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Problem Description
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1 Introduction to Sensor Networks

Wireless sensor networks is an emerging technology with great potential. The main idea
is to deploy small, energy-e�cient sensor nodes in a chosen area of interest. The scheme
can be adopted to and implemented in a vast number of areas. This could be military
surveillance, tra�c control and habitat monitoring among others. The reason why sensors
should be wireless, and not with wired connections, is ease of deployment and the ability to
construct dynamic networks, networks which is open for change in topology. Developments
in battery technology make power supplies unnecessary. Tiny chips with sensing and
communication abilities may last several years, or how long one desires if run on solar
energy.

The sensor circuits need to be equipped with transmit (and in some cases receive) function-
ality to deliver their message. Traditionally, information theory focuses on designing the
decoder with low complexity and putting most of the computations on the encoder side.
This is not the case in wireless sensor networks. Because the individual sensors depend
on limited power supplies, they need to turn their focus to low energy consumption. As
a consequence, the main complexity burden needs to be moved from encoder to decoder.
This creates the need for a low-complexity encoding algorithm.

The network can be designed in various ways. We usually divide the alternatives in two
groups; the fusion based and the ad hoc based design. The main di�erence between the
two is the following. In the ad hoc scheme each node needs to be equipped with both
transmitting and receiving capabilities, while with a fusion center the nodes only have to
transmit their data. This is illustrated in Fig. 1.

(a) Fusion (b) Ad Hoc

Figure 1: WSN with di�erent topologies

In this thesis we will focus on the challenge of increasing the energy-e�ciency. One way
to do this is to �nd better methods for local compression at the sensor nodes by utilizing
correlation in time. In addition, in most cases there is considerable correlation between
the di�erent sensor data. We can use this redundance to reduce the amount of data each
sensor needs to transmit. This can be done in two ways, either by letting the sensors
communicate with each other or, more challenging, without any communacation at all.
The latter scenario is what we call distributed source coding. We take a closer look at this
in the next section.

Several research projects have been launched to �nd the best technologies, strategies and
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protocols for sensors and sensor networks. Smart Dust [1, 2] was a leading project that
investigated the possibilty for hundreds or thousands of sensor nodes of cubic-millimeter
dimension scattered about an environment of interest. A spin o� of the project resulted
in the company Dust Inc. that aims to deliver tiny sensor chips in near future. More and
more providers o�er sensor motes for commercial application and we will see a growing
amount of practical employments of these in the years to follow. A group of animal
life researchers deployed a network of wireless sensors on an isolated island to measure
changes in the living conditions for birds [3], and this type of habitat monitoring will be
important for environment and animal preservation.

As a concluding remark we quote from [4]: �The �exibility, fault tolerance, high sensing
�delity, low cost and rapid deployment characteristics of sensor networks create many
new and exciting application areas for remote sensing. In the future, this wide range of
application areas will make sensor networks an integral part of our lives.�

2



2 Distributed Source Coding

Distributed source coding is possible when there is correlation among a set of sources.
This is exactly the case in typical sensor networks, where the correlation often is high
between neighbouring nodes. Each individual node is compressing their data based on
observations done by other sensors and not only on its own localized data, hence the term
distributed. To exploit this correlation and remove the redundance, each node has to know
something about what the other sensors send.

This can be done in two ways. First, the senors can communicate with each other throught
an intersensor network, or second, they could avoid doing this. The �rst option gives an
extra unwanted overload of creating an additional network and require more processing
in each node. The point of source coding in sensor network is exactly the opposite; to
reduce the processing amount and thus the energy consumption. This could be avoided
using the second scheme. Now the �rst thing that comes into mind with this option is
that without the notion of the other sensors' data, how can the active sensor compress
anything at all? Well, as Slepian and Wolf showed in [5] the data can be compressed as
much as with knowledge of what the other sensors send. This is known as the Slepian-Wolf
theorem and equality is of course only applicable in theory. It is derived asymptotically
and based on random binning principles. But it may work as a practical goal and give us
good measures on how well we are doing.

Imagine you have two sensor nodes and you want to compress the data they transmit
as much as possible within a �delity criterion. Sensor data sequence X is input into the
encoder which compresses X based on the correlation distribution between X and Y . Y
is sent uncompressed to the decoder as side information as illustrated in Fig. 2. Now the
purpose of the joint decoder is to estimate X based on the received data and the side
information Y . The more correlated the sources are, the more sure we can be that the
chosen estimate is the correct one, or the more we can compress X.

Figure 2: Distributed source coding with side information at the decoder

If one wishes to decode the data losslessly, according to classical source coding theory one
may encode with a rate RX ≥ H(X) and RY ≥ H(Y ) for source X and Y respectively.
By taking into consideration any correlation between X and Y one is able to encode both
sources to their joint entropy RX + RY ≥ H(X, Y ). In other words, since H(X, Y ) =
H(X) + H(Y |X) = H(Y ) + H(X|Y ), it is possible to encode one of the sources to its
respective conditional entropy RX ≥ H(X|Y ) or RY ≥ H(Y |X) leaving the other at its
entropy. Slepian and Wolf claims that this can be done just as well without intersensor
communication as with it, gaining H(X)−H(X|Y ) or H(Y )−H(Y |X) on the rate. One
can easily see that this degenerated to the classical lossless encoding limit (H(X)) when
there is no correlation (i.e. H(X|Y ) = 0). We take a closer look at Slepian-Wolf coding
principles in Section 3
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Now the lossless encoding theory of [5] can only be used on discrete sources. Wyner and
Ziv [6, 7] took this further by considering continuous valued sources, thus introducing
distortion to the signal to get �nite entropies. Now this is often the case in typical
sendsor network scenarios. The main thought was to introduce a quantizer step before
Slepian-Wolf coding, analogous to the quantizer followed by entropy coding in single-
source compression. The quantizer step is a part of the rate distortion theory and can
be done in various ways depending on the distribution and memory of the input. Rate
distortion theory is presented in Section 4. Wyner-Ziv coding is described in Section 5.

The correlation between the sources may be modelled as a virtual correlation channel
where X is the input and Y the output of the channel (Fig. 3). The channel is described
by the error probability ρ, the probability that Y is di�erent from X. Thus a low ρ gives
high correlation which makes it possible to encode with lower rate. Because of this model
it is suggested in the literature to use channel coding principles in the source coding.
This was �rst suggested by Wyner in [8] and is thus called Wyner's scheme. Pradhan
and Ramchandran has done considerable work in this area [9, 10, 11, 12] and a lot of the
things described in this thesis are based on this scheme. In the same way that channel
coding expands the rate to protect the signal from channel noise, it can be used in the
opposite way to reduce the rate in a controlled way. The technique is based on so-called
binning where all possible outcomes of an input signal are placed in disjoint cosets or
bins. The theory is called distributed source coding using syndromes (DISCUS) and we
take closer look an this in Section 6

Figure 3: Virtual correlation channel between X and Y

Here we have used the simpli�cation of an asymmetric scheme, i.e. one of the sensors send
their data in an uncompressed format. The optimal operation would be to use a symmetric
scheme where both sensors send compressed data based on each other's correlation, or
even an adaptive symmetric scheme where the nodes vary the transmission rate depending
on factors such as channel quality and characteristics of the signal. This is described in
Section 7.

Distributed source coding using syndromes may be implemented in several ways depending
on the channel coding technique you chose. The most common techniques used are linear
block codes, convolutional codes and concatenated codes. Research on channel coding has
led to two leading techniques, low density parity-check (LDPC) codes and turbo codes.
LDPC codes is a form of linear block codes using low density parity.check matrices. Turbo
codes is a concatenated code combining an interleaving with convolutional codes. Turbo
coding used in distributed source coding is investigated in e.g. [13, 14, 15, 16]. In this
thesis we have chosen to follow the linear block coding scheme in its most advanced form of
LDPC codes. We have chosen this because of its proven performance over turbo codes and
because of its portability to the distributed scheme. LDPC codes are described generally
in Section 8 and specially for DISCUS in Section 9.
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3 Lossless DSC

Slepian andWolf described a theorem for compression of a source exploiting the correlation
with another source. This was called distributed source coding. In [5] this is done without
distortion of the source. The main idea was that a source X should be able to compress
its data based on the correlation distribution with a secondary source Y without the need
for intersensor communication. Slepian and Wolf showed that it is possible to encode
with the same rate no matter if you have the knowledge of what the other encoder sent
or not. This theory is compressed to the following formulas [5]

R1 ≥ H(X|Y ), (1a)

R2 ≥ H(Y |X), (1b)

R1 + R2 ≥ H(X, Y ), (1c)

and can be depicted as in Fig. 4.

Figure 4: Rate region for two sources

The corner points may be reached by the asymmetric coding scheme. All the points on
the line H(X, Y ) is obtainable by either time sharing or by symmetric coding. Time
sharing is done by letting one of the sources act as side information a part of the time
and the other source the rest.

Slepian and Wolf showed this for two discrete variables with �nite alpfabet. Later Cover
[17] expanded this to arbitrary ergodic processes, countably in�nite alphabets and an
arbitrary number of correlated sources. In real life discrete processes are not very common,
but an illustrative example is given next.
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3.1 Slepian-Wolf coding of two binary sources

Say we have two correlated 3-bit binary sources X and Y . The correlation between them
is such that the maximum Hamming distance is dH ≤ 1. We are now going to code these
in a way that enables us to decode them without distortion. Using classic source coding
theory it is possible to compress the sources to their respective entropies, H(X) and H(Y )
(3 bits here). Taking into consideration that there exists a certain dependency between
X and Y we can achcieve savings on the amount of transmitted bits.

Looking at the case where Y is available at the decoder, there is no point in di�erentiate
between X = 000 and X = 111, since we know that Y is maximum 1 away from X in
a Hamming distance sense. Hence we can put all possible outcomes of X into disjoint
bins or cosets. By performing a clever binning it is possible to estimate which of the
codewords in the respective coset was the original value of X. In the same fashion we can
construct the following cosets using codewords of X: {100,111}, {010,101} and {001,110}.
By transmitting only the index of the active coset we reduce the amount of transmitted
bits, in this case from 3 to 2 bits.

The binning scheme is illustrated in Fig. 5.

Figure 5: Coset construction
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4 Rate-Distortion Theory

When we consider analogue sources, it is no longer possible to decode these losslessly
because of the limited capacity of a realistic channel. Instead of having the uncontrolled
distortion from the channel we can introduce a certain controlled degradation or distortion
to the signal before transmission. The more noise on the available channel, the more we
have to increase this distortion, or in other words: reduce the source rate. A simple but
intuitive illustration of this result is shown in Fig. 6.

Figure 6: Typical picture of the rate distortion function

The rate distortion function gives us theoretical limits for how well we can do lossy com-
pression with general distortion metrics and general sources. The general rate distortion
function with expected distortion

d̄ ≤ D

is given by

R(D) = min
{yj}J

j=1∈D
{R} (2a)

= min
{every D-allowed channel}

I(p;P) (2b)

= min
{P|d̄≤D}

I(p;P) bits/source symbol, (2c)

where yj are the output signals, p = p(xn, ym) and P is the channel matrix.

The rate distortion function is hard to �nd for general sources and distortion metrics,
but may be speci�ed for special cases. For a gaussian memoryless source with expected
quadratic distortion metric σ2

N = D and input power σ2
X the rate distortion function is
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R(D) = 1
2
log

(
σ2

X

D

)
. (3)

From this you can solve and get the distortion rate function

D(R) = σ2
X · 2−2R. (4)

The choice of rate is thus a trade-o� on how much distortion one accept into the signal
or given by certain restrictions (e.g. power limitations, channel noise).

The rate distortion theory described is utilized in practical examples through di�erent
forms of quantization, some more sophisticated than others.

4.1 Scalar Quantization

Scalar quantization is done on one sample of a source at a time. This can either be
uniform or optimized for the distribution of the source. One way to optimize is by the
generalized Lloyd-Max algorithm [18]. The optimized quantizer design is obtained by
�nding the minimal quantization error variance solved by the conditions

∂σ2
ε

∂rn

= 0 for n = 0, . . . , N − 1,
∂σ2

ε

∂dn

= 0 for n = 1, . . . , N − 1 (5)

where rn are the representation levels, dn are the decision levels and N the number of
levels in the quantizer. These conditions can be solved into a couple of equations

dn,opt = 1
2
(rn,opt + rn−1,opt) for n = 1, . . . , N − 1 (6a)

rn,opt =

∫ dn+1,opt

dn,opt
xpx(x)dx∫ dn+1,opt

dn,opt
px(x)dx

for n = 0, . . . , N − 1 (6b)

which have to solved numerically by iteration from some initial values. Equation 6 shows
that in the optimized quantizer a given representation level is the centroid of the corre-
sponding decision interval, and the decision levels lies in the middle of two representation
levels. The quantizer characteristics will have large decision intervals where the probabil-
ity of occurence of the input signal is small, and vice versa. This way each quantization
level will contribute with the same amount to the minimized quantization error. [19]

4.2 Vector Quantization

Vector quantization is done, as the name implies, on a vector of samples. When the quan-
tization is done on more than one sample, the decision levels become multidimensional,
or regions, and the signal is quantized to the representation point of a region. The repre-
sentation level is decided based on N consecutive values of the input signal. If the regions
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are Voronoi regions (or Dirichlet partitions) and the representation levels are centroids
of their regions, the quantizer is optimized.

The representation vectors form the codebook of a vector quantizer (VQ). The index of
the active codeword is transmitted over the channel and hopefully reconstructed on the
receiver side. The codebook is often designed by training of the VQ. That is, you input a
known sequence of bits that you assume looks like a potential source the VQ will be used
on, and you �nd the codebook by iterative algorithms.

The more correlated in time a source is, the better the VQ performs. Vector quantization
can be shown to give the best rate distortion performance for a given degree of compres-
sion. However, due to the high dimensionality and large codebook size, it leads to high
computational complexity and delay and is not very practical. [19, 20]

4.3 Nested Quantization

In nested quantization you have two quantizers with di�erent rates nested into each other.
We say that there is a �ne code and a coarse code. The coarse code can be seen as a coset
construction step; you �rst quantize using the �ne code, then you use the coarse code to
place your codeword in a coset.

The nested quantization scheme may be done on any blocklength of the source samples,
i.e it may be constructed in any dimension. If both codes are in two dimensions we
call it nested lattice quantization. This becomes the same as vector quantization, and
optimization of the Voronoi regions is a crucial design feature. For the two-dimensional
case the optimal structure is found to be the hexagonal lattice [21].
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5 Lossy DSC

Wyner-Ziv coding is Slepian-Wolf Coding with a distortion measure, i.e it is lossy compres-
sion taking a correlation distribution into consideration. Lossy source coding is necessary
when you do not have a channel with in�nite capacity at your disposal (or if you want
to be able to decode your signal within a �delity criterion). Wyner-Ziv coding can be
illustrated as quantization followed by lossless Slepian-Wolf coding as in Fig. 7.

Figure 7: Block diagram of Wyner-Ziv Coding

The Wyner-Ziv rate region is not speci�ed for general sources, but the important special
cases of binary and gaussian input are well known in the literature. The general Wyner-Ziv
rate region can be illustrated as in Fig. 8 with an inner and outer bound. The achievable
rates lie between these two bounds. [22]

Figure 8: The inner and outer rate regions in lossy DSC

Since the Wyner-Ziv theory is a combination of Slepian-Wolf coding and rate-distrotion
theory described Sections 3 and 4, we will focus here on some important practical exam-
ples.

5.1 The binary symmetric case

X and Y are two binary sources and the correlation between them is modelled as a binary
symmetric channel with error probability ρ with Hamming distance as the distortion
measure. If we write X = Y ⊕ E, where E is a Bernoulli(ρ) source, the rate distortion
function with Y known at the encoder and the decoder given as

10



RX|Y (D) = RE(D) =

{
H(ρ)−H(D), 0 ≤ D ≤ min{ρ, 1− ρ},
0, D ≥ min{ρ, 1− ρ}.

(7)

If however Y only is known at the decoder, then the Wyner-Ziv rate distortion function
is given as

R∗
WZ(D) = l.c.e{H(ρ ∗D)−H(D), (ρ, 0)}, 0 ≤ D ≤ ρ, (8)

thw lowest convex envelope (l.c.e) of H(ρ∗D)−H(D) and the point (D = ρ, R = 0), hvor
ρ∗D = (1−ρ)∗D+(1−D)ρ. For ρ ≤ 0.5, R∗

WZ(D) ≥ RX|Y (D) with equality only in two
points: the zero-rate point (ρ, 0) and the zero-distortion point (0, H(ρ)). Thus Wyner-Ziv
coding su�ers rate loss in the binary symmetric case. WhenD = 0, the Wyner-Ziv problem
degenerates to the Slepian-Wolf problem with R ∗WZ (0) = RX|Y (0) = H(X|Y ) = H(ρ).

5.2 The quadratic gaussian case

In this case we have two gaussian stochastisc variables Xk and Yk with variance σ2
x and σ2

y

and correlation coe�cient ρ (Note: greater ρ gives more correlated sources in this case),
and we let D = (Dx, Dy) be the distortion criteria. We then have that if [23]

dx ≤
Dx

σ2
x

, dy ≤
Dy

σ2
y

then we get the conditions

RX ≥ 1
2
log

[
(1− ρ2)β

(1− ρ2)βdy − 2ρ2dxdy

]
, (9a)

RY ≥ 1
2
log

[
(1− ρ2)β

(1− ρ2)βdx − 2ρ2dxdy

]
, (9b)

RX + RY ≥ 1
2
log

[
(1− ρ2)β

2dxdy

]
(9c)

where

β = 1 +
√

1 + 4ρ2dxdy(1− ρ2)−2.

We get minimal rate by setting dx = Dx/σ
2
x og dy = Dy/σ

2
y which gives

βmax = β(
Dx

σ2
x

Dy

σ2
y

)

and
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RX + RY = 1
2
log+

[
(1− ρ2)

βmax

2
· σ2

x

Dx

σ2
y

Dy

]
. (10)

According to classic rate distortion theory we may encode two memoryless gaussian
sources to

RX + RY = 1
2
log

[
σ2

Xσ2
Y

DxDy

]
. (11)

Taking into consideration the correlation we achieve a coding gain of

∆R = 1
2
log

[
(1− ρ2)βmax

2

]
. (12)

Observe that ∆R = 0 when ρ = 0 and that ∆R → 1
4
log(σ2

xσ
2
y/DxDy) when ρ → 1.
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6 Distributed source coding using syndromes

In the distributed compression setting, as in the non-distributed one, the continuous
samples need to be quantized in order to obtain a �nite entropy.

As mentioned before, the correlation between the sources in a sensor network may be
modeled as a �correlation� channel. The idea is then to use a channel coding approach to
compress the source data even further. The quantized codeword U is of course correlated
to X. If X is correlated to the side information Y , U is also correlated to Y . So the
correlation channel can be described by the conditional distribution P (Y |U). The side
information carries the information I(U ; Y ) about U which can be exploited on the de-
coder side to estimate X. Now the correlation distribution may di�er considerably from
case to case, but it is often modeled in literature as a Binary Symmetric Channel (BSC)
or a channel with Additive White Gaussian Noise (AWGN).

So how do we reduce the amount of bits representing X without knowing exactly what
the corresponding sample of Y is? Let us illustrate with an example. Let X and Y be two
equiprobable 3-bit words where the correlation is given by a Hamming distance not more
than one. If Y was known both at the decoder and at the encoder, there would be no point
in representing X with more than 2 bits. (Given Y , X⊕Y is in the set {000, 001, 010, 100}
where ⊕ is the modulo-two sum). With Y known only at the decoder, is this still possible?
Yes, there is no point sending both X = 000 and X = 111 because the Hamming distance
between them is 3. With Y available, one of the codewords in the set is uniquely chosen.
Now all the possible codeword representations of X can be sorted into similar sets giving
the additional sets of X: {001, 110}, {010, 101} and {100, 011}. Hence X needs only be
transmitted with 2 bits instead of 3.

Figure 9: Possible outcomes of Y if X lies in the coset {000, 111}

This is a primitive example but it illustrates the idea of the distributed source coding
scheme. The goal is to �nd a good channel code that performs close to the Wyner-Ziv
limit from section 5. Observe that the �rst set of two codewords of X is a (3, 1, 3) linear
block code, also known as a 3-bit repetition code. The other sets are just variants or
cosets of this repetition code. Thus, instead of describing X by its 3-bit value, we encode
which coset X belongs to, incurring a cost of 2 bits, just as in the case when Y is known
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both to the encoder and the decoder. Now recall that the linear block code can be given
by its parity-check matrix H. Every coset of a linear code is associated with a unique
syndrome with s = HT c, where c is any valid codeword.

Promising channel coding techniques that have been mentioned as alternatives are turbo
coding and LDPC coding. Both have been described and tested by di�erent researchers.
We have chosen the LDPC scheme in this thesis because it has proven the best transition
to distributed compression. This coding technique will be discussed generally in section
8 and speci�cally for DSC in section 9.
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7 Symmetric design

The asymmetric case of distributed source coding is not very �exible in rate allocation.
If we want to vary the rate of the di�erent sources in the asymmetric case we need to use
time sharing which introduces a synchronization issue; the sensors need to communicate
to synchronize. This is exactly what we were trying to avoid in the �rst place. Two
di�erent solutions have been suggested to this problem. In [9] they propose a method
base on the same principles as in the DISCUS scheme, but with a more advanced coding
and decoding. Another way of doing it is by source splitting. This is discussed in e.g.
[24], but will not be described further here.

We will focus on the method introduced in [9] and further developed in [12]. Unlike the
asymmetric case where one source sends its information losslessly and the other source
sends compressed data, in the symmetric case both sources should be able to send only
partial information without compromising the reconstructed signal quality at the decoder.
A symmetric encoding scheme should be able to encode with rates in all of the achievable
rate region of Fig. 4.

Consider the encoding of two general correlated sources X and Y . We are going to encode
them in a symmetrical way, i.e. we want to compress each source with any rate ranging
between H(X) and H(X|Y ) for X, and between H(Y ) and H(Y |X) for Y . Assume
that H(X) ≤ H(Y ). Following the channel coding strategy, we search for two generator
matrices Gx and Gy containing n(1 − H(X|Y )) and n(1 − H(Y )) rows to achieve the
corner point (H(X|Y ), H(Y )) (see Fig. 4). To assign di�erent rates we move some of the
rows from Gx to Gy to move along the line H(X, Y ) until we reach the other corner point
(H(X), H(Y |X)).

Figure 10: Construction of generator matrices for the symmetric case

Consider a generator matrix Gc of size n(1−H(Y ))× n with linearly independent rows,
where n is the block-length used in encoding. This generator matrix can be used to
partition the space of n-length Y sequences. Thus Gy = Gc, and the encoder of Y sends
the syndrome associated with Gy. The decoder can now recover n-length Y sequences
based on this information and the knowledge of the statistics of Y . To encode X we need
to �nd a generator matrix Gx. Consider a matrix Ga with n(H(Y )−H(X))× n linearly
independent rows. A matrix formed by stacking Gc and Ga can be used to partition
the space of n-length sequences with nH(X) cosets. To reduce the rate induced by this
stacked matrix from H(X) bits/sample to H(X|Y ) bits/sample we construct a matrix Gs
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with n(H(X)−H(X|Y )) linearly independent rows. Now Gx is formed by stacking Gc,
Ga and Gs. The encoder of X sends the syndrome of the observed n-length sequence of
X with respect to Gx to the decoder. The decoder having recovered n-length Y -sequence
can now use a standard decoding algorithm to recover the n-length X sequence using the
joint distribution p(x, y) of X and Y .

To trade rates between the encoders of X and Y , any number of the rows of Gs can be
moved from Gx to Gy. Finally when Gx consists only of Gc and Ga, the encoders of X
and Y will be transmitting at rates H(X) and H(Y |X) bits/sample respectively. This
allocation process can be viewed as dividing the generator matrix G into two (Gx and
Gy) as illustrated in Fig. 10.

7.1 Decoder structure

Remember for the asymmetric case that to decode the sources one need to �nd the coset
where the compressed source (X) exists and �nd the codeword in that coset that is
closest to the side information (Y ). Now in the symmetric case both soures send partial
information so this decoding strategy is not applicable.

We will come back to this in the speci�c case of LDPC decoding.

7.2 Multiple sources

A sensor network with two sensors as we have looked at so far is not much of a sensor
network to talk about. It is desirable and absolutely necessary to be able to present a
theory for more than two sources. The beauty of the ideas presented so far in this thesis is
that this is not a challenge. The example of two sources in symmetric distributive source
coding is easily extended to multiple sources.

Figure 11: Matrix de�nition for multiple sources

For L sources, let us form an ordering of some arbitrary sources {X1, . . . , XL} such that
H(X1|X2, . . . , XL) ≤ . . . ≤ H(Xi|Xi+1, . . . , XL) ≤ . . . ≤ H(XL). Without loss of gen-
erality we may arrange the sources in this fashion. We can achieve the corner point
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H(X1|X2, . . . , XL), . . . , H(Xi|Xi+1, . . . , XL), . . . , H(XL)) by recursively de�ning the gen-
erator matrices of each code from a single generator matrix, as shown in Fig. 11.

The process begins with de�ning the generator matrix GL with n(1 − H(XL)) linearly
independent rows. The other matrices can be found by iterarively de�ning Gi−1 as the
stacking of Gi and a matrix Ai−1 with n(H(Xi|Xi+1, . . . , H(XL))−H(Xi−1|Xi, . . . , XL))
linearly independent rows. Clearly, as in the two-source case, the non-corner points can
be achieved by trading the speci�c rows of the generator matrices between each other.
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8 LDPC coding

Low-density parity-check coding is a form of linear block codes with iterative decoding.
An LDPC code is determined by its parity-check matrix H or equivalently by its bipartite
Tanner graph representation. The bipartite graph is used in the message-passing decoding
algorithm.

An LDPC code is a binary linear code with an M ×N sparse parity-check matrix H, i.e.
H contains mostly 0's and relatively few 1's. The code may be regular or irregular. A
regular LDPC code has exactly wc ones per column and exactly wr = wc(N/M) ones per
row in H, where wc and wr are small compared to N.

Figure 12: Tanner graph represen-
tation of a (6,3) code

Any parity-check code, including the LDPC code,
may be speci�ed by a Tanner graph. A Tanner
graph is a representation of a code corresponding
to a set of parity checks that specify the code. The
graph contains two kinds of nodes, check nodes and
bit nodes. There are M check nodes, one for each
parity check C1, ..., Cm, ..., CM , and N bit nodes, one
for each code bit v1, ..., vm, ..., vM . The check nodes
are connected to the bit nodes that they check.
Speci�cally, a branch (edge) connects check-node m
to bit-node n if and only if the mth parity check in-
volves the nth bit (i.e. only if Hm,n = 1). Thus, the
graph is analogous to the H matrix. The mth parity
check is regarded as a �local constraint� stating the
condition

∑n
j=1 hijxj = 0. A given con�guration

(x1, ..., xn) is a valid codeword if and only if all local
constraints are satis�ed. [25]

Decoding of LDPC codes

For decoding of LDPC codes, we want to �nd the probability that each bit vn of a recieved
vector r equals 1 or 0, knowing that the estimated codeword Û stemming from r satisfy
the constraint ÛHT = 0. Given a received vector r, solving directly for the probability
P (vn = b|r), that the nth bit equals either one or zero is very complex.

Gallager provided an iterative technique, known as the sum-product algorithm, where the
probability µmn(b) that the mth check is satis�ed by a received vector r, is passed from
check node Cm to bit node vn. This satis�ed-check probability µmn(b) is collected from
all bits participating in the mth check other than vn. Likewise, the bit probability qmn(b)
that the nth bit has value vn = b, is passed from bit node vn to check node Cm. This bit
probability qmn(b) is collected from all the checks that the nth bit participates in other
than Cm. [26]

We follow the example of the (6, 3) LDPC code from Fig. 12. Messages containing
satis�ed-check probabilities µmn(b) are shown moving from check nodes, and messages
containing bit probabilities qmn(b) are shown moving from bit nodes to check nodes. The
process is repeated until it converges to a code word solution or until a prede�ned number
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of iterations is reached. We follow the message-passing algorithm focusing particularly
on bit-node v4 and check node C2. Bit nodes are initialized with likelihood values stem-
ming from a detector. Suppose that bit node v4 passes the probability q24(b) that v4 = 1
to check-node C2. Check-node C2 collects the incoming probabilities from all other bits
involved in check 2 (v2 and v5), computes a probability µ24(b) that parity-check C2 is
satis�ed given that v4 = 1, and passes this message to bit-node v4. Check-node C2 passes
similar information to v2, given v2 = 1, and to v5, given v5 = 1. When bit-node v4 re-
ceives such satis�ed-check information from all the check nodes involving v4 (C1 and C2),
it recomputes the probability that v4 = 1 collected from the connected check-nodes apart
from C2 and passes this message back to node C2, similar information to C1, and so forth.
The process is illustrated in Fig. 13

(a) µ24(b) (b) q24(b)

Figure 13: Sum-product algorithm
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9 LDPC coding in the distributed setting

While LDPC coding (or linear block coding in general) in the traditional encoding struc-
ture expands the bandwith (increases the rate), in DSC it is used for bandwith compres-
sion. Thus we have a dual situation and we can think of it as switching the roles of the
encoder and the decoder. To get the desired channel codeword, we multiply the source
codeword with the parity check matrix H. (Remember that in channel coding for error
protection we multiply with the generator matrixG where GHT = I). This would give us
the syndrome of the received codeword in the traditional sense, and in the same fashion
gives us now the �syndrome� on the encoder side, i.e. the index we want to transmit over
the channel. We will still call the matrix used on the encoder side for the generator matrix
G, but keep in mind that in this setting this is the �opposite� of the generator matrix in
the conservative use.

9.1 Code construction for the symmetric case

Given G, to encode, i.e. compress, an arbitrary binary input sequence, we multiply X
with G and �nd the corresponding syndrome Z of length (n−k). This is what we transmit
over the channel and it represents the index of the coset containing our active codeword.
The goal is to recover this using the received bits from the other sensors as we have seen
earlier.

For decoding, the decoder must estimate the n-length sequence X from its (n − k)-long
syndrome Z and the corresponding n-length sequence Y. This is done by a modi�ed
version of the sum-product algorithm described in section 8. For the corner cases (source
coding with side information) we use the factor graph depicted in Fig. 14. This is based
on the same structure as the graph in Fig. 12, there is a set of constraints (squares) and a
set of variables (circles). In addition we need the received bits from the side information
and an extra row of constraints based on the correlation information.

Figure 14: Decoding with the Tanner graph in the single-machine case

In order to achieve any desirable rate in the rate region, we add a line of the compressed
variable bits of the side information to the Tanner graph and the corresponding con-
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straints belonging to an equivalent single-machine code for the side information (Fig. 15).
Decoding is again achieved by the sum-product algorithm on this graph. This expansion
of the graph can be done in the same manner to include multiple sources into the sym-
metric distributed LDPC setting. The additional single-machine codes is connected to
the graph through the correlation constraint row in the middle of the bipartite graph.

Figure 15: Decoding with the Tanner graph in the two-machine case
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10 Implementation

To test the theory and ideas presented in this thesis a distributed source coder using LDPC
codes is implemented in C/C++. In the implementation we have used an enhanced version
of the LDPC code of MacKay and Neal in C. The system is simulated and tested in both
the C/C++ application and in Matlab. Due to lack of time the system is not complete
and should be continued in future studies. The source code can be found as an appendix
to this thesis.

The goal of the implementation was to construct a distributed source coder an use it on
a set of ECG data using the described LDPC coding scheme. ECG is a kind of medical
data and makes a nice input to an example for medical wireless sensor networks, an
interesting area of application of DSC. The data are generated in two (or more) �sensors�
with a known spatial correlation distribution. This correlation is in the form of a gaussian
distributed noise �gure N with zero mean and known variance. The modelled correlation
varies with the variance (power) of the noise: higher noise power gives less correlated
sources.

In this model we use a perfect communication channel. Of course this is not a realistic
view, but we are concentrating on the source coding aspect of the whole system. Errors
due to channel imperfections can be solved by adding channel coding or by looking at
joint source-channel coding [27] and is outside the scope of our work.

A high level design model of the transmitter/encoder side of the construction is shown in
Fig. 16.

Figure 16: Transmitter side of system

A block diagram for the decoder is shown in Fig. 17

Figure 17: Receiver side of system

10.1 Hamming code implementation

First, a distributed source encoder with a (7, 4) Hamming matrix is implemented. A
parity-check matrix H is constructed consisting of 7 columns and 7 − 4 = 3 rows. The
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�generator� matrix used on the encoder side is then the transposed of H, G = HT . The
parity-check matrix and its transposed are shown in Fig. 18. Note that the generator
matrix as used here is not the same as a generator matrix in conventional LDPC coding
used for error correction. The input ECG samples are quantized using an pdf optimized
quantizer. Here the quantizer is optimized for a gaussian input distribution even though
the ECG data are not gaussian distributed. But the gaussian approximation seems to
be a good one in this case. The quantizer may be designed to any rate desirable. Here
we quantize the input samples with a 7-bit quantizer to match it with the distributed
encoder bitwise.

Figure 18: The parity-check matrix mathbfH and its transpose

The active (quantized) codewords are then multiplied with G and transmitted to the
decoder. The outcome set of encoded bits represents the cosets of the channel code. Many
codewords belong to the same coset as explained in Section 6. In the (7, 4) Hamming code
there are 27 possible codewords and 23 di�erent cosets. Thus there are 24 codewords that
output the same encoded bit sequence, i.e. belong to the same coset. The aim is to design
a good channel code with large minimum distance between the codewords in the coset.
The codewords of coset 000 is shown in Fig. 19.

Figure 19: The codewords of coset 000 in a (7, 4) distributed Hamming code

The decoder of the Hamming example is a maximum likelihood decoder. When it receives
a bit sequence from the channel, it �nds the coset (with the prede�ned amount of bits)
and the codewords it contains. Then, using the side information Y (which is correlated
to the original active codeword X), the maximum likelihood decoder searches through
the codewords in the received coset to �nd the closest one (in some given metric). The
resulting estimation X̂ of X is then the output of the decoder. The overall goal of the
system is to minimize X̂ − X given some constraints on encoding complexity and delay
(Slepian-Wolf encoder), and inside a �delity criterion (quantizer). This error is thus a
good measure on our system.
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10.2 LDPC code implementation

Going over to LDPC coding we create larger parity-check matrices with lower density.
This is because encoding on larger block lengths gives better performance according to
Shannon's source coding theorem [28], and larger block lengths yields larger matrices.
The parity-check matrix H is constructed randomly. The quantized codewords are then
gathered in desired block-lengths (e.g. 103) and multiplied with H in the same fashion as
in the Hamming example. The encoded bits represent a block of coset bit sequences and
are sent over the channel for decosing and reconstruction.

The decoder uses an adapted version of the sum-product algorithm as described in Sec-
tion 9 where the decisions are not only based on the received bit sequence and the parity-
check constraints in the Tanner graph, but in addition it takes into consideration the
correlated bit sequence of the side information Y . Due to lack of time during the work
with this thesis, this could not be implemented and tested. If continued work on this
subject is needed, this may an assignment for future students.
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11 Simulation & Results

The implementation in Section 10 was tested for the Hamming code example with a
compression rate of n : n − k, which in this case means a rate-3/7 encoder. The result
is shown in Fig. 20 where the correlation is along the x-axis by means of the conditional
entropy H(X|Y ), and the probability of error is along the y-axis. The error probability
is on a codeword basis.

Figure 20: Simulation results

We see that this is not a very impressive result with error probability up to 4 · 10−1, but
then again it is not a very robust code construction. The ecoder works on blocks of only 7
bits, the channel code is not optimized for minimum distance coset construction and the
decoder algorithm is not the sum-product iterative algorithm. The result would improve
drastically if the adapted sum-product algorithm had been implemented.

Even though the error probability is high we see from Fig. 21 in the low correlation end
of the test values, the reconstructed ECG signal (Fig. 21(a)) is not that unrecognizable
from the original (Fig. 21(b)).

Figure 21: (a) Quantized ECG signal (b) Output with H(X|Y ) = 0, 47
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Now in the other end of the results, where the correlation noise is lower, Fig. 22 shows
that the output ECG signal is almost identical to the input signal even though the error
percentage is quite high. One reason is that for low noise the estimated sample does not
have the possibility to di�er a lot from the real one, and with a high rate quantizer the
distortion is not noticeable.

(a) (b)

Figure 22: (a) Quantized ECG signal (b) Output with H(X|Y ) = 0, 08

The LDPC code could not be simulated since the decoder was not implemented in time
as mentioned before.
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12 Conclusion

The main goal of this work was to use a clever coding framework to increase the lifetime of
a sensor in a wireless sensor network. These sensors have to operate without the supply of
any power, and the need to decrease the amount of data each sensor will have to transmit
is crucial. Distributed source coding shows promising results in doing exactly this. We
describe a way to do compression based on the correlation with other sources without the
need for intersensor communication.

As a practical implementation we have used LDPC codes for compression. LDPC coding
in its most known form of basic channel coding is still improving and has come as close
as 0.0045dB to the Shannon limit [29]. When used in distributed source coding it has
shown better performance than turbo coding and is approaching the Slepian-Wolf limit
[12, 30]. In this thesis we only got to test the theory with a (7, 4)-Hamming code as the
distributed encoder. This did not show a very good performance, but worked as a picture
on how the techniques are deployed and utilized in the distrubuted source coding scheme.

Trying to illustrate the theory of this thesis in a more practical environment, we have used
the distributed source code on a thought network of medical sensor nodes measuring ECG
data on (in) a human body. This is just one piece in the whole puzzle of implementing
compression based on correlation in a sensor network, but it may be an essential piece in
lowering the energy consumption and hence increasing the lifetime of a sensor.

The work in this thesis may well be continued by other students interested in the area.
Finalizing the decoder with an implementation of an enhanced sum-product algorithm
will be the main goal. Expansions may be done in doing symmetric coding as described
in Section 7 and including compression of not only two but multiple sources. This may
then evolve to be a realistic model for distributed source coding in a sensor network
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