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Abstract

Code-division multiple-access (CDMA) systems with random spreading and chan-

nel uncertainty at the receiver are studied. Frequency selective single antenna, as

well as, narrowband multiple antenna channels are considered. Rayleigh fading is

assumed in all cases. General Bayesian approach is used to derive both iterative and

non-iterative estimators whose performance is obtained in the large system limit via

the replica method from statistical physics.

The effect of spatial correlation on the performance of a multiple antenna CDMA

system operating in a flat-fading channel is studied. Per-antenna spreading (PAS)

with random signature sequences and spatial multiplexing is used at the transmit-

ter. Non-iterative multiuser detectors (MUDs) using imperfect channel state infor-

mation (CSI) are derived. Training symbol based channel estimators having mis-

matched a priori knowledge about the antenna correlation are considered. Both the

channel estimator and the MUD are shown to admit a simple single-user charac-

terization in the large system limit. By using the decoupled channel model, the

ergodic spectral efficiency with single-user decoding and quarternary phase shift

keying (QPSK) constrained modulation is derived. In contrast to the case of perfect

CSI where transmit correlation has no effect on the ergodic system performance

with random PAS, the results show that with channel estimation the ergodic ca-

pacity can improve significantly as the correlations between the transmit antennas

increase. This requires that the channel estimator knows the correct long term spa-

tial correlation in advance, while no information is required at the transmitter.

Iterative multiuser receivers for randomly spread CDMA over a frequency se-

lective Rayleigh fading channel are analyzed. General Bayesian approach for iter-

ative channel estimation and data detection and decoding is proposed. Both lin-

ear and non-linear iterative schemes are considered with soft or hard information

feedback. The equivalent single-user representation of the system is derived in the

large system limit via the replica method. The decoupled single-user channel, and

density evolution with Gaussian approximation are used to obtain the spectral effi-
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ciency and bit error rate (BER) of the system using bit-interleaved coded modulation

(BICM) and Gray encoded QPSK mapping. The results indicate that in the large

system limit and under certain threshold loads, near single-user BER performance

with perfect CSI can be achieved by using a vanishing training overhead. This re-

quires, however, an iterative receiver using soft feedbacks only. For relatively slowly

time-varying multipath fading channels, the iterative linear minimum mean square

error (LMMSE) based channel estimator is also shown to be near optimal in terms

of maximizing the spectral efficiency of the system when combined with iterative

LMMSE or maximum a posteriori multiuser detectors.

A novel training method based on probability biased signaling is proposed. By

assuming an entropy maximizing biasing scheme and standard BICM, it is shown

via numerical examples that the proposed training method can offer superior per-

formance over the conventional training symbol based approach when combined

with iterative receivers.
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Chapter 1

Introduction

The main emphasis in wireless communication systems has been gradually shift-

ing during the recent years from relaying voice calls to providing mobile access to

web-based services, such as, high quality multimedia streaming. This has increased

the data rate demands by several orders of magnitude, and future broadband mobile

communication systems are envisioned to provide throughputs of up to 1 Gbps. In

order to achieve such goals, broad bandwidth and physical layer techniques with

high spectral efficiency are required — not forgetting the sophisticated higher layer

scheduling and resource allocation methods that maximize the long-term through-

put. The present dissertation concentrates on analyzing some of the approaches in

the former category.

The rest of this chapter is organized as follows. A very general overview of

the topics discussed in this thesis is first given in Section 1.1. The presentation

and references there are selected to be accessible to as wide audience as possible.

A more detailed and technical literature review of the relevant areas is presented

in Section 1.2. Finally, Section 1.3 discusses the aims of the research work and

provides the outline for the rest of the dissertation.

1.1 Background

The current state-of-the art cellular system in Europe is the third generation (3G)

Universal Mobile Telecommunication System (UMTS) [1, 2], based on wideband

direct sequence code division multiple access (DS-CDMA) technology [3–6]. Al-

though the original specification of the UMTS network contained very basic phys-

ical layer techniques, several technological evolutions have added new features to

it, such as multi-antenna transmission [7–9] and more sophisticated multiuser de-
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1. Introduction

tection (MUD) [4, 5, 10]. Both of the proposed schemes lead to increased user

data rates as well as cell capacity, and further progress is on-going for still new

techniques that can help to achieve the goals set for future wireless systems.

1.1.1 Multiple Access

Let us consider the UMTS system mentioned above. The signals traveling between

the user terminal and the base station can be divided into two rough categories:

• Signals emanating from the base station (downlink transmission);

• Signals emanating from the user terminal (uplink transmission).

In a multiuser CDMA system, the downlink transmission corresponds to a one-to-

many scenario, that is, the transmitted signal has one physical source and several

geographically dispersed receivers that are operating independently of each other.

The signal transmitted by the base station may contain information that is shared by

all users, or what is more common, each user wishes to decode its own unique mes-

sage embedded in the transmission. The uplink transmission is in a sense the mirror

image of the above, i.e., a many-to-one scenario. In this case, several independent

user terminals are trying to send their messages to a common destination, that has

to decode each of them from what ever it receives through the channel. In wireless

systems one of the problems encountered is that the radio waves transmitted at the

same time and on the same frequency band interfere with each other in the propa-

gation medium. Therefore, some form of signal processing is again needed at the

receiver to reliably separate the messages coming from different users. In informa-

tion theory, the one-to-many scenario is called the broadcast channel, whereas the

many-to-one is the multiple access channel [11]. In this thesis we consider only the

uplink, or multiple access case, where several simultaneous transmissions emanate

from the non-cooperative user terminals and the base station receives a corrupted

superposition of these signals.

In the following, the only multiple access technique that will be discussed in de-

tail is CDMA. More precisely, we consider a form of non-orthogonal code division

multiple access where the signature sequences of the users are drawn according to

a predefined probability distribution [3, 5]. This is in contrast to multiple access

techniques such as time division multiple access and frequency division multiple

access [6], where the degrees of freedom are typically allocated to the users in a de-

terministic manner to guarantee orthogonality. The disadvantage of non-orthogonal

multiple access schemes like the randomly spread CDMA is that they require rela-

tively sophisticated signal processing at the receiver in order to operate efficiently.

2



1.1. Background

On the other hand, since the number of users that can access the system simulta-

neously is not strictly bounded by the number of orthogonal dimensions present in

the transmission, there is a greater flexibility in controlling the user loads within a

cell. For our purposes, however, the most important benefit of random spreading is

that well developed mathematical tools to analyze the performance of such systems

exists [12–15].

1.1.2 Iterative Processing

One of the paradigms of modern signal processing are the iterative, or so-called

turbo, algorithms [16]. The basic motivation behind the iterative algorithms is sum-

marized in the following quote of Viterbi [17]:

Never discard information prematurely that may be useful in making a

decision until after all decisions related to that information have been

completed.

More precisely, we would like two or more subsystems that are capable of operating

indepently to exchange information between each other in a manner that makes iter-

ative refinement of their initial outputs possible. As it turns out, the most important

condition for the successful execution of an iterative algorithm is to make sure that

the information received by a subsystems is extrinsic to it.

The iterative principle has been applied with a great success, e.g., to intersymbol

interference (ISI) cancellation, iterative multiuser detection and decoding (MUDD),

iterative channel estimation (CE), decoding of error control codes (ECCs), and so

on [16, 18–24]. Typically two different information exchange, or feedback, strate-

gies called “soft” and “hard” are identified. The difference between the two is that

in the former, the feedback contains all the information that is obtained by the sig-

nal processing block, whereas intermediate quantization is performed in the latter

before the other subsystem are allowed to use it. It is commonly accepted that the

former guarantees a better performance since the intermediate quantization leads

to an inevitable loss of information, but the latter might be easier to implement in a

practical system.

In this thesis, the emphasis is on the iterative MUDD and channel estimation

methods. Both soft and hard feedback schemes are considered. The estimation

algorithms are derived from the factor graph [21–26] representation of the system.

One of the advantages of this approach is that the iterative process can then be

analyzed by using, for example, density evolution or extrinsic information transfer

3



1. Introduction

(EXIT) charts [21–24]. We shall concentrate on tracking the information exchange

between different blocks by using density evolution with some simplifications, as

will be explained in the later chapters.

1.1.3 Multiple Input Multiple Output Channels

The use of multiple antennas at the receiver for diversity and array gain in single-

user systems has been in the telecommunication engineers’ tool bags for a long

time [6, 8, 9]. One of the examples is the uplink of Global System for Mobile

Communications (GSM), where the receiving base station is equipped with multiple

antennas to mitigate the effects of low transmit power of the user terminal. Multiple

antennas at the receiver can also be used for interference avoidance, or even as a

multiple access scheme in multiuser systems [8, 9]. Recently the possibility for

diversity and array gains was extended to the case of multiple transmit antennas as

well, by using space-time codes [27] and transmit beamforming [8, 9], respectively.

One of the drawbacks of transmit beamforming, however, is that it requires (some

form of) channel state information (CSI) at both the transmitter and the receiver.

For future communication systems where the design goal is to enable high data

rates, the greatest promise of multiple antennas is not the diversity, but the pos-

sibility to multiplex several simultaneous transmissions in space. This requires

an antenna array at both ends, creating a so-called multiple input multiple output

(MIMO) channel between the transmitter and the receiver. The significance of the

MIMO channel is that if the environment is rich scattering, spatial multiplexing can

provide a dramatic increase in capacity compared to an equivalent single-antenna

system. This is usually called degree-of-freedom, or spatial multiplexing, gain.

For a MIMO system with M transmit antennas and N receive antennas, the ca-

pacity increases roughly linearly in min{M, N} if the system is operating over a

fast Rayleigh fading channel that is perfectly known at the receiver [7–9]. This is

a significant improvement over the logarithmic increase in spectral efficiency as a

function of signal to noise ratio (SNR). Furthermore, to achieve this, there is no

need for transmitter CSI and linear minimum mean square error (LMMSE) filter

with successive interference cancellation (SIC) suffices at the receiver.

From a practical point of view, one caveat in the above discussion is that the

capacity achieving signaling scheme is Gaussian. Such a continuous modulation

over an uncountable signal set is not a feasible choice for a real-life system. Unfor-

tunately, the LMMSE estimator with SIC is not an optimum decoding method for

modulation schemes used in practice, such as phase shift keying (PSK), even when
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1.2. Review of Earlier and Parallel Work

combined with optimum codes. The situation is even worse for off-the-shelf ECCs

that tend to suffer from error propagation if naïve interference cancellation is used.

Nevertheless, multiple antennas combined with the aforementioned iterative algo-

rithms and efficient ECCs provide significant benefits for practical systems as well.

Research efforts to find new and improved MIMO schemes that can be realized in

the future wireless systems are naturally still going on.

1.2 Review of Earlier and Parallel Work

In this section we provide references to more technical literature regarding the topics

relevant for the future discussion. The following is not meant to be by any means a

comprehensive review of earlier work and emphasis is put on literature related to it-

erative signal processing and multiuser detection. Due to their more comprehensive

nature, journal articles are in general preferred to papers published in conference

proceedings. Interested reader will find the first published results in the cited article.

1.2.1 A Brief History of Multiuser Detection

The simplest non-trivial data detector for a DS-CDMA system is the single-user

matched filter (SUMF), or the conventional detector. It is well known that the

SUMF is optimal for single-user communication and for equivalent cases, such as,

synchronous narrowband multiuser systems with orthogonal signature sequences

[4–6, 10]. Unfortunately, for modern wideband CDMA systems, such as the UMTS,

several problems arise with the use of the conventional detector. First, even if the

transmissions are synchronous, multipath propagation tends to destroy the orthogo-

nality of the signature waveforms in which case the SUMF becomes highly subop-

timal. Second, unless strict uplink power control is employed, the near-far problem

arises due to highly unequal received signal powers between the users. At its sim-

plest, this causes the signals of the users who are far from the base station to drown

under the transmissions of the users who are near the base station. In addition to

strict power control, techniques such as handover are employed in UMTS network to

mitigate this problem [1, 2]. All of this adds up to the fact that in practical scenarios

the conventional detector tends to suffers from the near-far problem and severe mul-

tiple access interference (MAI) [4, 5, 10], even if orthogonal spreading waveforms

are used.

The first published proposal for improved detection in multiuser systems using

non-orthogonal spreading sequences and operating in additive white Gaussian noise
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(AWGN) channels was made by Schneider [28]. Due to an error in the derivation,

however, instead of being the optimum detector, the resulting MUD was a linear

estimator known nowadays as the decorrelating or zero-forcing (ZF) detector. The

breakthrough in multiuser detection came somewhat later in the seminal work of

Verdú [29–32] (see also [5]), where the concept of multiuser efficiency (ME) was

introduced. Oftentimes the ME is considered in the high SNR region where it can

be defined implicitly as the constant ησ2→0 ∈ [0, 1] that satisfies (see [5])

lim
σ2→0

εmu(1/σ2)

εsu(ησ2→0/σ2)
= 1. (1.1)

The functions εsu(snr) ≤ εmu(snr) above are the average bit error rates (BERs)

of the equivalent single-user and multiuser systems in a channel that has the av-

erage received SNR of snr = 1/σ2. Hence, the asymptotic ME ησ2→0 quantifies

the loss in effective SNR due to MAI and describes the interference suppression

capabilities of the MUD at high SNR. Interestingly, in [5, 29–32] it was found that

in contrast to the conventional detector for which the asymptotic ME ησ2→0 = 0

(the system is multiple access limited), the optimum MUD has a non-zero asymp-

totic ME ησ2→0 > 0 for all finite user loads. Furthermore, under certain conditions

even single-user performance, i.e., ησ2→0 = 1 can be achieved. Unfortunately, the

optimum receiver was also found to be non-linear with its complexity increasing

exponentially in the number of users.

The interest in detection algorithms that would strike a balance between the per-

formance and complexity lead to the study of low complexity sub-optimum linear

MUDs [33–36]. The results showed that the decorrelator and the LMMSE multiuser

detectors exhibit similar near-far resistance, i.e., the worst case asymptotic ME, as

the optimum MUD but with significantly lower complexity. In addition to the linear

detectors, several schemes combining linear MUD with serial [37, 38] and parallel

[39, 40] interference cancellation or sequential decoding [41] were soon proposed

and analyzed. For a comprehensive overview on the early literature on MUD, see

for example, [4, 5] and the references therein.

The common feature in the aforementioned studies was that the performance

of the systems under consideration depended on the selection of the deterministic

spreading sequences assigned to the users. An alternative approach, first proposed

for the study of conventional detectors [42] (see also [3]), is to use random signature

sequences instead of deterministic ones and average the performance over the se-

lection of the spreading codes. Random spreading combined with the large system
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analysis1 was used to obtain the high SNR performance of multiuser detectors in

[5, 43]. Rather surprisingly, it was found that the optimum MUD achieves asymp-

totic ME ησ2→0 = 1 with probability one under random spreading. This is not true

for the decorrelating or the LMMSE detector for any positive user load α, since for

these MUDs the asymptotic ME is given by ησ2→0 = 1 − α, where 0 ≤ α ≤ 1

[5, 43].

By using methods similar to [5, 43], upper and lower bounds for the sum-

capacity of the CDMA channel with joint decoding were derived in [44]. The re-

sults showed that random spreading is on average near optimum for large heavily

loaded systems. The average near-far resistance of the LMMSE detector [45], and

the capacity of decorrelating detector with and without decision feedback [46] of

randomly spread DS-CDMA were also considered. It was, however, the introduc-

tion of the random matrix theory (RMT) to telecommunications engineering that

finally shifted the paradigm in multiuser detection to the randomly spread CDMA

systems [12]. We shall investigate this topic more thoroughly in the next section.

1.2.2 Large System Analysis:

Random Matrix Theory and the Replica Method

One can argue that with the large system analysis of randomly spread CDMA by

Verdú [5], (with Shamai) [47, 48] and Tse & Hanly [49, 50], not forgetting the

early studies on MIMO systems by Telatar [51, 52] and Foschini & Gans [53, 54],

the telecommunications engineering entered the random matrix theory era. The

contribution of [47, 48] was the information theoretic analysis of optimum joint de-

coding as well as linear multiuser detection when combined with capacity achieving

Gaussian codes. In [49, 50], the concepts effective interference, effective bandwidth

and resource pooling were introduced, allowing for a surprisingly simple charac-

terization of the performance of linear MUDs in fading channels. These results

were soon refined to show that the limiting distribution of the signal to interference

and noise ratio (SINR) and MAI of the linear detectors was in fact Gaussian [55–

57]. Further extensions related to multiuser communications included, for example,

symbol-asynchronous CDMA [58] and analysis of DS-CDMA in multipath fading

channel when linear MUD and channel estimation is employed at the receiver [59].

The latter of these was in fact one of the main motivations for the research work

presented in this thesis. Some other avenues where RMT has found applications in-

1Large system analysis refers to the case when the number of users K and the length of the

spreading sequence L are allowed to grow without bound with a finite and fixed ratio α = K/L.
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clude multicell environments [60], precoded transmission [61], multicarrier CDMA

(MC-CDMA) [62], multi-antenna systems [51–54, 63–66] and design of novel re-

ceivers [67–71] for DS-CDMA, to name just a few. For a comprehensive overview,

see [12] and the references therein.

A typical application of random matrix theory from the telecommunications

engineering point of view is when we are interested in some scalar parameter (say

output SINR of the multiuser detector or the uncoded bit error rate of the system)

that is a function of the eigenvalues and eigenvectors of some random matrix. For

finite systems these parameters are in general random variables but, under certain

conditions, they converge to deterministic values when the dimensions of the ran-

dom matrix are allowed to grow without bound2 [12, 73]. Unfortunately, not all

problems encountered in telecommunications fall into this category. For example,

when the problem to be considered contains a combinatorial optimization problem,

the tools of RMT tend to fall short and different approach is needed. As we shall

see next, one of these approaches comes from theoretical physics — the original

source of random matrix theory as well.

The seminal paper of Tanaka [74] (see also [75] and [76]) was the first one to

report the large system performance of randomly spread CDMA with binary phase

shift keying (BPSK) and non-linear Bayesian optimum receiver. At the same time,

a new mathematical tool called the replica method from statistical physics [13–15]

was introduced to the information theory society at large3. Tanaka’s original result

was extended to arbitrary input constellations and fading channels with unequal

received power distribution by Guo & Verdú [85] (see also [86]). Some of the

concepts that were implicitly introduced in [74], namely the decoupling principle

later generalized by Montanari [87] and Tanaka & Nakamura [88], and generalized

posterior mean estimation (GPME), were also further developed in [85] (see also

[89]).

Soon the replica method was applied to various problems in communications

that had so-far evaded analytical treatment. Examples of these included analysis

of multicarrier CDMA with non-linear MUD over frequency selective fading [73,

2The eigenvalue spectrum of certain random matrices can be described also for finite dimensional

cases and these results have their applications in the analysis of wireless systems as well. However,

the finite dimensional results tend to be more cumbersome to use and somewhat limited in scope

compared to their asymptotic counterparts. For an overview, see [12, 72] and the references therein.
3Tanaka’s paper was not the only one utilizing the replica method to solve a problem related

to telecommunications. For example, regular and irregular low density parity check codes [77, 78]

were analyzed in [79, 80], and the parallel concatenated turbo codes [81] were considered in [82, 83].

These papers, however, were published in physics journals and written to an audience that was already

familiar with the method. A more thorough survey can be found, for example, in [14, 15, 84].
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90, 91], comparison of space-time spreading schemes for general MIMO CDMA

[92, 93], capacity and bit error probability (BEP) analysis of MIMO channels with

binary inputs [94], study of general vector channels [95], analysis of quadratic op-

timization problem arising from vector precoding [96] and sum-rate analysis of

multiuser MIMO with spatial correlation [97–99]. Slightly different application of

the replica method was also used to determine the moments of mutual information

of a slow fading correlated Rayleigh fading MIMO channel with Gaussian inputs

[100, 101]. It should be remarked, however, that although the replica method is a

standard tool in statistical physics, some of the steps in the “replica trick” are lack-

ing formal justification and present an open problem in mathematical physics. For

an overview of the topic, see for example [102–104]. Some recent developments

related to the Tanaka’s original result [74], can be found in [105–107]. Another re-

cent paper [108] considers the first order replica symmetry breaking in the original

vector precoding problem investigated in [96].

A common theme in all of the aforementioned studies apart from [59, 90] was

that the channel state information was assumed to be perfect at the receiver. In

practice this is not a very realistic assumption since for coherent communication

the channel must be estimated by some means at the receiver with a finite accuracy.

Another technique that is of practical importance and has not yet been discussed

are the iterative MUDD and channel estimation schemes. These topics will be the

main focus of the next section.

1.2.3 Design and Analysis of Iterative Receivers

The optimum receiver for coded CDMA is the maximum likelihood (ML) decoder

that simultaneously resolves the messages of all users. For the symbol synchronous

CDMA with Gaussian codes, significantly less complex LMMSE data estimator

followed by successive interference cancellation can be used alternatively without

any loss in the maximum sum-rate [109]. It is important, however, to make a dis-

tinction between the interference cancellation methods [37–40] discussed earlier,

and the post-decoding IC discussed in this section. The former use uncoded sym-

bols in an effort to remove the MAI, whereas here the IC is performed after de-

coding (and re-encoding) the ECC. If interference cancellation is omitted in the

synchronous case, irreducible loss in capacity is experienced due to the separation

of detection and decoding [46–48, 85, 110, 111]. For binary code books, the loss

in spectral efficiency with LMMSE estimation is more severe than in the Gaussian

case [110]. This is not surprising since LMMSE estimator is optimal for AWGN
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channel with Gaussian inputs, whereas for the binary case the optimum MUD is

the non-linear maximum a posteriori (MAP) detector [30, 74]. The latter is also

commonly known as the individually optimum (IO) MUD in the literature. Adding

SIC to the LMMSE-based MUD front-end mitigates the loss in spectral efficiently

noticeably but is still a highly suboptimal decoding strategy for discrete channel

inputs. It should be remarked though, that smart rate and power control alleviates

the performance degradation significantly [112]. In order to achieve the jointly de-

coded capacity one must, however, combine the Bayesian optimum MAP detector

with SIC [85, 110].

With capacity achieving codes the optimum decoding strategy for synchronous

randomly spread CDMA is thus the combination of optimum MUD front-end and

SIC, regardless of the channel inputs [85, 110]. In practice, however, the decoded

signals are not error-free due to delay constraints, code construction and lack of

flexibility in choosing the code rate. Straightforward application of SIC in such

case can in fact lead to performance loss compared to the case without IC due to

error propagation. To prevent this happening, intuitively one should somehow take

into account the uncertainty of the feedback symbols when performing the inter-

ference cancellation. Such a reasoning combined with the lessons learned from

decoding of turbo codes was used to derive algorithms for the iterative multiuser

detection and decoding of CDMA transmissions [113–118], decoding of spatially

multiplexed transmissions [119, 120], and iterative ISI suppression [121–123]. The

performance of these proposals, however, was studied via rather time consuming

Monte Carlo simulations (for a further review, see [16]).

In this thesis, the factor-graph [21–26, 124] based iterative multiuser detection

and decoding framework proposed by Boutros & Caire [125] (see also related re-

sults [126–128]) is endorsed. A notable benefit of this approach is that it provides a

formal framework for interference cancellation based receiver design that can be an-

alyzed via density evolution4 [21, 23, 24, 132, 133]. In addition to iterative MUDD,

this methodology has also been used, e.g., in the design and analysis of MIMO

systems [134]. Recently, alternative approaches to the derivation of iterative data

detection and decoding algorithms in coded systems have also been proposed, for

example, based on divergence minimization [135] and variational inference with

mean-field approximation [136]. The evaluation of the derived algorithms in these

studies was, however, carried out by using computer simulations.

Apart from two exceptions [137, 138] that will be discussed in more detail later,

4Performance analysis similar to [125] were also performed in [129–131] by using a combination

of RMT and central limit theorem.
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the iterative schemes presented so-far have either been analyzed with the assump-

tion of perfect CSI at the receiver, or studied via numerical Monte Carlo simula-

tions. The effects of imperfect CSI on DS-CDMA and MC-CDMA systems with

non-iterative MUD were considered by using RMT and the replica method in [59]

and [90], respectively. Other analytical treatments on the same topic include multi-

ple access [139] and MIMO [140] channels, where lower bounds for mutual infor-

mation were found by assuming a pilot-aided LMMSE channel estimator. Slightly

different approach was used to study the optimality (or the lack of it) of Gaussian

code books and nearest-neighbor decoding with different levels of channel side in-

formation in single [141] and multi-antenna [142] channels. Albeit several studies

have shown via numerical simulations that iterative channel estimation can reduce

the training overhead and improve the reliability of the CSI significantly [143–152],

the only effort to analyze the performance of such a receiver has been made to our

knowledge by Li, Betz & Poor in [138]. Indeed, mathematical analysis of iterative

systems with imperfect CSI is the main topic of the present dissertation.

1.3 Aim and Outline of the Thesis

Channel estimation is an integral part of practical wireless systems. So-far, how-

ever, it has received somewhat lesser amount of interest in the analysis of multiuser

CDMA channels. The purpose of the present thesis is to address this issue with a

methodology that is general enough to be extended in future for further cases of in-

terest as well. The main topics covered in the dissertation are the asymptotic replica

analysis of:

1. Multi-antenna DS-CDMA systems in spatially correlated channels using

linear channel estimation and multiuser detection (Chapter 3);

2. Single-antenna DS-CDMA systems operating in multipath fading channels

and employing iterative channel estimation, detection, and decoding (Chap-

ter 4).

As it turns out, channel estimation can indeed have a highly non-trivial impact on

the system performance. The rest of this monograph is organized as follows.

• Chapter 2 introduces the notation used in the rest of the thesis and describes

the system model for both of the aforementioned cases. The key assumptions

made in the analysis are presented. Some background information on the

mathematical methods employed later is given.

• Chapter 3 considers spatially correlated MIMO DS-CDMA systems. Differ-

ent channel estimation and data detection algorithms are derived as specific
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instances of a general Bayesian inference problem. In addition to optimum

non-iterative pilot-assisted LMMSE channel estimator, two covariance mis-

matched linear MMSE estimators and an ML channel estimator are intro-

duced. The MUDs considered in this chapter include the non-linear MAP

detector, the linear MMSE and decorrelating detectors as well as the SUMF.

The performance of the system is analyzed with the help of the decoupling

principle, obtained via an application of the replica method. This chapter

extends the previous results on multi-antenna CDMA systems [50, 92, 153–

155] to the case of spatially correlated MIMO channels with CSI mismatch

at the receiver.

• Chapter 4 derives a class of iterative channel estimators and MUDDs whose

performance is analyzed later in the thesis. Specific examples arising from

the general approach are presented, covering all the usual iterative MUDDs,

as well as, iterative LMMSE and ML based channel estimators. The decou-

pling results for the iterative receiver are presented and performance ana-

lysis carried out. This chapter provides to our knowledge the first proposal

for a systematic way of analyzing iterative receivers and contains as special

cases the results reported in [137] and [138]. Indeed, the analysis covered in

[138] were approximate whereas exact large system results are provided in

this chapter.

• Chapter 5 provides the conclusions and discussion on the obtained results.

Some future topics for further research are sketched. Most of the proofs are

relegated to Appendices A – F.
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Chapter 2

Preliminaries

This chapter provides necessary background information for the following analysis.

We start by introducing the notation used for the rest of the thesis in Section 2.1. The

discrete time signal models for the systems studied in the later chapters are given

in Section 2.2. Some notes on the employed coding methods follow in Section 2.3,

and a novel transmission scheme based on probability biased signaling is introduced

in Section 2.4. A brief review of density evolution is carried out in Section 2.5,

and discussion about the connection between the statistical physics and information

processing can be found in Section 2.6.

2.1 Notation

Calligraphic symbols denote for sets and boldface symbols for (column) vectors

and matrices. The transpose, complex conjugate and complex conjugate trans-

pose of a matrix A ∈ C
M×N are AT, A∗ and AH, respectively. For matrix

A =
[
a1 a2 · · · aN

]
∈ C

M×N , we define A = vec(A) =
[
aT

1 aT
2 · · · aT

N

]T ∈
C

MN . Given a vector a ∈ C
M , and a sequence of matrices (A1, . . . , AM ), Ai ∈

C
Mi×Mi , we let D = diag(a) ∈ C

M×M be a diagonal matrix defined by the vector

a, and D = diag(A1, . . . , AM ) ∈ C

∑

i
Mi×

∑

i
Mi a block diagonal matrix formed

from (A1, . . . , AM ). Operator ⊗ is the Kronecker product and for positive definite

matrix A we write in shorthand A > 0. We also denote ~x for a 1 × N row vector

and eM = [1 1 · · · 1]T ∈ R
M for the vector of M ones. Operators ℜ{·} and ℑ{·}

return the real and imaginary part of the argument, respectively.

Throughout the thesis, we write x ∼ P and x̃ ∼ Q for a random vector (RV)

drawn according to the true P and postulated Q probability distribution, respec-

tively. The postulated RVs are denoted by the same symbol as the true one with the
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tilde on top. One can think of the postulated distributions as the receiver’s, possibly

mismatched, information about the random variables in the system. When the dis-

tribution of the random variable x depends on the iteration index ℓ = 1, 2, . . . (see

Chapter 4), we write P(ℓ)(x) and omit the index ℓ otherwise. The mean and co-

variance of P(ℓ)(x) are µ
(ℓ)
x and Ω

(ℓ)
x , and the corresponding mean and covariance

of the postulated RV x̃ read µ̃
(ℓ)
x and Ω̃

(ℓ)
x . The posterior mean estimate of a RV

x, and the related error covariance matrix, are denoted by 〈x̃〉(ℓ) and Ω
(ℓ)
∆x, respec-

tively, unless stated otherwise. We also use P and Q to denote true and postulated

probabilities (in case of discrete RVs) and densities (for absolutely continuous RVs)

when applicable. The suitable interpretation should be clear from the context.

If x is a proper complex Gaussian random vector [156] with mean µx = E{x}
and covariance matrix Ωx = E

{(
x − µx

)(
x − µx

)H}
, we write in shorthand

x ∼ CN
(
µx; Ωx

)
or P(x) = CN

(
µx; Ωx

)
. Pr(·) denotes for the probability of

the argument. The Dirac measure concentrated at x ∈ C
M is defined as δx(A) = 1

when x ∈ A and δx(A) = 0 otherwise, satisfying
∫

f(y)δx(dy) = f(x) for any

continuous1 f : CM → R. The indicator function is defined as δx(A) = 1A(x).

All integrals should be considered as Lebesque-Stieltjes integrals over the entire

support of the kernel unless stated otherwise.

2.2 System Model

In this section, the discrete time signal models for the systems considered in the

present dissertation are outlined. We start by considering a MIMO DS-CDMA

system operating over a flat fading channel in Section 2.2.1. Single-antenna DS-

CDMA system in a multipath fading channel is introduced in Section 2.2.2. The

assumptions made in the channel models and the connections between the two sys-

tems are briefly discussed. Before proceeding to the details of the system models,

two remarks are made:

1. We use the same notation for the variables of both systems. This should

cause no confusion since the analysis is carried out in a separate chapter for

both of them.

2. Throughout the dissertation the transmitter is assumed to have no informa-

tion about the channel conditions.

1Note that formally f should have a compact support. We can always make it so by letting the

range to be the set of extended real numbers while treating the axes of the complex planeC as extended

real lines.
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2.2.1 MIMO DS-CDMA in Flat Fading Channel

Let us first consider a synchronous uplink MIMO DS-CDMA system operating over

a narrowband block fading channel [157, 158] with a fixed coherence time of Tcoh

symbols. For simplicity, let the mobile terminals of all users k = 1, . . . , K have

M antennas while the receiver is equipped with N antennas. By the assumption of

narrowband transmission, the channel is modeled by a single fading tap and hence

there is no intersymbol interference (ISI) in the system.

Consider the fading block c = 1, 2, . . . , C and time instant t = 1, . . . , Tcoh.

The discrete time received vector after matched filtering and sampling is given for

the chip index l = 1, . . . , L

yl,t[c] =







1√
L

K∑

k=1

Hk[c]P k,t[c]sk,l,t + wl,t[c] ∈ C
N , t ∈ T ,

1√
L

K∑

k=1

Hk[c]Xk,t[c]sk,l,t + wl,t[c] ∈ C
N , t ∈ D,

(2.1)

where

T = {1, . . . , τtr} and D = {τtr + 1, . . . , Tcoh}, (2.2)

contain the time indices related to the training and data transmission phases, re-

spectively. The corresponding diagonal matrices

P k,t[c] = diag(pk,t[c]), t ∈ T , (2.3)

Xk,t[c] = diag(xk,t[c]), t ∈ D, (2.4)

contain the pilot pk,t[c] =
[
pk,t,1[c] · · · pk,t,M [c]

]T
and information bearing vec-

tors xk,t[c] =
[
xk,t,1[c] · · · xk,t,M [c]

]T
sent by the user k ∈ K = {1, . . . , K}

during T and D, respectively. For future reference, the number of data vectors

transmitted by each user during one fading block is denoted by τd = |D|. Note that

since we consider spatial multiplexing at the transmitter, the elements of pk,t[c] and

xk,t[c] are assumed to be independent in the following.

The set containing the (vectorized) MIMO channels of all users during the cth

fading block is given by

Hc =
{

Hk[c] = vec
(
Hk[c]

)
=
[
hT

k,1[c] · · · hT
k,M [c]

]T ∈ C
NM | ∀k ∈ K

}

,

(2.5)

where hk,m[c] ∈ C
N is the channel vector between the kth user’s mth transmit

antenna and the N receiving antennas. The spreading sequence at time instant t =
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Antenna # 1

Antenna # M

xk,t,1

xk,t,M

{sk,t,l,1}
L
l=1

{sk,t,l,M}Ll=1

Figure 2.1. Per-antenna spreading scheme with spatial multiplexing.

1, . . . , Tcoh for the user k ∈ K and chip index l = 1, . . . , L is written as sk,l,t ∈ C
M ,

and wl,t[c] ∼ CN(0; σ2IN ) represents the additive white Gaussian noise at the

receiver.

For the following development, let us write

P = {pk,t[c] ∈ MM | ∀k ∈ K, t ∈ T }, (2.6)

Xt = {xk,t[c] ∈ MM | ∀k ∈ K}, t ∈ D, (2.7)

for the set of all training symbols (known at the receiver) and for the set of all data

symbols transmitted during the tth time slot, respectively. We also assume that the

RVs in P and {Xt | ∀t ∈ D} are independent identically distributed (IID) with their

elements uniformly drawn from the quarternary phase shift keying (QPSK) signal

set

M =

{

± 1√
2

± j√
2

}

. (2.8)

For notational convenience, we write Yt = {yl,t | l = 1, · · · , L} for signals re-

ceived during the tth time slot and YT = {Yt | t ∈ T } for the set of vectors

received when the pilot symbols P were transmitted.

For the CDMA we consider a random per-antenna spreading (PAS) scheme that

assigns all users and transmit antennas a unique signature sequence [92, 153–155,

159]. See Figure 2.1 for an illustration. For the system model (2.1), this translates

to the assumption that the RVs in

S = {sk,l,t = [sk,t,l,1 · · · sk,t,l,M ]T | ∀k, l, t} (2.9)
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are perfectly known at the receiver and have IID elements with zero mean and

unit variance. This is in contrast to per-user spreading (PUS) [92, 153], where the

spreading codes of the users are independent, but same signature sequence is used

for all the antennas of a given user. The motivation for concentrating on the PAS

scheme here stems from the decoupling results derived in [92] (see also [160]). The

analysis revealed that in the large system limit, when the receiver has perfect CSI

and the SNR relatively high, the PAS scheme is able to provide a full multiplexing

gain regardless of spatial correlation, whereas PUS was limited by the degrees of

freedom in the MIMO channel. Therefore, one expects that per-antenna spreading

provides higher spectral efficiencies in correlated environments. The actual com-

parison of the two spreading methods under the assumption of channel estimation

is, however, left as future work.

By the assumption of block fading channel, we let the RVs in {Hk[c] | ∀c}
be IID for all users k = 1, . . . , K. Furthermore, the channels between different

users are assumed to be independent and the RVs Hk[c], c = 1, . . . , C, are drawn

according to the proper complex Gaussian distribution P(Hk[c]) = CN(0; ΩHk
),

where the spatial correlation is given by the “Kronecker” model2 ΩHk
= T k ⊗ R.

Here, T k ∈ C
M×M and R ∈ C

N×N are Hermitian positive definite and represent

the decoupled transmitter and receiver side covariance matrices, latter of which has

been normalized to have diagonal entries of unity. We also assume that {T k}K
k=1

are IID and drawn according to a well defined discrete distribution ptx. The average

SNR for user k is defined as snrk = tk/σ2, where tk = tr
(
T k

)
.

2.2.2 DS-CDMA in Multipath Fading Channel

Consider next a synchronous uplink DS-CDMA system, operating over a block fad-

ing multipath channel with a coherence time of Tcoh symbols. For the following

discussion we make the simplifying assumption that the ISI induced by the multi-

path fading has negligible effect on the system performance. We therefore omit the

equalization from the analysis and assume that the received signal is not corrupted

by ISI. This corresponds to a scenario where the delay spread of the channel is small

compared to the symbol period or a block transmission with sufficiently long cyclic

prefix is used. Another way of looking at the following results is to consider them

2Note that this correlation model coincides with the assumption that the channel matrix is drawn

according to P(Hk[c]) = CN(M = 0; Ωk = T k, Σ = R), where CN(M ; Ω, Σ) is the complex

matrix Gaussian distribution (see, e.g., [161]). For theoretical discussion on this correlation model,

see e.g., [66, 162]. Some practical considerations and model verification via channel measurements

can be found, for example, in [163, 164].
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as being an upper bound on the performance of a practical system that may suffer

from ISI.

The discrete time model after matched filtering and chip-rate sampling for the

tth received vector yt[c] ∈ C
L within the fading block c = 1, . . . , C can be written

as

yt[c] =







1√
L

K∑

k=1

Sk,thk[c]pk,t[c] + wt[c] ∈ C
L, t ∈ T ,

1√
L

K∑

k=1

Sk,thk[c]xk,t[c] + wt[c] ∈ C
L, t ∈ D,

(2.10)

where T and D are defined in (2.2) and collect the time indices when the τtr train-

ing {pk,t[c]}t∈T and τd = |D| information symbols {xk,t[c]}t∈D of the user k =

1, . . . , K are transmitted. The spreading matrix for the kth user at time index t

is given by Sk,t ∈ C
L×M . The set of all received vectors during the cth fading

block is written as Yc = {yt[c] | t = 1, · · · , Tcoh}, and similarly Hc = {hk[c] =
[
hk,1[c] · · · hk,M [c]

]T ∈ C
M | ∀k} denotes the fading coefficients of all users in

the cth fading block. For notational simplicity, we let the number of multipaths M

and the spreading factor L be the same for all users. The samples {wt[c] | ∀t, c}
of thermal noise at the receiver are assumed to be IID and drawn according to the

complex Gaussian distribution P(wt[c]) = CN(0; σ2IL).

Let us now consider the spreading matrices Sk,t =
[
sk,t,1 · · · sk,t,M

]
∈ C

L×M ,

t = 1, . . . , Tcoh, where sk,t,m is the spreading sequence corresponding to the mth

resolvable multipath. As with the case of MIMO DS-CDMA in Section 2.2.1, we

assume that due to random spreading S =
{
Sk,t | ∀k, t

}
are IID random matrices.

For a fixed time index t, however, the spreading sequences {sk,t,m}M
m=1 of the kth

user are not IID random vectors. In fact, the spreading sequences for each multipath

are cyclically shifted replicas of each other. For the following analysis we make the

crucial assumption that [59, Theorem 4] holds for our system.

Assumption 1. Without loss of generality, the spreading sequences {sk,t,m}M
m=1

can be modified to have IID entries with zero mean, unit variance and finite mo-

ments for all t = 1, . . . , Tcoh. ♦

Given the Assumption 1 and under the condition that we can neglect the effects

of ISI in the analysis, comparing (2.1) and (2.10) reveals that the DS-CDMA system

operating over an M -path fading channel is equivalent to a MIMO DS-CDMA sys-

tem with M transmit antennas and one receiving antenna in a flat fading channel,

given each transmit antenna has the same data. Thus, we could use (2.1) to repre-

sent the MIMO system described in Section 2.2.1, or a single input multiple output
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(SIMO) DS-CDMA system in a multipath fading channel by taking into account

the distribution of the elements of the transmit vectors. In the following, however,

when discussing the multipath fading channels, we limit our scope to the case of

single transmit and receive antenna and use (2.10) to describe the system.

For the statistical channel model, we consider the important special case of

frequency selective Rayleigh fading. The users are assumed to be well separated in

space and the environment rich scattering, so that the fading channels between the

users are independent and the multipaths uncorrelated [158]. The channel vectors

in Hc are thus independent with distribution P(hk[c]) = CN(0; Ωhk[c]), where

Ωhk[c] = diag
(
tk

)
and tk =

[
tk,1 · · · tk,M

]T ∈ R
M is the power delay profile

(PDP) of the kth user’s channel. For simplicity we let {tk}K
k=1 be IID and drawn

according to a discrete distribution ppdp. The average received signal-to-noise ratio

for the user k is defined as in Section 2.2.1 and, thus, snrk = tk/σ2, where tk =

tr
(
Ωhk[c]

)
.

2.3 Channel Coding

We next take a brief look at the two different coding strategies encountered later

in the thesis. Section 2.3.1 discusses capacity achieving signaling under Gaussian

and QPSK constrained channel inputs. Section 2.3.2 follows by introducing a sim-

plified coding scheme called bit-interleaved coded modulation (BICM) [165–168]

(see also [169]).

2.3.1 Capacity Achieving Codes

Consider a single-user system operating over an ergodic Rayleigh fading SIMO

channel3

yt = htxt + wt ∈ C
N , (2.11)

where wt ∼ CN(0; D) and ht ∼ CN(0; Ωh) are independent RVs for all t =

1, 2, . . . , T . Let the channel coefficients {ht}T
t=1 be perfectly known at the receiver.

Assume that the messages of the user have equal probability and they are mapped

before transmission to the code words x = [x1 · · · xT ]T of a standard random

Gaussian code book with rate R [11, 170]. If ML decoding is used at the receiver,

all rates (in bits) below

Csimo = Eh

{
log2(1 + hHD−1h)

}
, h ∼ CN(0; Ωh), (2.12)

3The reason for concentrating on the SIMO channel will become clear later when the multiuser

systems are shown to decouple into sets of single-user SIMO channels with colored Gaussian noise.
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are achievable with vanishing probability of error as T grows without bound [11,

170]. Conversely, for all R > Csimo the error probability is bounded away from

zero.

The capacity (2.12) of the SIMO channel (2.11) is achieved with Gaussian chan-

nel inputs. A natural question to ask from practical point-of-view might be — what

is the highest achievable rate of the same channel if we constrain the channel in-

puts, say to the QPSK constellation (2.8), i.e., xt ∈ M, t = 1, . . . , T . If we are

allowed to optimize the coding and modulation mapping jointly, the QPSK con-

strained capacity, or coded modulation capacity with QPSK mapping [165, 166], is

given by

C
qpsk
simo = log2 |M| − N log2 e

− 1

|M|
∑

x∈M
Ew,h

{

log2

∑

x̃∈M
exp

(
−
[
w + h(x − x̃)

]H
D−1[w + h(x − x̃)

])
}

,

(2.13)

where w ∼ CN(0; D) and h is as in (2.12) [171].

Example 1. Let N = 4 and w ∼ CN(0; σ2I4). The capacity of the channel (2.11)

with Gaussian (2.12) and QPSK signaling (2.13) is plotted in Figure 2.2 for uncor-

related and fully correlated receive antennas. As expected, the QPSK constrained

capacity saturates to 2 bits per channel use, whereas the maximum achievable rate

with Gaussian signaling keeps on growing with increasing SNR. ♦

2.3.2 Bit-Interleaved Coded Modulation

Let us denote the information bits of the user k = 1, . . . , K by bk ∈ {0, 1}B ,

where the elements of bk are IID and uniformly drawn from the binary alphabet.

Encoding the data of the kth user with BICM consists of first applying a binary

error correction code to the information bits bk, shuffling the coded bits by using

a random uniform bit-interleaver and finally employing a memoryless symbol-by-

symbol modulation mapping to form the channel inputs [165–168]. A practical

benefit of BICM compared the case of coded modulation, which was the capac-

ity achieving scheme discussed in the previous section, is that with BICM one can

concentrate on the task of finding efficient binary ECCs independently of the modu-

lation mapping. Separating the ECC and modulation causes a loss in the achievable

capacity but the degradation is very minor if Gray mapping is used, especially for

lower order constellations [165–167].
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Figure 2.2. Capacity (in bits per channel use) of a SIMO system with N = 4

receive antennas. Solid lines for uncorrelated antennas and dashed lines for

fully correlated ones.

Consider encoding the data bk of the kth user with BICM when the modulation

is constrained to the standard QPSK signal set M given in (2.8). We can write this

operation formally as

φk : {0, 1}B → MT : bk 7→ xk, (2.14)

where

xk = vec
([

xk[1] · · · xk[C]
])

∈ MT , (2.15)

with

xk[c] =
[
xk,τtr+1[c] · · · xk,Tcoh

[c]
]T ∈ Mτd , c = 1, . . . , C, (2.16)

is the code word containing the T = τdC channel coded information symbols of

the user k = 1, . . . , K. The rate R = B/T BICM code book of the kth user is

written as

Ck =
{
xk = φk(bk) | ∀b ∈ {0, 1}B}. (2.17)
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τtr τd

pk[c] xk[c]

Tcoh

Figure 2.3. Frame structure of the considered system.

In the later sections we occasionally use the notation

xk,t =
1√
2

(ak,t,1 + jak,t,2), ak,t,1, ak,t,2 ∈ {±1}, (2.18)

where ak,t,1 and ak,t,2 are the scaled real and imaginary parts of xk,t, respectively.

Unless stated otherwise (see next section), we always consider binary linear ECCs

so that due to random bit-interleaving and Gray mapping the BICM decouples the

real and imaginary parts of the code symbols Xc = {xk,t[c] | ∀k, c, t ∈ D} in the

limit T = τdC → ∞ with τd fixed, that is,

P

(

xk,t =
1√
2

(ak,t,1 + jak,t,2)

)

= P(ak,t,1)P(ak,t,2), (2.19)

where

P(ak,t,q) =
1

2
δak,t,q

(−1) +
1

2
δak,t,q

(+1), q = 1, 2. (2.20)

Assumption 2. In this thesis, the data bits are encoded by using binary trellis codes

with trellis termination. All users are assumed to derive the ECC from the same

ensemble of binary codes, while the random bit-interleavers are IID for all k =

1, . . . , K. Gray modulation mapping is always employed. ♦

2.4 Training via Biased Signaling

In the previous sections we assumed that in addition to the information carrying data

symbols, each fading block c = 1, . . . , C contains also τtr training symbols for all

users. These symbols are always perfectly known at the receiver and can be used

to perform the initial channel estimation. The frame structure of this transmission

scheme is illustrated in Fig. 2.3. This is, however, not the only option and we shall

describe in the following a scheme based on probability biased signaling that can

be used to initiate the channel estimation.
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Let Θ = {θk,t[c] ∈ C | ∀k, t, c} be a set of design variables known to both the

transmitter and the receiver. Define the conditional prior distribution of xk,t[c] as

P(xk,t[c] | θk,t[c]) = P′(ℜ{xk,t[c]} | ℜ{θk,t[c]})

×P′(ℑ{xk,t[c]} | ℑ{θk,t[c]}), (2.21)

where

P′(x | θ) =
1 +

√
2θ

2
δx(1/

√
2) +

1 −
√

2θ

2
δx(−1/

√
2). (2.22)

Similarly, we let P(θk,t[c]) = P′(ℜ{θk,t[c]})P′(ℑ{θk,t[c]}) be the prior of θk,t[c]

with

P′(θ) =
∆tr

2
δθ(1/

√
2) +

∆tr

2
δθ(−1/

√
2)

+
1 − ∆tr

2
δθ(σbias) +

1 − ∆tr

2
δθ(−σbias), (2.23)

where σbias ∈ [0, 1/
√

2) and ∆tr ∈ [0, 1) are fixed design parameters for all

k, t and c. Thus, E{xk,t[c] | θk,t[c]} = θk,t[c], where ℜ{θk,t[c]}, ℑ{θk,t[c]} ∈
[−1/

√
2, 1/

√
2]. Since Θ is assumed to be known at the receiver, setting σbias = 0

gives the traditional pilot assisted transmission scheme. For large Tcoh, we may

assume without loss of generality that each fading block has then τtr = ∆trTcoh

modulated “hard” pilot symbols, denoted as before by pk[c] ∈ Mτtr , and the num-

ber of data symbols τd = Tcoh − τtr is fixed for all fading blocks. If, on the other

hand, we set ∆tr = 0, the optimum hyperprior for unconstrained receiver is re-

trieved (see [172, Prop. 2]).

The total training overhead of the system as a fraction of the total transmission

is given by

∆tot = ∆tr + (1 − ∆tr)∆d ∈ [0, 1), (2.24)

where we have assumed that

∆d = 1 − H

(
1 − σbias

2

)

, (2.25)

is the amount of pilot information embedded in the data symbols, and

H(p) = −p log2 p − (1 − p) log2(1 − p), (2.26)

is the binary entropy function. This corresponds to an ideal method of signal biasing

that incurs no additional overhead by itself. In the numerical examples we also

assume that the bit error rate performance of the BICM is not affected by the a

priori signal bias.
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2.5 Density Evolution

In [125, 126], the information exchange in the iterative processing was analyzed

with the help of density evolution [21, 23, 24, 132, 133]. The present dissertation

follows the same basic approach in the analysis of the iterative MUDD and the

iterative CE. Parallel scheduling with extrinsic information is used for multiuser

detection and decoding as in [125, 126]. All the results with iterative processing

are obtained in the limit of large code word length T → ∞. As remarked in [125,

pp. 1780], the order of limits should be taken so that we first let T → ∞ and then

take the large system limit K = αL → ∞, implying that for finite user loads

T ≫ K. This is true for any modern wireless system, where the code words are

typically several thousand symbols long.

Simplifying the density evolution by treating the outputs of the sum-product

decoder as Gaussian random variables with symmetric density is used extensively

in the coding theory literature (see e.g., [133, 173, 174]). Although this is an ap-

proximation of the true output of a physical system, the error resulting from this

simplification is typically small. We make thus make the following assumption for

the rest of the thesis.

Assumption 3. For all iterations ℓ = 1, 2, . . ., the true posterior distribution of the

symbol probabilities at the outputs of the sum-product decoders coincides with the

ones obtained by using density evolution with Gaussian approximation. ♦

Rest of the details regarding density evolution with Gaussian approximation are

postponed to Section 4.3.1.

2.6 Statistical Physics and the Replica Method

In this section, we give a very brief description of some of the main concepts in

statistical physics. The main focus is on the special set of magnetic materials, spin

glasses, whose mathematical models have been recently found to have connections

to many problems encountered in engineering and information processing sciences.

A mathematical framework proposed for the analysis of disordered spin glasses,

the replica method, is briefly discussed in the context of infinite range Sherrington-

Kirkpatrick (S-K) model of spin glasses [175] (see also [176] and [177]).

The following should not be taken as a general introduction to statistical me-

chanics, and the interested reader will find much deeper discussion on the connec-

tion between the statistical physics and information processing in the recent books
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[14, 15] (see [13, 102–104] for a discussion on the validity of the replica method

and the assumption of replica symmetry (RS) in statistical physics applications)

and articles [73, 75, 85, 88, 89]. A very nice introduction to statistical physics and

information processing in telecommunications can also be found in [178].

2.6.1 A Note on Statistical Physics

One of the main goals of statistical physics is to explain how the complex macro-

scopic (large scale) behavior of homogeneous physical systems arises from its sim-

ple microscopic (small scale) structure. The problem is, however, that an effort

to give a meticulous description of the interactions between the particles (atoms,

molecules, etc.) via (quantum) mechanics does not in general lead to tractable

mathematical models. Indeed, one of the key ideas in statistical physics is to use a

simplified probabilistic model for the particle interactions so that the resulting sys-

tem can be analyzed mathematically. To illustrate the concept, we shall consider in

the following a simple classical (as opposed to quantum) statistical mechanic sys-

tem that has connections to the mathematical models found in some engineering

disciplines as well.

Let the set {1, 2, . . . , K} denote the for the K “sites” present in the system.

Here the term “site” is a placeholder capable of accommodating an arbitrary ab-

stract object used to characterize the microscopic particles of the physical system

under consideration. Throughout this section we shall assign the microscopic state

variables

x =
[
x1 x2 · · · xK

]T
, xk ∈ X , (2.27)

to their respective sites and let X be a finite set consisting of all allowed per-site

states. The energy function, or Hamiltonian4, for a given configuration x ∈ X K

is denoted by E(x). As mentioned above, the key idea in statistical physics is that

the equilibrium interactions between the elements of x in E(x) can be described in

probabilistic terms, and that this fully characterizes the macroscopic (deterministic)

behavior of the system in the thermodynamic limit, i.e., K → ∞.

In order to fix the nomenclature for the following discussion, let us now con-

centrate on the specific case of magnetic materials. Assume for simplicity that

X = {+1, −1}, i.e., the sites {1, 2, . . . , K} are associated with the binary mi-

crostate variables xk ∈ {±1}, k = 1, . . . , K. In statistical physics, such xk are

4The Hamiltonian gives the microscopic energy (hence the other name energy function) of a given

configuration x ∈ X K . For our purposes, it is a real valued function that specifies the microscopic

behavior of the physical system of interest entirely. Here we do not dwell on the topic of how to find

suitable Hamiltonians for the physical system, but rather assume it has been predefined.
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called Ising spins and they represent the spins, or magnetic moments, of the elec-

trons. Let the Hamiltonian E(x) be chosen such that it gives a (simplified) descrip-

tion of the microscopic interactions in the desired physical system. The starting

point for the analysis of such a system in the thermodynamic equilibrium is the

Boltzmann distribution, or the Gibbs measure,

P(x) =
1

Z
e−βE(x), x ∈ {±1}K , (2.28)

where β = 1/T > 0 is the inverse temperature. The special property of (2.28) is

that it maximizes the entropy5

H = −
∑

x

P(x) logP(x), (2.29)

given the average energy

〈E〉 =
∑

x

P(x)E(x), (2.30)

is kept constant. Note that this condition arises from the observed behavior of phys-

ical systems in nature. The notation used in (2.30) is commonly used for averages

that are taken with respect to the Gibbs measure (2.28).

The physical interpretation of the Boltzmann distribution is that if we keep the

system at some fixed macrostate (say, constant volume, pressure, etc.), and let it set

to equilibrium with an infinite heat bath at temperature T = 1/β, the probability

of observing a particular configuration x ∈ {±1}K is given by (2.28). The most

probable configuration, ground state, is the one that minimizes the Hamiltonian

E(x) and is consistent with the constraints imposed at the macroscopic level. For

very low temperature β → ∞, the system is thus found with very high probability

in its ground state. The normalization factor

Z =
∑

x

e−βE(x), (2.31)

in (2.28) is called the partition function, and it encodes the statistical properties

of the system in the thermodynamic equilibrium. In theory, if we know E(x) and

the configuration space X K , all important macroscopic quantities (observables)

of the related physical system can be calculated from Z. Oftentimes, though, the

(normalized) thermodynamic quantity (given the limit exists)

F = − lim
K→∞

1

βK
log Z, (2.32)

5We have implicitly made here the so-called ergodicity assumption, i.e., for the observable quan-

tities the time-average equals the average over the probability distribution of the configuration space.

For this reason we have also omitted the time dependence in the state variables {xk}K
k=1.
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called (Helmholtz) free energy is more convenient for deriving the macroscopic

variables instead6. The problem with (2.32) (or (2.31)) is, however, that except for

some special cases (e.g., one and two dimensional Ising models), the computational

complexity of calculating the partition function Z directly is prohibitive due to the

large number of particles K in the system.

2.6.2 Spin Glasses and the Replica Method

One of the cases where the direct computation of the free energy (2.32) is infea-

sible arises with the aforementioned magnetic materials termed spin glasses. The

mathematical model for the spin glasses is chosen here for simplicity to be defined

by the Hamiltonian

E(x) = − 1√
K

K∑

k=1

K∑

l=k+1

Jl,kxkxl, (2.33)

where

Js−k = {Jl,k | ∀k = 1, . . . , K ∧ l = k + 1, . . . , K}, (2.34)

is a set of K(K − 1)/2 IID standard Gaussian random variables. In statistical

physics terms, the set Js−k represents quenched disorder in the spin glass, i.e.,

it defines a random interaction between the spins that does not evolve with time.

The Hamiltonian (2.33) represents a special case of the infinite S-K model of spin

glasses without an external field. It should be remarked that the above is not by

any means a realistic model for a physical spin glass since all sites in (2.33) are

mutually coupled and their geometric locations neglected. Such a simplification is

termed mean-field approximation in physics literature and we shall next consider

how to obtain the free energy (2.32) for this simplified spin glass model.

In statistical mechanics, it is oftentimes postulated that in the thermodynamic

limit K → ∞, the free energy (2.32) converges to its quenched average, i.e.,

F = − lim
K→∞

1

βK
log Z = − lim

K→∞
1

βK
EJs−k

{log Z}, (2.35)

where the expectation is with respect to the quenched randomness of the spin glass,

namely, the interactions Js−k. This is called the self-averaging property of the free

6In fact, other thermodynamic potentials, such as, Gibbs free energy and enthalpy exist and are

better suited for some other cases. For our purposes, however, the free energy is the most convenient

choice and the physical quantities of interest (for example, magnetization) can typically be expressed

directly in terms of F and its derivatives.
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energy and can be proved to be true for the S-K model rigorously (see, e.g., [102–

104]). For the rest of this thesis, however, the convergence of the type (2.35) is

assumed to exists for the free energies of our interest, and the proof is considered

to be out of the scope of the present dissertation.

Assumption 4. The thermodynamic limit of the free energy exists and it is self-

averaging with respect to the quenched randomness present in the system. ♦

With considerable foresight, we proceed to calculate the RHS of (2.35) and ex-

pect this to be a simpler problem than the one encountered in (2.32). Unfortunately,

assessing the expectation in (2.35) is still a formidable task. Somewhat simpler ex-

pression can be obtained if we define a real valued parameter n and use the identity

∂

∂n
log

(
EJs−k

{Zn}
)

= EJs−k

{
∂Zn

∂n

}
1

EJs−k
{Zn} =

EJs−k
{Zn log(Z)}

EJs−k
{Zn} ,

(2.36)

on the right hand side (RHS) of (2.35), i.e.,

F = − lim
K→∞

1

βK
EJs−k

{log(Z)} = − lim
K→∞

1

βK
lim
n→0

∂

∂n
log(EJs−k

{Zn}).

(2.37)

Note that given the Assumption 4 holds, the RHS in (2.37) is indeed equal to the

free energy in the thermodynamic limit. The problem still persists, however, that

evaluating the expectation for a real power n ∈ R of the partition function is in

practice infeasible.

The basic idea of the replica method is to first calculate the moments of Z, i.e.,

EJs−k
{Zn} for an integer n by introducing the statistically identical replicas (hence

the name replica method) of the Hamiltonians

E(x{a}) = − 1√
K

K∑

k=1

K∑

l=k+1

Jl,kx
{a}
k x

{a}
l , a = 1, . . . , n, (2.38)

where x{a} =
[
x

{a}
1 x

{a}
2 · · · x

{a}
K

]T ∈ X K , for all a = 1, . . . , n. Then the

limit in (2.37) is taken as if n was real valued. In order to help the evaluation of the

summations over the replicated spin configurations, it is further postulated that the

limits commute and the free energy under the replica method can be written as

Frm = − lim
n→0

∂

∂n
lim

K→∞
1

βK
log

(

EJs−k

{
n∏

a=1

∑

x{a}∈X K

e−βE(x{a})

})

. (2.39)
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Now, for the Gaussian interactions Js−k, we can first assess the expectation in (2.39)

with the help of the Gaussian integral (see (C.22)). Furthermore, in the limit K →
∞, one can next use the results from large deviation theory (for example, [179,

180]) to calculate the summations over the replicated configurations {x{a}}n
a=1.

See [13, 14] for the actual computations in the S-K model and Appendix C in the

context of channel estimation.

Thus far we have simplified the original problem of computing an expectation

of a logarithm as encountered in (2.35), to Gaussian integrals and optimization

problems to find the saddle-points of exponential functions. Unfortunately, it is not

guaranteed that Frm equals F for general Hamiltonians and quenched disorder. Fur-

thermore, one usually needs to limit the state space of the saddle-point conditions

in order to get a closed form solution for the free energy. This can be achieved by

defining a correlation matrix Q = [Q{a,b}]n×n with elements

Q{a,b} =
1

K

K∑

k=1

E
{

x
{a}
k x

{b}
k

}

, a, b = 1, 2, . . . , n, (2.40)

and imposing symmetry conditions on Q. In this thesis, we consider only the replica

symmetric saddle-points (see Assumption 7 in Appendix C), which translates for

the S-K model as the condition

Q{a,b} = qrs, ∀a 6= b. (2.41)

Quite remarkably, obtaining the free energy for the S-K model under the assumption

of RS reduces then to solving a fixed point equation and a single integral (cf. [13,

Eqs. (3.21) and (3.22)] and [14, Eqs. (2.27) and (2.30)])

Frm−rs = −1

4
β(1 − qrs)

2 − 1

β

∫

log
(
2 cosh(βν

√
qrs)

)
Dν, (2.42)

qrs =

∫

tanh2(βν
√

qrs)Dν, (2.43)

where we used the short hand notation

Dν =
1√
2π

e− 1
2

ν2
dν, (2.44)

for the standard Gaussian measure.

The condition (2.41) may sound intuitively very reasonable since the replicas

were introduced merely as a mathematical trick to compute the expectation of a

power. Unfortunately (again), it is known that the RS free energy Frm−rs is not the
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correct solution7 for the S-K model due to replica symmetry breaking (RSB) [13,

14]. It does, however, give a very good approximation in general, and sometimes

even the exact solution (say, for Gaussian spins). Due to the relatively complex

Hamiltonians encountered in the latter parts of the dissertation, we have left the

investigation of RSB as a future topic.

7The RS solution of the free energy gives in fact negative ground state entropy and energy, that

is, when T → 0. The correct form of the free energy for the S-K model has been recently proved

[104, 181] to be the so-called Parisi formula proposed in [177].
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Chapter 3

Non-Iterative Receivers for MIMO

DS-CDMA in Flat Fading Channels

In this chapter, the performance of multi-antenna DS-CDMA operating over a nar-

rowband Rayleigh fading MIMO channel is examined. The spatial correlation is

assumed to be given by the Kronecker model, as discussed in Section 2.2.1. The

receiver is composed of a non-iterative channel estimator and MUD — the latter of

which is not necessarily linear.

The outline of the chapter is as follows. Section 3.1 derives the pilot-aided chan-

nel estimators and non-iterative multiuser detectors suitable for MIMO DS-CDMA

from the class of generalized posterior mean estimators. The specific instances that

will be considered in detail are in decreasing order of complexity:

• Channel estimators: linear MMSE, covariance mismatched LMMSE and

maximum likelihood estimators;

• Data detectors: non-linear MAP, LMMSE, decorrelating and conventional

detectors.

In Section 3.2, the equivalent single-user representations of the multiuser systems

utilizing the components listed above are derived with the help of the replica method.

Using this single-user characterization, the large system performance analysis of the

multiuser receivers is carried out in Section 3.3. Selected numerical examples are

given in Section 3.4.

The channel estimators and multiuser detectors presented in this chapter are

studied with less detail than the iterative receivers considered in the next chapter.

The proofs follow along the same lines as the ones in Chapter 4, and are mostly

omitted. Brief discussion on the diagonalization of the equivalent noise covariance

matrices can be found in Appendix A. For notational convenience, we omit the
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3. Non-Iterative Receivers for MIMO DS-CDMA in Flat Fading Channels

block index c in the following discussion.

3.1 Multiuser Receivers via Bayesian Framework

Here we briefly describe the non-iterative CEs and MUDs for multiuser MIMO

DS-CDMA that will be analyzed later in the chapter. The outline is as follows.

• Section 3.1.1 presents a class of linear channel estimators for correlated MIMO

channels. Linear MMSE and ML estimators assuming different levels of a

priori knowledge about the channel conditions are given.

• Section 3.1.2 derives the MAP detector for the considered MIMO system

under the assumption of imperfect CSI. The equivalent detector for the case

of perfect CSI is oftentimes called the individually optimum detector in the

literature [5, 74, 85].

• Section 3.1.3 introduces a class of linear MUDs derived under the assumption

of mismatched channel information. Specific detectors considered include

the LMMSE and decorrelating MUDs and the SUMF.

3.1.1 Linear Channel Estimation

Consider the set of vectors YT received during the training phase T in (2.1). For

notational convenience, define also a spreading matrix

Sk,t = [sk,1,t · · · sk,L,t]
T ∈ ML×M , (3.1)

and a combined data-spreading matrix

Gk =
1√
L

[
P k,1ST

k,1 · · · P k,τtr
ST

k,τtr

]T ⊗ IN ∈ MτtrLN×MN . (3.2)

Note that (3.2) is perfectly known at the receiver (cf. Section 2.2.1). The informa-

tion contained in the set YT and the channel model (2.1) during the time t ∈ T and

chip l = 1, . . . , L indices can then be written in the vector form

yT =
K∑

k=1

GkHk + wT ∈ C
τtrLN , (3.3)

where the complex Gaussian random vector wT ∼ CN(0; σ2I) represents the

samples of thermal noise during the training phase.
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3.1. Multiuser Receivers via Bayesian Framework

Recall the notation introduced in Section 2.1. In order to derive a channel esti-

mator based on the knowledge of yT and {Gk}k∈K, let us postulate a new channel

model related to (3.3) as

ỹT =
K∑

k=1

GkH̃k + w̃T ∈ C
τtrLN . (3.4)

We let σ̃2 be the postulated variance of the Gaussian noise w̃T ∼ CN(0; σ̃2I),

and assign prior distributions (to be defined later) Q(H̃k) to the postulated channel

coefficients H̃k ∈ C
MN ∀k = 1, . . . , K. The covariance matrix of the postulated

channel is written as Ω̃Hk
= T̃ k ⊗ R̃, where T̃ k and R̃ are the postulated covari-

ance matrices related to the transmitter and receiver side spatial correlation. For

later use we denote H̃ = {H̃k | k = 1, . . . , K} for the set of postulated channels

of all users and let the postulated channels between the users be independent, i.e.,

Q(H̃) =
∏K

k=1 Q(H̃k).

We can now interpret (3.4) as the receiver’s knowledge about the true channel

model (3.3). All estimation algorithms are then based on the postulated information

(3.4), and the prior probabilities associated with the RVs in it. In general, if the two

system models (3.3) and (3.4) with the accompanying prior probabilities are not

the same, the resulting estimator can be thought of to be a mismatched solution to

a Bayesian inference problem. The mismatch may arise from a limited knowledge

about the parameters involved, or from a conscious choice. Albeit the latter may

seem like a strange position to take at first, it makes sense from the point of view of

system design when the limited resources prevent employing the optimum strategies

(see Sections 3.1.2 and 3.1.3). This method of deriving the desired estimators and

detectors is used for the rest of the thesis.

Denote I = {S, P, YT }, and let

Q(H̃ξ | I) =
Q(H̃ξ)EH̃\H̃ξ

{
Q(ỹT = yT | I, H̃)

}

EH̃
{
Q(ỹT = yT | I, H̃)

} , (3.5)

be the postulated a posteriori probability (APP) of the channel coefficients of the

user ξ ∈ K, given the information I and channel model (3.4). The resulting GPME

[85, 89] reads

〈H̃ξ〉 =

∫

H̃ξdQ(H̃ξ | I) ∈ C
MN , (3.6)

where 〈H̃ξ〉 = vec
(
[〈h̃ξ,1〉 · · · 〈h̃ξ,M 〉]

)
, and {〈h̃ξ,m〉}M

m=1 are the estimates of

{hξ,m}M
m=1. If we postulate Gaussian priors Q(H̃k) = CN(0; Ω̃Hk

) ∀k ∈ K,
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3. Non-Iterative Receivers for MIMO DS-CDMA in Flat Fading Channels

the integrals in (3.5) – (3.6) can be calculated with the help of (C.22), which yields

after some algebra1 a linear estimator

〈H̃ξ〉 = Ω̃H̃ξ
GH

ξ

(
K∑

k=1

GkΩ̃Hk
GH

k + σ̃2IτtrLN

)−1

yT , (3.7)

that is parametrized by:

1. {Ω̃Hk
}K

k=1, the postulated covariance matrices of the MIMO channels;

2. σ̃2, the postulated noise variance.

When the GPME (3.6) is considered in the following, the underlying assumption

is always that Gaussian priors leading to (3.7) are postulated. For later use, we

let ∆Hk = Hk − 〈H̃k〉 be the error of the channel estimates, and Ω∆Hk
=

E{∆Hk∆HH
k } the corresponding covariance matrix. The error covariance esti-

mate obtained by the CE is denoted by Ω̃∆Hk
. Note that Ω̃∆Hk

can be different

from Ω∆Hk
, in which case the MUD is misinformed about the error statistics of

the channel estimates.

Example 2. Let σ̃2 = σ2 and Ω̃Hk
= ΩHk

. The resulting estimator is the opti-

mum non-iterative pilot assisted MMSE channel estimator for the channel model

(3.3). ♦

Example 3. Let σ̃2 = σ2 and assume that the CE knows the diagonals {Tk,m,m}M
m=1

of T k, but neglects the correlations between the transmit antennas. We define two

mismatched CEs based on their knowledge about the receive correlation:

• Type-1: R̃ = R

• Type-2: R̃ = IN

The resulting CEs are called covariance mismatched LMMSE channel estimators

of Type-1 and Type-2 for the rest of the chapter. ♦

Example 4. Let Ω̃Hk
= IMN and σ̃2 → 0. The GPME (3.6) reduces then to the

ML channel estimator for the MIMO channel (3.3). ♦

Remark 1. In the following we assume that the posterior distribution (3.5) of the

channel estimates satisfies Q(H̃ | I) =
∏K

k=1 Q(H̃k | I), although this may not

strictly hold due to joint estimation over the users. ♦
1The matrix identity A − AU(C + V HAU)−1V HA = (A−1 + UC−1V H)−1, where the

inverses are assumed to exist, is very helpful here (see, e.g. [182] and the references therein).
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3.1. Multiuser Receivers via Bayesian Framework

3.1.2 Non-Linear MAP Detector with CSI Mismatch

The first MUD to be considered for the MIMO DS-CDMA system is the non-linear

MAP detector. We start by re-writing (2.1) in the form

yl,t =
K∑

k=1

Gk,l,tHk + wl,t ∈ C
N , (3.8)

where shorthand notation

Gk,l,t =
1√
L

(
Xk,tsk,l,t ⊗ IN

)T ∈ C
N×MN , (3.9)

was used for convenience. Suppose that before MUD, the CSI is obtained by the

LMMSE channel estimator of Example 2 in the form

Q(H̃k | I) = CN
(
〈H̃k〉; Ω̃∆Hk

)
. (3.10)

We then postulate a new channel model related to (3.8)

ỹl,t =
K∑

k=1

G̃k,l,tH̃k + w̃l,t ∈ C
N , (3.11)

where the matrix G̃k,l,t = 1√
L

(
X̃k,tsk,l,t ⊗IN

)T
, contains the spreading sequence

sk,l,t and the postulated data X̃k,t = diag(x̃k,t). We also denote for later use

X̃t = {x̃k,t | k = 1, . . . , K} for the set of all transmitted vectors during the tth

index in the postulated channel model (3.11).

Now, assign the true prior probabilities Q
(
x̃k,t = xk,t

)
= P

(
xk,t

)
∀k ∈ K

to the data symbols and let the noise be zero-mean complex Gaussian w̃l,t ∼
CN(0; σ̃2I) with the correct variance σ̃2 = σ2. The channel estimates are in-

troduced to the system model (3.11) by taking the conditional expectation over the

posterior probabilities (3.5), resulting to

Q
(
ỹl,t = yl,t | I, X̃t, Yt

)

=

∫

Q
(
ỹl,t = yl,t | I, X̃t, Yt, {H̃k}K

k=1

)
K∏

k=1

dQ(H̃k | I), l = 1, . . . , L.

(3.12)

Note that for Rayleigh fading channel the integrals can be calculated in closed form

and (3.12) is a conditional Gaussian distribution. The postulated APPs of the trans-

mitted symbols xξ,t are then given by

Q
(
x̃ξ,t | I, Yt

)
=

Q(x̃ξ,t)EX̃t\x̃ξ,t

{
∏L

l=1 Q
(
ỹl,t = yl,t | I, X̃t, Yt

)}

EX̃t

{
∏L

l=1 Q
(
ỹl,t = yl,t | I, X̃t, Yt

)} , (3.13)

35
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where the expectations are with respect to the postulated a priori probabilities of

the data symbols. The posterior mean estimate reads

〈x̃ξ,t〉 =
∑

x̃ξ,t∈MM

x̃ξ,tQ
(
x̃ξ,t | I, Yt

)
. (3.14)

3.1.3 Linear Multiuser Detection with CSI Mismatch

Having derived the optimum non-linear MUD in the previous section, we now turn

to the computationally less complex linear detectors. If the channel would be per-

fectly known at the receiver, one could simply proceed by assigning Gaussian priors

Q(x̃k,t) = CN(0; I) to all users in (3.11) (see, e.g., [74, 85, 89]). When the chan-

nel knowledge contains uncertainty, however, such an approach does not directly

apply.

Consider the data transmission phase t ∈ D in (2.1). Let the channel estimates

{〈h̃k,m〉 | ∀k, m} and the error covariance matrices {Ω̃∆Hk
| ∀k} obtained by the

channel estimator as described in Section 3.1.1 be available to the MUD. Define an

error term

∆V k,t = [∆vT
k,t,1 · · · ∆vT

k,t,M ]T = (Xk,t ⊗ IN )∆Hk ∈ C
MN (3.15)

where ∆vk,t,m ∈ C
N ∀m, and write (3.6) as

〈H̃k〉d =







〈h̃k,1〉 0

. . .

0 〈h̃k,M 〉







∈ C
MN×M . (3.16)

Using (3.1), (3.15) and (3.16), an equivalent re-presentation for the received signal

Yt in (2.1) during the data transmission phase t ∈ D is obtained

yt =
1√
L

K∑

k=1

(Sk,t ⊗ IN )〈H̃k〉dxk,t + (Sk,t ⊗ IN )∆V k,t + wt ∈ C
LN . (3.17)

Note that so-far we have not changed the channel model, and writing out (3.17)

returns the same dependence between the received and transmitted vectors as in

(2.1).

The receiver has knowledge of {Sk,t} and {〈H̃k〉d}, and the (possibly mis-

matched) statistics of the channel estimation errors {∆Hk}. Therefore, if we are

interested in estimating Xξ,t, for the user ξ ∈ K, (3.15) contains a multiplicative er-

ror term and postulating Gaussian prior for the data does not yield a linear MUD as
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desired. It is worth pointing out though that if the estimation error ∆Hk is complex

Gaussian and QPSK signaling is used, the true error term (3.15) is indeed complex

Gaussian. This is in fact what happens with the MAP detector discussed in previous

section. Intuitively, we could then argue that (3.15) contains no information from

the receiver’s point of view and treat ∆V k,t as additional complex Gaussian noise

in the channel. However, this does not hold formally if we postulate Gaussian prior

for the data.

Let ξ ∈ K be the user of interest and denote for notational convenience It =
{
P, S, Yt, {〈H̃k〉}k∈K

}
. Let

ỹt =
1√
L

K∑

k=1

(Sk,t ⊗ IN )〈H̃k〉dx̃k,t + (Sk,t ⊗ IN )∆Ṽ k,t + w̃t ∈ C
LN , (3.18)

be the receiver’s knowledge of (3.17), where w̃t ∼ CN(0; σ̃2ILN ) and the inter-

fering users have postulated Gaussian priors Q(x̃j,t) = CN(0; I) ∀j ∈ K \ ξ.

Furthermore, let ∆Ṽ k,t = vec
(
[∆ṽk,t,1 · · · ∆ṽk,t,M ]

)
∈ C

MN ∀k ∈ K with the

postulated distribution Q(∆Ṽ k,t | It) = CN(0; Ω̃∆V k,t
) represent the receiver’s

knowledge about the error term (3.15). The postulated APP of the ξth user’s data

symbols transmitted during the time index t ∈ D reads then

Q
(
x̃ξ,t | It

)

=
Q(x̃ξ,t)EX̃t\x̃ξ,t

{

E{∆Ṽ k,t}k∈K

{
Q
(
ỹt = yt | It, X̃t, {∆Ṽ k,t}k∈K,

)}}

EX̃t

{

E{∆Ṽ k,t}k∈K

{
Q
(
ỹt = yt | Q

(
ỹt = yt | It, X̃t, {∆Ṽ k,t}k∈K,

)}} ,

(3.19)

where Q(x̃ξ,t) is the postulated prior for the user of interest. Plugging (3.19) for

the posterior distribution in

〈x̃ξ,t〉 =

∫

x̃ξ,tdQ
(
x̃ξ,t | It

)
, (3.20)

gives the desired GPME2 that is parametrized by:

1. Q(x̃ξ,t), the a priori probability of the transmit symbols;

2. Ω̃∆V k,t
, the postulated covariance of the error term arising from the channel

estimation errors;

3. σ̃2, the postulated noise variance.

2See the Remark 4 in Section 4.1.5 for discussion on how to treat posterior mean estimates when

belief propagation based channel decoder is used.
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Note that if we postulate Q(x̃ξ,t) = CN(0; I), the GPME (3.20) reduces to the

familiar linear form

〈xξ,t〉 =
1√
L

〈Hξ〉H
d (SH

ξ,t ⊗ IN )

×
(

σ̃2ILN +
1

L

K∑

k=1

(Sk,t ⊗ IN )
(
〈H̃k〉〈H̃k〉H + Ω̃∆V k,t

)
(SH

k,t ⊗ IN )

)−1

yt.

(3.21)

Example 5. Let us denote Ed{ · } = E
{

· | P, S, {〈H̃k〉}k∈K
}

and assume that

Ed{HkHH
k } = 〈H̃k〉〈H̃k〉H + Ω̃∆Hk

. The LMMSE estimator

〈xk,t〉 = Ed{xk,ty
H
t }Ed{yty

H
t }−1yt, (3.22)

equals then (3.21) with σ̃2 = σ2 and Ω̃∆V k,t
= Ω̃∆Hk

. This is akin to the linear

MMSE data estimator studied for the single-antenna multipath DS-CDMA systems

by Evans & Tse [59]. ♦

Example 6. If we set Ω̃∆V k,t
= 0 in (3.21) and then let σ̃2 → ∞ or σ̃2 → 0,

we get the single-user matched filter and decorrelator that assumes perfect CSI,

respectively. ♦

3.2 Decoupling Results

In this section, the decoupling of the multiuser MIMO DS-CDMA system described

in Sections 2.2.1 and 3.1 is presented. We assume for simplicity that ptx contains

a single mass point and the MIMO channels of the users are therefore IID. The

decoupling of the multiuser channel is obtained via an application of the replica

method by using the same methodology as in [85, 89, 92]. An analogous case can

be found in [183, Sec. V]. In deriving the decoupling results we have assumed that

the assumptions made in the replica analysis are valid and replica symmetry holds.

Note that the replica method relies on the large system limit where K = αL → ∞
with fixed system load 0 < α < ∞.

3.2.1 Linear Channel Estimation

Consider a set of single-user channels

zk,m = hk,m + wk,m ∈ C
N , wk,m ∼ CN(0; C), (3.23)

z̃k,m = h̃k,m + w̃k,m ∈ C
N , w̃k,m ∼ CN(0; C̃), (3.24)
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where m = 1, . . . , M , and

Hk = vec
([

hk,1 · · · hk,M

])
∼ CN(0; ΩH), (3.25)

H̃k = vec
([

h̃k,1 · · · h̃k,M

])
∼ CN(0; Ω̃H). (3.26)

Let the GPME for the true channel coefficients hk,m, m = 1, . . . , M , based on the

knowledge of (3.24) and (3.26), be given by

〈h̃k,m〉k =
E{h̃k,i}M

i=1

{
h̃k,m

∏M
i=1 Q

(
z̃k,i | h̃k,i

)}

E{h̃k,i}M
i=1

{∏M
i=1 Q

(
z̃k,i | h̃k,i

)} . (3.27)

Furthermore, let the noise covariances read

C = σ2IN + α lim
k→∞

1

K

K∑

k=1

M∑

m=1

Ω∆hk,m
(C, C̃), (3.28)

C̃ = σ̃2IN + α lim
k→∞

1

K

K∑

k=1

M∑

m=1

Ω̃∆hk,m
(C, C̃), (3.29)

where

Ω∆hk,m
(C, C̃) = E

{(
hk,m − 〈h̃k,m〉k

)(
hk,m − 〈h̃k,m〉k

)H}
, (3.30)

Ω̃∆hk,m
(C, C̃) = E

{(
h̃k,m − 〈h̃k,m〉k

)(
h̃k,m − 〈h̃k,m〉k

)H}
. (3.31)

Claim 1. Conditioned on {P, S}, the joint distribution of the true and postulated

inputs and the GPME (3.6) of the multiuser system converges in probability to the

joint distribution of the true and postulated inputs and the GPME (3.27) of the

single-user system as K = αL → ∞ with α fixed.

3.2.2 Non-Linear MAP Detector with CSI Mismatch

Consider the set of single-user SIMO channels

zk,m = hk,mxk,m + wk,m ∈ C
N , (3.32)

where wk,m ∼ CN(0; D), m = 1, . . . , M . Let

z̃k,m = h̃k,mx̃k,m + w̃k,m ∈ C
N , (3.33)

with w̃k,m ∼ CN(0; D̃) be the corresponding channel model assumed by the re-

ceiver. Denote

Jk,m =
{
zk,m,Q(h̃k,m | I)

}
, (3.34)
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where the CSI Q(h̃k,m | I) is provided by the channel estimator. Let the postulated

prior coincide with the true one Q(x̃k,t) = P(xk,t = x̃k,t) (see (2.19) – (2.20)).

The single-user posterior mean estimator based on (3.41) is written as

〈· · · 〉k,m

=

∑

x̃k,m∈M Q(x̃k,m)
∫

· · · Q
(
z̃k,m = zk,m | x̃k,m, Jk,m

)
dQ(h̃k,m | I)

∑

x̃k,m∈M Q(x̃k,m)
∫
Q
(
z̃k,m = zk,m | x̃k,m, Jk,m

)
dQ(h̃k,m | I)

,

(3.35)

for all m = 1, . . . , M and k = 1, . . . , K. We write for notational convenience

Ed
k,m = E { · · · | hk,m, Jk,m} , (3.36)

so that the true D and postulated D̃ noise covariance matrices are given by the

solutions to the coupled fixed point equations

D = σ2IN + α lim
K→∞

1

K

K∑

k=1

M∑

m=1

Σk,m

(
D, D̃

)
, (3.37)

D̃ = σ̃2IN + α lim
K→∞

1

K

K∑

k=1

M∑

m=1

Σ̃k,m

(
D, D̃

)
, (3.38)

respectively, where σ̃2 = σ2 and

Σk,m

(
D, D̃

)

= Ed
k,m

{(

hk,mxk,m − 〈h̃k,mx̃k,m〉k,m

) (

hk,mxk,m − 〈h̃k,mx̃k,m〉k,m

)H
}

,

(3.39)

Σ̃k,m

(
D, D̃

)

= Ed
k,m

{(

h̃k,mx̃k,m − 〈h̃k,mx̃k,m〉k,m

) (

h̃k,mx̃k,m − 〈h̃k,mx̃k,m〉k,m

)H
}

.

(3.40)

Claim 2. Conditioned on {H, S} and the CE output, the joint distribution of the

true and postulated inputs and the GPME (3.14) of the multiuser system converges

in probability to the joint distribution of the true and postulated inputs and the

GPME (3.35) of the single-user system as K = αL → ∞ with α fixed.

3.2.3 Linear Multiuser Detection with CSI Mismatch

Consider the set of single-user SIMO channels (3.32) in Section 3.2.2 and let

z̃k,m = 〈h̃k,m〉x̃k,m + ∆ṽk,m + w̃k,m ∈ C
N , m = 1, . . . , M, (3.41)
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where w̃k,m ∼ CN(0; D̃), be the channel model postulated for the kth user at the

receiver. The posterior mean estimates {〈h̃k,m〉}M
m=1 of the channel coefficients

{hk,m}M
m=1 are known and {∆ṽk,m}M

m=1 is a set of independent Gaussian RVs

with distributions Q(∆ṽk,m) = CN(0; Ω̃∆vk,m
), m = 1, . . . , M , where Ω̃∆vk,m

are the N × N block diagonals of the matrix Ω̃∆V k,t
introduced in Section 3.1.3.

Let the single-user GPME based on (3.41) be defined as

〈· · · 〉k,m =
Ex̃k,m,∆ṽk,m

{
· · · Q

(
z̃k,m = zk,m | x̃k,m, ∆ṽk,m, Jk,m

)}

Ex̃k,m,∆ṽk,m

{
Q
(
z̃k,m = zk,m | x̃k,m, ∆ṽk,m, Jk,m

)} , (3.42)

for all m = 1, . . . , M , k = 1, . . . , K, and denote ṽk,m = 〈hk,m〉x̃k,m + ∆ṽk,m

for notational convenience. The true and postulated noise covariance matrices are

then given by the solutions to the coupled fixed point equations (3.37) – (3.38) with

(3.39) – (3.39) replaced by

Σk,m

(
D, D̃

)

= Ed
k,m

{

(hk,mxk,m − 〈ṽk,m〉k,m) (hk,mxk,m − 〈ṽk,m〉k,m)H
}

, (3.43)

Σ̃k,m

(
D, D̃

)

= Ed
k,m

{

(ṽk,m − 〈ṽk,m〉k,m) (ṽk,m − 〈ṽk,m〉k,m)H
}

. (3.44)

Note that if the a priori probability of the data is Gaussian

x̃k = [x̃k,1, . . . , x̃k,M ]T ∼ CN(0; IM ), (3.45)

the data estimator based on the GPME (3.42) reduces to 〈xk,m〉k,m = mH
k,mzk,m,

where

mH
k,m =

〈h̃k,m〉H
(
D̃ + Ω̃∆vk,m

)−1

1 + 〈h̃k,m〉H
(
D̃ + Ω̃∆vk,m

)−1〈h̃k,m〉
. (3.46)

Claim 3. Conditioned on {H, S} and the CE output, the joint distribution of the

true and postulated inputs and the GPME (3.20) of the multiuser system converges

in probability to the joint distribution of the true and postulated inputs and the

GPME (3.42) of the single-user system as K = αL → ∞ with α fixed.

3.3 Performance of Large MIMO DS-CDMA Systems

In this section the actual performance analysis of the multiuser MIMO DS-CDMA

system described in Sections 2.2.1 and 3.1 is carried out. Due to the relatively large

amount of different results that will follow, the organization of the next section is

provided below:

41



3. Non-Iterative Receivers for MIMO DS-CDMA in Flat Fading Channels

• Section 3.3.1 considers the linear channel estimators given in Section 3.1.1.

The output statistics of the following CEs in increasing order of model mis-

match are obtained:

1. Optimum pilot-aided LMMSE channel estimator;

2. Covariance mismatched LMMSE channel estimators of Type-1 (ne-

glects transmit correlation) and Type-2 (neglects spatial correlation

completely).

3. Linear maximum likelihood channel estimator.

• Section 3.3.2 concentrates on the analysis of the MUDs introduced in Sec-

tions 3.1.2 and 3.1.3. The performance of the following non-iterative mul-

tiuser detectors, arranged in decreasing order of complexity, are given:

1. MAP detector;

2. LMMSE detector;

3. Decorrelator;

4. Conventional detector (SUMF).

It is assumed for the rest of this chapter that the replica symmetric solutions of

Claims 1 – 3 are valid, so that we can concentrate on studying the equivalent single-

user systems given in the previous section. For simplicity, we assume in the follow-

ing that the channels between the users are IID and T k = T ∀k ∈ K. We also

drop the user index k and omit the time dependence, writing with a slight abuse of

notation, e.g., xm = xk,t,m for some k ∈ K and t ∈ D.

3.3.1 Linear Channel Estimation

In this section we examine the performance of the linear channel estimators de-

scribed in Section 3.1.1. The first result gives the error covariance estimate obtained

by the CE. We assume that this is also the information that the MUD has about the

error statistics in the channel estimation.

Proposition 1. Consider the linear channel estimator defined by (3.7). Let Ω̃H be

the postulated covariance matrix of the channel H . The error covariance of the

channel estimates
〈
H̃
〉
, obtained by the channel estimator and forwarded to the

MUD reads then

Ω̃∆H(C̃) = E
{(

H̃ −
〈
H̃
〉)(

H̃ −
〈
H̃
〉)H}

= Ω̃H

(
IM ⊗ C̃ + τtrΩ̃H

)−1(
IM ⊗ C̃

)
∈ C

MN×MN , (3.47)

where C̃ is the noise covariance (3.29) of the postulated single-user channel (3.24).

Let Ω̃∆hm
(C̃) be the estimated error covariance matrices for the transmit antennas
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m = 1, . . . , M , given by the M × M block diagonals of (3.47). The matrix C̃ is

then given by

C̃ = σ̃2IN + α
M∑

m=1

Ω̃∆hm
(C̃). (3.48)

The error covariance matrices that are solutions to the coupled equations (3.47)

and (3.48) will be denoted by Ω̃∆H and {Ω̃∆hm
}M

m=1 in the following.

Proposition 1 holds for all channel estimators introduced in Section 3.1.1 and

gives the postulated error covariance obtained by the CE in the form of coupled

equations (3.47) and (3.48). However, in order to assess the performance of the

system, we need to obtain the true error covariance Ω∆H of the channel estimates as

well. For the optimum pilot-aided LMMSE channel estimator given in Example 2,

the two coincide and the MUD is thus correctly informed about the error statistics

in channel estimation.

Corollary 1. Let σ̃2 = σ2 and Ω̃H = ΩH in (3.47) and (3.48). Denote ∆H =

H −
〈
H̃
〉
. Then

Ω̃∆H = Ω∆H = E
{
∆H ∆HH

}
. (3.49)

Consider next the outputs of the two covariance mismatched LMMSE channel

estimators described in Example 3. Recall that the Type-1 covariance mismatched

estimator neglects the correlation between the transmit antennas, but knows the

correlation between the receive antennas. Type-2 estimator neglects the spatial cor-

relation altogether.

Proposition 2. Let R = UΛRUH and R̃ = ŨΛ̃RŨ
H

, where U , Ũ ∈ C
N×N are

unitary matrices, and the diagonal matrices Λ̃R and ΛR contain the eigenvalues of

R̃ and R, respectively. For the Type-1 and Type-2 covariance mismatched channel

estimators in Example 3, the noise and error covariance matrices C̃ = ŨΛ̃CŨ
H

and Ω̃∆hm
= ŨΛ̃∆hm

Ũ
H

are given by the solutions to the coupled equations

Λ̃∆hm
(Λ̃C) = Tm,mΛ̃R

(

Λ̃C + τtrTm,mΛ̃R

)−1
Λ̃C , (3.50)

Λ̃C = σ̃2IN + α
M∑

m=1

Λ̃∆hm
(Λ̃C). (3.51)

For the Type-1 mismatched estimator, if we let ∆hm = hm − 〈h̃m〉 then

Ω̃∆hm
= Ω∆hm

= E
{
∆hm∆hH

m

}
. (3.52)
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For the Type-2 mismatched estimator the postulated error and noise covariance

matrices can be written as Ω̃∆hm
= λ̃∆hm

IN and C̃ = λ̃CIN , respectively,

where λ̃∆hm
and λ̃C are the solutions to the equations

λ̃∆hm
(λ̃C) =

Tm,mλ̃C

λ̃C + τtrTm,m

, (3.53)

λ̃C = σ̃2 + α
M∑

m=1

λ̃∆hm
(λ̃C). (3.54)

The true error covariance for the Type-2 mismatched estimator is given by Ω∆hm
=

UΛ∆hm
UH, where

Λ∆hm
=

Tm,m

(λ̃C + τtrTm,m)2
(λ̃2

CΛR + τtrTm,mΛC), (3.55)

ΛC = λ̃C

(

σ2IN + αΛR

M∑

m=1

λ̃2
∆hm

Tm,m

)/(

σ̃2 + α
M∑

m=1

λ̃2
∆hm

Tm,m

)

. (3.56)

Note that (3.55) – (3.56) follows from the fact that the Type-2 mismatched

LMMSE estimator postulates R̃ = IN and, thus, U simultaneously diagonalizes

R and R̃. The above result also states that if the LMMSE channel estimator has

correct information about the transmitted powers and the spatial correlation on the

receiver’s side, the error statistics provided to the MUD are correct. Postulating un-

correlated antennas at the transmitter does not cause a mismatch in error statistics.

The actual MSE Ω∆H obtained by the estimator described in Examples 2 and the

Type-1 mismatched estimator of Example 3 are, however, different unless T is di-

agonal. The following simple example illustrates the effect of transmit correlation

on the accuracy of channel estimation.

Example 7. Let us consider for simplicity uncorrelated receive antennas R = R =

U = Ũ = IN , and equal power transmission Tm,m = 1
M . Let the transmit

correlation be modelled as

T =
1 − ρ

M
IM +

ρ

M
eM eT

M , 0 ≤ ρ ≤ 1, (3.57)

i.e., by the constant correlation model (see, for example, [184, 185]). Using the

matrix determinant lemma [186, Theorem 13.3.8], the eigenvalues of T are easily

obtained as

λ1 =
1

M
[1 + ρ(M − 1)], (3.58)

λ2 =
1

M
(1 − ρ), (3.59)
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where λ2 has the multiplicity of M − 1. The noise covariances are given by C =

C̃ = CIN , where

C = σ2 + αMΩ∆hm
(C), (3.60)

is a fixed point equation with

Ω∆hm
(C) =

1

M

[
λ∆h1

(C) + (M − 1)λ∆h2
(C)

]
, (3.61)

λ∆hi
(C) =

Cλi

C + τtrλi
, i = 1, 2. (3.62)

Let M, C, τtr be arbitrary and fixed. It is easy to verify that

∂

∂ρ
Ω∆hm

(C) < 0,
∂2

∂ρ2
Ω∆hm

(C) < 0, 0 < ρ < 1, (3.63)

so that for fixed M, C, τtr, the MSE is a decreasing concave function of transmit

correlation ρ. Since C decreases with Ω∆hm
(C), we know that increasing corre-

lation between the transmit antennas helps the channel estimator to obtain lower

MSEs.

The two extreme cases of transmit correlation for this model are obtained by

setting ρ = 0 (uncorrelated transmit antennas) and ρ = 1 (fully correlated transmit

antennas), which yields

ρ = 0 : Ω∆hm
(C) =

1

M

C

C +
τtr

M

, (3.64)

ρ = 1 : Ω∆hm
(C) =

1

M

C

C + τtr

. (3.65)

In the limit of extremely correlated transmit antennas, we thus obseve that the effec-

tive number of training symbols is increased by a factor of M . This is an intuitively

pleasing result since there is only one physical channel per receive antenna to esti-

mate, but the estimator still receives τtrM training sequences per receive antenna.

Such a simple interpretation, however, cannot be made for 0 < ρ < 1 or if the

receive antennas are correlated as well. ♦

The Type-2 mismatched channel estimator gives the MUD incorrect informa-

tion about the estimation errors, unless R̃ = R = IN . This affects the analysis

of the MUD and makes it in general quite cumbersome. Another property of this

estimator is that the estimation errors are correlated with the channel estimates, as

discussed below.
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Remark 2. Let the cross covariance between the channel estimate and the estima-

tion error be Ω∆hm,〈h̃m〉 = E{∆hm〈h̃m〉H}. In the large system limit, the channel

estimates provided by the estimators defined in Examples 2 and 3 have uncondi-

tional complex Gaussian distribution 〈h̃m〉 ∼ CN(0; Ω〈h̃m〉), where Ω〈h̃m〉 =

UΛ〈h̃m〉U
H and

Λ〈h̃m〉 = Tm,mΛR − 2Λ∆hm,〈h̃m〉 − Λ∆hm
(3.66)

A little bit of algebra reveals that we have for the channel estimators in Exam-

ples 2 and 3 the following eigenvalues for the cross-covariance matrices;

• Optimum LMMSE (Example 2) and Type-1 mismatched (Example 3):

Λ∆hm,〈h̃m〉 = 0; (3.67)

• Type-2 mismatched (Example 3):

Λ∆hm,〈h̃m〉 =
τtrT

2
m,m

(
λ̃C + τtrTm,m

)2 (λ̃CΛR − ΛC). (3.68)

For the Type-2 mismatched channel estimator the channel estimate and the error are

therefore correlated unless R = IN . One should not, however, confuse the Type-2

covariance mismatched LMMSE estimator to the linear ML channel estimator in

Example 4, for which the error is uncorrelated with the channel coefficients. In

fact, we immediately get from (3.55) and (3.68) that

E{∆hmhH
m} =

λ̃CTm,m

λ̃C + τtrTm,m

R, (3.69)

and, thus, the estimation error is correlated also with the channel coefficients for

the Type-2 mismatched LMMSE channel estimator. ♦

Finally, let us consider the ML channel estimator described in Example 4. This

channel estimator neglects both the spatial correlation and the additive noise in the

channel. For simplicity, we consider only the case τtr > αM for this CE.

Proposition 3. For the ML channel estimator in Example 4, E{∆hmhH
m} = 0,

C = CIN and

C =
σ2

1 − αM/τtr

, (3.70)

Ω∆hm
= −Ω∆hm,〈h̃m〉 =

1

τtr

C =
σ2

τtr − αM
IN , (3.71)

whenever τtr > αM .
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3.3.2 Multiuser Detection with Mismatched CSI

Let us first consider the performance of the non-linear MAP detector described in

Section 3.1.2. For simplicity, the CSI is assumed to be given by the LMMSE chan-

nel estimator given in Example 2 and, thus, the statistics of the channel estimation

error are correct. The next result reports the SINR of the “hidden” Gaussian chan-

nel (see, e.g., [85, Eq. (183)], [89, Sec. 1.3.1] and the discussion therein), at the

output of the non-linear multiuser detector.

Proposition 4. Let R = UΛRUH, where U is a unitary matrix containing the

eigenvectors of R. Consider the GPME given by (3.13) – (3.14), and let the channel

information be provided by the LMMSE channel estimator of Example 2. Then

D̃ = D = UΛDUH in (3.37) – (3.38). Furthermore, let g ∈ R
N be a RV with

IID elements {gj}N
j=1 drawn according to the exponential distribution P(gj) =

1 − e−gj , gj > 0. Then,

sinr
mmse
m

(
g, ΛD

)
=

N∑

n=1

gnλ
(n)

〈h̃m〉

λ
(n)
D + λ

(n)
∆hm

, (3.72)

is the output SINR of the equivalent “hidden” Gaussian channel where the elements

of the diagonal matrix ΛD = diag
(
[λ

(1)
D · · · λ

(N)
D

)
are the solution to the fixed

point equations

λ
(n)
D = σ2 + α

M∑

m=1

λ
(n)
D λ

(n)
∆vm

λ
(n)
D + λ

(n)
∆vm

+




λ

(n)
D

λ
(n)
D + λ

(n)
∆vm





2
∫ ∞

0
gnλ

(n)

〈h̃m〉

×
[

1 −
∫ ∞

−∞
tanh

(

sinr
mmse
m

(
g, ΛD

)
+ ν

√

sinr
mmse
m

(
g, ΛD

)
)

Dν

] N∏

j=1

e−gj dgj ,

(3.73)

and Dν is defined in (2.44).

By Proposition 4, the SINR of the hidden Gaussian channel related to the mth

transmit antenna after MAP detector has the same distribution as the received SNR

of the single-user system

zm = 〈h̃m〉xm + ζm ∈ C
N , (3.74)

where ζm ∼ CN(0; D + Ω∆hm
), D = UΛDUH and the channel coefficients

〈h̃m〉 ∼ CN(0; Ω〈h̃m〉) are perfectly known at the receiver. For a block fading
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channel and sufficiently long code words, each transmit antenna encounters thus

an ergodic SIMO channel in time domain. If perfect CSI is available at the re-

ceiver, i.e., Ω∆hm
= 0, we immediately see that transmit correlation has no effect

on the ergodic spectral efficiency of the system, as expected from the earlier re-

sults reported in [92, 154]. With estimated channel, however, the covariance of the

channel Ω〈h̃m〉 for the optimum pilot-assisted LMMSE channel estimator depends

on the transmit correlation through (3.47) (see also Example 7). Furthermore, as

noted in Remark 2, Ω∆hm
= Tm,mR − Ω〈h̃m〉 and, thus, the covariance of the

noise ζm in (3.74) depends on transmit correlation as well.

Next the noise covariance matrices of the decoupled single-user channels (3.32) –

(3.41) related to the linear MUDs discussed in Section 3.1.3 are given.

Proposition 5. Consider the case where the CSI be provided by one of the LMMSE

channel estimators described in Examples 2 – 4. Let R = UΛRUH as in Propo-

sition 2. The noise covariance of the postulated channel (3.41) can then be written

as D̃ = UΛ̃DUH, where Λ̃D = diag([λ̃
(1)
D · · · λ̃

(N)
D ]). The eigenvalues in Λ̃D

are the solutions to the fixed point equation

λ̃
(n)
D = σ̃2 + α

M∑

m=1

λ̃
(n)
D λ̃

(n)
∆vm

λ̃
(n)
D + λ̃

(n)
∆vm

+




λ̃

(n)
D

λ̃
(n)
D + λ̃

(n)
∆vm





2
∫ ∞

0

gnλ
(n)

〈h̃m〉

1 +
N∑

j=1

gjλ
(j)

〈h̃m〉

λ̃
(j)
D + λ̃

(j)
∆vm

N∏

j=1

e−gj dgj , (3.75)

where Λ̃∆vm
= diag

(
[λ̃

(1)
∆vm

· · · λ̃
(N)
∆vm

]
)

are the eigenvalues of the postulated error

covariance matrix Ω̃∆vm
= UΛ̃∆vm

UH. Given D̃, the noise covariance of the

decoupled channel (3.32) can then be solved from

D =

[

σ2I + α
M∑

m=1

D̃
(
D̃ + Ω̃∆vm

)−1

×E
{(

I − 〈h̃m〉mH
m

)(
hmhH

m

)(
I − mm〈h̃m〉H

)}(
D̃ + Ω̃∆vm

)−1
D̃
]

×
[

σ̃2I + α
M∑

m=1

D̃
(
D̃ + Ω̃∆vm

)−1

×E
{(

I − 〈h̃m〉mH
m

)(
〈h̃m〉〈h̃m〉H + Ω̃∆vm

)(
I − mm〈h̃m〉H

)}

×
(
D̃ + Ω̃∆vm

)−1
D̃
]−1

D̃.

(3.76)
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The general form of Proposition 5 is quite difficult to work with. Luckily, some

simple special cases can be obtained. The first examples is the LMMSE MUD of

Example 5, given the error statistics from the CE are correct.

Corollary 2. Let the CSI be provided by the LMMSE estimator of Example 2, or

the Type-1 mismatched LMMSE estimator of Example 3, so that Ω̃∆hm
= Ω∆hm

and Ω∆hm,〈h̃m〉 = 0. Then, for the LMMSE MUD of Example 5, Ω̃∆vm
= Ω∆hm

,

D̃ = D, and the post-detection SINR for the mth transmit antenna is in (3.72).

If the CSI is provided by the LMMSE channel estimator of Example 2, or the

Type-1 covariance mismatched estimator of Example 3, Corollary 2 tells us that for

the non-iterative LMMSE MUD of Example 5 one needs to solve only the fixed

point equation (3.75) to get the statistics of the decoupled channels (3.32) – (3.41).

For the Type-2 mismatched LMMSE CE, however, Ω̃∆vm
6= Ω∆hm

and, thus, D̃ 6=
D in general. In this case one needs to first solve (3.75), substitute the solutions to

(3.76), and solve it for D while taking into account the notes made in Remark 2.

Recall that the SUMF and decorrelator described in Example 6 discard all sta-

tistical information about the channel estimation errors. This simplifies the task of

solving (3.76) and we can obtain D in closed form. However, one should remem-

ber that the correlation between the channel estimates and the estimation errors is

non-zero for the Type-2 mismatched and ML channel estimators. In this thesis, the

Type-2 channel estimator is considered only with the SUMF for simplicity.

Proposition 6. Consider the single-user matched filter and decorrelator in Exam-

ple 6. For the SUMF

D = σ2IN + αtR, (3.77)

where t = tr(T ), as defined in Section 2.2.1. For the decorrelator, with optimal

or Type-1 channel estimator, equal transmit power Tm,m = t/M and uncorrelated

receive antennas R = IN , D is given by3

D

=







N
σ2 + αMλ∆hm

N − αM
IN , N > αM,

σ2αM + λ〈h̃m〉(αM − N)2 + λ∆hm
[N + αM(αM − 2)]

αM − N
IN , N < αM.

(3.78)

3Obtaining a closed form solution for matrix D in the general case is difficult and not considered

in this thesis.
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Remark 3. For the matched filter, the noise covariance (3.77) does not depend on

channel estimation. The same can be observed in [59, Eq. (15)] for the case of

DS-CDMA. For the decorrelator, (3.78) generalizes the previous results [85, 187]

to the case of mismatched CSI and multiple antennas. Note that to obtain (3.78),

we restricted all transmit antennas to have the same nominal power, but the spatial

correlation at the transmitter could still be arbitrary. As with the other MUDs in this

chapter, the transmit correlation manifests through the estimation errors and does

not affect the equivalent noise covariance of the single-user channel (3.32). ♦

From Propositions 1 – 6 we get the QPSK constrained capacity of correlated

MIMO DS-CDMA system using linear channel estimation, linear MUD and sepa-

rate decoding.

Proposition 7. The per-antenna ergodic spectral efficiency C
qpsk
m (bits) for mth an-

tenna and all MUDs in this section is given under separate decoding and QPSK

signaling by

C
qpsk
m = log2 |M| − N log2 e

− 1

|M|
∑

x∈M
E

{

log2

∑

x̃∈M
exp

(

−µ̂H
Ω̂

−1
µ̂
) ∣
∣x, x̃

}

, (3.79)

where we denoted for notational convenience

µ̂ = ζm + 〈h̃m〉(x − x̃) − Ω∆hm,〈h̃m〉Ω
−1
〈h̃m〉〈h̃m〉x̃, (3.80)

Ω̂ = D + Ω∆hm
− Ω∆hm,〈h̃m〉Ω

−1
〈h̃m〉Ω

H
∆hm,〈h̃m〉, (3.81)

and
[

ζm

〈h̃m〉

]∣
∣
∣
∣
∣

x ∼ CN

(

0;

[

Ω∆hm
+ D Ω∆hm,〈h̃m〉x

Ω
H
∆hm,〈h̃m〉x

∗
Ω〈h̃m〉

])

. (3.82)

From Remark 2, we get the simplified version of Proposition 7, applicable to

the optimum pilot-aided LMMSE channel estimator given in Example 2, and the

Type-1 covariance mismatch LMMSE estimator described in Example 3. When

the CSI is provided by either of these channel estimators, the per-antenna ergodic

capacity C
qpsk
m (bits) for the mth antenna and all MUDs in this section is given under

separate decoding and QPSK signaling by (3.79) with (3.80) and (3.81) replaced

by

µ̂ = ζm + 〈h̃m〉(x − x̃), (3.83)

Ω̂ = D + Ω∆hm
, (3.84)
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respectively. Furthermore, ζm ∼ CN(0; Ω∆hm
+ D) and 〈h̃m〉 ∼ CN(0; Ω〈h̃m〉)

are then independent RVs. Comparing this to (2.12) in Section 2.3.1, we note that

this is just the capacity of a SIMO channel with QPSK inputs, zero-mean proper

complex Gaussian additive noise with variance Ω∆hm
+ D and Rayleigh fading

channel, perfectly known at the receiver and with covariance Ω〈h̃m〉.

3.4 Numerical Examples and Discussion

Selected numerical examples based on the large system analysis carried out in Sec-

tions 3.2 and 3.3 are given below. The main emphasis is on the linear MUDs since

they provide more practical means for data detection in MIMO systems than the

computationally rather complex non-linear MAP-MUD. The latter is, however, con-

sidered briefly as a benchmark to the performance of the linear detectors. The reader

is reminded that for all cases we let K = αL → ∞, while keeping the channel load

α and the number of antennas at both ends constant.

Let the spectral efficiency for the considered system be defined as

C
qpsk = α

(

1 − τtr

Tcoh

) M∑

m=1

C
qpsk
m , (3.85)

where C
qpsk
m is given in Proposition 7. For simplicity, we assume equal transmit

power per antenna and uniform linear arrays at both ends of transmission. The spa-

tial correlation is modelled as in [100], i.e., the elements of the covariance matrices

T = [Tm,i] ∈ R
M×M and R = [Rn,j ] ∈ R

N×N are given by

Tm,i =
t

M

∫ 180

−180

1√
2πδtx

exp

[

2πj(m − i)dλ sin

(
ϕπ

180

)

− ϕ2

2δ2
tx

]

dϕ, (3.86)

Rn,j =

∫ 180

−180

1√
2πδrx

exp

[

2πj(n − j)dλ sin

(
ϕπ

180

)

− ϕ2

2δ2
rx

]

dϕ, (3.87)

where δtx and δrx are the angular spread at the transmitter and the receiver side,

respectively, given in degrees. In the following we let the nearest neighbor antenna

spacing be dλ = 1 (wavelengths) at both the transmitter and the receiver. Therefore,

angular spread is the only free parameter that determines the spatial correlation in

the following discussion.

In Figure 3.1, the normalized MSEs for the channel estimators introduced in

Examples 2 – 4 are given as a function of transmit correlation. The N = 4 receive
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Figure 3.1. Normalized MSE vs. angular spread at the transmitter δtx ∈
[0.1, 16]. Uncorrelated receive antennas, equal transmit power per antenna,

4 × 4 MIMO channel. User load α = 2, number of pilots per fading block

τtr = 10 and average SNR per receive antenna snr = 10 dB.

antennas are assumed to be uncorrelated and, thus, the Type-1 and Type-2 mis-

matched LMMSE estimators have equal performance. For the optimum LMMSE-

CE we have plotted separately the MSEs for the transmit antennas at the edges and in

the middle of the linear array with M = 4 elements. As expected, when the angular

spread is high (transmit correlation low), the performance of the optimum (Exam-

ple 2) and covariance mismatched (Example 3) LMMSE estimators are equal. For

high spatial correlation at the transmitter side, however, significantly lower MSE

can be obtained if the transmit covariance matrix is known at the channel estimator.

The ML channel estimator (Example 4) that neglects both spatial correlation and

additive noise provides the worst performance, as expected.

The spectral efficiency of a MIMO DS-CDMA system using M = N = 4

antennas at both ends and τtr = 4 or τtr = 10 training symbols per fading block

is plotted in Figures 3.2a and 3.2b, respectively. The channel coherence time is

set to Tcoh = 50 symbols and the loss in system throughput due to pilot symbols
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is taken into account in the plots. In all cases the LMMSE channel estimator of

Example 2 is used. For all MUDs, using ten training symbols instead of four results

to better spectral efficiency, even though the effective bandwidth is reduced due to

transmission of known pilots. This is an example of the trade-off between the loss

incurred by the seriousness of the CSI mismatch and the reduction in bandwidth due

to training sequences. It is interesting to note that the MUDs respond differently to

the level of channel uncertainty. Most serious loss in spectral efficiency due to lack

of precise CSI is experienced by the decorrelator. In fact, if the channel information

is not accurate enough, there is virtually no benefit of using the decorrelator instead

of the simple SUMF. At high loads, the SUMF even offers better per-user rates than

the decorrelator when τtr = 4 pilot symbols are used.

We next consider the effects of spatial correlation on the system throughput.

In Figure 3.3, the spectral efficiency C
qpsk of the linear MUDs presented in Ex-

amples 5 and 6 with the LMMSE channel estimator of Example 2 is plotted as a

function of the angular spread at the transmitter side δtx (in degrees). The receive

antennas are assumed to be uncorrelated. The advantage of having high transmit

correlation is most prominent for the overloaded case α = K/L = 2, where the

spectral efficiency C
qpsk is more than doubled for the LMMSE and decorrelator

MUDs compared to the case of low transmit correlation. Intuitive explanation is

that here C
qpsk depends on transmit correlation only through the error covariance

Ω∆hm
= λ∆hm

IN , so that C
qpsk
m (λ′

∆hm
) ≥ C

qpsk
m (λ∆hm

) when λ′
∆hm

≤ λ∆hm
.

As we saw in Example 7, correlation benefits the CE and we therefore get an im-

provement in the spectral efficiency as angular spread δtx decreases. Note that when

the transmit antennas are highly correlated, the overloaded case α = 2 offers higher

total throughput than the half loaded system α = 0.5 for all MUDs. If the trans-

mit correlation is low, however, higher throughput is achieved with the user load

α = 0.5 regardless of the MUD. Interestingly, for the low user load α = 0.5, the

performance of the MUDs is arranged in increasing order of complexity, but this

does not hold for the overloaded case α = 2. In the latter, the spectral efficiencies

of the SUMF and the decorrelator cross at around δtx = 8, and for low transmit

correlation decorrelator performs worse than SUMF.

In Figure 3.4, the spectral efficiencies of the LMMSE-MUD and the SUMF

with different channel estimators defined in Examples 2 and 3 are plotted as a func-

tion of the angular spread at the receiver side δrx (in degrees). The user load is

fixed to α = 2 and an angular spread of dtx = 3 degrees (high correlation) at

the transmitter side is assumed. As expected, when the antenna correlation at the

receiver side decreases, a significant gain in spectral efficiency is observed. Sim-
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Figure 3.2. Spectral efficiency C
qpsk vs. the user load α = K/L for the linear

MUDs. Uncorrelated 4 × 4 MIMO channel, coherence time of Tcoh = 50

symbols and average SNR of 10 dB. Linear MMSE channel estimator.
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Figure 3.3. Spectral efficiency vs. angular spread at the transmitter δtx ∈
[0.1, 16] for the linear MUDs. Uncorrelated receive antennas and optimum

pilot assisted LMMSE channel estimator (spatial correlation known perfectly).

Equal transmit power per antenna, 4 × 4 MIMO channel, coherence time of

Tcoh = 50 symbols, number of pilots per fading block τtr = 4 and average

SNR per receive antenna snr = 10 dB.

ilar behavior was also observed earlier in the simple single-user example given in

Section 2.2. If the optimum LMMSE-CE instead of the Type-1 (neglects transmit

correlation) or Type-2 (postulates uncorrelated antennas) mismatched CE is used,

C
qpsk roughly doubles for both the LMMSE-MUD and the SUMF for all values of

δrx. As a consequence, in this scenario it is in fact preferable to have the optimum

LMMSE-CE with SUMF instead of Type-1 CE and LMMSE-MUD. Surprisingly,

the difference in C
qpsk between the Type-1 and Type-2 estimators is negligible in

the considered case. This implies that if the transmit correlation is not known at

the channel estimator, virtually no further loss will be encountered if the receive

correlation is neglected as well.

Finally, we investigate the performance of the non-linear MAP detector de-

scribed in Section 3.1.2. Note that a direct implementation of this MUD has in-
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for the linear MMSE detector and SUMF. Correlated transmit antennas δtx = 3

and optimum LMMSE, Type-1 or Type-2 mismatched LMMSE channel esti-

mator. Equal transmit power per antenna, 4 × 4 MIMO channel, coherence

time of Tcoh = 50 symbols. Number of pilots per fading block τtr = 4, user

load α = 2 and average SNR per receive antenna snr = 10 dB.

feasible complexity for practical systems. It is, however, useful for benchmarking

the more practical non-iterative detectors studied earlier, as well as providing an

upper bound for the performance of the approximate non-linear methods such as

sphere decoding and related algorithms [188–192].

The spectral efficiency of a 4 × 4 MIMO DS-CDMA system with MAP or

LMMSE multiuser detector and τtr = 4 or τtr = 10 training symbols per fading

block is plotted in Figure 3.5. The channel coherence time is set to Tcoh = 50

symbols and the loss in system throughput due to pilot symbols is taken into account

in the plots. In all cases the LMMSE channel estimator of Example 2 is used and the

antennas are assumed to be uncorrelated. The same conclusions as we made from

Figures 3.2a and 3.2b can be drawn, i.e., except for low user loads using ten training

symbols instead of four results to better spectral efficiency, even when the loss in

effective bandwidth is taken into account due to transmission of known pilots. For
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Figure 3.5. Spectral efficiency C
qpsk vs. the user load α = K/L for the MAP-

MUD and the LMMSE detector. Uncorrelated 4×4 MIMO channel, coherence

time of Tcoh = 50 symbols and average SNR of 10 dB. Linear MMSE channel

estimator.

the MAP-MUD, the loss due to severe CSI mismatch is much more pronounced

than for the linear MUDs considered earlier. This makes intuitively sense since the

MAP-MUD has “more to lose”, so to speak, compared to the linear MUDs that will

suffer more severely from the MAI in any case — even if perfect CSI is provided to

them.

Figure 3.6 compares the spectral efficiencies C
qpsk obtained by the non-linear

MAP-MUD and the linear MMSE detector. The receive antennas are assumed to

be uncorrelated and the angular spread at the transmitter side is δtx ∈ [0.1, 16] (in

degrees). The optimum pilot-aided LMMSE-CE provides the CSI for both detec-

tors and is obtained by using τtr = 4 known training symbols per transmit antenna

and fading block. The effect of antenna correlation to the spectral efficiency of the

MAP-MUD is dramatic, going from about 13 bits to less than 2.5 bits per channel

use as the transmit antennas become uncorrelated. In fact, for uncorrelated trans-

mit antennas we lose all the benefits of the MAP-MUD compared to the LMMSE-

MUD for the given configuration. Thus, the spectral efficiency obtained with the
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LMMSE-MUD can be roughly doubled by using the non-iterative MAP-MUD, but

only if sufficiently accurate channel estimation can be performed.

The straightforward solution to the problem of obtaining an accurate CSI is to

use a greater number of pilot symbols per fading block. This, however, decreases the

spectral efficiency as the training symbols consume the bandwidth from informa-

tion bearing transmission so that there is an optimum trade-off between the number

of training symbols and CSI accuracy. Alternatively, if the system is delay toler-

ant and using pilot-aided channel estimation, we could make the transmit antennas

highly correlated while keeping the receive antennas as uncorrelated as possible.

This of course causes a design conflict for the uplink / downlink transmission and

should be carefully balanced so that a desired trade-off is reached. The final rem-

edy is suggested by the iterative algorithms, studied in the next chapter, that may

have potential to provide significant gains over non-iterative channel estimation and

MUD also in MIMO CDMA systems. This topic is, however, left for future research

and not considered in the present dissertation.

3.5 Chapter Summary and Conclusions

In this chapter, the performance of a randomly spread MIMO DS-CDMA system

using non-iterative linear channel estimation and multiuser detection was studied.

The considered channel estimators included the optimum pilot-aided LMMSE-CE,

two covariance mismatched LMMSE-CEs and a maximum likelihood CE. The mul-

tiuser detectors included the non-linear MAP-MUD, linear MMSE and decorrelat-

ing MUDs and the single-user matched filter. Rayleigh fading single-path MIMO

channel with spatial correlation was assumed between the transmitters and the re-

ceiver.

The performance analysis was carried out with the help of the replica method

that provided a single-user characterization of the multiuser system in the large sys-

tem limit. In contrast to some earlier results, we took into account the CSI mismatch

caused by the pilot-aided channel estimation, as well as the effect of antenna corre-

lation in the mathematical analysis. As a performance measure for the considered

system, the QPSK constrained capacity with separate decoding was derived.

The results indicated that the ergodic spectral efficiency achieved with uncor-

related transmit antennas could be significantly improved if the transmit antennas

were allowed to be correlated. This is in contrast to the case of perfect channel

information, where correlation between the transmit antennas has no effect on the

ergodic performance of the system. It is important to remark that the improve-

58



3.5. Chapter Summary and Conclusions

0 2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

angular spread at transmitter side (degrees)

s
p
e
c
tr

a
l 
e
ff

ic
ie

n
c
y
 [

b
it

s
]

MAP-MUD

LMMSE-MUD

perfect CSI

perfect CSI

Figure 3.6. Spectral efficiency vs. angular spread at the transmitter δtx ∈
[0.1, 16] for the MAP-MUD and the LMMSE detector. Uncorrelated receive

antennas and optimum LMMSE channel estimator (spatial correlation known

perfectly). Equal transmit power per antenna, 4×4 MIMO channel, coherence

time of Tcoh = 50 symbols, number of pilots per fading block τtr = 4. User

load α = 2 and average SNR per receive antenna snr = 10 dB.

ment in spectral efficiency required no information at the transmitter. The channel

estimator, however, needed the knowledge of the long-term spatial correlation in

advance. Neglecting the transmitter side correlation at the receiver resulted to the

same spectral efficiency as obtained for uncorrelated transmit antennas. The ef-

fect of neglecting the receiver side correlation turned out to have little effect on the

performance.
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Chapter 4

Iterative Receivers for DS-CDMA in

Multipath Fading Channels

In this chapter, the performance of DS-CDMA systems using iterative channel

estimation, multiuser detection, and single-user decoding is studied. Multipath

Rayleigh fading channel model described in Section 2.2.2 is considered. For sim-

plicity, both the transmitter and the receiver are assumed be equipped with a single

antenna. Throughout the chapter, it is also presupposed that the coding and mod-

ulation is provided by the BICM introduced in Section 2.3.2, and the code word is

long enough to span several independent fading blocks.

The outline of the chapter is as follows. Section 4.1 derives the iterative chan-

nel estimators and multiuser decoders that will be studied in the latter parts of the

chapter Both hard and soft feedback are considered. The specific estimators studied

in detail are:

• Channel estimators: iterative LMMSE channel estimator with soft feedback,

approximate ML estimator using hard feedback;

• Data estimators: iterative maximum a posteriori, LMMSE and SUMF MUDDs

with soft feedback, SUMF with hard feedback.

In Section 4.2, the decoupled single-user channel models related to the estimators

given above are derived in the large system limit with the help of the replica method.

Using the obtained single-user characterization, the performance of the iterative

multiuser receivers is studied in Section 4.3. Numerical examples and discussion is

provided in Section 4.4. Selected set of proofs can be found in Appendices B – F.
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4.1 Iterative Multiuser Receivers via Bayesian

Framework

The iterative multiuser channel and data estimators for the DS-CDMA system dis-

cussed in Section 2.2.2 are derived in this section. To help the reader to keep track of

the derivations, the outline for the rest of the section is given below. The estimators

are presented there in a decreasing order of complexity.

• Section 4.1.1 describes the general algorithm for iterative channel estimation

and MUDD that will be considered in this chapter.

• Section 4.1.2 considers an iterative channel estimator that takes full advan-

tage of the feedback information provided by the single-user decoders. This

estimator turns out to be non-linear with exponential complexity.

• In Section 4.1.3, a set of low complexity iterative channel estimators based on

linear filtering are introduced. Due to the simplifying assumptions, however,

these estimators experience inevitable performance degradation compared to

the non-linear CE given in the preceding section.

• Section 4.1.4 derives an iterative MAP detector that utilizes directly the CSI

and the feedback information it receives from the channel estimator and the

single-user decoders. This iterative MUDD gives the upper bound for the

performance of the rest of the data decoding algorithms studied in the chapter

but has exponential complexity.

• In Section 4.1.5, low complexity data estimators utilizing linear filtering and

parallel interference cancellation are presented. Several suboptimal solutions

resulting from different levels of model mismatch are considered.

4.1.1 General Framework for Iterative Channel Estimation,

Detection, and Decoding

In the following, the postulated channel and data symbols for the user k = 1, . . . , K,

at time instant t = τtr + 1, . . . , Tcoh, are written as h̃k,t[c] ∈ C
M and x̃k,t[c],

respectively. Note that the postulated channel depends on t, while the true channel

hk[c] does not. The reason for this will become clear later. We also denote x̃k[c] =
[
x̃k,τtr+1[c] · · · x̃k,Tcoh

[c]
]T ∈ C

τd for the postulated data symbols of the kth user

in the cth fading block, and assign the priors (to be defined later) Q(x̃k[c]) and

Q(h̃k,t[c]) to the above RVs for all k = 1, . . . , K.

By assumption, the channel and the data estimator have knowledge of the re-

ceived vectors Yc as well as the training symbols and the spreading matrices, i.e.,
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Ic =
{
Pc, S

}
at each fading block c = 1, . . . , C. The estimators may have also

received some information via feedback from the single-user decoders. Note that

the content of the feedback has been obtained during the previous iteration.

Consider iteration ℓ = 1, 2, . . . and let P
(ℓ−1)
ext (xk,t) and P

(ℓ−1)
app (xk,t), be the

extrinsic and approximate a posteriori probabilities, respectively, of the transmitted

symbol xk,t ∈ M. For convolutional codes, both probabilities are easy to obtain

by using the BCJR algorithm [193–196]. Let the feedback from the single-user de-

coders be in the form of probabilities Q
(ℓ−1)
ext (x̃k,t) and Q

(ℓ−1)
app (x̃k,t), where again

x̃k,t ∈ M. The relation between the decoder outputs and the feedback is defined

by the operators ϕext and ϕapp that transform the probability measures (or distribu-

tions) Pext and Papp to Qext and Qapp, respectively, i.e.,

ϕext : P
(ℓ−1)
ext (x) 7→ Q

(ℓ−1)
ext (x̃ = x), x, x̃ ∈ M, (4.1)

ϕapp : P(ℓ−1)
app (x) 7→ Q(ℓ−1)

app (x̃ = x), x, x̃ ∈ M. (4.2)

Throughout the thesis we assume that the operators (4.1) and (4.2) do not depend

on the iteration index ℓ, and the feedback probabilities Q
(ℓ−1)
ext and Q

(ℓ−1)
app are well-

defined over M. The specific forms of ϕapp and ϕext define the type of feedback

used and will be detailed in the next section.

Note that we used above the nomenclature common to iterative ISI cancellation

and MUDD, where the extrinsic probabilities of the coded bits do not contain chan-

nel information, whereas the approximate APPs do (see for example, [16, 125]).

Both probabilities are obtained using the knowledge of Ck. We make two small

remarks before proceeding to the iterative algorithm itself:

• The approximate APPs P
(ℓ−1)
app (xk,t[c]) obtained by the single-user decoders

are in general different from the true APPs P
(
xk,t[c] | {Yc}C

c=1

)
for all ℓ =

1, 2, . . .;

• Also the APP-based feedback to the channel estimator has to be extrinsic to

the CE in the sense defined for message passing algorithms in factor graphs

[21–26, 124].

With the above in mind, a high-level algorithm for iterative channel estimation

and MUDD is given in Table 4.1. The details of the steps are postponed to the later

parts of the chapter, where some special cases of this framework are considered.

To initiate the iterative process, we let Q
(0)
app(x̃k,t[c]) and Q

(0)
ext(x̃k,t[c]) be equal to

(2.19). The block diagram of the receiver is depicted in Fig. 4.1, where we omitted

the iteration index ℓ = 1, 2, . . ., for clarity.
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Table 4.1. Iterative channel estimation and MUDD

1. Consider the problem of obtaining the CSI at time index ϑ ∈ D during the ℓth
iteration. Let the channel estimator postulate the priors

{
Q(h̃k,ϑ[c]) | ∀k ∈ K

}

and assume that the approximate APPs
{
Q

(ℓ−1)
app (x̃k,t[c]) | ∀k ∈ K, t ∈ D \ ϑ

}

obtained by the single-user decoders during the previous iteration have been

received from the iterative MUDD. Given the information

I(ℓ)
ϑ [c] =

{

Ic, Yc \ yϑ[c],
{
Q(ℓ−1)

app (x̃k,t[c]) | ∀k ∈ K, t ∈ D \ ϑ
}}

, (4.3)

and its knowledge about the system model (2.10), the iterative channel estimator

calculates the posterior probabilities
{
Q(ℓ)(h̃k,t[c] | I(ℓ)

t [c]) | ∀k ∈ K, t ∈ D
}

for all c = 1, . . . , C, and sends the obtained CSI to the iterative MUDD.

2. Let the data estimator assign the postulated prior Q(x̃ξ,t[c]) to the the data sym-

bol of user ξ ∈ K at time instant t ∈ D. Given the information

I(ℓ)
ξ,t [c] =

{

Ic, yt[c],
{
Q

(ℓ−1)
ext (x̃j,t[c]) | ∀j ∈ K \ ξ

}
,

{
Q(ℓ)(h̃k,t[c] | I(ℓ)

t [c]) | ∀k ∈ K
}}

, (4.4)

and its knowledge about the channel (2.10), for each fading block c = 1, . . . , C,

the data estimator of the ξth user calculates the symbol-by-symbol posterior

probabilities
{
Q(ℓ)(x̃ξ,t[c] | I(ℓ)

ξ,t [c]) | ∀t ∈ D
}

and sends them to the single-

user sum-product decoder.

3. For k = 1, . . . , K, the posterior probabilities of the data symbols
{
Q(ℓ)(x̃k,t[c] |

I(ℓ)
k,t [c]) | ∀c, t ∈ D

}
and the code book Ck are used by the sum-procuct decoder

to calculate the approximate a posteriori P
(ℓ)
app(xk) and extrinsic P

(ℓ)
ext(xk) prob-

abilities of the data symbols. For trellis codes these probabilities can be easily

obtained by the BCJR algorithm [193–196].

4. The operators ϕext and ϕapp are applied to the outputs of the sum-product de-

coders P
(ℓ)
ext(xk,t[c]) and P

(ℓ)
app(xk,t[c]), respectively, to produce the correspond-

ing feedback probabilities Q
(ℓ)
ext(x̃k,t[c]) and Q

(ℓ)
app(x̃k,t[c]). The former are sent

to the channel estimator while the latter are stored and used by the data estimator

during the next iteration.
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4. Iterative Receivers for DS-CDMA in Multipath Fading Channels

4.1.2 Non-Linear Channel Estimation with Soft Feedback

Let us start by omitting the block index c for notational simplicity and postulate a

new channel model related to (2.10) as

ỹt =







1√
L

K∑

k=1

Sk,th̃k,ϑpk,t + w̃t ∈ C
L, t ∈ T ,

1√
L

K∑

k=1

Sk,th̃k,ϑx̃k,t + w̃t ∈ C
L, t ∈ D \ ϑ,

(4.5)

where the noise vectors are IID Q(w̃t) = CN(0; σ2IL) and the training symbols

P = {pk,t | ∀k, t ∈ T } are known at the receiver. We denote H̃ϑ = {h̃k,ϑ}k∈K, for

the postulated channel at time instant ϑ and Ỹ \ ỹϑ = {ỹt | t ∈ T ∪ D \ ϑ} for the

set of all received signals in (4.5). For notational convenience, we also introduce

vector representation (similarly for other variables and index sets)

x̃k,D\ϑ =
[

x̃k,τtr+1 · · · x̃k,ϑ−1 x̃k,ϑ+1 · · · x̃k,Tcoh

]T
∈ C

τd−1, (4.6)

for ϑ ∈ D and k ∈ K.

Now, postulate Q(H̃ϑ) =
∏K

k=1 Q(h̃k,ϑ), where Q(h̃k,ϑ) = CN(0; Ωhk
), and

let ϕapp be the identity operator. We assign the prior probabilities

Q(ℓ)(x̃k,D\ϑ = xk,D\ϑ) = P(ℓ−1)
app (xk,D\ϑ), (4.7)

to the data symbols, where P
(ℓ−1)
app (xk,D\ϑ) are the approximate APPs obtained by

the sum-product decoders during the previous iteration, as discussed in the previous

section. In the following we shall abbreviate the equalities of the kind (4.7) simply

asQ(ℓ)(x̃k,D\ϑ) = P
(ℓ−1)
app (xk,D\ϑ). Note that albeit the probabilities (4.7) are APPs

in the typical turbo processing jargon, they represent extrinsic information to the

channel estimator.

The postulated posterior probability of the channel coefficients hk, given I(ℓ)
ϑ

and the knowledge of (4.5) reads

Q(ℓ)(h̃k,ϑ | I(ℓ)
ϑ )

=
Q(h̃k,ϑ)

EH̃ϑ

{
∑

{x̃k,D\ϑ}

∏

k∈K
Q(ℓ)(x̃k,D\ϑ

)
Q(Ỹ \ ỹϑ = Y \ yϑ | x̃k,D\ϑ, H̃ϑ, I(ℓ)

ϑ )

}

×EH̃ϑ\h̃k,ϑ

{
∑

{x̃k,D\ϑ}

∏

k∈K
Q(ℓ)(x̃k,D\ϑ

)
Q(Ỹ \ ỹϑ = Y \ yϑ | x̃k,D\ϑ, H̃ϑ, I(ℓ)

ϑ )

}

,

(4.8)
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4.1. Iterative Multiuser Receivers via Bayesian Framework

where the expectations are with respect to the postulated a priori distribution of the

channel. The summations are over all possible transmitted signals vectors of all

users during the time instants t ∈ D \ ϑ. The GPME is thus given by

〈h̃k,ϑ〉(ℓ) =

∫

h̃k,ϑdQ(ℓ)(h̃k,ϑ | I(ℓ)
ϑ ), k = 1, . . . , K. (4.9)

For arbitrary a priori probabilities of the data symbols1, however, the number of

computations required to calculate the the summations in (4.8) grows exponentially

with K and the number of elements in x̃k,D\ϑ, making this channel estimator highly

impractical. Thus, the emphasis in this thesis is on the iterative linear channel esti-

mators, introduced in the next section, which have only polynomial complexity.

4.1.3 Linear Channel Estimation with Information Feedback

Consider estimating the CSI
{
Q(ℓ)(h̃k,ϑ[c] | I(ℓ)

ϑ [c])
}

for fixed time index ϑ ∈ D
during the cth fading block. As above, we let (4.3) be available at the channel

estimator and drop the block index c for notational convenience.

Assume that the receiver is at its ℓth iteration. Let the feedback based posterior

mean estimates of the data symbols
{
xk,t | ∀k, t ∈ D \ ϑ

}
from previous iteration

be given by

〈x̃k,t〉(ℓ−1)
app =

∑

x̃k,t∈M
x̃k,tQ

(ℓ−1)
app (x̃k,t), ∀k, t ∈ D \ ϑ. (4.10)

Following the notation introduced in (4.6), let 〈x̃k,D\ϑ〉(ℓ−1)
app ∈ C

τd−1 be the vector

consisting of the symbols (4.10) of the user k = 1, . . . , K, i.e.,

〈x̃k,D\ϑ〉(ℓ−1)
app

=
[

〈x̃k,τtr+1〉(ℓ−1)
app · · · 〈x̃k,ϑ−1〉(ℓ−1)

app 〈x̃k,ϑ+1〉(ℓ−1)
app · · · 〈x̃k,Tcoh

〉(ℓ−1)
app

]T
,

(4.11)

and define the error terms

∆uk,m = ∆xk,D\ϑhk,m ∈ C
(τd−1), (4.12)

∆xk,D\ϑ = xk,D\ϑ − 〈x̃k,D\ϑ〉(ℓ−1)
app . (4.13)

Given I(ℓ)
ϑ [c], the RVs (4.12) – (4.13) are zero-mean in the limit of large code

word length, and we denote the corresponding conditional covariance matrices by

1By this we mean other than the case when
∏

k∈K
Q(ℓ)

(
x̃k,D\ϑ

)
is non-zero for only one com-

bination of transmitted symbols from all users and, thus, perfectly known at the receiver.
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4. Iterative Receivers for DS-CDMA in Multipath Fading Channels

Ω
(ℓ)
∆uk,m

and Ω
(ℓ−1)
∆xk,D\ϑ

, respectively, where the iteration index for ∆uk,m is chosen

to be ℓ instead of ℓ − 1 by a notational convention. For future reference, let us also

write the spreading sequences related to the training and data transmission phases

of (2.10) in the matrix form

Sk,T ,m = diag
(
sk,1,m, . . . , sk,τtr,m

)
∈ C

τtrL×τtr , (4.14)

Sk,D\ϑ,m = diag
(
sk,τtr+1,m, . . . , sk,ϑ−1,m, sk,ϑ+1,m, . . . , sk,Tcoh,m

)

∈ C
(τd−1)L×(τd−1), (4.15)

respectively.

The information contained in the set Y \ yϑ and the channel model (2.10) can

now be written in the form

yT =
1√
L

K∑

k=1

M∑

m=1

Sk,T ,mpkhk,m + wT , (4.16)

yD\ϑ =
1√
L

K∑

k=1

M∑

m=1

Sk,D\ϑ,m〈x̃k,D\ϑ〉(ℓ−1)
app hk,m

+
1√
L

K∑

k=1

M∑

m=1

Sk,D\ϑ,m∆uk,m + wD\ϑ, (4.17)

where the noise vectors are independent zero-mean complex Gaussian RVs with

distributions P(wT ) = CN(0; σ2IτtrL) and P(wD\ϑ) = CN(0; σ2I(τd−1)L).

Since the fading is assumed to be an ergodic process over the code words (cf. Sec-

tion 2.3.2), we can regard ∆xk,D\ϑ and hk,m to be independent RVs and therefore

Ω
(ℓ)
∆uk,m

= tk,mΩ
(ℓ−1)
∆xk,D\ϑ

∈ C
(τd−1)×(τd−1), k = 1, . . . , K, m = 1, . . . , M.

(4.18)

Furthermore, E
{
∆uk,m∆uξ,i

}
= 0 if ξ 6= k or m 6= i. Note that so-far we have

not changed the system model and substituting (4.10) – (4.15) to (4.16) – (4.17)

gives back the received vectors {yt | ∀t 6= ϑ} in (2.10).

Now, create a new channel model from (4.16) – (4.17) by replacing the set of

true channel coefficients H =
{
hk,m | ∀k, m

}
by postulated ones H̃ϑ =

{
h̃k,ϑ,m |

∀k, m
}
. Let also the noise vectors have a postulated variance σ̃2, i.e., Q(w̃T ) =

CN(0; σ̃2Iτtr) and Q(w̃D\ϑ) = CN(0; σ̃2Iτd−1). If we also postulate that (4.12)

are independent zero-mean Gaussian RVs2 uncorrelated with 〈x̃k,D\ϑ〉(ℓ−1)
app , and

2Note that given only the mean µ and the covariance Ω of a continuous RV defined on C
L, the

maximum entropy distribution is CN(µ; Ω) [11, Chapter 12].
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4.1. Iterative Multiuser Receivers via Bayesian Framework

having postulated covariance matrix Ω̃
(ℓ)
∆uk,m

, the receiver’s knowledge about the

channel is

ỹT =
1√
L

K∑

k=1

M∑

m=1

Sk,T ,mpkhk,ϑ,m + w̃T , (4.19)

ỹD\ϑ =
1√
L

K∑

k=1

M∑

m=1

Sk,D\ϑ,m〈x̃k,D\ϑ〉(ℓ−1)
app h̃k,ϑ,m

+
1√
L

K∑

k=1

M∑

m=1

Sk,D\ϑ,m∆ũk,m + w̃D\ϑ. (4.20)

The posterior probability of the postulated channel coefficients given information

(4.3) reads

Q(ℓ)(H̃ϑ | I(ℓ)
ϑ

)
=

Q(H̃ϑ)Q
(
ỹT = yT | H̃ϑ, I(ℓ)

ϑ

)
Q
(
ỹD\ϑ = yD\ϑ | H̃ϑ, I(ℓ)

ϑ

)

EH̃ϑ

{

Q
(
ỹT = yT | H̃ϑ, I(ℓ)

ϑ

)
Q
(
ỹD\ϑ = yD\ϑ | H̃ϑ, I(ℓ)

ϑ

)} ,

(4.21)

where

Q
(
ỹD\ϑ = yD\ϑ | H̃ϑ, I(ℓ)

ϑ

)

= E{∆ũk,m|∀k,m}
{
Q
(
ỹD\ϑ = yD\ϑ | {∆ũk,m}, H̃ϑ, I(ℓ)

ϑ

)}
. (4.22)

By definition

Q
(
ỹT = yT | H̃ϑ, I(ℓ)

ϑ

)
= CN

(

1√
L

K∑

k=1

M∑

m=1

Sk,T ,mpkh̃k,m,ϑ; σ̃2Iτtr

)

,

(4.23)

and solving the Gaussian integrals with respect to {∆ũk,m | ∀k, m} gives

Q(ℓ)(ỹD\ϑ = yD\ϑ | H̃ϑ, I(ℓ)
ϑ

)

= CN

(

1√
L

K∑

k=1

M∑

m=1

Sk,D\ϑ,m〈x̃k,D\ϑ〉(ℓ−1)
app h̃k,m,ϑ; Ω̃

(ℓ)
err

)

, (4.24)

where

Ω̃
(ℓ)
err = σ̃2I(τd−1)L +

1

L

K∑

k=1

M∑

m=1

Sk,D\ϑ,mΩ̃
(ℓ)
∆uk,m

SH
k,D\ϑ,m. (4.25)
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The marginal probability of the kth user’s postulated channel is therefore given by

Q(ℓ)(h̃k,ϑ | I(ℓ)
ϑ

)

=
Q(h̃k,ϑ)EH̃ϑ\h̃k,ϑ

{
Q
(
ỹT = yT | H̃ϑ, I(ℓ)

ϑ

)
Q(ℓ)(ỹD\ϑ = yD\ϑ | H̃ϑ, I(ℓ)

ϑ

)}

EH̃ϑ

{
Q
(
ỹT = yT | H̃ϑ, I(ℓ)

ϑ

)
Q(ℓ)(ỹD\ϑ = yD\ϑ | H̃ϑ, I(ℓ)

ϑ

)} ,

(4.26)

and the corresponding GPME (4.9) is parametrized by:

1. the operator ϕapp, defines the type of feedback;

2. the postulated covariance matrix Ω̃
(ℓ)
∆uk,m

, determines the estimators know-

ledge about the feedback error statistics;

3. the postulated prior Q(h̃k,ϑ) and noise variance σ̃2, give the type of linear

filtering used.

By choosing these parameters appropriately, we can derive all the usual iterative

channel estimators with linear filtering. In the following cases, we assume the chan-

nel estimator knows the correct statistics of the channel, i.e., the postulated prior is

Q(h̃k,t) = CN(0; Ωhk
), for all t = τtr + 1, . . . , Tcoh.

Example 8. Let ϕapp be the identity operator, so thatQ
(ℓ−1)
app

(
x̃k,t

)
= P

(ℓ−1)
app

(
xk,t

)
,

for all k ∈ K and t ∈ D \ ϑ. Furthermore, let Ω̃
(ℓ)
∆uk,m

= Ω
(ℓ)
∆uk,m

and σ̃2 = σ2.

The GPME (4.9) with (4.26) is then the LMMSE channel estimator for (2.10), given
{
P, S, Y \ yϑ, {〈x̃k,D\ϑ〉(ℓ−1)

app }K
k=1, {Ω

(ℓ)
∆uk,m

}K
k=1

}
. ♦

Example 9. Postulate σ̃2 = 0 and Ω̃
(ℓ)
∆uk,m

= 0. Let

x̂
(ℓ−1)
k,t = arg max

xk,t∈M
P(ℓ−1)

app (xk,t), ∀t ∈ D \ ϑ, (4.27)

and define

ϕapp : P(ℓ−1)
app

(
xk,t) 7→ δx̃k,t

(x̂
(ℓ−1)
k,t ), x̃k,t = xk,t. (4.28)

The symbols 〈x̃k,t〉(ℓ−1)
app defined in (4.10) represent now hard feedback symbols and

the estimator treats them as error free pilots since the error covariance is neglected.

Thus, (4.9) with (4.26) yields the hard feedback based “maximum likelihood” chan-

nel estimator studied approximately in [138]. ♦
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4.1. Iterative Multiuser Receivers via Bayesian Framework

4.1.4 Iterative MAP Detector

In this section, we consider a non-linear data estimator that uses the extrinsic proba-

bilities from the single-user decoders to iteratively approximate the prior probabili-

ties of the transmitted symbols of the interfering users (see [126, Eqs. (14) – (15)]).

Consider the data transmission part t ∈ D in (2.10) and denote the user of

interest by ξ ∈ K. Let (4.4) be available to the data estimator and postulate a new

channel model for the ℓth iteration

ỹt[c] =
1√
L

Sξ,th̃ξ,t[c]x̃ξ,t[c] +
1√
L

∑

j∈K\ξ

Sj,th̃j,t[c]x̃j,t[c] + w̃t[c] ∈ C
L, (4.29)

where the postulated prior of the user of interest is Q(x̃ξ,t[c]) = P(xξ,t[c]), and the

data symbols of the interfering users have postulated a priori probabilities

Q(ℓ)(x̃j,t[c]) = Q
(ℓ−1)
ext (x̃j,t[c]), ∀j ∈ K \ ξ. (4.30)

As before, we let σ̃2 to be the postulated noise variance and w̃t[c] ∼ CN(0; σ̃2IL)

are IID Gaussian RVs. After omitting the block index c for notational simplicity,

the iterative non-linear data estimator for the ξth user calculates the probabilities

Q(ℓ)(x̃ξ,t | I(ℓ)
ξ,t )

=

Q(x̃ξ,t)
∑

{x̃j,t}

∏

j∈K\ξ

Q(ℓ)(x̃j,t)Q
(ℓ)(ỹt = yt | {x̃k,t}K

k=1, I(ℓ)
ξ,t )

∑

x̃ξ,t∈M
Q(x̃ξ,t)

∑

{x̃j,t}

∏

j∈K\ξ

Q(ℓ)(x̃j,t)Q
(ℓ)(ỹt = yt | {x̃k,t}K

k=1, I(ℓ)
ξ,t )

,

(4.31)

where the summations are over the symbols whose a priori probabilities were given

in (4.30). The channel estimates are introduced via

Q(ℓ)(ỹt = yt | {x̃k,t}K
k=1, I(ℓ)

ξ,t )

=

∫

Q(ỹt = yt | {h̃k,t}K
k=1, {x̃k,t}K

k=1, I(ℓ)
ξ,t )

K∏

k=1

dQ(ℓ)(h̃k,t | I(ℓ)
t ), (4.32)

where the CSI {Q(ℓ)(h̃k,t | I(ℓ)
t )}K

k=1 is provided by the channel estimator. The

obtained probabilities
{
Q(ℓ)(x̃k,t | I(ℓ)

k,t ) | ∀k ∈ K, t ∈ D
}

for all fading blocks are

then forwarded to the respective sum-product decoders of the users.
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Example 10. Let σ̃2 = σ2 and ϕext be the identity operator, i.e., Q
(ℓ−1)
ext

(
x̃k,t

)
=

P
(ℓ−1)
ext

(
xk,t

)
∀k. We call the iterative MUDD consisting of this non-linear data

estimator and the bank of single-user sum-product decoders, the iterative MAP-

MUDD. ♦

Note that the iterative MAP-MUDD uses directly all the information provided

by the channel estimator and the extrinsic probabilities obtained during the previous

iteration. This gives an upper bound for the performance of the class of iterative

MUDDs with the same feedback and channel information, but requires O(|M|K)

summations for each estimated symbol. This is too high for large practical sys-

tems and, therefore, lower complexity parallel interference cancellation approach

is considered in the next section.

4.1.5 Iterative Multiuser Detection and Decoding with Parallel

Interference Cancellation

Having obtained the optimum, but computationally complex, MAP detector in pre-

vious section, we next consider how to estimate the data symbol xξ,t of the ξth user

at the ℓth iteration by using linear filtering and parallel interference cancellation.

The derived class of estimators avoids the exponential complexity in the number of

users present in the system and are therefore more suitable for practical applications.

For notational convenience we drop again the block index c = 1, . . . , C.

Consider the ℓth iteration and let ξ ∈ K be the user of interest. Recall that

I(ℓ)
ξ,t defined in (4.4) is available to the data estimator and assume that the posterior

mean estimates of the channel coefficients of all users and the data symbols of the

interfering users, i.e.,

〈h̃k,t〉(ℓ) =

∫

h̃k,tdQ
(ℓ)(h̃k,t | I(ℓ)

t

)
, ∀k ∈ K, (4.33)

〈x̃j,t〉(ℓ−1)
ext =

∑

x̃j,t∈M
x̃j,tQ

(ℓ−1)
ext (x̃j,t), ∀j ∈ K \ ξ, (4.34)

respectively, have been calculated with the help of I(ℓ)
ξ,t . Define also the RVs

∆xj,t = xj,t − 〈x̃j,t〉(ℓ−1)
ext , ∀j ∈ K \ ξ, (4.35)

∆hk,t = hk − 〈h̃k,t〉(ℓ), ∀k ∈ K, (4.36)

∆vk,t = ∆hk,txk,t, ∀k ∈ K, (4.37)

which are all zero-mean in the limit of large code word length and given I(ℓ)
ξ,t .
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Let Ω̃
(ℓ−1)
∆xj,t

and Ω̃
(ℓ)
∆vk,t

be the receiver’s knowledge about the true covariances

Ω
(ℓ−1)
∆xj,t

and Ω
(ℓ)
∆vk,t

of (4.35) and (4.37), respectively. Denote the postulated noise

variance in (2.10) by σ̃2. In Appendix B, we derive the marginalized posterior

probabilities of the data symbol xξ,t, that will be shown in Remark 4 to be analogous

the outputs of linear filtering and parallel interference cancellation at the receiver.

The posterior probabilities are given by (see Appendix B for details)

Q(ℓ)(x̃ξ,t | I(ℓ)
ξ,t ) =

Q(x̃ξ,t)Q
(ℓ)(ỹt = yt | x̃ξ,t, I(ℓ)

ξ,t )

Ex̃ξ,t

{
Q(ℓ)(ỹt = yt | x̃ξ,t, I(ℓ)

ξ,t )
} , (4.38)

where Q(x̃ξ,t) is the postulated a priori distribution for the desired user’s data sym-

bols and the postulated channel model reads

ỹt =
1√
L

Sξ,t〈h̃ξ,t〉(ℓ)x̃ξ,t +
1√
L

∑

j∈K\ξ

Sj,t〈h̃j,t〉(ℓ)〈x̃j,t〉(ℓ) + w̃
pic,(ℓ)
ξ , (4.39)

where w̃
pic,(ℓ)
ξ ∼ CN(0; Ω̃

pic,(ℓ)
ξ ) and the modified noise covariance is given by

Ω̃
pic,(ℓ)
ξ = σ̃2IL +

1

L
Sξ,tΩ̃

(ℓ)
∆vξ,t

SH
ξ,t

+
1

L

∑

j∈K\ξ

Sj,t

(

Ω̃
(ℓ)
∆vj,t

+ 〈h̃j,t〉(ℓ)Ω̃
(ℓ−1)
∆xj,t

〈h̃H

j,t〉(ℓ)

)

SH
j,t. (4.40)

Note that when the second term on the RHS of (4.39) is moved to the left hand side

(LHS) of the equation, we get the parallel interference cancellation (PIC) operation.

The probabilities (4.38) are parametrized by:

1. ϕext : P 7→ Q, defines the type of interference cancellation (soft / hard);

2. Ω̃
(ℓ−1)
∆xj,t

and Ω̃
(ℓ)
∆vk,t

, quantify the estimator’s knowledge about the error statis-

tics;

3. σ̃2, defines the type of linear filtering used by the data estimator.

By choosing these parameters appropriately, all the usual iterative data estimators

using PIC can be obtained, as will be shown below.

Remark 4. The GPME based on (4.31) or (4.38) is given by

〈x̃ξ,t〉(ℓ) =

∫

x̃ξ,t dQ(ℓ)(x̃ξ,t | I(ℓ)
ξ,t ), ξ ∈ K. (4.41)

When iterative decoding is considered, however, instead of the posterior mean (4.41),

the BCJR algorithm needs in fact the probabilities (4.31) or (4.38) with the correct
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prior Q(x̃ξ,t) = P(xξ,t) for the user of interest. Under QPSK and Gray mapping, it

is trivial to obtain the desired probabilities from the posterior mean estimate (4.41)

if non-linear estimator (4.31) is used. A problem arises, however, when the GPME

is represented by a linear filter as we shall see next.

Consider the case where Gaussian prior Q(x̃ξ,t) = CN(0; 1) is postulated for

the user of interest ξ. Then, the GPME (4.41) with the probabilities (4.38) simplifies

the to the familiar form

〈x̃ξ,t〉(ℓ) = mH
ξ,tỹξ,t =

1√
L

〈h̃ξ,t〉H
(ℓ)S

H
ξ,t

(
Ω̃

pic,(ℓ)
ξ

)−1

1 + 1
L〈h̃ξ,t〉H

(ℓ)S
H
ξ,t

(
Ω̃

pic,(ℓ)
ξ

)−1
Sξ,t〈h̃ξ,t〉(ℓ)

ỹξ,t ∈ C,

(4.42)

where we denoted

ỹξ,t = ỹt − 1√
L

∑

j∈K\ξ

Sj,t〈h̃j,t〉(ℓ)〈x̃j,t〉(ℓ). (4.43)

By selecting the parameters appropriately, mH
ξ,t ∈ C

1×L becomes, e.g., the the

LMMSE estimator or SUMF with PIC. This form does not, however, produce the

information desired by the decoders as remarked earlier. An easy solution to this

problem exists if the CDMA system under consideration is sufficiently large. Then

the output of a linear data estimator is in general accurately approximated by the

Gaussian distribution [55, 56, 197]. The approximate symbol probabilities can thus

be obtained by considering 〈x̃ξ,t〉(ℓ) to be the output of a channel

〈x̃ξ,t〉(ℓ) = mH
ξ,tSξ,t〈h̃ξ,t〉(ℓ)xξ,t + w̃ξ,t, w̃ξ,t ∼ CN(0; mH

ξ,tΩ̃
pic,(ℓ)
ξ mξ,t),

(4.44)

where P(xk,t) is given in (2.19). See, e.g., [117] for an example of this approach.

Since we study large systems, in the following the outputs (4.38) and (4.42) are

considered to be equivalent. ♦

Example 11. Consider estimating the ξth user and let the postulated noise variance

be correct σ̃2 = σ2. Define ϕext to be the identity operator, so that, Q
(ℓ−1)
ext

(
x̃ξ,t

)
=

P
(ℓ−1)
ext

(
xξ,t

)
∀j ∈ K \ ξ. Given Ω̃

(ℓ)
∆vk,t

= Ω
(ℓ)
∆vk,t

, for all k = 1, . . . , K, the

GPME (4.41) with posterior probabilities (4.38) is an extension of the LMMSE

data estimator studied in [59] to include soft PIC. We call this data estimator the

LMMSE-PIC MUDD for the rest of the chapter. ♦

Example 12. Let σ̃2 → ∞ and define ϕext to be the identity operator or

ϕext : P
(ℓ)
ext(xk,t) 7→ δx̃k,t

(x̂k,t), x̃k,t = xk,t, (4.45)
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where

x̂k,t = arg max
xk,t∈M

P
(ℓ)
ext(xk,t). (4.46)

Then, the GPME (4.41) with marginal probabilities (4.38) reduces to the “SUMF-

Based Soft IC” and the “Hard-IC” receivers, respectively, studied under the assump-

tion of perfect CSI in [125, Proposition 2]. ♦

4.2 Decoupling Results

In this section, the single-user characterization for the multiuser system using the

iterative multiuser estimators derived in Section 4.1 is presented. The decoupling of

the multiuser channel is obtained via an application of the replica method by using

the same methodology as in [85, 89, 92]. In the analysis, the standard assumptions

in the replica trick are considered to be valid and the replica symmetry is assumed

to hold — see Assumptions 6 and 7 in Appendix C, respectively. Before proceeding

we make an assumption for the rest of the chapter.

Assumption 5. Let {Ku}U
u=1 be a finite partition of K into U user groups. Fur-

thermore, let all users in the same group have equal power delay profiles. ♦

We also note that the replica method relies on the large system limit where K =

αL → ∞ with fixed system load 0 < α < ∞ and number of user groups U .

4.2.1 Linear Channel Estimation with Information Feedback

Let us consider user k ∈ K in the multiuser system defined in Sections 2.2.2 and 4.1.

Fix the time instant ϑ ∈ D and let the channel estimator be at its ℓth iteration. Define

a set of single-user channels, indexed by m = 1, . . . , M where M is the number of

multipaths, during the training and the data transmission phases

zk,T ,m = pkhk,m + wk,T ,m ∈ C
τtr , wk,T ,m ∼ CN(0; C

(ℓ)
T ), (4.47)

zk,D\ϑ,m = xk,D\ϑhk,m + wk,D\ϑ,m ∈ C
τd−1, (4.48)

respectively. The additive noise vectors are zero-mean complex Gaussian wk,T ,m ∼
CN(0; C

(ℓ)
T ) and wk,D\ϑ,m ∼ CN(0; C

(ℓ)
D\ϑ) and IID for m = 1, . . . , M . Follow-

ing the notation of (4.6), xk,D\ϑ are the transmitted data symbols for time indices

t ∈ D \ ϑ. Let the postulated channel related to (4.47) – (4.48) be

z̃k,T ,m = pkh̃k,ϑ,m + w̃k,T ,m ∈ C
τtr , (4.49)

z̃k,D\ϑ,m = 〈x̃k,D\ϑ〉(ℓ−1)
app h̃k,ϑ,m + ∆ũk,m + w̃k,D\ϑ,m ∈ C

(τd−1), (4.50)
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where w̃k,T ,m ∼ CN(0; C̃
(ℓ)
T ) and w̃k,D\ϑ,m ∼ CN(0; C̃

(ℓ)
D\ϑ) are IID complex

Gaussian RVs for m = 1, . . . , M with postulated covariances C̃
(ℓ)
T and C̃

(ℓ)
D\ϑ. The

feedback vector 〈x̃k,D\ϑ〉(ℓ−1)
app is defined in (4.11) and ∆ũk,m ∼ CN(0; Ω̃

(ℓ)
∆uk,m

)

corresponds to the receiver’s knowledge about ∆uk,m defined in (4.12). We also

define a set

J (ℓ)
k,ϑ,m =

{

zk,T ,m, zk,D\ϑ,m, pk,
{
Q(ℓ−1)

app (x̃k,t)}t∈D\ϑ

}

, (4.51)

and conditional expectation

Ec
k{ · · · } = E

{

· · · | xk,D\ϑ, {J (ℓ)
k,ϑ,m}M

m=1

}

, (4.52)

for notational convenience. The noise covariances in (4.47) – (4.50) are then given

by

C
(ℓ)
T = σ2Iτtr + α lim

K→∞
1

K

K∑

k=1

M∑

m=1

Σk,T ,m

(
C

(ℓ)
T , C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
, (4.53)

C
(ℓ)
D\ϑ = σ2Iτd−1 + α lim

K→∞
1

K

K∑

k=1

M∑

m=1

Σk,D\ϑ,m

(
C

(ℓ)
D\ϑ, C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
, (4.54)

C̃
(ℓ)
T = σ̃2Iτtr + α lim

K→∞
1

K

K∑

k=1

M∑

m=1

Σ̃k,T ,m

(
C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
, (4.55)

C̃
(ℓ)
D\ϑ = σ̃2Iτd−1 + α lim

K→∞
1

K

K∑

k=1

M∑

m=1

Σ̃k,D\ϑ,m

(
C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
, (4.56)

respectively, where

Σk,T ,m

(
C

(ℓ)
T , C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)

= Ec
k

{(

uk,T ,m − 〈ũk,T ,m〉(ℓ)
k,m

) (

uk,T ,m − 〈ũk,T ,m〉(ℓ)
k,m

)H
}

, (4.57)

Σk,D\ϑ,m

(
C

(ℓ)
D\ϑ, C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)

= Ec
k

{(

uk,D\ϑ,m − 〈ũk,D\ϑ,m〉(ℓ)
k,m

) (

uk,D\ϑ,m − 〈ũk,D\ϑ,m〉(ℓ)
k,m

)H
}

, (4.58)

Σ̃k,T ,m

(
C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)

= Ec
k

{(

ũk,T ,m − 〈ũk,T ,m〉(ℓ)
k,m

) (

ũk,T ,m − 〈ũk,T ,m〉(ℓ)
k,m

)H
}

, (4.59)

Σ̃k,D\ϑ,m

(
C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)

= Ec
k

{(

ũk,D\ϑ,m − 〈ũk,D\ϑ,m〉(ℓ)
k,m

) (

ũk,D\ϑ,m − 〈ũk,D\ϑ,m〉(ℓ)
k,m

)H
}

. (4.60)
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We used the shorthand notation

uk,T ,m = pkhk,m, ũk,T ,m = pkh̃k,ϑ,m, (4.61)

uk,D\ϑ,m = xk,D\ϑhk,m, ũk,D\ϑ,m = 〈x̃k,D\ϑ〉(ℓ−1)
app h̃k,ϑ,m + ∆ũk,m, (4.62)

above and defined the single-user GPME

〈 · · · 〉(ℓ)
k,m

=
Eh̃k,ϑ,m,∆ũk,m

{
· · · Q(ℓ)

(
z̃k,T ,m, z̃k,D\ϑ,m | h̃k,ϑ,m, ∆ũk,m, J (ℓ)

k,ϑ,m

)}

Eh̃k,ϑ,m,∆ũk,m

{
Q(ℓ)

(
z̃k,T ,m, z̃k,D\ϑ,m | h̃k,ϑ,m, ∆ũk,m, J (ℓ)

k,ϑ,m

)} , (4.63)

where

Q(ℓ)(z̃k,T ,m, z̃k,D\ϑ,m | h̃k,ϑ,m, ∆ũk,m, J (ℓ)
k,ϑ,m

)

= Q(ℓ)(z̃k,T ,m = zk,T ,m | h̃k,ϑ,m, J (ℓ)
k,ϑ,m

)

×Q(ℓ)(z̃k,D\ϑ,m = zk,D\ϑ,m | h̃k,ϑ,m, ∆ũk,m, J (ℓ)
k,ϑ,m

)
. (4.64)

Claim 4. Let T = τdC → ∞ and K = αL → ∞ with α and τd finite and fixed.

Also, let ϑ ∈ D be an arbitrary time index during the data transmission phase, and

ℓ = 1, 2, . . . the iteration index. Conditioned on the set
{
{pk}K

k=1, {xk,D\ϑ}K
k=1,

{Q(ℓ−1)
app (x̃k,D\ϑ)}K

k=1, ppdp

}
, the joint distribution of the true and postulated chan-

nel coefficients and the estimates {〈h̃k,ϑ,M 〉(ℓ)}M
m=1 of the multiuser system in Sec-

tion 4.1.3 converges in probability to the joint distribution of the true and postulated

channel coefficients and the estimates {〈h̃k,ϑ,m〉(ℓ)
k,m}M

m=1 of the above single-user

system.

Proof: See Appendix C.

4.2.2 Iterative MAP Detector

Let us consider the ξth user in the multiuser system discussed in the previous sec-

tion. Fix the time instant t ∈ D and let the iterative MUDD be at its ℓth iteration.

Define a set of M single-user channels

zξ,t,m = hξ,mxξ,t + wξ,t,m, m = 1, . . . , M, (4.65)

where wξ,t,m ∼ CN(0; D
(ℓ)
t ) are IID complex Gaussian RVs. Let

z̃ξ,t,m = h̃ξ,t,mx̃ξ,t + w̃ξ,t,m, m = 1, . . . , M, (4.66)
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be the receiver’s knowledge about (4.65), where w̃ξ,t,m ∼ CN(0; D̃
(ℓ)
t ) ∀m are IID

complex Gaussian RVs with postulated noise covariance D̃
(ℓ)
t . We also define for

notational convenience the conditional expectation

Ed
k{ · · · } = E

{

· · · | {hk,m}M
m=1, J (ℓ)

k,t

}

, k = 1, . . . , K, (4.67)

where

J (ℓ)
ξ,t =

{

{zξ,t,m}M
m=1, {Q(ℓ)(h̃ξ,t,m | I(ℓ)

t )}M
m=1

}

, (4.68)

and

J (ℓ)
j,t =

{

{zj,t,m}M
m=1, {Q(ℓ)(h̃j,t,m | I(ℓ)

t )}M
m=1,Q

(ℓ−1)
ext (x̃j,t)

}

, (4.69)

for j ∈ K \ ξ. The noise variances in (4.65) and (4.66) are given by the fixed point

equations

D
(ℓ)
t = σ2 + α lim

K→∞
1

K

K∑

k=1

M∑

m=1

Σk,t,m

(
D

(ℓ)
t , D̃

(ℓ)
t

)
, (4.70)

D̃
(ℓ)
t = σ̃2 + α lim

K→∞
1

K

K∑

k=1

M∑

m=1

Σ̃k,t,m

(
D

(ℓ)
t , D̃

(ℓ)
t

)
, (4.71)

where

Σk,t,m

(
D

(ℓ)
t , D̃

(ℓ)
t

)
= Ed

k

{
|hk,mxk,t − 〈h̃k,t,mx̃k,t〉(ℓ)

k |2
}
, (4.72)

Σ̃k,t,m

(
D

(ℓ)
t , D̃

(ℓ)
t

)
= Ed

k

{
|h̃k,t,mx̃k,t − 〈h̃k,t,mx̃k,t〉(ℓ)

k |2
}
, (4.73)

and the notation 〈 · · · 〉(ℓ)
k in (4.72) – (4.73) denotes for the single-user GPME

〈 · · · 〉(ℓ)
k =

∑

x̃k,t∈M
Q(x̃k,t)

×

∫

· · ·
M∏

m=1

Q
(
z̃k,t,m = zk,t,m | h̃k,t,m, x̃k,t, J (ℓ)

k,t

)
dQ(ℓ)(h̃k,t,m | I(ℓ)

t )

∑

x̃k,t∈M
Q(x̃k,t)

∫

Q
(
z̃k,t,m = zk,t,m | h̃k,t,m, x̃k,t, J (ℓ)

k,t

)
dQ(ℓ)(h̃k,t,m | I(ℓ)

t )

(4.74)

of the user k = 1, . . . , K. Furthermore, the a priori probabilities of the data sym-

bols in (4.72) – (4.73) are given for the desired user by Q(x̃ξ,t) = P(xξ,t = x̃ξ,t)

(see (2.19) – (2.20)) and for the interfering users by

Q(ℓ)(x̃j,t) = Q
(ℓ−1)
ext (x̃j,t), j ∈ K \ ξ. (4.75)
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The channel information Q(ℓ)(h̃k,t | I(ℓ)
t ) =

∏M
m=1 Q

(ℓ)(h̃k,t,m | I(ℓ)
t ), k =

1, . . . , K, is provided by the channel estimator.

Claim 5. Let T = τdC → ∞ and K = αL → ∞ with α and τd finite and fixed.

Conditioned on the set
{
P, H, {Q(ℓ)(h̃k,t | I(ℓ)

t )}K
k=1, {Q(ℓ−1)

ext (x̃j,t)}j∈K\ξ, ppdp

}
,

the joint distribution of the true and postulated inputs and the estimate 〈x̃ξ,t〉(ℓ) of

the multiuser system in Section 4.1.4 at the ℓth iteration converges in probability to

the joint distribution of the true and postulated inputs and the estimate 〈x̃ξ,t〉(ℓ)
ξ of

the single-user system described above.

Proof: Omitted.

4.2.3 Iterative Multiuser Detection and Decoding with Parallel

Interference Cancellation

Consider the same setup as in Section 4.2.2. Let the true single-user channel be

given by (4.65) and postulate for m = 1, . . . , M, the set of channels

z̃ξ,t,m = 〈h̃ξ,t,m〉(ℓ)x̃ξ,t + ∆ṽξ,t,m + w̃ξ,t,m, w̃ξ,t,m ∼ CN(0; D̃
(ℓ)
t ), (4.76)

where {〈h̃ξ,t,m〉(ℓ)}M
m=1 are the posterior mean estimates of the channel (4.33) and

given by the channel estimator. As in Section 4.2.2, the noise variances are given

by (4.70) – (4.71), with (4.72) – (4.73) replaced by

Σk,t,m

(
D

(ℓ)
t , D̃

(ℓ)
t

)
= Ed

k

{

|hk,mxk,t − 〈ṽk,t,m〉(ℓ)
k |2

}

, (4.77)

Σ̃k,t,m

(
D

(ℓ)
t , D̃

(ℓ)
t

)
= Ed

k

{

|ṽk,t,m − 〈ṽk,t,m〉(ℓ)
k |2

}

, (4.78)

where k = 1, . . . , K and

ṽk,t,m = 〈h̃k,t,m〉(ℓ)x̃k,t + ∆ṽk,t,m. (4.79)

The RV

∆ṽk,t =
[
∆ṽk,t,1 · · · ∆ṽk,t,M

]T ∈ C
M , (4.80)

is the receiver’s knowledge about (4.37), as discussed in Section 4.1.5. The single-

user GPME of the kth user is given by

〈 · · · 〉(ℓ)
k =

Ex̃k,∆ṽk,t

{
· · · ∏M

m=1 Q
(
z̃k,t,m = zk,t,m | x̃k,t, ∆ṽk,t,m, J (ℓ)

k,t

)}

Ex̃k,∆ṽk,t

{∏M
m=1 Q

(
z̃k,t,m = zk,t,m | x̃k,t, ∆ṽk,t,m, J (ℓ)

k,t

)} .

(4.81)
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The expectations over the data symbols are taken for the desired user ξ with re-

spect to the postulated a priori probability Q(x̃ξ,t), and for the other users over the

Gaussian distribution

Q(ℓ)(x̃j,t) = CN(〈x̃j,t〉(ℓ−1)
ext , Ω̃

(ℓ−1)
∆xj,t

), j ∈ K \ ξ, (4.82)

where the mean is given by (4.34), and Ω̃
(ℓ−1)
∆xj,t

is the postulated variance of the

estimation error in the feedback symbols.

Claim 6. Let T = τdC → ∞ and K = αL → ∞ with α and τd finite and fixed.

Conditioned on the set
{
P, H, {Q(ℓ)(h̃k,t | I(ℓ)

t )}K
k=1, {Q(ℓ−1)

ext (x̃j,t)}j∈K\ξ, ppdp

}
,

the joint distribution of the true and postulated inputs and the estimate 〈x̃k,t〉(ℓ) of

the multiuser system in Section 4.1.5 at the ℓth iteration converges in probability to

the joint distribution of the true and postulated inputs and the estimate 〈x̃k,t〉(ℓ) of

the single-user system described above.

Proof: Omitted.

The consequence of the Claims 4 – 6 is that the performance of an iterative

multiuser DS-CDMA system described in Sections 2.2.2 and 4.1, can be analyzed

by concentrating on the equivalent single-user system defined by the appropriate

equations in (4.47) – (4.81). The next section reports the performance analysis

of the iterative DS-CDMA system based on the equivalent single-user description

given above.

4.3 Performance of Large DS-CDMA Systems Using

Iterative Channel Estimation, Detection, and

Decoding

We now turn to the analysis of the multiuser DS-CDMA system described in Sec-

tion 2.2.2 that uses the iterative estimators derived in Section 4.1. As in Chapter 3,

the large system performance is obtained with the help of the decoupling results

reported earlier. Thus, for the rest of this chapter the replica symmetric solutions

of Claims 4 – 6 are assumed to be valid and all results are obtained by studying the

equivalent single-user system defined by (4.47) – (4.81).

Due to the relatively high amount of different results that will follow, the outline

of the section is provided below.
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• Section 4.3.1 briefly recaps the assumptions made in the density evolution

for the rest of the analysis.

• Section 4.3.2 considers the iterative channel estimators described in Sec-

tion 4.1.3. The output statistics of the following CEs in increasing order of

model mismatch are obtained:

1. Iterative LMMSE channel estimator with soft information feedback

and full knowledge of second order error statistics;

2. Iterative “maximum likelihood” channel estimator using hard feedback

and neglecting all error statistics.

• Section 4.3.3 concentrates on the performance analysis of the iterative data

decoders introduced in Sections 4.1.4 and 4.1.5. The following iterative es-

timators, arranged in decreasing order of complexity, are considered:

1. Iterative MAP-MUDD with soft feedback;

2. Iterative LMMSE-PIC MUDD with soft feedback;

3. Iterative SUMF with soft and hard feedback.

• Section 4.3.4 briefly recaps the notion of multiuser efficiency and presents a

related performance measure suitable for mismatched channel information.

4.3.1 Density Evolution with Gaussian Approximation

Consider the BICM encoded channel inputs {xk,t} in (2.10). By (2.19) – (2.20),

the extrinsic probabilities of the data symbol xk,t, obtained by the BCJR algorithm

during the ℓth iteration, factor as

P
(ℓ)
ext

(

xk,t =
1√
2

(ak,t,1 + jak,t,2)

)

= P
(ℓ)
ext(ak,t,1)P

(ℓ)
ext(ak,t,2), (4.83)

in the limit of large code word length T → ∞. For later use, let

â
ext,(ℓ)
k,t,q = arg max

ak,t,q∈{±1}
P

(ℓ)
ext(ak,t,q), q = 1, 2, (4.84)

be the extrinsic information based hard estimate of ak,t,q, and define the error prob-

ability

ε
ext,(ℓ)
k =

1

2T

2∑

j=1

T∑

t=1

Pr
(

â
ext,(ℓ)
k,t,q 6= ak,t,q

)

. (4.85)

Naturally, equations completely analogous to (4.83) – (4.85) for the approximate a

posteriori based feedback can be defined.
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To simplify the density evolution, we make the Gaussian approximation [125,

126, 133, 173, 174] for the log-likelihood ratios obtained by the sum-product de-

coders, i.e., given ak,t,q, q = 1, 2,

λext,(ℓ)
ak,t,q

= log

(

P
(ℓ)
ext(ak,t,q = +1)

P
(ℓ)
ext(ak,t,q = −1)

)

∼ N(2ak,t,qµ
ext,(ℓ)
k , 4µ

ext,(ℓ)
k ), (4.86)

where

µ
ext,(ℓ)
k =

[

Q−1(ε
ext,(ℓ)
k

)]2
, (4.87)

and Q−1 is the functional inverse of the Q-function [5]. The approximate APPs

P
(ℓ)
app

(
xk,t

)
are handled in a completely analogous manner. One should also remem-

ber from Section 2.2.2, that the power delay profiles tk ∈ R
M have a distribution

ppdp over the users. Therefore, one needs to take the expectations over the joint

distribution of tk and ε
ext,(ℓ)
k (or ε

app,(ℓ)
k for the case of channel estimation).

The probabilities P
(ℓ)
ext

(
xk,t

)
obtained through (4.86) – (4.87) are transformed

via ϕext to Q
(ℓ)
ext

(
x̃k,t

)
as discussed in Section 4.1.1. The posterior mean estimate

reads

〈x̃k,t〉(ℓ)
ext =

∑

x̃k,t∈M
x̃k,tQ

(ℓ)
ext

(
x̃k,t

)
(4.88)

and the MSE of the extrinsic information based symbols conditioned on the feed-

back is denoted

Ω
ext,(ℓ)
∆xk,t

= E
{

|xk,t − 〈x̃k,t〉(ℓ)
ext|2 | 〈x̃k,t〉(ℓ)

ext

}

. (4.89)

Note that the explicit form of (4.89) depends on the type of feedback used. Com-

pletely analogous notation is used for the feedback based on approximate APPs

P
(ℓ)
app

(
xk,t

)
.

In the following, we omit the user and time indices k and t when they are deemed

unnecessary for the presentation.

4.3.2 Linear Channel Estimation with Information Feedback

Proposition 8. For the LMMSE channel estimator described in Example 8, we have

Σ̃k,T ,m

(
C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
= Σk,T ,m

(
C

(ℓ)
T , C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
, (4.90)

Σ̃k,D\ϑ,m

(
C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
= Σk,D\ϑ,m

(
C

(ℓ)
D\ϑ, C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
, (4.91)
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in (4.53) – (4.56). As a result, (4.57) – (4.60) simplifies to

C̃
(ℓ)
T = C

(ℓ)
T = C

(ℓ)
tr Iτtr , C

(ℓ)
tr ∈ R, (4.92)

C̃
(ℓ)
D\ϑ = C

(ℓ)
D\ϑ = C

(ℓ)
d Iτd−1, C

(ℓ)
d ∈ R. (4.93)

The MSE of the mth path for the user k at time index ϑ ∈ D reads

msek,ϑ,m

= E〈x̃k,D\ϑ〉(ℓ−1)
app







tk,m



1 + tk,m




τtr

C
(ℓ)
tr

+
∑

t∈D\ϑ

|〈x̃k,t〉(ℓ−1)
app |2

C
(ℓ)
d + tk,mΩ

app,(ℓ−1)
∆xk









−1






,

(4.94)

where the noise variances C
(ℓ)
tr and C

(ℓ)
d are given by the solutions to the coupled

fixed point equations

C
(ℓ)
tr = σ2 + α

M∑

m=1

E







tm



1 + tm




τtr

C
(ℓ)
tr

+
∑

t∈D\ϑ

|〈x̃t〉(ℓ−1)
app |2

C
(ℓ)
d + tmΩ

app,(ℓ−1)
∆x









−1






,

(4.95)

C
(ℓ)
d = σ2 + α

M∑

m=1

E







tmC
(ℓ)
d

C
(ℓ)
d + tmΩ

app,(ℓ−1)
∆x

[

Ω
app,(ℓ−1)
∆x

+
C

(ℓ)
d |〈x̃t〉(ℓ−1)

app |2

C
(ℓ)
d + tmΩ

app,(ℓ−1)
∆x



1 + tm




τtr

C
(ℓ)
tr

+
∑

t∈D\ϑ

|〈x̃t〉(ℓ−1)
app |2

C
(ℓ)
d + tmΩ

app,(ℓ−1)
∆x









−1











,

(4.96)

respectively. Due to soft feedback,

Ω
app,(ℓ−1)
∆xt

= 1 − |〈x̃t〉(ℓ−1)
app |2. (4.97)

The power delay profile t =
[
t1 · · · tM

]T
has distribution ppdp, and the expecta-

tions in (4.95) – (4.96) should be taken with respect to the joint distribution of t,

the feedback symbols 〈x̃D\ϑ〉(ℓ−1)
app , and conditional variance (4.97).

Proof: See Appendix D.

Remark 5. If we let τd = 0 or ε
app,(ℓ−1)
k = 0 ∀k =⇒ |〈x̃t〉(ℓ−1)

app |2 = 1 and

Ω
app,(ℓ−1)
∆xt

= 0, Proposition 8 reduces to the previous result [59, Thm. 2], as ex-

pected. Furthermore, from (4.95) – (4.96) we find that the use of soft feedback can

never increase the per-path MSE of this channel estimator. ♦
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Corollary 3. Let us consider the special case where all the users have the same

total received average power t > 0. Furthermore, let the PDP have M equal power

multipaths so that

ppdp = δ(t/M)eM
(t), t ∈ R

M . (4.98)

If we define the ratios

∆tr = τtr/Tcoh and Υ = Tcoh/M, (4.99)

taking the limit τtr, τd, M → ∞ while keeping ∆tr, Υ finite and fixed gives the

asymptotic normalized per-path MSE

ξ(ℓ) =
mse

(ℓ)

t/M
=

[

1 + Υt

(

∆tr

C
(ℓ)
tr

+
(1 − ∆tr)

C
(ℓ)
d

E
{
|〈x̃t〉(ℓ−1)

app |2
}

)]−1

, (4.100)

where t ∈ D is a dummy variable. The noise variances (4.95) and (4.96) are given

by the simplified fixed point equations

C
(ℓ)
tr = σ2 + αtξ(ℓ), (4.101)

C
(ℓ)
d = σ2 + α

[

1 −
(
1 − ξ(ℓ))E

{
|〈x̃t〉(ℓ−1)

app |2
}]

, (4.102)

respectively.

Proof: The result follows from simple algebra and is therefore omitted.

Remark 6. The scenario considered in Corollary 3 is highly ideal, but allows for

simplified numerical evalution of the fixed point equations given in Proposition 8.

One can make a physical interpretation for the case as follows:

1. The system has a very broad bandwidth and the environment rich scattering

so that there are many solvable multipath components with relatively equal

received powers;

2. The transmission rate is high compared to the user mobility so that one fad-

ing block contains a long sequence of transmitted symbols;

3. Very long code words are used so that they span several fading blocks.

Furthermore, if we use the notation of [6, 158] and denote the delay and Doppler

spread of the channel by Tm and Bd, respectively, Υ turns out to be the inverse of the

channel spread factor, i.e., Υ−1 = TmBd. Accurate channel estimation is known to

be feasible when TmBd ≪ 1, which in our notation translates to Υ ≫ 1. ♦
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Proposition 9. If 1 + αM < Tcoh, the per-path MSE of the approximate ML esti-

mator given in Example 9 converges in the large system limit to

mse
ML,(ℓ)
k,m =

σ2

Tcoh − 1 − αM
+

4ε
app,(ℓ−1)
k tk,m(τd − 1)

[
1 + ε

app,(ℓ−1)
k (τd − 2)

]

(Tcoh − 1)2

+αE







4ε
(ℓ−1)
app t(τd − 1)

[
Tcoh − 2 − ε

(ℓ−1)
app (τd − 2)

]

(Tcoh − 1)2(Tcoh − 1 − αM)






, (4.103)

where t =
∑

m tm, and the expectation is with respect to the joint distribution of

the PDP and the BEP of the feedback.

Proof: See Appendix D.

Corollary 4. Consider again the special case of Corollary 3. Then, for the approx-

imate ML channel estimator

ξML,(ℓ) =
mse

ML,(ℓ)

t/M

τtr,τd,M→∞−−−−−−−−→ σ2

t(Υ − α)
+ 4(ε(ℓ−1)

app )2(1 − ∆tr)
2

+α
4ε

(ℓ−1)
app (1 − ∆tr)[1 − ε

(ℓ−1)
app (1 − ∆tr)]

Υ − α
, (4.104)

is the asymptotic normalized MSE when ∆tr = τtr/Tcoh and Υ = Tcoh/M are

finite and fixed.

Proof: The result follows from simple algebra and is therefore omitted.

Remark 7. The results in [138] were obtained by making several approximations

in the analysis. In order to compare our exact replica symmetric solution for the

approximate ML channel estimator to the main result of [138, Sec. III], consider

Corollary 4. Following the assumptions in [138], set t = 1 along with the approxi-

mations: 4
[
ε

(ℓ−1)
app (1 − ∆tr)

]2
/(Υ − α) ≈ 0, and Tcoh ≫ M =⇒ Tcoh − αM ≈

Tcoh so that Υ − α ≈ Υ. The first two terms of (4.104) now coincide with the

variance ∆a in [138, Sec. III], and (4.114) with (4.104) corresponds to the variance

of the interference term [138, Eq. (13)]3. ♦
3We remark that [138, Eq. (13)] has an error in it. There is also no separation in the bit error

probabilities (in the notation of [138]) Pe related to channel estimation and interference cancellation.

This implies that the authors use the same type of feedback (extrinsic information or APP based) for

both tasks. The type of feedback is not defined in the paper.
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4.3.3 Iterative Data Detection and Decoding with Feedback and

Mismatched CSI

Let us assume that for iteration ℓ = 1, 2, . . . and any t ∈ D, the non-random limiting

distribution

F (ℓ)(P1, . . . , PM , P̃
(ℓ)
1 , . . . , P̃

(ℓ)
M , mse

(ℓ)
1 , . . . , mse

(ℓ)
M

)

= lim
K→∞

1

K

K∑

k=1

M∏

m=1

1AP
k,m

(
Pm
)
1ÃP

k,t,m

(
P̃ (ℓ)

m

)
1Amse

k,t,m

(
mse

(ℓ)
m

)
, (4.105)

exists almost surely, and is independent of t. The auxiliary sets for the indicator

functions are defined as

AP
k,m =

{
Pm ≥ 0 | |hk,m|2 ≤ Pm

}
, (4.106)

for the received powers of the true channel, and

ÃP
k,t,m =

{
P̃ (ℓ)

m ≥ 0 | |〈h̃k,t,m〉(ℓ)|2 ≤ P̃ (ℓ)
m

}
, (4.107)

Amse
k,t,m =

{
mse

(ℓ)
m ≥ 0 | mse

(ℓ)
k,t,m ≤ mse

(ℓ)
m

}
, (4.108)

for the received powers and MSEs of the channel estimates, respectively. With

some abuse of notation, we refer to (4.105) also when the MSEs are given by the

approximate ML channel estimator, denoted by {mse
ML,(ℓ)
m }M

m=1.

Proposition 10. Consider the SUMF-based iterative MUDD in Example 12. For

hard or soft feedback and any channel estimator, the noise variance in (4.70) is

given by

D(ℓ) = σ2 + α
M∑

m=1

E
{
|hmx − 〈h̃m〉(ℓ)〈x̃〉(ℓ)

ext

∣
∣
2}

. (4.109)

The expectation should be taken with respect to the limiting empirical distribution

of the true and estimated channel and data symbols, calculated over the user pop-

ulation whose power delay profile is drawn according to ppdp.

Proof: See Appendix D.

Proposition 11. Let the channel estimation be performed by the LMMSE estimator

of Example 8, or the approximate ML estimator of Example 9. The noise variance

for the SUMF with the LMMSE based channel estimator reads

D
(ℓ)
sumf = σ2 + α

M∑

m=1

E
{

mse
(ℓ)
m + Ω

(ℓ−1)
∆x P̃ (ℓ)

m

}

, (4.110)
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where the expectations are with respect to (4.105) and the error variance of the

extrinsic information based feedback Ω
(ℓ−1)
∆x . When the CSI is provided by the ap-

proximate ML channel estimator, the noise variance for the SUMF utilizing hard

and soft PIC is given by

D
ML,(ℓ)
sumf−hard = σ2 + α

M∑

m=1

E

{

mse
ML,(ℓ)
m + Ω

(ℓ−1)
∆x Pm

(

1 − 2ε(ℓ−1)
app

τd − 1

Tcoh − 1

)}

,

(4.111)

D
ML,(ℓ)
sumf−soft = σ2 + α

M∑

m=1

E
{

mse
ML,(ℓ)
m + Ω

(ℓ−1)
∆x

(
Pm − mse

ML,(ℓ)
m

)}

,

(4.112)

respectively. The instantaneous SINR for the SUMF with LMMSE based channel

estimators reads

sinr
(ℓ)
k,t =

(
M∑

m=1

|〈h̃k,t,m〉(ℓ)|2
)2/(

M∑

m=1

|〈h̃k,t,m〉(ℓ)|2
(
D

(ℓ)
sumf + mse

(ℓ)
k,t,m

)

)

.

(4.113)

Proof: Equations (4.110) and (4.113) follow from the fact that for the LMMSE CE

of Example 8, the channel estimate and the error are uncorrelated. For the case with

approximate ML channel estimator, using Lemma 1 in Appendix D gives (4.111).

Remark 8. It is easy to verify that if we let 〈x̃〉(ℓ)
ext = 0 =⇒ Ω

(ℓ−1)
∆x = 1, Proposi-

tion 11 gives [59, Proposition 2], and setting 〈h̃m〉(ℓ) = hm =⇒ mse
(ℓ)
m = 0, re-

duces it to [125, Proposition 2]. ♦

The case of ML channel estimator is in general slightly cumbersome to deal

with numerically. We therefore consider again the special case of Corollary 3, that

gives the next simplified result.

Corollary 5. Let the PDP be drawn according to (4.98). Then,

D
ML,(ℓ)
sumf−soft = σ2 + αt

[

ξML,(ℓ) +
(
1 − E

{
|〈x̃〉(ℓ)

ext|2
})(

1 − ξML,(ℓ))
]

, (4.114)

D
ML,(ℓ)
sumf−hard = σ2 + αt

(

ξML,(ℓ) + 4ε
(ℓ−1)
ext

[
1 − 2ε(ℓ−1)

app (1 − ∆tr)
])

, (4.115)

sinr
ML,(ℓ) =

t
[
1 − 2ε

(ℓ−1)
app (1 − ∆tr)

]2

D
ML,(ℓ)
sumf

[
1 + ξML,(ℓ) − 4ε

(ℓ−1)
app (1 − ∆tr)

] , (4.116)
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in the limit τtr, τd, M → ∞ when ∆tr = τtr/Tcoh and Υ = Tcoh/M are finite

and fixed. The normalized per-path MSE ξML,(ℓ) is given by (4.104) and the noise

variance D
ML,(ℓ)
sumf in (4.116) is either D

ML,(ℓ)
sumf−soft or D

ML,(ℓ)
sumf−hard, depending on the

type of feedback used for interference cancellation.

Remark 9. If we make the approximation 1 − ∆tr ≈ 1 in Corollary 5, and ξML,(ℓ)

is modified as discussed in Remark 7, (4.115) – (4.116) reduce to the main result

of [138, Sec. IV]. ♦

Proposition 12. Let the multiuser decoding be performed by the non-linear MAP-

MUDD of Example 10, or the LMMSE-PIC MUDD described in Example 11. As-

sume the channel estimation is performed by the LMMSE estimator of Example 8.

The instantaneous post-detection SINR at ℓth iteration for the user k and time index

t ∈ D is given by

sinr
(ℓ)
k,t =

M∑

m=1

|〈h̃k,t,m〉(ℓ)|2

D(ℓ) + mse
(ℓ)
k,t,m

. (4.117)

The noise variance D(ℓ) is given for the MAP-MUDD or the LMMSE-PIC MUDD

by the solution to the fixed point equation

D(ℓ) = σ2 + α
M∑

m=1

E







(

D(ℓ)

D(ℓ) + mse
(ℓ)
m

)2

×
[

mse
(ℓ)
m

(
D(ℓ) + mse

(ℓ)
m

D(ℓ)

)

+ P̃ (ℓ)
m V

(

D(ℓ), {P̃ (ℓ)
m }M

m=1, {mse
(ℓ)
m }M

m=1

)
]}

,

(4.118)

where for the MAP-MUDD

V
(

D(ℓ), {P̃ (ℓ)
m }M

m=1, {mse
(ℓ)
m }M

m=1

)

= 1 − E

{
∑

a1∈{±1}

1 + a1〈ã1〉(ℓ−1)
ext

2

×
∫

tanh





M∑

m=1

P̃ (ℓ)
m

D(ℓ) + mse
(ℓ)
m

+ ν

√
√
√
√

M∑

m=1

P̃ (ℓ)
m

D(ℓ) + mse
(ℓ)
m

+ a1
λ

(ℓ−1)
a1

2



Dν

∣
∣
∣
∣
∣
{P̃ (ℓ)

m }M
m=1, {mse

(ℓ)
m }M

m=1

}

, (4.119)
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and for the LMMSE-PIC MUDD

V
(

D(ℓ), {P̃ (ℓ)
m }M

m=1, {mse
(ℓ)
m }M

m=1

)

= E






Ω

(ℓ−1)
∆x

(

1 + Ω
(ℓ−1)
∆x

M∑

m=1

P̃ (ℓ)
m

D(ℓ) + mse
(ℓ)
m

)−1 ∣
∣
∣
∣
∣
{P̃ (ℓ)

m }M
m=1, {mse

(ℓ)
m }M

m=1






.

(4.120)

In the following the noise variances for the MAP and LMMSE MUDDs that are

solutions to (4.118) – (4.120) are denoted by D(ℓ)
map and D

(ℓ)
lmmse, respectively.

Proof: See Appendix E.

Remark 10. Let msem = 0 ∀m in (4.118) – (4.120). We immediately retrieve the

results in [85, 125, 126]. On the other hand, if we set λ
(ℓ−1)
a1 = λ

(ℓ−1)
a2 = 0 and

consider the distribution (4.98) for the user PDPs, we get [59, Eq (12)] after some

algebra, as expected. ♦

Interestingly, there is a common part in (4.118) for both data estimators that

does not depend on the extrisic information based feedback at all. Note that these

terms vanish if and only if mse → 0. Furthermore, there is a connection with the

estimator specific terms V ( · · · ) to the related terms in the case of perfect CSI.

Remark 11. Consider the terms (4.119) and (4.120), specific to the MAP-MUDD

and the LMMSE-PIC MUDD, respectively. One can verify that for fixed D(ℓ) and

a single path M = 1,

E
{

V
(

D(ℓ), {P̃ (ℓ)
m }M

m=1, {mse
(ℓ)
m }M

m=1

)}

= E
{∣
∣x − 〈x̃〉(ℓ)

∣
∣
2
}

, (4.121)

where 〈x̃〉(ℓ) is the estimate of the desired user’s data symbols and given for the

MAP and LMMSE MUDDs by (4.74) and (4.81), respectively. Furthermore, these

MSEs of the data symbols are equal to the corresponding terms for the case of

perfect CSI [85, 125, 126], with the noise variance increased by the MSE of the

channel estimates and the channel power reduced accordingly. ♦

Corollary 6. Let us assume the same conditions for the channel parameters as in

Corollary 5 and define

sinr
(ℓ)(D(ℓ)) =

t(1 − ξ(ℓ))

D(ℓ)
. (4.122)
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Then, in the limit τtr, τd, M → ∞ with ∆tr = τtr/Tcoh and Υ = Tcoh/M finite and

fixed,

D(ℓ)
map = σ2 + αtE

{

1 − (1 − ξ(ℓ))
∑

a1∈{±1}

1 + a1〈ã1〉(ℓ−1)
ext

2

×
∫

tanh

(

sinr
(ℓ)(D(ℓ)

map

)
+ ν

√

sinr
(ℓ)(D(ℓ)

map

)
+ a1

λ
(ℓ−1)
a1

2

)

Dν

}

,

(4.123)

for the MAP-MUDD and

D
(ℓ)
lmmse = σ2 + αtE






ξ(ℓ) +

Ω
(ℓ−1)
∆x (1 − ξ(ℓ))

1 + Ω
(ℓ−1)
∆x sinr

(ℓ)
(
D

(ℓ)
lmmse

)






, (4.124)

for the LMMSE-PIC MUDD.

Proof: The result follows from simple algebra and is therefore omitted.

Note that when the solution to the fixed point equation (4.123) or (4.124) is

obtained, the post-detection SINRs for the MAP and LMMSE-PIC MUDDs are

given by (4.122) with sinr
(ℓ)
(
D

(ℓ)
lmmse

)
and sinr

(ℓ)
(
D(ℓ)

map

)
, respectively.

4.3.4 Multiuser Efficiency and Related Performance Measures

Consider the case of perfect CSI and let

snrk[c] =
‖hk[c]‖2

σ2
, (4.125)

be the instantaneous received SNR of the kth user during cth fading block in (2.10).

Furthermore, let sinr
(ℓ)
k [c] be the corresponding SINR of the same user at the output

of the MUDD during iteration ℓ = 1, 2, . . ., and given in Section 4.3. If we define

η(ℓ) =
σ2

D(ℓ)
, 0 ≤ η(ℓ) ≤ 1, (4.126)

where D(ℓ) is the noise variance of the single-user system given in Sections 4.2.2 and 4.2.3,

the output SINR of the iterative MUDD reads

sinr
(ℓ)
k [c] = η(ℓ)

snrk[c]. (4.127)
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Note that for ergodic Rayleigh fading channel and BICM this is consistent with the

definition of the asymptotic multiuser efficiency ησ2→0 in (1.1) if we take the high

SNR limit σ2 → 0 and let the functions εsu(snr) and εmu(snr) be coded BERs.

Following the notation of [125, 126], we let

Ψ : [0, 1] → [0, 1] : η(ℓ−1) 7→ η(ℓ), (4.128)

be the mapping function that describes the DE for a specific iterative MUDD.

One might be interested in tracking (4.128) for the DE-GA when channel esti-

mation is added to the system. In this case, however, some caveats in how to define

the corresponding mapping function exists. Below we follow one approach that

considers the loss in effective SNR, arising from both the MAI and the imperfect

CSI.

Let us consider the simplest case of equal power users with uniform power delay

profiles and LMMSE channel estimation. We omit the user and block indices and

define a new parameter related to (4.126) – (4.127) as

η(ℓ)
ce =

sinr
(ℓ)

snr
=

σ2

(t/M)(D(ℓ)+mse(ℓ))

t/M−mse(ℓ)

(4.129)

Corollary 3−−−−−−→ σ2

D(ℓ)
(1 − ξ(ℓ)), 0 ≤ η(ℓ)

ce ≤ 1, (4.130)

where (4.130) corresponds to the simplified case of large number of multipaths,

considered in Corollary 3. Naturally η
(ℓ)
ce → η(ℓ) when mse

(ℓ) → 0 or ξ(ℓ) → 0.

One should note, however, that by using this definition:

• We are comparing a multiuser system with channel mismatch to a single-user

system having perfect CSI;

• In addition to the choice of iterative MUDD, η
(ℓ)
ce depends on the choice of

channel estimator and the system parameters related to it (number of training

symbols τtr per block, coherence time Tcoh, number of multipaths M ) via

mse
(ℓ) or ξ(ℓ) as well;

• Even with error free feedback ε
(ℓ)
ext, εapp

(ℓ) → 0, for all finite coherence times

Tcoh or ratios Υ, we have η
(ℓ)
ce < 1 since mse

(ℓ) > 0 and ξ(ℓ) > 0, respec-

tively.

Therefore, instead of describing just the MAI suppression capacity of the iterative

MUDD like (4.126) does, η
(ℓ)
ce provides information about the efficiency of the entire

iterative channel estimation and MUDD scheme. For the following, we let

Ψce : [0, 1] → [0, 1] : η(ℓ−1)
ce 7→ η(ℓ)

ce , (4.131)
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be a mapping function related to (4.128), that describes the evolution of (4.129) –

(4.130) with Gaussian approximation.

Finally, let us consider the situation when the feedback symbols tend to correct

decisions, that is,

D
(ℓ)
lmmse

Ω
(ℓ−1)
∆x

→0
−−−−−−→ D(ℓ)

map = σ2 + α
M∑

m=1

E

{

D
(ℓ)
mapmse

(ℓ)
m

D
(ℓ)
map + mse

(ℓ)
m

}

, (4.132)

D
(ℓ)
sumf

Ω
(ℓ−1)
∆x

→0
−−−−−−→ σ2 + α

M∑

m=1

E
{

mse
(ℓ)
m

}

. (4.133)

Plugging the solution of (4.132) or (4.133), depending on the iterative MUDD, to

(4.129) gives the upper bound for maximum achievable η
(ℓ)
ce for a given MSE of

channel estimates. For iterative channel estimator, on the other hand, mse
(ℓ)
m can be

lower bounded by considering the corresponding non-iterative channel estimator

with Tcoh − 1 known training symbols.

Note that in contrast to the case of perfect CSI, where

D
(ℓ)
sumf = D

(ℓ)
lmmse = D(ℓ)

map

Ω
(ℓ−1)
∆x

→0
−−−−−−→ σ2, (4.134)

with CSI mismatch the performance of the SUMF and the LMMSE-PIC / MAP

MUDDs can be different in this this limit. For the special case tk,m = t/M ,

Dmap

=
1

2

(

σ2 − (1 − αM)mse
(ℓ) +

√

4mse(ℓ)σ2 +
[
σ2 − (1 − αM)mse(ℓ)

]2
)

.

(4.135)

The maximum difference in the average post-detection SINR between the LMMSE-

PIC / MAP-MUDD and SUMF occurs for this scenario at load

α =
mse + σ2

Mmse
. (4.136)

From (4.133), (4.135) and (4.136) we get

sinrmap

sinrsumf

∣
∣
∣
∣
α= mse+σ2

Mmse

Ω
(ℓ−1)
∆x

→0
−−−−−−→ 2

mse + σ2

mse + σ2 +
√

σ2(mse + σ2)
≤ 2 (≈ 3 dB),

(4.137)

where the MSE of the channel estimates is assumed to be non-zero. Note that M →
∞ =⇒ mse → 0 and, thus, for large numbers of multipaths the maximum loss for

SUMF approaces zero (in dBs). Thus, for wideband channels there are, in general,
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Figure 4.2. Loss in output SINR for the iterative SUMF when compared to

LMMSE / MAP MUDD given error-free feedback. Equal power paths, t = 1

and snr = 10 dB.

little differences between the performances of the different iterative MUDDs, if they

converge to their maximum values of ηce. It is important to remember, however, that

their convergence properties may differ strongly.

Finally, Figure 4.2 depicts the asymptotic loss for the SUMF in the case of a

finite number of equal power paths with t = 1, snr = 10 dB and genie-aided feed-

back. The black line gives an upper bound for the SINR loss in dBs as obtained

in (4.137). Any combination of values for the user load, the number of multipaths

and the MSE of the channel estimates corresponds to a point within the gray area.

One can thus infer from the above figure that even for small number of multipaths,

the performance loss is much smaller than the upper bound of 3 dBs for typical

system parameters. Therefore, even for small numbers of solvable multipaths we

get the same conclusion as in the wideband limit that the performance of the itera-

tive MUDDs can be expected to be roughly the same given they converge to their

maximum values of ηce.
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Figure 4.3. DE-GA with equal power users and AWGN channel. User load

α = 1.8, and average SNR of snr = 6 dB.

4.4 Numerical Examples and Discussion

In this section we present a set of numerical examples derived from the analytical

results obtained in Sections 4.2 and 4.3. We again remind the reader that the nu-

merical examples given here are based on the asymptotic large system analysis and

for finite systems are approximations.

For all considered cases the binary ECC for the BICM is a half-rate convo-

lutional code. Two maximum free distance codes defined by the polynomials in

octal notation (5, 7)8 and (561, 753)8, with respective constraint lengths of three

and nine, are used [198]. The codes were selected to represent two extremes —

the first one is a very simple “textbook code” whereas the latter is a much stronger

code adopted in the current state-of-the-art cellular UMTS network. Modulation

mapping is Gray encoded QPSK and, thus, the BICM has code rate R = 1 and the

average SNR per information bit is snrk = tk/σ2.

We start the numerical examples by considering the density evolution of two

iterative MUDDs under the assumption of perfect CSI at the receiver. Figure 4.3

depicts Ψ given in (4.128) for the DE-GA of the MAP-MUDD (see Section 4.1.4)

and the LMMSE-PIC MUDD (see Example 11). Equal power users and AWGN
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Figure 4.4. Mapping function Ψ for the case of perfect CSI and Ψce when

channel estimation is employed. Three equal power paths, channel coherence

time of Tcoh = 101 symbols, snr = 6 dB, user load α = 1.2, LMMSE-PIC

MUDD and (561, 753)8 convolutional code for all cases. Channel estimation

by non-iterative or iterative LMMSE estimator. The dotted lines show the

upper bounds obtained by using (4.135).

channel was assumed. Note that the curve for the LMMSE-PIC MUDD and (5, 7)8

code can be found also in [125, Fig. 4]. As expected, the MAP-MUDD obtains

higher post-detection SINR for the same level of feedback reliability due to its more

efficient MAI suppression. This allows the system to be more heavily loaded while

still guaranteeing a single-user performance. Another observation to be made is

that while the combination of LMMSE-PIC MUDD and (561, 753)8 code is close

to its maximum load at α = 1.8, the shorter memory (5, 7)8 code converges for

much higher loads (see the curves for higher loads in [125, Fig. 4]).

In Figure 4.4, we have plotted Ψce given in (4.131) for the case of LMMSE

based channel estimation and LMMSE-PIC MUDD. For comparison, the upper

bounds discussed in Section 4.3.4 (dashed lines), and the corresponding curve Ψ

for the case of perfect CSI are also included. Ergodic Rayleigh fading channel with

three equal power multipaths is assumed. Only the (561, 753)8 code is considered
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Figure 4.5. Bit error probability vs. SNR of the SUMF based MUDs with soft

and hard feedback and LMMSE or ML channel estimation. Training overhead

of 10 %, user load α = 0.7 and inverse of channel spread factor Υ = 20.

Rate-1/2 convolutional code (561, 753)8 and Gray encoded QPSK. Dotted

lines show the minimum BEP bounds obtained using (4.135).

and all users are restricted to have the same average received power. It is clear

that for both cases with channel estimation, the iterative MUDD converges to its

maximum value of ηce. Therefore, in this case where the user load is α = 1.2, the

limiting factor in the performance is not the MAI but the imperfect CSI, and no

better performance can be obtained by using MAP-MUDD instead of the LMMSE-

PIC MUDD (cf. Section 4.3.4). We also remark that the upper bound for the case of

iterative channel estimation was obtained by using (4.135), where the MSE of the

channel estimates was lower bounded by assuming a non-iterative LMMSE channel

estimator using τtr = Tcoh−1 known training symbols. Therefore, the combination

of iterative LMMSE-CE and LMMSE-PIC MUDD in fact achieves the optimum

performance for the given channel conditions. It is quite remarkable that this is

can be accomplished by using only one pilot symbol. With non-iterative LMMSE

channel estimation and ten training symbols, on the other hand, severe loss in output

SINR is observed. The interesting shape of the curve Ψce for the case of iterative
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channel estimation is due to the use of approximate APPs in the feedback to the CE.

The intuitive explanation goes as follows. For low input SNR, the channel decoder

output is dominated by the symbol-by-symbol a posteriori probabilities obtained by

using the channel information rather than the extrinsic information that arises from

the code constraints. Therefore, for small output SINR after MUD front-end, we can

have a situation where εext = 0.5 while εapp < 0.5. For the extrinsic information

based feedback symbols then |〈x̃〉ext|2 = 0 and no MAI suppression is attainable.

This corresponds to the flat region at the beginning of the DE curves in Figure 4.3.

At the same time, however, the feedback to the channel estimator can be reliable

enough to lower the MSE of the channel estimates since |〈x̃〉app|2 > 0. This in turn

affects (4.118) and (4.129), so that Ψce(ηce) > ηce.

Let us next look at the performance of the multiuser DS-CDMA system when

the receiver has converged to its maximum value of ηce. Figure 4.5 depicts the BEP

vs. SNR for the SUMF with linear channel estimators under the simplifying assump-

tions of Corollary 3. To guarantee convergence for all considered cases within the

given SNR range, the user load was set to α = 0.7 and pilot overhead of 10 % was

used. Inverse channel spread factor Υ = Tcoh/M = 20 was assumed. From the

previous density evolution analysis it is clear that a notable performance loss should

occur with linear channel estimation when compared to the case of perfect CSI. The

asymptotic performance of the MUDs was again obtained by using the techniques

discussed in Section 4.3.4 and plotted with dotted lines. First observation from

the figure is that for both the soft and the hard PIC there is a phase transition in

BEP from one half to the minimum attainable, for the given receiver and system

parameters. Furthermore, there is very little difference between the non-iterative

ML channel estimator (ML-CE) given in Example 9 and the non-iterative LMMSE

channel estimator (LMMSE-CE) in the latter region. There is, however, a signifi-

cant difference in the threshold SNR when the phase transition occurs for the soft

and hard feedback, as illustrated by the three arrows in the figure. For the case of

perfect CSI this is well known and with the channel estimation the effect is roughly

the same (LMMSE-CE) or worse (ML-CE). At high SNR, the loss caused by im-

perfect CSI is roughly 2 dBs, but the difference in the convergence threshold is up

to 5.5 dBs. Due to the poor performance of the hard feedback based PIC, we drop

it from further discussion in this section and concentrate on presenting results for

the iterative MUDDs that use soft interference cancellation.

As a final comparison between the two feedback strategies, we shall look at

the iterative approximate ML and LMMSE channel estimators described in Exam-

ples 8 and 9. Figure 4.6 depicts the normalized MSE for the approximate ML-CE
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Figure 4.6. Normalized MSE ξ(ℓ) = mse
(ℓ)/(t/M) vs. η

(ℓ−1)
ce for the linear

channel estimators with soft and hard feedback given in Examples 8 and 9,

respectively. Three equal power paths, τtr = 10 pilot symbols, user load α =

1.2 and snr = 4 dB.

and the LMMSE-CE. The solid lines represent the normalized MSE of an itera-

tive (approximate) ML-CE that uses feedback only when it helps to improve the

performance of the pilots-only case. The flat part of the solid curves roughly at

ηce ∈ [0, 0.3] corresponds to the MSE obtained by the estimator when using only

known pilot symbols. The dotted lines represent the MSE of the channel estimates

when the feedback is enabled. Thus, in this region the MSE is higher with feedback

than without and performing iterative channel estimation is detrimental. When the

reliability of the feedback improves, the MSE can be lowered by using the feed-

back symbols as additional pilots. The dashed lines give the normalized MSE of

the LMMSE-CE with soft feedback. As noted in Remark 5, the feedback is never

harmful for this channel estimator, so there is no need to check whether to use it

or not. The MSE is lowered for all values of ηce. As expected, the LMMSE-CE

provides lower MSEs than the approximate ML-CE, although when the feedback

symbols get realiable enough, the performance of these channel estimators is virtu-

ally the same. For the rest of the section, we shall concentrate on the LMMSE-based

channel estimator only.
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Figure 4.7. Bit error probability vs. SNR for the LMMSE-PIC MUDD and

the SUMF with soft feedback. Iterative or non-iterative LMMSE-CE. Three

equal power paths and coherence time of Tcoh = 101 symbols. Rate-1/2

convolutional code with generator polynomials (561, 753)8 and Gray encoded

QPSK.

Bit error probability vs. SNR for an iterative system consisting of the LMMSE

or SUMF-based MUDDs with soft PIC and the iterative LMMSE-CE is shown in

Figure 4.7. The user load is set to α = 1.2, channel coherence time of Tcoh = 101

symbols and three M = 3 equal power paths are assumed. This time we have not

plotted the BEP lower bounds for clarity. As the DE-GA analysis in Figure 4.4

already implied, using iterative channel estimation and MUDD only one pilot is

needed to converge to the BEP lower bound (not shown) and close to single-user per-

formance with perfect CSI. Increasing the training overhead to ten pilots but using

non-iterative LMMSE channel estimation, however, causes an additional 2 dB loss

in performance. Due to the relatively poor MAI suppression capability of the SUMF

even soft feedback is used, the load was reduced α = 0.8 in order to converge within

the given range. This serves as an example of the different convergence properties of

the different iterative MUDDs although we found previously that their genie-aided

performances are essentially equal. We conclude that mismatch in channel infor-
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mation can easily destroy the benefits of having a data detector capable of efficient

MAI suppression, especially if the system needs to operate at relatively low SNR.

This can, however, be effectively circumvented by using iterative channel estimator

utilizing soft feedback.

The previous result showed that for fixed channel load α = 1.2, iterative CE

was able to provide the same BEP as linear CE, with 2 dBs lower SNR and only

one pilot symbol when LMMSE-PIC MUDD was employed at the receiver. We

next consider the case when the system is operating at moderate to high SNR and

we are allowed to vary the user load in order to achieve maximum throughput. The

loss in spectral efficiency due to transmission of known training symbols is taken

into account in the results. In addition to the LMMSE-based data decoder, the non-

linear MAP-MUDD is considered as well.

Spectral efficiency vs. training overhead for two mobility scenarios, namely

Υ = Tcoh/M = 30 and Υ = 80, under the simplifying assumptions of Corollary 3

are plotted in Figures 4.8a and 4.8b, respectively. The system load is adjusted to

meet the minimum bit error rate requirement BER ≤ 10−5 and only selected com-

binations of system parameters are plotted for clarity. We know that the LMMSE

based channel estimator discussed in Section 4.1.3 is suboptimal when there is un-

certainty in the transmitted symbols. Obtaining an upper bound for its performance

by studying the optimum estimator discussed in Section 4.1.2 is, however, difficult.

We therefore plot instead an upper bound for the considered channel estimator by

assuming a genie-aided feedback, much like we did previously with the iterative

MUDDs. We remark the following:

• The spectral efficiency with the (5, 7)8 code and non-iterative channel esti-

mation was found to be close zero in all cases. The corresponding curves

were therefore omitted from the figures.

• Significant improvement over the non-iterative data estimators studied in [59,

74, 85] can be achieved by using iterative MUDD, even with non-iterative

LMMSE channel estimator. As expected, the receivers using non-linear MAP

detector show notable gains in spectral efficiency over the LMMSE based

receivers. The difference is, however, smaller in the iterative cases.

• For Υ = 30, the upper bounds (omitted) and the curves for the fully itera-

tive receiver overlap almost perfectly in the case of (5, 7)8 code. The max-

imum spectral efficience is, however, around 0.68 bits per chip. Note that

throughput of over > 1.3 bits per chip is achievable with non-iterative chan-

nel estimator and (561, 753)8 code. This opposite to the case of perfect chan-

nel knowledge shown in Figure 4.3. There the system with iterative MUDD
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achieves higher spectral efficiency with the (5, 7)8 code for the same SNR.

• For Υ = 80, the highest loads with iterative MUDD and CE are obtained by

using the (5, 7)8 code. In this case, the performance of the iterative LMMSE

channel estimator also follows closely the upper bound, showing that every-

thing else being equal, little can be gained by using a more complex channel

estimator.

• Iterations over the channel estimator provide only minor improvements in

the spectral efficiency if the (561, 753)8 code is used, and the performance

is quite far from the upper bounds in this case. This hints that matching the

channel code to the provisional channel conditions might be very important

for the iterative MUDD and CE.

Figures 4.9a and 4.9b show the minimum training overhead that achieves the

target BEP ≤ 10−5 as a function of the inverse channel spread factor Υ, for the

channel loads α = 1.0 and α = 1.8, respectively. The simplifying assumptions of

Corollary 3 are considered and the receiver is equipped with the LMMSE-CE and

LMMSE-PIC MUDD or MAP-MUDD. The following is observed:

• For channel load α = 1.0, the iterative receiver allows for successful com-

munication with vanishing pilot overhead if Υ = 12 for the (561, 753)8 code,

and Υ = 42 for the (5, 7)8 code. In the case of α = 1.8, the situation reverses

and vanishing pilot overhead within the plotted region for both LMMSE-PIC

MUDD and MAP-MUDD is achieved when using the (5, 7)8 code, whereas

MAP-MUDD is required for the (561, 753)8 code.

• With the shorter constraint length code, performing iterations over the chan-

nel estimator allows for transmission with negligible pilot overhead whenever

coherent communication is possible with the given system set-up. Thus, there

is a phase transition in the amount of required training overhead as a function

of the channel spread factor.

• With the LMMSE-based channel estimator and (5, 7)8 code, the LMMSE-

PIC MUDD achieves in practice optimum performance under the given sys-

tem parameters.

• Using the constraint length nine code requires uniformly less training than

the constraint length three code for the same error rate performance when

the load is α = 1.0. This is true also for the higher load α = 1.8 if linear

channel estimation is used. For fully iterative receiver, however, using the

(5, 7)8 code is beneficial if Υ is sufficiently large.
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Figure 4.8. Spectral efficiency αR(1 − ∆tr) vs. the training overhead ∆tr.

Average SNR of 6 dB, target BER ≤ 10−5, and convolutional code (5, 7)8 or

(561, 753)8.
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Figure 4.9. Minimum training overhead vs. Υ = Tcoh/M for target BER ≤
10−5. Average SNR of 6 dB, LMMSE channel estimator and convolutional

code (5, 7)8 or (561, 753)8.
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Table 4.2. Minimum Υ for ∆tr < 0.001 and BER < 10−5 at snr = 6 dB

Load Code Pilot Bias

α = 1.0
(7, 5)8 43 42

(753, 561)8 12 12

α = 1.8
(7, 5)8 71 71

(753, 561)8 — 200
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Figure 4.10. Minimum training overhead vs. Υ = Tcoh/M for target BER ≤
10−5. Pilot symbol and biased signaling based channel estimation. Average

SNR of 6 dB, LMMSE channel estimator, LMMSE-PIC MUDD and convo-

lutional code (5, 7)8 or (561, 753)8. User load α = K/L = 1.8.

Total training overhead ∆tot (see Section 2.4) vs. the inverse channel spread fac-

tor Υ = Tcoh/M for the iterative receiver with LMMSE-PIC MUDD and LMMSE-

CE is shown in Figure 4.10. The average SNR is snr = 6 dB, user load is fixed at

α = 1.8 and target bit error rate BER is set to 10−5. Conventional pilot-aided

channel estimation and the probability biased signaling introduced in Section 2.4

are considered. Table 4.2 summarizes the approximate minimum Υ ∈ [0, 200] that
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achieves BER < 10−5 and training overhead ∆tot < 0.001 with iterative channel

estimation and MUDD for the same system parameters. The following is observed:

1. With biased signaling the phase transition for the (7, 5)8 code disappears,

although the required amount of training still drops from maximum to neg-

ligible within a very narrow region.

2. With iterative CE and MUDD, the numerical experiments suggest that the

bias based (∆tr = 0) channel estimation is uniformly better than the tra-

ditional approach of transmitting known pilots. This is in agreement with

the theoretical findings in [172]. We would like to point out, however, that

a more careful study of the combination of bias transformation and coding

has to be carried out before final conclusions.

4.5 Chapter Summary and Conclusions

In this chapter, the large system analysis of randomly spread code division multiple

access over a frequency-selective Rayleigh fading channel was considered. Itera-

tive channel estimation and multiuser detection based on extrinsic feedback from

the single-user decoders was studied. By means of the replica method, both esti-

mators were shown to have an equivalent decoupled single-user characterization in

the large system limit, that could be analyzed separately. In contrast to some earlier

results, we took into account the CSI mismatch in the iterative multiuser decod-

ing and studied an iterative channel estimator that utilized information feedback to

refine the initial training symbol based decisions.

The specific channel estimators considered included an LMMSE-CE with soft

feedback and an approximate ML-CE that used hard feedback. The iterative data

estimators included non-linear MAP-MUDD and LMMSE-PIC MUDD, both of

which used soft feedback. Single-user matched filter with soft or hard feedback

was also considered. The performance of the system was investigated by means of

DE-GA analysis. Analytical evaluation of the bit error rate and spectral efficiency

was carried out. In addition to new results regarding soft feedback based channel

estimation and data detection and decoding, we also considered the hard feedback

based scheme studied previously in [138]. Our result is exact in the large system

limit, whereas the previous result was obtained by making several approximations

in the analysis.

The theoretical results indicated that the soft feedback has never detrimental

effect on the estimators that take into account the error statistics. On the other hand,

the hard feedback can increase both the MSE of the channel estimates and the BER
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of the bit decisions. In contrast to the case of perfect CSI, where all considered

estimators converge to single-user performance when the feedback tends to correct

decisions, with channel mismatch the performance of the iterative SUMF can suffer

a loss of up to 3 dBs in the output SINR compared to LMMSE or MAP MUDDs.

For reasonable system configurations, however, the difference was found to be very

small.

Via numerical examples, it was demonstrated that for loads of up to α = 1.8,

iterative channel estimation and MUDD was able to meet the desired quality of

service (in terms of target BER) with vanishing training overhead for all practi-

cal channel conditions. The iterative CE was also found to provide superior per-

formance compared to simple pilot-aided CE when the goal was to maximize the

system spectral efficiency. With non-iterative channel estimation the system was

found to be very vulnerable to underestimated training overhead, whereas iterative

CE provided robust performance also in scenarios where the amount of pilots was

well below the optimum. Interestingly, when iterative channel estimation was used

in the system, the effect of ECC on the performance of the entire system became

highly non-trivial and dependent on the channel parameters. This suggests that

matching the code to both the CE and MUDD, as well as, the provisional channel

conditions is an important part of optimizing the system performance.

Finally, the novel training method based on probability biased signaling and in-

troduced in Section 2.4 was examined via numerical examples. It was found that

the proposed scheme can provide performance gain over the traditional pilot sym-

bol based channel estimation. Further research is, however, needed to efficiently

implement the signal biasing scheme in a way that does not hamper the error rate

performance of the error correction code or cause severe degradation in the spectral

efficiency of the system.
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Chapter 5

Conclusions

5.1 Summary and Discussion

The large system analysis of randomly spread CDMA channels with mismatched

CSI at the receiver was carried out. Both channel estimation and multiuser detection

and decoding algorithms were investigated with and without information feedback.

Flat fading multi-antenna channels and multipath fading single-antenna channels

were considered.

The signal model for the single and multiple antenna systems studied in the latter

parts of the thesis were introduced in Chapter 2. Necessary background informa-

tion on channel coding schemes and the mathematical methods used in the analysis

were discussed. A novel training method based on probability biased signaling was

proposed.

Multi-antenna CDMA with per-antenna random spreading was the topic of the

Chapter 3. Spatially correlated block Rayleigh fading MIMO channels were consid-

ered. A set of linear channel estimators and non-iterative multiuser detectors were

derived as special instances of a general Bayesian inference problem. In addition to

the optimum pilot-aided LMMSE-CE, several suboptimal channel estimators were

considered. The multiuser detectors included the non-linear MAP-MUD as well as

the linear MMSE, decorrelating and conventional detectors. By an application of

the replica method, the multiuser system with the derived estimators was shown to

admit an equivalent single-user characterization in the large system limit. Using the

decoupled channel model, the QPSK constrained ergodic spectral efficiency with

single-user decoding was obtained. The analytical results showed that when pilot-

aided channel estimation is employed at the receiver, the ergodic capacity of the

system increases with the correlation between the transmit antennas. This obser-
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vation was in contrast to the previously reported studies considering perfect CSI

[92, 154], where the transmit correlation was found to have no effect on the ergodic

spectral efficiency of the system. Notably, no information at the transmitter was

required to attain the improvement in performance, but the channel estimator was

required to have a priori knowledge about the long term transmit correlation.

In Chapter 4, iterative DS-CDMA receivers for multipath fading channels were

considered. An iterative algorithm based on extrinsic information exchange be-

tween the channel estimator and the MUDD block was proposed. Both hard and

soft feedback schemes, as well as linear and non-linear estimators were included in

the framework. The multiuser system with the given iterative receiver was shown

to decouple to a set of independent single-user channels via the replica method.

The bit error rate performance and spectral efficiency were studied. The analytical

results showed that while the use of soft feedback could never impede the perfor-

mance of the iterative process, the use of hard feedback was potentially detrimental.

The numerical experiments suggested that near single-user BER performance with

perfect CSI was attainable in overloaded multiuser systems using channel estima-

tion. Furthermore, this could be achieved with a vanishing training overhead when

the system bandwidth and data transmission rate was allowed to grow in proportion

with the amount of resolvable multipath components in the channel. Optimizing

the user load for maximum system spectral efficiency as a function of training over-

head revealed that iterative MUDD provided significant gains over non-iterative

MUD even if linear pilot-aided channel estimation was used. As expected, further

improvements were obtained by using iterative channel estimation. As a side ef-

fect, with iterative CE the system became also very robust against underestimated

training overhead — something the non-iterative system was found to be vulnerable

to. Taking the channel estimation into account in the analysis was also revealed to

affect the optimal choice of error correction code in a non-trivial manner. Matching

the ECC to the projected channel conditions was observed to have a great impact

on the maximum achievable spectral efficiency.
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5.2 Contributions of the Thesis

The main contributions of the thesis are summarized below.

Large system analysis of MIMO DS-CDMA systems in spatially correlated

channels:

• The results extend the previous results reported in [92, 154] to the case of

mismatched channel information at the MUD;

• Related work concerning uncorrelated MIMO channels can be found in [183]

and [199]. Here the analysis was extended to antenna correlation and to chan-

nel estimators that were misinformed about the channel statistics;

• The observation that transmit correlation can be very beneficial for multi-

antenna communication, even when not known at the transmitter, may pro-

vide new design approaches for practical systems.

Large system analysis of iterative DS-CDMA systems in multipath fading

channels:

• The results of [59] were generalized to iterative channel estimation and mul-

tiuser detection and decoding. Equivalently, the work presented in this thesis

can be seen as a follow-up to [125, 126] where iterative MUDD with perfect

CSI was considered. The previously reported results in [137] were extended

to iterative channel estimation and the analysis of [138] were performed with-

out resorting to approximations.

• To the best of our knowledge, the analysis of general iterative receiver with

soft / hard feedback and linear / non-linear estimators was performed the first

time. Related work that derives capacity bounds for optimal receivers with

channel estimation can be found in [172, 200].

• The finding that iterative channel estimation and MUDD provides spectrally

very efficient method for coherent communication may increase the inter-

est to fully iterative systems also in practical applications. Furthermore, the

observation that the choice of channel code depends heavily on the channel

conditions might provide new approaches to how to optimize the overall per-

formance of a system with channel estimation.
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5.3 Future Research Directions

In the following we provide some future research topics related to the work carried

our in the present dissertation that might be of interest.

Multi-Antenna Transmission Schemes:

• Iterative receivers for MIMO DS-CDMA. Here the study of multi-antenna

systems was limited to non-iterative receiver. As the results in Chapter 4

showed, iterative channel and data estimation have potential to provide sig-

nificant improvements in performance over non-iterative receivers. Natural

continuation of the research in Chapter 3 is to extend it to the iterative case

of Chapter 4.

• Comparison of the MIMO DS-CDMA considered in this thesis to multiuser

MIMO without per-antenna spreading. As shown in [92, 93], the per-antenna

spreading is simpler but sub-optimal approach for uncorrelated MIMO chan-

nels with perfect CSI at the receiver. How the combination of channel es-

timation and antenna correlation would affect the situation is an interesting

topic for investigation.

• Channel information at the transmitter. Utilizing some form of a priori chan-

nel knowledge at the transmitter is known to improve the performance of both

single-user and multiuser communication systems (see for example [8, 9] and

references therein). Investigating adaptive coding and modulation or linear

pre-coding schemes in systems with channel estimation and CSI mismatch

at the receiver would be an important topic, especially if the system is delay

constrained.

Single-Antenna Iterative Receivers:

• Code optimization. In the present thesis, only two convolutional codes with

constraint lengths three and nine were considered. An important follow-up

would be a careful investigation of code optimization for systems employing

iterative channel estimation and MUDD, for example, in the spirit of [134]

where LDPC codes in MIMO systems were considered.

• User power profile optimization. The asymptotic analysis of [126] revealed

that optimizing the received power profile of the users via linear programming

allowed for greatly improved channel loads and spectral efficiency of iterative

MUDD. Interesting future research topic would be to extend this approach to

the iterative receivers considered in the present dissertation.

110



Appendix A

Diagonalization of the Noise

Covariance Matrices C̃ and D̃ for

MIMO DS-CDMA

Here we show that the postulated noise covariance matrices C̃ and D̃ of the decou-

pled single-user channels presented in Section 3.2, and the postulated correlation

matrix at the receiver side R̃, are simultaneously diagonalized by a unitary matrix.

The same result follows immediately for the covariance matrices C and D, only

with the postulated covariance matrix R̃ replaced by the correct one R.

Let us first consider the postulated noise covariance of the channel estimator

C̃ = σ̃2IN + α
M∑

m=1

Ω̃∆hm
. (A.1)

Since C̃ is Hermitian, we can write C̃ = V Λ̃CV H, where Λ̃C is a diagonal matrix

containing the eigenvalues of C̃ while the columns of V are the corresponding

eigenvectors. We can thus write the RHS of (A.1) as

Λ̃C = σ̃2IN + αV H

( M∑

m=1

Ω̃∆hm

)

V = σ̃2IN + αΛ̃∆h1+···+∆hM
, (A.2)

where the diagonal matrix Λ̃∆h1+···+∆hM
contains the eigenvalues of

∑M
m=1 Ω̃∆hm

[201]. If V simultaneously diagonalizes {Ω̃∆hm
}M

m=1, i.e., they all share the same

eigenvectors but possibly different eigenvalues, then

Λ̃∆h1+···+∆hM
= Λ̃∆h1

+ · · · + Λ̃∆hM
, (A.3)

where Ω̃∆hm
= V Λ̃∆hm

V H, for all m = 1, . . . , M . The other, rather pathological

possibility, is that for some subset of {1, . . . , M} we have V H
Ω̃∆hm

V 6= Λ̃∆hm
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while the sum of these matrices is diagonal. This would mean that their off-diagonal

elements cancel each other perfectly in the summation. However, the structure of

the estimators considered in this thesis do not allow for this to happen since for all

m, the noise and receive antenna covariances are the same.

Now, let us consider the first case. Recalling that R = UΛ̃RUH,

Ω̃∆H = Ω̃H

[
τtrΩ̃H + (IN ⊗ C̃)

]−1
(IN ⊗ C̃)

= Ω̃H − Ω̃H

[
Ω̃H + (IN ⊗ C̃/τtr)

]−1
Ω̃H , (A.4)

and denoting Û = V HU , we can write

(IN ⊗ V H)Ω̃∆H(IN ⊗ V )

= (T̃ ⊗ ÛΛ̃RÛ
H

) − (T̃ ⊗ ÛΛ̃RUH)
[
(T̃ ⊗ UΛ̃RUH)

+(IN ⊗ V Λ̃CV H/τtr)
]−1

(T̃ ⊗ UΛ̃RÛ
H

)

= (T̃ ⊗ ÛΛ̃RÛ
H

) − (T̃ ⊗ Û
H

)
{

(IM ⊗ Λ̃R)

×
[
(T̃ ⊗ Λ̃R) + (IN ⊗ Û

H
Λ̃CÛ/τtr)

]−1
(IM ⊗ Λ̃R)

}

(T̃ ⊗ Û
H

)

(A.5)

By assumption, the N × N main diagonals of (A.5) have to be diagonal matrices,

which is satisfied if and only if Û is diagonal. Since Û is unitary, Û = IN =⇒
V = U . As a result, U simultaneously diagonalizes C̃, R̃, {Ω̃∆hm

}M
m=1 and

{Ω̃〈h̃m〉}M
m=1.

Now, consider the linear MUD. Along the lines of Appendix D, we get from

Section 3.2.3 that

D̃ = σ̃2IN + α
M∑

m=1

E
{
D̃(D̃ + Ω̃∆vm

)−1(〈h̃m〉mH
mD̃ + Ω̃∆vm

)}
, (A.6)

where

mH
m =

〈h̃m〉H
(
D̃ + Ω̃∆vm

)−1

1 + 〈h̃m〉H
(
D̃ + Ω̃∆vm

)−1〈h̃m〉
. (A.7)

From the previous discussion, we know that if R̃ = UΛ̃RUH then Ω〈h̃m〉 =

UΛ̃〈h̃m〉U
H and Ω̃∆hm

= UΛ̃∆hm
UH. For the detectors considered in this thesis

Ω̃∆vm
= 0 or Ω̃∆vm

= Ω〈h̃m〉. For the first case, let g ∼ CN(0; IN ) so that

U
√

Λ〈h̃m〉g has the same distribution as 〈h̃m〉. Then,

D̃ = U



σ̃2IN + α
M∑

m=1

E

{
√

Λ〈h̃m〉ggH
√

Λ〈h̃m〉

1 + gH
√

Λ〈h̃m〉UD̃
−1

UH
√

Λ〈h̃m〉g

}


UH,

(A.8)
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and, therefore, U diagonalizes D̃. In the latter case

D̃ = σ̃2IN + α
M∑

m=1

E

{
D̃(D̃ + Ω̃∆hm

)−1〈h̃m〉〈h̃m〉H
(
D̃ + Ω̃∆hm

)−1
D̃

1 + 〈h̃m〉H
(
D̃ + Ω̃∆hm

)−1〈h̃m〉

+ D̃ − D̃(D̃ + Ω̃∆hm
)−1D̃

}

. (A.9)

If D̃ = V Λ̃DV H, by similar arguments as before, we get a condition that Û =

UHV has to be a diagonal unitary matrix and, therefore, V = U . The MAP-MUD

can be handled in a similar manner
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Appendix B

Derivation of (4.38)

Consider the problem of obtaining the APPs of the data symbol xξ,t of the ξth user

at iteration ℓ = 1, 2 . . . and time instant t ∈ D. Assume that {〈h̃k,t〉(ℓ)}k∈K and

{〈x̃k,t〉(ℓ−1)
ext }j∈K\ξ defined in (4.33) and (4.34), respectively, are available at the

receiver. The received signal (2.10) can then be written as

yt =
1√
L

Sξ,t〈h̃ξ,t〉(ℓ)xξ,t +
1√
L

∑

j∈K\ξ

Sk,t〈h̃k,t〉(ℓ)xj,t

+
1√
L

K∑

k=1

Sk,t∆vk,t + wt ∈ C
L, (B.1)

where ∆vk,t = ∆hk,txk,t ∈ C
M ∀k ∈ K was defined in (4.36) – (4.37). In the

limit of large code word length and for fixed coherence time Tcoh, we can regard

∆hk,t and xk,t to be independent. Therefore, if ∆hk,t ∼ CN(0; Ω
(ℓ)
∆hk,t

) then

∆vk,t ∼ CN(0; Ω
(ℓ)
∆hk,t

). By (4.34) and (4.35), the data symbols of the interfering

users can be written as

xj,t = 〈x̃j,t〉(ℓ−1)
ext + ∆xj,t, j ∈ K \ ξ, (B.2)

where ∆xj,t ∈ C is a random variable with conditional mean and variance

µ
(ℓ−1)
∆xj,t

= E{∆xj,t | I(ℓ)
ξ,t } = 0, j ∈ K \ ξ, (B.3)

Ω
(ℓ−1)
∆xj,t

= E{|∆xj,t|2 | I(ℓ)
ξ,t }, j ∈ K \ ξ, (B.4)

respectively. Note, however, that neither for the hard nor the soft feedback the esti-

mation error ∆xj,t is Gaussian.

Now, postulate the conditional Gaussian prior for the interfering users

x̃j,t | I(ℓ)
ξ,t ∼ CN

(

〈x̃j,t〉(ℓ−1)
ext ; Ω̃

(ℓ−1)
∆xj,t

)

, j ∈ K \ ξ, (B.5)
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where the mean 〈x̃j,t〉(ℓ−1)
ext is known and Ω̃

(ℓ−1)
∆xj,t

represents the detectors knowledge

about (B.4). Let ∆h̃k,t ∼ CN(0; Ω̃
(ℓ)
∆hk,t

) be the receiver’s knowledge about the

channel mismatch related to (4.36). Unfortunately, with the Gaussian priors, the

term ∆vk,t in (B.1) makes the estimator non-linear. Thus, we further postulate that

{∆vk,t}K
k=1 are independent Gaussian RVs

∆ṽk,t | I(ℓ)
ξ,t ∼ CN(0; Ω̃

(ℓ)
∆vk,t

), (B.6)

uncorrelated with {x̃j,t}j∈K\ξ, and let the channel model at the receiver be

ỹt =
1√
L

Sξ,t〈h̃ξ,t〉(ℓ)x̃ξ,t +
1√
L

∑

j∈K\ξ

Sj,t〈h̃j,t〉(ℓ)x̃j,t

+
1√
L

K∑

k=1

Sk,t∆ṽk,t + w̃t ∈ C
L, (B.7)

where w̃t ∼ CN(0; σ̃2IL). The marginalized posterior probabilities of the data

symbol xξ,t based on the channel model (B.7) reads

Q(ℓ)(x̃ξ,t | I(ℓ)
ξ,t )

=
Q(x̃ξ,t)

E{x̃k,t}k∈K

{

E{∆ṽk,t}k∈K

{
Q(ℓ)(ỹt = yt | {x̃k,t}K

k=1, {∆ṽk,t}K
k=1, I(ℓ)

ξ,t )
}}

×E{x̃j,t}j∈K\ξ

{

E{∆ṽk,t}k∈K

{
Q(ℓ)(ỹt = yt | {x̃k,t}K

k=1, {∆ṽk,t}K
k=1, I(ℓ)

ξ,t )
}}

=
Q(x̃ξ,t)Q

(ℓ)(ỹt = yt | x̃ξ,t, I(ℓ)
ξ,t )

Ex̃ξ,t

{
Q(ℓ)(ỹt = yt | x̃ξ,t, I(ℓ)

ξ,t )
} , (B.8)

where Q(x̃ξ,t) is the postulated prior of the desired user’s data symbol xξ,t. The

expectations with respect to (B.5) and (B.6) in (B.8) and leading to (B.8), were be

calculated with the help of the Gaussian integral (C.22). Furthermore, the resulting

distribution

Q(ℓ)(ỹt = yt | x̃ξ,t, I(ℓ)
ξ,t ) = CN(µ̃

pic,(ℓ)
ξ ; Ω̃

pic,(ℓ)
ξ ), (B.9)

is complex Gaussian with mean and variance given by

µ̃
pic,(ℓ)
ξ =

1√
L

Sξ,t〈h̃ξ,t〉(ℓ)x̃ξ,t +
1√
L

∑

j∈K\ξ

Sj,t〈h̃j,t〉(ℓ)〈x̃j,t〉(ℓ), (B.10)

Ω̃
pic,(ℓ)
ξ = σ̃2IL +

1

L
Sξ,tΩ̃

(ℓ)
∆vξ,t

SH
ξ,t

+
1

L

∑

j∈K\ξ

Sj,t

(

Ω̃
(ℓ)
∆vj,t

+ 〈h̃j,t〉(ℓ)Ω̃
(ℓ−1)
∆xj,t

〈h̃H

j,t〉(ℓ)

)

SH
j,t, (B.11)
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respectively. Note that the second term on the RHS of (B.10) corresponds to the

parallel interference cancellation employed by the MUD front-end.
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Appendix C

Proof of Claim 4

The proof of Claim 4 is divided in two parts. The first one gives an informal proof by

deriving the free energy for the system and concluding from its form that the system

decouples to parallel single-user channels. The second part modifies the derivation

to show that the joint moments of the single-user and the multiuser systems co-

incide. The reason for two different derivations is that the first approach gives a

more pedagogical presentation of the replica method in the context of Bayesian es-

timation by omitting some extra variables present in the latter part. It also provides

an example how to derive the mutual information for a given system via free en-

ergy. The derivations follow closely the approach of [85, 89, 92] and differ in some

parts slightly from the presentation given in Section 2.6. Note that similar calcu-

lations were also performed by Tanaka in a slightly different context in [74, Proof

of Lemma 1 and Appendix III]. Here we consider only the RS solution of the free

energy and leave the investigation of RSB as a future topic.

C.1 Derivation of the Free Energy

Consider the channel estimator defined by (4.9) and (4.26). Let

{
~sk,t,l =

[
sk,t,l,1 · · · sk,t,l,M

]}L

l=1
, (C.1)

be the rows of the spreading matrix Sk,t ∈ ML×M in (2.10) that is modified accord-

ing to the Assumption 1. Fix the time index ϑ ∈ D, and define for notational con-

venience two diagonal matrices Sk,[1],l,m ∈ C
τtr×τtr , Sk,[2],l,m ∈ C

(τd−1)×(τd−1)

as

Sk,[1],l,m = diag
(
[sk,1,l,m · · · sk,τtr,l,m]

)
, (C.2)

Sk,[2],l,m = diag
(
[sk,τtr+1,l,m · · · sk,ϑ−1,l,m sk,ϑ+1,l,m · · · sk,Tcoh,l,m]

)
, (C.3)
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respectively. Assuming the ℓth iteration at the receiver, we may write the input-

output relation of the DS-CDMA channel over multipath fading as

y[1],l =
1√
L

K∑

k=1

M∑

m=1

Sk,[1],l,mhk,mpk + wT ,l ∈ C
τtr , (C.4)

y[2],l =
1√
L

K∑

k=1

Sk,[2],l,m

(
hk,m〈x̃k,D\ϑ〉(ℓ)

app + ∆uk,m

)
+ wD\ϑ,l ∈ C

τd−1, (C.5)

where ∆uk,m is defined in (4.12) and P(w···,l) = CN(0; σ2I). Now the set of

vectors {y[1],l, y[2],l}L
l=1 in (C.4) – (C.5) has the same information as Y \ yϑ in

(2.10). Similarly, let the postulated channel information {ỹT , ỹD\ϑ} in (4.19) –

(4.20) be written as {ỹ[1],l, ỹ[2],l}L
l=1, where

ỹ[1],l =
1√
L

K∑

k=1

M∑

m=1

Sk,[1],l,mh̃k,ϑ,mpk + w̃T ,l ∈ C
τtr ,

(C.6)

ỹ[2],l =
1√
L

K∑

k=1

M∑

m=1

Sk,[2],l,m

(
h̃k,ϑ,m〈x̃k,D\ϑ〉(ℓ)

app + ∆ũk,m

)
+ w̃D\ϑ,l ∈ C

τd−1,

(C.7)

and Q(w̃···,l) = CN(0; σ̃2I).

In the following, we shall associate the zeroth replica index with the channel

variables in (C.4) – (C.5) and write

H{0} =
{
h

{0}
k,m = hk,m | ∀k, m

}
, ∆U{0} =

{
∆u

{0}
k,m = ∆uk,m | ∀k, m

}
.

(C.8)

Similarly, the replica indices a = 1, . . . , n are connected to the postulated variables

in (C.6) – (C.7) and we denote with a slight abuse of notation

H{a} =
{
h

{a}
k,m | ∀k, m

}
, ∆U{a} =

{
∆u

{a}
k,m | ∀k, m

}
, (C.9)

where the replicated RVs are assumed to be IID and drawn according to the same

distribution as the postulated RVs {h̃k,ϑ,m | ∀k, m} and {∆ũk,m | ∀k, m} in Sec-

tion 4.1, i.e., h
{a}
k,m ∼ Q(ℓ)(h̃k,ϑ,m) and ∆u

{a}
k,m ∼ Q(ℓ)(∆ũk,m). For notational

convenience, the iteration index is omitted in the following discussion and we de-

fine a set

Xtot =
{
pk, xk,D\ϑ, 〈x̃k,D\ϑ〉app | ∀k

}
, (C.10)

related to all transmit symbols and their estimates present in the system.
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C.1. Derivation of the Free Energy

The denominator in (4.26) is the partition function of our system of interest and

will be denoted by Z in the following. Just like earlier in Section 2.6, the partition

function could in theory be used to calculate interesting macroscopic parameters of

our system, e.g., the MSE of the channel estimates. As we learned though, direct

computation of Z is infeasible and we therefore resort to computing the free energy

via the replica method.

Before proceeding to the actual calculation of the free energy for the system

arising from (C.4) – (C.7), we present some assumptions made on the course of the

following replica analysis. It should be remarked that what is given below should

be proved and not simply postulated to be true. This is, however, out of the scope

of the present dissertation.

Assumption 6 (Self-averaging property and replica continuity). The free energy

at the thermodynamic equilibrium is self-averaging with respect to the quenched

randomness of
{
Y, S, ∆U{0}} (see Assumption 4), and can be written in the form

Frm = − lim
n→0

∂

∂n
lim

K=αL→∞
1

K
log ΞK,n, (C.11)

where ΞK,n = E
{
Zn | Xtot

}
and the expectation is conditioned on the true and

estimated information about the transmitted signal as defined in (C.10). The nth

power of the “moment generating function” ΞK,n is evaluated for positive integers

n and analytic continuity in the vicinity of 0 is assumed to hold. ♦

The L channels in {y[ν],l}L
l=1 and {ỹ[ν],l}L

l=1 that arise from the matched filter-

ing of the spreading waveforms are conditionally IID, and we may thus write

ΞK,n = E

{[
2∏

ν=1

∫

dy[ν]

×ES[ν]

{
n∏

a=0

1

(πσ2
a)τ[ν]

exp

(

− 1

σ2
a

∥
∥
∥y[ν] −

√
αv

{a}
[ν]

∥
∥
∥

2
)}]L ∣

∣
∣
∣
∣
Xtot

}

. (C.12)

We denoted above τ[1] = τtr, τ[2] = τd − 1 and σ2
0 = σ2, σ2

a = σ̃2, a = 1, 2, . . . , n

so that y[ν] ∈ C
τ[ν] , ν = 1, 2. The random matrices in S[ν] = {Sk,[ν],m | ∀k, m},

for ν = 1, 2, are independent with IID elements that are distributed as the elements

of (C.2) – (C.3) for any l = 1, . . . , L. The random vectors
{
v

{a}
[ν]

}n

a=0
in (C.12) are
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given by

v
{a}
[1] =

1√
K

K∑

k=1

M∑

m=1

Sk,[1],mh
{a}
k,mpk ∈ C

τtr , (C.13)

v
{a}
[2] =

1√
K

K∑

k=1

M∑

m=1

Sk,[2],m

(

h
{a}
k,m〈x̃k,D\ϑ〉app + ∆u

{a}
k,m

)

∈ C
τd−1. (C.14)

Let us define for m = 1, . . . , M and k ∈ K the RVs ωk,[1],m ∈ C
(n+1)τtr and

ωk,[2],m ∈ C
(n+1)(τd−1) as

ωk,[1],m = vec
([

pkh
{0}
k,m · · · pkh

{n}
k,m

])
,

(C.15)

ωk,[2],m = vec
([

h
{0}
k,m〈x̃k,D\ϑ〉app + ∆u

{0}
k,m · · · h

{n}
k,m〈x̃k,D\ϑ〉app + ∆u

{n}
k,m

])
,

(C.16)

respectively, so that in the large system limit and conditioned on the set

{
Xtot, {H{a}}n

a=0, {∆U{a}}n
a=0

}
, (C.17)

the vectors

v[ν] = vec
([

v
{0}
[ν] v

{1}
[ν] · · · v

{n}
[ν]

])
∈ C

(n+1)τ[ν] , ν = 1, 2, (C.18)

converge by the central limit theorem to independent zero-mean Gaussian RVs with

conditional covariance matrices

Q[ν] = lim
K→∞

QK
[ν] = lim

K→∞
1

K

K∑

k=1

M∑

m=1

ωk,[ν],mωH
k,[ν],m ∈ C

(n+1)τ[ν] , ν = 1, 2.

(C.19)

Following [74, Appendix II] it can be shown that for finite K,

ΞK,n = E

{
2∏

ν=1

exp
[

Kα−1
(

GK,n
[ν] (QK

[ν]) + O(K−1)
)]
∣
∣
∣
∣Xtot

}

, (C.20)

where

exp
(

GK,n
[ν] (QK

[ν])
)

=
(πσ2)−τ[ν]

(πσ̃2)nτ[ν]
Ev[ν]

{

exp

[

− α

σ2
‖v

{0}
[ν] ‖2 − α

σ̃2

n∑

a=1

‖v
{a}
[ν] ‖2

]

×
∫

exp

[

−
(

1

σ2
+

n

σ̃2

)

‖y[ν]‖2

+2ℜ
{√

α

(
1

σ2
v

{0}
[ν] +

1

σ̃2

n∑

a=1

v
{a}
[ν]

)H

y[ν]

}]

dy[ν]

∣
∣
∣
∣
∣
QK

[ν]

}

, (C.21)
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C.1. Derivation of the Free Energy

and v[ν] ∼ CN(0; QK
[ν]), ν = 1, 2, are independent Gaussian RVs. Let M be a

positive definite matrix and apply the vector form complex Gaussian integral

∫

e−yHMy+2ℜ{bHy}dy =
πTcoh

det(M)
ebHM−1b, M > 0, (C.22)

to (C.21), first for the integrals with respect to y[ν], then again to calculate the ex-

pectations with respect to v[ν] ∼ CN(0; QK
[ν]). The end result reads

exp
(

GK,n
[ν] (QK

[ν])
)

=

(

σ̃2

σ̃2 + nσ2

)τ[ν] (πσ̃2)−nτ[ν]

det
(
QK

[ν]

)
det

(
(QK

[ν])
−1 + A[ν]

) ,

(C.23)

where A[ν] ∈ R
(n+1)τ[ν]×(n+1)τ[ν] is a symmetric matrix defined as

A[ν] =
α

σ̃2 + nσ2





n −eT
n

−en (1 + nσ2

σ̃2 )In − σ2

σ̃2 eneT
n



⊗ Iτ[ν]
, (C.24)

and en denotes for the all-ones vector of length n. For later use, we write

−GK,n
[ν] (QK

[ν]) = τ[ν]

[

(n − 1) log(σ̃2) + log
(

σ̃2 + nσ2
)]

+nτ[ν] log π + log det
(

I(n+1)τ[ν]
+ A[ν]Q

K
[ν]

)

. (C.25)

Let V[ν] be the set of positive definite (n+1)τ[ν]×(n+1)τ[ν] Hermitian matrices

for ν = 1, 2, and define the conditional probability measure on V[1] × V[2] as

µK(V) = E

{
2∏

ν=1

1V [ν]

[

KQ[ν] =
K∑

k=1

M∑

m=1

ωk,[ν],mωH
k,[ν],m

] ∣
∣
∣
∣
∣

Xtot

}

, (C.26)

where V = (V [1], V [2]) ⊂ V[1] × V[2] and 1 is the indicator function. Since the

users are assumed to have independent channels, the moment generating function

induced by (C.26) reads

MK,n(Q̃) =
K∏

k=1

Mn
k (Q̃)

=
K∏

k=1

E

{

exp

[
2∑

ν=1

M∑

m=1

tr
(
ωk,[ν],mωH

k,[ν],mQ̃[ν]

)

] ∣
∣
∣
∣
∣

Xtot

}

, (C.27)
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where Q̃ = (Q̃[1], Q̃[2]) ∈ V[1] × V[2]. The inverse Laplace transform and change

of variables KQ[ν] 7→ Q[ν] yields with some abuse of notation1

µK(dQ
)

=

(
K

2πj

)κ

lim
Γ→∞

∫

J κ
Γ

exp
[

−KcK,n(Q, Q̃)
]

µ̃(dQ̃), (C.28)

where κ =
∑2

ν=1[(n + 1)τ[ν]]
2, Q = (Q[1], Q[2]) ∈ V[1] × V[2], J = (−jΓ, jΓ)

and

cK,n(Q, Q̃) =
2∑

ν=1

tr(Q[ν]Q̃[ν]) − 1

K

K∑

k=1

log Mn
k (Q̃). (C.29)

Using (C.28) we can write (C.20) as

ΞK,n =

∫

exp

[

−K

(

− α−1GK,n(Q)

)]

µK(dQ
)

+ O(K−1)

(C.30)

=

∫

e−K(−α−1GK,n(Q))

[(
K

2πj

)κ

lim
Γ→∞

∫

J κ
Γ

e−KcK,n(Q,Q̃)µ̃(dQ̃)

]

dQ,

(C.31)

where we dropped the vanishing term in (C.31) and wrote

GK,n(Q) =
2∑

ν=1

GK,n
[ν] (Q[ν]). (C.32)

Intuitively, if the exponents in (C.31) converge in the limit K → ∞ as cK,n(Q, Q̃) →
cn(Q, Q̃) and GK,n(Q) → Gn(Q), the integrals are asymptotically dominated by

the points in the neighborhood of the (local) minimas of cn(Q, Q̃) and −Gn(Q).

This is stated in more detail by the saddle point method (or Laplace’s method) of

integration, derived for the class of real-valued functions with complex arguments

in Appendix F.

Now, let K → ∞ and use (F.12) for the integral in the parenthesis on the RHS

of (C.31) while the variables connected to Q are arbitrary and fixed. Then consider

1The Laplace transform is defined for functions with real arguments and, thus, for the inverse

transform we represent the set of complex Hermitian matrices Q = (Q[1], Q[2]) by an equivalent set

of κ =
∑2

ν=1
[(n + 1)τ[ν]]

2 independent real variables. Similarly we represent Q̃ = (Q̃[1], Q̃[2])
by κ complex variables with fixed real part and let the integral measure µ̃ be the corresponding κ
dimensional product measure. Since we are not interested in the exact evaluation of the integrals, we

keep the same notation for the variables regardless how they are presented.
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C.1. Derivation of the Free Energy

Q as a set of real variables and apply (F.11), that is,

ΞK,n =

∫

exp
{

−K
[

cn(Q, Q̃s
)

− α−1Gn(Q)
]}

×
[(

K

2π

)κ ( (2π/K)κ

det
(
ℜ
{
∇2

ℑ cn
(
Q, Q̃s

)})

)1/2
]

dQ

(C.33)

= exp
{

−K
[

cn(Qs, Q̃s) − α−1Gn(Qs)
]}

×
{

det
(

ℜ
{
∇2

ℑ cn(Qs, Q̃s
)})

det
[

∇2
ℜ
(

cn(Qs, Q̃s) − α−1Gn(Qs)
)]}−1/2

,

(C.34)

where ∇2
ℑ cn

(
Qs, Q̃s

)
and ∇2

ℜ
(
cn(Qs, Q̃s) − α−1Gn(Qs)

)
are complex and real

Hessian matrices, independent of K and defined in Appendix F. From (C.33) we

get

Q̃s = inf
Q̃∈V[1]×V[2]

cn(Q, Q̃
)
, (C.35)

Qs = inf
Q∈V[1]×V[2]

{

cn(Q, Q̃s
)

− Gn(Q)
}

, (C.36)

where Q is arbitrary and fixed in the first optimization problem and

lim
K→∞

1

K
log ΞK,n = α−1Gn(Qs) − cn(Qs, Q̃s). (C.37)

Note that for Q̃
s

[ν], Q̃
s

[ν] ∈ V[ν], ν = 1, 2, we get Gn(Qs) ∈ R and cn(Qs, Q̃s) ∈ R

so that (C.37) is real valued, as expected. With the help of [202], the extremas in

(C.35) – (C.36) are found to satisfy the coupled equations

Qs
[ν] = lim

K→∞
1

K

K∑

k=1

1

Mn
k (Q̃)

×E

{
M∑

m=1

ωk,[ν],mωH
k,[ν],m exp

[
2∑

ν=1

M∑

m=1

ωH
k,[ν],mQ̃

s

[ν]ωk,[ν],m

] ∣
∣
∣
∣
∣

Xtot

}

, (C.38)

Q̃
s

[ν] = −α−1
(

I(n+1)τ[ν]
+ A[ν]Q

s
[ν]

)−1
A[ν]. (C.39)

To make the numerical evaluation of the saddle point equations feasible, we make

next a simplifying assumption that limits the space of allowed saddle points drasti-

cally.
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Assumption 7 (Replica symmetry). The saddle point solution to the system of

equations (C.38) – (C.39) for ν = 1, 2, is invariant under permutations of the replica

indices, that is, we have the (n + 1)τ[ν] × (n + 1)τ[ν] Hermitian matrices

Qs
[ν] =






Q
{0,0}
[ν] eT

n ⊗ Q
{0,1}
[ν]

en ⊗ (Q
{0,1}
[ν] )H In ⊗ (Q

{1,1}
[ν] − Q

{1,2}
[ν] ) + eneT

n ⊗ Q
{1,2}
[ν]




 , (C.40)

Q̃
s

[ν] =






Q̃
{0,0}
[ν] eT

n ⊗ Q̃
{0,1}
[ν]

en ⊗ (Q̃
{0,1}
[ν] )H In ⊗ (Q̃

{1,1}
[ν] − Q̃

{1,2}
[ν] ) + eneT

n ⊗ Q̃
{1,2}
[ν]




 , (C.41)

where
{
Q

{0,0}
[ν] , Q̃

{0,0}
[ν] , Q

{1,1}
[ν] , Q̃

{1,1}
[ν] , Q

{1,2}
[ν] , Q̃

{1,2}
[ν]

}
are τ[ν] × τ[ν] Hermitian

matrices. ♦

Under the Assumption 7,

Q̃
{0,0}
[ν] = −n(C̃ [ν] + nC [ν])

−1 n→0−−−→ 0, (C.42)

Q̃
{0,1}
[ν] =

(
C̃ [ν] + nC [ν]

)−1 n→0−−−→ C̃
−1
[ν] , (C.43)

Q̃
{1,2}
[ν] = C̃

−1
[ν] C [ν]

(
C̃ [ν] + nC [ν]

)−1 n→0−−−→ C̃
−1
[ν] C [ν]C̃

−1
[ν] , (C.44)

Q̃
{1,1}
[ν] = C̃

−1(
(1 − n)C [ν] − C̃ [ν])

)(
C̃ [ν] + nC [ν]

)−1
= Q̃

{1,2}
[ν] − C̃

−1
, (C.45)

where we defined for notational convenience the new matrices

C [ν] = σ2Iτ[ν]
+ α

(

Q
{0,0}
[ν] − (Q

{0,1}
[ν] + (Q

{0,1}
[ν] )H) + Q

{1,2}
[ν]

)

, (C.46)

C̃ [ν] = σ̃2Iτ[ν]
+ α

(

Q
{1,1}
[ν] − Q

{1,2}
[ν]

)

. (C.47)

With the assumption of replica symmetry, the first term on the RHS of (C.25) can-

cels and the remaining terms from the log-det yield

Gn(Qs) = − nTcoh log π

−
2∑

ν=1

[

log det(C̃ [ν] + nC [ν]) + (n − 1) log det(C̃ [ν])
]

∈ R. (C.48)

The replica symmetric form of the trace in (C.29), on the other hand, reads

tr(Qs
[ν]Q̃

s

[ν]) = tr
(

Q̃
{0,0}
[ν] Q

{0,0}
[ν]

)

+ n
[

tr
(

Q̃
{0,1}
[ν] (Q

{0,1}
[ν] )H + Q

{0,1}
[ν] Q̃

{0,1}
[ν]

)]

+n tr
(

Q̃
{1,1}
[ν] Q

{1,1}
[ν]

)

+ n(n − 1) tr
(

Q̃
{1,2}
[ν] Q

{1,2}
[ν]

)

∈ R. (C.49)
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Let us denote

µ
{0}
k,[1],m = pkh

{0}
k,m, µ

{a}
k,[1],m = pkh

{a}
k,m (C.50)

µ
{0}
k,[2],m = xk,D\ϑh

{0}
k,m, µ

{a}
k,[2],m = 〈x̃k,D\ϑ〉(ℓ)

apph
{a}
k,m + ∆u

{a}
k,m, (C.51)

so that the replica symmetric moment generating function (C.27) is given by

Mn
k (Q̃s) = E

{
2∏

ν=1

M∏

m=1

exp

[

(µ
{0}
k,[ν],m)HQ̃

{0,0}
[ν] µ

{0}
k,[ν],m

+
n∑

a=1

(µ
{a}
k,[ν],m)HQ̃

{1,1}
[ν] µ

{a}
k,[ν],m +

n∑

a=1

2ℜ
{

(µ
{0}
k,[ν],m)HQ̃

{0,1}
[ν] µ

{a}
k,[ν],m

}
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[ν] µ

{b}
k,[ν],m

] ∣
∣
∣
∣
∣
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}

. (C.52)

Plugging

Q̃
{0,1}
[ν] = C−1

[ν]

(
nC̃

−1
[ν] + C−1

[ν]

)−1
C̃

−1
[ν] , (C.53)

Q̃
{1,2}
[ν] = C̃

−1
[ν]

(
nC̃

−1
[ν] + C−1

[ν]

)−1
C̃

−1
[ν] , (C.54)

to (C.52) gives after some simplifications

Mn
k (Q̃s)

= E

{
2∏

ν=1

M∏

m=1

exp

[

(C−1
[ν] µ

{0}
k,[ν],m + C̃

−1
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µ
{a}
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−1
[ν] + C−1

[ν] )
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−1
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µ
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{0}
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[ν] µ
{0}
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−1
[ν] µ

{a}
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] ∣
∣
∣
∣
∣
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}

,

(C.55)

and using (C.22) from right to left on the first exponential term in (C.55) yields

Mn
k (Q̃s) =

(
Cn

mgf

)M
E

{
∫ 2∏

ν=1

M∏

m=1

f
(
zk,[ν],m

∣
∣µ

{0}
k,[ν],m ; C [ν]

)

×
n∏

a=1

f
(
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∣
∣µ

{a}
k,[ν],m ; C̃ [ν]

)
dzk,[ν],m

∣
∣
∣
∣
∣
Xtot

}

, (C.56)
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where

Cn
mgf = πnTcoh

2∏

ν=1

det(C̃ [ν])
n−1 det(C̃ [ν] + nC [ν]), (C.57)

is a normalization factor imposed by the introduction of the complex Gaussian den-

sities

f (z | µ; Ω) =
π−τ

det(Ω)
exp

(

−(z − µ)H
Ω

−1(z − µ)
)

, z, µ ∈ C
τ , Ω > 0.

(C.58)

Since the replicas are assumed to be IID, we may write

Mn
k (Q̃s) =

(
Cn

mgf

)M
∫

E

{
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M∏
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f
(
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∣
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∣
∣
∣
∣
∣

Xtot

}

×
(

E

{
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M∏

m=1

f
(
zk,[ν],m | µ̃k,[ν],m ; C̃ [ν]

)

∣
∣
∣
∣
∣

Xtot

})n 2∏

ν=1

M∏

m=1

dzk,[ν],m,

(C.59)

where

µk,[1],m = pkhk,m, µ̃k,[1],m = pkh̃k,ϑ,m (C.60)

µk,[2],m = xk,D\ϑhk,m, µ̃k,[2],m = 〈x̃k,D\ϑ〉(ℓ)
apph̃k,ϑ,m + ∆ũk,m. (C.61)

When n → 0, we get from (C.57) and (C.59) that Mn
k (Q̃s) → 1 ∀k =

1, . . . , K. With some abuse of notation, the replica symmetric saddle point (C.38)

becomes thus

Qs
[ν] = lim

K→∞
1

K

K∑

k=1

M∑

m=1

E

{
∫

dzk,[ν],m µn
k,[ν],m(µn
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×
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M∏
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f
(
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∣
∣µk,[ν′]m′ ; C [ν′]

)

×
f
(
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∣
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)

E
{∏2

ν′=1

∏M
m′=1 f

(
z̃k,[ν′],m′ = zk,[ν′],m′

∣
∣ µ̃k,[ν′],m′ ; C̃ [ν′]

)
| Xtot

}

∣
∣
∣
∣
∣

Xtot

}

,

(C.62)

where

µn
k,[ν],m = vec

([
µk,[ν],m eT

n ⊗ µ̃k,[ν],m

])
∈ C

(n+1)τ[ν] . (C.63)
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Denoting

〈 · · · 〉k,m =
Eh̃k,ϑ,m,∆ũk,m

{

· · · ∏2
ν=1 f

(
zk,[ν],m | µ̃k,[ν],m ; C̃ [ν]

)}

Eh̃k,ϑ,m,∆ũk,m

{
∏2

ν=1 f
(
zk,[ν],m | µ̃k,[ν],m ; C̃ [ν]

)} , (C.64)

for a single-user GPME indexed by k and m, the elements of (C.40) are given by

Q
{0,0}
[ν] = lim

K→∞
1

K

K∑

k=1

M∑

m=1

E
{

µk,[ν],mµH
k,[ν],m

∣
∣Xtot

}

, (C.65)

Q
{0,1}
[ν] = lim

K→∞
1

K

K∑
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M∑

m=1

E
{

µk,[ν],m

〈
µ̃k,[ν],m

〉H

k,m

∣
∣Xtot

}

, (C.66)

Q
{1,1}
[ν] = lim

K→∞
1

K

K∑
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M∑

m=1

E
{〈

µ̃k,[ν],mµ̃H
k,[ν],m

〉

k,m

∣
∣Xtot

}

, (C.67)

Q
{1,2}
[ν] = lim

K→∞
1

K

K∑

k=1

M∑

m=1

E
{〈

µ̃k,[ν],m

〉

k,m

〈
µ̃k,[ν],m

〉H

k,m

∣
∣Xtot

}

. (C.68)

Using (C.65) yields the following interpretation for the parameters C [ν] and C̃ [ν]

C [ν] = σ2Iτ[ν]
+ α lim

K→∞
1

K

K∑

k=1

M∑

m=1

E
{(

µk,[ν],m −
〈
µ̃k,[ν],m

〉

k,m

)

×
(

µk,[ν],m −
〈
µ̃k,[ν],m

〉

k,m

)H ∣
∣Xtot

}

,

(C.69)

C̃ [ν] = σ̃2Iτ[ν]
+ α lim

K→∞
1

K

K∑

k=1

M∑

m=1

E
{(

µ̃k,[ν],m −
〈
µ̃k,[ν],m

〉

k,m

)

(

µ̃k,[ν],m −
〈
µ̃k,[ν],m

〉

k,m

)H ∣
∣Xtot

}

.

(C.70)

In order to evaluate the free energy (C.11) under the RS ansatz, we need to

calculate

Frm−rs = − lim
n→0

∂

∂n

{

α−1Gn(Qs) − cn(Qs, Q̃s)
}

= lim
n→0

∂

∂n

{
2∑

ν=1

tr(Q[ν]Q̃[ν]) − 1

α
Gn(Qs) − lim

K→∞
1

K

K∑

k=1

log Mn
k (Q̃)

}

.

(C.71)
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After some algebra, we find2

lim
n→0

∂

∂n
Gn(Qs) = −

2∑

ν=1

[

τ[ν] log π + tr
(

C̃
−1
[ν] C [ν]

)

+ log det(C̃ [ν])
]

, (C.72)

and

lim
n→0

∂

∂n
tr(Qs

[ν]Q̃
s

[ν])

= tr
{

− C̃
−1
[ν]

[

Q
{0,0}
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(
Q

{0,1}
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(C.73)

= −α−1 tr
[

Iτ[ν]
+ σ̃2C̃

−1
[ν] C [ν]C̃

−1
[ν] − (σ̃2 + σ2)C̃

−1
[ν]

]

, (C.74)

where (C.74) follows by using (C.46) – (C.47) and simplifying. Similar calculations

yield

lim
n→0

∂

∂n
log Cn

mgf = MTcoh log π + M
2∑

ν=1

[

tr
(

C̃
−1
[ν] C [ν]

)

+ log det(C̃ [ν])
]

.

(C.75)

If we exchange the limits in (C.71), the RS free energy finally reads

Frm−rs = − lim
K→∞

1

K
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E
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∣
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+

(
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α
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[

τ[ν] log π + tr
(

C̃
−1
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)

+ log det(C̃ [ν])
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− 1

α

2∑

ν=1

tr
[

Iτ[ν]
+ σ̃2C̃

−1
[ν] C [ν]C̃

−1
[ν] − (σ̃2 + σ2)C̃

−1
[ν]

]

. (C.76)

Comparing this to, e.g., [73, (229)] and [85, (180)] suggests that the decoupling

result stated in Claim 4 is indeed correct.

C.2 Sketch of a Derivation of the Joint Moments

For simplicity of notation, the channel coefficients are treated as real random vari-

ables in this section. Extension to the case of complex channel vectors is made along

2The following differentials are useful (see, e.g. [182, 186, 202]): ∂(log det(X)) =
tr(X−1∂(X)), ∂(tr(X)) = tr(∂(X)) and ∂(X−1) = −X−1∂(X)X−1.
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the lines of [92]. The calculations follow closely the ones taken in [85, 89, 92],

with the modifications introduced in (C.2). Therefore, only a brief sketch of proof

is given for completeness.

Let us start by defining a function

g(Hk) =
M∏

m=1

(

h
{0}
k,m

)im
(

h
{bm}
k,m

)lm
jm∏

am=1

(

h
{am}
k,m

)

, (C.77)

where bm > jm ∈ {1, 2, . . . , n} ∀m = 1, . . . , M, and

Hk =
{
h

{a}
k,m | m = 1, . . . , M, a = 0, 1, . . . , n

}
. (C.78)

Fix the time index ϑ ∈ D and denote the received signals in (4.16) – (4.17) by

Y\ϑ = {yT , yD\ϑ}. Let the corresponding postulated received signals (4.19) –

(4.20) be Ỹ\ϑ = {ỹT , ỹD\ϑ}, and denote the set (4.3) for some fixed iteration

and block indices ℓ and c by Iϑ. The postulated conditional distribution of the ath

channel replica reads then

Q(Ỹ\ϑ | Iϑ, H{a}, ∆U{a}) = Q(ỹT | Iϑ, H{a})Q(ỹD\ϑ | Iϑ, H{a}, ∆U{a}).

(C.79)

Let {Ku}U
u=1 be a partition of K so that Ku = |Ku| is the number of users belonging

to the uth group, as stated in Assumption 5. We also write βu = Ku/K ∈ (0, 1)

so that
∑

u βu = 1. For further development, a free energy like quantity related to

(C.11) for the users in the uth group is defined as

f̃ = lim
K=αL=Ku/βu→∞

1

Ku
log Ξ̃Ku,n, (C.80)

where

Ξ̃Ku,n(r) = E






exp

(

r
∑

ξ∈Ku

g(Hξ)

)

×
n∏

a=1

Q(Ỹ\ϑ = Y\ϑ | Iϑ, H{a}, ∆U{a})

∣
∣
∣
∣
∣

Xtot

}

, (C.81)

and r is a real variable. Note that

lim
r→0

Ξ̃Ku,n(r) = ΞK,n, (C.82)

where ΞK,n is given in (C.12).
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We first consider obtaining the moments of the channel inputs and the estimator

outputs for the multiuser system described in Section 4.1.3. A bit of calculus gives

∂

∂r
f̃

∣
∣
∣
∣
r=0
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1
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∣
∣
∣
∣
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Xtot

}
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1
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{
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(

h
{0}
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(

h
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(

h
{am}
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)

Q(H{a} | ỹT , Iϑ)Q(H{a} | ỹD\ϑ, Iϑ, ∆U{a})





×
[

n∏

a=1

EH{a}

{
Q(Ỹ\ϑ = Y\ϑ | Iϑ, H{a}, ∆U{a})

}

Q(H{a})

] ∣
∣
∣
∣
∣

Xtot

}

.

(C.83)

Recalling the definition of the multiuser GPME (4.9) and (4.26), using the fact that

the users within the uth group have IID channels with uncorrelated multipaths, and

taking the limit n → 0 in (C.83) yields

lim
n→0

[
∂

∂r
f̃

∣
∣
∣
∣
r=0

]

=
M∏

m=1

E
{

him

ξ,mh̃lm
ξ,ϑ,m〈h̃ξ,ϑ,m〉jm

∣
∣
∣ Xtot

}

, ξ ∈ Ku, (C.84)

where 〈h̃ξ,ϑ,m〉 are the posterior mean estimates given by (4.9) and (4.26) for a user

ξ in the uth group. Hence, the moments on the RHS of (C.84) can be expressed in

terms of (C.80) by first differentiating with respect to r and then taking the limits

r → 0 and n → 0, in this order.

We now turn to deriving the joint moments of the decoupled channel given in

Section 4.2.1. Recall the definition of GK,n(Q) from (C.25) and (C.32), where

Q = (Q[1], Q[2]) and Q[ν], ν = 1, 2, are defined in (C.19). Let the probability

measure akin to (C.26), but modified for (C.81), be given by

µ̃K(V; r) = E






exp

(

r
∑

ξ∈Ku

g(Hξ)

)

×
2∏

ν=1

1V [ν]

[

KQ[ν] =
K∑

k=1

M∑

m=1

ωk,[ν],mωH
k,[ν],m

] ∣
∣
∣
∣
∣

Xtot

}

,

(C.85)
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where V = (V [1], V [2]) ⊂ V[1] × V[2]. The moment generating function induced by

(C.85) reads thus

M̃K,n(Q̃; r) =
∏

ξ∈Ku

M̃n
ξ (Q̃; r)

∏

j∈K\Ku

Mn
j (Q̃), (C.86)

where Q̃ = (Q̃[1], Q̃[2]) ∈ V[1] × V[2], Mn
j (Q̃) are given in (C.27) and

M̃n
ξ (Q̃; r) = E

{

exp [rg(Hξ)] exp

[
2∑

ν=1

M∑

m=1

tr
(
ωξ,[ν],mωH

ξ,[ν],mQ̃[ν]

)

] ∣
∣
∣
∣
∣

Xtot

}

.

(C.87)

Furthermore, define function

c̃K,n(Q, Q̃; r)

=
2∑

ν=1

tr(Q[ν]Q̃[ν]) − 1

K

[
∑

ξ∈Ku

log M̃n
ξ (Q̃; r) +

∑

j∈K\Ku

log Mn
j (Q̃)

]

, (C.88)

related to (C.29) and let c̃K,n(Q, Q̃; r) → c̃n(Q, Q̃; r) and GK,n(Q) → Gn(Q),

in the limit K → ∞. Then,

f̃ = lim
K→∞

1

Ku
log Ξ̃Ku,n =

1

βu

[

α−1Gn(Qs) − c̃n(Qs, Q̃s; r)
]

, (C.89)

where

Q̃s = inf
Q̃∈V[1]×V[2]

c̃n(Q, Q̃; r
)
, (C.90)

Qs = inf
Q∈V[1]×V[2]

{

c̃n(Q, Q̃s; r
)

− Gn(Q)
}

, (C.91)

coincide with the solutions of (C.35) and (C.36), respectively, when r → 0 by

(C.82). Since Gn(Q) does not depend on r, we have the partial derivative

∂

∂r
f̃

∣
∣
∣
∣
r=0

= − 1

βu

[

∂

∂r
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∣
∣
∣
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1
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∂
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∣
∣
∣
∣
r=0

]

, (C.92)

where we omitted the terms in (C.88) that do not depend on r in the second equality.
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Recalling the definition of g(Hk) in (C.77), taking the partial derivative with

respect to r in in (C.87) and finally the limit r → 0 yields

∂

∂r
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∣
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= E
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(C.93)

By the same techniques as used in the derivations of (C.59) and (C.62), and using

the assumption that the users in Ku are IID with uncorrelated multipaths, we get

lim
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.

(C.94)

From the definition for the single-user GPME (C.64) and the fact that am is a

dummy variable, we finally get

lim
n→0

[
∂

∂r
f̃

∣
∣
∣
∣
r=0

]

=
M∏

m=1

E
{

him

ξ,mh̃lm
ξ,ϑ,m〈h̃ξ,ϑ,m〉jm

ξ,m

∣
∣
∣ Xtot

}

, ξ ∈ Ku,

(C.95)

which coincides with (C.84).

From above we may conclude that the joint moments for the user ξ ∈ Ku, given

by the multiuser and the single-user characterizations (C.84) and (C.95), respec-

tively, coincide, that is,

M∏

m=1

E
{

him

ξ,mh̃lm
ξ,ϑ,m〈h̃ξ,ϑ,m〉jm

∣
∣
∣ Xtot

}

=
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E
{
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ξ,mh̃lm
ξ,ϑ,m〈h̃ξ,ϑ,m〉jm

ξ,m

∣
∣
∣ Xtot

}

,

(C.96)

where 〈 · · ·〉 and 〈 · · · 〉ξ,m are the multiuser and single-user GPMEs defined in Sec-

tion 4.1.3 and Section 4.2.1, respectively. Assuming that the joint distributions are

fully determined by their moments (see [89, Section 1.4.3]), we get the Claim 4.
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Appendix D

Proof of Propositions 8 and 9

Let us assume that the replica assumptions are valid so that the Claim 4 holds.

Consider iteration ℓ = 1, 2, . . . and time instant ϑ ∈ D. In the following we drop

the iteration index and write 〈 · · · 〉 = 〈 · · · 〉(ℓ)
k,m for notational convenience. The

proper indexing should be always clear from the context.

Solving the Gaussian integrals in (4.63) by using (C.22) and the identity

∫

ye−yHAy+2ℜ{bHy}dy =
πτ

det (A)
A−1bebHA−1b, y ∈ C

τ , A > 0, (D.1)

gives the channel estimate

〈h̃k,ϑ,m〉 = mH
k,T ,mzk,T ,m + mH

k,D\ϑ,mzk,D\ϑ,m, (D.2)

where

mH
k,T ,m =

tk,m

Γ̃k,ϑ,m

pH
k C̃

−1
T (D.3)

mH
k,D\ϑ,m = mH

k,D\ϑ,m =
tk,m

Γ̃k,ϑ,m

〈x̃k,D\ϑ〉H
app

(
Ω̃∆uk,m

+ C̃D\ϑ

)−1
, (D.4)

and we denoted

Γ̃k,ϑ,m = 1 + tk,m

[
pH

k C̃
−1
T pk + 〈x̃k,D\ϑ〉H

app

(
Ω̃∆uk,m

+ C̃D\ϑ

)−1〈x̃k,D\ϑ〉app

]
.

(D.5)
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Let us also define for the following

xk,ϑ = vec
([

pk xk,D\ϑ

])
, (D.6)

x̃k,ϑ = vec
([

pk 〈x̃k,D\ϑ〉app

])
, (D.7)

∆ũk,m = vec
(
[0τtr×1 ∆ũk,m]

)
, (D.8)

Ω̃∆uk,m
= diag

(
0τtr×τtr , Ω̃∆uk,m

)
, (D.9)

C = diag
(
CT , CD\ϑ

)
, (D.10)

C̃ = diag
(
C̃T , C̃D\ϑ

)
, (D.11)

zk,ϑ,m = vec
([

zk,T ,m zk,D\ϑ,m

])
, (D.12)

mH
k,ϑ,m =

[
mH

k,T ,m mH
k,D\ϑ,m], (D.13)

so that by using the above notation, the per-path MSE reads

msek,ϑ,m = E
{

|hk,m − 〈h̃k,ϑ,m〉|2
}

= tk,mE
{∣
∣1 − mH

k,ϑ,mxk,ϑ

∣
∣
2
}

+ E
{

mH
k,ϑ,mCmH

k,ϑ,m

}

. (D.14)

However, in order to calculate (D.14) we first need to obtain the expressions for the

noise covariance matrices given in (4.53).

Using (4.61) – (4.62) and the notation defined above, we write

uk,ϑ,m = xk,ϑhk,m, ũk,ϑ,m = x̃k,ϑh̃k,ϑ,m + ∆ũk,m, (D.15)

and

mH
k,ϑ,m = tk,mΓ̃−1

k,ϑ,mx̃H
k,ϑ(C̃ + Ω̃∆uk,m

)−1, (D.16)

Γ̃k,ϑ,m = 1 + tk,mx̃H
k,ϑ(C̃ + Ω̃∆uk,m

)−1x̃k,ϑ. (D.17)

With the help of (C.22) and (D.1) we get from (4.61) – (4.63) after some simplifi-

cations1

〈ũk,ϑ,m〉 = x̃k,ϑ〈h̃k,ϑ,m〉 + 〈∆ũk,m〉
=
[

x̃k,ϑmH
k,ϑ,m + Ω̃∆uk,m

(
Ω̃∆uk,m

+ C̃ + tk,mx̃k,ϑx̃H
k,ϑ

)−1
]

zk,ϑ,m

= C̃
(
Ω̃∆uk,m

+ C̃
)−1[

x̃k,ϑmH
k,ϑ,m + Ω̃∆uk,m

C̃
−1]

zk,ϑ,m. (D.18)

1The following identities are helpful (see, e.g. [182] and the references therein). Let u, v be com-

plex vectors and A, B invertible complex matrices. Then (A+uvH)−1 = A−1−A−1uvA−1/(1+
vHA−1u) and (A + B)−1 = A−1 − A−1(A−1 + B−1)−1A−1.
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The matrices (4.57) – (4.60) are then the block diagonals of

Σk,ϑ,m = Ec
k

{(
uk,ϑ,m − 〈ũk,ϑ,m〉

)(
uk,ϑ,m − 〈ũk,ϑ,m〉

)H
}

= C̃
(
Ω̃∆uk,m

+ C̃
)−1

×
[(

IT coh
− x̃k,ϑmH

k,ϑ,m

)(
tk,mxk,ϑxH

k,ϑ

)(
IT coh

− mk,ϑ,mx̃H
k,ϑ

)

+
(
x̃k,ϑmH

k,ϑ,m + Ω̃∆uk,m
C̃

−1)
C
(
mk,ϑ,mx̃H

k,ϑ + C̃
−1

Ω̃∆uk,m

)]

×
(
Ω̃∆uk,m

+ C̃
)−1

C̃, (D.19)

Σ̃k,ϑ,m = Ec
k

{(
ũk,ϑ,m − 〈ũk,ϑ,m〉

)(
ũk,ϑ,m − 〈ũk,ϑ,m〉

)H
}

= C̃
(
Ω̃∆uk,m

+ C̃
)−1

×
[(

IT coh
− x̃k,ϑmH

k,ϑ,m

)(
tk,mx̃k,ϑx̃H

k,ϑ + Ω̃∆uk,m

)(
IT coh

− mk,ϑ,mx̃H
k,ϑ

)

+
(
x̃k,ϑmH

k,ϑ,m + Ω̃∆uk,m
C̃

−1)
C̃
(
mk,ϑ,mx̃H

k,ϑ + C̃
−1

Ω̃∆uk,m

)]

×
(
Ω̃∆uk,m

+ C̃
)−1

C̃, (D.20)

where Ec
k was defined in (4.52) and, with some foresight, we used a shorthand

notation T coh = Tcoh − 1. Since Σ̃k,ϑ,m depends only on the postulated variables,

(D.20) can be further simplified by using the identity Γ̃−1
k,ϑ,m = 1 − mH

k,ϑ,mx̃k,ϑ to

Σ̃k,ϑ,m = C̃
(
Ω̃∆uk,m

+ C̃
)−1

[

Ω̃∆uk,m
C̃

−1(
Ω̃∆uk,m

+ C̃
)

+x̃k,ϑ

(

tk,m|1 − mH
k,ϑ,mx̃k,ϑ|2 + mH

k,ϑ,m

(
Ω̃∆uk,m

+ C̃
)
mk,ϑ,m

)

x̃H
k,ϑ

]

×
(
Ω̃∆uk,m

+ C̃
)−1

C̃

= C̃
(
Ω̃∆uk,m

+ C̃
)−1(

Ω̃∆uk,m
+ x̃k,ϑmH

k,ϑ,mC̃
)
. (D.21)

On the other hand, using (4.53) – (4.60) and cancelling the common terms yields

the following relation between the matrices C and C̃,

C−1 lim
K→∞

1

K

K∑

k=1

{

σ2IT coh
+ α

M∑

m=1

C̃
(
Ω̃∆uk,m

+ C̃
)−1(

I − x̃k,ϑmH
k,ϑ,m

)

×
(
tk,mxk,ϑxH

k,ϑ

)(
I − mk,ϑ,mx̃H

k,ϑ

)(
Ω̃∆uk,m

+ C̃
)−1

C̃
}

= C̃
−1

lim
K→∞

1

K

K∑

k=1

{

σ̃2IT coh
+ α

M∑

m=1

C̃
(
Ω̃∆uk,m

+ C̃
)−1(

I − x̃k,ϑmH
k,ϑ,m

)

×
(
tk,mx̃k,ϑx̃H

k,ϑ + Ω̃∆uk,m

)(
I − mk,ϑ,mx̃H

k,ϑ

)(
Ω̃∆uk,m

+ C̃
)−1

C̃
}

.

(D.22)

Since we consider the symbols in xk,ϑ and in x̃k,ϑ to be uncorrelated, the true and

postulated noise covariance matrices simplify as C = diag(CtrIτtr , CdIτd−1) and
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C̃ = diag(C̃trIτtr , C̃dIτd−1). To further simplify (D.22), however, we need to

specify the operator ϕapp for the feedback (cf. Section 4.1.1), and the parameters

that define the channel estimator in Section 4.1.3.

Consider the approximate ML estimator defined in Example 9, that is, Ω̃∆uk,m
=

0 and ‖x̃k,ϑ‖2 = T coh. Using (4.55) – (4.56) and (D.21) reveals that C̃d = C̃tr,

where

C̃tr = σ̃2 + α lim
K→∞

1

K

K∑

k=1

M∑

m=1

tk,mC̃tr

C̃tr + tk,mT coh

. (D.23)

If T coh > αM , as usually is the case2, we get from (D.23) that σ̃2 → 0 =⇒
C̃tr → 0. Furthermore, by (D.23) the RHS of (D.22) simplifies as

(

σ̃2

C̃tr

+ α lim
K→∞

1

K

K∑

k=1

M∑

m=1

tk,mC̃tr
(
C̃tr + tk,mT coh

)2

)

IT coh

σ̃2→0−−−→
(

1 − αM

T coh

)

IT coh
.

(D.24)

In order to tackle the LHS of (D.22), we present a small lemma related to the statis-

tics of the hard feedback.

Lemma 1. Recall from Section 4.3.1 that for the approximate APP based hard feed-

back with Gray mapped QPSK symbols,

Pr
(
ℜ
{
xk,t

}
6= ℜ

{
〈x̃k,t〉app

})
= Pr

(
ℑ
{
xk,t

}
6= ℑ

{
〈x̃k,t〉app

})
= εapp

k , (D.25)

for any given data symbol xk,t, t ∈ D \ ϑ. Let us also assume that the bits cor-

responding to the real and imaginary parts of the QPSK symbol, and the feedback

symbols for time instances t, t′ ∈ D \ ϑ with t 6= t′ are independent. Then for all

k = 1, . . . , K,

E
{
ℜ{x̃H

k,ϑxk,ϑ}
}

= T coh − 2εapp
k (τd − 1), (D.26)

so that

[

E
{
ℜ{x̃k,ϑ(x̃H

k,ϑx̃k,ϑ)x̃H
k,ϑ}

}]

t,t

=







T coh − 2εapp
k (τd − 1), t ∈ T ,

T coh − 2εapp
k (τd − 1) − 2εapp

k

[
T coh − 2

(
1 + εapp

k (τd − 2)
)]

, t ∈ D \ ϑ,

(D.27)

2Much like we did in Chapter 3 in the case of decorrelating MUD, one could define and analyze

a similar estimator also for T coh < αM . We do not consider this in our analysis since such a case

arises rarely in channel estimation.
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and

E
{
|x̃H

k,ϑx̃k,ϑ|2
}

= T 2
coh − 4εapp

k (τd − 1)
[
T coh − εapp

k (τd − 2) − 1
]
. (D.28)

Proof: By using (D.25), we find that

E
{
ℜ{〈x̃k,D\ϑ〉H

appxk,D\ϑ}
}

=

2(τd−1)
∑

t=0

(τd − 1 − t)

(

2(τd − 1)

t

)

(εapp
k )t(1 − εapp

k )2(τd−1)−t. (D.29)

Since the last three terms on the RHS of (D.29) is just the binomial distribution

with 2(τd − 1) trials, each having a success probability of εapp
k , we immediately get

(D.26) and the first part of (D.27). For t ∈ D \ ϑ, note that

E
{
ℜ{〈x̃k,t〉∗

app(τtr + 〈x̃k,D\ϑ〉H
appxk,D\ϑ)xk,t}

}

= 1 + (1 − 2εapp
k )

×


τtr +
1

2

2(τd−2)
∑

t=0

[2(τd − 2) − 2t]

(

2(τd − 2)

t

)

(1 − εapp
k )2(τd−2)−t(εapp

k )t





= 1 + (1 − 2εapp
k )

[
τtr + (τd − 2)(1 − 2εapp

k )
]
, (D.30)

which gives the second part of (D.27) after re-arranging the terms. Proof of (D.28)

is similar and therefore omitted.

Let us consider the first τtr diagonal terms of the user k in (D.22). Using

Lemma 1, we get
[

E
{[

I − x̃k,ϑmH
k,ϑ,m

)
xkxH

k

(
I − mk,ϑ,mx̃H

k,ϑ

)}]

t,t

= 1 − 2tk,m
T coh − 2εapp

k (τd − 1)

C̃tr + tk,mT coh

+t
2
k,m

T 2
coh − 4εapp

k (τd − 1)
[
T coh − εapp

k (τd − 2) − 1
]

(
C̃tr + tk,mT coh

)2 , (D.31)

for all t ∈ T . Thus, the first τtr diagonal terms on the LHS of (D.22) are

1

Ctr

[

σ2 + α lim
K→∞

1

K

K∑

k=1

M∑

m=1

1
(
C̃tr + tk,mT coh

)2

×tk,m

(

C̃2
tr + 4tk,mεapp

k (τd − 1)
[
C̃tr + tk,m

(
1 + εapp

k (τd − 2)
)])

]

.

(D.32)
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Equating (D.24) and (D.32), and taking the limit σ̃2 → 0 =⇒ C̃tr → 0 yields

Ctr
σ̃2→0−−−→ σ2T coh

T coh − αM
+ α lim

K→∞
1

K

K∑

k=1

4tkεapp
k (τd − 1)

(
1 + εapp

k (τd − 2)
)

(T coh − αM)T coh

.

(D.33)

Similarly, from the lower τd diagonal terms of (D.22) we get with the help of

Lemma 1,

Cd
σ̃2→0−−−→ Ctr + α lim

K→∞
1

K

K∑

k=1

4tkεapp
k

[
T coh − 2

(
1 + εapp

k (τd − 2)
)]

T coh − αM
, (D.34)

Plugging (D.33) – (D.34) to (D.14) and using once more Lemma 1 finally yields

E
{

mH
k,ϑ,mCmk,ϑ,m

}
σ̃2→0−−−→ 1

T 2
coh

(τtrCtr + (τd − 1)Cd)

=
σ2

T coh − αM
+ α lim

K→∞
1

K

K∑

k=1

4tkεapp
k (τd − 1)

[
T coh −

(
1 + εapp

k (τd − 2)
)]

T 2
coh(T coh − αM)

,

(D.35)

tk,mE
{∣
∣1 − mH

k,ϑ,mxk,ϑ

∣
∣
2
}

σ̃2→0−−−→ tk,m

T 2
coh

E
{

|(τd − 1) − 〈x̃k,D\ϑ〉H
appxk,D\ϑ|2

}

=
4tk,mεapp

k (τd − 1)
[
1 + εapp

k (τd − 2)
]

T 2
coh

, (D.36)

where the fact that T coh = τtr + τd − 1 was used to simplify the last equation. This

concludes the proof of Proposition 9.

Consider next the iterative LMMSE channel estimator with soft feedback, de-

scribed in Example 8. By definition, σ̃2 = σ2,

E{uk,ϑ,muH
k,ϑ,m | x̃k,ϑ} = tk,mx̃k,ϑx̃H

k,ϑ + Ω∆uk,m
, (D.37)

where Ω∆uk,m
= diag

(
0τtr×τtr , Ω∆uk,m

)
, andE{x̃H

k,ϑxk,ϑ|x̃k} = τtr+‖〈x̃k,D\ϑ〉H
app‖2.

This implies by (D.22) that C̃ = C and, thus,

C̃
(ℓ)
T = C

(ℓ)
T , C̃

(ℓ)
D\ϑ = C

(ℓ)
D\ϑ, (D.38)

in (4.53) – (4.56) and

E{Σk,T ,m

(
C

(ℓ)
T , C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
} = E{Σ̃k,T ,m

(
C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
}, (D.39)

E{Σk,D\ϑ,m

(
C

(ℓ)
D\ϑ, C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
} = E{Σ̃k,D\ϑ,m

(
C̃

(ℓ)
T , C̃

(ℓ)
D\ϑ

)
}, (D.40)
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in (4.57) – (4.60). Plugging this to (D.14) yields

msek,ϑ,m

= E







tk,m

1 + tk,m

[
pH

k C−1
T pk + 〈x̃k,D\ϑ〉H

app

(
Ω∆uk,m

+ CD\ϑ

)−1〈x̃k,D\ϑ〉app

]






,

(D.41)

where the noise covariances are given in (D.21). A little bit more algebra results to

(4.94) – (4.96).
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Appendix E

Proof of Propositions 10 and 12

E.1 Derivation of (4.118) and (4.119)

Consider the set of single-user channels defined in (4.65), and assume the receiver

postulates the channels (4.66). Let ξ ∈ K be the user of interest and consider

the GPME defined in (4.74). The CSI is provided by the LMMSE estimator of

Example 8 for all users k = 1, . . . , K in the form

Q(ℓ)(h̃k,t,m | I(ℓ)
t ) = CN(〈h̃k,t,m〉(ℓ); mse

(ℓ)
k,t,m), (E.1)

and the (unconditional) posterior mean of the channel has a complex Gaussian dis-

tribution

〈h̃k,t,m〉(ℓ) ∼ CN(0; tk,m − mse
(ℓ)
k,t,m), (E.2)

in the large system limit, as found in Proposition 8. We also make an assumption

that due to bit-interleaving and coding over several fading blocks, the data symbols

and the channel estimation errors are independent.

Recall from Sections 2.3.2 and 4.3.1 that for Gray encoded QPSK signaling the

extrinsic probabilities factor as given in (4.83). We postulate the priors for the data

symbols

xj,t =
1√
2

(aj,t,1 + jaj,t,2) ∈ M, t ∈ D, (E.3)

of the interfering users j ∈ K \ ξ as Q(xj,t) = Q(aj,t,1)Q(aj,t,2), where

Q(ak,t,q) =
1 + tanh(λ

(ℓ−1)
aj,t,q /2)

2
δaj,t,q

(+1) +
1 − tanh(λ

(ℓ−1)
aj,t,q /2)

2
δaj,t,q

(−1),

(E.4)
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for q = 1, 2, are the probabilities and

λ(ℓ−1)
aj,t,q

= log
(

P
(ℓ−1)
ext (aj,t,q = +1)

)

− log
(

P
(ℓ−1)
ext (aj,t,q = −1)

)

, (E.5)

the extrinsic log-likelihood ratios of aj,t,q ∈ {±1}, q = 1, 2, obtained by the single-

user decoders. Note that we assumed in (E.5) that ϕext is an identity operator.

With the help of (C.22) and (D.1), some (tedious) algebra gives the posterior mean

estimates of the data symbols of interfering users

〈x̃j,t〉(ℓ)
j =

∑

x̃j,t∈M x̃j,tQ(x̃j,t)
∏M

m=1 f
(
zj,t,m | 〈h̃j,t,m〉(ℓ)x̃j,t; Dt + mse

(ℓ)
j,t,m

)

∑

x̃j,t∈M Q(x̃j,t)
∏M

m=1 f
(
zj,t,m | 〈h̃j,t,m〉(ℓ)x̃j,t; Dt + mse

(ℓ)
j,t,m

)

(E.6)

=
1√
2

[

tanh




λ

(ℓ−1)
aj,t,1

2
+

M∑

m=1

√
2

Dt + mse
(ℓ)
j,t,m

ℜ
{

〈h̃j,t,m〉∗
(ℓ)zj,t,m

}





+j tanh




λ

(ℓ−1)
aj,t,2

2
+

M∑

m=1

√
2

Dt + mse
(ℓ)
j,t,m

ℑ
{

〈h̃j,t,m〉∗
(ℓ)zj,t,m

}





]

,

(E.7)

where f (z | µ; Ω) is the complex Gaussian density (C.58). Similarly we get

〈h̃j,t,mx̃j,t〉(ℓ)
j =

Dt

Dt + mse
(ℓ)
j,t,m

(
〈h̃j,t,m〉(ℓ)〈x̃j,t〉(ℓ)

j + mse
(ℓ)
j,t,mD−1

t zj,t,m
)
. (E.8)

The corresponding terms for the user of interest ξ are obtained from (E.7) – (E.8)

by setting λ
(ℓ−1)
aξ,t,q = 0, q = 1, 2. It is interesting to note that (E.8) and (D.18) have

similar form.

Let us now concentrate on the case σ̃2 = σ2. Assuming the replica symmetry

holds, the noise variance Dt is given by the solution to the fixed point equation

Σk,t,m

(
Dt, D̃t = Dt

)
= Σ̃k,t,m

(
Dt, D̃t = Dt

)

= Ed
k

{
|hk,mxk,t −

〈
h̃k,t,mx̃k,t

〉

(ℓ)
|2
}
, ∀k ∈ K. (E.9)

where Ed
k{ · } is defined in (4.67). Denoting Σk,t,m

(
Dt
)

= Σk,t,m

(
Dt, D̃t = Dt

)
,
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and simplifying yields

Σk,t,m

(
Dt
)

= Ed
k

{
|hk,mxk,t −

〈
h̃k,t,mx̃k,t

〉(ℓ)

k
|2
}

=
D2

t

(Dt + msek,t,m)2

[∣
∣hk,m

∣
∣
2

+ D−1
t mse

2
k,t,m

+
∣
∣〈h̃k,t,m〉(ℓ)

∣
∣
2
(

Ed
k

{
|〈x̃k,t〉(ℓ)

k |2
}

− 2ℜ
{

Ed
k

{
x∗

k,t〈x̃k,t〉(ℓ)
k

}})

− 2ℜ
{

∆h∗
k,t,m〈h̃k,t,m〉(ℓ)E

d
k

{
x̃∗

k,t〈x̃k,t〉(ℓ)
k

}}]

(E.10)

=
D2

t

(Dt + msek,t,m)2

(

|hk,m|2 + D−1
t mse

2
k,t,m − |〈h̃k,t,m〉(ℓ)|2Ed

k

{
|〈x̃k,t〉(ℓ)

k |2
})

,

(E.11)

where ∆hk,t,m = hk,m − 〈h̃k,t,m〉(ℓ). The last term of (E.10) vanishes in (4.70) for

the LMMSE channel estimator as K → ∞, and is therefore is omitted in (E.11).

We also used the first equality in (by symmetry same holds for the imaginary part

of the signal)

∑

ak,t,1∈{±1}
ak,t,1Q(ak,t,1)ℜ

{
〈x̃k,t〉(ℓ)

k

}
=

∑

ak,t,1∈{±1}
Q(ak,t,1)ℜ

{
〈x̃k,t〉(ℓ)

k

}2
(E.12)

=
∑

ak,t,1∈{±1}

1 + ak,t,1 tanh(λ
(ℓ−1)
ak,t,1 /2)

2

×
∫

tanh



ak,t,1
λ

(ℓ−1)
ak,t,1

2
+ νk

√
√
√
√

M∑

m=1

|〈h̃k,t,m〉(ℓ)|2
Dt + msek,t,m

+
M∑

m=1

|〈h̃k,t,m〉(ℓ)|2
Dt + msek,t,m



Dνk,

(E.13)

where we used the fact that for λ ∈ R and E > 0

∫
1 + tanh(λ/2)

2
tanh

(

E + ν
√

E +
λ

2

)

−1 − tanh(λ/2)

2
tanh

(

−E + ν
√

E +
λ

2

)

Dν

=

∫
1 + tanh(λ/2)

2
tanh

(

E + ν
√

E +
λ

2

)

+
1 − tanh(λ/2)

2
tanh

(

E + ν
√

E − λ

2

)

Dν, (E.14)
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where Dν is defined in (2.44). Using (E.13) and the knowledge that {ak,t,q}2
q=1 are

IID yields

Σk,t,m

(
Dt
)

=
D2

t

(Dt + msek,t,m)2

[

|hk,m|2 + D−1
t mse

2
k,t,m

−|〈h̃k,t,m〉(ℓ)|2 Eλ
(ℓ−1)
ak,t,1

{
∑

ak,t,1∈{±1}

1 + ak,t,1 tanh(λ
(ℓ−1)
ak,t,1 /2)

2

×
∫

tanh



ak,t,1
λ

(ℓ−1)
ak,t,1

2
+ w

√
√
√
√

M∑

m=1

|〈h̃k,t,m〉(ℓ)|2
Dt + msek,t,m

+
M∑

m=1

|〈h̃k,t,m〉(ℓ)|2
Dt + msek,t,m

)

Dw

]}

. (E.15)

Little bit of algebra and re-organizing the terms completes the proof.

E.2 Derivation of (4.110) and (4.120).

Consider the set of single-user channels defined in (4.65), and assume the receiver

postulates the channels (4.76). The GPME is defined in (4.81) and the posterior

mean estimates {〈h̃k,t,m〉(ℓ)}M
m=1 of the channel are provided by the LMMSE esti-

mator of of Example 8 for all users k = 1, . . . , K. The (unconditional) posterior

mean of the channel has a complex Gaussian distribution (E.2) in the large system

limit, as found in Proposition 8. We also define the vectors

zk,t = [zk,t,1 · · · zk,t,M ]T, (E.16)

〈h̃k,t〉(ℓ) = [〈h̃k,t,1〉(ℓ) · · · 〈h̃k,t,M 〉(ℓ)]
T, (E.17)

ṽk,t = 〈h̃k,t〉(ℓ)x̃k,t + ∆ṽk,t, (E.18)

where ∆ṽk,t ∈ C
M is given in (4.80). For notational convenience the iteration

index will be omitted in the following.

Let the user of interest be ξ ∈ K. For the interfering users j ∈ K \ ξ, the

postulated a priori probability is given in (4.82). Performing the Gaussian integrals

in (4.81) by using (C.22) and (D.1) yields

〈x̃j,t〉(ℓ)
j = mH

j,tzj,t + Γ̃−1
j,t 〈x̃j,t〉(ℓ−1)

ext (E.19)

mH
j,t =

Ω̃
(ℓ−1)
∆xj,t

Γ̃j,t

〈h̃j,t〉H
(ℓ)(D̃tIM + Ω̃

(ℓ)
∆vj,t

)−1, (E.20)

Γ̃j,t = 1 + Ω̃
(ℓ)
∆xj,t

〈h̃j,t〉H
(ℓ)(D̃tIM + Ω̃

(ℓ)
∆vj,t

)−1〈h̃j,t〉(ℓ). (E.21)
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A little bit more algebra gives

〈∆ṽj,t〉(ℓ)
j = Ω̃

(ℓ)
∆vj,t

[

D̃tIM + Ω̃
(ℓ)
∆vj,t

+ Ω̃
(ℓ−1)
∆xj,t

〈h̃j,t〉(ℓ)〈h̃j,t〉H
(ℓ)

]−1

×
(

zj,t − 〈h̃j,t〉(ℓ)〈x̃j,t〉(ℓ−1)
ext

)

, (E.22)

and, thus,

〈∆ṽj,t〉(ℓ)
j = 〈h̃j,t〉(ℓ)〈x̃j,t〉(ℓ)

j + 〈∆ṽj,t〉(ℓ)
j

= D̃t
(
D̃tIM + Ω̃

(ℓ)
∆vj,t

)−1

×
[(

〈h̃j,t〉(ℓ)m
H
j,t + Ω̃

(ℓ)
∆vj,t

D̃−1
t

)
zj,t + Γ̃−1

j,t 〈h̃j,t〉(ℓ)〈x̃j,t〉(ℓ−1)
ext

]

= D̃t
(
D̃tIM + Ω̃

(ℓ)
∆vj,t

)−1
(

〈h̃j,t〉(ℓ)〈x̃j,t〉(ℓ)
j + Ω̃

(ℓ)
∆vj,t

D̃−1
t zj,t

)

, (E.23)

where (E.23) is similar to the expressions (D.18) and (E.8). Like in the previ-

ous section, we can obtain the desired user’s equation by setting Ω̃
(ℓ)
∆xξ,t

= 1 and

〈x̃ξ,t〉(ℓ)
ext = 0. Since

〈h̃k,t〉(ℓ)Γ̃
−1
k,t =

(
IM − 〈h̃k,t〉(ℓ)m

H
k,t

)
〈h̃k,t〉(ℓ), (E.24)

we have

hkxk,t − 〈ṽk,t〉(ℓ)
k = D̃t

(
D̃tIM + Ω̃

(ℓ)
∆vk,t

)−1

×
[(

IM − 〈h̃k,t〉(ℓ)m
H
k,t

)(
hkxk,t − 〈h̃k,t〉(ℓ)〈x̃k,t〉(ℓ−1)

ext

)

−
(
〈h̃k,t〉(ℓ)m

H
k,t + Ω̃

(ℓ)
∆vk,t

D̃−1
t

)
wk,t

]

, (E.25)

ṽk,t − 〈ṽk,t〉(ℓ)
k = D̃t

(
D̃tIM + Ω̃

(ℓ)
∆vk,t

)−1

×
[(

IM − 〈h̃k,t〉(ℓ)m
H
k,t

)(
∆ṽk,t + 〈h̃k,t〉(ℓ)(x̃k,t − 〈x̃k,t〉(ℓ−1)

ext )
)

−
(
〈h̃k,t〉(ℓ)m

H
k,t + Ω̃

(ℓ)
∆vk,t

D̃−1
t

)
w̃k,t

]

. (E.26)

Recalling the definitions (4.35) – (4.37) we get

∆vk,t + 〈h̃k,t〉(ℓ)∆xk,t = hkxk,t − 〈h̃k,t〉(ℓ)〈x̃k,t〉(ℓ−1)
ext , (E.27)

so that writing ∆x̃k,t = x̃k,t − 〈x̃k,t〉(ℓ−1)
ext , by (4.70) and (4.77) the connection
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between the true and postulated noise variances is obtained

D−1
t σ2 + lim

K→∞
α

KDt

K∑

k=1

tr
[

Ed
k

{

D̃t
(
D̃tIM + Ω̃∆vk,t

)−1(
IM − 〈h̃k,t〉mH

k,t

)

×
(
∆ṽk,t + 〈h̃k,t〉(ℓ)∆x̃k,t

)(
∆ṽk,t + 〈h̃k,t〉(ℓ)∆x̃k,t

)H

×
(
IM − mk,t〈h̃k,t〉H

)(
D̃tIM + Ω̃∆vk,t

)−1
D̃t

}]

= D̃−1
t σ̃2 + lim

K→∞
α

KD̃t

K∑

k=1

tr
[

Ed
k

{

D̃t
(
D̃tIM + Ω̃∆vk,t

)−1(
IM − 〈h̃k,t〉mH

k,t

)

×
(
∆vk,t + 〈h̃k,t〉(ℓ)∆xk,t

)(
∆vk,t + 〈h̃k,t〉(ℓ)∆xk,t

)H

×
(
IM − mk,t〈h̃k,t〉H

)(
D̃tIM + Ω̃∆vk,t

)−1
D̃t

}]

.

(E.28)

For the postulated noise covariance, on the other hand,

Ed
k

{
(ṽk,t − 〈ṽk,t〉)(ṽk,t − 〈ṽk,t〉)H

}

= D̃t(D̃tIM + Ω̃∆vk,t
)−1

(

Ω̃∆vk,t
+ 〈h̃k,t〉mH

k,tD̃t

)

, (E.29)

which has the same form as (D.21).

Let us now consider the special case of SUMF-based receiver described in Ex-

ample 12. Given arbitrary Ω̃∆xk,t
> 0, we get from (4.71) and (E.29) σ̃2 → ∞ =⇒

D̃t → ∞ and σ̃2/D̃t → 1. On the other hand, postulating first Ω̃∆xk,t
= 0 and

taking then the limit σ̃2 → ∞ gives also D̃t → ∞ and σ̃2/D̃t → 1, as expected.

Since

lim
D̃t→∞

(
IM − 〈h̃k,t〉mH

k,t

)
= IM , (E.30)

the general expression for the decoupled noise variance of the data detector in Ex-

ample 12 reads

Dt = σ2 + α lim
K→∞

1

K

K∑

k=1

tr
[

Ed
k

{(
hkxk,t − 〈h̃k,t〉(ℓ)〈x̃k,t〉(ℓ−1)

ext

)

×
(
hkxk,t − 〈h̃k,t〉(ℓ)〈x̃k,t〉(ℓ−1)

ext

)H
}]

, (E.31)

which completes the proof of Proposition 10.

Now, recall that the multipaths are uncorrelated and let the CSI be provided

by the LMMSE CE defined in Example 8, so that E{∆hk〈h̃k,t〉H} = 0. For the

LMMSE-PIC MUDD described in Example 11, σ̃2 = σ2 and Ω̃∆vk,t
= Ω∆vk,t

=
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diag
(
[msek,t,1, . . . , msek,t,M ]

)
∀k, where {msek,t,m}M

m=1 are the per-path MSEs

obtained by the channel estimator. This implies due to (E.28) that D̃t = Dt. Using

(4.71), (4.78) and (E.29) gives after some algebra (4.118) and (4.120).
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Appendix F

Saddle Point Integration for Multivariate

Functions with Complex Arguments

Consider calculating an integral of the form

IK =

∫

C
h(z)e−Kg(z)dz, (F.1)

where the integral is along the curve C, z ∈ C
d, g is a real valued function and h

changes slowly compared to g. With some abuse of notation, let

z = x + jy, where x, y ∈ R
d ⇐⇒ c =

[

z

z∗

]

∈ C
2d so that g(z) = g(c),

(F.2)

be two equivalent representations of the function g with complex argument z. We

define

∂g

∂c
=

[
∂g

∂z

∂g

∂z∗

]

,
∂g

∂z
=

1

2

(
∂g

∂x
− j

∂g

∂y

)

,
∂g

∂z∗ =
1

2

(
∂g

∂x
+ j

∂g

∂y

)

,

(F.3)

and expand g(z) as Taylor series around the point z0 ∈ C
d (= c0 ∈ C

2d)

g(c) = g(c0) +
∂g(c0)

∂c
︸ ︷︷ ︸

=∇c g(c0)

(c − c0)

+
1

2
(c − c0)H

[
∂

∂c

(
∂g(c0)

∂c

)H

︸ ︷︷ ︸

=∇2
cc

g(c0)

]

(c − c0) + · · · (F.4)
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where ∇c g(c0) is the complex gradient and

∇2
cc g(c0) =

[

∇2
zz g(c0) ∇2

z∗z g(c0)
(
∇2

z∗z g(c0)
)∗ (

∇2
zz g(c0)

)∗

]

, (F.5)

the complex Hessian of g at c0 [203]. Note that the Hessian is a Hermitian matrix

and, thus, the block matrices satisfy ∇2
zz g(c0) =

(
∇2

zz g(c0)
)H

and ∇2
z∗z g(c0) =

(
∇2

z∗z g(c0)
)T

.

Now, let z0 be a local extrema1 so that ∇c g(c0) = 0, and approximate g(z)

near z0 by the linear and second order terms on the right hand side of (F.4). Write

z−z0 = Φt where Φ = diag
(
[ejφ1 · · · ejφd ]

)
∈ C

d×d and t = [t1 · · · td]T ∈ R
d.

Fix the angle Φ and the integral in (F.1) becomes

IK ≈ h(z0)e−Kg(z0)
∫

Rd
exp

[

−1

2
KtT

(

2ℜ{∇2
Φ g(c0)}

)

t

]

det(Φ)dt, (F.6)

where

∇2
Φ g(c0) = Φ

H
(
∇2

zz g(c0)
)
Φ + Φ

H
(
∇2

z∗z g(c0)
)
Φ

H ∈ C
d×d, (F.7)

is a Hermitian matrix. Performing the Gaussian integral over t yields the final result

IK ≈ h(z0)e−Kg(z0) det(Φ)

√

(π/K)d

det
(
ℜ{∇2

Φ
g(c0)}

) , z ∈ C
d. (F.8)

Two special cases

• z = x ∈ R
d, Φ = I;

• z = jy ∈ C
d, y ∈ R

d, Φ = jI;

are obtained from (F.3) and (F.7) by noticing that

∇2
I g(c0) =

1

2
∇2

ℜ g(x0) =
1

4
· 2

∂

∂x

(
∂g(x0)

∂x

)T

, x ∈ R
d, (F.9)

∇2
jI g(c0) =

1

2
∇2

ℑ g(jy0) =
1

4
· 2

∂

∂y

(
∂g(jy0)

∂y

)H

, y ∈ R
d, (F.10)

and, therefore,

IK ≈ h(x0)e−Kg(x0)

√

(2π/K)d

det
(
∇2

ℜ g(x0)
) x0 ∈ R

d, (F.11)

IK ≈ h(jy0)e−Kg(jy0) det(jId)

√

(2π/K)d

det
(
ℜ{∇2

ℑ g(jy0)}
) , y0 ∈ R

d. (F.12)

1In fact, it has to be a saddle point in this case.
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