000";
shiftl := (temp sra 8);
shift2 := (temp sra 12);
shift3 := (temp sra 15);

return (shiftl 4+ shift2 + shift3);

END coeff 1;

—— COEFF_2
FUNCTION coeff_2 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift4 :std_ logic_vector (23 DOWNIO 0);

BEGIN
temp c & "0000000000000000";
shiftl := (temp sra 6);
shift2 := (temp sra 9);
shift3 := (temp sra 13);
shift4d := (temp sra 15);
return (’0° — shiftl + shift2 + shift3 + shift4);

END coeff_2;

- — COEFF_3
FUNCTION coeff_3 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNTO 0);

VARIABLE shiftl : std_logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNTO 0);
VARIABLE shift3 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift4 :std_ logic_ vector (23 DOWNTO 0);

BEGIN
temp c & "0000000000000000";
shiftl := (temp sra 6);
shift2 := (temp sra 9);
shift3 := (temp sra 13);
return (’0° — shiftl + shift2 + shift3);
END coeff_3;
—————————————— COEFF 4

FUNCTION coeff 4 (signal c: in std logic vector)
RETURN std_logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNTO 0);

VARIABLE shiftl : std_logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift5 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift6 :std_logic_vector (23 DOWNIO 0);

BEGIN
temp := ¢ & "0000000000000000";
shiftl := (temp sra 3);
shift2 := (temp sra 5);
shift3 := (temp sra 7);
shift4 := (temp sra 9);
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shifts
shift6

return (
+ shift4

END coeff_4;

= (
= (

sra
sra

temp
temp

11);

5

14);

shiftl shift2 shift3
+ shift5 + shift6);

COEFF_5

FUNCTION coeff_5

(signal c¢: in std_logic_vector)

RETURN std _logic_vector IS
VARIABLE temp std logic_vector (23 DOWNTO 0);
VARIABLE shiftl std logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift3 :std_ logic_vector (23 DOWNTO 0);
VARIABLE shift4 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift5 :std_logic_vector (23 DOWNTO 0);
BEGIN
temp := c¢ & "0000000000000000";
shiftl := (temp sra 2);
shift2 := (temp sra 4);
shift3 := (temp sra 6);
shift4 := (temp sra 9);
shift5 := (temp sra 12);
return (shiftl — shift2 — shift3
— shift4 + shift5);
END coeff 5;
—————————————— COEFF_6
FUNCTION coeff 6 (signal c: in std_logic_ vector)
RETURN std_logic_vector IS
VARIABLE temp std _logic_vector (23 DOWNTO 0);
VARIABLE shiftl std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift5 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift6 :std_logic_vector (23 DOWNIO 0);
BEGIN
temp := c¢ & "0000000000000000";
shiftl := (temp sra 3);
shift2 := (temp sra 5);
shift3 := (temp sra 7);
shift4 := (temp sra 9);
shift5 := (temp sra 11);
shift6 := (temp sra 14);
return (shiftl shift2 — shift3
+ shift4 + shifts + shift6);

END coeff_6;

777777777 ——  COEFF_7

FUNCTION coeff_7 (signal c: in std_logic_vector)

RETURN std _logic_vector IS
VARIABLE temp std logic_vector (23 DOWNTO 0);
VARIABLE shiftl std logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift3 :std_ logic_vector (23 DOWNTO 0);
VARIABLE shift4 :std_logic_ vector (23 DOWNTO 0);

BEGIN
temp := ¢ & "0000000000000000";
shiftl := (temp sra 6);
shift2 := (temp sra 9);
shift3 := (temp sra 13);
return (’0° — shiftl + shift2 + shift3);

END coeff_7;

COEFF_8

41



FUNCTION coeff 8 (signal c: in std_logic_vector)
RETURN std_logic_vector IS

VARIABLE temp : std_ logic_vector (23 DOWNTO 0);

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNIO 0);

BEGIN
temp := c¢ & "0000000000000000";
shiftl := (temp sra 6);
shift2 := (temp sra 9);
shift3 := (temp sra 13);
shift4 := (temp sra 15);
return (’0° — shiftl 4+ shift2 + shift3 + shift4);

END coeff 8;

- COEFF_9
FUNCTION coeff_9 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);

BEGIN
temp := c¢ & "0000000000000000";
shiftl := (temp sra 8);
shift2 := (temp sra 12);
shift3 := (temp sra 15);

return (shiftl 4+ shift2 + shift3);

END coeff 9;

-—————————— COEFF_10
FUNCTION coeff_10 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);
VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 : std_ logic_ vector (23 DOWNTO 0);

BEGIN
temp := ¢ & "0000000000000000";
shiftl := (temp sra 10);
shift2 := (temp sra 12);
return shiftl — shift2;

END coeff_ 10;

END my _functions;
A.3 my_fir th.vhd

library ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

— MY FIR filter

—— Test bench

— Version 1.0

—— 11 coefficients

—— Author: Vebjgrn Bystrgm, NTNU 8.may 2008

ENTITY
entity my_fir_tb is

end my_fir_tb;

- ARCHITECTURE
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architecture my fir tb_arch of my fir tb is

————————————— COMPONENTS
component my_fir
PORT (
x: IN std_logic_vector (7 DOWNIO 0);
clk, rst: IN std_logic;
y: OUT std_logic_vector (23 DOWNIO 0)
)
end component;
signal x : std_logic_vector (7 DOWNTIO 0)
:= "00000000";
signal y : std_logic_vector (23 DOWNTO 0)
:= "000000000000000000000000";
signal clk : std_logic := ’17;
signal rst : std_logic;
begin

—— device under test —
dut: my _fir
port map (

X = X,
y =y,
clk => clk,

rst => rst
)3
— clk generator ——

clk <= not clk after 1 ms;

—— stimulate divece under test ——
wstim: process

begin
rst <= '17;
wait until clk ’event and clk = ’17;
rst <= '07;
x <= "00000000"; ——0
wait until clk ’event and clk = ’1°7;
x <= "00000001"; ——1
wait until clk ’event and clk = ’1°;
x <= "00000010"; ——2
wait until clk "event and clk = ’17;
x <= "00000011"; ——3
wait until clk ’event and clk = ’17;
x <= "00000100"; ——4
wait until clk ’event and clk = ’17;
x <= "00000101"; ——5
wait until clk ’event and clk = ’17;
x <= "00000110"; ——6
wait until clk event and clk = ’17;
x <= "00000111"; ——7
wait until clk ’event and clk = ’17;
x <= "11111111"; — —1
wait until clk ’event and clk = ’17;
x <= "11111110"; — —2
wait until clk ’event and clk = ’1°;
x <= "11111101"; — =3
wait until clk ’event and clk = ’1°;
wait ;

end process;
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B. MY FIR FILTER VERSION 2

B.1 my_fir.vhd

LIBRARY ieee ;

USE ieee.std logic 1164 .ALL;

USE ieee.std logic_ unsigned.ALL;
USE work.my package.all;

USE work. my:functions. all;

—— MY FIR filter

—— Version 2.0

— 11 coefficients

—— Author: Vebjgrn Bystrgm, NINU 8.may 2008

ENTITY
ENTITY my fir IS
PORT (
x: IN std_logic_vector (7 downto 0);
clk, rst : IN std_logic;
y: OUT std_ logic_vector(23 downto 0)
)3
END my fir;

- — ARCHITECTURE

ARCHITECTURE rtl of my_fir IS

TYPE registers IS ARRAY (10 downto 0)
OF std_logic_vector (7 downto 0);

SIGNAL reg: registers;

PROCESS

BEGIN

process (clk , rst, reg)

VARIABLE coeff0: std_logic_vector (23 downto 0) ;
VARIABLE coeffl: std_logic_vector (23 downto 0) ;
VARIABLE coeff2: std_logic_vector (23 downto 0) ;
VARIABLE coeff3: std_logic_vector (23 downto 0) ;
VARIABLE coeffd4: std_logic_vector (23 downto 0) ;
VARIABLE coeff5: std_logic_vector (23 downto 0) ;
VARIABLE coeff6: std_logic_vector (23 downto 0) ;
VARIABLE coeff7: std_logic_vector (23 downto 0) ;
VARIABLE coeff8: std_ logic vector(23 downto 0) ;
VARIABLE coeff9: std_ logic vector(23 downto 0) ;
VARIABLE coeff10: std logic_vector(23 downto 0);

BEGIN
——— reset registers ——
if (rst = ’'1’) then

for i in 10 downto O loop
for j in 7 downto 0 loop
reg(i)(j) <= 0%
end loop;
end loop;
—— update registers ——
elsif (clk ’EVENT and clk =’1’) then
for k in 10 downto 1 loop
reg(k) <= reg(k—1);



end loop;
reg (0) <= x;

end if;

——— multiply coeff with x and accumulate ——
coeff0 := coeff_ 0(reg(0)(7 downto 0));
coeffl coeff_ 1(reg(1)(7 downto 0));
coeff2 coeff_ 2(reg(2)(7 downto 0));
coeff3 coeff 3 (reg(3)(7 downto 0));
coeff4 coeff_ 4 (reg(4)(7 downto 0));
coeffb coeff_ 5 (reg(5)(7 downto 0));
coeff6 coeff_ 6 (reg(6)(7 downto 0));
coeff?7 coeff 7 (reg(7)(7 downto 0));
coeff8 coeff 8(reg(8)(7 downto 0));
coeff9 := coeff 9(reg(9)(7 downto 0));
coeffl0 := coeff 10(reg(10)(7 downto 0));
y <= coeff0 + coeffl + coeff2 4+ coeff3

+ coeffd + coeff5 + coeff6
+ coeffl0;

+ coeff8 + coeff9
END PROCESS;
END rtl;

+ coeff7

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE work.my _package.all;

—— MY FIR filter

—— Computation of the
— Version 2.0

—— 11 coefficients
—— Author:

Vebjgrn Bystrgm,

coefficients

NTNU 8.may 2008

PACKAGE my functions is

FUNCTION coeff 0 (signal
RETURN std _logic_vector;
FUNCTION coeff_ 1 (signal
RETURN std _logic_vector;
FUNCTION coeff_ 2 (signal
RETURN std _logic_vector;
FUNCTION coeff_ 3 (signal
RETURN std _logic_vector;
FUNCTION coeff 4 (signal
RETURN std_logic_vector;
FUNCTION coeff 5 (signal
RETURN std_logic_vector;
FUNCTION coeff 6 (signal
RETURN std_logic_vector;
FUNCTION coeff 7 (signal
RETURN std_logic_vector;
FUNCTION coeff 8 (signal
RETURN std_logic_vector;
FUNCTION coeff_ 9 (signal
RETURN std logic vector;

FUNCTION coeff 10 (signal c

RETURN std _logic_vector;
END my _functions;

PACKAGE BODY my _functions

COEFF_0

C:

c

C

in std_logic_vector)

std_logic_vector)
std_logic_vector)
std_logic_vector)
std _logic_vector)
std _logic_vector)
std _logic_vector)
std _logic_vector)
std _logic_vector)

std_logic_vector)

std_logic_vector)

FUNCTION coeff 0 (signal c: in

RETURN std_logic_vector IS

VARIABLE shift1l

BEGIN
shiftl :=

(c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7T)&c(T)&c(T)&c(7)&

c(7)&c(7)&c(7)&c(7)&c(7)
&c (7 downto 0)&’'0’);

return

shiftl;
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std _logic_vector)

(23 DOWNTO 0);



END coeff 0;

COEFF_1

FUNCTION coeff 1 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

BEGIN

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);

shiftl = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(T)&c(T)&c(7)&c (T)
&c(7)&c (7 downto 0)&"0000");

shift2 = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(T)&c(7)&c(7)&c(7T)&c(7T)&c(7)
&c(7)&c(7)&c(T)&c(7)&c (7 downto 0)&’07);

return (shiftl—shift2);

END coeff 1;

COEFF_2

FUNCTION coeff_ 2 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

BEGIN

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_ vector (23 DOWNIO 0);
VARIABLE shift4 :std_ logic_vector (23 DOWNIO 0);

shiftl = (c(7)&c(7)&c(7)&c(7)&

(T &c(T)&c(7)&c(7)&c(T)&c (T)

&c (7 downto 0)&"000000");

shift2 = (c(7)&c(7)&c(7)&c(7)&
(& (T &c(7)&c(7)&c(T)&c (T)
&c(7)&c(7)&c (7 downto 0)&"0000");
shift3 = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(T)&c(7)&c (T7)
&c(7)&c(7)&c(7)&c (7 downto 0)&"000");
shiftd = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(T)&c(7)&c (T7)
&c(7)&c(7)&c(7)&c(7)&c(7)&c(7)&c(7 downto 0));

return (0’ — shiftl 4+ shift2 + shift3 — shift4);

END coeff 2;

COEFF_3

FUNCTION coeff 3 (signal c: in std logic vector)
RETURN std_logic_vector IS

BEGIN

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNIO 0);

shiftl = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(T)&c(7)&c (T7)

&ec (7 downto 0)&"000000");

shift2 = (c(7)&c(7)&c(7)&c(7)&
c(T)&c(T)&c(T)&c(7)&c(T)&c (T)
&c(7)&c(7)&c (7 downto 0)&"0000");
shift3 = (c(7)&c(7)&c(7)&c(7)&

(T &c(T)&c(7)&c(7)&c(T)&c (T)
&c(7)&c(7)&c(7)&c (7 downto 0)&"000");
shiftd = (c(7)&c(7)&c(7)&c(7)&
c(MN&ec(T)&c(7)&c(7)&c(T)&c (T)
&c(7)&c(7)&c(7)&c(7)&c(7)&c(7)&c(7 downto 0));

return (’0° — shiftl + shift2 + shift3 — shift4);

END coeff_3;

COEFF_4

FUNCTION coeffi4 (signal c¢: in std_logic_vector)
RETURN std_logic_vector IS
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BEGIN

VARIABLE shiftl : std_logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift3 :std_ logic_ vector (23 DOWNTO 0);

shiftl = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(7)&c (7 downto 0)&"00000000");
shift2 = (c(7)&c(7)&c(7)&c(7)&

c(7)&c(7)&c(7)&c(T)&c(7)&c (T7)
&c(7)&c (7 downto 0)&"00000");

shiftd3 = (c(7)&c(7)&c(7)&c(7)&
c(T)&c(T)&c(T)&c(7)&c(T)&c (T)
&c(7)&c(7)&c(7)&c (7 downto 0)&"000");

return (shiftl 4 shift2 + shift3);

END coeff 4;

COEFF_5

FUNCTION coeff_5 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

BEGIN

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNIO 0);

shiftl = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c (7 downto 0)&"000000000");
shift2 = (c(7)&c(7)&c(7)&c(7)&

(T &c(T)&c(7)&c(7)&c(T)&c (T)

&c (7 downto 0)&"000000");

shift3 := (c(7)&c(7)&c(7)&c(7)&
c(N&ec(T)&c(7)&c(7)&c(T)&c (T)
&c(7)&c(7)&c(7)&c (7 downto 0)&"000");

shiftd := (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(7T)&c(T)&c (T7)
&c(7)&c(7)&c(7)&c(7)&c(7)&c (7 downto 0)&"0");

return (shiftl 4+ shift2 — shift3 — shift4);

END coeff_5;

COEFF_6

FUNCTION coeff 6 (signal c: in std logic vector)
RETURN std_logic_vector IS

BEGIN

VARIABLE shiftl : std_logic_ vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift3 :std_logic_ vector (23 DOWNTO 0);

shiftl = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(7)&c (7 downto 0)&"00000000");
shift2 = (c(7)&c(7)&c(7)&c(7)&

c(7)&c(7)&c(7)&c(7)&c(7)

&c(7)&c(7)&c (7 downto 0)&"00000");

shiftd3 = (c(7)&c(7)&c(7)&c(7)&
c(T)&c(T)&c(7)&c(7)&c(T)
&c(7)&c(7T)&c(7)&c(7)&c (7 downto 0)&"000");

return (shiftl 4 shift2 + shift3);

END coeff 6;

COFEFF_7

FUNCTION coeff_7 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

BEGIN

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNIO 0);

shiftl = (c(7)&c(7)&c(7)&c(7)&
c(7T)&c(T)&c(7)&c(7)&c(7T)&c(T7)
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&c (7 downto 0)&"000000");

shift2 = (c(7)&c(7)&c(7)&c(7)&

(T &ec(T)&c(7)&c(7)&c(T)&c (T)

&c(7)&c(7)&c (7 downto 0)&"0000");

shift3 = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(T)&c(7)&c (T7)
&c(7)&c(7)&c(7)&c (7 downto 0)&"000");

shiftd = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(T)&c(7)&c (T7)
&c(7)&c(7)&c(7)&c(7)&c(7)&c(7)&c (7 downto 0));

return (’0° — shiftl + shift2 + shift3 — shiftd);

END coeff 7;

—————————————— COEFF_8
FUNCTION coeff 8 (signal c: in std_logic_vector)
RETURN std_logic_vector IS

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNIO 0);

BEGIN
shiftl = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(7T)&c(7)&c (T7)
&c (7 downto 0)&"000000");
shift2 = (c(7)&c(7)&c(7)&c(7)&
c(7T)&c(T)&c(7)&c(7)&c(7T)&c(T7)
&c(7)&c(7)&c (7 downto 0)&"0000");
shift3 = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(T)&c(7)&c(7)&c(7T)&c (T7)
&c(7)&c(7)&c(7)&c (7 downto 0)&"000");
shiftd = (c(7)&c(7)&c(7)&c(7)&
(M) &c(T)&c(7)&c(7)&c(7)&c(T7)
&c(7)&c(7)&c(T)&c(7)&c(7)&c(7)&c (7 downto 0));

return (’0° — shiftl + shift2 + shift3 — shift4);

END coeff_8;

- COEFF_9
FUNCTION coeff_9 (signal c: in std_logic_vector)
RETURN std_logic_vector IS

VARIABLE shiftl : std_logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNTO 0);

BEGIN
shiftl = (c(7)&c(7)&c(7)&c(7)&
c(T)&c(T)&c(7)&c(7)&c(T)&c(T)&c(7)
&c(7)&c (7 downto 0)&"0000");
shift2 = (c(7)&c(7)&c(7)&c(7)&
c(7)&c(7)&c(7)&c(T)&c(T)&c(7)&c (T)
&c(7)&c(7)&c(7)&c(7)&c (7 downto 0)&’0’);

return (shiftl — shift2);

END coeff_9;

—————————————— COEFF_10
FUNCTION coeff 10 (signal c: in std_ logic_vector)
RETURN std_logic_vector IS

VARIABLE shiftl : std_logic_vector (23 DOWNTO 0);
BEGIN

shiftl = (c(7)&c(7)&c(7)&c(7)&

c(7)&c(7)&c(7)&c(T)&c(T)&c(7)&c (T)

&c(7)&c(7)&c(7)&c(7)&c (7 downto 0)&’0’);

return (shiftl);

END coeff_10;
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END my functions;
B.3 my_ fir tb.vhd

library ieee;
USE ieee.std_ logic_1164.all;
USE ieee.std logic_unsigned.all;

—— MY FIR filter

—— Test bench

—— Version 2.0

— 11 coefficients

—— Author: Vebjgrn Bystrgm, NINU &8.may 2008

ENTITY
entity my fir tb is

end my fir_ tb;

- ARCHITECTURE
architecture my_fir_tb_arch of my_fir_tb is

————————— COMPONENTS
component my_fir
PORT (
x: IN std_logic_vector (7 DOWNIO 0);
clk, rst: IN std_logic;
y: OUT std_logic_vector (17 DOWNIO 0)
)3
end component;
signal x : std_logic_vector (7 DOWNTO 0)
:= "00000000";
signal y : std_logic_vector (17 DOWNTO 0)
:= "000000000000000000";
signal clk : std_logic = ’17;
signal rst : std_logic;
begin

—— device under test —
dut: my _fir
port map (

x = x,
y =y,
clk => clk,

rst => rst
)3
— clk generator ——

clk <= not clk after 1 ms;

—— stimulate divece under test ——
wstim: process

begin
rst <= '17;
wait until clk ’event and clk = ’1°;
rst <= '07;
x <= "00000000"; ——0
wait until clk ’event and clk = ’17;
x <= "00000001"; ——1
wait until clk ’event and clk = ’17;
x <= "00000010"; ——2
wait until clk ’event and clk = ’17;
x <= "00000011"; ——3
wait until clk ’event and clk = ’17;
x <= "00000100"; ——4
wait until clk event and clk = ’17;
x <= "00000101"; ——5
wait until clk ’event and clk = ’17;
x <= "00000110"; —6
wait until clk ’event and clk = ’1°7;
x <= "00000111"; ——7
wait until clk ’event and clk = ’1°7;
x <= "11111111"; — —1
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end ;

wait
x <=
wait
X <=
wait
wait ;
end process;

until clk ’event and clk
"11111110"; — —2
until clk ’event and clk
"11111101"; — -3
until clk ’event and clk

’1 0.
17
’1 0.
17

10,

20



C. MY FIR FILTER VERSION 3

C.1 my_fir.vhd

LIBRARY ieee ;

USE ieee.std logic 1164 .ALL;

USE ieee.std logic_ unsigned.ALL;
USE work.my package.all;

USE work. my:functions. all;

MY FIR filter

Version 3.0

— 11 coefficients

—— Use of multiplication character "x"

—— Author: Vebjgrn Bystrgm, NINU 14.may 2008

ENTITY
ENTITY my fir IS
PORT (
x: IN std_logic_vector (7 downto 0);
clk, rst : IN std_logic;
y: OUT std_ logic_vector(23 downto 0)

)3
END my fir;

- — ARCHITECTURE

ARCHITECTURE rtl of my_fir IS

TYPE registers IS ARRAY (10 downto 0)
OF std_logic_vector (7 downto 0);

SIGNAL reg: registers;

PROCESS

BEGIN

process (clk , rst, reg)

VARIABLE coeff0: std_logic_vector (23 downto 0) ;
VARIABLE coeffl: std_logic_vector (23 downto 0) ;
VARIABLE coeff2: std_logic_vector (23 downto 0) ;
VARIABLE coeff3: std_logic_vector (23 downto 0) ;
VARIABLE coeffd4: std_logic_vector (23 downto 0) ;
VARIABLE coeff5: std_logic_vector (23 downto 0) ;
VARIABLE coeff6: std_logic_vector (23 downto 0) ;
VARIABLE coeff7: std_ logic_ vector(23 downto 0) ;
VARIABLE coeff8: std_ logic vector(23 downto 0) ;
VARIABLE coeff9: std_ logic_ vector(23 downto 0) ;
VARIABLE coeff10: std logic_vector (23 downto 0);

BEGIN
——— reset registers ——
if (rst = ’'1’) then

for i in 10 downto O loop
for j in 7 downto 0 loop
reg(i)(j) <= 0%
end loop;
end loop;
—— update registers ——
elsif (clk ’EVENT and clk =’1’) then
for k in 10 downto 1 loop



reg(k) <= reg(k—1);

end loop;
reg (0) <= x;

end if;

——— multiply coeff with x and accumulate ——
coeff0 coeff 0 (reg(0)(7 downto 0));
coeffl coeff 1 (reg(1)(7 downto 0));
coeff2 coeff_ 2(reg(2)(7 downto 0));
coeff3 coeff_ 3 (reg(3)(7 downto 0));
coeff4 coeff_ 4 (reg(4)(7 downto 0));
coeff5 coeff_ 5 (reg(5)(7 downto 0));
coeff6 coeff 6(reg(6)(7 downto 0));
coeff7 coeff 7 (reg(7)(7 downto 0));
coeff8 coeff 8(reg(8)(7 downto 0));
coeff9 coeff 9(reg(9)(7 downto 0));
coeffl0 := coeff 10(reg(10)(7 downto 0
y <= coeff0 + coeffl + coeff2 4+ coeff3

+ coeffd 4+ coeff5 + coeff6 + coeff7

+ coeff8 + coeff
END PROCESS;
END rtl;

9

+ coeffl0;

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_unsigned.all;

USE work.my _package.all;

C.2 my_functions.vhd

MY FIR filter
Computation of the
Version 3.0

11 coefficients
Use of multiplication
Author:

character
NTNU 14.may 2008

Vebjgrn Bystrgm,

coefficients

*

PACKAGE my _functions is
FUNCTION coeff 0 (signal
RETURN std _logic_vector;
FUNCTION coeff_ 1 (signal
RETURN std _logic_vector;
FUNCTION coeff_ 2 (signal
RETURN std _logic_vector;
FUNCTION coeff 3 (signal
RETURN std logic vector;
FUNCTION coeff 4 (signal
RETURN std_logic_vector;
FUNCTION coeff 5 (signal
RETURN std_logic_vector;
FUNCTION coeff 6 (signal
RETURN std_logic_vector;
FUNCTION coeff 7 (signal
RETURN std _logic_vector;
FUNCTION coeff_ 8 (signal
RETURN std _logic_vector;
FUNCTION coeff_ 9 (signal
RETURN std _logic_vector;

C:

c

c

FUNCTION coeff 10 (signal c

RETURN std _logic_vector;

END my _functions;

PACKAGE BODY my functions

COEFF_0

FUNCTION coeff 0 (signal c:
RETURN std_logic_vector

VARIABLE temp

BEGIN
temp :=

is

in
std_logic_vector)
std_logic_vector)
std _logic_vector)
std _logic_vector)
std _logic_vector)
std _logic_vector)
std _logic_vector)
std_logic_vector)

std_logic_vector)

std_logic_vector)

std_logic_vector)

c

*

in

1S

"0000000000011000";

02

std _logic_vector

std _logic_vector)

(23 DOWNIO 0);



return temp;
END coeff 0;

- COEFF_1
FUNCTION coeff_1 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

BEGIN
temp := ¢ * "0000000010001001";

return temp;

END coeff 1;

- COFEFF_2
FUNCTION coeff_2 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

BEGIN
temp := ¢ * "1111111001000101";

return temp;

END coeff 2;

— COFEFF_3
FUNCTION coeff 3 (signal c: in std_logic_ vector)
RETURN std_logic_vector IS
VARIABLE temp : std_logic_vector (23 DOWNIO 0);
BEGIN
temp := ¢ * "1111111001000100";
return temp;

END coeff 3;

- COEFF_4
FUNCTION coeff 4 (signal c: in std_logic_ vector)
RETURN std_logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

BEGIN
temp := ¢ * "0000101101010010";

return temp;

END coeff 4;

—————————————— COFEFF_5
FUNCTION coeff 5 (signal c: in std_logic_vector)
RETURN std_logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

BEGIN
temp := ¢ * "0001010111001000";

return temp;

END coeff 5;
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- COFEFF_6
FUNCTION coeff 6 (signal c: in std_logic_ vector)
RETURN std_logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

BEGIN
temp := ¢ * "0000101101010010";

return temp;

END coeff 6;

—————————————— COEFF_7
FUNCTION coeff 7 (signal c: in std_logic_ vector)
RETURN std_logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

BEGIN
temp := ¢ * "1111111001000100";

return temp;

END coeff 7;

—————————————— COEFF_8
FUNCTION coeff 8 (signal c: in std_logic_vector)
RETURN std_logic_vector IS

VARIABLE temp : std_ logic_vector (23 DOWNTO 0);

BEGIN
temp := ¢ * "1111111001000101";

return temp;

END coeff 8;

—————————————— COEFF_9
FUNCTION coeff 9 (signal c: in std_logic_vector)
RETURN std_logic_vector IS

VARIABLE temp : std_ logic_vector (23 DOWNTO 0);

BEGIN
temp := ¢ * "0000000010001001";

return temp;

END coeff_9;

— COEFF_10
FUNCTION coeff 10 (signal c: in std_ logic_vector)
RETURN std_logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNTO 0);

BEGIN
temp := ¢ * "0000000000011000";

return temp;

END coeff_10;

END my functions;
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C.3 my_fir tb.vhd

library ieee;
USE ieee.std_logic_1164.all;
USE ieee.std logic_unsigned.all;

— MY FIR filter

—— Test bench

—— Version 3.0

—— 11 coefficients

—— Use of multiplication character *
—— Author: Vebjgrn Bystrgm, NTNU 14.may 2008

ENTITY
entity my_fir_tb is

end my_fir_tb;

- ARCHITECTURE
architecture my fir tb_arch of my fir tb is

—_— —— COMPONENTS
component my fir
PORT (
X : IN std_logic_vector (7 DOWNTO 0);
clk, rst: IN std_logic;
v: OUT std_logic_vector (39 DOWNIO 0)
)
end component;
signal x : std_logic_vector (7 DOWNIO 0)
:= "00000000";
signal y : std_logic_vector (39 DOWNIO 0)
:= "0000000000000000000000000000000000000000";
signal clk : std_logic := ’17;
signal rst : std_logic;
begin

—— device under test ——
dut: my fir
port map (

X = X,
y =Y,
clk => clk,

rst => rst
)3
— clk generator ——

clk <= not clk after 1 ms;

— stimulate divece under test ——
wstim: process

begin
rst <= ’'17;
wait until clk ’event and clk = ’17;
rst <= ’'07;
x <= "00000000"; ——0
wait until clk ’event and clk = ’17;
x <= "00000001"; ——1
wait until clk ’event and clk = ’17;
x <= "00000010"; ——2
wait until clk ’event and clk = ’1°7;
x <= "00000011"; ——3
wait until clk ’event and clk = ’1°;
x <= "00000100"; ——4
wait until clk ’event and clk = ’17;
x <= "00000101"; ——5
wait until clk ’event and clk = ’17;
x <= "00000110"; ——6
wait until clk event and clk = ’17;
x <= "00000111"; ——7
wait until clk ’event and clk = ’1’;
x <= "11111111"; —/— —1
wait until clk ’event and clk = ’17;
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end ;

x <=
wait
x <=
wait
wait ;
end process;

"11111110"; — —2

until clk ’event and clk
"11111101"; — =3
until clk ’event and clk

1y

10,
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D. MY FIR FILTER VERSION 4

D.1 my_ fir.vhd

LIBRARY ieee ;

USE ieee.std logic 1164 .ALL;

USE ieee.std logic_ unsigned.ALL;
USE work.my package.all;

USE work. my:functions. all;

MY FIR filter

Version 4.0

— 11 coefficients

—— Binary representation of the coefficients
—— Author: Vebjgrn Bystrgm, NINU 22.may 2008

ENTITY
ENTITY my fir IS
PORT (
x: IN std_logic_vector (7 downto 0);
clk, rst : IN std_logic;
y: OUT std_ logic_vector(23 downto 0)

)3
END my fir;

- — ARCHITECTURE

ARCHITECTURE rtl of my_fir IS

TYPE registers IS ARRAY (10 downto 0)
OF std_logic_vector (7 downto 0);

SIGNAL reg: registers;

PROCESS

BEGIN

process (clk , rst, reg)

VARIABLE coeff0: std_logic_vector (23 downto 0)
VARIABLE coeffl: std_logic_vector (23 downto 0)
VARIABLE coeff2: std_logic_vector (23 downto 0)
VARIABLE coeff3: std_logic_vector (23 downto 0)
VARIABLE coeff4: std_logic_vector (23 downto 0)
VARIABLE coeff5: std_logic_vector (23 downto 0)
VARIABLE coeff6: std_logic_vector (23 downto 0)
VARIABLE coeff7: std_ logic_ vector(23 downto 0)
VARIABLE coeff8: std logic vector(23 downto 0)
VARIABLE coeff9: std_ logic vector(23 downto 0) ;
VARIABLE coeff10: std logic_vector(23 downto 0);

5
5
5
5
5
5
5
5
H

BEGIN
——— reset registers ——
if (rst = ’'1’) then

for i in 10 downto O loop
for j in 7 downto 0 loop
reg(i)(j) <= 0%
end loop;
end loop;
—— update registers ——
elsif (clk ’EVENT and clk =’1’) then
for k in 10 downto 1 loop



reg(k) <= reg(k—1);
end loop;
reg (0) <= x;

end if;

——— multiply coeff with x and accumulate ——

coeff0 coeff 0 (reg(0)(7 downto 0))
coeffl coeff 1 (reg(1)(7 downto 0))
coeff2 coeff_ 2(reg(2)(7 downto 0))
coeff3 coeff_ 3 (reg(3)(7 downto 0))
coeff4 coeff_ 4 (reg(4)(7 downto 0))
coeff5 coeff_ 5(reg(5)(7 downto 0))
coeff6 coeff 6(reg(6)(7 downto 0))
coeff7 coeff 7 (reg(7)(7 downto 0))
coeff8 coeff 8(reg(8)(7 downto 0))
coeff9 coeff 9(reg(9)(7 downto 0))
coeffl0 := coeff 10(reg(10)(7 downto

y <= coeff0 + coeffl + coeff2 4+ coeff3
+ coeffd 4+ coeff5 + coeff6 + coeff7
+ coeff8 4+ coeff9 + coeffl0;
END PROCESS;
END rtl;

D.2 my_functions.vhd

LIBRARY ieee;

USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;
USE work.my _package.all;

— MY FIR filter

— Version 4.0

—— 11 coefficients

—— Binary representation of the coefficients
—— Author: Vebjgrn Bystrgm, NTNU 22.may 2008

PACKAGE my functions is

FUNCTION coeff_ 0 (signal c: in std_logic_vector)

RETURN std _logic_vector;
FUNCTION coeff_1 (signal ¢
RETURN std _logic_vector;
FUNCTION coeff_ 2 (signal ¢
RETURN std _logic_vector;
FUNCTION coeff_3 (signal c¢
RETURN std logic vector;
FUNCTION coeff 4 (signal c
RETURN std_logic_vector;
FUNCTION coeff 5 (signal ¢
RETURN std_logic_vector;
FUNCTION coeff 6 (signal ¢
RETURN std_logic_vector;
FUNCTION coeff 7 (signal ¢
RETURN std_logic_vector;
FUNCTION coeff_ 8 (signal ¢
RETURN std _logic_vector;
FUNCTION coeff_ 9 (signal ¢
RETURN std _logic_vector;
FUNCTION coeff_10 (signal c
RETURN std _logic_vector;

std_logic_vector)
std_logic_vector)
std_logic_vector)
std _logic_vector)
std _logic_vector)
std _logic_vector)
std _logic_vector)
std_logic_vector)

std_logic_vector)

END my _functions;

PACKAGE BODY my functions is

COEFF_0

std_logic_vector)

FUNCTION coeff 0 (signal c: in std logic vector)

RETURN std_logic_vector IS

VARIABLE temp

std _logic_vector

(23 DOWNTO 0);

VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);

VARIABLE shift2

BEGIN

temp := c¢ & "0000000000000000";

temp (temp sra 16);
shiftl := (temp sll 3);
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shift2 := (temp sll 4);

return shiftl + shift2;
END coeff 0;

- —  COEFF_1
FUNCTION coeff_1 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);
VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);

BEGIN
temp := ¢ & "0000000000000000";
temp := (temp sra 16);
shiftl := (temp sll 3);
shift2 := (temp sll 7);

return (temp + shiftl + shift2);

END coeff_1;

- COEFF_2

FUNCTION coeff_ 2 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

VARIABLE shiftl : std_logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_ vector (23 DOWNTIO 0);
VARIABLE shift3 :std_logic_vector (23 DOWNTO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNTO 0);
VARIABLE shift5 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift6 :std_ logic_ vector (23 DOWNTO 0);
VARIABLE shift7 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift8 :std_ logic_ vector (23 DOWNTO 0);
VARIABLE shift9 :std_ logic_ vector (23 DOWNTO 0);

BEGIN
temp c & "0000000000000000";
temp (temp sra 16);
shiftl := (temp sll 2);
shift2 := (temp sll 6);
shift3 := (temp sll 9);
shift4d := (temp sll 10);
shifts5 := (temp sll 11);
shift6 := (temp sll 12);
shift7 := (temp sll 13);
shift8 := (temp sll 14);

shift9 := (temp sll 15);

return (temp + shiftl 4+ shift2 + shift3 +
shiftd 4+ shifts + shift6 + shift7 4+ shift8
+ shift9);

END coeff_2;

- COEFF_3

FUNCTION coeff_3 (signal c: in std_logic_vector)
RETURN std _logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);

VARIABLE shiftl : std_logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_ vector (23 DOWNTIO 0);
VARIABLE shift3 :std_ logic_vector (23 DOWNTO 0);
VARIABLE shift4 :std_logic_vector (23 DOWNTO 0);
VARIABLE shift5 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift6 :std_ logic_ vector (23 DOWNTO 0);
VARIABLE shift7 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift8 :std_ logic_ vector (23 DOWNTO 0);
VARIABLE shift9 :std_logic_vector (23 DOWNIO 0);

BEGIN

temp c & "0000000000000000";
temp (temp sra 16);

shiftl := (temp sll 2);

shift2 := (temp sll 6);

shift3 := (temp sll 9);

shiftd := (temp sll 10);

shift5 := (temp sll 11);

shift6 := (temp sll 12);



shift7 := (temp sll 13);
shift8 := (temp sll 14);
shift9 := (temp sll 15);

return (shiftl 4+ shift2 + shift3

+ shift4 + shift5 + shift6

+ shift8 + shift9);

END coeff_3;

+ shift7

COEFF_4

FUNCTION coeff 4 (signal c:

in

std_logic_vector)

RETURN std_logic_vector IS
VARIABLE temp std logic_vector (23 DOWNTO 0);
VARIABLE shiftl std _logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift3 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift4 :std_ logic_ vector (23 DOWNTO 0);
VARIABLE shift5 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift6 :std_logic_vector (23 DOWNIO 0);
BEGIN
temp c & "0000000000000000";
temp (temp sra 16);
shiftl := (temp srl 1);
shift2 := (temp srl 4);
shift3 := (temp srl 6);
shift4 := (temp srl 8);
shift5 := (temp srl 9);
shift6 := (temp srl 11);

return (shiftl 4+ shift2 4+ shift3
+ shift4 4+ shift5 + shift6);

END coeff 4;

COEFF_5

FUNCTION coeff_ 5 (signal c:

in

std_logic_vector)

RETURN std _logic_vector IS
VARIABLE temp std_logic_vector (23 DOWNIO 0);
VARIABLE shiftl std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift3 :std_ logic_vector (23 DOWNIO 0);
VARIABLE shift4 :std_ logic_vector (23 DOWNTIO 0);
VARIABLE shift5 :std_ logic_vector (23 DOWNTO 0);
VARIABLE shift6 :std_ logic_ vector (23 DOWNTO 0);
BEGIN
temp c & "0000000000000000";
temp (temp sra 16);
shiftl := (temp srl 3);
shift2 := (temp srl 6);
shift3 := (temp srl 7);
shift4 := (temp srl 8);
shift5 := (temp srl 10);
shift6 := (temp srl 12);

return (shiftl 4+ shift2 + shift3
+ shift4d + shifts + shift6);

END coeff 5;

COEFF_6

FUNCTION coeff 6 (signal c:
RETURN std_logic_vector IS

in

std _logic_vector)

BEGIN

VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE

temp

shiftl
shift2
shift3
shift4
shifts
shifté

std _logic_vector

std _
:std_logic_vector
:std_logic_vector
:std_logic_vector
:std_logic_vector
:std_logic_vector

temp
temp
shiftl

c & "0000000000000000";
(temp sra 16);
(temp srl 1);

60

logic_vector

(23 DOWNTO 0);

(23 DOWNIO

(23
(23
(23
(23

DOWNTO
DOWNTO
DOWNTO
DOWNTO

(23 DOWNIO 0);



shift2 := (temp srl 4);
shift3 := (temp srl 6);
shift4d := (temp srl 8);
shift5 := (temp srl 9);
shift6 := (temp srl 11);

return (shiftl 4+ shift2 + shift3
+ shift4 + shift5 + shift6);

END coeff_6;

COEFF_7

FUNCTION coeff 7 (signal c:

in

std_logic_vector)

RETURN std_logic_vector IS
VARIABLE temp std logic_vector (23 DOWNTO 0);
VARIABLE shiftl std _logic_vector (23 DOWNTO 0);
VARIABLE shift2 :std_logic_ vector (23 DOWNTO 0);
VARIABLE shift3 :std_ logic_ vector (23 DOWNTO 0);
VARIABLE shift4 :std_ logic_ vector (23 DOWNTO 0);
VARIABLE shift5 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift6 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift7 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift8 :std_logic_vector (23 DOWNIO 0);
VARIABLE shift9 :std_logic_vector (23 DOWNIO 0);

BEGIN
temp c & "0000000000000000";
temp (temp sra 16);
shiftl := (temp sll 2);
shift2 := (temp sll 6);
shift3 := (temp sll 9);
shift4d := (temp sll 10);
shift5 := (temp sll 11);
shift6 := (temp sll 12);
shift7 := (temp sll 13);
shift8 := (temp sll 14);

shift9 := (temp sll 15);
return (shiftl 4 shift2 + shift3
+ shift4 + shift5 + shifté6 + shift7
+ shift8 + shift9);

END coeff_7;

————————————— COEFF_8
FUNCTION coeff 8 (signal c: in std_logic_vector)

(23 DOWNTO 0);
(23 DOWNTO 0);

RETURN std_logic_vector IS
VARIABLE temp std _logic_vector
VARIABLE shiftl std_logic_vector
VARIABLE shift2 :std_logic_vector (23
VARIABLE shift3 :std_logic_vector (23
VARIABLE shift4 :std_logic_vector (23
VARIABLE shift5 :std_logic_vector (23
VARIABLE shift6 :std_logic_vector (23
VARIABLE shift7 :std_logic_vector (23
VARIABLE shift8 :std_logic_vector (23
VARIABLE shift9 :std_logic_vector (23
BEGIN
temp := ¢ & "0000000000000000";
temp := (temp sra 16);
shiftl := (temp sll 2);
shift2 := (temp sll 6);
shift3 := (temp sll 9);
shift4d := (temp sll 10);
shift5 := (temp sll 11);
shift6 := (temp sll 12);
shift7 := (temp sll 13);
shift8 := (temp sll 14);
shift9 := (temp sll 15);

DOWNTO 0);

DOWNTO
DOWNIO
DOWNTIO
DOWNTO
DOWNTO
DOWNTO
DOWNTO

return (temp + shiftl + shift2 4 shift3

+ shiftd + shifts + shift6
+ shift8 + shift9);

+ shift7

END coeff_8;

COEFF_9
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FUNCTION coeff 9 (signal c: in std_logic_vector)
RETURN std_logic_vector IS

VARIABLE temp : std_ logic_vector (23 DOWNTO 0);
VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 :std_logic_vector (23 DOWNIO 0);

BEGIN
temp := c¢ & "0000000000000000";
temp := (temp sra 16);
shiftl := (temp sll 3);
shift2 := (temp sll 7);

return (temp + shiftl + shift2);

END coeff 9;

______________ COEFF 10

FUNCTION coeff 10 (signal c: in std logic vector)
RETURN std_logic_vector IS

VARIABLE temp : std_logic_vector (23 DOWNIO 0);
VARIABLE shiftl : std_logic_vector (23 DOWNIO 0);
VARIABLE shift2 : std_logic_vector (23 DOWNIO 0);

BEGIN

temp := ¢ & "0000000000000000";
temp (temp sra 16);
shiftl (temp sll 3);

shift2 := (temp sll 4);
return shiftl + shift2;

END coeff 10;

END my functions;

D.3 my_fir tb.vhd

library ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_unsigned.all;

— MY FIR filter

—— Version 4.0

— 11 coefficients

—— Binary representation of the coefficients
—— Author: Vebjgrn Bystrgm, NINU 22.may 2008

ENTITY
entity my fir tb is

end my fir_ tb;

_— —— ARCHITECTURE
architecture my_fir_tb_arch of my_fir_tb is

777777777 — COMPONENTS
component my_ fir
PORT (
x: IN std_logic_vector (7 DOWNTO 0);
clk, rst: IN std_ logic;
y: OUT std _logic_vector (23 DOWNTO 0)
)3
end component;
signal x : std_logic_vector (7 DOWNTO 0)
:= "00000000";
signal y : std_logic_vector (23 DOWNIO 0)
:= "000000000000000000000000";
signal clk : std_logic = ’17;
signal rst : std_logic;
begin
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device under test
dut: my fir

port map (

X = X,

y =Y,

clk => clk,
rst => rst

)3

— clk generator —

clk <= not clk after 1 ms;

— stimulate divece under test ——

wstim: process

begin
rst <= ’'17;
wait until clk ’event and
rst <= ’07;
x <= "00000000"; ——0
wait until clk "event and
x <= "00000001"; ——1
wait until clk 'event and
x <= "00000010"; ——2
wait until clk "event and
x <= "00000011"; ——3
wait until clk 'event and
x <= "00000100"; ——4
wait until clk 'event and
x <= "00000101"; ——5
wait until clk "event and
x <= "00000110"; ——6
wait until clk ’event and
x <= "00000111"; ——7
wait until clk ’event and
x <= "11111111"; —/— —1
wait until clk ’event and
x <= "11111110"; — —2
wait until clk "event and
x <= "11111101"; — =3
wait until clk "event and
wait ;
end process;
end ;

clk

clk

clk

clk

clk

clk

clk

clk

clk

clk

clk

clk
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E. PACKAGE USED IN MY VHDL CODE

LIBRARY ieee;
USE ieee.std_logic_1164.all;

—— SHIFT OPERTATORS

Version 1.0

—— Author: Vebjgrn Bystrgm, NINU 8.may 2008

PACKAGE my package is

function "sI1" ( 1 : std_ logic_vector; r : integer )
RETURN std_logic_vector;
function "sIl" (1 : std_ ulogic_vector; r : integer )

RETURN std_ulogic_vector;

function "srl1" (1 : std_ logic_vector; r : integer )
RETURN std_logic_vector;
function "srl" ( 1 : std_ulogic_vector; r : integer )

RETURN std_ulogic_vector;

function "sla" ( 1 : std_logic_vector; r : integer )
RETURN std _logic_vector;
function "sla" ( 1 : std_ulogic_vector; r : integer )

RETURN std _ulogic_vector;

function "sra" ( 1 : std_logic_vector; r : integer )
RETURN std_logic_vector;
function "sra" (1 : std_ ulogic_vector; r : integer )

RETURN std_ulogic_vector;

function "rol" (1 : std_ logic_vector; r : integer )
RETURN std_logic_vector;
function "rol" (1 : std_ ulogic_vector; r : integer )

RETURN std_ulogic_vector;

function "ror" ( 1 : std_logic_vector; r : integer )
RETURN std _logic_vector;
function "ror" ( 1 : std_ulogic_vector; r : integer )

RETURN std_ulogic_vector;

END my_package;

PACKAGE BODY my package is

FUNCTION "sII" (1 : std_logic_vector; r : integer )
RETURN std_logic_vector IS
ALIAS lv : std_logic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std_ logic_vector ( 1’RANGE )

:= (OTHERS => ’0’);

ALIAS resultv : std logic vector ( 1 TO 1’LENGTH ) IS result;
BEGIN B B
IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1 ;
ELSIF r > 0 THEN
IF r < 1’LENGTH THEN
resultv(l TO 1’LENGTH — r) := lv(r+1 TO 1’LENGTH);
END IF;
RETURN result;
ELSE
RETURN 1 SRL (—r);
END IF;
END "sll";
FUNCTION "sll1" (1 : std_ulogic_ vector; r : integer )
RETURN std_ulogic_vector IS
ALIAS 1lv : std_ulogic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std_ulogic_vector ( 1’RANGE )
:= (OTHERS => ’0’);
ALIAS resultv : std_ ulogic_vector ( 1 TO 1’LENGTH ) IS result;

BEGIN



IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1 ;

ELSIF r > 0 THEN
IF r < 1’LENGTH THEN

resultv(l TO 1’LENGTH — r) := lv(r+1 TO 1’LENGTH);
END IF;
RETURN result;
ELSE
RETURN 1 SRL (—r);
END IF;
END "sll";
— srl

FUNCTION "srl" (1 : std logic_vector; r : integer )
RETURN std_logic_vector IS
ALIAS lv : std_logic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std_ logic_vector ( 1’RANGE )
:= (OTHERS => ’0’);
ALIAS resultv : std_ logic_vector ( 1 TO 1’LENGTH ) IS result;
BEGIN
IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1 ;
ELSIF r > 0 THEN
IF r < 1’LENGTH THEN

resultv (r+1 TO 1’LENGTH) := lv (1 TO 1’LENGTH — r);
END IF;
RETURN result;
ELSE
RETURN 1 SLL (—r);
END IF;
END "srl";

FUNCTION "srl" (1 : std_ulogic_ vector; r : integer )
RETURN std_ulogic_vector IS
ALIAS lv : std_ulogic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std_ulogic_vector ( 1’RANGE )
:= (OTHERS => ’0°);
ALIAS resultv : std_ulogic_vector ( 1 TO 1’LENGTH ) IS result;
BEGIN
IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1;
ELSIF r > 0 THEN
IF r < 1’LENGTH THEN

resultv (r+1 TO 1’LENGTH) := lv (1 TO 1’LENGTH — r);
END IF;
RETURN result;
ELSE
RETURN 1 SLL (—r);
END IF;
END "srl";
— sla

FUNCTION "sla" (1 : std_logic_vector; r : integer )
RETURN std _logic_vector IS
ALIAS 1v : std_logic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std_logic_vector ( 1’RANGE )
:= (OTHERS =>"1(1’RIGHT));
ALIAS resultv : std_logic_vector ( 1 TO 1’LENGTH ) IS result;
BEGIN
IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1 ;
ELSIF r > 0 THEN
IF r < 1’LENGTH THEN

resultv (1 TO 1’LENGTH — r) := lv(r+1 TO 1 ’LENGTH);
END IF;
RETURN result;
ELSE
RETURN 1 SRA (—r);
END IF;
END "sla'";

FUNCTION "sla" (1 : std_ulogic_vector; r : integer )

RETURN std _ulogic_vector IS

ALIAS 1v : std_ulogic_vector ( 1 TO 1’LENGTH ) IS 1;

VARIABLE result : std_ulogic_vector ( 1’RANGE )

:= (OTHERS =>"1(1’RIGHT));

ALIAS resultv : std_ulogic_vector ( 1 TO 1’LENGTH ) IS result;
BEGIN

IF r = 0 OR 1’LENGTH = 0 THEN

RETURN 1 ;
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ELSIF r > 0 THEN
IF r < 1’LENGTH THEN

resultv (1 TO 1’LENGTH — r) := lv(r+1 TO 1 ’LENGTH);
END IF;
RETURN result;
ELSE
RETURN 1 SRA (—r);
END IF;
END "sla'";
—— sra

FUNCTION "sra" (1 : std_ logic_vector; r : integer )
RETURN std_logic_vector IS
ALIAS lv : std_logic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std logic vector ( 1’RANGE )
:= (OTHERS => | (1’LEFT));

ALIAS resultv : std_ logic_vector ( 1 TO 1’LENGTH ) IS result;

BEGIN
IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1 ;
ELSIF r > 0 THEN
IF r < |’LENGTH THEN

resultv (r+1 TO 1’LENGTH) := lv (1 TO 1’LENGTH — r);
END IF;
RETURN result;
ELSE
RETURN 1 SLA (—r);
END IF;
END "sra';

FUNCTION "sra" ( 1 : std_ulogic_ vector; r : integer )
RETURN std_ulogic_vector IS
ALIAS 1lv : std_ulogic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std ulogic vector ( 1’RANGE )
:= (OTHERS => | (1’LEFT));

ALIAS resultv : std_ ulogic_vector ( 1 TO 1’LENGTH ) IS result;

BEGIN
IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1 ;
ELSIF r > 0 THEN
IF r < 1|’LENGTH THEN

resultv (r+1 TO 1’LENGTH) := lv (1 TO 1’LENGTH — r);
END IF;
RETURN result;
ELSE
RETURN 1 SLA (—r);
END IF;
END "sra';
— rol

FUNCTION "rol" (1 : std logic_vector; r : integer )
RETURN std_logic_vector IS
ALIAS 1v : std_logic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std_logic_vector ( 1’RANGE );

ALIAS resultv : std_logic_vector ( 1 TO 1’LENGTH ) IS result;

VARIABLE rv : integer;

BEGIN
IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1 ;
ELSIF r > 0 THEN
rv := r MOD 1’length;
resultv (1l TO 1’LENGTH — rv ) := lv(rv+l TO 1’LENGTH);
resultv (1 ’LENGTH — rv 4+ 1 TO 1’length) := 1lv (1 TO rv);
RETURN result;
ELSE
RETURN 1 ROR (—r);
END IF;
END "rol";

FUNCTION "rol" (1 : std_ulogic_vector; r : integer )
RETURN std _ulogic_vector IS
ALIAS 1v : std_ulogic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std_ulogic_vector ( 1’RANGE );

ALIAS resultv : std_ulogic_vector ( 1 TO 1’LENGTH ) IS result;

VARIABLE rv : integer;

BEGIN
IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1 ;
ELSIF r > 0 THEN
rv := r MOD 1’length;
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END;

resultv (1 TO 1’LENGTH — rv ) := lv(rv4+1 TO 1’LENGTH);
resultv (1 ’LENGTH — rv 4+ 1 TO 1’'LENGTH) := lv (1 TO rv);
RETURN result;
ELSE
RETURN 1 ROR (—r);
END IF;
END "rol";

—— ror

FUNCTION "ror" ( 1 : std_logic_vector; r : integer )
RETURN std _logic_vector IS
ALIAS lv : std_logic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std_ logic_vector ( 1’RANGE );
ALIAS resultv : std logic vector ( 1 TO 1’LENGTH ) IS result;
VARIABLE rv : integer; N
BEGIN
IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1 ;
ELSIF r > 0 THEN
rv := r MOD 1l’length;
resultv (rv+1l TO 1’LENGTH) := 1lv (1 TO 1’LENGTH — rv);
resultv(l TO rv) := 1lv(1’LENGTH — rv + 1 TO 1 'LENGTH);
RETURN result;
ELSE
RETURN 1 ROL (—r);
END IF;
END "ror";

FUNCTION "ror" ( 1 : std_ulogic_ vector; r : integer )
RETURN std_ulogic_vector IS
ALIAS 1lv : std_ulogic_vector ( 1 TO 1’LENGTH ) IS 1;
VARIABLE result : std_ ulogic_vector ( 1’RANGE );
ALIAS resultv : std wulogic vector ( 1 TO 1’LENGTH ) IS result;
VARIABLE rv : integer; -
BEGIN
IF r = 0 OR 1’LENGTH = 0 THEN
RETURN 1 ;
ELSIF r > 0 THEN
rv := r MOD 1l’length;
resultv (rv+1l TO 1’LENGTH) := 1lv (1 TO 1’LENGTH — rv);
resultv(l TO rv) := 1lv(1’LENGTH — rv + 1 TO 1 'LENGTH);
RETURN result;
ELSE
RETURN 1 ROL (—r);
END IF;
END "ror";
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F. SYNTHESIS REPORTS

F.1 Synthesis Report for version 1

Release 10.1 — xst K.31 (nt)

Copyright (c) 1995—2008 Xilinx, Inc. All rights reserved.
——> Parameter TMPDIR set to D:/Master/Latex/my_FIR/my_FIR/xst/projnav.tmp
Total REAL time to Xst completion: 0.00 secs

Total CPU time to Xst completion: 0.17 secs

——> Parameter xsthdpdir set to D:/Master/Latex/my_FIR/my_FIR/xst
Total REAL time to Xst completion: 0.00 secs

Total CPU time to Xst completion: 0.17 secs

—> Reading design: my_fir.prj

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation

3) Design Hierarchy Analysis

4) HDL Analysis

5) HDL Synthesis

5.1) HDL Synthesis Report

6) Advanced HDL Synthesis

6.1) Advanced HDL Synthesis Report

7) Low Level Synthesis

8) Partition Report

9) Final Report

9.1) Device utilization summary

9.2) Partition Resource Summary

9.3) TIMING REPORT

* Synthesis Options Summary =*

——— Source Parameters

Input File Name : "my fir.prj"
Input Format : mixed

Ignore Synthesis Constraint File : NO
———— Target Parameters

Output File Name : "my fir"
Output Format : NGC

Target Device : xc3s500e—4—fg320
———— Source Options

Top Module Name : my fir
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
Safe Implementation : No

FSM Style : lut

RAM Extraction : Yes

RAM Style : Auto

ROM Extraction : Yes

Mux Style : Auto

Decoder Extraction : YES

Priority Encoder Extraction : YES
Shift Register Extraction : YES
Logical Shifter Extraction : YES
XOR Collapsing : YES

ROM Style : Auto

Mux Extraction : YES

Resource Sharing : YES
Asynchronous To Synchronous : NO
Multiplier Style : auto

Automatic Register Balancing : No
——— Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer (BUFG) : 24
Register Duplication : YES

Slice Packing : YES

Optimize Instantiated Primitives : NO
Use Clock Enable : Yes

Use Synchronous Set : Yes



Use Synchronous Reset : Yes

Pack IO Registers into IOBs : auto
Equivalent register Removal : YES
———— General Options

Optimization Goal : Speed
Optimization Effort : 1

Library Search Order : my_fir.lso
Keep Hierarchy : NO

Netlist Hierarchy : as_optimized
RTL Output : Yes

Global Optimization : AllClockNets
Read Cores : YES

Write Timing Constraints : NO
Cross Clock Analysis : NO
Hierarchy Separator : /

Bus Delimiter : <>

Case Specifier : maintain

Slice Utilization Ratio : 100
BRAM Utilization Ratio : 100
Verilog 2001 : YES

Auto BRAM Packing : NO

Slice Utilization Ratio Delta : 5

* HDL Compilation x*

Compiling vhdl file "D:/Master/Latex/my_FIR/my_FIR/my_package.vhd" in
Library work.

Architecture my_package of Entity my_package is up to date.

Compiling vhdl file "D:/Master/Latex/my_FIR/my_FIR/my_functions.vhd" in
Library work.

Architecture my functions of Entity my functions is up to date.
Compiling vhdl file "D:/Master/Latex/my FIR/my FIR/my fir.vhd" in
Library work. N N N

Entity <my fir> compiled.

Entity <my fir> (Architecture <rtl>) compiled.

* Design Hierarchy Analysis =x

Analyzing hierarchy for entity <my_fir> in library <work>
(architecture <rtl >).

* HDL Analysis =x

Analyzing Entity <my_fir> in library <work> (Architecture <rtl >).
Entity <my_fir> analyzed. Unit <my_fir> generated.

* HDL Synthesis =*

Performing bidirectional port resolution ...

Synthesizing Unit <my fir>.

Related source file is "D:/Master/Latex/my FIR/my FIR/my fir.vhd".
Found 24—bit adder for signal <y>.

Found 24—bit subtractor for signal <coeff0$sub0000> created at line 57.
Found 24—bit adder for signal <coeffl1$add0000> created at line 75.
Found 24—bit adder for signal <coeffl$addsub0000> created at line 75.

Found 24—bit subtractor for signal <coeffl0$sub0000> created at line 279.

Found 24—bit adder for signal <coeff28add0000> created at line 96.
Found 24—bit subtractor for signal <coeff2$addsub0000 >.

Found 24—bit adder for signal <coeff2$addsub0001> created at line 96.
Found 24—bit adder for signal <coeff3$3add0000> created at line 117.
Found 24—bit subtractor for signal <coeff3$addsub0000 >.

Found 24—bit adder for signal <coeff4$add0000> created at line 144.
Found 24—bit subtractor for signal <coeff4$addsub0000> created at line
Found 24—bit subtractor for signal <coeff4$addsub0001> created at line
Found 24—bit adder for signal <coeff4$addsub0002> created at line 144.
Found 24—bit adder for signal <coeff4$addsub0003> created at line 144.
Found 24—bit adder for signal <coeff58add0000> created at line 169.
Found 24—bit subtractor for signal <coeff5$8addsub0000> created at line
Found 24—bit subtractor for signal <coeff5$8addsub0001> created at line
Found 24—bit subtractor for signal <coeff5$8addsub0002> created at line
Found 24—bit adder for signal <coeff6$add0000> created at line 196.
Found 24—bit subtractor for signal <coeff6$addsub0000> created at line
Found 24—bit subtractor for signal <coeff6$addsub0001> created at line
Found 24—bit adder for signal <coeff6$addsub0002> created at line 196.
Found 24—bit adder for signal <coeff6$addsub0003> created at line 196.
Found 24—bit adder for signal <coeff7$add0000> created at line 218.
Found 24—bit subtractor for signal <coeff7$addsub0000 >.

Found 24—bit adder for signal <coeff83add0000> created at line 241.
Found 24—bit subtractor for signal <coeff8$addsub0000 >.

Found 24—bit adder for signal <coeff8$addsub0001> created at line 241.
Found 24—bit adder for signal <coeff9$4add0000> created at line 261.
Found 24—bit adder for signal <coeff9$addsub0000> created at line 261.
Found 24—bit adder for signal <y$addsub0000> created at line &85.
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Found 24—bit adder for signal <y$addsub0001> created at line &5.
Found 24—bit adder for signal <y$addsub0002> created at line &5.
Found 24—bit adder for signal <y$addsub0003> created at line &85.
Found 24—bit adder for signal <y$addsub0004> created at line &85.
Found 24—bit adder for signal <y$addsub0005> created at line 85.
Found 24—bit adder for signal <y$addsub0006> created at line 85.
Found 24—bit adder for signal <y$addsub0007> created at line 85.
Found 24—bit adder for signal <y$addsub0008> created at line 85.

Summary :

inferred 88 D-type flip—flop(s).
inferred 40 Adder/Subtractor(s).
Unit <my_fir> synthesized.

HDL Synthesis Report
Macro Statistics

# Adders/Subtractors : 40
24—bit adder : 27

24—bit subtractor : 13

# Registers : 88

1-bit register : 88

* Advanced HDL Synthesis =x

Loading device for application Rf_Device from file ’'3s500e.nph’
environment C:\ Xilinx\10.1\ISE.

in

Advanced HDL Synthesis Report
Macro Statistics

# Adders/Subtractors : 40
24—bit adder : 27

24—bit subtractor : 13

# Registers : 88

Flip—Flops : 88

* Low Level Synthesis =

Optimizing unit <my fir>
Mapping all equations ...
Building and optimizing final netlist

Found area constraint ratio of 100 (+ 5) on block my_fir, actual ratio

is 9.

FlipFlop reg<l>_7 has been replicated
FlipFlop reg<3>_7 has been replicated
FlipFlop reg<4>_1 has been replicated
FlipFlop reg<4>_5 has been replicated time (s)
FlipFlop reg<4> 7 has been replicated time (s)

1 time(s)
1
1
1
1
FlipFlop reg<5>_7 has been replicated 1 time(s)
1
1
1
1
1

time (s)
time (s)

FlipFlop reg<6>_1 has been replicated time (s)
FlipFlop reg<6>_5 has been replicated time (s)
FlipFlop reg<6>_ 7 has been replicated time (s)
FlipFlop reg<7>_ 7 has been replicated time (s)
FlipFlop reg<9> 7 has been replicated time (s)
Final Macro Processing

Final Register Report
Macro Statistics
# Registers : 99
Flip—Flops : 99

* Partition Report x

Partition Implementation Status

No Partitions were found in this design.

* Final Report =

Final Results

RTL Top Level Output File Name : my fir.ngr
Top Level Output File Name : my_fir
Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO

Design Statistics

# 10s : 34

Cell Usage

# BELS : 1206

# GND : 1

# INV : 9

# LUT2 : 84
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# LUT3 : 214

# LUT4 : 321

# MUXCY : 280

# MUXF5 : 12

# VCC : 1

# XORCY : 284

# FlipFlops/Latches : 99
# FDC : 99

# Clock Buffers : 1
# BUFGP : 1

# IO Buffers : 33
# IBUF : 9

# OBUF : 24

Device utilization summary:

Selected Device : 3s500efg320—4

Number of Slices: 343 out of 4656 7%

Number of Slice Flip Flops: 99 out of 9312 1%
Number of 4 input LUTs: 628 out of 9312 6%
Number of IOs: 34

Number of bonded 10Bs: 34 out of 232 14%
Number of GCLKs: 1 out of 24 4%

Partition Resource Summary:

No Partitions were found in this design.

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and—ROUTE.

Clock Information:

)
t

Clock Signal | Clock buffer (FF name) | Load |
!
t

clk | BUFGP | 99 |

4 '

t
Asynchronous Control Signals Information:

y L

f
Control Signal | Buffer (FF name) | Load |
|

‘ :
rst | IBUF | 99 |

| I

t t
Timing Summary :

Speed Grade: —4

Minimum period: 1.984ns (Maximum Frequency: 504.032MHz)
Minimum input arrival time before clock: 1.946ns

Maximum output required time after clock: 40.720ns

Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock ’clk’
Clock period: 1.984ns (frequency: 504.032MHz)
Total number of paths / destination ports: 91 / 91

Delay: 1.984ns (Levels of Logic = 0)

Source: reg<2>_7 (FF)

Destination: reg<3>_7 (FF)

Source Clock: clk rising

Destination Clock: clk rising

Data Path: reg<2> 7 to reg<3>_7

Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)

FDC:C—>Q 19 0.591 1.085 reg<2> 7 (reg<2> 7)
FDC:D 0.308 reg<3> 7

Total 1.984ns (0.899ns logic, 1.085ns route)
(45.3% logic, 54.7% route)

Timing constraint: Default OFFSET IN BEFORE for Clock ’clk’
Total number of paths / destination ports: 8 / 8

Offset: 1.946ns (Levels of Logic = 1)
Source: x<0> (PAD)

Destination: reg<0> 0 (FF)
Destination Clock: clk rising
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Data Path: x<0> to reg<0>_0
Gate Net
Cell:in—>out fanout Delay Delay Logical Name (Net Name)

IBUF:1->0 1 1.218 0.420 x_0_IBUF (x_0_IBUF)
FDC:D 0.308 reg<0>_0

Total 1.946ns (1.526ns logic, 0.420ns route)
(78.4% logic, 21.6% route)

Timing constraint: Default OFFSET OUT AFTER for Clock ’clk’
Total number of paths / destination ports: 48395541245 / 23

Offset: 40.720ns (Levels of Logic = 36)

Source: reg<l> 3 (FF)

Destination: y<23> (PAD)

Source Clock: clk rising

Data Path: reg<l>_3 to y<23>

Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)

FDC:C—>Q 12 0.591 1.136 reg<l>_ 3 (reg<l>_3)

LUT4:10—>0 2 0.704 0.622 Madd_coeffl addOOOO Madd_cy<5>11
(Madd_coeffl _add0000_Madd_cy<5>)

LUT4:10—>0 2 0.704 0.622 Madd_coeffl _add0000_Madd cy<6>11
(Madd_coeffl _add0000_Madd_cy <6>)

LUT4:10—>0 2 0.704 0.622 Madd_coeffl _add0000_Madd cy<7>11
(Madd_coeffl _add0000_Madd_cy <7>)

LUT4:10—>0 2 0.704 0.622 Madd_coeffl _add0000_Madd cy<8>11
(Madd_coeffl _add0000_Madd_cy <8>)

LUT4:10—>0 2 0.704 0.622 Madd_coeffl add0000_ Madd_ cy<9>11
(Madd _coeffl add0000 Madd cy<9>)

LUT4:10—>0 4 0.704 0.762 Madd_coeffl add0000_Madd cy<10>11
(Madd coeffl add0000 Madd cy<10>)

LUT3:10—>0 2 0.704 0.622 Madd coeffl add0000 Madd xor<11>11
(coeffl add0000<11>)

LUT3:10—>0 1 0.704 0.595 Madd y addsub0001C101 (Madd y addsub0001C10)
LUT4:10—>0 1 0.704 0.000 Madd_y_addsub0001_Madd 1ut<12>
(Madd y addsub0001 Madd lut<12>)

MUXCY:S—>0 1 0.464 0.000 Madd y_addsub0001 _Madd _cy<12>
(Madd_y_addsub0001 _Madd_cy<12>)

XORCY:CI—>0 2 0.804 0.526 Madd y_addsub0001_Madd_xor<13>

(y _addsub0001<13>)

LUT3:11—>0 1 0.704 0.595 Madd _y_addsub0002C121 (Madd_y_addsub0002C12)
LUT4:10—>0 1 0.704 0.000 Madd y addsubOOOZ Madd 1ut<14>
(Madd _ y addsub0002_Madd_lut<14>)

MUXCY:S—>0 1 0.464 0.000 Madd y_addsub0002_Madd _cy<14>
(Madd _y addsub0002 Madd cy<14>)

XORCY:CI—>0 2 0.804 0.526 Madd_y_addsub0002_ Madd_xor<15>

(y _addsub0002<15>)

LUT3:11—>0 1 0.704 0.595 Madd y addsub0003C141 (Madd y addsub0003C14)
LUT4:10—>0 1 0.704 0.000 Madd y _addsub0003 Madd lut<16>
(Madd _y addsub0003 Madd lut<16>)

MUXCY:S—>0 1 0.464 0.000 Madd y_addsub0003_Madd cy<16>
(Madd_y_addsub0003_Madd_cy<16>)

XORCY:CI-—>0O 2 0.804 0.526 Madd_y_ addsub0003_ Madd_xor<17>
(y_addsub0003 <17>)

LUT3:11—>0 1 0.704 0.595 Madd_y_addsub0004C161 (Madd_y_addsub0004C16)
LUT4:10—>0 1 0.704 0.000 Madd y addsub0004 Madd_lut<18>
(Madd_y_addsub0004_Madd_lut<18>)

MUXCY:S—>0 1 0.464 0.000 Madd y_addsub0004_Madd _cy<18>
(Madd_y_addsub0004_Madd_cy<18>)

XORCY:CI=>0 2 0.804 0.526 Madd y_addsub0004_Madd_xor<19>
(y_addsub0004 <19>)

LUT3:11—>0 1 0.704 0.595 Madd_y_addsub0005C181 (Madd_y_addsub0005C18)
LUT4:10—>0 1 0.704 0.000 Madd y addsub0005 Madd_lut<20>
(Madd y addsub0005 Madd lut<20>)

MUXCY:5—>0 1 0.464 0.000 Madd_y_addsub0005_ Madd_ cy<20>
(Madd_y_addsub0005_Madd_cy<20>)

XORCY:CI-—>O 3 0.804 0.566 Madd_y_ addsub0005_ Madd_xor<21>
(y_addsub0005 <21>)

LUT4:12—>0 1 0.704 0.000 Madd_y_addsub0006_ Madd_ lut<21>
(Madd _y addsub0006 Madd lut<21>)

XORCY:LI—>0 2 0.527 0.526 Madd_y_addsub0006 Madd _xor<21>
(y _addsub0006 <21>)

LUT3:11—>0 1 0.704 0.595 Madd _y_addsub0008C201 (Madd_y_addsub0008C20)
LUT4:10—>0 1 0.704 0.000 Madd y addsubOOOS Madd 1ut<22>
(Madd_y_addsub0008_Madd _lut<23>)

MUXCY:S—>0 0 0.464 0.000 Madd y_addsub0008 _Madd _cy<22>
(Madd_y_addsub0008_Madd_cy<22>)

XORCY:CI=>0 1 0.804 0.595 Madd _y_addsub0008_Madd _xor<23>
(y_addsub0008 <23>)

LUT2:10—>0 0 0.704 0.000 Madd_y lut<23> (Madd_y lut<23>)
XORCY:LI—>0 1 0.527 0.420 Madd y xor<23> (y_23_OBUF)
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OBUF:1—>0 3.272 y 23 OBUF (y<23>)

Total 40.720ns (27.309ns logic, 13.411ns route)
(67.1% logic, 32.9% route)

Total REAL time to Xst completion: 24.00 secs
Total CPU time to Xst completion: 24.20 secs
—

Total memory usage is 173420 kilobytes
Number of errors : 0 ( 0 filtered)

Number of warnings : 0 ( 0 filtered)

Number of infos : 0 ( 0 filtered)
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F.2 Synthesis Report for version 2

Release 10.1 — xst K.31 (nt)

Copyright (c) 1995—2008 Xilinx, Inc. All rights reserved.
—> Parameter TMPDIR set to D:/Master/Latex/my fir version_ 2/my fir
/xst/projnav .tmp

Total REAL time to Xst completion: 0.00 secs

Total CPU time to Xst completion: 0.17 secs

——> Parameter xsthdpdir set to D:/Master/Latex/my fir_ version_ 2/my fir/xst
Total REAL time to Xst completion: 0.00 secs

Total CPU time to Xst completion: 0.17 secs

—> Reading design: my_fir.prj

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation

3) Design Hierarchy Analysis

4) HDL Analysis

5) HDL Synthesis

5.1) HDL Synthesis Report

6) Advanced HDL Synthesis

6.1) Advanced HDL Synthesis Report

7) Low Level Synthesis

8) Partition Report

9) Final Report

9.1) Device utilization summary

9.2) Partition Resource Summary

9.3) TIMING REPORT

* Synthesis Options Summary =*

——— Source Parameters

Input File Name : "my_fir.prj"
Input Format : mixed

Ignore Synthesis Constraint File : NO
——— Target Parameters

Output File Name : "my _fir"
Output Format : NGC

Target Device : xc3s500e—4—fg320
———— Source Options

Top Module Name : my fir
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
Safe Implementation : No

FSM Style : lut

RAM Extraction : Yes

RAM Style : Auto

ROM Extraction : Yes

Mux Style : Auto

Decoder Extraction : YES

Priority Encoder Extraction : YES
Shift Register Extraction : YES
Logical Shifter Extraction : YES
XOR Collapsing : YES

ROM Style : Auto

Mux Extraction : YES

Resource Sharing : YES
Asynchronous To Synchronous : NO
Multiplier Style : auto

Automatic Register Balancing : No
———— Target Options

Add 1O Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer (BUFG) : 24
Register Duplication : YES

Slice Packing : YES

Optimize Instantiated Primitives : NO
Use Clock Enable : Yes

Use Synchronous Set : Yes

Use Synchronous Reset : Yes

Pack IO Registers into IOBs : auto
Equivalent register Removal : YES
———— General Options

Optimization Goal : Speed
Optimization Effort : 1

Library Search Order : my fir.lso
Keep Hierarchy : NO

Netlist Hierarchy : as_optimized
RTL Output : Yes

Global Optimization : AllClockNets
Read Cores : YES

Write Timing Constraints : NO
Cross Clock Analysis : NO
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Hierarchy Separator : /

Bus Delimiter : <>

Case Specifier : maintain

Slice Utilization Ratio : 100
BRAM Utilization Ratio : 100
Verilog 2001 : YES

Auto BRAM Packing : NO

Slice Utilization Ratio Delta : 5

* HDL Compilation x*

Compiling vhdl file "D:/Master/Latex/my _fir_version_2/my_fir/my_package.vhd"
in Library work.

Architecture my package of Entity my package is up to date.

Compiling vhdl file "D:/Master/Latex/my fir version 2/my fir/my functions.vhd"
in Library work. - N N N

Package <my functions> compiled.

Package body <my functions> compiled.

Compiling vhdl file "D:/Master/Latex/my fir version 2/my fir/my fir.vhd"

in Library work. - N N N

Entity <my_fir> compiled.

Entity <my_fir> (Architecture <rtl>) compiled.

* Design Hierarchy Analysis =

Analyzing hierarchy for entity <my_fir> in library <work>
(architecture <rtl >).

* HDL Analysis =x

Analyzing Entity <my fir> in library <work> (Architecture <rtl >).
Entity <my fir> analyzed. Unit <my fir> generated.

* HDL Synthesis =*

Performing bidirectional port resolution ...

Synthesizing Unit <my fir>.

Related source file is "D:/Master/Latex/my fir_ version_ 2/my fir

/my _fir.vhd".

Found 24— bit adder for signal <y>.

Found 24—bit subtractor for signal <coeffl$sub0000> created at line 75.
Found 24—bit subtractor for signal <coeff2$addsub0000 >.

Found 24—bit adder for signal <coeff2$addsub0001> created at line 104.
Found 24—bit subtractor for signal <coeff28sub0000> created at line 104.
Found 24—bit subtractor for signal <coeff3$addsub0000 >.

Found 24—bit adder for signal <coeff3$addsub0001> created at line 132.
Found 24—bit subtractor for signal <coeff3$sub0000> created at line 132.
Found 24—bit adder for signal <coeff4$add0000> created at line 157.
Found 24—bit adder for signal <coeff4$addsub0000> created at line 157.
Found 24—bit adder for signal <coeff58addsub0000> created at line 185.
Found 24—bit subtractor for signal <coeff53addsub0001> created at line 185.
Found 24—bit subtractor for signal <coeff58sub0000> created at line 185.
Found 24—bit adder for signal <coeff6$8add0000> created at line 209.
Found 24—bit adder for signal <coeff68addsub0000> created at line 209.
Found 24—bit subtractor for signal <coeff7$addsub0000 >.

Found 24—bit adder for signal <coeff7$addsub0001> created at line 236.
Found 24—bit subtractor for signal <coeff7$sub0000> created at line 236.
Found 24—bit subtractor for signal <coeff83addsub0000 >.

Found 24—bit adder for signal <coeff8$addsub0001> created at line 265.
Found 24—bit subtractor for signal <coeff8$sub0000> created at line 265.
Found 24—bit subtractor for signal <coeff9$sub0000> created at line 286.
Found 24—bit adder for signal <y$addsub0000> created at line 85.

Found 24—bit adder for signal <y$addsub0001> created at line 85.

Found 24—bit adder for signal <y$addsub0002> created at line 85.

Found 24—bit adder for signal <y$%addsub0003> created at line 85.

Found 24—bit adder for signal <y$%addsub0004> created at line &85.

Found 24—bit adder for signal <y$addsub0005> created at line &85.

Found 24—bit adder for signal <y$%addsub0006> created at line &85.

Found 24—bit adder for signal <y$addsub0007> created at line &85.

Found 24—bit adder for signal <y$%addsub0008> created at line &5.
Summary :

inferred 88 D—type flip—flop(s).

inferred 31 Adder/Subtractor(s).

Unit <my_fir> synthesized.

HDL Synthesis Report
Macro Statistics

# Adders/Subtractors : 31
24—bit adder : 19

24—bit subtractor : 12

# Registers : 88

1-bit register : 88
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* Advanced HDL Synthesis x

Loading device for application Rf_ Device from file ’3s500e.nph’

environment C:\ Xilinx\10.1\ISE.

in

Advanced HDL Synthesis Report
Macro Statistics

# Adders/Subtractors : 31
24—bit adder : 19

24—bit subtractor : 12

# Registers : 88

Flip—Flops : 88

* Low Level Synthesis =

Optimizing unit <my fir>

Mapping all equations ...

Building and optimizing final netlist

Found area constraint ratio of 100 (4+ 5) on block my fir,
ratio is 7.

FlipFlop reg<0>_7 has been replicated 1 time(s)

INFO: Xst:1843 — HDL ADVISOR — FlipFlop reg<0>_7 connected
primary input has been replicated

FlipFlop reg<4>_7 has been replicated 1 time(s)

FlipFlop reg<5>_7 has been replicated 1 time(s)

FlipFlop reg<6>_7 has been replicated 1 time(s)

Final Macro Processing

actual

to

a

Final Register Report
Macro Statistics
# Registers : 92
Flip—Flops : 92

* Partition Report =

Partition Implementation Status

No Partitions were found in this design.

* Final Report =x

Final Results

RTL Top Level Output File Name : my_fir.ngr
Top Level Output File Name : my fir

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO

Design Statistics

# 10s : 34

Cell Usage
# BELS : 994
# GND : 1

# INV : 17
# LUT2 : 96

# LUT3 : 181

# LUT4 : 190

# MUXCY : 250

# MUXF5 : 1

# VCC : 1

# XORCY : 257

# FlipFlops/Latches : 92
# FDC : 92

# Clock Buffers : 1

# BUFGP : 1

# 10 Buffers : 33

# IBUF : 9

# OBUF : 24

Device utilization summary:

Selected Device : 3s500efg320—4

Number of Slices: 267 out of 4656 5%

Number of Slice Flip Flops: 92 out of 9312 0%
Number of 4 input LUTs: 484 out of 9312 5%
Number of IOs: 34

Number of bonded IOBs: 34 out of 232 14%
Number of GCLKs: 1 out of 24 4%

Partition Resource Summary:
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No Partitions were found in this design.

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and—ROUTE.

Clock Information:

|
f

Clock Signal | Clock buffer (FF name) | Load |
|
t

clk | BUFGP | 92 |

| I

T
Asynchronous Control Signals Information:

| I

T
Control Signal | Buffer (FF name) | Load |
)

t t
rst | IBUF | 92 |

| 4

t }
Timing Summary:

Speed Grade: —4

Minimum period: 1.950ns (Maximum Frequency: 512.821MHz)
Minimum input arrival time before clock: 1.973ns

Maximum output required time after clock: 32.072ns

Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock ’clk’
Clock period: 1.950ns (frequency: 512.821MHz)
Total number of paths / destination ports: 83 / 83

Delay: 1.950ns (Levels of Logic = 0)

Source: reg<3> 7 (FF)

Destination: reg<4> 7 (FF)

Source Clock: clk rising

Destination Clock: clk rising

Data Path: reg<3>_7 to reg<4>_7

Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)

FDC:C—>Q 17 0.591 1.051 reg<3> 7 (reg<3>_7)
FDC:D 0.308 reg<d>_7

Total 1.950ns (0.899ns logic, 1.051ns route)
(46.1% logic , 53.9% route)

Timing constraint: Default OFFSET IN BEFORE for Clock ’clk’
Total number of paths / destination ports: 9 / 9

Offset: 1.973ns (Levels of Logic = 1)

Source: x<7> (PAD)

Destination: reg<0>_7 (FF)

Destination Clock: clk rising

Data Path: x<7> to reg<0>_7

Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)

IBUF:1->0 2 1.218 0.447 x_7_IBUF (x_7_IBUF)
FDC:D 0.308 reg<0>_7

Total 1.973ns (1.526ns logic, 0.447ns route)
(77.3% logic, 22.7% route)

Timing constraint: Default OFFSET OUT AFTER for Clock ’clk’
Total number of paths / destination ports: 1141597533 / 24

Offset: 32.072ns (Levels of Logic = 29)

Source: reg<2> 3 (FF)

Destination: y<23> (PAD)

Source Clock: clk rising

Data Path: reg<2>_3 to y<23>

Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)

FDC:C—>Q 7 0.591 0.883 reg<2> 3 (reg<2>_3)

LUT4:10—>0 2 0.704 0.622 Msub_coeff2_ addsub0000_cy<5>11
(Msub_coeff2_addsub0000_cy <5>)

LUT3:10—>0 2 0.704 0.622 Msub_coeff2 addsub0000_ cy<6>11
(Msub_coeff2 addsub0000 cy<6>)

77



LUT3:10—>0 3 0.704 0.706 Msub_coeff2 addsub0000_ cy<7>11
(Msub_coeff2 addsub0000 cy<7>)

LUT3:10—>0 4 0.704 0.666 Msub _ coeff2 addsub0000_ cy<8>11
(Msub_coeff2 addsub0000 cy<8>)

LUT4:11-—>0 1 0.704 0.000 Madd_coeff2_ addsub0001_lut<11l>
(Madd _coeff2 _addsub0001 _lut<11>)

MUXCY:S—>0 1 0.464 0.000 Madd_coeff2_addsub0001_cy<11>
(Madd_coeff2_addsub0001 _cy <11>)

XORCY:CI->O 1 0.804 0.595 Madd_coeff2_ addsub0001_xor<12>
(coeff2 _addsub0001 <13>)

LUT2:10—>0 1 0.704 0.000 Msub_coeff2_ sub0000_lut<13>
(Msub_coeff2_sub0000_lut<13>)

MUXCY:S—>0 1 0.464 0.000 Msub_coeff2 sub0000_cy<13>
(Msub_coeff2 sub0000 cy<13>)

XORCY:CI—>0 3 0.804 0.566 Msub_coeff2 sub0000_ xor<14>
(coeff2 sub0000 <14>)

LUT4:12—>0 1 0.704 0.000 Madd y addsub0001 Madd lut<14>
(Madd _y addsub0001 Madd lut<14>)

MUXCY:S5—>0 1 0.464 0.000 Madd_y_addsub0001_ Madd_ cy<14>
(Madd _y addsub0001 Madd cy<14>)

XORCY:CI—>0O 2 0.804 0.526 Madd_y_ addsub0001_Madd_xor<15>
(y_addsub0001 <15>)

LUT3:11->0 1 0.704 0.595 Madd_y_addsub0003C141
(Madd_y_addsub0003C14)

LUT4:10-50 1 0.704 0.000 Madd_y_addsub0003_Madd _lut<16>
(Madd_y_addsub0003_Madd_lut<16>)

MUXCY:S-50 1 0.4640.000 Madd_y_addsub0003_Madd _cy<16>
(Madd_y_addsub0003_Madd_cy<16>)

XORCY:CI=>0 2 0.804 0.526 Madd _y_addsub0003_Madd_xor<17>
(y_addsub0003 <17>)

LUT3:11->0 1 0.704 0.595 Madd_y addsub0005C161

(Madd_y addsub0005C16)

LUT4:T0—>0 1 0.704 0.000 Madd y addsub0005 Madd lut<18>
(Madd _y addsub0005 Madd lut<18>)

MUXCY:5—>0 1 0.464 0.000 Madd_y_addsub0005 Madd cy<18>
(Madd_y_addsub0005_Madd_cy<18>)

XORCY:CI-—>0O 3 0.804 0.610 Madd_y_ addsub0005_ Madd_xor<19>
(y_addsub0005 <19>)

LUT3:11—>0 0 0.704 0.000 Madd y addsub0007C181 (Madd y addsub0007C18)
MUXCY: DI—>0 1 0.888 0.000 Madd y_addsub0007 _Madd_cy<20>
(Madd_y_addsub0007_Madd_cy<20>)

XORCY:CI—>0 2 0.804 0.526 Madd y_addsub0007_Madd_xor<21>
(y_addsub0007 <21>)

LUT3:11—>0 1 0.704 0.595 Madd_yC201 (Madd_yC20)
LUT3:10—>0 1 0.704 0.000 Madd_y_ Madd_lut<22> (Madd_y Madd_lut<22>)
MUXCY:S—>0 0 0.464 0.000 Madd _y Madd cy<22> (Madd_y Madd_cy<22>)
XORCY: CI—>0 1 0.804 0.420 Madd y_Madd_xor<23> (y_23_OBUF)
OBUF:1—>0 3.272 y 23 OBUF (y<23>)

Total 32.072ns (23.019ns logic, 9.053ns route)
(71.8% logic , 28.2% route)

Total REAL time to Xst completion: 19.00 secs
Total CPU time to Xst completion: 18.44 secs
—_—>

Total memory usage is 169772 kilobytes
Number of errors : 0 ( 0 filtered)

Number of warnings : 0 ( 0 filtered)

Number of infos : 1 ( 0 filtered)
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F.3 Synthesis Report for version 3

Release 10.1 — xst K.31 (nt)

Copyright (c) 1995—2008 Xilinx, Inc. All rights reserved.
——> Parameter TMPDIR set to D:/Master/Latex/my fir version_ 3/
my fir/xst/projnav.tmp

Total REAL time to Xst completion: 0.00 secs

Total CPU time to Xst completion: 0.17 secs

——> Parameter xsthdpdir set to D:/Master/Latex/my fir version_ 3/
my fir/xst

Total REAL time to Xst completion: 0.00 secs

Total CPU time to Xst completion: 0.17 secs

—> Reading design: my_fir.prj

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation

3) Design Hierarchy Analysis

4) HDL Analysis

5) HDL Synthesis

5.1) HDL Synthesis Report

6) Advanced HDL Synthesis

6.1) Advanced HDL Synthesis Report

7) Low Level Synthesis

8) Partition Report

9) Final Report

9.1) Device utilization summary

9.2) Partition Resource Summary

9.3) TIMING REPORT

* Synthesis Options Summary =*

——— Source Parameters

Input File Name : "my_fir.prj"
Input Format : mixed

Ignore Synthesis Constraint File : NO
———— Target Parameters

Output File Name : "my fir"
Output Format : NGC

Target Device : xc3s500e—4—fg320
———— Source Options

Top Module Name : my fir
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
Safe Implementation : No

FSM Style : lut

RAM Extraction : Yes

RAM Style : Auto

ROM Extraction : Yes

Mux Style : Auto

Decoder Extraction : YES

Priority Encoder Extraction : YES
Shift Register Extraction : YES
Logical Shifter Extraction : YES
XOR Collapsing : YES

ROM Style : Auto

Mux Extraction : YES

Resource Sharing : YES
Asynchronous To Synchronous : NO
Multiplier Style : auto

Automatic Register Balancing : No
———— Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer (BUFG) : 24
Register Duplication : YES

Slice Packing : YES

Optimize Instantiated Primitives : NO
Use Clock Enable : Yes

Use Synchronous Set : Yes

Use Synchronous Reset : Yes

Pack IO Registers into IOBs : auto
Equivalent register Removal : YES
———— General Options

Optimization Goal : Speed
Optimization Effort : 1

Library Search Order : my fir.lso
Keep Hierarchy : NO

Netlist Hierarchy : as_optimized
RTL Output : Yes

Global Optimization : AllClockNets
Read Cores : YES

Write Timing Constraints : NO
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Cross Clock Analysis : NO

Hierarchy Separator : /
Bus Delimiter : <>
Case Specifier : maintain

Slice Utilization Ratio : 100
BRAM Utilization Ratio : 100
Verilog 2001 : YES

Auto BRAM Packing : NO

Slice Utilization Ratio Delta : 5

* HDL Compilation x*

Compiling vhdl file "D:/Master/Latex/my fir version 3/my fir/
my package.vhd" in Library work.

Architecture my package of Entity my package is up to date.
Compiling vhdl file "D:/Master/Latex/my fir version 3/my fir/
my functions.vhd" in Library work. - N N
Architecture my functions of Entity my functions is up to date.
Compiling vhdl file "D:/Master/Latex/my fir version 3/my fir/
my fir.vhd" in Library work. - N N
Entity <my_fir> compiled.

Entity <my_fir> (Architecture <rtl>) compiled.

* Design Hierarchy Analysis =x

Analyzing hierarchy for entity <my_fir> in library <work>
(architecture <rtl >).

* HDL Analysis =x

Analyzing Entity <my fir> in library <work> (Architecture <rtl >).
Entity <my fir> analyzed. Unit <my fir> generated.

* HDL Synthesis =*

Performing bidirectional port resolution ...

Synthesizing Unit <my fir>.

Related source file is "D:/Master/Latex/my fir_ version_3/my fir/
my _ fir.vhd".

Found 24— bit adder for signal <y>.

Found 8x16—bit multiplier for signal <coeff0$mult0000>

created at line 53.

Found 8x16—bit multiplier for signal <coeffl$mult0000>

created at line 68.

Found 8x16—bit multiplier for signal <coeffl0$mult0000>

created at line 214.

Found 8x16—bit multiplier for signal <coeff23mult0000>

created at line 84.

Found 8x16—bit multiplier for signal <coeff3$mult0000>

created at line 100.

Found 8x16—bit multiplier for signal <coeff4$mult0000>

created at line 117.

Found 8x16—bit multiplier for signal <coeff58mult0000>

created at line 133.

Found 8x16—bit multiplier for signal <coeff68mult0000>

created at line 149.

Found 8x16—bit multiplier for signal <coeff7$mult0000>

created at line 165.

Found 8x16—bit multiplier for signal <coeff8$mult0000>

created at line 182.

Found 8x16—bit multiplier for signal <coeff9$mult0000>

created at line 198.

Found 24—bit adder for signal <y$addsub0000> created at line 86.
Found 24—bit adder for signal <y$addsub0001> created at line 86.
Found 24—bit adder for signal <y$addsub0002> created at line 86.
Found 24—bit adder for signal <y$addsub0003> created at line &86.
Found 24—bit adder for signal <y$addsub0004> created at line &86.
Found 24—bit adder for signal <y$%addsub0005> created at line &86.
Found 24—bit adder for signal <y$addsub0006> created at line &86.
Found 24—bit adder for signal <y$%addsub0007> created at line &86.
Found 24—bit adder for signal <y$%addsub0008> created at line &86.
Summary :

inferred 88 D-type flip—flop(s).

inferred 10 Adder/Subtractor(s).

inferred 11 Multiplier(s).

Unit <my_fir> synthesized.

HDL Synthesis Report
Macro Statistics

# Multipliers : 11
8x16—bit multiplier : 11
# Adders/Subtractors : 10
24—bit adder : 10
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# Registers : 88
1-bit register : 88

* Advanced HDL Synthesis =*

Loading device for application Rf_Device from file ’'3s500e.nph’

in environment C:\ Xilinx\10.1\ISE.

Synthesizing (advanced) Unit <my_fir>.

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult _coeffl0_mult0000 by adding 1 register level(s).
INFO:Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult coeff9 mult0000 by adding 1 register level(s).

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult coeff8 mult0000 by adding 1 register level(s).

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult coeff7 mult0000 by adding 1 register level(s).

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult_coeff6 _mult0000 by adding 1 register level(s).

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult_coeff5 _mult0000 by adding 1 register level(s).
INFO:Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult_coeff4 _mult0000 by adding 1 register level(s).

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult coeff3 mult0000 by adding 1 register level(s).

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult coeff2 mult0000 by adding 1 register level(s).

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult coeffl mult0000 by adding 1 register level(s).

INFO: Xst:2385 — HDL ADVISOR — You can improve the performance
of the multiplier

Mmult_coeff0 _mult0000 by adding 1 register level(s).

Unit <my_fir> synthesized (advanced).

Advanced HDL Synthesis Report
Macro Statistics

# Multipliers : 11

8x16—bit multiplier : 11

# Adders/Subtractors : 10
24—bit adder : 10

# Registers : 88

Flip—Flops : 88

* Low Level Synthesis =

Optimizing unit <my_fir>

Mapping all equations ...

Building and optimizing final netlist .

Found area constraint ratio of 100 (+ 5) on block my_fir,
actual ratio is 4.

Final Macro Processing

Final Register Report
Macro Statistics
# Registers : 88
Flip—Flops : 88

* Partition Report =

Partition Implementation Status

No Partitions were found in this design.

* Final Report =x

Final Results

RTL Top Level Output File Name : my_fir.ngr
Top Level Output File Name : my_fir

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO
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Design Statistics
# I0s : 34

Cell Usage
# BELS : 465
# GND : 1

# LUT2 : 5

# LUT3 : 111

# LUT4 : 111

# MUXCY : 115

# MUXF5 : 1

# VCC : 1

# XORCY : 120

# FlipFlops/Latches : 88
# FDC : 88

# Clock Buffers : 1
# BUFGP : 1

# 10 Buffers : 33
# IBUF : 9

# OBUF : 24

# MULTs : 11

# MULT18X18SIO : 11

Device utilization summary:

Selected Device : 3s500efg320—4

Number of Slices: 130 out of 4656 2%

Number of Slice Flip Flops: 88 out of 9312 0%
Number of 4 input LUTs: 227 out of 9312 2%
Number of IOs: 34

Number of bonded IOBs: 34 out of 232 14%
Number of MULTI18X18SIOs: 11 out of 20 55%
Number of GCLKs: 1 out of 24 4%

Partition Resource Summary:

No Partitions were found in this design.

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and—ROUTE.

Clock Information:

|
t

Clock Signal | Clock buffer (FF name) | Load |
|
t

clk | BUFGP | 88 |

| I

T
Asynchronous Control Signals Information:

| I

t
Control Signal | Buffer (FF name) | Load |
)

t }
rst | IBUF | 88 |

y 4

t }
Timing Summary:

Speed Grade: —4

Minimum period: 1.346ns (Maximum Frequency: 742.942MHz)
Minimum input arrival time before clock: 1.946ns

Maximum output required time after clock: 28.509ns

Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock ’clk’
Clock period: 1.346ns (frequency: 742.942MHz)
Total number of paths / destination ports: 80 / 80

Delay: 1.346ns (Levels of Logic = 0)

Source: reg<0>_ 0 (FF)

Destination: reg<l>_0 (FF)

Source Clock: clk rising

Destination Clock: clk rising

Data Path: reg<0>_0 to reg<l>_0

Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)

FDC:C—>Q 2 0.591 0.447 reg<0> 0 (reg<0>_0)
FDC:D 0.308 reg<I>_0

Total 1.346ns (0.899ns logic, 0.447ns route)
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(66.8% logic, 33.2% route)

Timing constraint: Default OFFSET IN BEFORE for Clock ’clk’
Total number of paths / destination ports: 8 / 8

Offset: 1.946ns (Levels of Logic = 1)

Source: x<0> (PAD)

Destination: reg<0>_0 (FF)

Destination Clock: clk rising

Data Path: x<0> to reg<0>_0

Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)
IBUF:1—>0 1 1.218 0.420 x_0_IBUF (x_0_ IBUF)

FDC:D 0.308 reg<0>_0

Total 1.946ns (1.526ns logic, 0.420ns route)

(78.4% logic, 21.6% route)

Timing constraint: Default OFFSET OUT AFTER for Clock ’clk’

Total number of paths / destination ports: 400137001 / 24

Offset: 28.509ns (Levels
Source: reg<l>_7 (FF)
Destination: y<23> (PAD)

of Logic = 28)

Source Clock: clk rising
Data Path: reg<l>_7 to y<23>
Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)

FDC:C—>Q 2 0.591 0.447 reg<l> 7 (reg<l> 7)
MULT18X18SIO: A7T—>P7 2 4.344 0.622 Mmult coeffl mult0000
(coeffl mult0000 <7>)

LUT3:10—>0 1 0.704 0.595 Madd_y_ addsub0001C61

(Madd_y addsub0001C6)

LUT4:10—>0 1 0.704 0.000 Madd_y_addsub0001_Madd lut<8>
(Madd _y addsub0001 Madd lut<8>)

MUXCY:S—>0 1 0.464 0.000 Madd_y_addsub0001_ Madd_ cy<8>
(Madd _y addsub0001 Madd cy<8>)

XORCY:CI—>O 2 0.804 0.526 Madd_y_addsub0001 Madd _xor<9>
(y_addsub0001 <9>)

LUT3:11->0 1 0.704 0.595 Madd_y_addsub0003C81
(Madd_y_addsub0003C8)

LUT4:10—>0 1 0.704 0.000 Madd_y_addsub0003_Madd _lut<10>
(Madd_y_addsub0003_Madd_lut<10>)

MUXCY:§—>0 1 0.464 0.000 Madd_y_addsub0003_Madd _cy<10>
(Madd_y_addsub0003_Madd_cy<10>)

XORCY:CI—>0O 2 0.804 0.526 Madd_y_ addsub0003_ Madd_ xor<11>
(y_addsub0003 <11>)

LUT3:11-—>0 1 0.704 0.595 Madd_y_ addsub0005C101

(Madd_y addsub0005C10)

LUT4:10—>0 1 0.704 0.000 Madd_y_addsub0005 Madd_ lut<12>
(Madd _y addsub0005 Madd lut<12>)

MUXCY:S5—>0 1 0.464 0.000 Madd_y_addsub0005_ Madd_ cy<12>
(Madd_y_addsub0005_Madd_cy<12>)

XORCY:CI—>0O 2 0.804 0.526 Madd_y_ addsub0005_ Madd_xor<13>
(y_addsub0005<13>)

LUT3:11->0 1 0.704 0.595 Madd_y_addsub0007C121
(Madd_y_addsub0007C12)

LUT4:10—>0 1 0.704 0.000 Madd_y_addsub0007 _Madd lut<14>
(Madd_y_addsub0007 _Madd _lut<14>)

MUXCY:§—>0 1 0.464 0.000 Madd_y_addsub0007_Madd _cy<14>
(Madd_y_addsub0007_Madd_cy<14>)

XORCY:CI—>0 2 0.804 0.526 Madd_y_addsub0007_Madd_xor<15>
(y_addsub0007 <15>)

LUT3:11—>0 1 0.704 0.595 Madd yCl141 (Madd yCl4)
LUT4:10—>0 1 0.704 0.000 Madd y Madd lut<16>

(Madd y Madd lut<16>)

MUXCY:S—>0 1 0.464 0.000 Madd y Madd cy<16>

(Madd y Madd cy<16>)

MUXCY:CI—>O 1 0.059 0.000 Madd y Madd cy<17> (Madd_y Madd cy<17>)
MUXCY:CI—>O 1 0.059 0.000 Madd y Madd cy<18> (Madd_y Madd cy<18>)
MUXCY:CI->0 1 0.059 0.000 Madd y Madd cy<19> (Madd_y Madd cy<19>)
MUXCY:CI—>O 1 0.059 0.000 Madd_y Madd_cy<20> (Madd y Madd cy<20>)
MUXCY:CI—>O 1 0.059 0.000 Madd_y_ Madd _cy<21> (Madd_y_ Madd cy<21>)
MUXCY: CI—>0 0 0.059 0.000 Madd_y_Madd cy<22> (Madd_y_ Madd cy<22>)
XORCY:CI—>O 1 0.804 0.420 Madd_y_Madd_xor<23> (y_23_OBUF)
OBUF:1->0 3.272 y_23_OBUF (y<23>)

Total 28.509ns (21.941ns logic, 6.568ns route)

(77.0% logic, 23.0% route)

Total REAL time to Xst completion: 10.00 secs

Total CPU time to Xst completion: 10.03 secs
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—>

Total memory usage is 163628 kilobytes
Number of errors 0 (0 filtered)
Number of warnings 0 ( 0 filtered)
Number of infos : 11 ( 0 filtered)
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F.4 Synthesis Report for version 4

Release 10.1 — xst K.31 (nt)

Copyright (c) 1995—2008 Xilinx, Inc. All rights reserved.
——> Parameter TMPDIR set to D:/Master/Latex/my fir version_ 4/my fir/
xst/projnav .tmp

Total REAL time to Xst completion: 0.00 secs

Total CPU time to Xst completion: 0.16 secs

——> Parameter xsthdpdir set to D:/Master/Latex/my fir version_ 4/
my fir/xst

Total REAL time to Xst completion: 0.00 secs

Total CPU time to Xst completion: 0.16 secs

—> Reading design: my_fir.prj

TABLE OF CONTENTS

1) Synthesis Options Summary

2) HDL Compilation

3) Design Hierarchy Analysis

4) HDL Analysis

5) HDL Synthesis

5.1) HDL Synthesis Report

6) Advanced HDL Synthesis

6.1) Advanced HDL Synthesis Report

7) Low Level Synthesis

8) Partition Report

9) Final Report

9.1) Device utilization summary

9.2) Partition Resource Summary

9.3) TIMING REPORT

* Synthesis Options Summary =*

——— Source Parameters

Input File Name : "my_fir.prj"
Input Format : mixed

Ignore Synthesis Constraint File : NO
———— Target Parameters

Output File Name : "my fir"
Output Format : NGC

Target Device : xc3s500e—4—fg320
———— Source Options

Top Module Name : my fir
Automatic FSM Extraction : YES
FSM Encoding Algorithm : Auto
Safe Implementation : No

FSM Style : lut

RAM Extraction : Yes

RAM Style : Auto

ROM Extraction : Yes

Mux Style : Auto

Decoder Extraction : YES

Priority Encoder Extraction : YES
Shift Register Extraction : YES
Logical Shifter Extraction : YES
XOR Collapsing : YES

ROM Style : Auto

Mux Extraction : YES

Resource Sharing : YES
Asynchronous To Synchronous : NO
Multiplier Style : auto

Automatic Register Balancing : No
———— Target Options

Add IO Buffers : YES

Global Maximum Fanout : 500

Add Generic Clock Buffer (BUFG) : 24
Register Duplication : YES

Slice Packing : YES

Optimize Instantiated Primitives : NO
Use Clock Enable : Yes

Use Synchronous Set : Yes

Use Synchronous Reset : Yes

Pack IO Registers into IOBs : auto
Equivalent register Removal : YES
———— General Options

Optimization Goal : Speed
Optimization Effort : 1

Library Search Order : my fir.lso
Keep Hierarchy : NO

Netlist Hierarchy : as_optimized
RTL Output : Yes

Global Optimization : AllClockNets
Read Cores : YES

Write Timing Constraints : NO
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Cross Clock Analysis NO
Hierarchy Separator : /
Bus Delimiter <>

Case Specifier maintain
Slice Utilization Ratio
BRAM Utilization Ratio
Verilog 2001 YES

Auto BRAM Packing NO
Slice Utilization Ratio Delta

100
100

* HDL Compilation x*

Compiling vhdl file

my package.vhd"

Compiling vhdl file
my functions.vhd"
Architecture my functions
Compiling vhdl file
my fir.vhd" in Library work.
Entity <my_fir> compiled.

Entity <my_fir> (Architecture

is

is

<rtl>) compiled.

"D:/ Master/Latex/my fir version 4/my fir/
in Library work. - N N
Architecture my package of Entity my package up to date.

fi "D:/Master/Latex/my fir version 4/my fir/
in Library work. - N N
of Entity my functions
"D:/ Master/Latex/my fir version 4/my fir/

up to date.

* Design Hierarchy Analysis =x

Analyzing hierarchy for
(architecture <rtl >).

entity <my_fir> in

library <work>

* HDL Analysis =x

Analyzing Entity <my fir> in
Entity <my fir> analyzed.

library <work> (Architecture <rtl >).
Unit <my fir> generated.

* HDL Synthesis =*

Performing bidirectional port
Synthesizing Unit <my fir>.

Related source file is

my _ fir.vhd".

Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal
Found 24—bit adder for signal

resolution ...

<y>.

<coeff0$add0000> created at
<coeff1$add0000> created at
<coeffl1$addsub0000> created
<coeffl103add0000> created at
<coeff2$add0000> created at
<coeff28addsub0000> created
<coeff28addsub0001> created
<coeff28addsub0002> created
<coeff28addsub0003> created
<coeff28addsub0004> created
<coeff28addsub0005> created
<coeff28addsub0006 > created
<coeff28addsub0007> created
<coeff3$add0000> created at
<coeff3%addsub0000> created
<coeff3%$addsub0001> created
<coeff3%addsub0002> created
<coeff3%addsub0003> created
<coeff3%$addsub0004> created
<coeff3%addsub0005> created
<coeff3%addsub0006 > created
<coeff4$add0000> created at
<coeff4$addsub0000> created
<coeff4$addsub0001> created
<coeff4$addsub0002> created
<coeff4$addsub0003> created
<coeff5$add0000> created at
<coeff58addsub0000> created
<coeff58addsub0001> created
<coeff58addsub0002> created
<coeff58addsub0003> created
<coeff6$add0000> created at
<coeff68addsub0000> created
<coeff68addsub0001> created
<coeff68addsub0002> created
<coeff68addsub0003> created
<coeff7$add0000> created at
<coeff78addsub0000> created
<coeff78addsub0001> created
<coeff7$addsub0002> created
<coeff7$addsub0003> created
<coeff78addsub0004> created
<coeff78addsub0005> created
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line 58.
line 76.
at line
line 34
line 109
at line
at line
at line
at line
at line
at line
at line
at line
line 144
at line
at line
at line
at line
at line
at line
at line
line 174
at line
at line
at line
at line
line 202
at line
at line
at line
at line
line 230
at line
at line
at line
at line
line 264
at line
at line
at line
at line
at line
at line

76.
0.

109.
109.
109.
109.
109.
109.
109.
109.

144.
144.
144.
144.
144.
144.
144.

174.
174.
174.
174.

202.
202.
202.
202.

230.
230.
230.
230.

264.
264.
264.
264.
264.
264.



Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24-—bit
Found 24-—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Found 24—bit
Summary :

adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder
adder

inferred 88 D-type
inferred 65 Adder/Subtractor(s).
Unit <my_fir> synthesized.

for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for
for

signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal
signal

<coeff7$addsub0006 > created at

<coeff8$add0000> created at
<coeff83addsub0000 >
<coeff83addsub0001 >
<coeff83addsub0002>
<coeff83addsub0003 >
<coeff83addsub0004 >
<coeff83addsub0005 >
<coeff83addsub0006 >
<coeff83addsub0007 >
<coeff9$add0000> created at

created at
created at
created at
created at
created at
created at
created at
created at

<coeff9$addsub0000> created at

<y$addsub0000>
<y$addsub0001 >
<y$addsub0002>
<y$addsub0003>
<y$addsub0004 >
<y$addsub0005>
<y$addsub0006 >
<y$addsub0007>
<y$addsub0008>

flip—flop (s).

created
created
created
created
created
created
created
created
created

at
at
at
at
at
at
at
at
at

line 264.
line 300.
line 300.
line 300.
line 300.
line 300.
line 300.
line 300.
line 300.
line 300.
line 321.

line 321.

line 86.

line 86.

line 86.

line 86.

line 86.

line 86.

line 86.

line 86.

line 86.

HDL Synthesis

24—bit adder

# Registers

1-bit

register

Report
Macro Statistics
# Adders/Subtractors

65
88

88

65

#* Advanced HDL Synthesis =

Loading device for
in environment C:\ Xilinx\10.1\ISE.

application Rf_ Device from file

’3s500e .nph”’

Advanced HDL Synthesis Report
Macro Statistics

# Adders/Subtractors 65
24—bit adder 65

# Registers 88

Flip—Flops 88

* Low Level Synthesis =*

Optimizing unit <my fir>
Mapping all
Building and optimizing final

Found area constraint
ratio is 11.

FlipFlop reg<l> 7 has
FlipFlop reg<2>:1 has
FlipFlop reg<2>_2 has
FlipFlop reg<2>_3 has
FlipFlop reg<2>_4 has
FlipFlop reg<2>_5 has
FlipFlop reg<2>_6 has
FlipFlop reg<2>_7 has
FlipFlop reg<3>_1 has
FlipFlop reg<3>_2 has
FlipFlop reg<3>_4 has
FlipFlop reg<3>_5 has
FlipFlop reg<3>_ 6 has
FlipFlop reg<3>_7 has
FlipFlop reg<4>_ 7 has
FlipFlop reg<5>_7 has
FlipFlop reg<6>_7 has
FlipFlop reg<7>_1 has
FlipFlop reg<7>_2 has
FlipFlop reg<7>_3 has
FlipFlop reg<7>_4 has
FlipFlop reg<7>_5 has
FlipFlop reg<7>_6 has
FlipFlop reg<7>_7 has
FlipFlop reg<8>_1 has
FlipFlop reg<8>_2 has
FlipFlop reg<8>_3 has
FlipFlop reg<8>_4 has
FlipFlop reg<8>_ 5 has
FlipFlop reg<8>_ 6 has

equations ...

ratio of 100 (+

netlist

been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
been replicated 1 time(s)
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FlipFlop reg<8>_ 7 has been replicated 1 time(s)
FlipFlop reg<9> 7 has been replicated 1 time(s)
Final Macro Processing

Processing Unit <my fir>

Found 4—bit shift register for sigmnal <reg<7>_0>.
Unit <my_fir> processed.

Final Register Report
Macro Statistics

# Registers : 116
Flip—Flops : 116

# Shift Registers : 1
4—bit shift register : 1

* Partition Report x*

Partition Implementation Status

No Partitions were found in this design.

* Final Report =

Final Results

RTL Top Level Output File Name : my_fir.ngr
Top Level Output File Name : my_fir

Output Format : NGC

Optimization Goal : Speed

Keep Hierarchy : NO

Design Statistics

# 10s : 34

Cell Usage
# BELS : 1564
# GND : 1

# LUTL : 11
# LUT2 : 104

# LUT3 : 255

# LUT4 : 357

# MULT_AND : 68

# MUXCY : 397

# MUXF5 : 22

# VCC : 1

XORCY : 348
FlipFlops/Latches : 121
FD : 1

FDC : 120

Shift Registers : 1
SRL16 : 1

Clock Buffers : 1
BUFGP : 1

I0 Buffers : 33

IBUF : 9

OBUF : 24

AR

Device utilization summary:

Selected Device : 3s500efg320—4

Number of Slices: 418 out of 4656 8%

Number of Slice Flip Flops: 121 out of 9312 1%
Number of 4 input LUTs: 728 out of 9312 7%
Number used as logic: 727

Number used as Shift registers: 1

Number of IOs: 34

Number of bonded IOBs: 34 out of 232 14%
Number of GCLKs: 1 out of 24 4%

Partition Resource Summary:

No Partitions were found in this design.

TIMING REPORT

NOTE: THESE TIMING NUMBERS ARE ONLY A SYNTHESIS ESTIMATE.

FOR ACCURATE TIMING INFORMATION PLEASE REFER TO THE TRACE REPORT
GENERATED AFTER PLACE-and—ROUTE.

Clock Information:

|
f

Clock Signal | Clock buffer (FF name) | Load |
|
t

clk | BUFGP | 122 |

| I

T
Asynchronous Control Signals Information:
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| I

t
Control Signal | Buffer (FF name) | Load |
1

! ‘
rst | IBUF | 120 |

y '

t t
Timing Summary:

Speed Grade: —4

Minimum period: 4.014ns (Maximum Frequency: 249.128MHz)
Minimum input arrival time before clock: 1.946ns

Maximum output required time after clock: 49.355ns

Maximum combinational path delay: No path found

Timing Detail:

All values displayed in nanoseconds (ns)

Timing constraint: Default period analysis for Clock ’clk’
Clock period: 4.014ns (frequency: 249.128MHz)
Total number of paths / destination ports: 114 / 113

Delay: 4.014ns (Levels of Logic = 0)

Source: Mshreg_reg_7 (FF)

Destination: reg_7 (FF)

Source Clock: clk rising

Destination Clock: clk rising

Data Path: Mshreg_reg_7 to reg_7

Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)

SRL16:CLK—>Q 1 3.706 0.000 Mshreg reg 7 (Mshreg reg 7)
FD:D 0.308 reg 7

Total 4.014ns (4.014ns logic, 0.000ns route)
(100.0% logic, 0.0% route)

Timing constraint: Default OFFSET IN BEFORE for Clock ’clk’
Total number of paths / destination ports: 8 / 8

Offset: 1.946ns (Levels of Logic = 1)

Source: x<0> (PAD)

Destination: reg<0>_0 (FF)

Destination Clock: clk rising

Data Path: x<0> to reg<0>_0

Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)

IBUF:1—>0 1 1.218 0.420 x_0_IBUF (x_ 0 IBUF)
FDC:D 0.308 reg<0>_0

Total 1.946ns (1.526ns logic, 0.420ns route)
(78.4% logic, 21.6% route)

Timing constraint: Default OFFSET OUT AFTER for Clock ’clk’
Total number of paths / destination ports: 297493869922 / 24

Offset: 49.355ns (Levels of Logic = 46)

Source: reg<2>_3 (FF)

Destination: y<23> (PAD)

Source Clock: clk rising

Data Path: reg<2>_3 to y<23>

Gate Net

Cell:in—>out fanout Delay Delay Logical Name (Net Name)

FDC:C—>Q 27 0.591 1.296 reg<2> 3 (reg<2>_3)

LUT4:12—>0 2 0.704 0.622 Madd_coeff2 addsub0001 Madd_ cy<3>11
(Madd _coeff2 addsub0001 Madd cy<3>)

LUT4:10—>0 2 0.704 0.622 Madd_coeff2 addsub0001 Madd cy<4>11
(Madd _coeff2 addsub0001 Madd cy<4>)

LUT4:10—>0 2 0.704 0.622 Madd_coeff2 addsub0001 Madd cy<5>11
(Madd _coeff2 addsub0001 Madd cy<5>)

LUT4:10—>0 2 0.704 0.622 Madd_coeff2 addsub0001 Madd cy<6>11
(Madd _coeff2 addsub0001 Madd cy<6>)

LUT4:10—>0 2 0.704 0.622 Madd_coeff2 addsub0001 _Madd _cy<7>11
(Madd_coeff2_addsub0001_Madd _cy <7>)

LUT4:10—>0 4 0.704 0.622 Madd_coeff2 addsub0001 _Madd _cy<8>11
(Madd_coeff2 _addsub0001_Madd _cy <8>)

LUT3:12—>0 4 0.704 0.762 Madd_coeff2_addsub0001 _Madd _cy<9>11
(Madd _coeff2_addsub0001_Madd _cy <9>)

LUT4:10—>0 6 0.704 0.748 Madd_coeff2_addsub0001 _Madd_cy<11>11
(Madd_coeff2 _addsub0001_Madd_cy<11>)

LUT4:1T—>0 1 0.704 0.424 Madd_coeff2_addsub0003_Madd _lut<12>_ SW1
(N368)

LUT4:13—>0 1 0.704 0.000 Madd_coeff2 addsub0003_ Madd lut<12>
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(Madd coeff2 addsub0003 Madd lut<12>)

MUXCY:S—>0 1 0.464 0.000 Madd_coeff2 addsub0003_ Madd cy<12>
(Madd _coeff2 addsub0003 Madd cy<12>)

XORCY:CI—>0O 2 0.804 0.482 Madd _coeff2 addsub0003_ Madd xor<13>
(coeff2 _addsub0003 <13>)

LUT3:12—>0 1 0.704 0.595 Madd_coeff2 addsub0005C21
(Madd _coeff2_addsub0005C2)

LUT4:10—>0 1 0.704 0.000 Madd_coeff2_addsub0005_Madd _lut<l14>
(Madd _coeff2 _addsub0005_Madd_lut <14>)

XORCY:LI—>0 2 0.527 0.482 Madd_coeff2_addsub0005_Madd_xor<14>
(coeff2 _addsub0005 <14>)

LUT3:12—>0 1 0.704 0.595 Madd_coeff2_ _addsub0007C11
(Madd _coeff2_addsub0007C1)

LUT4:10—>0 1 0.704 0.000 Madd_coeff2 addsub0007_ Madd lut<15>
(Madd coeff2 addsub0007 Madd lut<15>)

XORCY:LI—>0O 2 0.527 0.622 Madd _coeff2 addsub0007_ Madd xor<15>
(coeff2 addsub0007 <15>)

LUT3:10—>0 1 0.704 0.499 Madd_ y addsub0001R141

(Madd _y addsub0001R14)

LUT3:11-—>0 1 0.704 0.000 Madd_y_addsub0001_ Madd_ lut<15>
(Madd _y addsub0001 Madd lut<15>)

MUXCY:S—>0 1 0.464 0.000 Madd_y_addsub0001_Madd _cy<15>
(Madd_y_addsub0001_Madd_cy<15>)

XORCY:CI—>0 1 0.804 0.595 Madd y_addsub0001_Madd_xor<16>
(y_addsub0001 <16>)

LUT2:10—>0 1 0.704 0.000 Madd_y_addsub0002_lut<16>
(Madd_y_addsub0002 _lut<16>)

MUXCY:S—>0 1 0.464 0.000 Madd_y_addsub0002_cy<16>
(Madd_y_addsub0002_cy<16>)

XORCY:CI->0 2 0.804 0.526 Madd_y_addsub0002_xor<17>
(Madd_y addsub0003C16_mand)

LUT4:11-—>0 1 0.704 0.000 Madd_y_ addsub0003_ Madd_ lut<17>
(Madd _y addsub0003 Madd lut<17>)

MUXCY:5—>0 1 0.464 0.000 Madd_y_addsub0003_ Madd cy<17>
(Madd_y_addsub0003_Madd_cy<17>)

XORCY:CI—>0O 2 0.804 0.526 Madd_y_ addsub0003_ Madd_xor<18>
(Madd_y_ addsub0004C17_mand)

LUT4:11->0 1 0.704 0.000 Madd_y_addsub0004 Madd_ lut<18>
(Madd _y addsub0004 Madd lut<18>)

MUXCY:S—>0 1 0.464 0.000 Madd_y_addsub0004_Madd cy<18>
(Madd_y_addsub0004_Madd_cy<18>)

XORCY:CI—>0 2 0.804 0.526 Madd y_addsub0004_Madd_xor<19>
(Madd_y_addsub0005C18 _mand)

LUT4:11-50 1 0.704 0.000 Madd_y_addsub0005_Madd _lut<19>
(Madd_y_addsub0005_Madd _lut<19>)

MUXCY:S-50 1 0.464°0.000 Madd_y_addsub0005_Madd _cy<19>
(Madd_y_addsub0005_Madd_cy<19>)

XORCY:CI-—>0O 1 0.804 0.595 Madd_y_ addsub0005_ Madd_xor<20>
(y_addsub0005<20>)

LUT2:10—>0 1 0.704 0.000 Madd y addsub0006 lut<20>
(Madd_y_addsub0006 _lut<20>)

MUXCY:S—>0 1 0.464 0.000 Madd y addsub0006 cy<20>
(Madd_y addsub0006_cy<20>)

XORCY:CI—>0O 2 0.804 0.526 Madd_y_ addsub0006 xor<21>
(y_addsub0006 <21>)

LUT3:11-—>0 1 0.704 0.595 Madd_y_ addsub0007C201
(Madd_y_addsub0007C20)

LUT4:10-50 1 0.704 0.000 Madd_y_addsub0007 _Madd _lut<22>
(Madd_y_addsub0007 _Madd _lut<22>)

MUXCY:S-50 0 0.4640.000 Madd_y_addsub0007_Madd _cy<22>
(Madd_y_addsub0007_Madd_cy<22>)

XORCY:CI=>0 1 0.804 0.595 Madd _y_addsub0007_Madd_xor<23>
(y_addsub0007 <23>)

LUT2:10—>0 0 0.704 0.000 Madd_y_addsub0008 _lut<23>
(Madd_y_addsub0008 _lut<23>)

XORCY:LI-—>0 1 0.527 0.499 Madd_y_ addsub0008_ xor<23>
(y_addsub0008 <23>)

LUT3:11—>0 0 0.704 0.000 Madd y Madd lut<23>

(Madd _y Madd lut<23>)

XORCY: LI—>0 17 0.527 0.420 Madd y Madd xor<23> (y 23 OBUF)
OBUF:1—>0 3.272 y 23 OBUF (y<23>)

Total 49.355ns (33.715ns logic, 15.640ns route)
(68.3% logic, 31.7% route)

Total REAL time to Xst completion: 27.00 secs
Total CPU time to Xst completion: 27.44 secs
—

Total memory usage is 178540 kilobytes
Number of errors : 0 ( 0 filtered)

Number of warnings : 0 ( 0 filtered)

Number of infos : 0 ( 0 filtered)
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