
June 2007
Peter Svensson, IET

Master of Science in Electronics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Experience with the Construction and
Use of Polyphonic Test Signals based
on Single Monophonic Recordings for
Localisation Listening Tests

Torbjørn Ursin

Problem Description

Localising single instruments in the orchestra is normally an easy task. Even when we are
listening to ensemble recordings from the concert hall the localisation of instruments and
instrument families are still possible depending on the recording technique and listening facilities.
We have reason to believe that spectral variations among instruments form major cues for
awareness and localisation.

The present work is dedicated to the development of methods for laboratory tests of single source
localisation based on highly controlled musical ensemble signals. The development and
construction of polyphonic test signals based on one or more anechoic mono recordings is an
essential part of the project.

Assignment given: 15. January 2007
Supervisor: Peter Svensson, IET

Abstract

The paper presents experiments made in search of answers to two principal
questions:

1. Can one single musician be made to sound like several musicians play-
ing together?

2. In a music ensemble, where one of its constituents has a distinctive
spectrum; how do the deviant spectral components influence a lis-
tener’s ability of localising the source?

In the first part of the experiment, a flute ensemble was attempted sim-
ulated. Based on a recoring of one flute playing a short piece, the flute
was multiplied into a quintet. On the way, several properties were manipu-
lated in an attempt to make the quintet sound like a real quintet; timing,
spectrum, intensity, and phase.

In the second part, one flute in a quintet was subject to a spectral tilt, i.e.
high frequency components were boosted while low frequency components
were diminished.

A test panel was engaged to help evaluating the questions. First, the panel
compared the simulated quintet to a reference quintet, trying to identify the
simulation from the reference. Subsequently, listening to a reference quintet,
the panel tried to localise the one flute which had undergone a spectral tilt.
A musical piece was played 5 times; first, one of the flutes was moderately
tilted, then the tilt’s magnitude was increased for every run until eventually
being noticeable. For each run, the test panel was asked to indicate the
tilted flute, or a random flute if none appeared tilted to them.

The majority of the test panel did not manage to tell the simulated quintet
from the reference. However, the reference may have been imperfect, and
the simulation process somewhat affects sound quality. When it comes to
localisation, a rather excessive tilt was necessary for the test panel to be
able to localise it - even though more moderate tilts were clearly audible.

I

II

CONTENTS CONTENTS

Contents

1 Introduction 1

2 Acknowledgements 3

3 Theory 5

3.1 Binaural hearing . 5

3.1.1 Time difference . 5

3.1.2 Intensity difference 7

3.1.3 Spectral analysis . 8

3.2 Source position simulated by loudspeakers 10

4 Method 13

4.1 Simulation experiments . 13

4.1.1 Time delaying . 13

4.1.2 Spectral manipulation 15

4.1.3 Intensity variation 16

4.1.4 Phase shift . 17

4.1.5 Parameters . 18

4.2 Spectral tilt . 21

4.3 Listening tests . 23

4.3.1 Listening test 1 - simulated ensemble 23

4.3.2 Listening test 2 - localisation experiment 24

III

CONTENTS CONTENTS

5 Results 27

5.1 Listening test 1 . 27

5.2 Listening test 2 . 28

6 Discussion 31

6.1 Listening test 1 . 31

6.1.1 Coincidence? . 31

6.1.2 Inadequate reference? 32

6.1.3 Summary . 32

6.2 Listening test 2 . 34

7 Conclusion 37

7.1 Further work . 37

A Enclosed files 41

B Source code for the ensemble simulation 43

C Source code for the graphic equaliser 56

IV

1 INTRODUCTION

1 Introduction

The project covered in this report consists, roughly, of two main parts:

1. An investigation of the human ability to localise one spectrally distic-
tive instrument in an ensemble of several instruments. This task aimed
to set up a group of musicians, all equipped with the same instrument,
and investigate how much of a spectral manipulation must be made
to one instrument for a group of test persons to be able to localise
it. Note how the term ”localise” differs from the related term ”detect”
in this context; detecting means realising that there is a difference,
localisation also implies determining the source of the aberration.

2. The simulation of a music ensemble based on one single instrument.
This effort was initially meant as a test tool for the localisation ex-
periment, but as time went by it grew to become a project on its
own. The idea was to simplify the production of a music ensemble by
recording one single instrument and then copying it into an arbitraty
number of instruments - in a way that made it sound like a human
ensemble. Eventually, a flautist was engaged to make the reference
for the localisation, and the simulation received an evaluation on its
own - against a reference made by the same flautist.

Neither topic has previously undergone much research. Synthetisation of
musical instruments has been subject to extended research for decades, but
multiplication of a real instrument has been shown little interest to date.
The chorus effect, known from synthesisers, aims to perform just this by
adding some time delays and pitch variance, but is usually employed to
richen the sound, not to make a credible ensemble effect. Daniel Kahlin
and Sten Ternström at KTH, Stockholm, experimented on making a similar
multiplication of a singing voice to produce a choir [1].

Research on spectral characteristics normally focuses on localisation in the
vertical plane, which in human hearing is based on spectral analysis (section
3.1.3). Extensive research in this field has been made by e.g. Jens Blauert
[2] and Dale Purves et al. [3]. However, the impact of a spectral distinctivity
in horizontal localisation has been paid little attention.

Basically, this report will aim to answer two questions:

1

1 INTRODUCTION

1. Can one single music instrument be made to sound like a whole group
in a way that sounds natural?

2. In a musical ensemble consisting of several similar instruments, of
which one has undergone a spectral tilt, how strong a tilt is necessary
for a listener to be able to localise it?

The report is structured as a standard report. The theory section provides
some background to binaural hearing and spatial positioning through loud-
speakers, a reader already familiar with these subjects may skip to section
4. The ensemble simulation and the listening tests are described, followed
by results and some interpretations of the results.

2

2 ACKNOWLEDGEMENTS

2 Acknowledgements

This effort was carried out in the spring of 2007 at the Institute of Elec-
tronics and Telecommunication at the Norwegian University of Science and
Technology, as part of a master’s degree in acoustics. It was supervised by
assistant professor Jan Tro (main supervisor) and professor Peter Svensson,
both employed at the institute.

I would like to express my gratitide to the people who participated in the
project, whatever their degree of participation. First of all, thanks to the
voluntary test subjects who spent their time on my project without any
reward but my gratitude. Further PhD student Audun Solvang and master
student Espen Moberg for their programming contributions, as well as their
assistance at the laboratory, associate professor and professional flautist
Trine Karlsen, who kindly allowed me to make use of her excellent abilities
as a flute player, and of course the supervisors Jan Tro and Peter Svensson
who offered assistance and encouragement throughout the project, all made
valuable contributions. Their help has been essential to the completion of
this report.

3

2 ACKNOWLEDGEMENTS

4

3 THEORY

3 Theory

3.1 Binaural hearing

Human ability of localising a sound is mainly based upon the fact that we
have two ears, situated in a certain distance and with a muffling obstacle -
the head - between them. This provides breeding ground for two methods
of localisation in the horizontal plane: Analysis of time differences (TD)
and intensity differences (ID) between the ears. As a third method,
spectral analysis is used for localisation in the vertical plane.

3.1.1 Time difference

Due to the longer travel distance, a sound wave coming from the side will
arrive slightly later at one ear than the other. The difference is little; given
an air speed of 340 m/s, a person with a head diameter of 20 cm - which is
quite large - listening to a sound source directly to the side, experiences an
interaural difference of less than 0.6 ms. If the sound wave comes from any
other angle, the difference is naturally even smaller. Tests show that hu-
mans, under certain circumstances, are able to detect interaural differences
of a mere 10 µs. In terms of localisation, this corresponds to a remarkable
resolution of 1◦[3].

TD is used to localise low frequency sounds. For frequencies below 3 kHz,
signals transmitted from the ear follow the incoming sound wave’s phase
(oscillations of more than 3 kHz are just too rapid to follow1)[3]. Nerve
impulses are sent towards the medial superior olive (MSO), a part of the
brain specialised on translating interaural time differences into localisation
data. The MSO contains neurons with bipolar dendrites connected to both
cochlei, as shown in figure 1.

The detector neurons in the MSO may be considered ”AND”ports, respond-
ing most strongly when they receive input from both cochlei simultaneously.
Because the MSO extends laterally, each cell is positioned in a certain dis-
tance from each cochlea. It takes some time travelling along the neural
pathway between the cochlea and the MSO; hence if a nerve signal from

1In terms of localisation of sounds, barn owls are by far our superiours. Their ears
transmit phase locked signals up to 9 kHz.

5

3.1 Binaural hearing 3 THEORY
 Short Contents | Full Contents Other books @ NCBI

Navigation

About this book
II. Sensation and
Sensory
Processing
13. The Auditory
System
Sound
The Audible
Spectrum
A Synopsis of
Auditory
Function
The External Ear
The Middle Ear
The Inner Ear
Hair Cells and the
Mechanoelectrical
Transduction of
Sound Waves
Two Kinds of
Hair Cells in the
Cochlea
Tuning and
Timing in the
Auditory Nerve
How Information
from the Cochlea
Reaches Targets
in the Brainstem
Integrating
Information from
the Two Ears
Monaural
Pathways from
the Cochlear
Nucleus to the
Lateral
Lemniscus
Integration in the
Inferior
Colliculus
The Auditory
Thalamus
The Auditory
Cortex
Summary
Additional
Reading

Search

 This book All
books

 PubMed

Neuroscience II. Sensation and Sensory Processing 13. The Auditory System Integrating Information from the Two Ears

Figure 13.12. Diagram illustrating how the MSO computes the location of a sound by interaural time
differences. A given MSO neuron responds most strongly when the two inputs arrive simultaneously, as occurs
when the contralateral and ipsilateral inputs precisely compensate (via their different lengths) for differences in
the time of arrival of a sound at the two ears. The systematic (and inverse) variation in the delay lengths of the
two inputs creates a map of sound location: In this model, E would be most sensitive to sounds located to the
left, and A to sounds from the right; C would respond best to sounds coming from directly in front of the
listener. (After Jeffress, 1948.)

© 2001 by Sinauer Associates, Inc.

Figure 1: Overview of the TD based localisation mechanism (from [3])

one ear gets a head start on the signal from the other ear, the two signals
will meet not in the middle, but in a more periphere neuron. Thus, each
neuron responds to sounds arriving with a certain interaural time difference,
i.e. from a certain horizontal position. This way, the ingenious circuitry in
the MSO accomplishes a resolution of 10 µs, even though its neural compo-
nents operate in the millisecond range.

Although the transmitted nerve signals are phase-locked up to 3 kHz, in-
teraural phase difference is used for localisation only up to 1.9 kHz, ap-
proximately. For wavelengths shorter than the distance between the ears
(ca. 18 cm, on average), phase difference is ambiguous - one can no longer
determine whether a phase difference of, say, 1/3 of a period represents a
delay of 1/3 of a period, or a lead of 2/3 of a period.

Above this critical frequency, the sound wave’s envelope is used for localisa-
tion of a sound source. Basically, interaural time differences are calculated
from when the sound wave first arrives at the two ears, rather than interau-
ral phase differences. However, the performance of this method is assumed

6

3 THEORY 3.1 Binaural hearing

to be limited compared to phase- and intensity-based methods[4].

3.1.2 Intensity difference

When the frequency exceeds 3 kHz2, signals sent from the ears are no longer
phase-locked, but follow the sound wave’s envelope. Thus TD provides no
cue to localisation, and another strategy is required for localisation of sound
sources.

To sound waves of wavelengths shorter than the diameter of the head, the
head functions as an obstacle. Hence a high-frequency sound coming from
the side is muffled before reaching the opposite ear. The resulting intensity
difference (ID) is used as a clue to determine the direction of an incoming
sound wave. For the above-mentioned, rather large-headed person with a
head diameter of 20 cm, ID occures starting at approximately 1.7 kHz. A
person with a more average-size head (18 cm) experiences ID from about
1.9 kHz3.

Intensity difference is sensored in the lateral superiour olives (LSO) in coop-
eration with the medial nucleus of the trapezoid bodies (MNTB), see figure
2. Each LSO - there are two of them, one on each side - receives input
from both cochlei, and responds corresponding to its stimulus. However,
input from the LSO’s contralateral cochlea is inverted on its way through
the MNTB, and counteracts LSO activity. Hence two scenarios:

1. An incoming sound from the side stimulates both the LSO and the

2This depends not on the size of the head, but the hair cells in the cochlea.
3While humans use interaural intensity differences to localise high frequency sounds

in the horizontal plane, barn owls use them in the vertical plane. This is possible for
several reasons:

� Their ability to follow the phase of sound waves up to 9 kHz enables them to use
TD for localisation even at high frequencies.

� One of their ear canals points upwards, the other one downwards. This asymetry
provides a cue to vertical interaural differences not available to symmetrically
positioned (e.g. human) ears.

From an evolutionary point of view, this seems reasonable. A high-resolution vertical
localisation system is crucial to barn owls, because they navigate in all three dimensions
while flying and hunting from above. Humans traditionally stay on the ground, along
with other humans, animals and almost every other sound-making item of interest, and
are better served by precise horizontal navigational abilities.[5]

7

3.1 Binaural hearing 3 THEORY

MNTB. Because of the head’s muffling effect, the MNTB receives less
stimulus than the LSO, resulting in a net excitation of the LSO. On
the opposite side, the LSO is throttled by the MNTB input.

2. An incoming sound wave in the midplane provides equal stimulus to
the LSO and the MNTB, thus LSO activity is muted.

 Short Contents | Full Contents Other books @ NCBI

Navigation

About this book
II. Sensation and
Sensory
Processing
13. The Auditory
System
Sound
The Audible
Spectrum
A Synopsis of
Auditory
Function
The External Ear
The Middle Ear
The Inner Ear
Hair Cells and the
Mechanoelectrical
Transduction of
Sound Waves
Two Kinds of
Hair Cells in the
Cochlea
Tuning and
Timing in the
Auditory Nerve
How Information
from the Cochlea
Reaches Targets
in the Brainstem
Integrating
Information from
the Two Ears
Monaural
Pathways from
the Cochlear
Nucleus to the
Lateral
Lemniscus
Integration in the
Inferior
Colliculus
The Auditory
Thalamus
The Auditory
Cortex
Summary
Additional
Reading

Search

 This book All
books

 PubMed

Neuroscience II. Sensation and Sensory Processing 13. The Auditory System Integrating Information from the Two Ears

Figure 13.13. Lateral superior olive neurons encode sound location through interaural intensity differences.
(A) LSO neurons receive direct excitation from the ipsilateral cochlear nucleus; input from the contralateral
cochlear nucleus is relayed via inhibitory interneurons in the MNTB. (B) This arrangement of excitation-
inhibition makes LSO neurons fire most strongly in response to sounds arising directly lateral to the listener on
the same side as the LSO, because excitation from the ipsilateral input will be great and inhibition from the
contralateral input will be small. In contrast, sounds arising from in front of the listener, or from the opposite
side, will silence the LSO output, because excitation from the ipsilateral input will be minimal, but inhibition
driven by the contralateral input will be great. Note that LSOs are paired and bilaterally symmetrical; each LSO
only encodes the location of sounds arising on the same side of the body as its location.

© 2001 by Sinauer Associates, Inc.

Figure 2: Overview of the ID based localisation mechanism (from [3])

For any perceived sound, only one LSO transmits information on the sound
source’s location. Furthermore, the source’s angular position can be derived
from the magnitude of the output.

Interaural ID increases as frequency increases, because the head becomes
a more and more prominent obstacle as wavelengths become shorter. Just
above the critical frequency at about 1.9 kHz, differences are small. For
higher frequencies, differences of 10-20 dB between the ears may occur[6].

3.1.3 Spectral analysis

Neither TD nor ID provides any information on the elevation of a sound
source. Because the ears are identical (though mirrored), both in position

8

3 THEORY 3.1 Binaural hearing

and shape, no time or intensity difference can be retraced to the vertical
position of the source. Nevertheless, a sound’s origin can be told from its
spectral content, although the vertical resolution is lower than the horizontal
(9◦at best [7]). This effect is neither examined nor exploited in this project,
thus the thorough explanation is omitted. Yet it is mentioned for a complete
understanding of the localisation mechanisms of human hearing.

Tests have been made which show that sounds are perceived as coming from
the front, above or behind depending on which frequencies are the most
prominent. White noise, containing every frequency, sent towards a person
from every possible angle, would undergo some spectral modifications before
reaching the ear (individual differences apply)[2]:

� Sounds from the front add up with reflections from the shoulders to
gain a boost at approximately 3 kHz.

� Sounds from above receive a boost at about 8 kHz due to resonances
in the pinnae.

� Sounds from behind are amplified at about 1 kHz.

Consequently, a sound centered around i.e. 8 kHz is likely to be perceived
as coming from above. This matter has been examined in e.g. [2] and [8].

9

3.2 Source position simulated by loudspeakers 3 THEORY

3.2 Source position simulated by loudspeakers

Both time and intensity differences are easily emulated by loudspeakers.
Exploiting the two mechanisms, a variety of positions can be reproduced
even in a normal two-speaker system - sources may be put not only in the
actual positions of the loudspeakers, phantom sources may be positioned at
any position between the speakers4.

Both time and intensity differences are used in stereo recordings to po-
sition phantom sources. Time difference in recordings is produced by a
two-microphone setup, where microphones are situated within a distance of
ca. 20 cm, probably corresponding to the distance between the ears[7].

Far more commonly used are intensity differences between the speakers. ID
can be produced using two directive microphones, situated at the same spot,
but recording in different directions. The microphones are often cardioids
with an angle of 110◦between their axes[7]. ID can also be simulated by the
panning control, which exists on any mixing console. The panning control
makes the intensity of one channel stronger than the other, while preserving
the total intensity.

Intensity difference is the more common positioning method not only for
practical reasons, there are also psychoacoustical aspects which make it
favourable. At low frequencies, which is the more important range to how
sounds are perceived, the source’s position is determined by interaural time
differences. And - surprisingly - interaural time differences occur when the
two loudspeakers differ only in intensity! In short, ID at the speakers makes
TD at the ears.

This is true for wavelengths so long that the extra travel distance to the
farther ear (dt in figure 3) only makes a small phase difference between the
ears.

A sound wave sent from one speaker arrives slightly later at the farther ear,
simply because the travel distance is longer. If two speakers simultaneously

4In theory, phantom sources may be put at virtually any position - even behind the
listener - only using loudspeakers in front. Techniques have been known for decades, but
are normally practically infeasible - they often require an excessive amount of equipment
(e.g. wavefield synthesis), or require the listener to stay in one exact position at any
time(e.g. ambisonics). Spectral analysis is used to some extent (e.g. by QSound). Still,
regular two-speaker stereo is by far the most common.

10

3 THEORY 3.2 Source position simulated by loudspeakers

emit sound waves that differ in intensity, the two ears experience different
scenarios; at one ear, the large wave adds up with the smaller, delayed
wave. At the other ear, the small wave adds up with the larger, delayed
wave. Adding two waves with different amplitudes produces a resulting
wave time-shifted towards the larger of its constituents, as shown in figure
3.

11

3.2 Source position simulated by loudspeakers 3 THEORY

Delay = t1

L⋅sintdt R⋅sin t L⋅sint R⋅sin tdt 

L R

L⋅sint  R⋅sin t 

R⋅sin tdt L⋅sintdt 

Time

In
te

n
si

ty

Left ear
Right ear

Figure 3: Addition of waves with different intensities. The green, dotted
lines represent the waves arriving at the left ear, the red at the right. The
dotted lines sum up at the ears, resulting in the solid lines - which differ
only in phase.

12

4 METHOD

4 Method

4.1 Simulation experiments

A significant part of this project turns upon the simulation of an ensemble of
instruments based on the recording of one single instrument, as illustrated
in figure 4. Such a simulation can not be done just by multiplying an
instrument sample, the outcome of that would sound innatural. Basically,
each instance of the instrument must be manipulated to sound differently,
i.e. a clarinet sample must be manipulated to sound like a different clarinet
- of course while still clearly sounding like a clarinet. Several properties can
be altered in order to achieve this:

� Time delays

� Spectral profile

� Intensity profile

� Phase

A goal was defined: Based on a tune played by one single flute, make the
tune sound as if it were played by a flute quintet.5

4.1.1 Time delaying

In an ensemble of music instruments playing together, the timing between
individual instruments is never completely accurate. Inevitably, there are
small deviations in impact and release of each note. These deviations are
audible, and although a listener may not necessarily be able to point them
out directly, they do influence the musical experience.

In an electronically generated ensemble, such deviations are absent unless
intentionally added. Inaccuracy is emulated by time-shifting each tone of
each recording a random number of samples. Two methods were tried:

5Even though this was the exact goal set for this effort, all scripts produced work with
any number of any instrument through an automated process.

13

4.1 Simulation experiments 4 METHOD

Figure 4: A quintet made from one single instrument recording

1. The original recording was divided into overlapping Tukey windows,
and each window time-shifted a random number of samples. The
Tukey window was chosen for its rather flat-topped temporal profile,
see figure 5. The relation between the maximum shift and the window
overlap must be set to avoid pauses in an originally continuous tone,
i.e. the overlap must be larger than twice the maximum shift.

When correctly done, the beginning and the end of a tone are likely
to be shifted, without any gaps appearing in the tone. The tempo-
ral profile is somewhat manipulated as well, due to the summing of
overlapping windows, and the windows’ fading temporal profile.

2. Manually indicated in advance, each note was time-shifted a random
number of samples. This is a time-demanding method, but on short
pieces of low complexity it may offer a higher precision level, simplify
correlating shifts (as there is supposedly some correlation between
delays in performed music; if you’re quick on one tone you might
over-compensate to be late on the next etc.), and ensure that tones

14

4 METHOD 4.1 Simulation experiments

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Samples

A
m

pl
itu

de
Time domain

0 0.2 0.4 0.6 0.8
−150

−100

−50

0

50

100

Normalized Frequency (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Frequency domain

Figure 5: Time domain and frequency domain plot of a Tukey window

have the same length and amplitude profile even when delayed.

Alas, stocastic delays between notes led to innatural transitions, pre-
sumably particularly audibly on notes sliding away from each other.
Correlated time shifts might help on this matter, but was not imple-
mented in this project. Some experiments were made by this method,
but it was eventually abandoned.

4.1.2 Spectral manipulation

No matter how fine-tuned, each specimen of an instrument has its own
spectral profile - overtones are more or less dominant from one instrument
to another, for example. This effect was emulated by a small tilt of each
instrument recording’s spectrum.

For this simulation, the input signal was filtered by a linearly increasing or
decreasing filter, ranging from 20 Hz to half the sampling frequency of the
input signal - often 22.05 kHz. The magnitude of the fundamental, or the
most dominant overtone, was used as reference, and thus kept at its level.
Consequently, as lower frequencies were decreased, higher frequencies were
increased and vice versa.

15

4.1 Simulation experiments 4 METHOD

As the human ear works in a logarithmic fashion6, a numerically small
augmentation is relatively more significant than a large one, with respect to
its magnitude. Likewise, a certain augmentation of a low-level sound is more
significant than the (numerically) same augmentation of a high-level sound.
Hence a numerically linear increase in sound pressure level is actually heard
as a logarithmic increase.

Thus, whilst the numerically linear filter applied gives a significant in-
crease/decrease to the primary and secondary overtones, higher order over-
tones are only slightly further enhanced/diminished. In contrast, the spec-
tral tilt described in section 4.2 is logarithmic, q.v.

4.1.3 Intensity variation

When playing a woodwind or string instrument, small variations in intensity
are inevitable. Blowing with a constant pressure is unrealistic, as is stroking
the bow with constant velocity. In a music ensemble, uncorrelated variations
in each musician’s level of intensity lead to inter-instrumental fluctuations
as well, as - for instance - one instrument might dominate in one moment,
before over-compensating in the next to become slightly drowned out by
the other instruments.

For emulating this effect, each instrument was multiplied by a vector fluc-
tuating around 1. The creation of this amplitude variance vector followed
the algorithm:

1. Creation of a vector with as many elements as there are seconds in
the sound file (rounded - for instance, a 9.7 second instrument sample
implies a 10 element vector).

2. Assignment of a random value to each element, values symmetrically
distributed around 1.

3. Resampling of the vector to as many elements as the instrument signal,
with a reference point approximately every second. Reference points
are maxima, minima, or saddle points.

The result may be seen in figure 6.

6Hence the introduction of the logarithmic dB scale.

16

4 METHOD 4.1 Simulation experiments

0 5 10 15 20 25
0.6

0.8

1

1.2

1.4

Time [s]

R
el

at
iv

e
m

ag
ni

tu
de

Figure 6: Example of an amplitude variation vector, fluctuating around 1,
with a potential maximum deviation of 0.7

Subsequently, each value of the instrument sample was multiplied by its
corresponding value in the amplitude variance vector. As each instrument
sample had its own stochastic amplitude variance vector, inter-instrumental
variations were emulated as well as the fluctuations of each individual in-
strument.

4.1.4 Phase shift

If an instrument sample is multiplied, all samples are naturally correlated.
Real instruments playing together act, however, incorrelatedly, as even if
they happen to play the same frequency, they are not likely to be in phase.

The difference between correlated and incorrelated signals is noticeable. The
addition of two correlated sounds results in an increase of 6 dB, while the
addition of two incorrelated signals only leads to a 3 dB increase. Thus the
instrument samples must be decorrelated in order for the simulation to be
credible.

17

4.1 Simulation experiments 4 METHOD

Decorrelating the instruments is done by shifting their phase randomly.
The shift is done within one single period and leads to a time shift which is
inaudible, but still sufficient to decorrelate the signals. Three identical, but
decorrelated sound files are shown in figure 7.

4.1.5 Parameters

Numerous pilot tests were run, and suggested the following variable param-
eters:

1. The maximum time shift, either backwards or forwards in time, was
set to 130 milliseconds. Shifts are randomly distributed between 0
and this value. Note that the maximum delay between notes is twice
this value, as windows may slide away from each other.

2. Intensity variations were set to fluctuate between 0.3 and 1.7, relative
to the original value. These values correspond to a maximum increase
of 2.3 dB, and a maximum decrease of 5.2 dB. However, during resam-
pling of the amplitude variation function (section 4.1.3), the function
is smoothed, making realistic extreme values more moderate. Figure
6 shows an example function.

3. The maximum magnitude of the spectral tilts was set to ±3 dB, i.e.
a difference of 6 dB between low frequencies and high frequencies.

Source code is presented in appendix B.

18

4 METHOD 4.1 Simulation experiments

5 10 15 20 25 30

−0.2

−0.1

0

0.1

0.2

0.3

Time [s]

17.8 17.9 18 18.1 18.2 18.3
−0.2

−0.1

0

0.1

0.2
Zoom of shaded area above

Time [s]

18.1 18.102 18.104 18.106 18.108 18.11

−0.1

−0.05

0

0.05

0.1

Zoom of shaded area above

Time [s]

Figure 7: 3 identical sound files after decorrelation. 1st figure: The sound
files aren’t audibly changed. 2nd figure: A zoom still barely shows evi-
dence of manipulation. 3rd figure: Further zooming proves that the files are
uncorrelated.

19

4.1 Simulation experiments 4 METHOD

20

4 METHOD 4.2 Spectral tilt

4.2 Spectral tilt

The issue of the project was, principally, to investigate an instrument’s
spectral components’ influence on our ability of horizontal localisation. A
relevant scenario is an ensemble of music instruments of which the spectral
properties of one of them make it stand out from the rest. Hence a test was
designed for the investigation: In a flute quintet, one of the flutes becomes
increasingly spectrally distinctive. Engage a test panel to determine at which
level the distinctive flute can be localised. The distinction consisted of a
spectral tilt, in which high frequencies were increased and low frequencies
decreased.

The spectral tilt was achieved by the means of the graphic equaliser shown
in figure 8, and presented in appendix C. It imitates the equaliser common
in home stereo systems (although not a real-time equaliser), and works by
applying a filter to the input file according to pre-adjusted sliders. Each
slider works in a 1/1 octave band; hence the 10 sliders adjust the following
octave bands:

31.5 Hz - 63 Hz - 125 Hz - 250 Hz - 500 Hz - 1 kHz - 2 kHz - 4 kHz - 8 kHz
- 16 kHz

Five different tilts were defined as described below. Note that a ”4 dB tilt”
does not necessarily mean that high frequencies are amplified by 4 dB with
respect to low frequencies. The filters are named by the position of the slid-
ers when the filters were designed. Because the filter function is always con-
tinuous, each slider’s setting influences the adjacent octave bands. Thus all
sliders are correlated, even though each of them is individually adjustable,
and their names do not necessarily correspond to their real magnitudes.
Filter magnitudes are listed in table 1.

4 dB - Applies the filter shown in figure 8, only with a ± 4 dB slider setting
and hence a flatter filter profile.

6 dB - Applies the filter shown in figure 8, only with a ± 6 dB slider setting.

8 dB - Applies the filter shown in figure 8.

10 dB - Applies a slightly steeper version of the filter shown in figure 8.

12 dB - Applies a rather extreme version of the filter in figure 8.

21

4.2 Spectral tilt 4 METHOD

31.5 63 125 250 500 1000 2000 4000 8000 16000
−27.6 dB

 −12 dB

 0 dB

 12 dB

 27.6 dB

Figure 8: Interface of the graphical equaliser utilised to apply the spectral
tilt.

Further, the terms ”x dB tilt” refers to these filter profiles.

Note that an extensive spectral tilt actually influences the total intensity
of the sound. The defined filters increase frequencies above ca. 750 Hz,
decreasing the components below. In the case of a flute, there are almost
no low frequency components, hence a HF increase accompanied by a LF
decrease increases the total intensity.

125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz

4 dB -0.8 -0.4 -0.1 +0.1 +0.4 +0.8 +1.2
6 dB -1.3 -0.7 -0.2 +0.2 +0.7 +1.3 +2
8 dB -2.1 -1.2 -0.4 +0.4 +1.2 +2.1 +3.1
10 dB -3.6 -2.14 -0.7 +0.7 +2.1 +3.6 +5.2
12 dB -9.5 -6.4 -3 +3 +6.4 +9.5 +12.5

Table 1: Filter magnitudes at selected frequencies for the different spectral
tilts. All values are in dB.

22

4 METHOD 4.3 Listening tests

4.3 Listening tests

To evaluate the efforts made during the project, listening tests were run on
8 test subjects, all adults with normal hearing. Two tests were run; one for
the simulated music ensemble of section 4.1, one for the issue of localisation
of a distinctive sound. Prior to both tests, each subject was thoroughly
explained the methods behind test objects and references, and examples
were played for the subjects to know what to listen for.

4.3.1 Listening test 1 - simulated ensemble

As the simulation was made to resemble a music ensemble, a listening
test was arranged against a reference in order to determine its credibil-
ity. The reference was made in an anechoic room by a professional flautist.
The flautist was presented two short musical pieces, which she played and
recorded:

1. Charles-Marie Widor: Suite for flute and piano, 2. movement: Scherzo

2. Ketil Bjørnstad: Sommernatt ved fjorden

Listening to the first recording, she then played each of the pieces seven
more times. From these seven, five were picked and combined to a unisonous
quintet.

For the simulation test, Widor’s scherzo was picked as test object. During
the test, the reference and a simulated quintet were played successively to
the test subject, followed by a simple question: Which quintet is simulated?
Only two options were offered, representing the reference and the simulation,
there was no blank option. Subjects were demanded to tick one of the
options.

Both quintets were played back through an ordinary stereo speaker setup,
i.e. only two speakers were used. The five flutes were evenly panned, using
intensity difference (section 3.2), between the speakers.

23

4.3 Listening tests 4 METHOD

4.3.2 Listening test 2 - localisation experiment

Further, another test was performed to investigate the test subjects’ ability
of localising one spectrally distinctive (tilted, see section 4.2) instrument in
a flute quintet. The aim was to get a clue of the threshold value at which
a spectral tilt of one single flute becomes audible. Thus the tilt magnitude
started at an inaudible level, gradually increasing until noticeable.

This time the recording of Bjørnstad’s ”Sommernatt ved fjorden” was se-
lected reference. Each flute was played back through one dedicated speaker;
thus 5 speakers were employed. The speakers, or flutes, were positioned as
in figure 9, on a circle around the listener, with a 22.5◦angle between them;
at 315◦, 337.5◦, 0◦, 22.5◦, and 45◦.

22.5˚

Figure 9: Sketch of listening test setup

The piece was played back 5 times in a row. Each time, one of the flutes was
manipulated according to the description in section 4.2. For each run, high
frequencies were further increased and low frequencies further decreased, as
shown in table 2.

24

4 METHOD 4.3 Listening tests

Because of the spectral content of the flute, octave bands up to 250 Hz are
almost irrelevant. The fundamental of a flute is normally at 500-2000 Hz,
depending on the tone, and spectral components below the fundamental are
minimal.

Spectral tilt

1st run 4 dB
2nd run 6 dB
3rd run 8 dB
4th run 10 dB
5th run 12 dB

Table 2: Spectral tilt in listening test

The tilted flute was not randomly picked; flute no. 4 (at 22.5◦) was the tilted
one in every test run. Partly for practical reasons, but also for eliminating
a major source of error: Localising a periphere, tilted speaker may be easier
than a central one, an aspect potentially greatly influencing the test. On
the other hand, a non-random speaker requires one assumption to be made:
For every test iteration, localisation is easier than on any previous iteration.
This was assumed throughout the test, and was not further investigated.

Following every run, test subjects were asked to tick one flute which ap-
peared manipulated to them, or a random flute if none appeared manipu-
lated. Hence, presumably, random results would be produced if manipula-
tion was at a non-audible level. The subjects were allowed to turn their head
as they wished during the test, as looking towards the source significantly
improves the localisation ability[7].

25

4.3 Listening tests 4 METHOD

26

5 RESULTS

5 Results

This section presents the outcome of the listening tests performed to eval-
uate the simulation effort and the localisation test. The two subsections
summarise the results from their respective tests. No interpretation is done,
only plain results from the listening tests are presented.

5.1 Listening test 1

The task of the first listening test was to identify a simulated quintet from
a reference. The outcome of the test was as listed below, and as visualised
in figure 10.

1. 25% managed to identify the simulation from the reference.

2. 75% failed to identify the simulation from the reference.

Figure 10: Graphical results of quintet simulation listening test

27

5.2 Listening test 2 5 RESULTS

5.2 Listening test 2

The test subjects’ second task was to determine which flute had been subject
to a spectral tilt in a unisonous quintet. Results are presented in table 3,
and visualised in figure 11. As mentioned in section 4.3.2, flute no. 4 was
consistently the manipulated one.

Flute 1 Flute 2 Flute 3 Flute 4 Flute 5

4 dB 12.5 12.5 12.5 25 37.5
6 dB 25 25 12.5 25 12.5
8 dB 25 12.5 25 0 37.5
10 dB 0 37.5 25 12.5 25
12 dB 12.5 12.5 0 62.5 12.5

Table 3: Listening test results of localisation experiment. Results are given
in %.

Considering figure 11, there is a noise floor at the highest value which is
likely to appear accidentally, given a uniform probability density. A simu-
lation of 100.000 iterations shows that in a group of 8 people picking one
random of 5 flutes, 3 or more people would pick the same flute in about 84
of 100 instances. 4 or more would pick the same flute in only 28 of 100.
Thus a reasonable position of the noise floor is between these values.

A quick summary of the second listening test:

� Answers are fairly evenly distributed at 6 dB and 8 dB spectral tilts.

� At 4 dB, answers actually tend towards the tilted speaker. However,
no values surpass the noise floor, and feedback from test subjects as
well as absense of the tendency at 6 and 8 dB imply that the tendency
at 4 dB is accidental.

� The 10 dB tilt was claimed by many, and the 8 dB tilt by some, to
be audible but difficult to localise. In the former’s case, answers tend
slightly to the right, i.e. the side of the tilted speaker - though not
enough to surpass the noise floor.

� At 12 dB, the majority of the test subjects successfully localised the
tilted speaker.

28

5 RESULTS 5.2 Listening test 2

1 2 3 4 5
 0%

10%

20%

30%

40%

50%

60%

70%

Flute #

P
er

ce
n

ta
g

e
o

f
ti

ck
s

Noise floor
12 dB
10 dB
8 dB
6 dB
4 dB

Figure 11: Graphic representation of table 3

� There was no appearant connection between the answers and whether
the test subject had a musical background or not.

29

5.2 Listening test 2 5 RESULTS

30

6 DISCUSSION

6 Discussion

6.1 Listening test 1

The outcome of the first listening test is rather surprising. A poor simulation
would generate a high percentage of success among the test subjects, as most
subjects would recognise the simulation from the reference. However, an
ideal simulation would generate a 50% success rate; as noone could tell the
simulation from the reference, answers would be random. Thus a success
rate as low as 25% suggests that there is something amiss with the test.
Reasons could be, for instance:

� High failure rates could appear due to a coincidence, despite a good
simulation (section 6.1.1).

� The reference could be inadequate (section 6.1.2).

� Other reasons could apply.

6.1.1 Coincidence?

Even if the simulation and the reference were both flawless, the distribution
of answers could be skewed due to a sheer coincidence. By using statistics,
the probability of the current skew (or a more extreme one) occuring by
accident can be calculated.

Because of the question’s simple nature, the only possible answers being
”First” and ”Second”, answers are binomially distributed. Thus probability
may be determined by (1) [9].

P (x) =

(
n

x

)
(p)x(1− p)n−x (1)

n and x are the total number of answers and correct answers, respectively.
Assuming the simulation be ideal, probability of success would be 50% for
each test subject, thus p = 0.5. Hence

P (X ≤ 25%) =

(
8

2

)
(0.5)2 (1− 0.5)8−2 (2)

P (X ≤ 25%) = 0.145 (3)

31

6.1 Listening test 1 6 DISCUSSION

Moreover, in (3) the simulation is assumed to be ideal. Such an assump-
tion is unrealistic, in any simulation some minor flaws must be expected.
Consequently,

p < 0.5 (4)

⇒ P (X ≤ 25%) < 0.145 (5)

Thus it is possible, but certainly not probable, that the listening test’s
outcome be result of a coincidence.

6.1.2 Inadequate reference?

In section 4.3 the procedure for making the reference is described. The
flautist’s feedback during recording was that it felt unnatural, for one rea-
son in particular: She had no visual contact with her co-player. Visual
interaction between the players is a significant aspect of a quintet, highly
influent on its sound. But in a quintet made from five individual recordings,
there is no visual interaction whatsoever.

Several other disadvantages of such an imitation to a real quintet may also
be proposed:

� Each player, and each flute as well, has its own individual character
when playing. In the imitated quintet, each part is played by the same
player on the same instrument.

� When five players play simultaneously, every player’s time- and inten-
sity imprecision is correlated to all the other players. In individual
recordings, any imprecision is only correlated to the initial recording,
to which the player is playing along.

Considering the potential audibility of these aspects, the peculiar result
might be due to an imperfect reference.

6.1.3 Summary

Nevertheless, such a results suggests that the simulation works to satisfac-
tion. Those who managed to distiguish the simulation from the reference
stated the following aspects as clues:

32

6 DISCUSSION 6.1 Listening test 1

� Richer, more dynamic sound

� More natural breathing

Both arguments make sense, as summing overlapping windows slightly al-
ters, and often smooths, the signal’s temporal profile. But this effect appears
to be rather inconspicuous, as only a few of the test subjects were able to
point it out. Besides, feedback from most subjects claimed that both pieces
were rather credible.

The principal objection against a simulated quintet, is the same as posed
by the flautist against the reference: There is no interaction between the
musicians. In a musical ensemble populated by human players, every player
makes tiny timing mistakes throughout the piece, each instrument sounds
slightly different from the others, and no musician is able to play with con-
stant intensity. All these little errors can be implemented in a simulation
to make it sound human. What is harder to implement is the correlation
between errors, the effect of the musicians adapting to the others as they
play along. In the current simulation, all errors are stochastic, hence uncor-
related.

Additionally, other effects are hard to simulate, such as

� A player’s individual character, or sound, which is unique to every
musician.

� Improvisation7.

Thus a simulated ensemble is hardly suited to replace a real musical ensem-
ble when it comes to musical performance. However, the technique might be
interesting for quickly and easily producing background music, like accom-
paniment to a singer or a band. In such a case precision and syncronism
is crucial, whereas each musician’s individual character is less important.
Moreover, a minor lack of dynamic is not really a problem, as background
accompaniment is supposed to be just that - in the background.

Even if it works on a woodwind instrument like a flute, that doesn’t neces-
sarily mean that it works on another type of instrument - a piano, a guitar,

7Music based on Markov chains may actually sound both improvised and fairly human-
like, even though the Markov chain is a random process. Markov-based music generators
exist e.g. in the computer music programs CSound and MAX.

33

6.2 Listening test 2 6 DISCUSSION

or a violin, for example. Flutes, and woodwind instruments in general, have
simple, neatly structured spectra, whereas string instruments are far more
complex. In an early stage of the project, experiments made with a clarinet
seemed to work quite well. Experiments made with a guitar didn’t work
well at all. However, this might also be due to the guitar recording not
being anechoic.

In short, results are valid for an anechoic flute recording, and most likely
to other woodwinds as well. Whether the same method may be applied to
other instruments, remains unanswered.

6.2 Listening test 2

Compared to the first listening test, the second one turned out more as
expected. The subjects’ responses at 4 dB, 6 dB, 8 dB, and 10 dB tilts
are random, as they are unable to localise the tilts. At 12 dB, a clear peak
arises on the tilted speaker (figure 11).

The same simulation as in section 5.2 indicates that 62.5 % or more pick
the same flute by chance in about 5.2 of 100 instances. Flute no. 4 is picked
by 62.5 % or more in 1 of 100 instances. Thus, statistically, it can be
stated with 99 % confidence that the result of the 12 dB tilt in figure 11
is not accidental. Feedback from test subjects supports this conclusion, the
majority claimed to easily localise the 12 dB tilt. Still, 37.5 % failed to
localise it.

The most interesting result of the second test is not that people were able to
localise the 12 dB tilt, nor that the most moderate tilts were inaudible. The
mid-range tilts, however, were expected to be more distinctive. Pilot tests
suggested audibility at 8 dB and localisation at 10 dB. However, results at
both levels failed to surpass the noise floor.

Appearantly, even a clearly audible tilt can not necessarily be localised.
The 10 dB tilt and, according to some of the test persons, the 8 dB tilt are
audible, although their origin is hard to point out. At the 10 dB tilt, several
test subjects announced to be a little annoyed that even though they were
able to detect the tilt, they were unable to determine its source.

One possible conclusion may be drawn from this. All test subjects had
normal hearing, and thus weren’t trained in using spectral distinctiveness

34

6 DISCUSSION 6.2 Listening test 2

for horizontal localisation8. Horizontal localisation is normally based on
time difference or intensity difference, whereas the difference in this case
was mainly spectral. The results imply that the spectral content means
little to horizontal localisation. At the 12 dB tilt, localisation is most likely
achieved by focusing on high frequency components and exploiting their
intensity difference.

Obviously, in the case of a music ensemble, where one of the instruments has
a distinctive spectral characteristic, it is difficult to point out the instrument.

A principal question arises from this conclusion: Is it easier to localise one
individual instrument in a live orchestra, as stated in the problem descrip-
tion? Probably yes, because localisation is to a large extent about recog-
nition. Especially spectral localisation benefits from previous knowledge of
a sound source - the actual sound is compared to what the sound usually
sounds like to determine its direction. Because listening to an orchestra is
familiar, any anomality imidiately draws attention. On the other hand, the
listening test was a new situation to the test subjects, except for the brief
introduction prior to the test.

The results achieved in this test apply mainly to the exact setup employed:

� Increasing the amount of flutes makes the tilt less audible.

� Narrowing the angle between speakers makes localisation more diffi-
cult.

� A tilt of a peripheral flute might be easier to localise than a tilt of a
central flute.

Note that adjusting the playback volume would probably have no impact
on the test results. Increasing the volume does not improve speech intelligi-
bility, as long as the volume is well beyond the background noise in the first
place. It is reasonable to assume that this principle applies to a musical
context as well.

8Some hearing impaired, with normal hearing on only one ear, train themselves to
find the source of a sound from its spectrum, even in the horizontal plane.

35

6.2 Listening test 2 6 DISCUSSION

36

7 CONCLUSION

7 Conclusion

As the effort has been concentrated on two independent, though related,
areas, several inferences may be drawn from the results. Two principal
questions were posed in the introduction, and experiments were made in an
attempt to respond them.

1. By combining timing errors, spectral manipulation, intensity devia-
tions and phase shifts, one musical instrument can be copied into
several in a way that sounds fairly natural. The other side of the pic-
ture is that such a manipulation goes on the expence of the sound’s
dynamic and liveliness. Nevertheless, such a method may be useful
in certain cases; if a music ensemble is desired in the background of a
singer or band, one single instrument can be recorded and multiplied
into an ensemble. Naturally a secondary solution to a real ensemble,
it may facilitate production in cases where time, money, space etc.
makes it difficult to make a full-scale recording.

2. In an ensemble of flutes, the spectral content of one individual flute
is probably not a main clue to our ability of localising it. In short, a
spectral manipulation of an individual source must be rather extensive
to make a difference easy to localise. It turned out that there is a long
way to go from hearing that one flute is different, to being able to tell
which flute it is.

7.1 Further work

Alongside the questions that have been answered during this work, several
others have arisen. Further experimenting on the simulated quintet might
be interesting - principally: Does it work with any other instruments?

As well, some aspects could be implemented to make the simulation more
human-like:

� Correlation between time delays, both auto-correlation and correla-
tion between instruments. On this point, Markov chains might be an
interesting study.

37

7.1 Further work 7 CONCLUSION

� Pitch deviation.

Likewise for the localisation experiment, questions remain unanswered, or
arose on the way.

� Is a peripheral flute easier to localise than a central one?

� Would it be easier to localise a distinctive flute if it were moving?

� To what extent does the instrument affect the test results? Would it be
easier to localise an instrument with more low-frequency components?

Performing the same experiment by adjusting the pitch of one instrument
instead of tilting its spectrum could also be an interesting study.

38

REFERENCES REFERENCES

References

[1] Daniel Kahlin and Sten Ternstrom. The chorus effect revisited: Experi-
ments in frequency-domain analysis and simulation of ensemble sounds,
1999.

[2] Jens Blauert. Spatial Hearing - Revised Edition: The Psychophysics of
Human Localization. MIT Press, 1996.

[3] Dale Purves et al. Neuroscience. Sinnauer Assiciates, Inc., 1997.

[4] J.C. Middlebrooks and D.M. Green. Sound localization by human lis-
teners. Annual Review of Psychology, 1991.

[5] Durand R. Begault. 3-D sound for Virtual Reality and Multimedia. AP
Professional, 1994.

[6] Peter Svensson. 3d sound and multimedia: Lecture notes.

[7] Asbjørn Krokstad. Akustikk for ingeniører. Institutt for teleteknikk,
NTNU, 1999.

[8] A.D. Musicant and R.A. Butler. Influence of monaural spectral cues on
binaural localization. The Journal of the Acoustical Society of America,
77:202, 1985.

[9] Jan Terje Kvaløy and H̊akon Tjelmeland. Tabeller og formler i statistikk,
2. edition. Tapir akademisk forlag, 2000.

39

REFERENCES REFERENCES

40

A ENCLOSED FILES

A Enclosed files

Attached data files:

1. Reference flute quintet (Widor), 2-channel stereo, wave format

2. Simulated flute quintet (Widor), 2-channel stereo, wave format

3. Listening test 2 (Bjørnstad)

4 dB tilt, mono, wave format

6 dB tilt, mono, wave format

8 dB tilt, mono, wave format

10 dB tilt, mono, wave format

12 dB tilt, mono, wave format

refbj.mat: Reference quintet, 5 channel, MATLAB data file

playxdbtilt.m: MATLAB script to run listening test 2

4. Source code: Ensemble simulation

main.m

timedelay.m

spectilt.m

ampvar.m

decorrIIR.m

adj.m

play.m

stereotize.m

5. Source code: Graphical equaliser

ecg.m

ec.m

ex.m

frc.m

riple.m

tfinv.m

zcalc.m

41

A ENCLOSED FILES

Note that the localisation test requires a setup of minimum 5 speakers to
be run. If conditions are satisfied, run the file ”playxdbtilt.m” in MATLAB
to reproduce the test (playxdbtilt.m was not the original file used, but it
should work similarly).

42

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

B Source code for the ensemble simulation

main.m

01 % main.m
02 %
03 % Simulation of an ensemble based on one single instrument.
04 % Initialisation file.
05 %
06 % Torbjørn Ursin, 2007
07
08 clear all
09 global fs noS duration t operations verbosityLevel wb
10
11 % Adjustable parameters
12 noS=2; % Number of speakers
13 instrument=’fast4’; % Instrument to play
14 verbosityLevel=1; % 0 for no figures, 2 for all figures
15 aif=’asio’; % Audio interface (’win’ or ’asio’)
16 dev=1; % Device no. (pa_wavplay for an overview)
17
18 %%
19 [snd,fs]=wavread([’instruments/’ instrument]);
20 duration=length(snd)/fs;
21
22 if min(size(snd))==2
23 snd=.5*(snd(:,1)+snd(:,2));
24 end
25 snd=snd(1:round(duration*fs));
26
27 orig=snd;
28 rand(’state’,0);
29 randn(’state’,0);
30
31 operations=5;
32 wb=waitbar(0,’Manipulating timing...’);
33 snd=timedelay3(snd);
34 snd=spectilt(snd);
35 snd=ampvar(snd);
36 snd=decorrIIR(snd,rand(128,2*noS));
37 snd=adj(snd);
38 waitbar(1,wb,’Complete.’)

43

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

39 close(wb)
40
41 %%
42 orig=[orig;zeros(length(snd)-length(orig),1)];
43 if verbosityLevel==1||verbosityLevel==2
44 colors=[’r’;’g’;’b’;’c’;’m’;’y’;’k’;...
45 ’r’;’g’;’b’;’c’;’m’;’y’;’k’;...
46 ’r’;’g’;’b’;’c’;’m’;’y’;’k’];
47 figure(1)
48 subplot 211
49 t=linspace(0,duration,length(orig));
50 plot(t,orig,’k’)
51 ylim([-1.2*max(orig) 1.2*max(orig)])
52 title(’Original sound file’)
53 drawnow
54 end
55
56 %%
57 % save simulfast snd
58 % play(snd,dev,aif)
59 stereotize(snd,fs,dev,aif)
60 % load sndwi;
61 % stereotize(snd,fs,dev,aif)
62

44

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

timedelay.m

01 function out=timedelay(in)
02 % timedelay.m time-shifts sounds in an input sound file.
03 %
04 % Torbjørn Ursin, 2007
05
06 global noS fs duration operations verbosityLevel wb
07
08 windowWidth=.6; % Seconds
09 overlap=.4; % Seconds
10 maxDeviation=130; % Milliseconds
11
12 out=zeros(length(in)+windowWidth*fs-overlap*fs,noS);
13 % out=zeros(size(in));
14 window=tukeywin(windowWidth*fs,.25);
15 for x=1:noS
16 waitbar(1/operations/noS*x,wb,’Manipulating timing...’);
17 for y=1:windowWidth*fs-overlap*fs:length(in)
18 devtn=floor(maxDeviation*fs/1000*rand(1)-...
19 maxDeviation*fs/1000/2);
20 if y+devtn<0
21 devtn=0;
22 end
23 if y+windowWidth*fs+devtn>length(in)
24 out(y:length(in),x)=out(y:length(in),x)+...
25 in(y:length(in)).*window(1:length(in)-y+1);
26 else
27 out(y:y+windowWidth*fs-1,x)=...
28 out(y:y+windowWidth*fs-1,x)+...
29 in(y+devtn:y+windowWidth*fs+devtn-1).*...
30 window;
31 end
32 end
33 out(:,x)=out(:,x)/max(max(out(:,x)))*max(max(in));
34 if verbosityLevel==2
35 t=linspace(0,duration,length(out(:,x)));
36 figure(2)
37 subplot(noS,operations,(x-1)*operations+1)
38 plot(hann(windowWidth*fs))
39 figure(3)
40 subplot(noS,operations,(x-1)*operations+1)
41 plot(t,out(:,x))

45

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

42 drawnow
43 end
44 end

46

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

spectilt.m

01 function out=spectilt(in)
02 % spectilt.m tilts the spectrum of an input sound file by
03 % applying a linear filter.
04 %
05 % Torbjørn Ursin, 2007
06
07 global fs noS t duration operations verbosityLevel wb
08
09 maxDeviation=1; % Maximum deviation upwards or downwards
10
11 n=128;
12 f=linspace(0,1,fs/2);
13 out=[];
14 for x=1:noS
15 waitbar(1/operations+1/operations/noS*x,wb,...
16 ’Manipulating spectrum...’);
17 deviation=2*maxDeviation*rand(1)-maxDeviation;
18 [mag fund]=max(abs(fft(in(:,x),fs)));
19 m=[ones(1,fund) linspace(1,1+deviation,length(f)-fund)];
20 b=fir2(n,f,m);
21 out(:,x)=fftfilt(b,in(:,x));
22 if verbosityLevel==2
23 figure(2)
24 subplot(noS,operations,(x-1)*operations+2)
25 semilogy(f*(fs/2),m)
26 axis([0 fs/2 0 max(m)+.1])
27 figure(3)
28 subplot(noS,operations,(x-1)*operations+2)
29 t=linspace(0,duration,length(out(:,x)));
30 plot(t,out(:,x))
31 figure(4)
32 loglog(f*fs/2,m)
33 axis([0 fs/2 0 max(m)+.1])
34 end
35 end
36

47

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

ampvar.m

01 function out=ampvar(in)
02 % ampvar.m manipulates the amplitude of an input sound file.
03 %
04 % Torbjørn Ursin, 2007
05
06 global noS fs duration operations verbosityLevel wb
07 hops=floor(length(in)/fs);
08 amp=.7;
09
10 t=linspace(0,duration,length(in));
11 out=[];
12 for x=1:noS
13 waitbar(2/operations+1/operations/noS*x,wb,...
14 ’Manipulating intensity...’);
15 av=amp*rand(hops,1)-amp/2;
16 av=resample(av,length(in),hops);
17 av=av+1;
18 out(:,x)=av.*in(:,x);
19 % clear(’av’)
20 % load(’avm’);
21 % avmtmp=avm(:,1:noS);
22 % clear(’avm’);
23 % out(:,x)=avmtmp(:,x).*in(:,x);
24 if verbosityLevel==2
25 figure(2)
26 subplot(noS,operations,(x-1)*operations+3)
27 plot(t,av)
28 figure(3)
29 subplot(noS,operations,(x-1)*operations+3)
30 plot(t,out(:,x))
31 end
32 end
33 %
34 % for x=1:noS
35 % av=amp*rand(hops,1)-amp/2;
36 % av=resample(av,length(in),hops);
37 % av=av+1;
38 % avm(:,x)=av;
39 % disp(x)
40 % end
41 % save(’avm’)

48

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

42 %
43 % %%
44 % load(’avm’);
45 % avmtmp=avm(:,1:noS);
46 % clear(’avm’);
47 %
48 % out=avmtmp.*in;

49

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

decorrIIR.m

01 function y=decorrIIR(y,Noise)
02 %input is a signal y with size [length,nchann] and Noise of size
03 %[filterlength,nchann] wich normally distributed between 0 and 1
04 %The channels of the noise matrix must be twice the number of y
05 %channels. The filtering will lead to a sample delay that is twice the
06 %length of filterlength
07 % - Audun Solvang 2006 -
08 % Uses the functions POL2CART, CONJ, POLY, FLIPLR, FILTER.
09 %
10 % Modified: Torbjørn Ursin, 2007
11
12 global operations noS verbosityLevel wb
13 [lengde,nchann]=size(y);
14 %the radius of the poles
15 N1=Noise(:,1:nchann);
16 %the phase of the poles
17 N2=Noise(:,nchann+1:2*nchann);
18 %Ensures that none of the poles will be at the circle of unity. The
19 %tweakfactor may be varied
20 N1=N1*0.9;
21 %The phase of the poles must be in the range -pi to pi
22 N2=(N2-0.5)*2*pi;
23 %Generate the radius for the zeros
24 N11=N1.^-1;
25
26 %N is the order of the filter:
27 [N,nchann]=size(N2);
28 %Transforms the polar notation of zeros to cartesian notation
29 [re,im]=pol2cart(N2,N11);
30 compz=re+j*im;
31 %filters channel by channel
32 for jj=1:nchann
33 %run the filtering in cascade.
34 for ii=1:N
35 % creates the complex conjugate
36 medz=[compz(ii,jj);conj(compz(ii,jj))];
37 % find the polynomial that corresponds to the filter
38 % coefficients of the given zero
39 b=poly(medz);
40 %find the corresponding filtercoeffiecients for the pole
41 a=fliplr(b);

50

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

42 y(:,jj)=filter(b,a,y(:,jj));
43 waitbar(3/operations+.5/operations/nchann*(jj-1) ...
44 +.5/operations/N*ii,wb,’Manipulating phase...’);
45 end
46 if verbosityLevel==2
47 figure(2)
48 subplot(noS,operations,(jj-1)*operations+4)
49 plot(b)
50 figure(3)
51 subplot(noS,operations,(jj-1)*operations+4)
52 plot(y(:,jj))
53 end
54 end

51

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

adj.m

01 function out=adj(in);
02 % adj.m Rearranges the pa_wavplay input file to put sounds in front.
03 % Example: Channels 1,2,3,4 become channels 15,16,1,2.
04 %
05 % Torbjørn Ursin, 2007
06
07 global wb operations
08
09 noS=min(size(in));
10 out=[];
11 mv=floor(noS/2);
12 for x=1:noS
13 if(operations<0)
14 waitbar(4/operations+1/operations/noS*x,wb,...
15 ’Adjusting position...’);
16 end
17 if x-mv<1
18 out(:,16-mv+x)=in(:,x);
19 else
20 out(:,x-mv)=in(:,x);
21 end
22 end

52

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

play.m

01 function play(in,dev,aif)
02 % play.m plays an input sound file through an arbitrary number of
03 % speakers.
04 %
05 % dev - is the device id to use for output.
06 % aif - Audio interface. Determines which sound driver to use
07 % ’win’ Windows Multimedia Device
08 % ’dx’ DirectX DirectSound driver
09 % ’asio’ ASIO Driver
10 % Input arguments are to be set in main.m.
11 %
12 % Torbjørn Ursin, 2007
13
14 global verbosityLevel fs noS
15
16 colors=[’r’;’g’;’b’;’c’;’m’;’y’;’k’;...
17 ’r’;’g’;’b’;’c’;’m’;’y’;’k’;...
18 ’r’;’g’;’b’;’c’;’m’;’y’;’k’];
19 t=linspace(0,length(in)/fs,length(in));
20 if strcmp(aif,’win’)
21 % wavplay(in,fs)
22 for x=1:noS
23 if verbosityLevel==1||verbosityLevel==2
24 figure(1)
25 hold on
26 subplot 212
27 plot(t,in(:,x),colors(x))
28 ylim([-1.2*max(max(abs(in))) 1.2*max(max(abs(in)))])
29 title(’Manipulated sound file’)
30 drawnow
31 end
32 wavplay(in(:,x),fs)
33 end
34 elseif strcmp(aif,’asio’)
35 if verbosityLevel==1||verbosityLevel==2
36 figure(1)
37 hold on
38 subplot 212
39 plot(t,in)
40 ylim([-1.2*max(max(abs(in))) 1.2*max(max(abs(in)))])
41 title(’Manipulated sound file’)

53

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

42 drawnow
43 end
44 pa_wavplay(in,fs,dev,aif)
45 else
46 disp(’Audio interface error. Specify win or asio.’)
47 end

54

B SOURCE CODE FOR THE ENSEMBLE SIMULATION

stereotize.m

01 function stereotize(in,fs,dev,aif)
02 % stereotize.m plays an input sound file through two speakers,
03 % panning input channels evenly between the speakers.
04 %
05 % fs - sampling frequency
06 % dev - is the device id to use for output.
07 % aif - Audio interface. Determines which sound driver to use
08 % ’win’ Windows Multimedia Device
09 % ’dx’ DirectX DirectSound driver
10 % ’asio’ ASIO Driver
11 % Input arguments are to be set in main.m.
12 %
13 % Torbjørn Ursin, 2007
14
15 ch=min(size(in));
16 out=zeros(length(in),16);
17 for x=1:ch
18 out(:,16)=out(:,16)+in(:,x)*(ch-x)/(ch-1);
19 out(:,2)=out(:,2)+in(:,x)*(x-1)/(ch-1);
20 end
21 wavwrite(out,fs,’SimulatedQuintet’)
22 pa_wavplay(out,fs,dev,aif);

55

C SOURCE CODE FOR THE GRAPHIC EQUALISER

C Source code for the graphic equaliser

ecg.m

01 % ECG, ecualizador grafico
02 %
03 %
04 %
05 % espen moberg, 2006
06 %
07 % Modified: Torbjørn Ursin, 2007
08
09 function ecg (va)
10 global s p q hax hgrf hqgrf hsli htxt hqsli hqtxt hriple rango...
11 frecs bandas
12 input=’instruments\slow4’;
13 % input=’instruments\fast4’;
14
15 if nargin < 1,
16 va = ’dn1012’;
17 s = tf(’s’);
18 end
19
20 switch (va(1))
21 case ’d’ % inicializar valores y dibujar la ventana,
22 % el programa
23 % valores
24 bandas = eval(va(3:4));
25 rango = eval(va(5:end));
26 switch bandas
27 case 31
28 frecs = [20 25 31.5 40 50 63 80 100 125 160 ...
29 200 250 315 400 500 630 800 1000 1250 1600 ...
30 2000 2500 3150 4000 5000 6300 8000 10000 ...
31 12500 16000 20000];
32 otherwise
33 frecs = [31.5 63 125 250 500 1000 2000 4000 ...
34 8000 16000];
35 end
36 bandas = length(frecs);
37 p = zeros(1,bandas); % matriz con los valores del
38 % los pots (en dB)

56

C SOURCE CODE FOR THE GRAPHIC EQUALISER

39 q = 1.6;
40
41 %ventana
42 close all
43 figure;
44
45 % grafico principal
46 ga = 0.6; % ancha del graf
47 axpos = [0.1 0.55 ga*1.1 0.4];
48 hax = axes(’position’, axpos); % handle de los axes
49 h_min = ec(zeros(1, bandas), frecs, 0.5);
50 h_max = ec(ones(1, bandas), frecs, 0.5);
51 [h f] = ec(p/(2*rango)+0.5, frecs, q);
52 hgrf=plot(f,abs(h)); % handle del plot
53 axis(hax,[min(f) max(f) min(abs(h_min))*...textcolorcomment
54 0.9 max(abs(h_max))*1.1]);
55 set(hgrf, ’parent’, hax);
56 set(hax, ’xscale’, ’log’);
57 set(hax, ’yscale’, ’log’);
58 set(hax, ’xtick’, frecs);
59 yt = sort([1 max(abs(h_max)) min(abs(h_min))...
60 10^(rango/10) 10^(-rango/10)]);
61 set(hax, ’ytick’, yt);
62 set(hax, ’yticklabel’, [num2str((10 * log10(yt))’,3)...
63 repmat(’ dB’,size(yt,2),1)]);
64 set(hax, ’ygrid’, ’on’);
65 set(hax, ’yminorgrid’, ’off’);
66 set(hax, ’xgrid’, ’on’);
67 set(hax, ’xminorgrid’, ’off’);
68 set(hax, ’fontsize’, 10);
69
70 % grafico Q
71 hqax = axes(’position’, [0.8 0.75 0.15 0.15]);
72 [z f] = zcalc(q,1000);
73 hqgrf = plot(f,1./abs(z));
74 set(hqax, ’xscale’, ’log’);
75 set(hqax, ’yscale’, ’log’);
76 axis(hqax,[min(f) max(f) ...
77 min(1./abs(z))*0.9 max(abs(1./z))*1.1]);
78 set(hqax, ’ytick’, []);
79 set(hqax, ’xtick’, []);
80 set(hqax, ’fontsize’, 10)
81

57

C SOURCE CODE FOR THE GRAPHIC EQUALISER

82 % sliders
83 for i = 1:bandas
84 hsli(i) = uicontrol(’style’, ’slider’, ...
85 ’value’, (round(100*p(i)))/100, ...
86 ’min’, -rango, ’max’, rango, ...
87 ’sliderstep’, [round(1/(2*rango)) ...
88 round(6/(2*rango))], ...
89 ’unit’, ’normalized’, ...
90 ’position’, ...
91 [0.13+(ga/(bandas-1)*(i-1))-ga/bandas/2 ...
92 0.1 ga/bandas 0.38], ...
93 ’tooltipstring’, ...
94 [num2str((round(p(i)*100))/100) ’ dB’], ...
95 ’callback’, [’ecg ss’ num2str(i)], ...
96 ’fontsize’, 10);
97 htxt(i) = uicontrol(’style’, ’text’, ...
98 ’string’, (round(100*p(i)))/100, ...
99 ’backgroundcolor’, [0.8 0.8 0.8], ...
100 ’unit’, ’normalized’, ...
101 ’position’, ...
102 [0.13+(ga/(bandas-1)*(i-1))-ga/bandas/2 0 ...
103 ga/bandas 0.1], ...
104 ’fontsize’, 10);
105 end
106
107 % q-slider
108 hqsli = uicontrol(’style’, ’slider’, ...
109 ’value’, log10(q), ...
110 ’min’, log10(0.1), ’max’, log10(10), ...
111 ’sliderstep’, [0.005 0.1], ...
112 ’unit’, ’normalized’, ...
113 ’position’, [0.8 0.7 0.15 0.04], ...
114 ’tooltipstring’, [’Q = ’ num2str(q)], ...
115 ’callback’, ’ecg qs’, ...
116 ’fontsize’, 10);
117
118 % q-texto
119 hqtxt = uicontrol(’style’, ’text’, ...
120 ’string’, [’Q = ’ num2str(q)], ...
121 ’backgroundcolor’, [0.8 0.8 0.8], ...
122 ’unit’, ’normalized’, ...
123 ’position’, [0.8 0.65 0.15 0.04], ...
124 ’fontsize’, 10);

58

C SOURCE CODE FOR THE GRAPHIC EQUALISER

125
126 % riple-texto
127 hriple = uicontrol(’style’, ’text’, ...
128 ’string’, ’Ripple = ’, ...
129 ’backgroundcolor’, [0.8 0.8 0.8], ...
130 ’unit’, ’normalized’, ...
131 ’position’, [0.8 0.6 0.15 0.04], ...
132 ’fontsize’, 10);
133
134 % salto-botones
135 alts = [0.4 0.27 0.14];
136 for i=1:3
137 hsalto(i) = uicontrol(’style’, ’pushbutton’, ...
138 ’string’, ’->’, ...
139 ’backgroundcolor’, [0.8 0.8 0.8], ...
140 ’unit’, ’normalized’, ...
141 ’position’, [0.05 alts(i) 0.04 0.04], ...
142 ’callback’, [’ecg Sn’ num2str(i)], ...
143 ’fontsize’, 10);
144 end
145
146 % escuchar-boton
147 heschuchar = uicontrol(’style’, ’pushbutton’, ...
148 ’string’, ’OK’, ...
149 ’backgroundcolor’, [0.8 0.8 0.8], ...
150 ’unit’, ’normalized’, ...
151 ’position’, [0.8 0.1 0.15 0.04], ...
152 ’callback’, ’ecg en’, ...
153 ’fontsize’, 10, ...
154 ’fontweight’, ’b’);
155
156 % elegir entre 6 y 12 dB
157 dbvalores = [6 12];
158 dbpos = [0.8 0.87];
159 for i=1:length(dbvalores)
160 hdbel(i) = uicontrol(’style’, ’radiobutton’, ...
161 ’string’, [num2str(dbvalores(i)) ’dB’], ...
162 ’value’, (dbvalores(i) == rango), ...
163 ’backgroundcolor’, [0.8 0.8 0.8], ...
164 ’unit’, ’normalized’, ...
165 ’position’, [dbpos(i) 0.92 0.1 0.04], ...
166 ’callback’, [’ecg dn’ num2str(bandas) ...
167 num2str(dbvalores(i))], ...

59

C SOURCE CODE FOR THE GRAPHIC EQUALISER

168 ’fontsize’, 8);
169 end
170
171 case ’q’ % cambiar? el valor de q
172 q=10^(get(hqsli,’value’));
173 set(hqsli, ’tooltipstring’, [’Q = ’ num2str(q)]);
174 set(hqtxt, ’string’, [’Q = ’ num2str(q)]);
175 [z f] = zcalc(q,1000);
176 set(hqgrf,’xdata’,f, ’ydata’,abs(1./z));
177 case ’s’ % cambiar? un slider
178 ind = eval(va(3:end));
179 p(ind)=get(hsli(ind),’value’);
180 set(hsli(ind), ’tooltipstring’, [num2str(p(ind)) ’ dB’]);
181 set(htxt(ind), ’string’, p(ind));
182 case ’S’ % cambiar todos los sliders
183 pres(1,:) = ones(1,bandas);
184 pres(2,:) = 0.5 * ones(1,bandas);
185 pres(3,:) = zeros(1,bandas);
186 pres(4,:) = 0.5 * ones(1,bandas); pres(4,1) = 0;
187 pres(4,2) = 1;
188 pres(5,:) = 0.5 * ones(1,bandas);
189 pres(5,ceil(bandas/2)+1) = 1;
190 pres(6,:) = 0.5 * ones(1,bandas);
191 pres(6,ceil(bandas/2)+1) = 0;
192 pres(7,:) = zeros(1,bandas);
193 pres(7,ceil(bandas/2)+1) = 1;
194 pres(8,:) = ones(1,bandas);
195 pres(8,ceil(bandas/2)+1) = 0;
196 switch bandas
197 case 10
198 case 31
199 end
200 pre = rango * 2 * (pres(eval(va(3:end)),:) - 0.5);
201 for ind=1:bandas
202 set(hsli(ind), ’value’, pre(ind));
203 ecg([’sn’ num2str(ind)]);
204 end
205 ecg(’as’);
206 case ’e’ % escuchar
207 [h f H] = ec(p/(2*rango)+0.5, frecs, q, rango);
208 [x,fs]=wavread(input);
209 % [x,fs]=wavread(’utopia.wav’);
210 t = 0:1/fs:length(x)/fs-1/fs;

60

C SOURCE CODE FOR THE GRAPHIC EQUALISER

211 y = lsim(H,x,t);
212 % sound(y/4,fs);
213 eqout=y/4;
214 save eqoutbj3 eqout
215 end
216 if (va(2) ~= ’n’)
217 [h f] = ec(p/(2*rango)+...
218 0.5,frecs,q,rango); % dar el vector con valores
219 % entre 0 y 1
220 % [h f] = ec(sign(p).*real(log10(abs(p/rango*9)+1))/2+...
221 % 0.5,frecs,q,rango);...
222 % dar el vector con valores
223 % entre 0 y 1
224 f_intersant = [20 125 250 500 700 1000 2000 3993 ...
225 7973 16000 20000];
226 for counter=1:11
227 i = find(f>=f_intersant(counter),1);
228 disp([num2str(round(f(i))) ’: ’ ...
229 num2str(10*log10(abs(h(i))))])
230 end
231 disp(’ ’)
232 % f(i) % nesten internast
233 set(hgrf,’xdata’,f, ’ydata’,abs(h));
234 set(hriple,’string’,[’Ripple: ’ ...
235 num2str(10*log(riple(h, f, frecs))) ’ dB’]);
236 end

61

C SOURCE CODE FOR THE GRAPHIC EQUALISER

ec.m

01 function [h, f, H] = ec(a, frecs, q, rango, acura)
02 if nargin < 1, a = [0.0 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5]; end
03 % if nargin < 1, a = [0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0]; end
04 if nargin < 2, frecs = [31.5 63 125 250 500 1000 ...
05 2000 4000 8000 16000]; end
06 if nargin < 3, q = 1; end
07 if nargin < 4, rango = 12; end
08 if nargin < 5, acura = 1000; end
09 if size(frecs) == size(a)
10 bandas = length(a);
11 else
12 error([’dimension de a (’ num2str(length(a)) ...
13 ’) no es igual a la dimension de frecs (’ ...
14 num2str(length(frecs)) ’)’]);
15 end
16 global s;
17 if nargout < 1,
18 s = tf(’s’);
19 end
20 gb = 15e6;
21 rs = 100;
22 k = 20;
23 % frecs = logspace(log10(31.5),log10(16128),bandas)
24 f = logspace(log10(20), log10(20000), acura);
25 for i = 1:length(frecs)
26 f0 = frecs(i);
27 [z(i,:), f, Z(i,:), c1(i), c2(i)] = ...
28 zcalc(q, f0, f, rs, k, 1);
29 end
30
31 aa = a’;
32 a = repmat(a’,[1,1000]);
33
34 switch (rango)
35 case 12
36 r = 20000;
37 rp = 20000;
38 case 6
39 r = 2000;
40 rp = 2000;
41 end

62

C SOURCE CODE FOR THE GRAPHIC EQUALISER

42
43 % la curva
44 h = (1 + sum(a .* rp ./ (z + a .* (1 - a) * r))) ./ ...
45 (1 + sum((1 - a) .* rp ./ (z + a .* (1 - a) .* rp)));
46
47 % v2ms = ruido(a,f,r,rp,rs,k,c1,c2,z)
48
49 % funcion transferencia...
50 if (nargout > 2) | (nargin < 1) ,
51 h1 = diag(aa * rp) * tfinv(Z + aa .* (1 - aa) * r);
52 h2 = diag((1 - aa) * rp) * tfinv(Z + aa .* (1 - aa) .* rp);
53 hh1 = tf(0);
54 hh2 = tf(0);
55 for i = 1:length(frecs)
56 hh1 = hh1 + h1(i);
57 hh2 = hh2 + h2(i);
58 end
59
60 H = (1 + hh1) * tfinv(1 + hh2);
61
62 [xxx,fff] = bode(H,f*2*pi);
63 xx = 1:size(xxx,3);
64 ff = 1:size(fff,3);
65 xx(:) = xxx(1,1,:);
66 ff(:) = fff(1,1,:);
67 h = xx;
68 end
69
70 if nargout < 1,
71 close all;
72 figure(1);
73 ax = axes;
74 grf=plot(f,abs(h),’b’);
75 hold on;
76 plot(f,abs(xx),’k’);
77 hold off;
78 set(ax, ’xscale’, ’log’);
79 set(ax, ’yscale’, ’log’);
80 % axis(ax,[min(f) max(f) min(min(abs(h))) max(max(abs(h)))]);
81 figure(2);
82 bode(H, f*2*pi)
83 h = 0;
84 f = 0;

63

C SOURCE CODE FOR THE GRAPHIC EQUALISER

85 else
86 return
87 end

64

C SOURCE CODE FOR THE GRAPHIC EQUALISER

ex.m

01 %Equalizer
02 %Vikas Sahdev
03 %Rajesh Samudrala
04 %Rajani Sadasivam
05 %
06 [x,fs]=wavread(’utopia.wav’);
07 Wn = .20;
08 N = 62;
09 %These are the gains on each of the 3 bands
10 gLP = 0.4;
11 gBP = 1.5;
12 gHP = 1.5;
13
14 LP = fir1(N,Wn);
15 Wn1 = [.20, .50];
16 BP = fir1(N,Wn1);
17 Wn2 = .50;
18 HP = fir1(N,Wn2,’high’);
19 figure(1)
20 freqz(LP);
21 figure(2);
22 freqz(BP);
23 figure(3);
24 freqz(HP);
25 y1 = conv(LP,x);
26 y2 = conv(BP,x);
27 y3 = conv(HP,x);
28 yA= gHP * y3;
29 wavwrite(yA,fs,’Equalizer3’);
30 yB= gLP * y1;
31 wavwrite(yB,fs,’Equalizer1’);
32 yC= gBP * y2;
33 wavwrite(yC,fs,’Equalizer2’);
34 yD = yA + yB + yC;
35 wavwrite(yD,fs,’Equalizer4’);

65

C SOURCE CODE FOR THE GRAPHIC EQUALISER

frc.m

01 function [Y, f] = frc(x, fs, c)
02 if nargin < 3, c = ’b’; end
03 % T = 2; % duracion
04 % fs = 500;
05 % x = rand(1,T*fs);
06 f = linspace(0,fs/2,fs/2);
07 Y = fft(x,fs);
08 Pyy = Y.* conj(Y);
09 Y = Y(5:length(Pyy)/2+4);
10 plot(f,abs(Y),c)
11 % % f = 1000*(0:256)/512;
12 % % plot(f,Pyy(1:257))
13 % title(’Frequency content of y’)
14 % xlabel(’frequency (Hz)’)

66

C SOURCE CODE FOR THE GRAPHIC EQUALISER

riple.m

01 function r = riple(x, y, y_picos)
02
03 if nargin < 1, % para testing...
04 [x y] = ec(ones(1,10));
05 y_picos = [31.5 63 125 250 500 1000 2000 4000 8000 16000];
06 end
07
08 x=abs(x);
09 bandas = length(y_picos);
10 r = [];
11 p = [];
12 % encontrar indices para los picos
13 for i = 1:bandas
14 il = find((y_picos(i)*0.95 < y & y < y_picos(i)*1.05));
15 yl = y(il);
16 xl = x(il);
17 [xl_max il_max] = max(xl);
18 il_max = il(1) + il_max;
19 p = [p il_max];
20 end
21
22 % la difencia entre los picos y el minimo entre los picos
23 for i = 2:(bandas-2)
24 r(i) = (x(p(i)) + x(p(i+1))) / 2 / min(x(p(i):p(i+1)));
25 end
26
27 r = max(r);
28
29

67

C SOURCE CODE FOR THE GRAPHIC EQUALISER

tfinv.m

01 function hinv = tfinv(h)
02 [a b] = tfdata(h);
03 hinv = tf(b,a);
04 return

68

C SOURCE CODE FOR THE GRAPHIC EQUALISER

zcalc.m

01 function [z, f, Z, c1, c2] = zcalc(q, f0, f, rs, k, metodo)
02 if nargin < 1, q = 1; end
03 if nargin < 2, f0 = 500; end
04 if nargin < 3, f = logspace(log10(20), log10(20000)); end
05 if nargin < 4, rs = 500; end
06 if nargin < 5, k = 20; end
07 if nargin < 6, metodo = 4; end
08
09 global s;
10 if nargout < 1,
11 s = tf(’s’);
12 end
13
14 gb = 15e6;
15 w0 = 2 * pi * f0;
16 w = 2 * pi * f;
17 switch (metodo)
18 case 1
19 r1 = k * rs;
20 r2 = rs;
21 c1 = 1 / (q * rs * w0);
22 c2 = q / (k * rs * w0);
23 z = 1 ./ (c1 * j .* w) + r2 + r1 * r2 * c2 * j .* w;
24 Z = 1 / (c1 * s) + r2 + r1 * r2 * c2 * s;
25 case 2
26 r1 = k * rs;
27 r2 = rs;
28 c1 = 1 / (q * rs * w0);
29 c2 = q / (k * rs * w0);
30 z = 1./(c1*j.*w)+(r2.*(1 + r1 * c2 * j .* w).*...
31 (1 + j .* w / gb) ./ (1 + (r2 * c2 + 1 / gb) * ...
32 j .* w + (r1 + r2) * c2 / gb .* (j .* w).^2));
33 Z = 1 / (c1 * s) + (r2 * (1 + r1 * c2 * s) * (1 + s / gb) ...
34 / (1 + (r2 * c2 + 1 / gb) * s + (r1 + r2) * c2 / gb * s^2));
35 case 3
36 r = rs / 2;
37 c1 = 1 / (q * rs * w0);
38 c2 = 4 * q / (rs * w0);
39 z = 1 ./ (c1 * j .* w) + 2 * r + r^2 + r^2 * c2 * j .* w;
40 Z = 1 / (c1 * s) + 2 * r + r^2 + r^2 * c2 * s;
41 case 4

69

C SOURCE CODE FOR THE GRAPHIC EQUALISER

42 r = rs / 2;
43 c1 = 1 / (q * rs * w0);
44 c2 = 4 * q / (rs * w0);
45 z = 1./(c1 * j .* w)+r.*(2 + r * c2 * j .* w) .* ...
46 (1 + j .* w / gb) ./ (1 + j .* w / gb + r * c2 ...
47 / gb .* (j .* w).^2);
48 Z = 1 / (c1 * s) + r * (2 + r * c2 * s) * (1 + s / gb) / ...
49 (1 + s / gb + r * c2 / gb * s^2);
50 end
51
52 if nargout < 1,
53 close all;
54 figure(1);
55 ax = axes;
56 grf=plot(f,abs(z));
57 hold on;
58 [xxx,fff] = bode(Z,f*2*pi)
59 xx = 1:size(xxx,3);
60 ff = 1:size(fff,3);
61 xx(:) = xxx(1,1,:)
62 ff(:) = fff(1,1,:)
63 plot(f,abs(xx),’k’);
64 hold off;
65 set(ax, ’xscale’, ’log’);
66 set(ax, ’yscale’, ’log’);
67 axis(ax,[min(f) max(f) min(min(abs(z))) max(max(abs(z)))]);
68 h = 0;
69 f = 0;
70 else
71 return
72 end

70

