& NTNU

Innovation and Creativity

Verification of an AES RTL Model with
an Advanced Object-Oriented
Testbench in SystemVerilog

Henrik Ruud

Master of Science in Electronics

Submission date: January 2007

Supervisor: Einar Johan Aas, IET

Co-supervisor: Torstein Hernes Dybdahl, Falanx Microsystems AS

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Problem Description

Verification is the process that is performed to show that the design is according to the
specification.

SystemVerilog was developed to improve the Verilog language with attention to the verification
tasks. The assignment involves the following:

- Develop a verification plan for the AES module
- Develop a testbench architecture using SystemVerilog constrained randomisation
- Use assertions and functional coverage to track progress and quality of verification

Assignment given: 29. August 2006
Supervisor: Einar Johan Aas, IET

Summary

This Master’s thesis reports the verification planning and verification process of a
Verilog RTL model. Modern verification techniques like constrained randomization,
assertions, functional coverage analysis and object orientation are demonstrated on
an AES RTL model.

The work of this thesis was naturally divided in three phases: First, a phase of
literature studies to get to know the basics of verification. Second, the creation of
a verification plan for the selected module. Third, implementation of the testbench,
and simulation tasks.

The verification plan created states the goals for the simulation. It also states
plans for details about the testbench, like architecture, stimuli generation, random-
ization, assertions, and coverage collection. The implementation was done using the
SystemVerilog language. The testbench was simulated using the Synopsys VCS ver-
ification software.

During simulation, coverage metrics were analyzed to track the progress and
completeness of the simulation. Assertions were analyzed to check for errors in the
behavior during simulation. The analysis carried out revealed high code coverage for
the simulations, and no major errors in the verified module.

Preface

This Master’s thesis was submitted to the Norwegian University of Science and Tech-
nology (NTNU), Department of Electronics and Telecommunication. It is the result
of a thesis problem given by ARM Norway AS. The work was carried out during the
autumn of 2006, starting in August 2006 and ending in January 2007.

I would like to thank my supervisors, Professor Einar J. Aas, NTNU and Torstein

Hernes Dybdahl, ARM Norway AS, for their guidance and feedback through the
whole thesis process.

Trondheim, January 23rd, 2007

Henrik Ruud

iii

Contents

Summary

Preface

Contents

List of Figures

List of Tables

Abbreviations

1 Introduction
1.1 Motivation
1.2 Problem Formulation
1.3 Contribution
1.4 Organization of the Thesis

2 Verification Theory

2.1 What is Verification?
2.1.1 Verification vs Test
2.1.2 Verification Technologies

22 Coverageo e
2.2.1 Code Coverage i
2.2.2 Functional Coverage
2.2.3 When Are We Done?

2.3 Randomization
2.3.1 What to Randomize
2.3.2 Constraints
233 Seedso

24 Layersand Reuse
2.4.1 Layered Testbench Architecture
24.2 Callbacks
2.4.3 Verification IPs

iii

ix

x1

N R

0 00 ~J =1 Ut Ot ot

2.5 Assertions
2.5.1 Assertion Types
2.5.2 Assertion Placement
2.5.3 Error Reporting oo

2.6 Verification Planning o oo
2.6.1 The Verification Team
2.6.2 Day-in-the-Life Document
2.6.3 Tools and Technologies
2.6.4 Architecture L
2.6.5 Assertions
2.6.6 Implementation Phases
2.6.7 Coverage Collection and Goals

3 Tools and Languages

3.1 HVLsand HDLs

3.2 SystemVerilog
3.2.1 Imtroduction.
3.2.2 Language Properties

3.3 Synopsys VCS e

4 Verification Plan

4.1 Module Selectiono
4.1.1 Advanced Encryption Standard
4.1.2 Wishbone Bus 0 oL

4.2 Day-in-the-Life Document

4.3 Tools and Technologies

4.4 Architecture L

4.5 Assertions L

4.6 Implementation Phases

4.7 Coverage Collection and Goals

5 Testbench Implementation

5.1
5.2

5.3

AES Module Simulation Test
Testbench Modules
5.2.1 Imterfaceo
522 AESTop Module oo
523 Test Module.
5.2.4 External Assertion Module
Transactors e e e e
53.1 DataFlow
5.3.2 Environment
5.3.3 Bus Functional Model
5.3.4 Generator e
53.5 Scoreboard

vi

21
21
22
22
22
24

27
27
28
29
29
30
30
32
32
33

8

5.3.6 Checker e
5.4 Assertions
5.5 Functional Coverage

Simulation

6.1 Synopsys VCS Setup
6.2 Testbench Compilation
6.3 Simulation
6.4 Testbench Debug oo,
6.5 Assertion and Coverage Reporting

Discussion

7.1 Coverage Progress

7.2 Code Coverage
7.2.1 Line Coverage v i i
7.2.2 Condition Coverage
7.2.3 FSM Coverage
7.2.4 Branch Coverage
7.2.5 Path Coverage
7.2.6 Toggle Coverage

7.3 Assertions

7.4 Functional Coverage

7.5 Testbench Discussion and Future Work

Conclusion

Bibliography

A Day-in-the-Life Document

B

A.1 General Information
A.2 Module Blocks
A.3 Communication Bus
A4 AES Operation Flow
A5 AES Internal Operations

Verification Plan

B.1 Typical Operation,
B.2 Tools and Technologies
B.3 Implementation Phases 0oL,
B.4 System Architecture oL
B.5 Layer Implementation
B.6 Scenarios
B.7 Block Descriptions o oo
B.8 Randomization
B.9 Assertions

vil

45
45
45
46
47
47

49
49
50
50
50
o1
o1
52
93
53
o4
o4

57

59

61
61
62
62
64
65

B.10 Code Coverage o i 74

B.11 Functional coverage Lo 75
Testbench Source Code 77
C.1 TopModule 79
C.2 Wishbone Interface oo oo 81
C.3 Test Program 83
C.4 External Assertions Module, 93
Ch AES Top Module 95
C.6 C Language Communication Function 97
Coverage Reports 101
D.1 cmView.short Id File 101
D.2 cmView.short cd File o000 103
D.3 cmView.short fd Fileo 105
D.4 cmView.short bd File 110
D.5 cmView.short pd File 118
D.6 cmView.short td File 130
D.7 cmViewmod tdFile o000 133
D.8 Assertions Report o 135
Signal Waves and Screenshots 141
E.1 Screenshots L 141
E.2 Signal Waves 143

viii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

5.1
5.2
9.3

Al
A2
A3
A4
Ab
A6
AT
A8

B.1
B.2

E.1
E.2
E.3
E.4

Verification vs test [1] Lo 5
Testbench and DUT 6
Analyzing functional and code coverage results [2] 9
Bugrate graph [2] 9
Coverage versus time [2] Lo 10
Bathtub distribution [2] 0oL 11
Coverage feedback o oo 12
Layered testbench example [2] 13
Wasting time vs starting early [5] 17
Testbench module structure 36
Source code for a_rounds assertion 44
Source code for covWbDatln cover group 44
AES module blocks oo 62
Wishbone module 62
AES flow o 64
SubBytes operation [3] Lo 65
S-box table [3] 65
Shiftrows operation [3]o 66
MixColumns operation [3] 66
AddRoundKey operation [3]o oL 67
Testbench data flow 70
Testbench data flow 71
DVE screenshot 141
cmView screenshot L L L 142
AES module signal waves L 144
Wishbone write operation oL 145

X

List of Tables

3.1 cmView code coverage reports 25
5.1 Testbench modules and files 36
5.2 Mailboxes 37
5.3 Transaction class properties 38
6.1 Compile-time switches 46
6.2 Runtime switches oo oL 46
7.1 Code coverage progress (percentage) 49
7.2 Line coverage SUIIMATY« .« v v v v v v b 50
7.3 Condition coverage summary00 51
7.4 FSM coverage SUMIMATY . . . « .« v v v vt v e e e 92
7.5 Branch coverage summaryo 52
7.6 Path coverage summary Lo 93
7.7 Toggle coverage summaryo oo 53
A.1 Signals of the Wishbone module 63
A2 Valid addresses of wb_adr 1 oL 63
B.1 Typical operation 69
B.2 Tools, language and technologies 69
B.3 Phases 70
B.4 Component Implementation 71
B.5 XY-grid phases/layers 72
B.6 Scoreboard descriptiono oo 72
B.7 Checker descriptiono 72
B.8 BFM descriptiono 73
B.9 Generator descriptiono 73
B.10 Assertions 74
B.11 Code Coverage Analysis Plan 74
B.12 Cover groups e 75

x1

Abbreviations

AES ... Advanced Encryption Standard

BFM Bus Functional Model

DITL Day in the Life

DUT Device Under Test

DVCon Design & Verification conference & exhibition
DVE Discovery Visualization Environment

FIFO First In First Out

GCC GNU Compiler Collection

HDL Hardware Description Language

HDVL Hardware Description and Verification Language
HVL Hardware Verification Language

1 Intellectual Property

SVA SystemVerilog Assertions

URG Unified Report Generator

VMM Verification Methodology Manual

xiii

Chapter 1

Introduction

HE MAIN TOPIC of this master thesis is the planning and employment of modern
T verification techniques to verify the functionality and properties of a selected
open source RTL model.

1.1 Motivation

Verification is the task of verifying that an implementation meets its functional in-
tend. As digital hardware designs grow more and more complex, the verification
task gets more important in order to ensure that bugs are found before the design
hits the market. At the same time, a more complex chip requires a more complex
verification process.

From the 1990s until today, several new technologies have been introduced to
help the verification process. To speed up the verification process, stimuli is gener-
ated by constrained random functions, instead of manual generation of each input
set. Code coverage and functional coverage is used to track the progress and quality
of the simulations. Assertions are implemented to monitor the behavior of the device
being tested. Testbenches are split up using object oriented techniques to make them
more maintainable and reusable.

Many of these techniques have been introduced by the verification languages E
and Vera in the late 1990s. The recent years, a new language called SystemVerilog
has been standardized. It is a verification and high-level modelling language based
on Verilog, which makes it easy to integrate with Verilog models to be verified.

1.2 Problem Formulation

When the thesis was given, it was made clear that the work would naturally consist
of three main parts, where most of the focus would be on the first two:

2 1. INTRODUCTION

The first part of the job was to get to know the theory about verification plan-
ning, and verification using SystemVerilog. A number of books and articles on the
subject were recommended by the supervisors. This part also contained the task of
selecting a module suitable for being verified.

The second part involved making a verification plan for the selected module. The
verification process and testbench planned should exploit modern verification tech-
niques from the theory, like constrained randomization, functional coverage, object
orientation and assertions.

The third part was the practical work: To implement the testbench planned in
the verification plan, carry out the simulations using Synopsys VCS and analyze the
results with the available tools.

1.3 Contribution

In this thesis a verification plan for an AES RTL model has been created, based on
theory about constrained randomization, functional coverage, object orientation and
assertion based simulation. The planned verification system has then been imple-
mented using SystemVerilog, and simulated using Synopsys VCS. Simulation results
have been analyzed to ensure that the verification process has been adequate.

1.4 Organization of the Thesis

Chapter 2 of the thesis is a theory chapter that explains the techniques used in the
verification process, and will serve as the theory basis for the planning and imple-
mentation process.

Chapter 3 is a theory chapter introducing the SystemVerilog language and the
Synopsys VCS tools. It contains the theory background for the implementation of
the testbench in SystemVerilog, and the simulation of the system using Synopsys
VCS.

Chapters 4, 5 and 6 present my contributions. Chapter 4 steps through the cre-
ation of a verification plan for the chosen module. The module selection process is
also described.

In Chapter 5, the implementation of the testbench is presented. The simulation
of the testbench is described in Chapter 6.

Chapter 7 contains the discussion of the simulation results. It also contains a
discussion on the testbench design and future work. Conclusions are drawn in chapter

ORGANIZATION OF THE THESIS 3

Chapter 2

Verification Theory

HIS CHAPTER gives an introduction to techniques commonly used in the verifi-
T cation process, and gives the necessary background for the verification planning
and implementation described in later chapters.

2.1 What is Verification?

The purpose of the verification process is to verify that the design functions like it is
intended to. This process should both verify that the implemented functions behave
correctly, and that all parts of the planned system are implemented.

2.1.1 Verification vs Test

Verification must not be confused with the test process. Verification is the process
of verifying the functionality of a design, while the test process tests if the design
has been manufactured correctly. This is shown in Figure 2.1.

HW Design Manufacturing

Specifi

cation — v

Verification Testing

Silicon

Figure 2.1: Verification vs test [1]

2.1.2 Verification Technologies

Simulation based verification and formal verification are the two most common tech-
nologies used in verification.

6 2. VERIFICATION THEORY

Simulation Based Verification

Simulation has traditionally been the main technology for verification. In its sim-
plest form, a testbench is used to generate relevant input stimuli, which is sent to
the device being verified. The testbench will also fetch the output from the device,
to check for its correctness, as illustrated in Figure 2.2. The device being verified is
often called device under test (DUT)

Testbench

DUT

Figure 2.2: Testbench and DUT

Seen from the device under test, the testbench will act like a simulation of the
outside world. It is usually impossible to test all combinations of indata, this could
require years of simulation time. It is therefore important that the testbench stimuli,
and also the sequence of the stimuli, reflects the randomness a normal user would
provide. There will be more about random stimuli generation in Section 2.3.

Simulation can show only the presence of bugs, never prove their absence [1].
There is, for designs of normal sizes, never time enough to simulate all combinations
and sequences of stimuli and outside influence. There will always be a possibility
for undiscovered bugs in the design. Section 2.2 is about coverage, which is a way
to measure the completeness of a simulation, and therefore predict the possibility of
remaining bugs.

Formal Verification

Formal verification is a way to mathematically check that a design is functionally
correct. This is done using special tools acting on assertions, which is a way to spec-
ify the properties of the design.

Formal verification on large designs is an operation with very high complexity,
and therefore not used on full designs. Formal verification is more commonly used
to verify corner cases of the design, which is not easily reached by simulation.

COVERAGE 7

Some tools combine the power of simulation based and formal verification. This
combination is often called hybrid verification.

2.2 Coverage

Coverage is a way to measure how thoroughly the design has been verified during
simulations. This is important, since there is never infinite time available for the
verification process. We need to know when we could be confident enough that the
design is bug-free, and ready for the market. There are two main types of coverage:
Code coverage and functional coverage.

2.2.1 Code Coverage

Code coverage answers the following question: How much of the design implementa-
tion has been executed during verification?

Code coverage is collected automatically by the simulation tools. Even though
collecting code coverage does not represent much extra work for the verification en-
gineer, it might be a good indicator to see if enough simulations have been carried
out. In addition, code coverage analysis can often reveal redundant code in the DUT.

There are many different types of code coverage metrics. These are the main
ones, listed in [4]:

e Line Coverage tells which lines, statements and blocks that have been executed
during the simulation.

e Condition Coverage shows which combinations of inputs to conditional expres-
sions that are covered.

e FSM Coverage reports about which states, state transitions and sequences of
state transitions that are covered in the finite state machines of the design.

e Branch Coverage shows which parts of each single if and case expressions that
have been covered.

e Path Coverage shows which sequences of if and case selections that have been
covered.

e Toggle Coverage monitors the value change from 0 to 1 and 1 to 0 for every
signal, and reports which combinations that have been covered.

Often, the goal for each metric is set to 100% ezplained coverage. The non-covered
parts of the code will then have to be explained why it is not covered.

8 2. VERIFICATION THEORY

2.2.2 Functional Coverage

Code coverage, as shown in the previous chapter, is a good way to find out how
thoroughly the implementation has been tested. But what if some planned features
are simply missing in the implemented design? This is where functional coverage
can help.

Functional coverage answers the following question: How much of the design
specification has been verified?

In contrast to code coverage analysis, functional coverage analysis is associated
with quite a lot of manual work. Since functional coverage measures the completeness
of the simulation compared to the specification, the specification has to be somehow
entered into the system. This is done manually, using cover groups or cover proper-
ties.

The most flexible of the two is the cover group. It consists of one or more cover
points, which are specified to sample data at specified signals or expressions in the
design. Expected data are grouped in ranges called bins. When data is sampled,
the corresponding bin is marked as covered. Coverage analysis will reveal which bins
that are covered, and which ones are not.

Two cover points could be combined to form a matrix-style data bin. This is
called cross-coverage.

The second, simpler, mechanism for functional coverage collection is cover proper-
ties. Cover properties look much like assertions, described in later chapters. Analysis
of cover properties will reveal how many times the property has been hit.

2.2.3 When Are We Done?

The main purpose of using coverage analysis is to get a measure about how thor-
oughly the design has been tested, and to give an indication on whether the verifi-
cation process is complete or not.

Figure 2.3 shows a table about how to react on the coverage percentages. If the
functional coverage is high, but the code coverage is low, it might be necessary to
include more functional cover points. If the code coverage is high while the functional
coverage is low, it might be worthwhile to check out the design code, to see if the
specification is fully implemented.

The goal is high code coverage and high functional coverage. If this is achieved,
the bug rate could be checked. Figure 2.4 shows an example of a bug rate graph for

RANDOMIZATION 9

o
(o))

Need more FC
© c : .
o 2| points, including G(r::odkcoverage.
3 corner cases check bug rate
(&)
'(_Cu Bersssensn s
o =3 s design complete?
"g 9 Start °tf Perhaps try
S projec formal tools
[T H

Low High

Code Coverage

Figure 2.3: Analyzing functional and code coverage results [2]

a verification process. The graph, showing bugs found per week during the project,
could be an indicator on how much work there is left.

A

| Untegration

8 New DUT code New verif.

2 engineer

e

1)

O

=

m
B>

Time

Figure 2.4: Bug rate graph [2]

2.3 Randomization

If the design to be verified is small, with only a few inputs (and input data combi-
nations), a classic, directed approach to the verification process might be adequate.
Each set of input data will then carefully be written manually, in order to achieve
the wanted coverage.

With today’s complex designs, however, writing directed testcases will usually
take way too much time. A better way to generate test inputs and scenarios is to

10 2. VERIFICATION THEORY

use pseudo-random functions. Instead of spending a lot of time of aiming one bug
at the time with a directed test, a set of random tests will hit a larger area at the
same time, with automatically generated stimuli. Peet James [5| compares this with
using a shotgun to hit bugs, instead of using a peashooter.

The graph of covered design space versus time will be a bit different between the
two approaches, as shown in figure 2.5. Using directed tests the graph will be quite
linear, since each testcase will be written manually. Using random testing, the graph
will first be flat, representing the time spent on creating the random testbench. The
graph will then typically rise faster than the directed graph, and then (hopefully)
reach the coverage goal faster than the directed tests.

100%f~"""""""""TTTTTTTTTTTeT T S

L""I

Random

Test :'

r
I

Directed
Test

Coverage
]

Time

Figure 2.5: Coverage versus time [2]

2.3.1 What to Randomize

The obvious thought about randomization is to randomize the input data. In this
way the need for manually created stimuli is eliminated. However, randomization is
much more powerful than that.

The purpose of a testbench is to simulate the outside world as good as possible. It
should test the device to its limits, to create special situations often discovering bugs.
It should act random in more ways than just generation random input data, just like
a normal user would do. [2] gives some examples on what could be randomized:

e Device configuration
e Environment configuration

e Primary input data

RANDOMIZATION

11

Encapsulated input data

Protocol exceptions

e Communication delays: Delay responses with a number of clock cycles
e Transaction status

e Errors and violations

Scenarios are often planned in order to implement the more advanced random
features. Each valid operation of the design is then defined as a scenario in the
testbench. This could for instance be a memory read operation. The scenarios are
then randomly selected by the testbench during the simulation.

2.3.2 Constraints

Randomization without constraints, like described previously, would be like shooting
in the dark. By specifying constraints for the random stimuli generator, you could
"aim the gun" at the design parts with high probability of bugs. And, more impor-
tantly, try to reach the parts of the design which are not already covered.

One type of constraints is the specification of the data format. For instance the
width of a bus address, or valid configuration bits.

Constraints could be used to create a higher probability for interesting data.
Often data in the upper and lower extremes of the allowed range could provoke
overflow errors. To achieve this, a so-called bathtub distribution of the data could
be made, as shown in Figure 2.6.

>

=

=

© Sum s a

- ~ bathtub ~

— . " e - .

o | Exponential = - - Exponential
0 Values WIDTH

Figure 2.6: Bathtub distribution [2]

Using a feedback mechanism like the one in Figure 2.7 it is (at least theoreti-
cally) possible to automatically seed the random generator, so that areas not already
covered are targeted. I practice, this is difficult and yet not very common to do with
today’s verification tools [6].

12 2. VERIFICATION THEORY

Constrained
Random Stimuli

NOILLVINNIS

Functional
Coverage

COVERAGE FEEDBACK

Figure 2.7: Coverage feedback

2.3.3 Seeds

Given the exact same testbench, and the same simulator software, the pseudo-random
number generator will always generate the same numbers. It is possible to seed
the number generator to achieve different random number series. This could be
interesting to be able to run many short series of simulations, instead of one long
series.

2.4 Layers and Reuse

If you are verifying a very small design, almost any testbench architecture could be
adequate. However, as DUTs and verification systems grow more complex, it is im-
portant to have more structured testbenches. The code should be easy maintainable
even when the project grows bigger. Code will also often have to be reused in future
verification projects.

To achieve this the testbench has to be split up in layers and components. With
smaller units it is easier to achieve goals of maintainability and reusability.

2.4.1 Layered Testbench Architecture

Using layers is a way to split the testbench in different levels of abstraction. The
lowest level of abstraction will typically be the functionality communicating with the
DUT. The upper layers deal with tasks of higher abstraction, like stimuli generation.

LAYERS AND REUSE 13

Figure 2.8 shows an example of a layered testbench, based on figures and exam-
ples published in [2]. This must be regarded as an example only. For instance, DUTs
with more complex communication might require more layers. Small devices could
maybe do with even fewer layers than four.

Test Test
|
; Ton e En;ir_onTn;nt_'
Scenario || Generator |
1] i
Functional : Agent * Scoreboard Checker :
1 A
I y I 1
Command | Driver Assertions Monitor| |
I N I N i WS |
Signal » A v Vv

DU

Figure 2.8: Layered testbench example [2]

The components of the layers are implemented as classes. Features already well-
known from object oriented programming languages are therefore available, like in-
heritance, instantiation and threads. This opens for a more elegant way of handling
data, as well as greater possibilities for component reuse.

Test Layer

The test layer consists of the test component. Test is the top-level component. It
contains the constraints for the stimuli. It should be easy to change, so the simula-
tion easily could be fine-tuned between each run.

Scenario Layer

The scenario layer contains the generator component. Generator generates the stim-
uli on behalf of the constraints from the test component. It also contains the sce-
narios. All randomization tasks are carried out in the generator. Generator also
contains the scenarios. The randomization mechanisms are discussed in detail in
Section 2.3.

14 2. VERIFICATION THEORY

Functional Layer

In the functional layer data could be further processed and broken up before it is
sent to the command layer. This layer also contains the tasks related to checking
the correctness of the DUT outputs. It contains the agent, scoreboard and checker
components.

e Agent could be used to further process the data before it is sent to the driver.

e Scoreboard contains a high-level reference model of the design. It receives the
same stimuli as the DUT, and predicts the correct DUT response.

e Checker compares the DUT output received from the monitor with the predic-
tions received from the scoreboard.

Command Layer

The command layer is where the direct communication with the DUT is maintained.
Here the signals of the DUT are driven and monitored.

e Driver is the component which drives the inputs of the DUT, typically using
bus commands.

e Monitor is the second component communicating with the DUT. It monitors
the outputs of the DUT, and sends the received outdata to the checker.

e As seen in the figure, external assertions could be though of as a part of the
command layer.

Signal Layer

The signal layer simply contains the device which is being verified, and its signals.

2.4.2 Callbacks

Often it would be useful to be able to do some randomization tasks also in low-level
layers like the Driver. An example could be to simulate disturbances in the DUT
communication, like delaying a response signal, or dropping and retransmitting a
data packet.

However, specifying details about the randomization inside the Driver is not
a good idea. Randomization settings should be easy to change later. Therefore,
callback functions are often defined. They are defined in their own class, and can
therefore be easily changed later using inheritance. Driver should always call callback
functions right before and right after data transmission.

ASSERTIONS 15

2.4.3 Verification IPs

For verification of standard components, like buses, it could often be more worthwhile
to buy already finished code than writing it oneself. Verification IPs are IPs with
verification functionality.

2.5 Assertions

Assertions are small code blocks inserted in the design, containing statements about
the expected behavior of the design code. In its simplest form, an assertion can be
viewed as an if statement that does some error action if the DUT fails to fullfill its
requirements. Assertion statements are quite common in software design, but has
only become available in hardware design tools recent years.

Assertions could be specified by both the designer and the verifier. Who does
what should be decided in the verification planning process.

Assertions could either be coded from scratch, or picked from a library. Synopsys
VCS includes a library of SystemVerilog assertions [7]. In this way, a lot of common
functionality can be easily checked using assertions already made.

In addition to monitoring design properties during simulation, assertions can also
be used with formal verification tools. The properties specified in the assertions are
then used as the basis for the mathematical proofs.

A good, practically oriented guide to SystemVerilog Assertions is written by Vi-
jayaraghavan and Ramanathan [8].

2.5.1 Assertion Types
In SystemVerilog, there are two ways to implement assertions: Immediate and con-

current assertions.

Immediate assertions are, as the name suggests, executed immediately along with
the code. They are placed in procedural blocks.

Concurrent assertions are clock-based. A concurrent assertion will monitor a
signal or an expression on each clock edge through the simulation, and fire if the
expression fails.

2.5.2 Assertion Placement

Assertions could either be placed directly in the code of the DUT, or in the testbench
monitoring the bus. Assertions in the DUT are called internal assertions, while as-

16 2. VERIFICATION THEORY

sertions placed in the testbench are called external assertions.

External assertions often monitor the bus signals between the testbench and the
DUT. If an interface is used, a module containing assertions could easily be con-
nected to the interface like any other module (interfaces are introduced in Section
3.2.2). If not, the assertions could be bound to the signals using a bind statement.

Internal assertions could either be written by the designer during the design
phase, or by the verifier during the verification process. Special internal conditions
and assumptions should be stated in assertions created by the designer. In this way
they are not accidentally left out from the verification process. The VMM (Verifi-
cation Methodology Manual) [6] even suggest designers to replace the ordinary code
comments with assertions. This might probably be a bit too dramatic to most de-
signers, but at least well illustrates the idea of internal assertions.

Assertions are left out during synthesis, and therefore does not affect the finished
product after synthesis.

2.5.3 Error Reporting

By default assertions print an error message when they fail. However, the error ac-
tion can be customized.

This gives a possibility to create an error report mechanism. If an assertion fails,
it could trigger a mechanism that reports the relevant states and data for the design.
Previous data and states should also be included in the report.

With this kind of reports it would be easier to regenerate the situation where the
error was found, and to find out what caused the error to happen in the first time.

2.6 Verification Planning

Since verification projects are growing more and more complex, it is also becoming
more and more important to create a good plan before the verification is started.
Creating a good plan will save a lot of time later. It is also essential to have a
plan in order to know when the verification is finished and the coverage results are
considered good enough.

The theory about verification planning is based on Peet James’ book Verification
Plans [5], which proposes a five-day approach to the verification planning process.
However, some adjustments are made to better fit SystemVerilog testbenches. The-
ory about verification planning for SystemVerilog is to some degree found in [2], [1]
and [9]

VERIFICATION PLANNING 17

2.6.1 The Verification Team

A verification team should be assembled to do the verification planning. In addition
to the verifiers, the team could consist of other people that has relevant input. First
of all, this should be the architects and designers, who have first-hand knowledge of
the functionality of the design.

The verification planning should start as early as possible. If possible, it should
start before the design phase of the design core starts. In this way, the parts of the
core could be verified before the entire design is ready. This is shown in Figure 2.9.

[SPECM RTL H Synth/Floorplan/Layout J,";}
<
L’a Verif Verif 3
eri erify

S Debué E

W asted Time
SPEC RTL Synth/Floorplan/Layout 7
&
Verif B Verify M)

erify erify More
Plan g‘ﬂ
Build
Debug

Figure 2.9: Wasting time vs starting early [5]

2.6.2 Day-in-the-Life Document

To be able to create a verification plan for a design it is important to know its fea-
tures. A day-in-the-life document (DITL) is a short document demonstrating the
most common tasks of the design. It is short and consise, typically a few A4 pages.
This document can by no means exclude the needs for more detailed specifications
of the DUT, but it can give a good overview of the design.

By starting the verification plan process by making such a document, the veri-
fication team will get an overview of the tasks of the DUT. This makes it easier to
make a good and relevant verification plan.

2.6.3 Tools and Technologies

One of the things to be stated in the verification plan is the choice of verification
tools, verification languages and verification technologies. This is typically done
gradually in the verification planning process, as the verification needs for the design
are revealed.

18 2. VERIFICATION THEORY

There is a wide variety of languages and tools available. There is more about
some of these in Chapter 3. Often many of the languages and tools could be adequate
for the process. Knowing which languages that are mastered by verification team is
of course also important to make the right decision.

The verification plan should also contain information about the verification tech-
nologies to be used. If some areas of the design are verified using formal tools, there
should be information about this in the verification plan.

2.6.4 Architecture

An important thing to define in the verification plan is the architecture of the test-
bench. The verification plan examples given in [5] starts off with a short list of
typical operations of the testbench.

Figures showing the blocks and the data flow of the testbench should be added
to describe the architecture. In addition, the layers and the components of the test-
bench should be described in greater detail in text or a table.

Planned scenarios should be listed and described.

A plan for the randomization features should be made. If there are any planned
constraints, they should also be described.

For complex verification systems, it could be smart to also work out more detailed
implementation plans for the testbench. In [5], these are called breakout documents
and appear in the appendix of the verification plan.

2.6.5 Assertions

The assertion plan is a natural part of the verification plan. It could well be specified
in a table form, such as the examples in [9]. As a minimum, the following information
should be stated:

Which functionality to verify

Where the assertion is placed (external or internal assertion)

e Assertion type (immediate or concurrent assertion)

Who implements it (designer or verifier, or name of the responsible if the
verification team is large)

Who implements which assertions? The following rule of thumb is given in [9]:
Designer engineers should write assertions to verify assumptions that affect the func-
tionality of a design block. That could be, for instance, that an internal module

VERIFICATION PLANNING 19

never gets X or Z values as an input. Verification engineers should write assertions
that verify design functionality meets the design specification. For example, that bus
behavior is correct.

2.6.6 Implementation Phases

Phases define the milestones in the implementation process. They are the steps in
the implementation of the testbench. Each phase will build on some of the previous
phases.

If the design to be verified is not yet finished, phases should be planned even more
carefully. It is important that the implementation of the verification system closely
follows the implementation of the design. In that way parts of the design could be
verified before the full design is complete, and the time spent on verification after
the design phase has ended will be shorter.

Layers and phases could be crossed in an XY grid to show which layers that needs
to be implemented in which phases.

2.6.7 Coverage Collection and Goals

A section should list which code coverage types that will be analyzed, and the ap-
proximate goals for each of them.

The functional coverage points should be planned, and listed. This list should at
least cover:

Which signal or expression to cover
e Purpose

e How many bins there should be, and how the bins are specified

The placement of the cover group (internal or external)

The coverage goal for the cover group (expressed as a percentage)

21

Chapter 3

Tools and Languages

HE BACKGROUND THEORY about verification tools and verification languages is
T collected in this chapter. SystemVerilog and Synopsys VCS are treated in par-
ticular, since they will be used for implementation and simulation in later chapters.

3.1 HVLs and HDLs

Traditionally, verification has been done using either a hardware descriptions lan-
guage (HDL) or a hardware verification language (HVL) . As long as simple, directed
testbenches are sufficient to verify a design, the easiest would be to use a HDL. The
same language and tools as during the design could be used, which the designer
already is familiar to.

With more complex digital designs in the 1990s, there was need for specialized
verification languages. Vera and e were two of them. More advanced features like
contrained randomization and object-orientation were introduced. The disadvantage
of the HDL is that they represent another language that has to be learnt. Vera and
e are both widely used today. However, in a survey in connection with DVCon 2005,
78 percent of the verification engineers thought special verification languages like e
and Vera would disappear in the coming years [10].

Even if better solutions are introduced, it does not necessarily mean that they
will be adopted by the industry. Most companies already have verification code for
most of the functionality of their designs. This legacy code is often also reused in new
verification projects. A change of verification language would mean a lot of work,
since the legacy code will have to be translated and adjusted to fit new simulators.

SystemVerilog, which is described in the next section, is an HVL with most of
the advantages of the HDLs.

22 3. TooLs AND LANGUAGES

3.2 SystemVerilog

3.2.1 Introduction

SystemVerilog has sometimes been called an HDVL, since it combines the strengths
of HDLs and HVLs. SystemVerilog is based on the widely used Verilog HDL, but
has new functionality for verification and high-level system design. This makes it
both powerful and easy to learn for designers already familiar with Verilog. Using
the same language for both design and verification also makes it easier to access the
internals of the DUT, no special interfaces are needed.

The verification features of SystemVerilog include:

e Assertion-based verification

e Random constrained stimuli generation

Functional coverage

e Advanced object-orientation

The creation of the SystemVerilog language was initiated in the late 1990s by
Accellera, a consortium of EDA companies and users who wanted to create the next
generation of Verilog [2]. The OpenVera language was the basis for the verification
functionality of the new language. SystemVerilog became an IEEE standard in 2005.

The Verification Methodology Manual (VMM) [6] is a manual written by Synop-
sys and ARM to give guidelines for advanced verification in using SystemVerilog. As
well as being a reference for the SystemVerilog language, it also states rules about
important verification planning topics, like layering, randomization, coverage and
assertion usage.

3.2.2 Language Properties

In this section, some important language properties of SystemVerilog are collected.
This is based on the book by Spear [2], which has good examples of practical use of
the SystemVerilog language.

Data types

In addition to the 4-state types available in Verilog, SystemVerilog offers 2-states
data types. Since 2-states only considers 0 and 1 values, not X and Z, they are faster
in simulation.

Two of the 2-state types are the bit and int types. Bit is a 2-state single bit
type. Like regs, it can be given a range to support multiple bits. Int is a 32-bit

SYSTEMVERILOG 23

signed integer which works much like in C. Fixed-size int arrays are available, which
is convenient for indexes and loop operations.

Strings, queues and associative arrays are also available in SystemVerilog.

Modules and Programs

In SystemVerilog, the active part of an testbench is usually contained in a program.
Programs could be compared to modules. The difference is that always blocks are
not allowed in programs.

The automatic keyword is often added to program to make the storage of variable
values more like programming languages than Verilog. Local variables are then stored
in the stack instead of being shared between all processes.

Signal Interface

An interface is a collection of signal definitions. Modules will then connect to the
interface instead of directly to each other. In this way signals definitions are collected
in one place, and does not need to be defined in each module. Signal directions could
be specified by creating one modport for each module.

Functions and Tasks

Tasks can consume time, while functions cannot. Functions must have a return type.
In SystemVerilog, task inputs and outputs can be declares in parenthesis, much like
in C.

Object Orientation

Object orientation syntax in SystemVerilog looks very similar to the syntax of C++.
A special pair of keywords, fork and join, represents the threads functionality of
SystemVerilog. All statements between fork and join will be executed at the same
time, as in parallel.

The class-implemented testbench components like Scoreboard and Generator are
often called transactors.

External Functions

SystemVerilog (using Synopsys VCS) has at least three different technologies to call
external functions placed in C code. DPI is the new technology for this purpose in
SystemVerilog. PLI is the corresponding functionality inherited from Verilog. The
last one, DirectC, is a VCS-specific technology. A user guide for DirectC [11] is
shipped with VCS.

24 3. TooLs AND LANGUAGES

Mailbox

Using mailboxes is a flexible way to enable communication between two transactors.
A mailbox could be compared with a FIFO queue. The mailbox could contain any
number of objects.

3.3 Synopsys VCS

Synopsys VCS is a verification software package which supports, among other lan-
guages, Verilog and SystemVerilog. It is the most common software solution for
SystemVerilog verification. In addition to SystemVerilog, it also supports the Open-
Vera verification language. In its MX version it is also capable of verifying VHDL
designs.

Details about VCS could be found in the VCS/VCSi User Guide [12]. There are
still parts of SystemVerilog not implemented in VCS, although most of the impor-
tant features are supported. VCS contains several tools to report simulation results,
described below.

Unified Report Generator (URG) is a new, easy-to-use report generator in VCS
that reports statistics for both functional coverage, code coverage and assertions cov-
erage.

cmView is a tool to report code coverage. It could be run in batch mode out-
putting text-based reports, or in graphical mode showing the results interactively.
cmView is started using the following commands: wvcs -cm_ pp gui for GUI mode,
and ves -cm__pp -b for batch mode. Batch mode creates a number of text files in
the simv.cm/reports/ folder. For each code coverage type, 4 reports are generated.
The different report types are shown in Table 3.1 . In addition, definition reports
are created, denoted by an added d in the filename. They show the cumulative code
coverage for all module instances. Examples of the text-based reports are found in
appendix D, while a screenshot of the graphical interface is shown in Appendix E.1.

Discovery Visualization Environment (DVE) is the signal-level debugger in VCS.
A screenshot of DVE is shown in Appendix E.1.

assertCovReport and fCovReport are VCS commands to generate reports for as-
sertions and functional cover properties. They add a set of HT'ML based reports to
the simv.vdb/reports/ folder. The reports provide statistics for each assertion: The
number of assertion hits, the number of statement success, failures and incomplete at-
tempts. The reports also contain summaries grouped on modules and failure severity.

SyNopsys VCS 25

Report | Explanation

long Main reports showing both covered and non-
covered code parts. Includes summaries.

short Short reports only showing non-covered code
parts and summaries.

hier Sums up coverage for module instances, also tak-
ing into account sub-hierarchy.
mod Sums up coverage for module instances, without

regard to any sub-hierarchy under the module.

Table 3.1: cmView code coverage reports

27

Chapter 4

Verification Plan

HE VERIFICATION PLAN is the plan for the entire verification process. This chap-

ter steps through the creation of the verification plan for an AES module with

background in the theory in Section 2.6. The full verification plan is given in ap-
pendix B, while the DITL document is available in appendix A.

In an ordinary verification process many different persons would be involved, as
mentioned in Section 2.6. In this thesis work, there was no such team available for
verification planning. Making a DITL took more time than it would with the de-
signer available for inputs, since all details now had to be found in the literature and
source code.

It is also worth noting that the DUT was finished at the time the verification
planning process started. This makes the verification flow more direct, instead of
verifying component-by-component.

4.1 Module Selection

One of the first tasks of the thesis work was to find a module to be verified. The
verification tools and techniques were stated in the problem description. In the pre-
sentation of the thesis problem it was suggested that the most relevant place to find
such a module would be OpenCores [13].

OpenCores is a collection of free digital hardware cores on the Internet. They are
often published under the GNU general public license, and usually written in Verilog
or VHDL. OpenCores is often thought of as a hardware parallel to the much larger
community of open source software.

Some requirements were discussed before the search for a module started:

e It should be finished and have code of high quality.

28 4. VERIFICATION PLAN

It should be a design that fits well as an example for the verification techniques.

The size and complexity should be kept in manageable bounds.

It should be written in Verilog, so all SystemVerilog features can be used.

It should be well documented.

Among of the best alternatives were a few microcontroller designs, two USB cores,
and some encryption cores. A core implementing the Advanced Encryption Standard
(AES) was chosen. The core, called 128 AES [14], is written by Javier Castillo in
2000.

The core fullfills most of the requirements: it was finished, and it looked like its
code was of high quality. The design fits well as an example, containing both arith-
metic modules and FSMs. Even though the operation is quite complex, the design
has few inputs and few configuration choices. The core is written in Verilog.

No documentation follows the module, and no code comments are written, which
is seems to be quite typical for all cores available at OpenCores. However, the AES
specification is good, and could in many cases act as the documentation for the se-
lected core. In addition, the communication with the core is done using Wishbone,
a documented bus standard.

4.1.1 Advanced Encryption Standard

AES is an encryption and decryption algorithm. The AES title was given after a
selection process initiated in 1997 by the US National Institute of Standards and
Technology (NIST), in order to find replacement for the Data Encryption Standard
(DES) and triple-DES. The winner of the AES selection process was a candidate
called Rijndael, developed by Belgian cryptographers Joan Daemen and Vincent Ri-
jmen. Rijndael strongest sides in the competition was good performance in both
hardware and software, and low memory requirements.

Rijndael operates on data blocks of 128 bits, while the keys are of sizes 128, 192
or 256 bits. The chosen AES core uses 128 bit keys, which is the least secure, but
fastest option.

The operation of the core was further explored in the creation of the DITL doc-
ument in Section 4.2. The DITL document is placed in Appendix A. Used literature
on AES includes an AES manual by Dr. B. Gladman [15|, the AES specification [3]
and a book written by the AES developers [16].

DAY-IN-THE-LIFE DOCUMENT 29

4.1.2 Wishbone Bus

Wishbone is a public domain System-on-Chip bus. The public domain status is
one of Wishbones strongest sides, as it can be used completely royalty-free. The
Wishbone Bus project is maintained by OpenCores. It was originally developed by
Silicore Corporation.

The Wishbone bus supports communication using one master and either one or
multiple slaves. Data transfer is done using a handshake behavior when data is in-
terchanged on the data signals. Wishbone supports data blocks in any size up to 64
bits. The width of the bus has to be defined in the specification documents. The
core to be verified supports only 32 bit blocks.

The simplest method of Wishbone communication are Single Read and Single
Write cycles, which transfers one block at the time. Every block transfer will then
require repetition of the handshake process. A faster and more convenient way to
transfer data could be implemented using the Block Read and Block Write cycles.
Here, the handshake process initiates a series of data transfers, with a data block
transferred on each clock cycle.

The Wishbone Specification [17] states a set of requirements that has to be ful-
filled before the design can be called "Wishbone compliant". One of the requirements
is to provide a document specifying the Wishbone properties (like data block size and
error behavior). The distribution of the AES core does not contain such a document,
so the source code had to be inspected to reveal the Wishbone properties.

The Wishbone Bus properties of the AES module was further examined during
the DITL creation process. This process is documented in Section 4.2.

4.2 Day-in-the-Life Document

The finished Day-in-the Life document can be found in Appendix A. The work with
the DITL was started by collecting general information about AES and Wishbone.
Since the module is not documented, the source code also had to be examined to
find out the detailed design properties of the design.

A short introduction to the module was written, based on the information given
on the OpenCores hosted web site of the project [14] and the AES specification [3].

The source code of the project was examined to find the module structure, given
in Section A.2. The structure does not differ much from the examples given in the
specification. The SubBytes and ShiftRows implementations are collected in one
module, while the AddRoundKey and MizColumns operations are placed in their

30 4. VERIFICATION PLAN

own modules. The output and input signals in the implementation are also close to
the examples.

A section about the Wishbone bus properties of the design was written in Section
A.3. By examining the source code, it was clear that the module supports only single
read and single write operations, since the ACK signal is automatically lowered after
each data fetch. No connection to the AES module is provided, so a top module will
have to be written in order to simulate the full design.

The supported bus signals were found in the source code and documented in
Figure A.2 and Table A.1. The signals implemented are an absolute minimum of
signals to provide Wishbone compliant communication. The valid addresses of the
wb _adr_i signal were also found and documented in Table A.2.

A AES flow diagram was created to show the internal flow of the AES module. It
was based on the pseudo code found in the AES specification [3|. The flow diagram
is shown in Figure A.3. In 128 bit AES encryption, 10 rounds of the loop is used to
encrypt a message. The AES specification also formed the basis for the figures and
descriptions of each step, placed in Section A.5.

4.3 Tools and Technologies

The verification language, SystemVerilog, was already given in the text. Synopsys
VCS was recommended by the supervisors to be a good choice of tool for SystemVer-
ilog simulations. Synopsys VCS in version 2005.06-SP2 was available at the univer-
sity.

The module is verified with only simulation-based verification, no formal verifi-
cation is used. The focus of the thesis was on simulation based verification from the
start, and using formal verification in addition to this would require much more time
than allowed for study, planning and implementation.

However, the AES module does contain a lot of mathematical operations, so
formal verification could probably have been an effective way to verify some parts of
the design.

4.4 Architecture

A simple, typical operation of the testbench was outlined in the first section of the
verification plan. The chosen testbench flow is a very common one: Stimuli is gen-
erated at the top, and then applied to both the DUT and a reference model. The

ARCHITECTURE 31

results of the two are checked for equality.

An alternative way of checking this particular model could be to first encrypt
the data, and then decrypt the output from the encryption using the same key. This
approach was not chosen, since the more general testbench using a reference model
acts better as an example of a verification system.

Layers are planned in Section B.4 of the verification plan. The layer division of
the testbench follows the theory in [2], and could be seen in Figure B.1. The planned
components of the testbench are a bit different compared to the theory.

The Driver and Monitor components are combined in a component called bus
functional model (BFM. The two Wishbone operations from Driver and Monitor
are more efficiently modelled in one component, since common functionality can be
shared between the two operations. In addition, the two operations will have to
communicate directly, since the reading of the output has to be performed a fixed
number of clock cycles after the writing of the input. This is more easily modelled
with one component (otherwise, a handshake signal would be necessary to allow di-
rect communication).

Agent is removed, since there is no need for further processing of the input data
in this case. The data is sent directly from the Generator to the BFM.

A plan of which classes that shall implement each other is provided in the same
chapter. This is done much in the same way as in the examples in |2].

A figure showing the data float of the testbench has beed included as Figure
B.2 in Appendix B. The data floating though the system is planned to be contained
in objects. In this way, the data that belongs together keeps together through the
system. A short description of the operation of each of the testbench components is
given in Section B.7, as well as a description of the inputs and outputs.

The scenarios are planned in chapter B.6. The AES model does not have many
different operations, so the scenarios are few. The three scenarios planned are en-
cryption, decryption and system reset.

The last part of the architecture planning is the planning of the randomization
features. The most obvious random feature of the testbench is to randomize the key
and data inputs. A common constraint was planned for two inputs: A bathtub data
distribution. The probability of values in the two extremes of the scale will then be
higher, and more interesting values will be generated.

Scenarios will also be randomized. The testbench will use random functions to
select between the three planned scenarios. The planned probability for each sce-

32 4. VERIFICATION PLAN

nario is listed in the scenarios list in Section B.6.

To make sure the handshake functions in the Wishbone bus works as good as
proposed, a random delay is planned in the BFM. Each delay should be between 0
and 10 clock cycles.

4.5 Assertions

7 assertions were planned, and listed in Table B.10. In a real verification project
it would be necessary to check a lot more details using assertions. To be able to
complete the verification process in reasonable time, only a much smaller number of
assertions were planned. However, since the planned assertions have different types
and placements, they are good examples of the assertion planning (and implemen-
tation) tasks of a real-world verification project.

The assertion listing table (Table B.10) is inspired by [9]. For a larger verification
project it could be better to create one table for each DUT block, like in [9].

4.6 Implementation Phases

As described in Section 2.6.6, phases are the milestones of the testbench implemen-
tation process. Seven phases were planned. Since the DUT was a complete design
when the verification planning started, there was no need for the phases to follow the
steps in a design process. The phases were therefore quite straight forward planned,
heading straight for the full testbench architecture.

The first phase is a bit special, since no other phases will use the functionality
implemented in this phase. Its purpose is to make sure, at an early stage, that the
chosen AES module actually communicates and could be simulated. The last six
phases follows a natural flow of testbench implementation:

e Communication using Wishbone interface: The implementation of the BFM,
which is the building block for all communication with the module

e Output checking using reference model: Implement the reference model (off
the shelf model written in C) to run encryption in parallel with the DUT

e Assertions for checking properties: Implement the planned assertions in the
DUT and on the bus interface

e Constrained random stimuli: Implement the random features of the testbench

COVERAGE COLLECTION AND GOALS 33

e Coverage calculation: Implement functional cover groups, and enable the sys-
tem for coverage report creation

e Verification of decryption functionality: Add features to enable verification
of decryption functionality (most of the features in this phase are probably
already implemented in previous phases)

The phases are listed in Table B.3. This list is also combined with the layers
planned earlier to form a layer implementation list, as shown in Table B.4. This
gives an overview of when (in which phase) each of the layers will need to be imple-
mented. This is also shown graphically in the XY-grid of phases and layers in Table
B.5.

With this phase plan, the system is built almost entirely from bottom to top with
regard to the layers, which is natural as long as the DUT design is finished. If there
were parts of the DUT not already finished, the flow might have been different.

4.7 Coverage Collection and Goals

First, code coverage was planned. A list of the code coverages to be analyzed was
created, and placed in table B.11 in Appendix B. The goals are all set to 100%,
meaning 100% explained coverage. All design space not covered will therefore have
to be explained (e.g. impossible states).

The collection of functional coverage is planned in Table B.12. The first four
are straight-forward cover groups to check data distribution of different signals. The
two external ones will be checking the distribution of the Wishbone data signals.
The two internal ones will check the distribution of the AES input signals. In this
way, it can be verified that the bathtub function, as planned in earlier sections, works.

The last planned cover group will be checking the coverage of the S-Box. It will
use cross coverage to check that all possible combinations of the two inputs are cov-
ered.

All function coverage collection was planned to be done using cover groups, not
cover properties. The goals for each of them are 100% coverage.

35

Chapter 5

Testbench Implementation

HIS CHAPTER describes the implementation of the verification system planned in
T the verification plan. The most important relevant properties of the SystemVer-
ilog language are given in the language theory chapter, Section 3.2.2. Important
references for the SystemVerilog language include Spear [2] and the VMM [6].

5.1 AES Module Simulation Test

This section describes the implementation of the phase 1 in the verification plan.
Since the module to be verified was open source code, delivered with no guarantees
or earlier test results, a small testbench was used to check if the module actually
could be simulated with the available software.

This was done using an AES testbench posted on the same OpenCores project
as a basis. The module worked well with this test. A few basic functionalities of the
Synopsys VCS simulation software were also investigated during this test. A sample
waveguide for this communication is shown in Appendix E.

5.2 Testbench Modules

The module structure of the testbench is given in Figure 5.1. The blocks shown in
this figure are the modules instantiated by top. Each one of them are implemented
in their own file. Table 5.1 shows more details.

5.2.1 Interface

The communication signals between the modules are gathered in an interface object.
The reason to use an interface object is to gather all signal declarations in one place,

36 5. TESTBENCH IMPLEMENTATION

test wb_if aestop

svaexternal

Figure 5.1: Testbench module structure

Module name File name Implemented as | Purpose

top top.sv Module Top-level module

test test.sv Program Containing layers and transactors
aestop aestop.sv Module New top module for DUT
svaexternal svaexternal.sv Module Containing external assertions
wb_if wb_if.sv Interface Signal interface

Table 5.1: Testbench modules and files

as mentioned in the theory chapter.

First, the Wishbone signals are defined. The are defined as logic, a 4-state type.
Then, three modports are defined, one for each of the modules to connect to the
interface. Here the signal directions relative to the connecting module are stated.
This is defined using output and input keywords.

5.2.2 AES Top Module

An AES top module had to be designed, since the Wishbone and AES functional-
ities in the design were not connected. This is a normal, simple module. Interface
and internal signals are defined, and the aes and wb_aes controller modules are
instantiated and connected.

The aes module has negative reset, while the wb aes controller has positive
reset. A reset signal sensitive block is written to invert the reset signal for aes.

5.2.3 Test Module

The test module implements the layers and components part of the testbench, the
ones in Figure B.1 in the verification plan. It is implemented using the program
automatic keyword. Test instantiates Environment, which is further described in
Section 5.3.2.

TRANSACTORS 37

5.2.4 External Assertion Module

Assertions monitoring the bus, the so-called external assertions, are placed in their
own module. This module is called svaerternal, and is directly connected to the
interface. Assertion implementation is further described in Section 5.4.

5.3 Transactors

This section describes the implementation of the Test program. The test program
contains the layers and components shown in Figure B.1 from Appendix B. The com-
ponents are implemented as classes. They are commonly referred to as transactors
in the literature ([2] and [6]).

The VMM [6] has several finished classes for transactors, that could be used as
a basis for transactor implementation. In this testbench they are not used, since the
system specified will be easy to build using ordinary classes. For a more complex
testbench it could probably be more interesting to use more building blocks from the
VMM.

Variables in the transactors are implemented as 2-state data types. 2-state types
are also used when fetching data from the DUT, mostly because of their convenient
array properties. This means that X and Z values from the DUT outputs will not be
visible for the transactors, which is a potential problem. However, in this testbench
the X and Z value checking is done in the assertion module. It is directly connected
to the 4-state types in the interface, and will therefore detect any X or Z values. [18]
gives more details about X/Z-value issues in RTL design.

5.3.1 Data Flow

The data flow between the transactors is implemented using mailboxes. Four mail-
boxes are used in the testbench, to enable the data flow in Figure B.2 in Appendix
B. They are shown in Table 5.2.

Mailbox ‘ Communication path
gen2bfm | Generator to BFM
gen2scb | Generator to Scoreboard
bfm2chk | BFM to Checker
scb2chk | Scoreboard to Checker

Table 5.2: Mailboxes

The data sent in the mailboxes are objects of the Transaction class. This class
is defined in the test program. The properties of transaction objects are shown in

38 5. TESTBENCH IMPLEMENTATION

Table 5.3.
Name Data type | Width | Description
data_in bit 128 | Input data
key bit 128 | Key data
data_out bit 128 | Output from DUT
data_c_out bit 128 | Output from reference model
decrypt bit 1 Decryption selector
reset bit 1 Request reset operation

Table 5.3: Transaction class properties

A transaction is put into a mailbox using the put function of the mailbox with
the transaction object as a property. An object is fetched using the function called
get. Get is a blocking function. If get is called on an empty mailbox, the program
flow will not proceed before an object is available for fetching.

The DUT operation is a time-consuming task. In the time of one calculation of
the DUT, the Generator could generate hundreds of new objects. To prevent this,
a handshake mechanism is implemented between the BFM and the Generator. Now
the Generator will not produce more transaction objects than the BEM can consume.

A more elegant way of solving this problem would be to restrict the size of the
mailboxes. The put function would then be blocking when the mailbox is full. Size
restriction of mailboxes is a feature of the SystemVerilog language. Unfortunately it is
not implemented in this version of VCS, according to VCS’ System Verilog Testbench
Constructs manual [19].

5.3.2 Environment

Environment is the transactor that is instantiated by the test program. Its only
purpose is to instantiate and start the other four transactors, as indicated in Figure
B.1.

The four other transactors should be started at the same time, run in parallel,
and the program flow should not continue until all transactors are finished. This is
specified with the fork..join block. The operations between fork and join will be run
in parallel.

5.3.3 Bus Functional Model

The BFM was the first part of the testbench to be implemented, it was implemented
in phase 2. The BFM drives the Wishbone bus to communicate with the DUT.

TRANSACTORS

39

The Wishbone interface of the DUT is not documented, so the source code of the
DUT had to be carefully examined to be able to communicate with it. It appeared
that the module only supported the simplest form of data transfer, single transfer.
The signals supported by the module are presented in Appendix A, Figure A.2.

Four tasks were created in the BFM to make a compact implementation: write-
cycle, readcycle, setsignals and sendreset.

e sendreset simply sets the reset signal low, high and then low again at following
rising clock edges to reset the DUT.

o setsignals is the lowest level of Wishbone communication found in the test-
bench. It sets the signals on the bus. However, before it does so, it calls a
callback task to get a random delay.

e writecycle is a higher level function to create one Wishbone write cycle. It uses
setsignals to set the desired signals on the bus. Then it waits for a wb_ack
from the DUT.

e readcycle uses the setsignals task to present the needed Wishbone signals to
the bus. Data is fetched from the bus when wb_ack is set high from the DUT,
and put in the right section of the data_ cycle out array.

The operation of the BFM is placed in a task called run, like in the other trans-
actors. The operation of run is the following:

e Get a transaction object from the Generator-BFM mailbox.
e Send a handshake to the Generator to tell it to make a new transaction object.
e Split the key and data objects into eight blocks of 32 bits.

e Compose a block to tell the DUT if this is an encryption (value 3'b001) or
decryption (3’b101) operation.

e Check if the transaction object is a reset object. If it is, sendreset is called and
nothing more except for the last point is done.

e If not, the nine cycles of data are sequentially set on the bus using writecycle.
o Wait for 600 clock cycles for the DUT to finish the AES calculations.
e Read the outdata using four readcycle operations.

e Add the received DUT outputs to the data_out variable of the transaction
object.

e Put the transaction object in the BFM-Checker mailbox.

40 5. TESTBENCH IMPLEMENTATION

The callback task referred to earlier is defined in its own class, called BFM _cbs.
In this way, it could more easily be changed between simulations, as described in
Section 2.4.2. The pre-transfer callback task itself is called pre t¢z. The only thing
it does is to call for a random number using $urandom_range, and then wait the
corresponding number of clock cycles. A post-transfer callback is also defined, but
not in use.

An example of a Wishbone write cycle with random delays could be found in
Appendix E.2.

5.3.4 Generator

As described in the theory chapters, the Generator transactor is responsible for the
randomization and data generation tasks. The main functionality of the Generator
was implemented in phase 5. However, a simple generator without the randomiza-
tion functions was implemented in phase 3 to support the scoreboarding operation.

Like in the other transactors, the main operation of Generator is placed in a
run task. The run task first runs a reset task, since the DUT will not operate at all
before reset. After this, the task contains a for loop which creates a specified number
of stimuli sets. The number is specified in the global constant ROUNDS.

In the loop, a randsequence call is performed to randomly select between three
tasks: encrypt task, decrypt task and reset task. The probabilities of each of the
three are specified in the stream expression, here set to be level between the three.
The selected task is called for randomization and stimuli generation.

The encrypt task and decrypt task have much in common. They both start
off by creating a new transaction object. New transaction objects must be created
for every simulation round to make the randomize call work. The new transaction
object is randomized using the randomize function. An assertion is added here to
check that the randomize operation does not fail (if it fails, it returns 0, and the
assertion is triggered). The bit variable specifying encryption or decryption is set to
0 or 1, depending on the task. At last, the transaction object is sent to the BFM
and the Scoreboard using the corresponding mailboxes.

It could be noted that the random selection of encryption/decryption could more
easily be implemented by simply randomizing the decryption bit of the transactor
object, just like the key and data are randomized. However, it was chosen to imple-
ment it using randsequence to show how random scenarios work.

The last task, the reset task, also creates a new transaction object. But, instead
of randomizing, it leaves the stimuli empty and sets the reset bit high. The object
is then sent to the BFM and Scoreboard mailboxes. When it arrives in the BFM, it

TRANSACTORS

41

will tell the BFM to do a system reset instead of the normal AES operation.

In Section 4.4, a bathtub data distribution was planned for the inputs. Unfortu-
nately this was not implemented, due to difficulties with such large data types and
limited time.

5.3.5 Scoreboard

Scoreboard functionality was implemented in phase 3. This phase was the one to
require the most time spent on testing different technologies and reference models to
find a suitable solution.

Reference model selection

First of all, a reference model had to be found. Literature and websites were searched
for a suitable model. In [15], Dr. B. Gladman gives a reference model written in
the C language. On his website [20], a brand new low-level implementation was
found later. This one had quite simple input and output funtions, which made it
suitable for use with the testbench. However, no examples on use were given, so
some hours had to be spent reading C literature |21|, and trying and failing, before a
test program communicating with the reference model could be written. In the end,
it turned out to be even more simple to communicate with it than expected.

A small test program was written. There were some problems because of un-
familiarity with the use of unsigned char arrays, but this was solved by reading C
reference literature [21]. The program was compiled with GCC on Red Hat Linux.

C model communication

The next important step to fullfill phase 3 was to enable communication between the
SystemVerilog testbench and the C reference model. SystemVerilog and Verilog (us-
ing VCS) has at least three different techologies for C model communication: DPI,
PLI and DirectC.

DPI was first tested, since it is the technology tightest bound to SystemVerilog.
A DPI communication example was found in the VCS examples directory. VCS was
used to try to compile it. But, it turned out that the VCS licence installed did not
include the DPI functionality. The system administrator did some checking about
the licences available, and it turned out that this functionality was unavailable with
the licence of the university.

PLI was then checked out. A book about PLI, [22], was obtained, and some work
was done to create a working example. PLI is more complicated than DPI, and this
took some time. However, at some point, a VCS specific functionality called DirectC

42 5. TESTBENCH IMPLEMENTATION

was discovered. This seemed to be a much more usable solution than PLI, and the
PLI investigation was discontinued.

A DirectC user guide [11] was found in the VCS documentation catalog. DirectC
was easier to use than the two previous technologies, however, it took some work to
create a communication prototype supporting as large variables as 128 bits. The C
communication prototype worked well with VCS.

Final Scoreboard implementation

The communication prototype was used as a basis for the scoreboard implementa-
tion. A reference to the external function (described below) is created in the top of
the test.sv file. In the Scoreboard transactor does the following, repeated for each
simulation round:

e Get transaction object from the Generator mailbox
e If the reset bit is not high, send transaction object data to the external function

e Receive the output and add it to the data ¢ out variable of the transaction
object

e Put the transaction object in the Checker mailbox

In the C model, an input and output function specially designed for this test-
bench was implemented. It receives data as UB type, a char based special type for
DirectC. The input variables, containing the key and data inputs, are reversed in
order to be compatible with Dr. Gladman’s C model. Decrypt or encrypt operation
is selected by the decrypt scalar input. After AES operation, an UB array is reversed
and passed back to the SystemVerilog testbench.

A detail worth noting is a difference in the decryption behavior between the the
¢ model and the DUT. The DUT takes the original key as input, while the ¢ model
needs the pre-processed key for input. This is solved by running an encryption with
the same key before the decryption, and using the output key from the encryption
as the input key for the decryption.

5.3.6 Checker

The checker transactor is implemented in phase 3 to enable output checking of the
parallel DUT and Scoreboard operations. Checker has the following behavior, re-
peated for each simulation round:

e Receive transaction objects from BFM and Scoreboard. Since the get function
is blocking, the checker will wait here until the BFM/DUT is finished.

ASSERTIONS 43

e Check that the output from both AES operations are equal.

The output check is implemented as an immediate assertion. In this way, its
results could be analyzed using the normal assertion reports.

5.4 Assertions

This section is about the implementation of the assertions. The assertions are
planned in Section B.9 in Appendix B. The assertions are implemented during phase
4.

The external assertions are placed in a separate module connected to the inter-
face. In this way, they are able to monitor the wishbone signals directly. There
are three assertions implemented in this module. The fourth external assertion, the
one that compares the outputs of the DUT and scoreboard, is a special case and is
implemented inside the testbench: In the Checker transactor.

e ACK is never set high without a preceding STB. This assertion uses the $rose
keyword to be evaluated every time the wb ack signal rises. The indication
arrow requires wb_ stb to be high when this happened.

o Wishbone bus never has any X or Z bits when reading is allowed. This assertion
uses $isunknown to look for unknown values on the wb_dat o signal. The
expression contains AND operators to express that no bits should be X or Y
when wb_we (write enable) and wb__ack is high.

o Request from testbench results in ACK from DUT within 10 clock cycles. This
is checked using an assertion from the OVL library, assert handshake. A sub-
assertion of this library assertion is used to also check that the length in the
ACK signal is not more than 3 clock cycles.

o DUT output value is the same as the scoreboard value at the end of each run.
This one is implemented in the Checker transactor, as an immediate assertion
that compares the data out and data c_out of the transaction object.

The internal assertions are placed directly in the DUT code. Due to limited time,
only one internal assertion was implemented: The one that checks that number of
rounds of AES operation does not exceed 10. 1t is placed in the aes.v file, inside the
module called aes. The code for this assertion is placed in Figure 5.2

5.5 Functional Coverage

Functional Coverage groups were to planned be implemented in phase 6. The work
began with the implementation of the first cover group in Table ??. The cover group

44 5. TESTBENCH IMPLEMENTATION

#¢ Round count assertion
property p_rounds:

@{pozedge cllk) not (round > 117;
endproperty

a_round=s: assert propertvip _rounds=):
c_round=s: cover property (p_rounds):

Figure 5.2: Source code for a_rounds assertion

was implemented inside the BFM transactor. The cover group definition is shown in
Figure 5.3. It consists of one cover point, monitoring the Wishbone in data signal
(wb_dat_i). The sampling of coverage data is done using the covWbDatIn.sample()
expression, which is placed in the writecycle task of the BFM. In this way, coverage
data is sampled from the Wishbone bus every time something is written to it.

<« Define cower group for WB indata
covergroup covibDatIn:

coverpoint wbh_i1f wh dat_1:
endgroup

Figure 5.3: Source code for covWbDatIn cover group

As mentioned earlier, the plan was to analyze the functional coverage using URG.
However, because of licencing problems, older analysis tools had to be used. None
of them could analyze cover groups. Some efforts were done to try to implement the
planned functional cover groups as cover properties. Cover properties are much sim-
pler than cover groups, and are normally only used to monitor visited signal, not the
values of those. For instance, they don’t have any functionality comparable to bins.
More details about cover groups and cover properties could be found in Section 2.2.2.

As a test, a cover property based on the assertion in Figure 5.2 was created. It
is specified in the last line of the source code in the same figure.

45

Chapter 6

Simulation

HIS CHAPTER describes the setup of the software tools and the compilation and
T simulation of the testbench.

6.1 Synopsys VCS Setup

The testbench was compiled, simulated and debugged using Synopsys VCS 2005.06-
SP2. The Synopsys VCS software was installed by the system administrator, but
some minor adjustments of the settings were made to make simulation easier. The
software had been installed at the central Linux system running Red Hat Linux.
Communication with this system was carried out using partially a SSH client, and
partially an X-Windows client (to enable use of graphical tools).

In order to make VCS work at my Linux account, the environment variables
VCS_ HOME and PATH i .bash _profile were edited. Some editing was also necessary
to connect the system to the right license server.

6.2 Testbench Compilation

To compile the testbench, the vecs command was used. Switches were applied to
make the settings needed for the operation. The compile time switches are listed
and explained in Table 6.1.

The final testbench was compiled using the following command:

vcs +define+ASSERT_ON -debug -cm assert+cond+tgl+line+fsmtbranch+path \

-sverilog -PP -assert enable_diag *.v *.sv aes.c -1 compile.log \
-y "/sva-lib +libext+.sv +vc +sysvcs \
+verilog200lext+.v+incdir+$~/sva-1ib

46 6. SIMULATION

Name Description

-debug Compile for debug in DVE
-debug_all Compile for debug in DVE with linestepping features
-cm assert+path Enable collection of code coverage
-sverilog Enable SystemVerilog compilation
+define+ ASSERT ON | Assertion calculation

-PP Enable debugging

-assert enable diag Extended SVA reporting

-1 compile.log Save compilation log file

+ve Enables DirectC

-y Specify Library Directory
+verilog2001ext Specify Verilog filename ext.
+incdir Specify include directory

Table 6.1: Compile-time switches

The compilation results in an executable file to be run to start the simulation.
The name of the file could be defined using a switch. The default name of the file is
stmu.

6.3 Simulation

Simulation is started using the executable file that was created during compilation.
Like in compilation, switches are applied to change settings. Some of the available
switches for the simulation are listed and explained in Table 6.2.

Name Description

-cm assert-+path Collect code coverage

-assert Assertion settings

-1 run.log Save simulation log file
+ntb_solver mode—=1 | Randomization preprocessing mode

Table 6.2: Runtime switches

The final testbench was simulated using the following command:

simv +ntb_solver_mode=1 -cm assert+cond+tgl+line+fsm+branch+path \
-1 run.log -assert filter

TESTBENCH DEBUG 47

6.4 Testbench Debug

In order to be sure that the final testbench would be functionally correct, every
part of the testbench code was tested and debugged during implementation. This
was done using normal simulations and the debugging tool in VCS, DVE. DVE was
used to show waveforms for signal debugging. There is more about DVE in Section
3.3. DVE is started by applying the -gui switch to the simulation executable. For
instance: simv -gus.

6.5 Assertion and Coverage Reporting

URG, described in Section 3.3, was the tool that was planned to be used for gener-
ating reports: Both code coverage, functional coverage and assertion reports. Un-
fortunately, URG was not included in the VCS licence held by the university. The
system administrator was in contact with the licencing organization to try to add
access to URG to the licence, but this was not possible.

Instead, older tools had to be used. To generate and view code coverage, cmView
was used. For assertion reports: assertCovReport. For functional coverage proper-
ties: fcovReport. The tools are described in Section 3.3. No tool capable of creating
reports from the functional coverage groups was available with the licence held by
the university.

AssertCovReport and fcovReport were executed by calling the assertCovReport
and fcovReport commands, respectively. They placed a HTML based report in the
simv.vdb/reports/ folder. The full reports for the final simulations are shown in
Appendix D.8, and the results are discussed in Chapter 7.

cmView was used, both in GUI and batch mode, to generate reports about code
coverage. cmView in batch mode puts out text-based reports like the reports in
appendix D. The reports from the different runs are analyzed and compared in
Chapter 7.

49

Chapter 7

Discussion

HIS CHAPTER will discuss the coverage results achieved during the simulations.
T Unfortunately, because of software licence problems, the functional coverage re-
sults are very limited. The code coverage results, however, will be presented and
discussed. The last section of the chapter contains a discussion on the testbench
design and possible future work.

7.1 Coverage Progress

For the final testbench 5 different simulation sessions were carried out. The sessions
were done using the same testbench, but with different number of simulation rounds:
Respectively 10, 100, 1000, 10 000 and 200 000 encryptions/decryptions, by changing
the ROUNDS constant in the testbench between each run. This was done to track
the coverage progress. Table 7.1 contains the progress of the most important metrics.

10 100 1000 10 000 200 000
Line Coverage (Lines) 99.57 99.57 99.57 99.57 99.57

Condition Coverage 87.72 8772 8772 87.72 87.72
FSM Coverage (States) 100.00 100.00 100.00 100.00 100.00
Branch Coverage 9451 9451 9451 94.51 94.51
Path Coverage 3758 3758 37.58 37.58 37.58

Toggle Coverage (Nets) 84.85 87.88 87.88 87.88 87.88

Table 7.1: Code coverage progress (percentage)

As the table shows, the numbers for the code coverage is already high at very
few simulations, already at the 10 simulations case. They do not increase when more
simulations are carried out. The reason is probably that a large part of the AES
design is invoked at each simulation. The module also has few scenarios to cover, so

50 7. DISCUSSION

they are all covered relatively quick.

Unfortunately, since the functional coverage groups could not be analyzed, there
is no progress data available for functional coverage. Probably we would have seen
much of the same progress as with the code coverage, at least with the cover groups
planned in the verification plan. They have relatively few bins, and are hit by every
simulation.

7.2 Code Coverage

The following sections analyzes the code coverage achieved in the run with 200 000
simulations. However, the results are also quite relevant to the shorter runs, since
high code coverage was already achieved at a very low number of runs.

7.2.1 Line Coverage

The line coverage summary from the short report is shown in Table 7.2. The line
coverage short report is placed in Appendix D.1. Only the following lines of code
are reported not covered:

o Lines 153-154 in wb_ aescontroller.v. Contains an data address not used by the
testbench during the Wishbone communication. The functionality not covered
returns the operation mode carried out (decryption or encryption). Whether
this code is redundant or it should have been covered depends on the (non-
existing) specification.

‘ Total ‘ Covered ‘ Percent

Lines 462 460 99.57
Statements | 511 509 99.61
Blocks 122 121 99.18

Table 7.2: Line coverage summary

7.2.2 Condition Coverage

The condition coverage summary is shown in Table 7.3. The condition coverage short
report is placed in Appendix D.2. The uncovered conditions were:

o Line 104 in wb_ aescontroller.v: 0-1-1-1 and 1-0-1-1 not covered. The line con-
tains a statement that returns true if wb_stb_i, wb_cyc _iand wb_we i are

CoDE COVERAGE

51

high while wb__ack o islow. It indicates a request for data from the testbench.
Since Single Read mode is used by the testbench (which is the only read mode
supported by the Wishbone slave), wb_stb i and wb_cyc_i will always have
the same value.

o Line 147 in wb_aescontroller.v: 0-1-1-1, 1-0-1-1 and 1-1-0-1 not covered. Al-
most same expression as above, except for the wb_we i which now should be
low to make the statement return true. The same reason as above applies to
the first two non-covered combinations. Since this is an elseif statement of the
expression above, the 1-1-0-1 combination will be fetched by the if sentence,
and never get to the elseif.

o Line 327 in aes.sv: 1 - 0 not covered. Impossible to cover, since it is placed in
an elseif statement where the condition is fetched by the if condition.

o Line 345 in aes.sv: 0 - 1 not covered. Same as the previous one.

‘ Total ‘ Covered ‘ Percent
57 50 87.72
57 50 87.72

Conditions
Logical

Table 7.3: Condition coverage summary

7.2.3 FSM Coverage

The FSM coverage summary is shown in Table 7.4. The FSM coverage short report
is placed in Appendix D.3. States are 100%, which means that all states have been
covered.

Transition coverage is low. Comparing the FSM coverage report with the FSMs,
it appears that all the transitions not covered are transitions from each state and
back to the start state. This means that reset has not been done when the FSM was
in any other state than the start state. Which is correct, since the testbench does
not run resets in the middle of the encryption/decryption operations.

Sequence coverage and FSM coverage are low since they both rely on the transi-
tion coverage.
7.2.4 Branch Coverage

The branch coverage summary is shown in Table 7.5. The branch coverage short
report is placed in Appendix D.4. The uncovered conditions were:

52 7. DISCUSSION

‘ Total ‘ Covered | Percent

FSMs 3 1 33.33
States 17 17 100.00
Transitions 18 13 72.22
Sequences 78 44 56.41

Table 7.4: FSM coverage summary

In subbytes.v near line 244. A missing default is reported not covered. The
case is only checking values 0 and 1 of a 4-state signal. No X or Z values have
been inserted, so the missing default clause is not covered.

In mizcolum.v near line 190. The state machine in MixColumns has an empty
default state which is not covered.

In wb_aescontroller.v near line 107. Missing default of the Wishbone address
case selection not covered.

In wb_aescontroller.v near line 150. Same as the previous, now for write
address selection instead of read address selection.

In wb_aescontroller.v near line 153. Wishbone address 8’h0 not covered. Same
as reported in the line coverage reports.

‘ Total ‘ Covered ‘ Percent
Branches | 91 | 86 | 94.51

Table 7.5: Branch coverage summary

7.2.5 Path Coverage

The path coverage summary is shown in Table 7.6. The path coverage short report
is placed in Appendix D.5. Path coverage was reported to be low, but most of the
paths reported as not covered seems to be paths that are impossible, because of an
illegal combination of branches.

e In wb_aescontroller.v near lines 86-177. Multiple paths not covered due to
two ¢f blocks that are never activated at the same time. The AES module will
never finish while the Wishbone bus is being used.

ASSERTIONS 53

‘ Total ‘ Covered ‘ Percent
Paths | 157 | 59 | 37.58

Table 7.6: Path coverage summary

7.2.6 Toggle Coverage

The toggle coverage summary is shown in Table 7.7. The toggle coverage short re-
port is placed in Appendix D.6. Many of the signals not toggled turns out to be
unused signals, or unused bits ranges of signals. These are almost exclusively from
the Wishbone module, as shown in the toggle coverage module report in Appendix
D.7.

Total | Covered | Percent
Regs 156 136 87.18
Reg bits 5104 4568 89.50
Reg bits(0->1) | 5104 4568 89.50
Reg bits(1->0) | 5104 4568 89.50
Nets 66 58 87.88
Net bits 1496 1331 88.97
Net bits(0->1) | 1496 1331 88.97
Net bits(1->0) | 1496 1331 88.97

Table 7.7: Toggle coverage summary

7.3 Assertions

The assertion reports were analysed to see if any of the assertions had failed during
the simulations. No errors were reported in any of the assertion reports.

In the 200 000 run simulation report, all the concurrent assertions report 92 941
707 attempts. This corresponds to the total number of clock cycles.

The assertion in the Checker, which controls that Scoreboard and DUT results
are equal, reports 200 000 hits. This is correct, since the assertion is implemented
as an immediate assertion triggered once for each round.

The two assertions monitoring the randomization of data in each of the scenarios,
the a_randomize d and a_ randomize e, reports 132549 and 133097 hits, respec-
tively. This is about the double of expected hits, since they both have probability
set to 33%, and the total number should be 200 000. An error with the definition is

54 7. DISCUSSION

suspected, since their sums added equals more than the total number.

The two handshake assertions both reports a real success number of 1 727 245.
This corresponds to the total number of handshakes. It gives an average of about
8.63 handshakes per round. The number needed for a full encryption/decryption
round is 13 handshakes. However, the reset operations (representing 33% of the
operations) does not require any handshakes. Therefore, the real success number is
very close to the expected 66% of 13 * 200 000 (which is about 1 733 000).

The one incomplete attempt of the assertion checking the max length of the ACK
signal has probably happened because the testbench terminates before the last ack
signal is lowered.

7.4 Functional Coverage

Due to the lack of tools for analysis, the only functional coverage data available is the
cover property based on the rounds assertion. This cover property, called ¢ _rounds,
reports 92941707 matches. The number only tells that the assertion has been trig-
gered every clock cycle.

7.5 Testbench Discussion and Future Work

The code coverage analysis shows that the testbench covers the DUT well. However,
some lacks of functionality were discovered.

First of all, a more sophisticated reset behavior should have been implemented.
Now, reset is only run between the simulation rounds, never in the middle of an en-
cryption or decryption operation. A more realistic reset behavior would also include
mid-operation resets, which is more relevant to how a real-life user probably would
use the reset. This is required to achieve a higher FSM transition coverage. Such a
reset functionality could be implemented as callbacks (providing resets in the middle
of the communication only), or even better as its own thread (providing resets at
random times).

A bathtub-shaped data distribution, as introduced in the theory, was planned.
However, it was not implemented, due to difficulties with data types and a lack of
time. With a further detail study of SystemVerilog data types this would probably
be possible to implement.

An error reporting mechanism was described in the theory. It would record a
sliding window of simulation data, and report it when an assertion fails. This func-

TESTBENCH DISCUSSION AND FUTURE WORK 55

tionality was not implemented due to time limitations. The implementation of such
a feature would require a memory recording data and testbench status, as well as a
report functionality trigged by the action clause of each assertion.

It could be useful to be able to stop, and afterwards restart a simulation. New
seeding of the testbench would be required to make the random generator create
new values. In order to achieve this, it would be necessary to implement a seeding
functionality.

More functional coverage groups should have been implemented to enable a more
complete coverage analysis. The implementation of coverage groups was stopped
when it became clear that the analysis software did not support functional coverage
analysis based on cover groups.

57

Chapter 8

Conclusion

HE MAIN TASKS of this thesis was to study literature about modern verification
T to create a verification plan for an AES RTL model, and to implement and sim-
ulate the planned verification system using SystemVerilog and Synopsys VCS.

The verification planning was done according to the recommended literature, and
follows the main guidelines given in the Verification Methodology Manual (VMM).
The planned verification process builds on modern verification techniques like con-
strained randomization, functional coverage, object orientation and assertions.

A testbench was implemented with the requirements and features planned in the
verification plan. It has a layered architecture to ensure high maintainability and
reusability. It exploits the advanced randomization functionalities of SystemVerilog.
It uses assertions to check the RTL model for errors. The testbench was used to
simulate the AES model using the Synopsys VCS software.

Due to some problems with the Synopsys VCS licence held by the university,
some features of VCS was not available. Unfortunately, functional coverage analysis
was almost non-supported in the available software. Therefore, the functional cov-
erage analysis carried out is limited.

Code coverage metrics were used to track the progress and quality of the simu-
lations. Many of the metrics reached the planned goals of 100% explained coverage.
This means that all functionality of the DUT was tested. Most problems that arised
were due to three factors: Bad coding style in the Wishbone controller of the DUT,
misunderstandings due to the lack of documentation, and a limited reset behavior in
the testbench.

Since no relevant functional coverage data was available for analysis it is not
possible to draw any conclusions about the adequacy of the random data generated,
and the completeness of the DUT implementation. However, since all 200,000+ en-

58 8. CONCLUSION

cryption and decryption results from the DUT were correct in the simulation, there
is reason to believe that the functionality of the model is correct and adequate in
most situations.

Some topics for possible improvement of the verification system were given in the
discussion chapter. The most important ones would be a more sophisticated reset
functionality, as well as a more advanced functionality for random data distribution.

In conclusion, the verification plan has been created and the verification process
has been carried out, both satisfying the requirements given.

BIBLIOGRAPHY 59

Bibliography

[1] J. Bergeron, Writing Testbenches Using System Verilog. Springer Science + Busi-
ness Media, Inc., 2006.

[2] C. Spear, SystemVerilog for Verification. Springer Science + Business Media,
Inc., 2006.

[3] Federal Information Standards Publication, Specification for the Advanced En-
cryption Standard, November 2001.

[4] Synopsys, Inc., VCS / VCS MX Coverage Metrics User Guide, April 2006.
[5] P. James, Verification Plans. Kluwer Academic Publishers, 2004.

[6] J. Bergeron, E. Cerny, A. Hunter, and A. Nightingale, Verification Methodology
Manual for SystemVerilog. Springer Science + Business Media, 2006.

[7] Synopsys, Inc., SystemVerilog Assertions Checker Library Quick Reference,
April 2006.

[8] S. Vijayaraghavan and M. Ramanathan, A Practical Guide for SystemVerilog
Assertions. Springer Science + Business Media, Inc., 2005.

[9] D. Mills and S. Sutherland, “Systemverilog assertions are for design engineers
tool,” SNUG, 2006.

[10] J. Cooley, “The dvcon’05 verification census,” October 2005.

[11] Synopsys, Inc., VCS DirectC Interface User Guide, April 2006.

[12] Synopsys, Inc., VCOS/VCSi User Guide, April 2006.

[13] “Opencores website.” http://www.opencores.org/.

[14] J. Castillo, “128 aes verilog module.” http://www.opencores.org/projects.cgi/systemcaes/.
[15] B. Gladman, “A specification for rijndael, the aes algorithm,” September 2003.

[16] J. Daemen and V. Rijmen, The Design of Rijndael. Springer-Verlag, 2002.

60 . BIBLIOGRAPHY

[17] “Specification for the: Wishbone system-on-chip (soc) interconnection architec-
ture for portable ip cores,” September 2002.

[18] M. Turpin, “The dangers of living with an x (bugs hidden in your verilog),”
ARM Ltd., 2003.

[19] Synopsys, Inc., SystemVerilog Testbench Constructs, April 2006.
[20] B. Gladman, “Brian gladman’s home page.” http://fp.gladman.plus.com/.

[21] L. Hancock, M. Krieger, and S. Zamir, The C Primer. McGraw-Hill, Inc.,
3rd ed., 1990.

[22] S. Sutherland, The Verilog PLI Handbook. Kluwer Academic Publishers, 2nd ed.,
2002.

61

Appendix A

Day-in-the-Life Document

A.1 General Information

The 128 AES module by Castillo is a module that encrypts and decrypts data accord-
ing to the AES specification. In this implementation, key size is 128 bits. According
to the AES specification, data block size is also 128 bits. Other properties:

e The module is optimized for low area.
e The S-box is implemented as logic, not as a table stored in memory.

e There are 3 FSMs in the design. They are situated in the subbytes, keysched
and mizcolum modules.

The operation in AES is not pipelined, one data block must be processed com-
pletely before the module is ready for a new data block.

62 A. DAY-IN-THE-LIFE DOCUMENT

A.2 Module Blocks

Blocks and signals for the AES module are shown in figure A.1.

clk Control

reset

load_i

decrypt_i
data_i [127:0] AddRoundKey

key_i [127:0]

MixColumns

data_o [127:0]

e
ready_o l

SubBytes
+

ShiftRows

KeyScheduler

S-box

Figure A.1: AES module blocks

A.3 Communication Bus

Communication with the module is done via a Wishbone bus interface. Unfortu-
nately, the WishBone Interface implementation is not documented or code-commented.

The Wishbone feature is delivered as a stand-alone module, so a top module con-
necting the AES and Wishbone modules has to be developed in order to make the
system able to communicate using the Wishbone bus. The signals of the Wishbone

bus block are shown in figure A.2 and table A.1.

clk load_o
whb_dat_i [31:0] decrypt_o

wb_dat_o [31:0] data_o [127:0]

reset key_o [127:0]

wb_ack_o data_i [127:0]

whb_adr_i [31:0] WISH BONE ready_i .

wb_cyc_i
wb_sel_i [3:0]
wb_we_i
. whb_stb_i

Figure A.2: Wishbone module

From the code it appears that the module only supports the absolute minimum
of features to be Wishbone compliant. The module can only act as a slave module.
It also only supports the simplest form of WishBone data transfer: Single Transfer.

COMMUNICATION Bus 63

The wb_sel i signal is not used by the module in any operation mode. Valid
addresses for the wb_adr i signal are shown in table A.2.

Signal Direction | Width | Description
clk Input 1 System clock
reset Input 1 System reset
wh_stb_i Input 1 Slave selection indicator
wb_dat_o | Output 32 Data output
wb_dat_i Input 32 Data input
wb_ack o | Output 1 Acknowledge signal
wb_adr_i Input 32 Address input
wb_we Input 1 Write enable
wb_cyc i Input 1 Valid bus cycle indicator
wb_sel i Input 4 (Not in use)

Table A.1: Signals of the Wishbone module

Address | Bus data description

8’h0 Encryption/decryption Configuration

8'h4 | Input data, bit range [127:96]

8'h8 | Input data, bit range [95:64]

8hC | Input data, bit range [63:32]

8h10 | Input data, bit range [31:0]

8hl14 | Input key, bit range [127:96]

8’h18 | Input key, bit range [95:64]

8h1C | Input key, bit range [63:32]

8h20 | Input key, bit range [31:0]

8h24 | Output data, bit range [127:96]

8h28 | Output data, bit range [95:64]

8h2C | Output data, bit range [63:32]

8h30 | Output data, bit range [31:0]

Table A.2: Valid addresses of wb_adr i

64 A. DAY-IN-THE-LIFE DOCUMENT

A.4 AES Operation Flow

A flow diagram of the AES encryption is shown in figure A.3.

‘ load_i high ’

A 4
AddRoundKey
A 4
SubBytes |«—
v
ShiftRows
v
MixColumns
v
AddRoundKey
no @ yes
SubBytes
v
ShiftRows
v
AddRoundKey

ready_o high

Figure A.3: AES flow

AES INTERNAL OPERATIONS 65

A.5 AES Internal Operations

SubBytes is a non-linear transformation that applies the S-box to each element of
the State table, as shown in figure A.4.

¢ } } } S-Box
S \) \) \) A Y
0.0 | 201 | 0.2 /ou/ I~ 200 | 201 | 202|203
S10 S, 1.2 S‘1,3 SIO " 1.2 Sl‘%
S, . S, .
S20 S”.l SZ’ S23 S20 SZ.l S22 SZ‘%
SS.O SS,] S3.2 53.3 SS,O SB.I SS,E SS 3

Figure A.4: SubBytes operation [3]

S-box could be viewed as the lookup table for the substitution in SubBytes. Byte
value zy is changed with the corresponding value in figure A.5.

63| 7c| 77| Tb | f2 | 6b | 6f | ¢5| 30 | 01 | 67 | 2b | fe | d7 | ab | 76
ca| 82| c9| 7d| fa| 59| 47| f0| ad | d4 | a2 | af | 9c | a4 | 72 | cO
b7 | fd| 93 | 26 | 36 | 3f | f7 | cc| 34| a5 | e5 | f1 | 71 | d8 | 31 | 15
04| c7| 23| c3| 18| 96| 05| 9a| 07| 12| 80| e2| eb| 27| b2 | 75
09| 83| 2c| la|1b| 6e| 5a| a0 | 52| 3b| d6| b3 | 29 | e3 | 2f | 84
53| dl | 00| ed| 20| fc | bl | 5b | 6a | cb | be | 39| 4a | 4c | 58 | cf
d0 | ef | aa | fb | 43| 4d | 33| 85| 45| £9 | 02 | 7£| 50| 3c | 9f | a8
51| a3 | 40 | 8f | 92| 9d | 38 | £f5 | be | b6 | da | 21| 10 | ££f | £3 | d2
17 | ¢4 | a7 | 7e| 3d| 64| 54| 19| 73

e0 | 32| 3a | 0a| 49| 06| 24| 5¢c| c2 | d3 | ac| 62| 91| 95| e4| 79
e7 | c8| 37| 6d| 8d| d5 | de | a9 | 6c | 56 | f4 | ea | 65 | 7a | ae | 08
ba| 78| 25 | 2e | 1c | a6 | b4 [c6| e8| dd| 74 | 1f | 4b | bd | 8b | 8a
70 | 3e | b5 | 66 | 48 | 03 | f6 | 0Oe | 61 | 35| 57 | b9 | 86 | c1 | 1d | %e

(D00 oo dolub whko
[o]
o
o
Q
=
w
o
Q
u
H
0
~
=
S

8c | al | 89| 0d| bf | e6| 42 | 68 | 41 | 99| 2d | Of [bO | 54 | bb | 16

Figure A.5: S-box table [3]

66 A. DAY-IN-THE-LIFE DOCUMENT

Shift Rows shifts every byte in State after a predefined pattern: First row is shifted
0 positions to the left, second row is shifted 1 position to the left, and so on. Shown
in figure A.6.

ShiftRows ()

r.3

Figure A.6: Shiftrows operation [3]

MixColumns, in figure A.7, operates on each column using a multiplication op-
eration.

MixColumns ()

S So. e) ?‘ ‘S(,) s s,
0.0 0.2 |03 S0.0 0.2 | So3
S1.0 S S12 | 513 S1o Sie Sll.: Sij
$2.0 52, S22 (523 $2.0 S'l” S22 | S23
30| S5 P52 |53 S30 S—;-C 3.2 S;.s

Figure A.7: MixColumns operation |3]

AddRoundKey combines State with a round-specific key using bitwise XOR,
shown in figure A.8.

AES INTERNAL OPERATIONS 67

| =round * Nb

‘SO.(‘ ‘SONC -
So.0 2| Sos || So.0 2| S03

Sl B Wic \\ - gl . -
S 77| > SN
X 513 L 1 — 12 | S13

’ N) - ’ | S5 y
S20 2. 2|52 S20 2 b S
S350 || S5, [2] S30 || S3. b | Ss.

Figure A.8: AddRoundKey operation [3]

Appendix B

Verification Plan

B.1 Typical Operation

Input:
Input:

Output:
Output:
Output:

Randomize key, data and operation (encryption or decryption)
Send inputs to the module

Receive outputs from the module

Compare outputs with expected results

Measure coverage to track progress

Table B.1: Typical operation

B.2 Tools and Technologies

Languages: | SystemVerilog
Technology: | Simulation
Tools: Synosys VCS ver. 2005.06-SP2

Table B.2: Tools, language and technologies

70 B. VERIFICATION PLAN

B.3 Implementation Phases

See table B.3.

Phase | Goal
1 Simple communication with module (without Wishbone interface)
2 Communication using Wishbone interface
3 Output checking using reference model
4 Assertions for checking properties
5 Constrained random stimuli
6 Coverage calculation
7 Verification of decryption functionality

Table B.3: Phases

B.4 System Architecture

Some changes from the layer figure: Monitor and driver is merged in the BFM block.
Agent is removed. This gives the architecture in figure B.1.

T i ey il
Scenario | Generator Enwronment|
1

Functional | Scoreboard Checker
N [Ghecker |

1 y |
Command | l Bus Functional Model (BFM) |

S -

Signal > DUT

Figure B.1: Testbench data flow

e Test instantiates Environment
e Environment instantiates Generator, Scoreboard, BFM, Checker

e Communication in the system is done using mailboxes

LAYER IMPLEMENTATION 71

Figure B.2 shows the flow of data through the components of the testbench. The
flowing data will be contained in transaction objects, created in the Generator.

TEST

gt

GENERATOR

5 B

BFM (Wishbone)

SCORE I

BOARD
DUT
(AES)
CHECKER

Figure B.2: Testbench data flow

B.5 Layer Implementation

See tables B.4 and B.5.

Component ‘ Layer Phase

BFM Command | 2
Scoreboard | Functional | 3
Checker Functional | 3
Generator Scenario 5)

Table B.4: Component Implementation

72 B. VERIFICATION PLAN

Command Functional Scenario

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5
Phase 6
Phase 7

BFM

Scoreboard, Checker

Generator

Table B.5: XY-grid phases/layers

B.6 Scenarios

e Encryption (Probability: 33.3%)
e Decryption (Probability: 33.3%)

e System Reset (Probability: 33.3%)

B.7 Block Descriptions

The properties of the Scoreboard, Checker, BFM and Generator blocks are shown in
Tables B.6, B.7, B.8 and B.9, respectively.

Component: | Scoreboard

Operation: | Block containing reference model in C language.

Inputs: 128 bit key, 128 bit data to be en-
crypted/decrypted, 1 bit to select encryp-
tion/decryption

Output: encrypted /decrypted data
Table B.6: Scoreboard description

Component: | Checker

Operation: Compare outputs from DUT and scoreboard.

Inputs: 128 bit outputs received from BFM and score-
board

Output: Status

Table B.7: Checker description

RANDOMIZATION 73

Component: | BFM
Operation: Communicate with DUT via the Wishbone bus

Inputs: 128 bit key, 128 bit data, 1 bit to select encryp-
tion/decryption
Output: encrypted /decrypted data

Table B.8: BFM description

Component: | Generator

Operation: Generate constrained-random values. Contains
scenarios.

Inputs: Constraints

Output: 128 bit key, 128 bit data, 1 bit to select encryp-
tion/decryption

Table B.9: Generator description

B.8 Randomization

Randomize key

Randomize input

Randomize operation: Encryption, decryption or reset

Random delays in Wishbone communication (0 to 10 clock cycles)

Input and key data should have a bathtub distribution to provoke overflow errors.

74 B. VERIFICATION PLAN

B.9 Assertions

Functionality to verify Placement Type Assigned to
ACK is never set high without a preceding External Concurrent Verifier
STB

Wishbone bus never has any X or Z bits External Concurrent Verifier
when reading is allowed

Request from testbench results in ACK External Concurrent Verifier
from DUT within 10 clock cycles

FSM in AES control module follows the Internal Concurrent Verifier
right sequence

Number of rounds of AES operation does Internal Concurrent Verifier
not exceed 10

AES block inputs does not have any X or Internal Concurrent Verifier
Z bits when load i is high

DUT output value is the same as the score- External Immediate Verifier
board value at the end of each run

Table B.10: Assertions

B.10 Code Coverage

Code Coverage Goal

Line Coverage 100% explained
Condition Coverage | 100% explained
FSM Coverage 100% explained
Branch Coverage 100% explained
Path Coverage 100% explained
Toggle Coverage 100% explained

Table B.11: Code Coverage Analysis Plan

FUNCTIONAL COVERAGE 75

B.11 Functional coverage

Cover group Bins | Placement | Coverage Goal
DAT I signal of Wishbone bus (Check in- 10 External 100%
put data distribution of Wishbone cycles)

DAT O signal of Wishbone bus (Check 10 External 100%
output data distribution of Wishbone cy-

cles)

Key in signal on AES module (Check key 20 Internal 100%
data distribution)

Data in signal on AES module (Check in- 20 Internal 100%
put data distribution)

Inputs to the SubBytes module (Check | 16 x 16 Internal 100%
that S-Box is fully verified) (Cross cover-

age)

Table B.12: Cover groups

77

Appendix C

Testbench Source Code

78 C. TESTBENCH SOURCE CODE

STnpowpus ZT

T
(FTam) eAs TeuIs3lxaeAns 0T
{(FTAam) Inp dojsoe 6
f(3Tam) 383 1s93 8
$(M12) FTOM IT am L
9

IMTO~ = IO G# sAemTe G
{0=¥T° 319 i

!{do3 sTnpow ¢

4

WAOTEROSBWT], SpnIouT I

as+ do3 :1°D xTpuaddy

80 C. TESTBENCH SOURCE CODE

20®vJIS]UTPUS
L(YTO ‘Tos gm ‘T 3ep gm ‘ape gm ‘DADTgm “‘emTgm ‘gas gm ‘3sssa ‘yoe gm ‘o 3ep gm 3ndutr) VYAS 3xodpout

L(YTO ‘Tos agm ‘T 3ep gm ‘ape gm ‘0AdoTgm “‘em gm ‘g3s gm ‘3ssex ndut
‘yoeTgMm ‘Yo" 3ep gm 3ndano) I1nd 1xodpou

{(oeTgm ‘o 3ep gm ‘37O 3ndurt
‘TosTgm ‘T aep gMm ‘ape T gm ‘DADTgm ‘emTgm ‘g3lsT gm ‘3sssx 3ndino) I1SI 3aodpou

!Tes T am [Q:g] otTboT
fapeTagm ‘TT3ep gm ‘oT3ep gm [0:Tg] OTPOT
{DADTgm “‘emTagm ‘o T gm ‘g3s T gm ‘39ssx OTboT

£(3T0 2Tq InduT)IT qm S0BJISIUT

AS*IT gMm :7°D xXTpuaddy

AN WO O 00 o0

82 C. TESTBENCH SOURCE CODE

319sa1 I0 uoT3dAxosp ‘uoTrTidAidous mMau IS //

uthsq (++T {SANNOY>T f0=T 3UT) I03

! ()¥seq 1sssIx
JIOM STnpow SHY =Yl S3ew 01 19SS SuUO0 yYyiTm 3Iels //
utbaq
unx ysel

uoT3oUNJIpuUD
!goszusb = gosgusb- sIyl
‘wygqzusb = wjqgzusb-sIyl

! (goszusb ‘wIqzusb XOgTTew)Mau UOTIDUNT

pIeoqeI00s 03 XOQTTeW // {goszusb xogTTeu
WAd 03 XOqTTeW // ‘wgqzusb xoqTTeu

!I03eI9USH SSETO

xxx //
SSYTD dOIVHHENHD xxx //

SSeTOpuUS
!0 = 1sssI1 13Tq
{3dAaosp 31g
fano~ o ejep [0:L2T] 3TIC
fano ejep [0:LZT] 3T9
Aoy [0:LZT] 3T9 puex
‘ut e3ep [0:LZT] 3T9 puex
!uoT3oesurI] SSeTD
xxx [/
SI03D0EBSURI] US9MID(C Sbuepyoxs elep I0J s309Lq0 xxx //
SSVYTO NOILDVYSNWEL xxx //

$3593 JO ISquUNN // {0T=SANNOY 23UT 3ISUOD
UOT1DRIDIUT I03eIBUSDH pue Wig IOJ JUSAS oeyspuey // {oyeySpuURY 1USDAD

{(ITOM ISL°IT gm) 13so3 oTxewoine weiboad

(l0o:L2T] 3Ta 3Ind3ano ‘3Tq 3Indut ‘[0:LZT] 3T 3Indut ‘[0:LZT] 3T 3InduT) [SPOUDSSOE PTOA UIDIXD
Topow-o SHY 01 2dusIsIayg //

AS*1S9] ¢ D XTpuaddy

AN WO O 00 o0

! (13)3nd-gosgusb
! (x3)and-wggqzusb
soxXOoqTTeW PIROCSIODS pue WAd 03 3Io0algo I3 puss //

{1 = 3dAzoop-ria
!(()szTwWOpURI®I])]JISSSE P SZTWOpURI ©
elepUT pue A9y SzTWopuerlr //

! ()ymdU = I3 UOT]DOBSURIL
obexols ej3ep x03 309lqo I3 Mau //

pus

utbaq

y}sejpus

!yseq1” 3dAao9p sel
uotidAzoep 103 30=lqo I3 °3e€21D //

! (13)3nd-gosgzgusb
! (x3)and-wgqzusb
soxXOoqTTeW PIROCSIODS pue WAd 03 3I0algo I3 puss //

‘0 = 3dAzoop-iaa
!(()szTwWOpURI®I])JISSSE 8 oZTWOpURI ©
elepUT pue A9y SzTWopuerlr //

! ()ymdU = I3 UOT]}DOBSURIL
obexols ejep x03 309(lgo I3 Mau //

pus

utbaq

y}sejpus

!yseq1 3dAaous sel
uotidAzous 103 308lqo I3 =3e€21D //

pus
!ayeyspueyyp
109(go yo3ey 03 Wad I0F 3Tem//
sousnbaspus
!39s9a { !yse3 3ssoIx }
| { ?!ysejx 3ssax } : 39sax
{7dAaosp { ‘{yse3y 3dAkaosp }
| { ‘yse3x 3dAkzosp } : 3dAaosp
}

{qdAaous { !yse3 3dAkaous
| { ‘yse3x 3dAazous } : 3dAaodous

!¢ =: 1esax

| ¢ =: 3dAaosp

| ¢ =: 3dAIdous : weaIls
(weaax3s) oousanbespuera

AS*1S9] ¢ D XTpuaddy

pus

jysejpus

utbaq

! (3no” o eaepra1/3dAaosp- a3 /ASy I3 /UT BIRP" I]) [OpowWDSSr

! (Mo 3Tam Sbpssod)p

((6*0)obuea wopuerang) 3jeadsx

! ()yx3 2ad se3a
SO WA SSeTo
xxx //
SSYTD MOVATIVO WAL xxx //

sseTopus
yselpus
pua

! (x3)and-yyozgos

(39se1-131i) IT

! (x13)139b goszgusb
utbeq (saNnoy) 3esdsx

unx ysel

uoT3oUNIpUS

‘YYozdos = {UYoZgos - sTyl
!gosgzusb = gosgusb- sIyl
! (yozgos ‘goszusb XOogTTew)Mau UOTIDUNI

!3yozgos ‘goszusb XOgTTRU
!I13 uoT3jldesueI]
!pIeogaI00s SSeTO

xxx //
SSYTD adv0dHd0dS xxx //

SSeTopuUa
JySe3pus

pus
! (13)3nd-gosgzgusb
! (x3)and-wgqzusb
SOXOqTTeW PIROUaIODS pue WA 03 3o0alqo 13 puss //
!T = 1319sa1"12
! ()ymdU = I3 UOT]}DOEBSURI]
obexols elep x03 309lqo I3 Mau //

utbaq

AS*1S97

!3yseq3 39891 se]

19sa1 103 309(Lqo I3 °3e921) //

t¢°D XTpuaddy

06T
67T
8V T
LPT
9rT
GvT
A
€V
A7
7T
orT
6€T
8¢T
LET
9¢T
GET
VET
€eT
ceT
TE€T
0€T
6CT
8¢T
LCT
9¢T
qcT
Vet
€CT
cct
Ict
0cT
6TT
8TT
LTT
9TT
Q1T
PIT
€TT
¢TIt
ITT
OTT
60T
80T
LOT
90T
S0T
70T
€0T
40
T0T

Jut oT0AD elED

‘[p9:66lhey 13 = [9
H L]UT oT0AD e3ED
8
M

ﬁ
[ze:g9lhex a3 = |
ffoTelhoy a3 = |

309[go I3 pPoATSDSI WOIJ BIERP UIT

Jut oT0AD elED
Aexze 1174 //

!oyeyspuey<—
SNUTJIUOD 03 J03jeIBUSH TTSL //

! (x13)319b wgqzusb
I03eIL2USH WOIJ BIEP 399 //
utbsq (saNnoy) 3esdsx
uni yse)

uoTlounjpus
{MBU = UI3EQOMAOD
‘MYozwIq = HUYoZzwiq-sIyl
‘wygqzusb = wjqgzusb-sIyl
{(MyozwIg ‘wIqzusb XOgTTew)MaUu UOTIDUNI

I9309UD 03 XOqTTBeW// {3yozwIq XOgTTRW
I03eIDUSH WOIT XOQTTeRN// ‘fuggzusb xXoqTIRW
dnoaxbpus

{TT3ep gqmIT gMm 3UuTOodIsSA0D
‘urT3eqqmaod dnoxbasaod
eleput gm I03 dnoxb Isaocd sutieq //

!I13 uoTjldesueI]
!sqo sgo Wad

SoT0AD gM IOJ ®3epUI// !

[6]UT STOAD e3EP 3JUT
SOTOAD SUOQUSTM WOIJ ®ICPINQ// y]

N0 9TDAD B3RP 3JUT

!INag sseT1o

1S93-I9PUN-22TASP YITM UOTIROTUNWWOD SN SUOJUSTM xxx //
SSVYTD THAOW TYNOIILDONNA SNT xxx //

JSe3pus
mou I0JF butyjou op //
! ()x3 3sod yse3]

y}sejpus
pus

AS*1S9] ¢ D XTpuaddy

00¢
66T
86T
L6T
96T
S6T
76Tl
€6T
¢6T
T6T
06T
68T
88T
L8T
98T
G8T
78T
€8T
8T
I8T
08T
6LT
8LT
LLT
9LT
QLT
VLT
ELT
CLT
TLT
OLT
69T
89T
LI9T
99T
G9T
7ot
€91
¢o9T
T9T
09T
6GT
86T
LST
9GT
GqaT
7ol
€GT
A°))
6T

LT

! (x3) and-yqyozuiq
xoqTTew IsxosyD) 03 3Ioslgo 13 puss //

pus
[0]3no oT0Ao e3ep = [96:,ZT]3N0 BIRD I3
![T]3no eToko elep = [}9:G6]3n0 elep- I3
‘[z]3ano eToko"e3ep = [Zg:g9]ano eiep- i3
![g]lano eToAo elep = [0:T€]3Ino e3ep I3

3o09(go I3 03 B3RP 3INO PPY //

103 // pus

!(9€+(¥xT))oT0A0peS1
{ (310" FTgMm =bpasod)p

uthesq (--T {0=<T f¢=T 3JuT) I03

soToAkdo § buTsn ejepino pesy //

L (AToFTam obpssod)py (009) 3eadsax
23oT7dwod 03 UOT3RINOTED SHY I0J 1TeMm //
I03 // pus

Jut oT10A0 e3ep’ (§xT))oT0ADa3Tam
! (Mo 3Tam sbpssod)p

utbesq (--T {0=<T fg=T 3uT) 103
elep JO SOTJ0AD ¢ puss //

utbaq osT2

pus
! (uilASTI,) ReTdstps
! ()3ssasiapuss
! (IO 3TOm 2bpssod)p
90TASp 218sdY //
utbsq (1 == 38s81°11) IT

T009.,€ puss :3dAkaous//

1019, € puss :1dAadsp// ! T+ (px1dhaoop" 17)

0]JUT ST2AD e1PEpP
T]UT oT2AD e2a®ep
Z]uT oT2AD e1PEpP
mgcﬁlwaowolmumﬁ
wg
mg

o~

[96:LZT]UT e30P I3
mﬁwmnmmgzﬁ|mpmn.yu
mﬁ

¢eig9lutr ejepril =
[0:TgluT elEP 1] =
‘196:L2T] Aoy 13 =

ut oT0AD e3ED
UT oTDAD B3EDP

—

AS*1S9] ¢ D XTpuaddy

06¢
67 ¢
8¥ ¢
LvcC
orc
3744
vve
€ve
cve
|8744
ovc
6€¢C
8¢c
LET
9¢c
Gec
vee
€ee
cee
T€TC
0ec
6C¢
8¢c
Lee
9¢c
Gqee
vee
€ce
cece
|R44
0cc
6T¢C
8T¢
LTC
9T¢
GT1¢C
vic
€T
AR
TT1C
0TcC
60¢
80¢
L0c
90¢
S0¢
v0c
€0¢
c0c
T0¢

f0q,T = oAoTam-ITam 00€

9T0A0 e3Tam puyg // 662

86¢

{(MTO"FTOM obpesod)y (OB T gMTITOM~) STTUM L62
SOTASP WOII >DO® I0F 3TeMm // 96¢

S6¢

! ()oTdwes " uI3eqqMAOD V62

elep 9brisaod TrUOT3OUNI oTdwes // €62

c6¢

*(MT2"3TqM ebpesod) P 162

06¢

(1T 3ep‘ape’1q, 1) sTeUDTSISS 682

snq gM uo sTeubTs 388 // 88¢

utheq L8T

{(1T73ep ‘ape [0:T€] 3T9)SToA083Tam 3seld 98¢

sng gM O3 elep 231Tam // 68z

v8¢

€8¢

{selpus 8¢

pus I8¢

yoeqirIeo IeJsueil-1sod // ! ()yx3 3sod-sgo 082
6LC

STgeus °23TIM // oM = sM M- JTOM 8.7
sqoils // ‘TA.T = g3s gmtITgM LLT
103e0TPUT ST0AD // ‘19,1 = 2AoTgm-ITOm 9LC
ut eiep // T AP = T 1P M’ JTgM GLT
sseJppe ejep // ‘JIpe = Ipe gqmMmJITqM vLe
€Le

yoeqirIeo IsJsueil-aid // ! ()yx3 oad-sgo 2Lz
utbaq TLZ

{(T73ep ‘ape [0:T€] 3T ‘em 1Tq)sTeubIsias ysel oLZC
sng suoqyusTIM uo sTeubrs 3935 // 692

89¢

L9C

{selpus 99¢

pus G9¢

09,1 = 2AoTam-ITOm voc

{09, = 2I9s9I°FTOM €97

! (Mo 3Tam =bpssod)p z9¢

‘T, T = 39S ITOM T9¢

! (Mo 3Tam =bpssod)p 092

{00, T = 3I9S2a°JTOM 6G¢

! (M2 3TOm =bpssod)p 8G¢

utbaq LGZ

! ()21sssIapuss se]q 9G¢Z

90TASD 39say // GGz

vac

€62

Y{selpus [A°)4

pus TI6¢

AS*1S9] ¢ D XTpuaddy

003 PIPOCDIODS IOJ 3TeM ‘A9 WoIJ 30olqo uoTldEesSURI] SATS09Y //

utbsq (SANNOY) 3Jesdsa
‘una yse)

uoTiduUNJpus
!MUozgos = Yozdos - sTyl
‘MYozwIq = HUYoZwiq-sTUl

! (fydoggos “‘HyodozwIg XOQTTew)mau uoTidunig

!MUozaos ‘Yyozwyq XoqTTeu

{I3 uoTlDEeSURIL

{19309 YyD SSeTo

xxx //

SSVYTD dHAMOHHD xxx //

y}sejpus
pus

109, = g3s T amMTITAM
09,1 = 2AoTam-ITOm
oT0A0 pesx puy //

foT3ep M ITam = [(§/(9g¢-ape))]3no oT0Ao ejep

sng dMm Woxj eiep yo3aq //

£(3T0"3Tqm ebpesod)p (o€ M’ FTAM~) STTYM

AS*1S97

SOTASP WOIJ Oe I0J 3ATeM //
L (ATO FTam =bpasod)p
{(0q,zg'ape’pq, 1) sTeUbTS3ISS
sng gm uo sTeubts 385 //
utbaq

f(ape [0:Tg] 3Tq)eTohkopesa ysel
sng gm woxj ejep pesx //

y}sejpus
pus

109, = g3sTamMTITAM

t¢°D XTpuaddy

SSeTopus

0G¢e
67 ¢
8r¢e
L7 €
ore
3749
vve
€ve
cre
5749
orve
6€€C
8¢¢
LEE
9¢e
Gee
veEE
€ee
cee
TEE
oce
6C¢
8c¢
Lee
9ce
Gce
vece
€ce
cce
TCE
0ce
6T€C
8T¢
LTE
9T¢
Q1€
vIE
€Te
AR
TT€E
0T¢E
60¢
80¢
LO€E
90¢
S0¢€
A0S
€0¢
c0¢e
T0€

CENEN

CIN

(X R X XXX R A RA LR RR XA L XA XX LR XXX XXX XXX 2 ¥ X2 xxxxxxxxxxxn) AOTASTPS

A:*

©** 1S9l gM SHEV xu)AeTdSTPS

(X R X XXX F A RA LR XR LR L XA LR LR XXX XXX XX X2 ¥ X2 xxxxxxxxxxxn) ROTASTPS

! (3no o ejep-*
! (3Ino ej3ep*

! (3osax-

! (3dAaosp:
(Ao

! (ut eqep-

! (1no” o ej3ep- Il

13,43
I3,Us
13,43
I3,Us
13,43
I3,Us

! (MUozgos ‘qyozwIq) MaU = YD
! (yogzgos ‘goszgusb)mau = Jos
! (MyUdzwIg ‘wIqzusb) mau = wiqg
! (gosgzusb‘wugqzusb)mau = usb

!M3uU = UYozgos

!mou = gosgusb
!MBU = Yo zZwiqg
!mau = wjqgzusb

utbaq

unx ysel

!3yo

PEMeEYife)

!qos pIeoQeaI00g
‘usb I01vISDULH

‘qyozgos
‘YyozwIiq
{gosgzusb
‘wyqzusb

‘wyq Wag

XOqTTeu
XOTTeu
XOqTTeu
XOQTTeu

!QJUuBsWuUOITAUY SSeTD

pus
! A: i v %@HQWHUW
:3no ejep g0G,)AeTdsTpS
:3n0 e3ep WAd,)AeTdsTpg
:1esay,) Ae1dsTpS
:adAxosq,) AeTdsTps
rut Aoy,) AeTdsTps
:uT eleq,)AerdsTIps
! A: i v %@HQWHUW

== 3NO0 ®e31EpP-°I3) 3JI9sse :3ndino e

AS*1S97

! (x3)39b"3ydzaos
! (x13) 39b yuyodzwIq

t¢°D XTpuaddy

y}sejpus

sseTopus

007%
66¢
86¢
L6€E
96¢
S6¢€
v6€
€6¢
g6t
T6¢€
06¢
68¢€
88¢
L8E
98¢
G8¢
78¢€
€8¢
¢8¢
I8¢
08¢
6LE
8LE
LLE
9LE
GLE
vLE
€LE
cLE
TLE
oLE
69¢
89¢
L9€E
99¢
G9¢
v9€
€9¢
c9¢
T9¢
09¢
6G¢
8G¢
LSE
9G¢
GG¢
7423
€G6¢
A3
TG¢E

AS*1S97

wexboxdpus

pus
(yunx-aAus
M3U = AUD
utheq TeraTuT
31Ie3s wexboad uO JUSWUOITAUS IS //

!AUS QUBSWUOITAUY
JUSWUOITAUS SUuTFaq //

sseTopus

yselpus
pus

!(uxxx POUSTUTA xyxu)ATASTDS

utol
f()una-jyd
! ()unx-gos
! (yuna-usb
()yuna-wIqg

3103

1¢*0 xTpusddy

AN
TEY
0er
6T
8¢y
LCY
9cv
YA
vev
(XA
447
R4
0cv
6TV
8TV
LTV
9TV
QT¥
viv
€TV
AN
Ty
0TV
607
807
L0V
907
S07
7oV
€0v
4007
T0¥

92 C. TESTBENCH SOURCE CODE

£ ((orTam" T Om)

S Tnpowpus

! (peaa eaep d)Ajasdoad 3Iosse :peaJ elep P

! (oe

f(yoeT M IT M ‘DADTMTIT gM ‘389SS9X°JT gm~ ‘YTO°
(43021I00UT SyEYUSPURY :1YOUdH. ‘0 ‘€ ‘0
(uoTjlassse AxeaqrT) oyeyspuey iadoad I0F o=yd //

3%

(eM™am*JT gM~) 33 (07 3ep qm:JIT M) UMOUNUNSTS)

gas~d)Arasdoad 3Io9sse 30 gas e

JT gM) S3eyspuey pPTTRAUT
‘0 ‘0T ‘0 ‘0)# °oeyspuey 3ISSS®

Kyasdoadpus
Jou (T2 FT am sbpssod)p
‘peaa e3ep d Ajasdoad

pomoTTe ST DbuTIpesal sng STTUM SNC UO BJRP uMOUMUN IO0F 02yl //

Kyasdoadpus

f(q3asTAMTIT M <—| (qoBTqmFT qm)esoxs) (JTO°3IT gm ebpesod)p

AS°*TRUIS]IXOPBAS

tF D XTpuaddy

!yoeTq3s” d Ajasdoad
9CqO0I3S 3INOYAITM S3O® IOJ oayd //

! (FTM YAS " JT M) TRUIS]IXSBAS

SUOT3I9SSE TRUIDIXD Y3ITM STNPORW
STnpow TYNJIHIXHVYAS

sTnpou
xxx //
xxx [/
xxx //

AN WO O 00 o0

94 C. TESTBENCH SOURCE CODE

sTnpoupus

! (o ejep /Aoy ‘T eaep ‘Apeaa‘qdAIosp‘prOT ‘TS M FTOm /
ODADTOM T JTOM ‘oM oM JTOM IPET M JTOM ‘30T M JTOM ‘T 3P qM" JTAM ‘0T 3Bp M JTOM ‘g3s™ qm* JTOM ‘qMISSDI ‘IO JTAM)

ogm ISTTOIJUOD Sar gm
! (o7 eqep‘Apeaa’Asy ‘1T elep ‘1dAIDOSpP ‘peOT ‘Sor19SSI ‘HTO JTOM) So®© sor
pus
!(39s91°JTOM) ~ = SoBISSSI
{39591 IJTgM = gM1SSSl
utbaq

(19s2x°JTqMm)p shemTe

‘o7 ejep ‘T elep ‘Asy [0:LZT] OTboT
!Apeaa ‘3dAIosp ‘peoT ‘soejssaa ‘gmisssaa OTbOT

{(FTam InQa-FT gm) doisse aTnpow
WATSTedsawTy,, 9PNTOUT

as-doasse :6°D xTpuaddy

96 C. TESTBENCH SOURCE CODE

(InoT3se31 asI, dn

(0°soe uT pooeTd)

![T]3ano™

o~

DTN

fTlAeyT

(Ko 0 3so3 /Aoy 3s=o1’

(Ao 3so3 /Aoy 0 3sa3 !
(Ko 0 3so3 /Aoy 3so1’

3se3 = [T-T-MD0Td NJ]3Ino~ 3ss3 asx
} o (++T4¥D0OTg N>T!0=T) I03J
elepino ssisasy //

1IN0~ 3s921/UT 3s913) 871 dAIous” sor
} 9sT®
{
3IN0 3S931/UT 3s93) 871 1dAIDop sor
1IN0~ 3s91/UT 3s913) 871 1dAIous” sor
} (1 == 3dAaoep) It
1dAzosp 10 3dAaouy //

1se17A8I = [T-T1-¥D071Ig N]&ey 3s393

f[T]urT3se3TAeI = [T-T-MD0Td N]UT 3s°97]

} (++T4MD0TE N>T/0=T) I03J
e lepUT 9sIsady //

(00719 N]&sy 3s93 IeUd paubrsun
[MD0Td NJ]2Ino 3se31 Ieyd pasubrsun
! [¥D07Td N]JUT 3se3 IeUdD paubrsun

‘T 3ut

{0079 N] Aoy 07 3se] IeUD paubrsun
4
4

}

‘1dAx0op IeTEOS ‘A9 1S93 ADIyx dN ‘UT 3S23 ASIyx dN) [9POWDSSe PTIOA

UOT30UNI UOTIRDTUNWWOD D

:9°'D xXTpuaddy

98 C. TESTBENCH SOURCE CODE

C LANGUAGE COMMUNICATION FUNCTION 99

101

Appendix D

Coverage Reports

D.1 cmView.short 1d File

// Synopsys, Inc.

//

// Generated by: cmView X-2005.06-SP2
// User: henrikru

// Date: Sat Dec 30 21:58:19 2006

SHORT SOURCE LINE COVERAGE REPORT

[/ %k skskokokok sk ok sk ok sk ok sk ok sk ok sk sk sk ok sk ko sk ok sk ok sk sk ok sk ok sk ok sk sk ko sk sk sk ok sk ok ko sk skeok sk ok sk sk ok sk sk sk ok ok ok ok
// MODULE DEFINITION COVERAGE

// This section contains coverage for module definitions.
// The coverage is cumulative over all the instances of the module
Test Coverage Result: Total Coverage
MODULE wb_aes_controller
FILE /home/henrikru/oo2/wb_aescontroller.v

Line No Coverage Block Type
144 .1 0 MISSING_DEFAULT

102

D. COVERAGE REPORTS

153 0
154 0
171.1 0

CASEITEM

MISSING_DEFAULT

//***

// Total Module Definition Coverage Summary
TOTAL COVERED PERCENT
lines 462 460 99.57
statements 511 509 99.61
blocks 122 121 99.18
ALWAYS 29 29 100.00
CASEITEM 47 46 97.87
IF 28 28 100.00
ELSE 17 17 100.00
MISSING_ELSE 11 11 100.00
ROUTINE 1 1 100.00

MISSING_DEFAULT 3

0.00

CMVIEW.SHORT _¢CD FIiLE 103

D.2 cmView.short cd File

// Synopsys, Inc.

//

// Generated by: cmView X-2005.06-SP2
// User: henrikru

// Date: Sat Dec 30 21:58:19 2006

SHORT CONDITION COVERAGE REPORT

//***
// MODULE DEFINITION COVERAGE

// This section contains coverage for module definitions.
// The coverage is cumulative over all the instances of the module

Test Coverage Result: Total Coverage

MODULE aes
LINE 327
STATEMENT if ((addroundkey_start_i && (round != 4°b0)))
_________ P S, T
EXPRESSION -1- -2-
1 0 | Not Covered
LINE 345
STATEMENT if (((addroundkey_round == round) && keysched_ready_o))
_____________ Lo SR> Y
EXPRESSION -1- -2-
0 1 | Not Covered
/) mm

MODULE wb_aes_controller

FILE /home/henrikru/oo02/wb_aescontroller.v

104 D. COVERAGE REPORTS

LINE 104
STATEMENT

EXPRESSION

LINE 147
STATEMENT

EXPRESSION

/[%%k kK k ok ok k ok k

//

//
// conditi
// logical

S DU Qomm - c TR /N
-1- -2- -3- -4-
1 1 1 | Not Covered
1 0 1 1 | Not Covered

if ((wb_stb_i && wb_cyc_i && ((“wb_we_i)) && ((“wb_ack_0))))

S R c T Y/ S
-1- -2- -3- -4-
1 1 1 | Not Covered
1 0 1 1 | Not Covered
1 1 0 1 | Not Covered

3k 3k 3k >k 3k 3k 3k 3k 3k 3k >k 3k 3k 3k >k 3k 3k %k 3k 3k >k %k 5k 3k >k 3k 3k >k %k 3k %k >k 3k 5k >k %k 5k %k %k 5k >k >k 3k 5k %k %k 5k %k %k %k 5k k %k k

Total Module Definition Coverage Summary

TOTAL COVERED PERCENT
ons 57 50 87.72
57 50 87.72

CMVIEW.SHORT FD FILE 105

D.3 cmView.short fd File

// Synopsys, Inc.

//

// Generated by: cmView X-2005.06-SP2
// User: henrikru

// Date: Sat Dec 30 21:58:19 2006

SHORT FSM COVERAGE REPORT

//***
// MODULE DEFINITION COVERAGE

// This section contains coverage for module definitions.
// The coverage is cumulative over all the instances of the module

Test Coverage Result: Total Coverage

MODULE subbytes

FILE subbytes.v

FSM state

// state coverage results

// state transition coverage results

// sequence coverage results

106 D. COVERAGE REPORTS

’h1->°h0 | Not Covered
’h10->’h0 | Not Covered
’h10->’h0->’h1 | Not Covered
’h0->’h1->’h0 | Not Covered Loop
’h1->’h0->’h1 | Not Covered Loop

/==
// Single FSM Coverage Summmary
TOTAL NOT COVERED PERCENT
States 8 0 0.00
Transitions 4 0 0.00
Sequences 8 5 62.50
[== m e e e e -
F T e e e
// Module Coverage Summary
TOTAL COVERED PERCENT
Fsms 1 1 100.00
States 8 8 100.00
Transitions 4 4 100.00
Sequences 9 3 33.33
[== e e -
MODULE mixcolum
FILE mixcolum.v
FSM state

// state coverage results

// state transition coverage results
’h1->°h0 | Not Covered

’h2->°h0 | Not Covered

CMVIEW.SHORT FD FILE 107

// sequence coverage results

’h1->’h0
’h2->’h0

’h1->’h2->’h0
’h2->’h0->’hl
’h0->’h1->’h0
’h1->’h0->hl
’h0->’h1->’h2->h0
’h1->’h2->’h0->’h1
’h2->’h0->’h1->’h2

Single FSM Coverage Summmary

NOT COVERED

Module Coverage Summary

//
TOTAL
States 4
Transitions 6
Sequences 25
//
TOTAL
Fsms 1
States 4
Transitions 6
Sequences 25
MODULE keysched
FILE keysched.v
FSM state

// state coverage results

COVERED
0

4

4

16

Not Covered
Not Covered
Not Covered
Not Covered
Not Covered Loop
Not Covered Loop
Not Covered Loop
Not Covered Loop
Not Covered Loop

PERCENT
0.00
33.33
36.00

PERCENT
0.00
100.00
66.67
64.00

108 D. COVERAGE REPORTS

// state transition coverage results

’h1->°h0 | Not Covered
Yh2->°h0 | Not Covered
’h3->°h0 | Not Covered

// sequence coverage results

’h1->°h0 Not Covered
’h2->°h0 Not Covered
’h3->’h0 Not Covered

h1->’h2->’h0
’h2->’h0->’h1l
’h2->’h3->’h0
’h3->’h0->’h1
’h1->°h2->’h3->’h0 Not Covered
’h2->’h3->’h0->’h1 Not Covered

|

|

|

| Not Covered

|

|

|

|

|
’h3->’h0->’h1->’h2 | Not Covered

|

|

|

|

|

|

|

|

|

Not Covered
Not Covered
Not Covered

’h0->’h1->’h0 Not Covered Loop
’h1->’h0->’hl Not Covered Loop
’h0->’h1->’h2->’h0 Not Covered Loop
’h1->’h2->’h0->’h1 Not Covered Loop
’h2->’h0->’h1->’h2 Not Covered Loop
’h0->’h1->’h2->’h3->’h0 Not Covered Loop
’h1->’h2->’h3->’h0->’hl Not Covered Loop
’h2->’h3->’h0->’h1->’h2 Not Covered Loop
’h3->’h0->’h1->’h2->’h3 Not Covered Loop

/) mm
// Single FSM Coverage Summmary

TOTAL NOT COVERED PERCENT
States 5 0 0.00
Transitions 8 3 37.50
Sequences 44 19 43.18
[/ mm
/) mmm
// Module Coverage Summary

TOTAL COVERED PERCENT

CMVIEW.SHORT _FD FILE 109

Fsms 1 0 0.00

States 5 5 100.00

Transitions 8 5 62.50

Sequences 44 25 56.82

/= e e

//***

// Total Module Definition Coverage Summary
TOTAL COVERED PERCENT
Fsms 3 1 33.33
States 17 17 100.00
Transitions 18 13 72.22

Sequences 78 44 56.41

110 D. COVERAGE REPORTS

D.4 cmView.short bd File

// Synopsys, Inc.

//

// Generated by: cmView X-2005.06-SP2
// User: henrikru

// Date: Sat Dec 30 21:58:19 2006

SHORT BRANCH COVERAGE REPORT

/[3k sksk skt ko ok sk sk ok sk sk sk ok ok sk sk sk ok sk sk sk ok skesk sk ok sk sk ok sk skeok sk ok sk sk ok sk skesk sk ok sk sk ok sk sk sk sk sk ok sk skok sk sk ok sk sk ok ok
// MODULE DEFINITION COVERAGE

// This section contains coverage for module definitions.
// The coverage is cumulative over all the instances of the module

Test Coverage Result: Total Coverage

MODULE subbytes

145 if ('reset)
-1-
146 begin
147
148 data_reg = (0);
149 state = (0);
150 ready_o = (0);
151
152 end
153 else
154 begin
155
156 data_reg = (next_data_reg);
157 state = (next_state);
158 ready_o = (next_ready_o);
159
160 end
161

162 end

CMVIEW.SHORT BD FIiLE 111

163

164

165 //sub:

166 reg[127:0] data_i_var,data_reg_128;

167 regl7:0] data_array[15:0],data_reg_var[15:0];
168

FILE /home/henrikru/oo02/subbytes.v

217 case(state)
-1-

218
219 0:
220 begin
221 if (start_i)

-2-
222 begin
223
224 sbox_data_o = (data_arrayl[0]);
225 next_state = (1);
226
227 end
228 end
229
230 16:
231 begin
232
233 data_reg_var[15]=sbox_data_i;
234 //Make shift rows stage
235 case(decrypt_i)

-3-
236 0:
237 begin
238 ‘shift_array_to_128
239 end
240 1:
241 begin
242 ‘invert_shift_array_to_128
243 end
244 endcase
245

246 next_data_reg = (data_reg_128);

112 D. COVERAGE REPORTS

247 next_ready_o = (1);
248 next_state = (0);
249
250 end
251 default:
252 begin
253
254 sbox_data_o = (data_arrayl[statel);
255 data_reg_var[state-1]=sbox_data_i;
256 ‘assign_array_to_128
257 next_data_reg = (data_reg_128);
258 next_state = (state+l);
BRANCH -1- -2- -3-
16 - MISSING_DEFAULT | Not Covered
[[®¥Fkk Ak kkk
/) mmm

MODULE mixcolum

104 outmux = (decrypt_i?outy:outx);
1-
105
106 end
107
108
109 //registers:
113 if(!reset)
“1-
114 begin
115
116 data_reg = (0);
117 state = (0);
118 ready_o = (0);
119 data_o_reg = (0);
120 end
121 else

122 begin

CMVIEW.SHORT BD FILE 113

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

data_reg = (next_data_reg);
state = (next_state);
ready_o = (next_ready_o);
data_o_reg = (next_data_o);

end
end
//mixcol:
reg[127:0] data_i_var;

reg[31:0] aux;
reg[127:0] data_reg_var;

FILE /home/henrikru/o0o02/mixcolum.v

152

153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

case(state)
-1-

0:
begin
if (start_i)
-o-
begin
aux=data_i_var[127:96];
mix_word = (aux);
data_reg_var[127:96]=outmux;
next_data_reg = (data_reg_var);
next_state = (1);
end
end
1:
begin
aux=data_i_var[95:64];
mix_word = (aux);
data_reg_var[95:64]=outmux;
next_data_reg = (data_reg_var);
next_state = (2);
end

114 D. COVERAGE REPORTS

173 2:
174 begin
175 aux=data_i_var[63:32];
176 mix_word = (aux);
177 data_reg_var[63:32]=outmux;
178 next_data_reg = (data_reg_var);
179 next_state = (3);
180 end
181 3:
182 begin
183 aux=data_i_var[31:0];
184 mix_word = (aux);
185 data_reg_var[31:0]=outmux;
186 next_data_o = (data_reg_var);
187 next_ready_o = (1);
188 next_state = (0);
189 end
190 default:
191 begin
BRANCH -1- -2-
default - | Not Covered
/[%%k ok kK k k ok k
J A e e L e e

MODULE wb_aes_controller

FILE /home/henrikru/oo02/wb_aescontroller.v

87 if (reset==1)
-1-
88 begin
89 wb_ack_o<=#1 0;
90 wb_dat_o<=#1 0;
91 control_reg <= #1 32°h0;
92 cypher_data_reg <= #1 127°h0;
93 key_o <= #1 127°h0;
94 data_o <= #1 127°h0;
95 end

96 else

CMVIEW.SHORT BD FILE

115

97
98

99

100
101
102
103
104

105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

begin
if (ready_i)

8°hC:

control_regl[l] <= #1 1°bl;
cypher_data_reg <= #1 data_i;

if (wb_stb_i && wb_cyc_i && wb_we_i && ~“wb_ack_o)

wb_ack_o<=#1 1;
case(wb_adr_i[7:0])

-4-
8°h0:
begin
//Writing control register
control_reg<= #1 wb_dat_i;
end
8’h4:
begin
data_o[127:96]1<= #1 wb_dat_i;
end
8’h8:
begin
data_o[95:64]<= #1 wb_dat_i;
end

begin

data_o[63:32]<= #1 wb_dat_i;
end
8°h10:
begin

data_o[31:0]<= #1 wb_dat_i;
end
8°hl4:
begin

key_o[127:96]<= #1 wb_dat_i;
end
8°h18:
begin

key_o[95:64]1<= #1 wb_dat_i;
end
8’h1C:

116 D. COVERAGE REPORTS

138 begin
139 key_o[63:32]<= #1 wb_dat_i;
140 end
141 8°h20:
142 begin
143 key_o[31:0]<= #1 wb_dat_i;
144 end
145 endcase
146 end
147 else if(wb_stb_i && wb_cyc_i && “wb_we_i && “wb_ack_o)
-5-
148 begin
149 wb_ack_o<=#1 1;
150 case(wb_adr_i[7:0])
-6-
151 8°h0:
152 begin
153 wb_dat_o<= #1 control_reg;
154 control_reg[1]<=1’b0;
155 end
156 8°h24:
157 begin
158 wb_dat_o<= #1 cypher_data_reg[127:96];
159 end
160 8’h28:
161 begin
162 wb_dat_o<= #1 cypher_data_reg[95:64];
163 end
164 8°h2C:
165 begin
166 wb_dat_o<= #1 cypher_data_reg[63:32];
167 end
168 8°h30:
169 begin
170 wb_dat_o<= #1 cypher_data_reg[31:0];
171 end
172 endcase
173 end
174 else
175 begin
176 wb_ack_o<=#1 O;

177 control_reg[0]<= #1 1°b0;

CMVIEW.SHORT BD FILE 117

BRANCH -1- -2- -3- -4- -5- -6-

0 - 1 MISSING_DEFAULT - -

0 - 0 - 1 8’h00

0 - 0 - 1 MISSING_DEFAULT
/[k% Kk ok sk ok kK ok k
/== e

//***
// Total Module Definition Coverage Summary

// TOTAL COVERED PERCENT
// branches 91 86 94 .51

| Not Covered
| Not Covered
| Not Covered

118 D. COVERAGE REPORTS

D.5 cmView.short pd File

// Synopsys, Inc.

//

// Generated by: cmView X-2005.06-SP2
// User: henrikru

// Date: Sat Dec 30 21:58:19 2006

SHORT PATH COVERAGE REPORT

//***
// MODULE DEFINITION COVERAGE

// This section contains coverage for module definitioms.
// The coverage is cumulative over all the instances of the module

Test Coverage Result: Total Coverage

MODULE aes
179
180 if (decrypt_i&&round!=10)

-1-
181 begin
182
183 addroundkey_data_i = (subbytes_data_o);
184 subbytes_data_i = (mixcol_data_o);
185 mixcol_data_i = (addroundkey_data_o);
186
187 end
188 else if(!decrypt_i&&round!=0)

-2-

189 begin
190
191 addroundkey_data_i = (mixcol_data_o);
192 subbytes_data_i = (addroundkey_data_o);
193 mixcol_data_i = (subbytes_data_o);

194

CMVIEW.SHORT pPD FILE 119

195
196
197
198
199
200
201
202
203
204
205
206

207
208
209
210

211
212
213
214
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229

230
231
232
233
234

end
else
begin

mixcol_data_i = (subbytes_data_o);
subbytes_data_i = (addroundkey_data_o);
addroundkey_data_i = (data_i);

end

case(state)
_3-

0:
begin
if (load_1i)
-4-
begin

next_state = (1);

if (decrypt_i)
-5-
next_round

else
next_round

(10);

(0);
next_first_round_reg = (1);

end
end

1:
begin

//Counter

if ('decrypt_i&&mixcol_ready_o)
—6-

begin

next_addroundkey_start_i = (1);
addroundkey_data_i = (mixcol_data_o);
next_round = (round+1);

120 D. COVERAGE REPORTS

235
236 end
237 else if (decrypt_i&&subbytes_ready_o)
-7-

238 begin
239
240 next_addroundkey_start_i = (1);
241 addroundkey_data_i = (subbytes_data_o);
242 next_round = (round-1);
243
244 end
245
246 //Output
247 if ((round==9&&'decrypt_i) | | (round==0&&decrypt_i))

-8-
248 begin
249
250 next_addroundkey_start_i = (0);
251 mixcol_start_i = (0);
252
253 if (subbytes_ready_o)

-9-

254 begin
255
256 addroundkey_data_i = (subbytes_data_o);
257 next_addroundkey_start_i = (1);
258 next_round = (round+1);
259
260 end
261
262 end
263
264 if ((round==10&&!decrypt_i) | | (round==0&&decrypt_i))

-10-
265 begin
266
267 addroundkey_data_i = (subbytes_data_o);
268 subbytes_start_i = (0);
269
270 if (addroundkey_ready_o)

-11-

271 begin
272

273 next_ready_o = (1);

CMVIEW.SHORT pPD FILE 121

274 next_state = (0);
275 next_addroundkey_start_i = (0);
276 next_round = (0);
277

278 end

279

280 end

281

282 end

283

284 default:

285 begin

286

287 next_state = (0);

288

289 end

290

291 endcase

292

293 end

294

295

296 //addroundkey:

297 regl[127:0] data_var,round_data_var,round_key_var;

FILE /home/henrikru/oo2/aes.sv

306

307 if (addroundkey_round==1||addroundkey_round==0)
-1-

308 keysched_last_key_i = (key_i);

309 else

310 keysched_last_key_i = (keysched_new_key_o);

311

312 keysched_start_i = (0);

313

314 keysched_round_i = (addroundkey_round);

3156

316 if (round==0&&addroundkey_start_i)
-9-

317 begin

318

122 D. COVERAGE REPORTS

319 //Take the input and xor them with data if round==0;

320 data_var=addroundkey_data_i;

321 round_key_var=key_i;

322 round_data_var=round_key_var~data_var;

323 next_addroundkey_data_reg = (round_data_var);

324 next_addroundkey_ready_o = (1);

325

326 end

327 else if (addroundkey_start_i&&round!=0)
-3-

328 begin

329

330 keysched_last_key_i = (key_i);

331 keysched_start_i = (1);

332 keysched_round_i = (1);

333 next_addroundkey_round = (1);

334

335 end

336 else if (addroundkey_round!=round&&keysched_ready_o)
—4-

337 begin

338

339 next_addroundkey_round = (addroundkey_round+1);

340 keysched_last_key_i = (keysched_new_key_o);

341 keysched_start_i = (1);

342 keysched_round_i = (addroundkey_round+1);

343

344 end

345 else if (addroundkey_round==round&&keysched_ready_o)
-5-

346 begin

347

348 data_var=addroundkey_data_i;

349 round_key_var=keysched_new_key_o;

350 round_data_var=round_key_var~data_var;

351 next_addroundkey_data_reg = (round_data_var);

352 next_addroundkey_ready_o = (1);

353 next_addroundkey_round = (0);

354

355 end

356

357 end

358

359 //sbox_muxes:

CMVIEW.SHORT pPD FILE 123

PATH -1- -2- -3- -4- -5-

0 1 - - - | Not Covered

0 0 1 - - | Not Covered
[[®¥%k Kk kk koK
A —

MODULE subbytes

FILE /home/henrikru/oo02/subbytes.v

216
217 case(state)
-1-

218
219 0:
220 begin
221 if(start_1i)

-2-
222 begin
223
224 sbox_data_o = (data_array[0]);
225 next_state = (1);
226
227 end
228 end
229
230 16:
231 begin
232
233 data_reg_var[15]=sbox_data_i;
234 //Make shift rows stage
235 case(decrypt_i)

-3-
236 0:
237 begin
238 ‘shift_array_to_128
239 end
240 1:

241 begin

124 D. COVERAGE REPORTS

242 ‘invert_shift_array_to_128
243 end
244 endcase
245
246 next_data_reg = (data_reg_128);
247 next_ready_o = (1);
248 next_state = (0);
249
250 end
251 default:
252 begin
253
254 sbox_data_o = (data_arrayl[statel);
255 data_reg_var[state-1]=sbox_data_i;
256 ‘assign_array_to_128
257 next_data_reg = (data_reg_128);
258 next_state = (state+l);
PATH -1- -2- -3-
16 - MISSING_DEFAULT | Not Covered
/[®Fkkkkkok koK ok
[e

MODULE mixcolum

FILE /home/henrikru/oo02/mixcolum.v

151
152 case(state)
-1-

153
154 0:
155 begin
156 if (start_i)

9=
157 begin
158 aux=data_i_var[127:96];
159 mix_word = (aux);
160 data_reg_var[127:96]=outmux;

161 next_data_reg = (data_reg_var);

CMVIEW.SHORT pD FILE 125

162 next_state = (1);
163 end
164 end
165 1:
166 begin
167 aux=data_i_var[95:64];
168 mix_word = (aux);
169 data_reg_var[95:64]=outmux;
170 next_data_reg = (data_reg_var);
171 next_state = (2);
172 end
173 2:
174 begin
175 aux=data_i_var[63:32];
176 mix_word = (aux);
177 data_reg_var[63:32]=outmux;
178 next_data_reg = (data_reg_var);
179 next_state = (3);
180 end
181 3:
182 begin
183 aux=data_i_var[31:0];
184 mix_word = (aux);
185 data_reg_var[31:0]=outmux;
186 next_data_o = (data_reg_var);
187 next_ready_o = (1);
188 next_state = (0);
189 end
190 default:
191 begin
PATH -1- -2-
default - | Not Covered
/[Fkkkokkkkk ok ok
[/ mmm

MODULE wb_aes_controller

FILE /home/henrikru/oo02/wb_aescontroller.v

126 D. COVERAGE REPORTS

86 begin
87 if (reset==1)
-1-
88 begin
89 wb_ack_o<=#1 0;
90 wb_dat_o<=#1 0;
91 control_reg <= #1 32°h0;
92 cypher_data_reg <= #1 127°h0;
93 key_o <= #1 127°h0;
94 data_o <= #1 127°h0;
95 end
96 else
97 begin
98 if (ready_i)
-9-
99 begin
100 control_reg[1] <= #1 1°b1;
101 cypher_data_reg <= #1 data_i;
102 end
103
104 if (wb_stb_i && wb_cyc_i && wb_we_i && “wb_ack_o)
-3-
105 begin
106 wb_ack_o<=#1 1;
107 case(wb_adr_i[7:0])
—4-
108 8’h0:
109 begin
110 //Writing control register
111 control_reg<= #1 wb_dat_i;
112 end
113 8’h4:
114 begin
115 data_o[127:96]<= #1 wb_dat_i;
116 end
117 8’h8:
118 begin
119 data_o[95:64]<= #1 wb_dat_i;
120 end
121 8’hC:
122 begin
123 data_o[63:32]<= #1 wb_dat_i;
124 end

125 8°h10:

CMVIEW.SHORT PD FILE

127

126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

148
149
150

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

begin

data_o[31:0]<= #1 wb_dat_i;
end
8’h14:
begin

key_o[127:96]1<= #1 wb_dat_i;
end
8°h18:
begin

key_o[95:64]1<= #1 wb_dat_i;
end
8’hi1C:
begin

key_o[63:32]<= #1 wb_dat_i;
end
8°h20:
begin

key_o[31:0]1<= #1 wb_dat_i;
end

endcase
end

else if(wb_stb_i && wb_cyc_i && “wb_we_i && “wb_ack_o)

begin
wb_ack_o<=#1 1;
case(wb_adr_i[7:0])

8’h2C:

-5-

-6-
8°h0:
begin
wb_dat_o<= #1 control_reg;
control_reg[1]<=1’b0;
end
8°h24:
begin
wb_dat_o<= #1 cypher_data_reg[127:96];
end
8°h28:
begin
wb_dat_o<= #1 cypher_data_reg[95:64];
end

begin
wb_dat_o<= #1 cypher_data_reg[63:32];
end

128 D. COVERAGE REPORTS

168
169
170
171
172
173
174
175
176
177

PATH

/[%%k ok kK ok k ok k

//***

//

//
//

paths

8’h30:
begin
wb_dat_o<= #1 cypher_data_reg[31:0];
end
endcase
end
else
begin
wb_ack_o<=#1 0;
control_reg[0]<= #1 1°b0;

-1- -2- -3- -4- -5- -6-

0 0 0 - 1 87b0

0 0 0 - 1 MISSING_DEFAULT
0 0 1 MISSING_DEFAULT - -

0 1 0 - 1 8°h30

0 1 0 - 1 8’h2c

0 1 0 - 1 8’h28

0 1 0 - 1 8’h24

0 1 0 - 1 87b0

0 1 0 - 1 MISSING_DEFAULT
0 1 1 MISSING_DEFAULT - -

0 1 1 8’b0 - -

0 1 1 8°h04 - -

0 1 1 8°h08 - -

0 1 1 8°h0c - -

0 1 1 8°h10 - -

0 1 1 8’h14 - -

0 1 1 8°h18 - -

0 1 1 8’hilc - -

0 1 1 8°h20 - -

Total Module Definition Coverage Summary

TOTAL COVERED PERCENT
157 59 37.58

Not
Not
Not
Not
Not
Not
Not
Not
Not
Not
Not
Not
Not
Not
Not
Not
Not
Not
Not

Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered
Covered

CMVIEW.SHORT pPD FILE 129

130 D. COVERAGE REPORTS

D.6 cmView.short td File

// Synopsys, Inc.

//

// Generated by: cmView X-2005.06-SP2
// User: henrikru

// Date: Sat Dec 30 21:58:19 2006

// SHORT TOGGLE COVERAGE REPORT

//***

// MODULE DEFINITION COVERAGE

// This section contains coverage for

// The coverage is cumulative over all the instances of the module

MODULE aes

//

// Name
keysched_sbox_decrypt_o

//
// Name

ready_o
data_o[127:0]

MODULE sbox

//

// Name

//

module definitions.

Net Coverage

1->0 0->1
No No

Register Coverage

1->0 0->1
No No
No No

Net Coverage
1->0 0->1

Register Coverage

CMVIEW.SHORT _TD FILE

131

// Name
aA[3:1]
aB[3:1]
mull_aA[3:1]
muli_a[3:1]
mul2_aA[3:1]
mul2_aB[3:1]
mul3_aA[3:1]
mul3_aB[3:1]
intermediate_aA[3:1]
intermediate_aB[3:1]
inversion_aA[3:1]

MODULE mixcolum
//

// Name

//

// Name

data_reg[31:0]
next_data_reg[31:0]

MODULE keysched
/!

// Name

/!

// Name

sbox_decrypt_o
zero[23:0]

MODULE wb_aes_controller

1->0 0->1
No No
No No
No No
No No
No No
No No
No No
No No
No No
No No
No No

Net Coverage
1->0 0->1

Register Coverage

1->0 0->1
No No
No No

Net Coverage
1->0 0->1

Register Coverage

1->0 0->1
No No
No No

132 D. COVERAGE REPORTS

// Net Coverage
// Name 1->0 0->1
reset No No
wb_adr_i[1:0] No No
wb_adr_i[31:6] No No
wb_sel_i[3:0] No No
load_o No No
decrypt_o No No
data_i[127:0] No No
ready_1i No No
// Register Coverage
// Name 1->0 0->1
data_o[127:0] No No
key_o[127:0] No No
control_reg[31:3] No No

//***

// Total Module Definition Coverage Summary
// TOTAL COVERED PERCENT
regs 156 136 87.18
reg bits 5104 4568 89.50
reg bits(0->1) 5104 4568 89.50
reg bits(1->0) 5104 4568 89.50
nets 66 58 87.88
net bits 1496 1331 88.97
net bits(0->1) 1496 1331 88.97

net bits(1->0) 1496 1331 88.97

CMVIEW.MOD _TD FILE 133

D.7 cmView.mod td File

// Synopsys, Inc.
//

// Generated by: cmView X-2005.06-SP2

// User: henrikru

// Date: Sat Dec 30 21:58:19 2006

//***
// MODULE DEFINITION COVERAGE SUMMARY

// This section summarizes coverage by providing statistics for each

// module definition. The coverage is cumulative over all the instances

// of the module

Test Coverage Result: Total Coverage

Module Name

aes
sbox

subbytes

mixcolum
word_mixcolum
byte_mixcolum
keysched
wb_aes_controller
svaexternal
assert_handshake

NetBits

(%)

99.85

100.
100.
100.
100.
100.
100.

00
00
00
00
00
00

19.61

NetBits

673/674
11/11
140/140
196/196
96/96
32/32
143/143
40/204
0/0

0/0

RegBits
(%)
91.10
85.27
100.00
93.59
100.00
100.00
96.82
36.53

//***

// Total Module Definition Coverage Summary
/7 TOTAL COVERED PERCENT
regs 156 136 87.18
reg bits 5104 4568 89.50

reg bits(0->1) 5104

4568

89.50

RegBits

1321/1450
191/224
917/917
934/998
192/192
88/88
761/786
164/449
0/0

0/0

134 D. COVERAGE REPORTS

reg bits(1->0)

nets

net bits

net bits(0->1)
net bits(1->0)

5104

66

1496
1496
1496

4568

58

1331
1331
1331

89.50

87.88
88.97
88.97
88.97

Functional Coverage Report

For design with the following top-level modules:

e top

Design

Total number |Assertions IASS?FEHS 1w1th at Assertions with |Assertions with at %
of Assertions |Not Covered |—r—=¢4 at least 1 Failure [least 1 Incomplete wIout

—— |Success Attempts
9 11(11%) 8 (88%) 0 (0%) 1 (11%) 0 (0%)

Total number of Cover
Directives for Properties

Cover Directive for

Cover Directive for

Property Not Covered

Property with Matches

with Vacuous Matches

I

0 (0%)

11 (100%)

0 (0%)

. Cover Directive for Cover Directive for

Total number of Cover Cover Directive for ; P

. Sequence with All Sequence with First
Directives for Sequences |Sequence Not Covered

Matches Matches
0 0 (0%) 0 (0%) 0 (0%)
Total Events Not Events with at |Events w1tl}0ut any Events without
number of Covered least 1 real match or with only a0y Allempis
Events — Match vacuos match 4ty ACmpLs
0 00% [00%) 10 (0%) 0 (0%)
e List of Assertions Not Covered
. Real .
Assertion Attempts Failure Incomplete
Success

top.sva.invalid_
handshake.assert_multiple_ (92941707 |0 0 0
req_violation

Cover Directive for Property

e List of Assertions with at least 1 Real Success

Assertion Attempts Real Failure Incomplete
Success
|top.dut.aes.a_rounds ‘92941707 |92941707 |0 ‘O
top.sva.a_data_read 92941707 (929417070 0
ltop.sva.a_stb_ack 92941707 1727245 [0 0
top.sva.invalid_
handshake.handshake max_ 92941707 11727245 o 0
ack.assert_handshake max__
ack_cycle
top.sva.invalid_
handshake.max_ack_length_
chk.assert_handshake max_ 92941707)1727244 10 !
ack_length
top.tst.\Checker::run.a_output 200000 [200000 [0 [0
top.tst.\Generator::decrypt_
task.unnamed$$_0.a_ 132549 1132549 |0 0
randomize_d
top.tst.\Generator::encrypt_
task.unnamed$$_0.a_ 133097 |133097 |0 0
randomize_e
o List of Assertions with at least 1 Failure
e List of Assertions with at least 1 Incomplete
Assertion Attempts Real Failure |Incomplete
Success
top.sva.invalid_
handshake.max_ack_length_
chk.assert_handshake max_ 92941707)1727244 10 !
ack_length

o List of Assertions without Attempts

e List of Cover Directive for Sequence Not Covered

List of Cover Directive for Sequence with All Matches

List of Cover Directive for Sequence with First Matches

List of Cover Directive for Property Not Covered

e List of Cover Directive for Property with Matches

Cover Directive for Vacuous
Properties Attempts (Matches Matches Incomplete
|top.dut.aes.c_r0unds |92941707 |92941707 ‘O ‘0

e List of Cover Directive for Property with Vacuous Matches

e List of Events Not Covered

e List of Events with at least 1 real Match

e List of Events without any match or with only vacuos match

e List of Events without any Attempts

More Detailed Reports

e List of tests merged to generate this report
e Hierarchical coverage report
e Category based coverage report

Report Generation Info

Report generated by "henrikru" at Sat Dec 30 21:57:45 2006 , with following cmdline:
e assertCovReport

e VCS_HOME: /dak_install2/synopsys/2005.06—-SP2
e VCS Version: X-2005.06-SP2

ASSERTIONS REPORT 139

140 D. COVERAGE REPORTS

141

Appendix E

Signal Waves and Screenshots

E.1 Screenshots

] henrikru@mars: ~/oo2 e DVE.1 - Hier.1 e [DVE.2 - Wave.1] pr|

DVE - TopLevel.1 - [Hier.1]
[Fle Edit Mew Smuator Signal Scope Trace Window Helo

T raverson s vogs[| 2 2 [@[] % B2 % | A =l % o (e =
[FrizEsscEnas mL & %] =
———

=]

Sirmeinter v =3 = bit ¢l

always #5 clk = ~clk;

] (¥ (e] B

Herarchy [1vee
= $roat (Raot) Module
B Ftop (top) Module w0 v ack
T Fut (aestop) Module 0 wh_ack[31 0]
T ova (avaesternal) Module 0 wh_eye
0 wh_cht_if31:0]
0 wh_tiat_o[31:0]
0 wh_sel[30]
0 wh_sth
= [wh_we

wh_if whif {(clk);

test tst (wbif);
aestop dut (wbif);
svaexzternal sva (whif);

|

| momeshenrikruioozitop v |3 ¥/ Feuse

| v |l on. 3

T O T T T T T
dve> gui_wv_zoom_timerange —id Wave.l 1183616 1593236
dve> gui_wv_zoom_timerange -id Wave.l 1352389 1470621
<|

Lo ixtoy rrorsiarnings

dves

1 i | @ terminatedt: top.tat u7a

T 0en EINNG & » 006|nw

Figure E.1: DVE screenshot

142 E. SIGNAL WAVES AND SCREENSHOTS

[Elemview - FSM: Instance top.dut aes.k:

(] cmView : FSM Coverage

T ua

File View HAction Options

Choose FSH: state i

henrikru@mars:~/oo2

cmView - FSM: Instance top.dut.aes.ksl

Go Parent

Transitions] States] Reachability]

fron 7 to [no "hi "h2 *h3 *ha
me) vl
“ht Il B | -

h

Statistics] Infornation] Tests] Source] Sequences I

ksl TOTAL COVERED PERCENT
States 5 5 100,00
Transitions 8 5 62.50

TE el s 2 ® 00

Figure E.2: cmView screenshot

SIGNAL WAVES 143

E.2 Signal Waves

144 E. SIGNAL WAVES AND SCREENSHOTS

s 1600 SN 100 * [03(ZT)C TN “op0 *TIAERL R G0 ‘T TRDT 5300 * (0420 TR 600 *[0: o) Teweprdon s 'O AR dn <100

A A | s (800
e | e wrs |L00
5 730, 080 POBP 0EY0 GZB9 8P0O ¥ 6899 0LABO9IZ . | LILE O)L10V96 . | 1LVHI99P PEY6. | PG 68 PS, | 9661 92002 | 0905 2v88 .« | LIPY v2LS. | LI B0k | 718 2. (0108 | [0:£2T]OeReR| WES (900 |
. . B i TaATEp] WIS {500
- S R - g Bl TEor wis (700
1080 P090 G0B0 6080 090 5070 £020 1000 T | [0:ZT T7| wrs €00
. 499 PPo0 Aqee 6688 ££99 SGFY £E2T 1 H00) . I | [0:LzT) Tea0| WIS 200
I B) | oApeea| wrs [100

o e S E— I S : : e
oooomﬁﬁ ocooaa, 00000T ooocL 00008 0000L oooom, oooom, oooov, 0000€ ooocm, OOOOH, L . BN I
SAT X LZTISCT - 0 F9UTL, | Teubrs “Breeq | #

T BT STRBRLEY P8

T30 T ofed

LZTSZT - 0 sbu Sl Te3ol 900z/22/TT *o%ed

N (v)W

Figure E.3: AES module signal waves

SIGNAL WAVES 145

o (0°TE) T3 T 2010 "0y T cn 1600 "R T o 1800 "CRS TN T AR 1400 *(0FTE] TR T G900 “N e TTawdEn 1600 0+TE) AT IO 1300 {10 TTawRn 1600 ‘e TIewden <) *[0:E) I U Jrawkn 1100
_S0000000) bIeP60))(9€99 G, (9eS9.)(SSSE.) 009B 08GO [00€B 8090 1400, deveEede) 0000 0000 - (50000000 | [O:TEITII@Y wis 010
: g 1 | il : B il 1] T e | soeTamM wrs 600
Ermaaal o e i S ol ie el Lol o] AT WIS (800
Sis kil BRI el Tl Delalim il ol s o R b BT WIS |L00
e, v /e BEgS R 2 3 ;) o%gepose | 9e1Lze60 065e k08| ep/e0qd) | (0:TElS I wis 900
S [S AT e e oMM wrs (500
0000 0000 00,0400/ ¥+00 0000 81000000 2400 , /0200 0000) ¥200 0 /8200 0000 92000000 /0€00 0000/ 0000 0000 [o:Tel e wWis 900
UL LUUUpuun UL IR TSRO AR | TS €00
Jesax| wis (200
e e e - IR R R
T T T 7 T T 7 T 7 T T 7 T T T

L 00009%T 0000S¥T 0000771 0000€7T 0000271 0000T¥T 00000%T 00006€T 00008€ET 0000LET 00009€T

SAQT X 6790LYT - LTPCSET UIL Teubrs “Brsea |
T 30 T afed 6V90LYT - LIVZSET *SbuRd Sy, Telon CUTOU* 39T * STEIgND{TIUS #1981

900Z/0€/2T @3

Wishbone write operation

Figure E.4

