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Abstract

Code-division multiple-access (CDMA) systems with random spreading and chan-
nel uncertainty at the receiver are studied. Frequency selective single antenna, as
well as, narrowband multiple antenna channels are considered. Rayleigh fading is
assumed in all cases. General Bayesian approach is used to derive both iterative and
non-iterative estimators whose performance is obtained in the large system limit via
the replica method from statistical physics.

The effect of spatial correlation on the performance of a multiple antenna CDMA
system operating in a flat-fading channel is studied. Per-antenna spreading (PAS)
with random signature sequences and spatial multiplexing is used at the transmit-
ter. Non-iterative multiuser detectors (MUDs) using imperfect channel state infor-
mation (CSI) are derived. Training symbol based channel estimators having mis-
matched a priori knowledge about the antenna correlation are considered. Both the
channel estimator and the MUD are shown to admit a simple single-user charac-
terization in the large system limit. By using the decoupled channel model, the
ergodic spectral efficiency with single-user decoding and quarternary phase shift
keying (QPSK) constrained modulation is derived. In contrast to the case of perfect
CSI where transmit correlation has no effect on the ergodic system performance
with random PAS, the results show that with channel estimation the ergodic ca-
pacity can improve significantly as the correlations between the transmit antennas
increase. This requires that the channel estimator knows the correct long term spa-
tial correlation in advance, while no information is required at the transmitter.

Iterative multiuser receivers for randomly spread CDMA over a frequency se-
lective Rayleigh fading channel are analyzed. General Bayesian approach for iter-
ative channel estimation and data detection and decoding is proposed. Both lin-
ear and non-linear iterative schemes are considered with soft or hard information
feedback. The equivalent single-user representation of the system is derived in the
large system limit via the replica method. The decoupled single-user channel, and
density evolution with Gaussian approximation are used to obtain the spectral effi-
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ciency and bit error rate (BER) of the system using bit-interleaved coded modulation
(BICM) and Gray encoded QPSK mapping. The results indicate that in the large
system limit and under certain threshold loads, near single-user BER performance
with perfect CSI can be achieved by using a vanishing training overhead. This re-
quires, however, an iterative receiver using soft feedbacks only. For relatively slowly
time-varying multipath fading channels, the iterative linear minimum mean square
error (LMMSE) based channel estimator is also shown to be near optimal in terms
of maximizing the spectral efficiency of the system when combined with iterative
LMMSE or maximum a posteriori multiuser detectors.

A novel training method based on probability biased signaling is proposed. By
assuming an entropy maximizing biasing scheme and standard BICM, it is shown
via numerical examples that the proposed training method can offer superior per-
formance over the conventional training symbol based approach when combined
with iterative receivers.
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Chapter 1

Introduction

The main emphasis in wireless communication systems has been gradually shift-
ing during the recent years from relaying voice calls to providing mobile access to
web-based services, such as, high quality multimedia streaming. This has increased
the data rate demands by several orders of magnitude, and future broadband mobile
communication systems are envisioned to provide throughputs of up to 1 Gbps. In
order to achieve such goals, broad bandwidth and physical layer techniques with
high spectral efficiency are required — not forgetting the sophisticated higher layer
scheduling and resource allocation methods that maximize the long-term through-
put. The present dissertation concentrates on analyzing some of the approaches in
the former category.

The rest of this chapter is organized as follows. A very general overview of
the topics discussed in this thesis is first given in Section 1.1. The presentation
and references there are selected to be accessible to as wide audience as possible.
A more detailed and technical literature review of the relevant areas is presented
in Section 1.2. Finally, Section 1.3 discusses the aims of the research work and
provides the outline for the rest of the dissertation.

1.1 Background

The current state-of-the art cellular system in Europe is the third generation (3G)
Universal Mobile Telecommunication System (UMTS) [1, 2], based on wideband
direct sequence code division multiple access (DS-CDMA) technology [3-6]. Al-
though the original specification of the UMTS network contained very basic phys-
ical layer techniques, several technological evolutions have added new features to
it, such as multi-antenna transmission [7-9] and more sophisticated multiuser de-
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tection (MUD) [4, 5, 10]. Both of the proposed schemes lead to increased user
data rates as well as cell capacity, and further progress is on-going for still new
techniques that can help to achieve the goals set for future wireless systems.

1.1.1 Multiple Access

Let us consider the UMTS system mentioned above. The signals traveling between
the user terminal and the base station can be divided into two rough categories:

* Signals emanating from the base station (downlink transmission);
» Signals emanating from the user terminal (uplink transmission).

In a multiuser CDMA system, the downlink transmission corresponds to a one-to-
many scenario, that is, the transmitted signal has one physical source and several
geographically dispersed receivers that are operating independently of each other.
The signal transmitted by the base station may contain information that is shared by
all users, or what is more common, each user wishes to decode its own unique mes-
sage embedded in the transmission. The uplink transmission is in a sense the mirror
image of the above, i.e., a many-to-one scenario. In this case, several independent
user terminals are trying to send their messages to a common destination, that has
to decode each of them from what ever it receives through the channel. In wireless
systems one of the problems encountered is that the radio waves transmitted at the
same time and on the same frequency band interfere with each other in the propa-
gation medium. Therefore, some form of signal processing is again needed at the
receiver to reliably separate the messages coming from different users. In informa-
tion theory, the one-to-many scenario is called the broadcast channel, whereas the
many-to-one is the multiple access channel [11]. In this thesis we consider only the
uplink, or multiple access case, where several simultaneous transmissions emanate
from the non-cooperative user terminals and the base station receives a corrupted
superposition of these signals.

In the following, the only multiple access technique that will be discussed in de-
tail is CDMA. More precisely, we consider a form of non-orthogonal code division
multiple access where the signature sequences of the users are drawn according to
a predefined probability distribution [3, 5]. This is in contrast to multiple access
techniques such as time division multiple access and frequency division multiple
access [6], where the degrees of freedom are typically allocated to the users in a de-
terministic manner to guarantee orthogonality. The disadvantage of non-orthogonal
multiple access schemes like the randomly spread CDMA is that they require rela-
tively sophisticated signal processing at the receiver in order to operate efficiently.
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On the other hand, since the number of users that can access the system simulta-
neously is not strictly bounded by the number of orthogonal dimensions present in
the transmission, there is a greater flexibility in controlling the user loads within a
cell. For our purposes, however, the most important benefit of random spreading is
that well developed mathematical tools to analyze the performance of such systems
exists [12-15].

1.1.2 Iterative Processing

One of the paradigms of modern signal processing are the iterative, or so-called
turbo, algorithms [16]. The basic motivation behind the iterative algorithms is sum-
marized in the following quote of Viterbi [17]:

Never discard information prematurely that may be useful in making a
decision until after all decisions related to that information have been
completed.

More precisely, we would like two or more subsystems that are capable of operating
indepently to exchange information between each other in a manner that makes iter-
ative refinement of their initial outputs possible. As it turns out, the most important
condition for the successful execution of an iterative algorithm is to make sure that
the information received by a subsystems is extrinsic to it.

The iterative principle has been applied with a great success, e.g., to intersymbol
interference (ISI) cancellation, iterative multiuser detection and decoding (MUDD),
iterative channel estimation (CE), decoding of error control codes (ECCs), and so
on [16, 18-24]. Typically two different information exchange, or feedback, strate-
gies called “soft” and “hard” are identified. The difference between the two is that
in the former, the feedback contains all the information that is obtained by the sig-
nal processing block, whereas intermediate quantization is performed in the latter
before the other subsystem are allowed to use it. It is commonly accepted that the
former guarantees a better performance since the intermediate quantization leads
to an inevitable loss of information, but the latter might be easier to implement in a
practical system.

In this thesis, the emphasis is on the iterative MUDD and channel estimation
methods. Both soft and hard feedback schemes are considered. The estimation
algorithms are derived from the factor graph [21-26] representation of the system.
One of the advantages of this approach is that the iterative process can then be
analyzed by using, for example, density evolution or extrinsic information transfer
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(EXIT) charts [21-24]. We shall concentrate on tracking the information exchange
between different blocks by using density evolution with some simplifications, as
will be explained in the later chapters.

1.1.3 Multiple Input Multiple Output Channels

The use of multiple antennas at the receiver for diversity and array gain in single-
user systems has been in the telecommunication engineers’ tool bags for a long
time [6, 8, 9]. One of the examples is the uplink of Global System for Mobile
Communications (GSM), where the receiving base station is equipped with multiple
antennas to mitigate the effects of low transmit power of the user terminal. Multiple
antennas at the receiver can also be used for interference avoidance, or even as a
multiple access scheme in multiuser systems [8, 9]. Recently the possibility for
diversity and array gains was extended to the case of multiple transmit antennas as
well, by using space-time codes [27] and transmit beamforming [8, 9], respectively.
One of the drawbacks of transmit beamforming, however, is that it requires (some
form of) channel state information (CSI) at both the transmitter and the receiver.

For future communication systems where the design goal is to enable high data
rates, the greatest promise of multiple antennas is not the diversity, but the pos-
sibility to multiplex several simultaneous transmissions in space. This requires
an antenna array at both ends, creating a so-called multiple input multiple output
(MIMO) channel between the transmitter and the receiver. The significance of the
MIMO channel is that if the environment is rich scattering, spatial multiplexing can
provide a dramatic increase in capacity compared to an equivalent single-antenna
system. This is usually called degree-of-freedom, or spatial multiplexing, gain.
For a MIMO system with M transmit antennas and N receive antennas, the ca-
pacity increases roughly linearly in min{ M, N} if the system is operating over a
fast Rayleigh fading channel that is perfectly known at the receiver [7-9]. This is
a significant improvement over the logarithmic increase in spectral efficiency as a
function of signal to noise ratio (SNR). Furthermore, to achieve this, there is no
need for transmitter CSI and linear minimum mean square error (LMMSE) filter
with successive interference cancellation (SIC) suffices at the receiver.

From a practical point of view, one caveat in the above discussion is that the
capacity achieving signaling scheme is Gaussian. Such a continuous modulation
over an uncountable signal set is not a feasible choice for a real-life system. Unfor-
tunately, the LMMSE estimator with SIC is not an optimum decoding method for
modulation schemes used in practice, such as phase shift keying (PSK), even when
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combined with optimum codes. The situation is even worse for off-the-shelf ECCs
that tend to suffer from error propagation if naive interference cancellation is used.
Nevertheless, multiple antennas combined with the aforementioned iterative algo-
rithms and efficient ECCs provide significant benefits for practical systems as well.
Research efforts to find new and improved MIMO schemes that can be realized in
the future wireless systems are naturally still going on.

1.2 Review of Earlier and Parallel Work

In this section we provide references to more technical literature regarding the topics
relevant for the future discussion. The following is not meant to be by any means a
comprehensive review of earlier work and emphasis is put on literature related to it-
erative signal processing and multiuser detection. Due to their more comprehensive
nature, journal articles are in general preferred to papers published in conference
proceedings. Interested reader will find the first published results in the cited article.

1.2.1 A Brief History of Multiuser Detection

The simplest non-trivial data detector for a DS-CDMA system is the single-user
matched filter (SUMF), or the conventional detector. It is well known that the
SUMF is optimal for single-user communication and for equivalent cases, such as,
synchronous narrowband multiuser systems with orthogonal signature sequences
[4-6, 10]. Unfortunately, for modern wideband CDMA systems, such as the UMTS,
several problems arise with the use of the conventional detector. First, even if the
transmissions are synchronous, multipath propagation tends to destroy the orthogo-
nality of the signature waveforms in which case the SUMF becomes highly subop-
timal. Second, unless strict uplink power control is employed, the near-far problem
arises due to highly unequal received signal powers between the users. At its sim-
plest, this causes the signals of the users who are far from the base station to drown
under the transmissions of the users who are near the base station. In addition to
strict power control, techniques such as handover are employed in UMTS network to
mitigate this problem [1, 2]. All of this adds up to the fact that in practical scenarios
the conventional detector tends to suffers from the near-far problem and severe mul-
tiple access interference (MAI) [4, 5, 10], even if orthogonal spreading waveforms
are used.

The first published proposal for improved detection in multiuser systems using
non-orthogonal spreading sequences and operating in additive white Gaussian noise
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(AWGN) channels was made by Schneider [28]. Due to an error in the derivation,
however, instead of being the optimum detector, the resulting MUD was a linear
estimator known nowadays as the decorrelating or zero-forcing (ZF) detector. The
breakthrough in multiuser detection came somewhat later in the seminal work of
Verdud [29-32] (see also [5]), where the concept of multiuser efficiency (ME) was
introduced. Oftentimes the ME is considered in the high SNR region where it can
be defined implicitly as the constant 7,2_,o € [0, 1] that satisfies (see [5])

_emo(/?) (1.1)
720 €su(No250/0?)
The functions eg, (SAF) < ey (SAF) above are the average bit error rates (BERs)
of the equivalent single-user and multiuser systems in a channel that has the av-
erage received SNR of snr = 1/02. Hence, the asymptotic ME 7,2_,, quantifies
the loss in effective SNR due to MAI and describes the interference suppression
capabilities of the MUD at high SNR. Interestingly, in [5, 29-32] it was found that
in contrast to the conventional detector for which the asymptotic ME 7,2_,; = 0
(the system is multiple access limited), the optimum MUD has a non-zero asymp-
totic ME 7,2_,o > 0 for all finite user loads. Furthermore, under certain conditions
even single-user performance, i.e., 17,2_,o = 1 can be achieved. Unfortunately, the
optimum receiver was also found to be non-linear with its complexity increasing
exponentially in the number of users.

The interest in detection algorithms that would strike a balance between the per-
formance and complexity lead to the study of low complexity sub-optimum linear
MUDs [33-36]. The results showed that the decorrelator and the LMMSE multiuser
detectors exhibit similar near-far resistance, i.e., the worst case asymptotic ME, as
the optimum MUD but with significantly lower complexity. In addition to the linear
detectors, several schemes combining linear MUD with serial [37, 38] and parallel
[39, 40] interference cancellation or sequential decoding [41] were soon proposed
and analyzed. For a comprehensive overview on the early literature on MUD, see
for example, [4, 5] and the references therein.

The common feature in the aforementioned studies was that the performance
of the systems under consideration depended on the selection of the deterministic
spreading sequences assigned to the users. An alternative approach, first proposed
for the study of conventional detectors [42] (see also [3]), is to use random signature
sequences instead of deterministic ones and average the performance over the se-
lection of the spreading codes. Random spreading combined with the large system
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analysis! was used to obtain the high SNR performance of multiuser detectors in
[5, 43]. Rather surprisingly, it was found that the optimum MUD achieves asymp-
totic ME n,2_,5 = 1 with probability one under random spreading. This is not true
for the decorrelating or the LMMSE detector for any positive user load o, since for
these MUDs the asymptotic ME is given by 17,2, = 1 — a, where 0 < a <1
[5, 43].

By using methods similar to [5, 43], upper and lower bounds for the sum-
capacity of the CDMA channel with joint decoding were derived in [44]. The re-
sults showed that random spreading is on average near optimum for large heavily
loaded systems. The average near-far resistance of the LMMSE detector [45], and
the capacity of decorrelating detector with and without decision feedback [46] of
randomly spread DS-CDMA were also considered. It was, however, the introduc-
tion of the random matrix theory (RMT) to telecommunications engineering that
finally shifted the paradigm in multiuser detection to the randomly spread CDMA
systems [12]. We shall investigate this topic more thoroughly in the next section.

1.2.2 Large System Analysis:
Random Matrix Theory and the Replica Method

One can argue that with the large system analysis of randomly spread CDMA by
Verdd [5], (with Shamai) [47, 48] and Tse & Hanly [49, 50], not forgetting the
early studies on MIMO systems by Telatar [51, 52] and Foschini & Gans [53, 54],
the telecommunications engineering entered the random matrix theory era. The
contribution of [47, 48] was the information theoretic analysis of optimum joint de-
coding as well as linear multiuser detection when combined with capacity achieving
Gaussian codes. In [49, 50], the concepts effective interference, effective bandwidth
and resource pooling were introduced, allowing for a surprisingly simple charac-
terization of the performance of linear MUDs in fading channels. These results
were soon refined to show that the limiting distribution of the signal to interference
and noise ratio (SINR) and MAI of the linear detectors was in fact Gaussian [55—
57]. Further extensions related to multiuser communications included, for example,
symbol-asynchronous CDMA [58] and analysis of DS-CDMA in multipath fading
channel when linear MUD and channel estimation is employed at the receiver [59].
The latter of these was in fact one of the main motivations for the research work
presented in this thesis. Some other avenues where RMT has found applications in-

"Large system analysis refers to the case when the number of users K and the length of the
spreading sequence L are allowed to grow without bound with a finite and fixed ratio o« = K/L.
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clude multicell environments [60], precoded transmission [61], multicarrier CDMA
(MC-CDMA) [62], multi-antenna systems [51-54, 63—66] and design of novel re-
ceivers [67-71] for DS-CDMA, to name just a few. For a comprehensive overview,
see [12] and the references therein.

A typical application of random matrix theory from the telecommunications
engineering point of view is when we are interested in some scalar parameter (say
output SINR of the multiuser detector or the uncoded bit error rate of the system)
that is a function of the eigenvalues and eigenvectors of some random matrix. For
finite systems these parameters are in general random variables but, under certain
conditions, they converge to deterministic values when the dimensions of the ran-
dom matrix are allowed to grow without bound? [12, 73]. Unfortunately, not all
problems encountered in telecommunications fall into this category. For example,
when the problem to be considered contains a combinatorial optimization problem,
the tools of RMT tend to fall short and different approach is needed. As we shall
see next, one of these approaches comes from theoretical physics — the original
source of random matrix theory as well.

The seminal paper of Tanaka [74] (see also [75] and [76]) was the first one to
report the large system performance of randomly spread CDMA with binary phase
shift keying (BPSK) and non-linear Bayesian optimum receiver. At the same time,
a new mathematical tool called the replica method from statistical physics [13-15]
was introduced to the information theory society at large®. Tanaka’s original result
was extended to arbitrary input constellations and fading channels with unequal
received power distribution by Guo & Verdud [85] (see also [86]). Some of the
concepts that were implicitly introduced in [74], namely the decoupling principle
later generalized by Montanari [87] and Tanaka & Nakamura [88], and generalized
posterior mean estimation (GPME), were also further developed in [85] (see also
[89]).

Soon the replica method was applied to various problems in communications
that had so-far evaded analytical treatment. Examples of these included analysis
of multicarrier CDMA with non-linear MUD over frequency selective fading [73,

The eigenvalue spectrum of certain random matrices can be described also for finite dimensional
cases and these results have their applications in the analysis of wireless systems as well. However,
the finite dimensional results tend to be more cumbersome to use and somewhat limited in scope
compared to their asymptotic counterparts. For an overview, see [12, 72] and the references therein.

3Tanaka’s paper was not the only one utilizing the replica method to solve a problem related
to telecommunications. For example, regular and irregular low density parity check codes [77, 78]
were analyzed in [79, 80], and the parallel concatenated turbo codes [81] were considered in [82, 83].
These papers, however, were published in physics journals and written to an audience that was already
familiar with the method. A more thorough survey can be found, for example, in [14, 15, 84].
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90, 91], comparison of space-time spreading schemes for general MIMO CDMA
[92, 93], capacity and bit error probability (BEP) analysis of MIMO channels with
binary inputs [94], study of general vector channels [95], analysis of quadratic op-
timization problem arising from vector precoding [96] and sum-rate analysis of
multiuser MIMO with spatial correlation [97-99]. Slightly different application of
the replica method was also used to determine the moments of mutual information
of a slow fading correlated Rayleigh fading MIMO channel with Gaussian inputs
[100, 101]. It should be remarked, however, that although the replica method is a
standard tool in statistical physics, some of the steps in the “replica trick” are lack-
ing formal justification and present an open problem in mathematical physics. For
an overview of the topic, see for example [102-104]. Some recent developments
related to the Tanaka’s original result [74], can be found in [105-107]. Another re-
cent paper [108] considers the first order replica symmetry breaking in the original
vector precoding problem investigated in [96].

A common theme in all of the aforementioned studies apart from [59, 90] was
that the channel state information was assumed to be perfect at the receiver. In
practice this is not a very realistic assumption since for coherent communication
the channel must be estimated by some means at the receiver with a finite accuracy.
Another technique that is of practical importance and has not yet been discussed
are the iterative MUDD and channel estimation schemes. These topics will be the
main focus of the next section.

1.2.3 Design and Analysis of Iterative Receivers

The optimum receiver for coded CDMA is the maximum likelihood (ML) decoder
that simultaneously resolves the messages of all users. For the symbol synchronous
CDMA with Gaussian codes, significantly less complex LMMSE data estimator
followed by successive interference cancellation can be used alternatively without
any loss in the maximum sum-rate [109]. It is important, however, to make a dis-
tinction between the interference cancellation methods [37—40] discussed earlier,
and the post-decoding IC discussed in this section. The former use uncoded sym-
bols in an effort to remove the MAI, whereas here the IC is performed after de-
coding (and re-encoding) the ECC. If interference cancellation is omitted in the
synchronous case, irreducible loss in capacity is experienced due to the separation
of detection and decoding [46-48, 85, 110, 111]. For binary code books, the loss
in spectral efficiency with LMMSE estimation is more severe than in the Gaussian
case [110]. This is not surprising since LMMSE estimator is optimal for AWGN
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channel with Gaussian inputs, whereas for the binary case the optimum MUD is
the non-linear maximum a posteriori (MAP) detector [30, 74]. The latter is also
commonly known as the individually optimum (IO) MUD in the literature. Adding
SIC to the LMMSE-based MUD front-end mitigates the loss in spectral efficiently
noticeably but is still a highly suboptimal decoding strategy for discrete channel
inputs. It should be remarked though, that smart rate and power control alleviates
the performance degradation significantly [112]. In order to achieve the jointly de-
coded capacity one must, however, combine the Bayesian optimum MAP detector
with SIC [85, 110].

With capacity achieving codes the optimum decoding strategy for synchronous
randomly spread CDMA is thus the combination of optimum MUD front-end and
SIC, regardless of the channel inputs [85, 110]. In practice, however, the decoded
signals are not error-free due to delay constraints, code construction and lack of
flexibility in choosing the code rate. Straightforward application of SIC in such
case can in fact lead to performance loss compared to the case without IC due to
error propagation. To prevent this happening, intuitively one should somehow take
into account the uncertainty of the feedback symbols when performing the inter-
ference cancellation. Such a reasoning combined with the lessons learned from
decoding of turbo codes was used to derive algorithms for the iterative multiuser
detection and decoding of CDMA transmissions [113-118], decoding of spatially
multiplexed transmissions [119, 120], and iterative ISI suppression [121-123]. The
performance of these proposals, however, was studied via rather time consuming
Monte Carlo simulations (for a further review, see [16]).

In this thesis, the factor-graph [21-26, 124] based iterative multiuser detection
and decoding framework proposed by Boutros & Caire [125] (see also related re-
sults [126—128]) is endorsed. A notable benefit of this approach is that it provides a
formal framework for interference cancellation based receiver design that can be an-
alyzed via density evolution® [21, 23, 24, 132, 133]. In addition to iterative MUDD,
this methodology has also been used, e.g., in the design and analysis of MIMO
systems [134]. Recently, alternative approaches to the derivation of iterative data
detection and decoding algorithms in coded systems have also been proposed, for
example, based on divergence minimization [135] and variational inference with
mean-field approximation [136]. The evaluation of the derived algorithms in these
studies was, however, carried out by using computer simulations.

Apart from two exceptions [137, 138] that will be discussed in more detail later,

*Performance analysis similar to [125] were also performed in [129-131] by using a combination
of RMT and central limit theorem.
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the iterative schemes presented so-far have either been analyzed with the assump-
tion of perfect CSI at the receiver, or studied via numerical Monte Carlo simula-
tions. The effects of imperfect CSI on DS-CDMA and MC-CDMA systems with
non-iterative MUD were considered by using RMT and the replica method in [59]
and [90], respectively. Other analytical treatments on the same topic include multi-
ple access [139] and MIMO [140] channels, where lower bounds for mutual infor-
mation were found by assuming a pilot-aided LMMSE channel estimator. Slightly
different approach was used to study the optimality (or the lack of it) of Gaussian
code books and nearest-neighbor decoding with different levels of channel side in-
formation in single [141] and multi-antenna [142] channels. Albeit several studies
have shown via numerical simulations that iterative channel estimation can reduce
the training overhead and improve the reliability of the CSI significantly [143-152],
the only effort to analyze the performance of such a receiver has been made to our
knowledge by Li, Betz & Poor in [138]. Indeed, mathematical analysis of iterative
systems with imperfect CSI is the main topic of the present dissertation.

1.3 Aim and Outline of the Thesis

Channel estimation is an integral part of practical wireless systems. So-far, how-
ever, it has received somewhat lesser amount of interest in the analysis of multiuser
CDMA channels. The purpose of the present thesis is to address this issue with a
methodology that is general enough to be extended in future for further cases of in-
terest as well. The main topics covered in the dissertation are the asymptotic replica
analysis of:

1. Multi-antenna DS-CDMA systems in spatially correlated channels using

linear channel estimation and multiuser detection (Chapter 3);
2. Single-antenna DS-CDMA systems operating in multipath fading channels
and employing iterative channel estimation, detection, and decoding (Chap-
ter 4).
As it turns out, channel estimation can indeed have a highly non-trivial impact on
the system performance. The rest of this monograph is organized as follows.

» Chapter 2 introduces the notation used in the rest of the thesis and describes
the system model for both of the aforementioned cases. The key assumptions
made in the analysis are presented. Some background information on the
mathematical methods employed later is given.

* Chapter 3 considers spatially correlated MIMO DS-CDMA systems. Differ-
ent channel estimation and data detection algorithms are derived as specific

11
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instances of a general Bayesian inference problem. In addition to optimum
non-iterative pilot-assisted LMMSE channel estimator, two covariance mis-
matched linear MMSE estimators and an ML channel estimator are intro-
duced. The MUDs considered in this chapter include the non-linear MAP
detector, the linear MMSE and decorrelating detectors as well as the SUMF.
The performance of the system is analyzed with the help of the decoupling
principle, obtained via an application of the replica method. This chapter
extends the previous results on multi-antenna CDMA systems [50, 92, 153—
155] to the case of spatially correlated MIMO channels with CSI mismatch
at the receiver.

Chapter 4 derives a class of iterative channel estimators and MUDDs whose
performance is analyzed later in the thesis. Specific examples arising from
the general approach are presented, covering all the usual iterative MUDDs,
as well as, iterative LMMSE and ML based channel estimators. The decou-
pling results for the iterative receiver are presented and performance ana-
lysis carried out. This chapter provides to our knowledge the first proposal
for a systematic way of analyzing iterative receivers and contains as special
cases the results reported in [137] and [138]. Indeed, the analysis covered in
[138] were approximate whereas exact large system results are provided in
this chapter.

Chapter 5 provides the conclusions and discussion on the obtained results.
Some future topics for further research are sketched. Most of the proofs are
relegated to Appendices A — F.



Chapter 2

Preliminaries

This chapter provides necessary background information for the following analysis.
We start by introducing the notation used for the rest of the thesis in Section 2.1. The
discrete time signal models for the systems studied in the later chapters are given
in Section 2.2. Some notes on the employed coding methods follow in Section 2.3,
and a novel transmission scheme based on probability biased signaling is introduced
in Section 2.4. A brief review of density evolution is carried out in Section 2.5,
and discussion about the connection between the statistical physics and information
processing can be found in Section 2.6.

2.1 Notation

Calligraphic symbols denote for sets and boldface symbols for (column) vectors
and matrices. The transpose, complex conjugate and complex conjugate trans-
pose of a matrix A € CM*N are AT, A* and A", respectively. For matrix
A=lajay - ay] € CM*N we define A = vec(A) = [a] a] --- a-]';,]T €
CMN _Given a vector a € CM | and a sequence of matrices (A1,..., Ay ), A; €
CMixMi ‘welet D = diag(a) € CM*M be a diagonal matrix defined by the vector
a,and D = diag(Aq,...,Ay) € C2s Mix 3, Mi g plock diagonal matrix formed
from (Aq, ..., Ap). Operator ® is the Kronecker product and for positive definite
matrix A we write in shorthand A > 0. We also denote & for a 1 x N row vector
andey = [11--- 1] € RM for the vector of M ones. Operators {-} and 3{-}
return the real and imaginary part of the argument, respectively.

Throughout the thesis, we write  ~ P and & ~ Q for a random vector (RV)
drawn according to the true IP and postulated Q) probability distribution, respec-
tively. The postulated RVs are denoted by the same symbol as the true one with the

13
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tilde on top. One can think of the postulated distributions as the receiver’s, possibly
mismatched, information about the random variables in the system. When the dis-
tribution of the random variable x depends on the iteration index £ = 1,2, ... (see
Chapter 4), we write IP(“) () and omit the index ¢ otherwise. The mean and co-

variance of P(¥) (x) are ugf ) and Q;(,;e), and the corresponding mean and covariance

of the postulated RV & read ﬂ,(me) and Qa(f ). The posterior mean estimate of a RV

x, and the related error covariance matrix, are denoted by <:i>( ¢) and QXL, respec-
tively, unless stated otherwise. We also use IP and @ to denote true and postulated
probabilities (in case of discrete RVs) and densities (for absolutely continuous RVs)
when applicable. The suitable interpretation should be clear from the context.

If  is a proper complex Gaussian random vector [156] with mean p,, = E{x}
and covariance matrix Q; = E{(x — p,)(x — p,m)H}, we write in shorthand
x ~ CN(py; Q) or P(z) = CN(p,; Q). Pr(-) denotes for the probability of
the argument. The Dirac measure concentrated at = € CM is defined as 9, (A) = 1
when € A and 0,(A) = 0 otherwise, satisfying | f(y)d(dy) = f(x) for any
continuous' f : CM — R. The indicator function is defined as d,(A) = 1 4(z).
All integrals should be considered as Lebesque-Stieltjes integrals over the entire
support of the kernel unless stated otherwise.

2.2 System Model

In this section, the discrete time signal models for the systems considered in the
present dissertation are outlined. We start by considering a MIMO DS-CDMA
system operating over a flat fading channel in Section 2.2.1. Single-antenna DS-
CDMA system in a multipath fading channel is introduced in Section 2.2.2. The
assumptions made in the channel models and the connections between the two sys-
tems are briefly discussed. Before proceeding to the details of the system models,
two remarks are made:

1. We use the same notation for the variables of both systems. This should
cause no confusion since the analysis is carried out in a separate chapter for
both of them.

2. Throughout the dissertation the transmitter is assumed to have no informa-
tion about the channel conditions.

"Note that formally f should have a compact support. We can always make it so by letting the
range to be the set of extended real numbers while treating the axes of the complex plane C as extended
real lines.

14



2.2. System Model

2.2.1 MIMO DS-CDMA in Flat Fading Channel

Let us first consider a synchronous uplink MIMO DS-CDMA system operating over
a narrowband block fading channel [157, 158] with a fixed coherence time of T¢op,
symbols. For simplicity, let the mobile terminals of all users £k = 1,..., K have
M antennas while the receiver is equipped with N antennas. By the assumption of
narrowband transmission, the channel is modeled by a single fading tap and hence
there is no intersymbol interference (ISI) in the system.

Consider the fading block ¢ = 1,2,...,C and time instant ¢t = 1,..., Tioh.
The discrete time received vector after matched filtering and sampling is given for
the chipindex [ =1,..., L

Hk[C]kat[C]Sk,l,t -+ wl,t[c] S (CN, teT,

dl- -
M=

Yy 4lc] = b 2.1)
Z Hk[C]XkJ[C]SkJ,t + wu[c} € (CN, teD,
k=1
where
T:{ly---,Ttr} and D:{Ttr+17"'7Tcoh}7 (22)

contain the time indices related to the training and data transmission phases, re-
spectively. The corresponding diagonal matrices

Py ylc] = diag(py4[c]), teT, (2.3)
Xy tle] = diag(zr[c]), teD, 24)
contain the pilot py ,[c] = [prsilc] -+ Py, wld]] " and information bearing vec-
tors @y 4[c] = [zgealc] -+ xm,M[c]]T sent by the user k € K = {1,..., K}

during 7 and D, respectively. For future reference, the number of data vectors
transmitted by each user during one fading block is denoted by 74 = |D|. Note that
since we consider spatial multiplexing at the transmitter, the elements of pj, ;[c] and
x, +[c| are assumed to be independent in the following.

The set containing the (vectorized) MIMO channels of all users during the cth
fading block is given by

Heo = {Hylel = vec(Hyld) = [B4[e] -+ BLyld]" € € |k e K},

(2.5)
where by [c] € C¥ is the channel vector between the kth user’s mth transmit
antenna and the N receiving antennas. The spreading sequence at time instant t =
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Figure 2.1. Per-antenna spreading scheme with spatial multiplexing.

1,...,Teon fortheuser k € K andchipindex! = 1,..., Lis writtenas sy ;; € CcM,
and wy4[c] ~ CN(0; 0?Iy) represents the additive white Gaussian noise at the
receiver.

For the following development, let us write

P ={pplc e MM |Vke K,t e T}, (2.6)
Xy = {p4]c) € MM | VE € K}, teD, 2.7)

for the set of all training symbols (known at the receiver) and for the set of all data
symbols transmitted during the ¢th time slot, respectively. We also assume that the
RVsin P and {X; | V¢ € D} are independent identically distributed (IID) with their
elements uniformly drawn from the quarternary phase shift keying (QPSK) signal

set . '
J

m={x s+ b 28

o) (2.8)

For notational convenience, we write }; = {y;;|l = 1,---, L} for signals re-

ceived during the ¢th time slot and Y = {)}, | t € T} for the set of vectors
received when the pilot symbols P were transmitted.

For the CDMA we consider a random per-antenna spreading (PAS) scheme that
assigns all users and transmit antennas a unique signature sequence [92, 153-155,
159]. See Figure 2.1 for an illustration. For the system model (2.1), this translates
to the assumption that the RVs in

S = {sr1t=[skt11 - Skaan)' | VK, 1t} (2.9)
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are perfectly known at the receiver and have IID elements with zero mean and
unit variance. This is in contrast to per-user spreading (PUS) [92, 153], where the
spreading codes of the users are independent, but same signature sequence is used
for all the antennas of a given user. The motivation for concentrating on the PAS
scheme here stems from the decoupling results derived in [92] (see also [160]). The
analysis revealed that in the large system limit, when the receiver has perfect CSI
and the SNR relatively high, the PAS scheme is able to provide a full multiplexing
gain regardless of spatial correlation, whereas PUS was limited by the degrees of
freedom in the MIMO channel. Therefore, one expects that per-antenna spreading
provides higher spectral efficiencies in correlated environments. The actual com-
parison of the two spreading methods under the assumption of channel estimation
is, however, left as future work.

By the assumption of block fading channel, we let the RVs in {H [c] | Vc}
be IID for all users £ = 1,..., K. Furthermore, the channels between different
users are assumed to be independent and the RVs H[c],c = 1,...,C, are drawn
according to the proper complex Gaussian distribution IP(H [c]) = CN(0; Qg ),
where the spatial correlation is given by the “Kronecker” model? o, =Ty ®R.
Here, T, € CM>*M and R € CN*V are Hermitian positive definite and represent
the decoupled transmitter and receiver side covariance matrices, latter of which has
been normalized to have diagonal entries of unity. We also assume that {Tk;}ﬁ{:1
are IID and drawn according to a well defined discrete distribution pi.. The average
SNR for user k is defined as snry, = #1/02, where ;, = tr(T).

2.2.2 DS-CDMA in Multipath Fading Channel

Consider next a synchronous uplink DS-CDMA system, operating over a block fad-
ing multipath channel with a coherence time of 7T, symbols. For the following
discussion we make the simplifying assumption that the ISI induced by the multi-
path fading has negligible effect on the system performance. We therefore omit the
equalization from the analysis and assume that the received signal is not corrupted
by ISI. This corresponds to a scenario where the delay spread of the channel is small
compared to the symbol period or a block transmission with sufficiently long cyclic
prefix is used. Another way of looking at the following results is to consider them

?Note that this correlation model coincides with the assumption that the channel matrix is drawn
according to P(H[c]) = CN(M = 0; Q, = T, X = R), where CN(M; Q, X)) is the complex
matrix Gaussian distribution (see, e.g., [161]). For theoretical discussion on this correlation model,
see e.g., [66, 162]. Some practical considerations and model verification via channel measurements
can be found, for example, in [163, 164].
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as being an upper bound on the performance of a practical system that may suffer
from ISI.

The discrete time model after matched filtering and chip-rate sampling for the
tth received vector y,[¢] € CF within the fading block ¢ = 1,. .., C can be written

as
K

1
VI ;::1 Si.ihi[clprilc] +wid € CE, teT,

| K
—= 2 Skih + eCkt, ten,
\/Ek;l kthilczg ¢[c] + wi[c]

where 7 and D are defined in (2.2) and collect the time indices when the 7y, train-

Yile] = (2.10)

ing {prt[c]}+te7 and 7q = |D| information symbols {zy +(c| }+cp of the user k =
1,..., K are transmitted. The spreading matrix for the kth user at time index ¢
is given by Sj.;, € CE*M_ The set of all received vectors during the cth fading
block is written as V. = {y,[c] | t = 1, ,Teon}, and similarly H. = {hy[c] =
[hale] -+ hy, M[CHT € CM | Yk} denotes the fading coefficients of all users in
the cth fading block. For notational simplicity, we let the number of multipaths M
and the spreading factor L be the same for all users. The samples {w;[c] | V¢, ¢}
of thermal noise at the receiver are assumed to be IID and drawn according to the
complex Gaussian distribution P(w;[c]) = CN(0; o2I}).

Let us now consider the spreading matrices Sy, ; = [sk,t’l e sk,nM} e CLxM,
t=1,...,Thn, where s ¢, is the spreading sequence corresponding to the mth
resolvable multipath. As with the case of MIMO DS-CDMA in Section 2.2.1, we
assume that due to random spreading S = {S},; | Vk, ¢} are IID random matrices.
For a fixed time index ¢, however, the spreading sequences {s k7t7m}%:1 of the kth
user are not IID random vectors. In fact, the spreading sequences for each multipath
are cyclically shifted replicas of each other. For the following analysis we make the
crucial assumption that [59, Theorem 4] holds for our system.

Assumption 1. Without loss of generality, the spreading sequences {Sk,t,m}%[zl
can be modified to have IID entries with zero mean, unit variance and finite mo-
ments forall t = 1,..., Teop. O

Given the Assumption 1 and under the condition that we can neglect the effects
of ISIin the analysis, comparing (2.1) and (2.10) reveals that the DS-CDMA system
operating over an M -path fading channel is equivalent to a MIMO DS-CDMA sys-
tem with M transmit antennas and one receiving antenna in a flat fading channel,
given each transmit antenna has the same data. Thus, we could use (2.1) to repre-
sent the MIMO system described in Section 2.2.1, or a single input multiple output
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(SIMO) DS-CDMA system in a multipath fading channel by taking into account
the distribution of the elements of the transmit vectors. In the following, however,
when discussing the multipath fading channels, we limit our scope to the case of
single transmit and receive antenna and use (2.10) to describe the system.

For the statistical channel model, we consider the important special case of
frequency selective Rayleigh fading. The users are assumed to be well separated in
space and the environment rich scattering, so that the fading channels between the
users are independent and the multipaths uncorrelated [158]. The channel vectors
in . are thus independent with distribution P(hg[c]) = CN(0; £24,(), Where
Qp, | = diag(ty) and £, = [tgy --- fk,M]T € RM is the power delay profile
(PDP) of the kth user’s channel. For simplicity we let {£;}#_; be IID and drawn
according to a discrete distribution ppqp. The average received signal-to-noise ratio
for the user k is defined as in Section 2.2.1 and, thus, sAr;, = 7 /02, where ;, =

tr(ﬂhk [c])

2.3 Channel Coding

We next take a brief look at the two different coding strategies encountered later
in the thesis. Section 2.3.1 discusses capacity achieving signaling under Gaussian
and QPSK constrained channel inputs. Section 2.3.2 follows by introducing a sim-
plified coding scheme called bit-interleaved coded modulation (BICM) [165-168]
(see also [169]).

2.3.1 Capacity Achieving Codes

Consider a single-user system operating over an ergodic Rayleigh fading SIMO

channel®

y, = hyxy +w;, € CV, (2.11)
where w; ~ CN(0; D) and h; ~ CN(0; €4) are independent RVs for all ¢ =
1,2,...,T. Let the channel coefficients {h;}_; be perfectly known at the receiver.

Assume that the messages of the user have equal probability and they are mapped
before transmission to the code words = [z; --- 27| of a standard random
Gaussian code book with rate R [11, 170]. If ML decoding is used at the receiver,
all rates (in bits) below

Csimo = En{log,(1+h"D7'h)},  h ~ CN(0; Q4), (2.12)

3The reason for concentrating on the SIMO channel will become clear later when the multiuser
systems are shown to decouple into sets of single-user SIMO channels with colored Gaussian noise.
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are achievable with vanishing probability of error as 1" grows without bound [11,
170]. Conversely, for all R > Cgmo the error probability is bounded away from
Zero.

The capacity (2.12) of the SIMO channel (2.11) is achieved with Gaussian chan-
nel inputs. A natural question to ask from practical point-of-view might be — what
is the highest achievable rate of the same channel if we constrain the channel in-
puts, say to the QPSK constellation (2.8), i.e., xz; € M,t = 1,...,T. If we are
allowed to optimize the coding and modulation mapping jointly, the QPSK con-
strained capacity, or coded modulation capacity with QPSK mapping [165, 166], is

given by
C(s]irr)slc() = logy [M| — Nlogy e
1
_W Z Ew,h{ log, Z exp(— [w+ h(z — a?)]HDfl lw + h(z — 5:)})},

reEM TeEM
(2.13)

where w ~ CN(0; D) and h is as in (2.12) [171].

Example 1. Let N = 4 and w ~ CN(0; 021). The capacity of the channel (2.11)
with Gaussian (2.12) and QPSK signaling (2.13) is plotted in Figure 2.2 for uncor-
related and fully correlated receive antennas. As expected, the QPSK constrained
capacity saturates to 2 bits per channel use, whereas the maximum achievable rate
with Gaussian signaling keeps on growing with increasing SNR. &

2.3.2 Bit-Interleaved Coded Modulation

Let us denote the information bits of the user £ = 1,..., K by b € {0, 1}B,
where the elements of by are IID and uniformly drawn from the binary alphabet.
Encoding the data of the kth user with BICM consists of first applying a binary
error correction code to the information bits by, shuffling the coded bits by using
a random uniform bit-interleaver and finally employing a memoryless symbol-by-
symbol modulation mapping to form the channel inputs [165-168]. A practical
benefit of BICM compared the case of coded modulation, which was the capac-
ity achieving scheme discussed in the previous section, is that with BICM one can
concentrate on the task of finding efficient binary ECCs independently of the modu-
lation mapping. Separating the ECC and modulation causes a loss in the achievable
capacity but the degradation is very minor if Gray mapping is used, especially for
lower order constellations [165-167].
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Gaussian

Capacity [bits per channel use]

snr [dB]

Figure 2.2. Capacity (in bits per channel use) of a SIMO system with N = 4
receive antennas. Solid lines for uncorrelated antennas and dashed lines for
fully correlated ones.

Consider encoding the data by, of the kth user with BICM when the modulation
is constrained to the standard QPSK signal set M given in (2.8). We can write this
operation formally as

or - {0,182 = MT : by, — xy, (2.14)
where
xy, = vec([zp[1] -+ z[C]]) € MT, (2.15)
with
mk[c] = [xk,Ttr-l-l[C] Tk Teon [CHT € MTda c=1,...,C, (2.16)

is the code word containing the T = 74C channel coded information symbols of
theuser k = 1,..., K. The rate R = B/T BICM code book of the kth user is
written as

Cr = {xp = ¢r(by) | ¥b € {0,1}5). (2.17)
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Tcoh
Figure 2.3. Frame structure of the considered system.

In the later sections we occasionally use the notation
1 .
Tgt = ﬁ(ak,t,l +iakt2),  akp,ake2 € {£1}, (2.18)

where ay ;1 and ay, 4 o are the scaled real and imaginary parts of xy, ;, respectively.
Unless stated otherwise (see next section), we always consider binary linear ECCs
so that due to random bit-interleaving and Gray mapping the BICM decouples the
real and imaginary parts of the code symbols X, = {xy¢[c| | Vk,c,t € D} in the
limit T' = 7qC' — oo with 74 fixed, that is,

1 .
P <$k7t = \ﬁ(ak,m +Jak,t,2)> = P(ag,t,1)P(ar,t,2), (2.19)
where
1 1
P(ag,,q) = §5ak,t,q(—1) + §5ak,t,q(+1), qg=12 (2.20)

Assumption 2. In this thesis, the data bits are encoded by using binary trellis codes
with trellis termination. All users are assumed to derive the ECC from the same
ensemble of binary codes, while the random bit-interleavers are IID for all £ =
1,..., K. Gray modulation mapping is always employed. &

2.4 Training via Biased Signaling

In the previous sections we assumed that in addition to the information carrying data
symbols, each fading block ¢ = 1, ..., C contains also 7, training symbols for all
users. These symbols are always perfectly known at the receiver and can be used
to perform the initial channel estimation. The frame structure of this transmission
scheme is illustrated in Fig. 2.3. This is, however, not the only option and we shall
describe in the following a scheme based on probability biased signaling that can
be used to initiate the channel estimation.
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Let © = {0 +[c] € C | Vk,t,c} be a set of design variables known to both the
transmitter and the receiver. Define the conditional prior distribution of zy, [c] as

P(aplc] | Oplc]) = P'(R{zp,ele]} | R{Ok[c]})
<P (@]} | S{Onalc]}), 2.21)

where

:1+2\/§05x +1—\/§95x

P'(x | 6) (1/v2)

Similarly, we let P(6y ;[c]) = P'(R{0k ¢[c]})P'(3{Ok+[c]}) be the prior of 0} ;[c]
with

(—=1/V2). (2.22)

Atr
2

56(Ubias) +

B s (1/v/3) +

P'(0) =
(©) 2
1_Atr

So(—1/v2)
1- Atr

+

59(*Ubias>v (2.23)

where opi,s € [0,1/v/2) and Ay, € [0,1) are fixed design parameters for all
k,t and c. Thus, E{xy[c] | Orsc]} = Ok.lc], where R{0) :[c]}, S{Or+[c]} €
[—1/ V2,1 / ﬂ] Since O is assumed to be known at the receiver, setting opjas = 0
gives the traditional pilot assisted transmission scheme. For large Ton, we may
assume without loss of generality that each fading block has then 7, = Ay Teon
modulated “hard” pilot symbols, denoted as before by p;.[c] € M ™, and the num-
ber of data symbols 74 = Ton — Ttr is fixed for all fading blocks. If, on the other
hand, we set Ay, = 0, the optimum hyperprior for unconstrained receiver is re-
trieved (see [172, Prop. 2]).

The total training overhead of the system as a fraction of the total transmission

is given by
Atot == Atr + (1 - Atr)Ad E [0, 1), (224)
where we have assumed that
1 _ .
Ag=1—H (?) , (2.25)

is the amount of pilot information embedded in the data symbols, and

H(p) = —plogyp — (1 — p)logy(1 — p), (2.26)

is the binary entropy function. This corresponds to an ideal method of signal biasing
that incurs no additional overhead by itself. In the numerical examples we also
assume that the bit error rate performance of the BICM is not affected by the a
priori signal bias.
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2.5 Density Evolution

In [125, 126], the information exchange in the iterative processing was analyzed
with the help of density evolution [21, 23, 24, 132, 133]. The present dissertation
follows the same basic approach in the analysis of the iterative MUDD and the
iterative CE. Parallel scheduling with extrinsic information is used for multiuser
detection and decoding as in [125, 126]. All the results with iterative processing
are obtained in the limit of large code word length 7" — oo. As remarked in [125,
pp- 1780], the order of limits should be taken so that we first let 7' — oo and then
take the large system limit K’ = oL — oo, implying that for finite user loads
T > K. This is true for any modern wireless system, where the code words are
typically several thousand symbols long.

Simplifying the density evolution by treating the outputs of the sum-product
decoder as Gaussian random variables with symmetric density is used extensively
in the coding theory literature (see e.g., [133, 173, 174]). Although this is an ap-
proximation of the true output of a physical system, the error resulting from this
simplification is typically small. We make thus make the following assumption for
the rest of the thesis.

Assumption 3. For all iterations ¢/ = 1, 2, . . ., the true posterior distribution of the
symbol probabilities at the outputs of the sum-product decoders coincides with the
ones obtained by using density evolution with Gaussian approximation. &

Rest of the details regarding density evolution with Gaussian approximation are
postponed to Section 4.3.1.

2.6 Statistical Physics and the Replica Method

In this section, we give a very brief description of some of the main concepts in
statistical physics. The main focus is on the special set of magnetic materials, spin
glasses, whose mathematical models have been recently found to have connections
to many problems encountered in engineering and information processing sciences.
A mathematical framework proposed for the analysis of disordered spin glasses,
the replica method, is briefly discussed in the context of infinite range Sherrington-
Kirkpatrick (S-K) model of spin glasses [175] (see also [176] and [177]).

The following should not be taken as a general introduction to statistical me-
chanics, and the interested reader will find much deeper discussion on the connec-
tion between the statistical physics and information processing in the recent books
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[14, 15] (see [13, 102-104] for a discussion on the validity of the replica method
and the assumption of replica symmetry (RS) in statistical physics applications)
and articles [73, 75, 85, 88, 89]. A very nice introduction to statistical physics and
information processing in telecommunications can also be found in [178].

2.6.1 A Note on Statistical Physics

One of the main goals of statistical physics is to explain how the complex macro-
scopic (large scale) behavior of homogeneous physical systems arises from its sim-
ple microscopic (small scale) structure. The problem is, however, that an effort
to give a meticulous description of the interactions between the particles (atoms,
molecules, etc.) via (quantum) mechanics does not in general lead to tractable
mathematical models. Indeed, one of the key ideas in statistical physics is to use a
simplified probabilistic model for the particle interactions so that the resulting sys-
tem can be analyzed mathematically. To illustrate the concept, we shall consider in
the following a simple classical (as opposed to quantum) statistical mechanic sys-
tem that has connections to the mathematical models found in some engineering
disciplines as well.

Let the set {1,2,..., K} denote the for the K “sites” present in the system.
Here the term “site” is a placeholder capable of accommodating an arbitrary ab-
stract object used to characterize the microscopic particles of the physical system
under consideration. Throughout this section we shall assign the microscopic state
variables

x=[r1 o - a:K]T, x, € X, (2.27)

to their respective sites and let X be a finite set consisting of all allowed per-site
states. The energy function, or Hamiltonian®, for a given configuration & € X%
is denoted by E(x). As mentioned above, the key idea in statistical physics is that
the equilibrium interactions between the elements of « in E'(x) can be described in
probabilistic terms, and that this fully characterizes the macroscopic (deterministic)
behavior of the system in the thermodynamic limit, i.e., X' — oo.

In order to fix the nomenclature for the following discussion, let us now con-
centrate on the specific case of magnetic materials. Assume for simplicity that
X = {+1,—1}, i.e., the sites {1,2,..., K} are associated with the binary mi-
crostate variables z;, € {£1},k = 1,..., K. In statistical physics, such xj, are

“The Hamiltonian gives the microscopic energy (hence the other name energy function) of a given
configuration € X For our purposes, it is a real valued function that specifies the microscopic
behavior of the physical system of interest entirely. Here we do not dwell on the topic of how to find
suitable Hamiltonians for the physical system, but rather assume it has been predefined.
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called Ising spins and they represent the spins, or magnetic moments, of the elec-
trons. Let the Hamiltonian F/(x) be chosen such that it gives a (simplified) descrip-
tion of the microscopic interactions in the desired physical system. The starting
point for the analysis of such a system in the thermodynamic equilibrium is the
Boltzmann distribution, or the Gibbs measure,

P(x) = %e-ﬁEW, x e {£1}F, (2.28)

where 5 = 1/T > 0 is the inverse temperature. The special property of (2.28) is
that it maximizes the entropy>

H=-> P(z)logP(x), (2.29)

given the average energy

(E) =) P(z)E(x), (2.30)

is kept constant. Note that this condition arises from the observed behavior of phys-
ical systems in nature. The notation used in (2.30) is commonly used for averages
that are taken with respect to the Gibbs measure (2.28).

The physical interpretation of the Boltzmann distribution is that if we keep the
system at some fixed macrostate (say, constant volume, pressure, etc.), and let it set
to equilibrium with an infinite heat bath at temperature 7' = 1//3, the probability
of observing a particular configuration € {41} is given by (2.28). The most
probable configuration, ground state, is the one that minimizes the Hamiltonian
E(x) and is consistent with the constraints imposed at the macroscopic level. For
very low temperature 5 — oo, the system is thus found with very high probability
in its ground state. The normalization factor

Z =Y e FE@) (2.31)
T

in (2.28) is called the partition function, and it encodes the statistical properties
of the system in the thermodynamic equilibrium. In theory, if we know E(x) and
the configuration space X', all important macroscopic quantities (observables)
of the related physical system can be calculated from Z. Oftentimes, though, the
(normalized) thermodynamic quantity (given the limit exists)

1
F=—1lm —logZ 2.32
K1~r>noo Kog ’ ( 3)

>We have implicitly made here the so-called ergodicity assumption, i.e., for the observable quan-
tities the time-average equals the average over the probability distribution of the configuration space.
For this reason we have also omitted the time dependence in the state variables {xx }1_;.
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called (Helmholtz) free energy is more convenient for deriving the macroscopic
variables instead®. The problem with (2.32) (or (2.31)) is, however, that except for
some special cases (e.g., one and two dimensional Ising models), the computational
complexity of calculating the partition function Z directly is prohibitive due to the
large number of particles K in the system.

2.6.2 Spin Glasses and the Replica Method

One of the cases where the direct computation of the free energy (2.32) is infea-
sible arises with the aforementioned magnetic materials termed spin glasses. The
mathematical model for the spin glasses is chosen here for simplicity to be defined
by the Hamiltonian

1 K K
Ex)=——=>_ Y. Jixrrz, (2.33)
\/Ekzll:kJrl
where
Jok =1k |Vk=1,..., KANl=k+1,...,K}, (2.34)

is a set of K (K — 1)/2 1ID standard Gaussian random variables. In statistical
physics terms, the set J;_i represents quenched disorder in the spin glass, i.e.,
it defines a random interaction between the spins that does not evolve with time.
The Hamiltonian (2.33) represents a special case of the infinite S-K model of spin
glasses without an external field. It should be remarked that the above is not by
any means a realistic model for a physical spin glass since all sites in (2.33) are
mutually coupled and their geometric locations neglected. Such a simplification is
termed mean-field approximation in physics literature and we shall next consider
how to obtain the free energy (2.32) for this simplified spin glass model.

In statistical mechanics, it is oftentimes postulated that in the thermodynamic
limit K — oo, the free energy (2.32) converges to its quenched average, i.e.,

1 1
F=—1lm —logZ=—- lim —

K-vo0 BK Koo B 7B {log Z}, (2.35)

where the expectation is with respect to the quenched randomness of the spin glass,
namely, the interactions Js_k. This is called the self-averaging property of the free

%In fact, other thermodynamic potentials, such as, Gibbs free energy and enthalpy exist and are
better suited for some other cases. For our purposes, however, the free energy is the most convenient
choice and the physical quantities of interest (for example, magnetization) can typically be expressed
directly in terms of F' and its derivatives.
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energy and can be proved to be true for the S-K model rigorously (see, e.g., [102—
104]). For the rest of this thesis, however, the convergence of the type (2.35) is
assumed to exists for the free energies of our interest, and the proof is considered
to be out of the scope of the present dissertation.

Assumption 4. The thermodynamic limit of the free energy exists and it is self-
averaging with respect to the quenched randomness present in the system. &

With considerable foresight, we proceed to calculate the RHS of (2.35) and ex-
pect this to be a simpler problem than the one encountered in (2.32). Unfortunately,
assessing the expectation in (2.35) is still a formidable task. Somewhat simpler ex-
pression can be obtained if we define a real valued parameter n and use the identity

0 oz 1 Eg {Z"log(2)}

—log (IE 7" ) =E =

o8 E (2 = B (G o~
(2.36)

on the right hand side (RHS) of (2.35), i.e.,

1
F=—-lim —

) 1 . 0 "
A BK]Ejsik{log(Z)} = — lim — lim —nlog(Ejsik{Z 1.

K—oo K n—0
(2.37)
Note that given the Assumption 4 holds, the RHS in (2.37) is indeed equal to the
free energy in the thermodynamic limit. The problem still persists, however, that
evaluating the expectation for a real power n € R of the partition function is in
practice infeasible.
The basic idea of the replica method is to first calculate the moments of Z, i.e.,
E._,{Z"} for an integer n by introducing the statistically identical replicas (hence
the name replica method) of the Hamiltonians

| K K o
Bzl = - = SN el a=1,..n, (2.38)
k=1 1=k+1
where x{*} = [mia} 2 :L'E?}]T € XK foralla = 1,...,n. Then the

limit in (2.37) is taken as if n was real valued. In order to help the evaluation of the
summations over the replicated spin configurations, it is further postulated that the
limits commute and the free energy under the replica method can be written as

.0 1 . _BE(zla}
_ il - BE(x1%r)
Fn= TILII% n lim BK log (]Ejsk{ | | E e }) (2.39)

a=1 g{atex K
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Now, for the Gaussian interactions Js_, we can first assess the expectation in (2.39)
with the help of the Gaussian integral (see (C.22)). Furthermore, in the limit X' —
00, one can next use the results from large deviation theory (for example, [179,
180]) to calculate the summations over the replicated configurations {m{“} .
See [13, 14] for the actual computations in the S-K model and Appendix C in the
context of channel estimation.

Thus far we have simplified the original problem of computing an expectation
of a logarithm as encountered in (2.35), to Gaussian integrals and optimization
problems to find the saddle-points of exponential functions. Unfortunately, it is not
guaranteed that F}n, equals F’ for general Hamiltonians and quenched disorder. Fur-
thermore, one usually needs to limit the state space of the saddle-point conditions
in order to get a closed form solution for the free energy. This can be achieved by
defining a correlation matrix Q = [Q{a’b}]nxn with elements

K
Qlaby — % 3 E{x,{j}xib}}, ab=1,2,....n, (2.40)
k=1

and imposing symmetry conditions on Q. In this thesis, we consider only the replica
symmetric saddle-points (see Assumption 7 in Appendix C), which translates for
the S-K model as the condition

Qb = ¢, Va # b. (2.41)

Quite remarkably, obtaining the free energy for the S-K model under the assumption
of RS reduces then to solving a fixed point equation and a single integral (cf. [13,
Egs. (3.21) and (3.22)] and [14, Egs. (2.27) and (2.30)])

Frn_rs = —iﬁ(l — qrs)? — é/log (2 cosh(Br/qrs))Dr, (2.42)

Qrs = /tanhQ(ﬂm/qrs)Du, (2.43)
where we used the short hand notation
1
Dv — e~V dy, (2.44)

for the standard Gaussian measure.

The condition (2.41) may sound intuitively very reasonable since the replicas
were introduced merely as a mathematical trick to compute the expectation of a
power. Unfortunately (again), it is known that the RS free energy Fm—_rs is not the
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correct solution’ for the S-K model due to replica symmetry breaking (RSB) [13,
14]. It does, however, give a very good approximation in general, and sometimes
even the exact solution (say, for Gaussian spins). Due to the relatively complex
Hamiltonians encountered in the latter parts of the dissertation, we have left the
investigation of RSB as a future topic.

"The RS solution of the free energy gives in fact negative ground state entropy and energy, that
is, when 7' — 0. The correct form of the free energy for the S-K model has been recently proved
[104, 181] to be the so-called Parisi formula proposed in [177].
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Chapter 3

Non-lIterative Receivers for MIMO
DS-CDMA in Flat Fading Channels

In this chapter, the performance of multi-antenna DS-CDMA operating over a nar-
rowband Rayleigh fading MIMO channel is examined. The spatial correlation is
assumed to be given by the Kronecker model, as discussed in Section 2.2.1. The
receiver is composed of a non-iterative channel estimator and MUD — the latter of
which is not necessarily linear.

The outline of the chapter is as follows. Section 3.1 derives the pilot-aided chan-
nel estimators and non-iterative multiuser detectors suitable for MIMO DS-CDMA
from the class of generalized posterior mean estimators. The specific instances that
will be considered in detail are in decreasing order of complexity:

e Channel estimators: linear MMSE, covariance mismatched LMMSE and
maximum likelihood estimators;

* Data detectors: non-linear MAP, LMMSE, decorrelating and conventional
detectors.

In Section 3.2, the equivalent single-user representations of the multiuser systems
utilizing the components listed above are derived with the help of the replica method.
Using this single-user characterization, the large system performance analysis of the
multiuser receivers is carried out in Section 3.3. Selected numerical examples are
given in Section 3.4.

The channel estimators and multiuser detectors presented in this chapter are
studied with less detail than the iterative receivers considered in the next chapter.
The proofs follow along the same lines as the ones in Chapter 4, and are mostly
omitted. Brief discussion on the diagonalization of the equivalent noise covariance
matrices can be found in Appendix A. For notational convenience, we omit the
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block index c in the following discussion.

3.1 Multiuser Receivers via Bayesian Framework

Here we briefly describe the non-iterative CEs and MUDs for multiuser MIMO
DS-CDMA that will be analyzed later in the chapter. The outline is as follows.

» Section 3.1.1 presents a class of linear channel estimators for correlated MIMO
channels. Linear MMSE and ML estimators assuming different levels of a
priori knowledge about the channel conditions are given.

» Section 3.1.2 derives the MAP detector for the considered MIMO system
under the assumption of imperfect CSI. The equivalent detector for the case
of perfect CSI is oftentimes called the individually optimum detector in the
literature [5, 74, 85].

* Section 3.1.3 introduces a class of linear MUDs derived under the assumption
of mismatched channel information. Specific detectors considered include
the LMMSE and decorrelating MUDs and the SUMF.

3.1.1 Linear Channel Estimation

Consider the set of vectors )7 received during the training phase 7 in (2.1). For
notational convenience, define also a spreading matrix

Skt =[Sk1t Sk,L,t]T € MLXM, (3.1)

and a combined data-spreading matrix

1 T -
Gk = ﬁ[Pk,IS;—,l Pk,TtrS-lg,Ttr] ®IN € M trLNXMN' (32)
Note that (3.2) is perfectly known at the receiver (cf. Section 2.2.1). The informa-
tion contained in the set )7 and the channel model (2.1) during the time ¢ € 7 and

chip/ =1,..., L indices can then be written in the vector form
K
yr =Y GpH; +wy e Cv, (3.3)
k=1

where the complex Gaussian random vector w7 ~ CN(0; 0?I) represents the
samples of thermal noise during the training phase.
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Recall the notation introduced in Section 2.1. In order to derive a channel esti-
mator based on the knowledge of y+ and { G}, } ek, let us postulate a new channel
model related to (3.3) as

K
yr =Y GyH, +wr e CH. (3.4)
k=1

We let 52 be the postulated variance of the Gaussian noise w7 ~ CN(0; 52I),
and assign prior distributions (to be defined later) Q(H ) to the postulated channel
coefficients H w € CMN wE = 1,... K. The covariance matrix of the postulated
channel is written as H, = Tk ® R, where Tk and R are the postulated covari-
ance matrices related to the transmitter and receiver side spatial correlation. For
later use we denote H = {E x| k=1,..., K} for the set of postulated channels
of all users and let the postulated channels between the users be independent, i.e.,
Q(H) = [Ties Q(H,,).

We can now interpret (3.4) as the receiver’s knowledge about the true channel
model (3.3). All estimation algorithms are then based on the postulated information
(3.4), and the prior probabilities associated with the RVs in it. In general, if the two
system models (3.3) and (3.4) with the accompanying prior probabilities are not
the same, the resulting estimator can be thought of to be a mismatched solution to
a Bayesian inference problem. The mismatch may arise from a limited knowledge
about the parameters involved, or from a conscious choice. Albeit the latter may
seem like a strange position to take at first, it makes sense from the point of view of
system design when the limited resources prevent employing the optimum strategies
(see Sections 3.1.2 and 3.1.3). This method of deriving the desired estimators and
detectors is used for the rest of the thesis.

Denote Z = {S, P, Y7}, and let

QH)Eq 7 Q@ =yr | T.H)}
Eg{Q@r =yr | Z,H)} ’
be the postulated a posteriori probability (APP) of the channel coefficients of the

user £ € K, given the information 7 and channel model (3.4). The resulting GPME
[85, 89] reads

Q(H,|T)=

(3.5)

(H) = / HAQ(H, | T) € CMV, (3.6)

where <EE> = vec([(h¢y1) -+ (hear)]), and {<ﬁ€m>}£\n4:1 are the estimates of
{hem}M_,. If we postulate Gaussian priors Q(H}) = CN(O0; Qn, ) Vk € K,
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the integrals in (3.5) — (3.6) can be calculated with the help of (C.22), which yields
after some algebra' a linear estimator

K -1
(He) = Qp GY <Z G0, G} + 52ITt,LN> Y7, (3.7)
k=1

that is parametrized by:

1. {Qn . }E ., the postulated covariance matrices of the MIMO channels;
2. &2, the postulated noise variance.

When the GPME (3.6) is considered in the following, the underlying assumption
is always that Gaussian priors leading to (3.7) are postulated. For later use, we
let AH, = H, — <E ) be the error of the channel estimates, and Qa H, =
F{AH,AH ,';,'} the corresponding covariance matrix. The error covariance esti-
mate obtained by the CE is denoted by Qa H, - Note that Qna H, can be different
from QA H,,in which case the MUD is misinformed about the error statistics of
the channel estimates.

Example 2. Let 52 = 02 and Qg . = Qp, . The resulting estimator is the opti-
mum non-iterative pilot assisted MMSE channel estimator for the channel model

(3.3). &

Example 3. Let5? = o2 and assume that the CE knows the diagonals { T} , m }2_,
of T',, but neglects the correlations between the transmit antennas. We define two
mismatched CEs based on their knowledge about the receive correlation:

* Type-: R=R

e Type-2: R=1Iy
The resulting CEs are called covariance mismatched LMMSE channel estimators
of Type-1 and Type-2 for the rest of the chapter. &

Example 4. Let Q H, = I N and 52 — 0. The GPME (3.6) reduces then to the
ML channel estimator for the MIMO channel (3.3). &

Remark 1. In the following we assume that the posterior distribution (3.5) of the
channel estimates satisfies Q(H | Z) = [T, Q(H,, | Z), although this may not
strictly hold due to joint estimation over the users. &

'The matrix identity A — AU(C + VPNAU)'VHA = (A7 + UC'V™)~!, where the
inverses are assumed to exist, is very helpful here (see, e.g. [182] and the references therein).
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3.1.2 Non-Linear MAP Detector with CSI Mismatch

The first MUD to be considered for the MIMO DS-CDMA system is the non-linear
MAP detector. We start by re-writing (2.1) in the form

K
Y= Z Gk,l,tHk + wy € (CN, (38)
k=1
where shorthand notation
1 T
Gt = ﬁ(Xk,tsk,z,t ®Iy) €CN*MN (3.9)

was used for convenience. Suppose that before MUD, the CSI is obtained by the
LMMSE channel estimator of Example 2 in the form

Q(Hy | T) = CN({H}); Qam,)- (3.10)
We then postulate a new channel model related to (3.8)
K ~ ~
Uy =Y GruHy + i, € CV, 3.11)
k=1

where the matrix G‘k’l,t = ﬁ (X ket Skt QT N)T, contains the spreading sequence
Skt and the postulated data X gt = diag(Zy.). We also denote for later use
X, = {Zr+ | E =1,..., K} for the set of all transmitted vectors during the tth
index in the postulated channel model (3.11).

Now, assign the true prior probabilities Q(Zx; = x;) = P(xg) Vk € K
to the data symbols and let the noise be zero-mean complex Gaussian w;; ~
CN(0; 5%T) with the correct variance 62 = o2. The channel estimates are in-
troduced to the system model (3.11) by taking the conditional expectation over the

posterior probabilities (3.5), resulting to

QW =y | T, %,

K
= /Q(@l,t =y | L, X, Vi {H e y) H dQ(H, |I), 1=1,...,L.

k=1

(3.12)

Note that for Rayleigh fading channel the integrals can be calculated in closed form
and (3.12) is a conditional Gaussian distribution. The postulated APPs of the trans-
mitted symbols x¢ ; are then given by

Q(if,t)E)Et\fcm{HzL:l QU =y | T, X, yt)}

Qe | 7.01) = : :
g {1 Q@1 = w1y | 7.4, 31) |

,  (3.13)

35



3. Non-lterative Receivers for MIMO DS-CDMA in Flat Fading Channels

36

where the expectations are with respect to the postulated a priori probabilities of
the data symbols. The posterior mean estimate reads

(@es) = >, & QBer | T,)0). (3.14)

:i:gtEMJ\/[

3.1.3 Linear Multiuser Detection with CSI Mismatch

Having derived the optimum non-linear MUD in the previous section, we now turn
to the computationally less complex linear detectors. If the channel would be per-
fectly known at the receiver, one could simply proceed by assigning Gaussian priors
Q(Z+) = CN(0; I) to all users in (3.11) (see, e.g., [74, 85, 89]). When the chan-
nel knowledge contains uncertainty, however, such an approach does not directly
apply.

Consider the data transmission phase ¢ € D in (2.1). Let the channel estimates
{(hg.m) | Yk, m} and the error covariance matrices {2z H, | Vk} obtained by the
channel estimator as described in Section 3.1.1 be available to the MUD. Define an
error term

AV, = [Avfyy - Avfyyl" = (X @ Iy)AH, € CYY (3115
where Avy, ¢, € CN Vm, and write (3.6) as

(hy.1) 0
(Hy)g = € CMNXM, (3.16)
0 (hy.ar)

Using (3.1), (3.15) and (3.16), an equivalent re-presentation for the received signal
Y in (2.1) during the data transmission phase ¢ € D is obtained
1 & X
Y= —= (St ®IN)(Hp)awpy + (Sky @ IN)AV ), +w, € CHY. (3.17)
VLS
Note that so-far we have not changed the channel model, and writing out (3.17)
returns the same dependence between the received and transmitted vectors as in
2.1).

The receiver has knowledge of {Sj;} and {(H)q}, and the (possibly mis-
matched) statistics of the channel estimation errors {AH . }. Therefore, if we are
interested in estimating X ¢ ¢, for the user { € K, (3.15) contains a multiplicative er-
ror term and postulating Gaussian prior for the data does not yield a linear MUD as
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desired. It is worth pointing out though that if the estimation error A H ;, is complex
Gaussian and QPSK signaling is used, the true error term (3.15) is indeed complex
Gaussian. This is in fact what happens with the MAP detector discussed in previous
section. Intuitively, we could then argue that (3.15) contains no information from
the receiver’s point of view and treat AV, , as additional complex Gaussian noise
in the channel. However, this does not hold formally if we postulate Gaussian prior
for the data.
Let £ € K be the user of interest and denote for notational convenience Z; =
{Pv S, W, {<Ek> }kelC}- Let
1 & . -
Y — Z(Sk7t & IN)<Hk>d1i3k,t + (Skﬂg & IN)AK]W& +w; € (CLN, (3.18)

be the receiver’s knowledge of (3.17), where w; ~ CN(0; 52, ~) and the inter-
fering users have postulated Gaussian priors Q(Z;¢) = CN(0; I) Vj € K\ &.
Furthermore, let Aim = vec([ADs1 -+ AVpysn]) € CMN VE € K with the
postulated distribution Q(Aﬂkjt | Z;) = CN(0; Q AKM) represent the receiver’s
knowledge about the error term (3.15). The postulated APP of the £th user’s data
symbols transmitted during the time index ¢ € D reads then

Q(Zer | Tn)
Qe )Eg\s,, {E{Azkyt}ke,c{@(@t =y, | I, A, {Aik,t}kelo)}}

1053 {E{Azk,t}keK{Q(Qt =y, | Q@ =y, | Tt, X, {Azk,t}kEKv)}}
3.19)

where Q(Z¢ ;) is the postulated prior for the user of interest. Plugging (3.19) for
the posterior distribution in

(@) = /@g,tdQ(ﬁcg,t | ), (3.20)

gives the desired GPME? that is parametrized by:

1. Q(%¢,), the a priori probability of the transmit symbols;

2. Q N the postulated covariance of the error term arising from the channel
estimation errors;

3. &2, the postulated noise variance.

?See the Remark 4 in Section 4.1.5 for discussion on how to treat posterior mean estimates when
belief propagation based channel decoder is used.
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Note that if we postulate Q(Z¢¢) = CN(0; I), the GPME (3.20) reduces to the
familiar linear form

1
(Tet) = ﬁ<H£>?(Sgt ®Iy)
1 & -
X (521LN t7 > (Sk @ In) ((Hy) (Hy)™ + QAzk}t)(S';;t ® IN)) Yy
k=1

(3.21)

Example 5. Let us denote E4{-} = E{- | P, S, {(H})}rex } and assume that
EY{H, HY} = (H,)(H, )" + QAEk- The LMMSE estimator

(1) = Bz yf JE Yy, ui't ty,, (3.22)

equals then (3.21) with 52 = 0% and QAKk .= QAﬂk' This is akin to the linear
MMSE data estimator studied for the single-antenna multipath DS-CDMA systems
by Evans & Tse [59]. &

2 500,

we get the single-user matched filter and decorrelator that assumes perfect CSI,

Example 6. If we set QAKk , = 0 in (3.21) and then let 52 — oo or &

respectively. &

3.2 Decoupling Results

In this section, the decoupling of the multiuser MIMO DS-CDMA system described
in Sections 2.2.1 and 3.1 is presented. We assume for simplicity that pi, contains
a single mass point and the MIMO channels of the users are therefore IID. The
decoupling of the multiuser channel is obtained via an application of the replica
method by using the same methodology as in [85, 89, 92]. An analogous case can
be found in [183, Sec. V]. In deriving the decoupling results we have assumed that
the assumptions made in the replica analysis are valid and replica symmetry holds.
Note that the replica method relies on the large system limit where K = oL — o0
with fixed system load 0 < o < o0.

3.2.1 Linear Channel Estimation

Consider a set of single-user channels

Zkom = P + Wem €CN, wy,, ~ CN(0; C), (3.23)

Zpm = P + Wi € CN, g, ~ CN(0; C), (3.24)
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wherem =1,..., M, and
ﬂk = VeC([hk71 s hk,M]) ~ CN(O; ﬂﬂ)v (325)
H,, =vec([hp1 -+ hgu]) ~ CN(0; Q). (3.26)

Let the GPME for the true channel coefficients hy, ,,,m = 1,..., M, based on the
knowledge of (3.24) and (3.26), be given by

. By A T Q(Zr | i)}

(P = ——— (3.27)
" B v A TS Q(Zki | hii) }
Furthermore, let the noise covariances read
1 K M 5
C=c’Iy+alm —> > Q. (C,C), (3.28)
koo Ky et
_ ) 1 KM _
C =51 lim — Q Cc.C 3.2
Py talim g2 2 Qon,(C.0). (3.29)

where

Qg (C,C) = E{ (R — (Fin)e) (hiem — (o))"}, (3.30)
Qe (C,C) = E{ (R — () (Rrem — (o))"} (3.31)

Claim 1. Conditioned on {P,S}, the joint distribution of the true and postulated
inputs and the GPME (3.6) of the multiuser system converges in probability to the
Jjoint distribution of the true and postulated inputs and the GPME (3.27) of the
single-user system as K = aL — oo with « fixed.

3.2.2 Non-Linear MAP Detector with CSI Mismatch

Consider the set of single-user SIMO channels

Zkm = PemThm + Wem € CN, (3.32)
where wy, ,, ~ CN(0; D), m =1,..., M. Let

Zkn = R @hm + Wi € CV, (3.33)

with Wy, ~ CN(0; b) be the corresponding channel model assumed by the re-
ceiver. Denote

Tem = {Zkm, Qhim | T)}, (3.34)
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where the CSI Q(hy, ,,, | Z) is provided by the channel estimator. Let the postulated
prior coincide with the true one Q(Zy+) = P(xp: = T ) (see (2.19) — (2.20)).
The single-user posterior mean estimator based on (3.41) is written as

<. .. >k,m
_ ngk’me/\/{ Q(«%k,m) f te Q(zk,m = Zk,m | «%k,mv jk,m)dQ(iLk,m ’ I)
i mem QEem) [ Q(Zkm = Zkm | Tiym, Tiem)AQ(Rgem | )

(3.35)
foralm=1,...,Mand k =1,..., K. We write for notational convenience
E . =E{ | R, Tiom} (3.36)

so that the true D and postulated D noise covariance matrices are given by the
solutions to the coupled fixed point equations

] K M B
D =o’T lim — Sim(D, D .
g N+O€KI*I>IIOOK]{;1WLZ:1 k,m( ) )7 (3 37)
_ 1 K M -
D =51 lim — Sim(D,D .
G N+aK1_r>nooKl;1mZ:1 km (D, D), (3.38)
respectively, where 62 = o2 and
Y.m(D, D)
d I . H
- Ek,m {(hk,mxk,m - <hk,mxk,m>k,m) (h’k,mxk,m - <hk,mxk,m>k,m) } )
(3.39)
3.m(D, D)
d . . . - _ H
= E]@m {(hk,m$k,m - <hk7mxkz,m>kz,m) (hk,mxk,m - <hk,mxk,m>k,m> } .
(3.40)

Claim 2. Conditioned on {H,S} and the CE output, the joint distribution of the
true and postulated inputs and the GPME (3.14) of the multiuser system converges
in probability to the joint distribution of the true and postulated inputs and the
GPME (3.35) of the single-user system as K = oL, — oo with « fixed.

3.2.3 Linear Multiuser Detection with CSI Mismatch

Consider the set of single-user SIMO channels (3.32) in Section 3.2.2 and let

Zim = (Rkm)Thm + ADp o + Whm € CV, m=1,...,M, (3.41)
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where wy, ,,, ~ CN(O; D), be the channel model postulated for the kth user at the
receiver. The posterior mean estimates {(hy,.,)}}_; of the channel coefficients
{Ppm M are known and {Ady,,}2 | is a set of independent Gaussian RVs
with distributions Q(Avy ) = CN(0; QAkam),m =1,...,M, where QA'Uk,m
are the N x N block diagonals of the matrix Q AV, , introduced in Section 3.1.3.
Let the single-user GPME based on (3.41) be defined as

E:f:k’m,Af)k’m{ e Q(ék,m = Zkm ‘ i'k,rm A{)k,mp jk,m)}

e - e - — , (342)
< >k’m ]Ejk,"“Aﬁk,"L{Q(zk,m = zk,m ‘ $k7m7 Avk7m7 jk7m)}

forallm =1,...,M, k =1,..., K, and denote ¥y, = (Mg m)Thm + AVkm
for notational convenience. The true and postulated noise covariance matrices are

then given by the solutions to the coupled fixed point equations (3.37) — (3.38) with
(3.39) — (3.39) replaced by

Skm (D, D)

= B, { (Bmim — @xmdiem) Brmim = @rm)im) ), (3:43)
3km (D, D)

=B 1 { Brm — @rmdiom) Bm — Bemdim)} (3.44)

Note that if the a priori probability of the data is Gaussian

&y = [Eh1, . Ekm) | ~ CN(O; Iny), (3.45)
the data estimator based on the GPME (3.42) reduces to (g m)km = m',;"mzkm,
where R ~ ~ .

(hiem)™ (D + Qg )~
o = - (3.46)

L+ (R (D + Qav, ) (i)

Claim 3. Conditioned on {H,S} and the CE output, the joint distribution of the
true and postulated inputs and the GPME (3.20) of the multiuser system converges
in probability to the joint distribution of the true and postulated inputs and the
GPME (3.42) of the single-user system as K = aL — oo with « fixed.

3.3 Performance of Large MIMO DS-CDMA Systems

In this section the actual performance analysis of the multiuser MIMO DS-CDMA
system described in Sections 2.2.1 and 3.1 is carried out. Due to the relatively large
amount of different results that will follow, the organization of the next section is
provided below:
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* Section 3.3.1 considers the linear channel estimators given in Section 3.1.1.
The output statistics of the following CEs in increasing order of model mis-
match are obtained:

1. Optimum pilot-aided LMMSE channel estimator;

2. Covariance mismatched LMMSE channel estimators of Type-1 (ne-
glects transmit correlation) and Type-2 (neglects spatial correlation
completely).

3. Linear maximum likelihood channel estimator.

* Section 3.3.2 concentrates on the analysis of the MUDs introduced in Sec-
tions 3.1.2 and 3.1.3. The performance of the following non-iterative mul-
tiuser detectors, arranged in decreasing order of complexity, are given:

1. MAP detector;

2. LMMSE detector;

3. Decorrelator;

4. Conventional detector (SUMF).

It is assumed for the rest of this chapter that the replica symmetric solutions of
Claims 1 — 3 are valid, so that we can concentrate on studying the equivalent single-
user systems given in the previous section. For simplicity, we assume in the follow-
ing that the channels between the users are IID and T, = T Vk € K. We also
drop the user index k£ and omit the time dependence, writing with a slight abuse of
notation, e.g., Ty, = Tkt forsome k € K andt € D.

3.3.1 Linear Channel Estimation

In this section we examine the performance of the linear channel estimators de-
scribed in Section 3.1.1. The first result gives the error covariance estimate obtained
by the CE. We assume that this is also the information that the MUD has about the
error statistics in the channel estimation.

Proposition 1. Consider the linear channel estimator defined by (3.7). Let H be
the postulated covariance matrix of the channel H. The error covariance of the
channel estimates <E ), obtained by the channel estimator and forwarded to the
MUD reads then

Qan(C) = B{(H — (H))(H - (H))"}
—Qu(Iy©C+7Qy) (I ®C) e CMNMN (347

where C is the noise covariance (3.29) of the postulated single-user channel (3.24).
Let Q) Al (C) be the estimated error covariance matrices for the transmit antennas
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m =1,..., M, given by the M x M block diagonals of (3.47). The matrix C is
then given by

M
C=5In+a) Qan,(0). (3.48)
m=1
The error covariance matrices that are solutions to the coupled equations (3.47)
and (3.48) will be denoted by QAQ and {QAhm VM in the following.

Proposition 1 holds for all channel estimators introduced in Section 3.1.1 and
gives the postulated error covariance obtained by the CE in the form of coupled
equations (3.47) and (3.48). However, in order to assess the performance of the
system, we need to obtain the true error covariance 2 A g7 of the channel estimates as
well. For the optimum pilot-aided LMMSE channel estimator given in Example 2,
the two coincide and the MUD is thus correctly informed about the error statistics
in channel estimation.

Corollary 1. Let 52 = 0% and Qg = Qg in (3.47) and (3.48). Denote AH =
H — <E> Then
Qap = Qm = E{AHAH"}. (3.49)

Consider next the outputs of the two covariance mismatched LMMSE channel
estimators described in Example 3. Recall that the Type-1 covariance mismatched
estimator neglects the correlation between the transmit antennas, but knows the
correlation between the receive antennas. Type-2 estimator neglects the spatial cor-
relation altogether.

Proposition 2. Let R = UARU" and R = UARU", where U, U € CN*N gre
unitary matrices, and the diagonal matrices A g and A g contain the eigenvalues of
R and R, respectively. For the Type-1 and Type-2 covariance mismatched channel
estimators in Example 3, the noise and error covariance matrices C=U ACU’H
and Q Ah,, = UA Ahmf]H are given by the solutions to the coupled equations

~ ~ ~ ~ ~ -1 -
Aan, (Ac) =TmmARr (Ac + TtrTm,mAR) Ac, (3.50)
M
]\C = 52IN + « Z AAhm(AC)- (3.51)
m=1

For the Type-1 mismatched estimator, if we let Ah,,, = h,, — (h,,) then

Qan,, = Qan,, = B{Ah,, AR} (3.52)
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For the Type-2 mismatched estimator the postulated error and noise covariance
matrices can be written as Qap, = Aan,, In and C = AclIy, respectively,
where Ay, and \c are the solutions to the equations

Y Y Tm mS\C
A o) = —me2 3.53
Ah,, (AC) So ot T (3.53)
~ M ~ ~
Ao =62+ Aan,(Ao). (3.54)
m=1

The true error covariance for the Type-2 mismatched estimator is given by Qap,, =
UAap, UM, where

Tinm X
Aot = Gy (OZAR + T TmAc), (3.55)
C tridm,m

~ M 5\2 M52
Ac = Ac <02IN +alAr Y T“‘m) / (&2 +ad T“m) . (3.56)
m,m m=1

m=1 m,m

Note that (3.55) — (3.56) follows from the fact that the Type-2 mismatched
LMMSE estimator postulates R = I and, thus, U simultaneously diagonalizes
R and R. The above result also states that if the LMMSE channel estimator has
correct information about the transmitted powers and the spatial correlation on the
receiver’s side, the error statistics provided to the MUD are correct. Postulating un-
correlated antennas at the transmitter does not cause a mismatch in error statistics.
The actual MSE QA g obtained by the estimator described in Examples 2 and the
Type-1 mismatched estimator of Example 3 are, however, different unless T" is di-
agonal. The following simple example illustrates the effect of transmit correlation

on the accuracy of channel estimation.

Example 7. Letus consider for simplicity uncorrelated receive antennas R = R =
1

U=U-=1 N, and equal power transmission T;,, ,, = 5;. Let the transmit
correlation be modelled as
1—p P
T=—Tu+qenel, 0<p<l, (3.57)

i.e., by the constant correlation model (see, for example, [184, 185]). Using the
matrix determinant lemma [186, Theorem 13.3.8], the eigenvalues of T" are easily

obtained as
A= —[1+p(M —1)], (3.58)

Ay = —(1—p), (3.59)

Sl



3.3. Performance of Large MIMO DS-CDMA Systems

where Ao has the multiplicity of M — 1. The noise covariances are given by C' =
C=cCI N, Where

C =0+ aMQap, (0), (3.60)
is a fixed point equation with

1

O\ ‘
)\Ahi(c) = m, 1=1,2. (3.62)

Let M, C, 1, be arbitrary and fixed. It is easy to verify that

2

;[)QAM(C) <0, gpQQAhm(C) <0, O0<p<l, (363
so that for fixed M, C, 1., the MSE is a decreasing concave function of transmit
correlation p. Since C' decreases with Qap, (C), we know that increasing corre-
lation between the transmit antennas helps the channel estimator to obtain lower
MSE:s.

The two extreme cases of transmit correlation for this model are obtained by
setting p = 0 (uncorrelated transmit antennas) and p = 1 (fully correlated transmit

antennas), which yields

1 C
p=0: QAhm(C):M p (3.64)
C+ =
M
1 c
=1: Q C)=— . 3.65
p Ah, (C) MO (3.65)

In the limit of extremely correlated transmit antennas, we thus obseve that the effec-
tive number of training symbols is increased by a factor of M. This is an intuitively
pleasing result since there is only one physical channel per receive antenna to esti-
mate, but the estimator still receives 7, M training sequences per receive antenna.
Such a simple interpretation, however, cannot be made for 0 < p < 1 or if the
receive antennas are correlated as well. &

The Type-2 mismatched channel estimator gives the MUD incorrect informa-
tion about the estimation errors, unless R=R-=1 ~- This affects the analysis
of the MUD and makes it in general quite cumbersome. Another property of this
estimator is that the estimation errors are correlated with the channel estimates, as
discussed below.
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Remark 2. Let the cross covariance between the channel estimate and the estima-
tionerrorbe 2, ; \ = E{Ah,,(h,;,)"'}. In the large system limit, the channel
estimates provided by the estimators defined in Examples 2 and 3 have uncondi-
tional complex Gaussian distribution (h,,) ~ CN(0; <fzm>)’ where Q5 \ =
UA <ﬁm)UH and

A<ﬁm> = TmnmAR — QAAhW(fzm) — Aan,, (3.66)

A little bit of algebra reveals that we have for the channel estimators in Exam-
ples 2 and 3 the following eigenvalues for the cross-covariance matrices;
* Optimum LMMSE (Example 2) and Type-1 mismatched (Example 3):

Aty (i) = 05 (3.67)
* Type-2 mismatched (Example 3):
TtrT% m ~
A Nb () = ( ™ (A\cAr — Ac). (3.68)

;\C + 7—trTm,m)

For the Type-2 mismatched channel estimator the channel estimate and the error are
therefore correlated unless R = I . One should not, however, confuse the Type-2
covariance mismatched LMMSE estimator to the linear ML channel estimator in
Example 4, for which the error is uncorrelated with the channel coefficients. In
fact, we immediately get from (3.55) and (3.68) that

AT,
E{Ah,h} = 2¢-mm g (3.69)
Ac + 7'trTm,m
and, thus, the estimation error is correlated also with the channel coeflicients for
the Type-2 mismatched LMMSE channel estimator. &

Finally, let us consider the ML channel estimator described in Example 4. This
channel estimator neglects both the spatial correlation and the additive noise in the
channel. For simplicity, we consider only the case 7, > oM for this CE.

Proposition 3. For the ML channel estimator in Example 4, E{Ah,,hH} = 0,
C =CIy and

0.2

= ——
1—04M/Ttr’

(3.70)

0_2

1
Rann = =Qang, gy = - C = 771w -71)

whenever 1, > oM.
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3.3.2 Multiuser Detection with Mismatched CSI

Let us first consider the performance of the non-linear MAP detector described in
Section 3.1.2. For simplicity, the CSI is assumed to be given by the LMMSE chan-
nel estimator given in Example 2 and, thus, the statistics of the channel estimation
error are correct. The next result reports the SINR of the “hidden” Gaussian chan-
nel (see, e.g., [85, Eq. (183)], [89, Sec. 1.3.1] and the discussion therein), at the
output of the non-linear multiuser detector.

Proposition 4. Let R = UARU"Y, where U is a unitary matrix containing the
eigenvectors of R. Consider the GPME given by (3.13) —(3.14), and let the channel
information be provided by the LMMSE channel estimator of Example 2. Then
D =D =UApU" in (3.37) — (3.38). Furthermore, let g € RY be a RV with
IID elements {g; }é\le drawn according to the exponential distribution P(g;) =
1—e79,g; > 0. Then,

sinr;nnmse(g’AD) — Z <ﬁm>

el (3.72)
AL + A%,

is the output SINR of the equivalent “hidden” Gaussian channel where the elements
of the diagonal matrix Ap = diag([)\%) . )\%V)) are the solution to the fixed
point equations

2
Q- TN D vy D / g™
Ty o TR ) b e

N
oo
X {1 - / tanh (sinr;“nmse(g, Ap) + y\/sinr,"gmse(g,AD)) Dy} H e 9idg;,
o i
(3.73)
and Dv is defined in (2.44).

By Proposition 4, the SINR of the hidden Gaussian channel related to the mth
transmit antenna after MAP detector has the same distribution as the received SNR
of the single-user system

Zm = (hp)m + ¢,y € TV, (3.74)
where ¢,,, ~ CN(0; D + Qap,), D = UApU" and the channel coefficients
(hm) ~ CN(0; (hy) are perfectly known at the receiver. For a block fading
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channel and sufficiently long code words, each transmit antenna encounters thus
an ergodic SIMO channel in time domain. If perfect CSI is available at the re-
ceiver, i.e., Qap,, = 0, we immediately see that transmit correlation has no effect
on the ergodic spectral efficiency of the system, as expected from the earlier re-
sults reported in [92, 154]. With estimated channel, however, the covariance of the
channel Q< For) for the optimum pilot-assisted LMMSE channel estimator depends
on the transmit correlation through (3.47) (see also Example 7). Furthermore, as
noted in Remark 2, Qap,, = T mIt — Q2 () and, thus, the covariance of the
noise ¢,,, in (3.74) depends on transmit correlation as well.
Next the noise covariance matrices of the decoupled single-user channels (3.32) —

(3.41) related to the linear MUDs discussed in Section 3.1.3 are given.

Proposition 5. Consider the case where the CSI be provided by one of the LMMSE
channel estimators described in Examples 2 — 4. Let R = UAgU" as in Propo-
sition 2. The noise covariance of the postulated channel (3.41) can then be written
as D = UApU", where Ap = diag([j\%) 5\%\[)]) The eigenvalues in Ap
are the solutions to the fixed point equation

oA,

m=1 AD) + X(An,),m

w \? (n)
Wom) b a0

5\(3):62—1-04

e 9idg;, (3.75)

T

where Am,m = diag([j\&),m e S\(A]\LLL]) are the eigenvalues of the postulated error

covariance matrix Qp,, = UAp,, U"N. Given D, the noise covariance of the
decoupled channel (3.32) can then be solved from

M
D= |c*T+aY D(D+Qn,,) "

m=1

XE{ (I = (R )mt}) (hinh) (I = m () ")} (D + Qay,,) ' D

1

M
x |62 I +a) D(D+Qay,)”

m=1
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The general form of Proposition 5 is quite difficult to work with. Luckily, some
simple special cases can be obtained. The first examples is the LMMSE MUD of
Example 5, given the error statistics from the CE are correct.

Corollary 2. Let the CSI be provided by the LMMSE estimator of Example 2, or
the Type-1 mismatched LMMSE estimator of Example 3, so that Q Ah,, = A,
and QAhm,(fLm) = 0. Then, for the LMMSE MUD of Example 5, QAvm = QAan,,
D = D, and the post-detection SINR for the mth transmit antenna is in (3.72).

If the CSI is provided by the LMMSE channel estimator of Example 2, or the
Type-1 covariance mismatched estimator of Example 3, Corollary 2 tells us that for
the non-iterative LMMSE MUD of Example 5 one needs to solve only the fixed
point equation (3.75) to get the statistics of the decoupled channels (3.32) — (3.41).
For the Type-2 mismatched LMMSE CE, however, Q. # Qap,. and, thus, D #
D in general. In this case one needs to first solve (3.75), substitute the solutions to
(3.76), and solve it for D while taking into account the notes made in Remark 2.

Recall that the SUMF and decorrelator described in Example 6 discard all sta-
tistical information about the channel estimation errors. This simplifies the task of
solving (3.76) and we can obtain D in closed form. However, one should remem-
ber that the correlation between the channel estimates and the estimation errors is
non-zero for the Type-2 mismatched and ML channel estimators. In this thesis, the
Type-2 channel estimator is considered only with the SUMF for simplicity.

Proposition 6. Consider the single-user matched filter and decorrelator in Exam-
ple 6. For the SUMF
D =o?Iy + olR, (3.77)

where t = tr(T), as defined in Section 2.2.1. For the decorrelator, with optimal
or Type-1 channel estimator, equal transmit power Ty, ,, = t/M and uncorrelated
receive antennas R = Iy, D is given by’

D
2 M
N2 ;0‘ Loy, N > aM,
B a’aM + \; (oM — N)? 4+ Aan, [N + aM (oM — 2
() 3\4 Nm[ ( )]IN, N < oM.
aM —
(3.78)

3Obtaining a closed form solution for matrix D in the general case is difficult and not considered
in this thesis.

49



3. Non-lterative Receivers for MIMO DS-CDMA in Flat Fading Channels

50

Remark 3. For the matched filter, the noise covariance (3.77) does not depend on
channel estimation. The same can be observed in [59, Eq. (15)] for the case of
DS-CDMA. For the decorrelator, (3.78) generalizes the previous results [85, 187]
to the case of mismatched CSI and multiple antennas. Note that to obtain (3.78),
we restricted all transmit antennas to have the same nominal power, but the spatial
correlation at the transmitter could still be arbitrary. As with the other MUDs in this
chapter, the transmit correlation manifests through the estimation errors and does
not affect the equivalent noise covariance of the single-user channel (3.32). &

From Propositions 1 — 6 we get the QPSK constrained capacity of correlated
MIMO DS-CDMA system using linear channel estimation, linear MUD and sepa-
rate decoding.

Proposition 7. The per-antenna ergodic spectral efficiency CIP% (bits) for mth an-
tenna and all MUDs in this section is given under separate decoding and QPSK
signaling by

CaPsk — Jog, | M| — Nlog, e

1 .
- o 3 E{ logy 3 exp (—gHQ 1,1) | m;} (3.79)
| | reEM TeM
where we denoted for notational convenience
=Gt ) (2 = 8) = Q) Qi Shim) T, (3.80)
A 5 -1 oH
Q=D+ Qap,, — QAhm,(hm>Q<ﬁm>QAhm,<ﬁm)’ (3.81)

and

Qan, +D Q. i
[ Cm ] z ~ CN (o; [QHA"’” . A&""’IWD . (3.82)
(hm) N ()

From Remark 2, we get the simplified version of Proposition 7, applicable to

the optimum pilot-aided LMMSE channel estimator given in Example 2, and the
Type-1 covariance mismatch LMMSE estimator described in Example 3. When
the CSI is provided by either of these channel estimators, the per-antenna ergodic
capacity C4Psk (bits) for the mth antenna and all MUDs in this section is given under
separate decoding and QPSK signaling by (3.79) with (3.80) and (3.81) replaced
by

=D+ Qap,., (3.84)

it
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respectively. Furthermore, ¢,,, ~ CN(0; Qap,, + D) and (h,,,) ~ CN(0; Qi)
are then independent RVs. Comparing this to (2.12) in Section 2.3.1, we note that
this is just the capacity of a SIMO channel with QPSK inputs, zero-mean proper
complex Gaussian additive noise with variance Q2ap,, + D and Rayleigh fading
channel, perfectly known at the receiver and with covariance 2 ()

3.4 Numerical Examples and Discussion

Selected numerical examples based on the large system analysis carried out in Sec-
tions 3.2 and 3.3 are given below. The main emphasis is on the linear MUDs since
they provide more practical means for data detection in MIMO systems than the
computationally rather complex non-linear MAP-MUD. The latter is, however, con-
sidered briefly as a benchmark to the performance of the linear detectors. The reader
is reminded that for all cases we let K’ = aL. — 0o, while keeping the channel load
a and the number of antennas at both ends constant.

Let the spectral efficiency for the considered system be defined as

capsk — ( ) Z capsk, (3.85)
coh

where C%’Sk is given in Proposition 7. For simplicity, we assume equal transmit
power per antenna and uniform linear arrays at both ends of transmission. The spa-
tial correlation is modelled as in [100], i.e., the elements of the covariance matrices
T = [Tni] € RM*M and R = [R,, ;] € RV*Y are given by

180 2
. . . P ¥
mz = 2 —i)d “on | —
M / 180 2775tx P [ mi(m = i)dysin (180) 262,
180 1 o o?
ni = —_— 2 —J)d - do, 3.87
g = [ yargz o [ ivsin ({5) - o [ a0

where 0 and d,x are the angular spread at the transmitter and the receiver side,

dp, (3.86)

respectively, given in degrees. In the following we let the nearest neighbor antenna
spacing be d) = 1 (wavelengths) at both the transmitter and the receiver. Therefore,
angular spread is the only free parameter that determines the spatial correlation in
the following discussion.

In Figure 3.1, the normalized MSEs for the channel estimators introduced in
Examples 2 — 4 are given as a function of transmit correlation. The N = 4 receive
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Figure 3.1. Normalized MSE vs. angular spread at the transmitter dy, €
[0.1,16]. Uncorrelated receive antennas, equal transmit power per antenna,
4 x 4 MIMO channel. User load @ = 2, number of pilots per fading block
Ttr = 10 and average SNR per receive antenna snr = 10 dB.

antennas are assumed to be uncorrelated and, thus, the Type-1 and Type-2 mis-
matched LMMSE estimators have equal performance. For the optimum LMMSE-
CE we have plotted separately the MSEs for the transmit antennas at the edges and in
the middle of the linear array with M = 4 elements. As expected, when the angular
spread is high (transmit correlation low), the performance of the optimum (Exam-
ple 2) and covariance mismatched (Example 3) LMMSE estimators are equal. For
high spatial correlation at the transmitter side, however, significantly lower MSE
can be obtained if the transmit covariance matrix is known at the channel estimator.
The ML channel estimator (Example 4) that neglects both spatial correlation and
additive noise provides the worst performance, as expected.

The spectral efficiency of a MIMO DS-CDMA system using M = N = 4
antennas at both ends and 7, = 4 or 7, = 10 training symbols per fading block
is plotted in Figures 3.2a and 3.2b, respectively. The channel coherence time is
set to T.on = 50 symbols and the loss in system throughput due to pilot symbols
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is taken into account in the plots. In all cases the LMMSE channel estimator of
Example 2 is used. For all MUDs, using ten training symbols instead of four results
to better spectral efficiency, even though the effective bandwidth is reduced due to
transmission of known pilots. This is an example of the trade-off between the loss
incurred by the seriousness of the CSI mismatch and the reduction in bandwidth due
to training sequences. It is interesting to note that the MUDs respond differently to
the level of channel uncertainty. Most serious loss in spectral efficiency due to lack
of precise CSI is experienced by the decorrelator. In fact, if the channel information
is not accurate enough, there is virtually no benefit of using the decorrelator instead
of the simple SUMF. At high loads, the SUMF even offers better per-user rates than
the decorrelator when 7, = 4 pilot symbols are used.

We next consider the effects of spatial correlation on the system throughput.
In Figure 3.3, the spectral efficiency C9Pk of the linear MUDs presented in Ex-
amples 5 and 6 with the LMMSE channel estimator of Example 2 is plotted as a
function of the angular spread at the transmitter side . (in degrees). The receive
antennas are assumed to be uncorrelated. The advantage of having high transmit
correlation is most prominent for the overloaded case & = K/L = 2, where the
spectral efficiency CIP¢ is more than doubled for the LMMSE and decorrelator
MUDs compared to the case of low transmit correlation. Intuitive explanation is
that here C9P%% depends on transmit correlation only through the error covariance
QAn,, = Aan,, I, so that CﬂfSk(XAhm) > CaPsk(\pp, ) when Nah, < AAhy,-
As we saw in Example 7, correlation benefits the CE and we therefore get an im-
provement in the spectral efficiency as angular spread d;y decreases. Note that when
the transmit antennas are highly correlated, the overloaded case o = 2 offers higher
total throughput than the half loaded system o = 0.5 for all MUDs. If the trans-
mit correlation is low, however, higher throughput is achieved with the user load
a = 0.5 regardless of the MUD. Interestingly, for the low user load o = 0.5, the
performance of the MUDs is arranged in increasing order of complexity, but this
does not hold for the overloaded case o = 2. In the latter, the spectral efficiencies
of the SUMF and the decorrelator cross at around d;, = &, and for low transmit
correlation decorrelator performs worse than SUMF.

In Figure 3.4, the spectral efficiencies of the LMMSE-MUD and the SUMF
with different channel estimators defined in Examples 2 and 3 are plotted as a func-
tion of the angular spread at the receiver side d,x (in degrees). The user load is
fixed to &« = 2 and an angular spread of di, = 3 degrees (high correlation) at
the transmitter side is assumed. As expected, when the antenna correlation at the
receiver side decreases, a significant gain in spectral efficiency is observed. Sim-
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Figure 3.2. Spectral efficiency CIP vs. the user load e = K/ for the linear
MUDs. Uncorrelated 4 x 4 MIMO channel, coherence time of T, = 50
symbols and average SNR of 10 dB. Linear MMSE channel estimator.
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Figure 3.3. Spectral efficiency vs. angular spread at the transmitter 0y, €
[0.1,16] for the linear MUDs. Uncorrelated receive antennas and optimum
pilot assisted LMMSE channel estimator (spatial correlation known perfectly).
Equal transmit power per antenna, 4 x 4 MIMO channel, coherence time of
Teoh = 50 symbols, number of pilots per fading block 7, = 4 and average
SNR per receive antenna snr = 10 dB.

ilar behavior was also observed earlier in the simple single-user example given in
Section 2.2. If the optimum LMMSE-CE instead of the Type-1 (neglects transmit
correlation) or Type-2 (postulates uncorrelated antennas) mismatched CE is used,
C9Psk roughly doubles for both the LMMSE-MUD and the SUMF for all values of
drx. As a consequence, in this scenario it is in fact preferable to have the optimum
LMMSE-CE with SUMF instead of Type-1 CE and LMMSE-MUD. Surprisingly,
the difference in C9P*¢ between the Type-1 and Type-2 estimators is negligible in
the considered case. This implies that if the transmit correlation is not known at
the channel estimator, virtually no further loss will be encountered if the receive
correlation is neglected as well.

Finally, we investigate the performance of the non-linear MAP detector de-
scribed in Section 3.1.2. Note that a direct implementation of this MUD has in-
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Figure 3.4. Spectral efficiency vs. angular spread at the receiver 0,5 € [0.1, 16]
for the linear MMSE detector and SUMF. Correlated transmit antennas 0y, = 3
and optimum LMMSE, Type-1 or Type-2 mismatched LMMSE channel esti-
mator. Equal transmit power per antenna, 4 x 4 MIMO channel, coherence
time of Tio, = 50 symbols. Number of pilots per fading block 7, = 4, user
load o = 2 and average SNR per receive antenna snr = 10 dB.

feasible complexity for practical systems. It is, however, useful for benchmarking
the more practical non-iterative detectors studied earlier, as well as providing an
upper bound for the performance of the approximate non-linear methods such as
sphere decoding and related algorithms [188-192].

The spectral efficiency of a 4 x 4 MIMO DS-CDMA system with MAP or
LMMSE multiuser detector and 7, = 4 or 7r, = 10 training symbols per fading
block is plotted in Figure 3.5. The channel coherence time is set to Top = 50
symbols and the loss in system throughput due to pilot symbols is taken into account
in the plots. In all cases the LMMSE channel estimator of Example 2 is used and the
antennas are assumed to be uncorrelated. The same conclusions as we made from
Figures 3.2a and 3.2b can be drawn, i.e., except for low user loads using ten training
symbols instead of four results to better spectral efficiency, even when the loss in
effective bandwidth is taken into account due to transmission of known pilots. For
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Figure 3.5. Spectral efficiency CIP* vs. the user load o = K/ L for the MAP-
MUD and the LMMSE detector. Uncorrelated 4 x4 MIMO channel, coherence
time of T, = 50 symbols and average SNR of 10 dB. Linear MMSE channel
estimator.

the MAP-MUD, the loss due to severe CSI mismatch is much more pronounced
than for the linear MUDs considered earlier. This makes intuitively sense since the
MAP-MUD has “more to lose”, so to speak, compared to the linear MUDs that will
suffer more severely from the MAI in any case — even if perfect CSI is provided to
them.

Figure 3.6 compares the spectral efficiencies CIP obtained by the non-linear
MAP-MUD and the linear MMSE detector. The receive antennas are assumed to
be uncorrelated and the angular spread at the transmitter side is dix € [0.1, 16] (in
degrees). The optimum pilot-aided LMMSE-CE provides the CSI for both detec-
tors and is obtained by using 7, = 4 known training symbols per transmit antenna
and fading block. The effect of antenna correlation to the spectral efficiency of the
MAP-MUD is dramatic, going from about 13 bits to less than 2.5 bits per channel
use as the transmit antennas become uncorrelated. In fact, for uncorrelated trans-
mit antennas we lose all the benefits of the MAP-MUD compared to the LMMSE-
MUD for the given configuration. Thus, the spectral efficiency obtained with the
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LMMSE-MUD can be roughly doubled by using the non-iterative MAP-MUD, but
only if sufficiently accurate channel estimation can be performed.

The straightforward solution to the problem of obtaining an accurate CSI is to
use a greater number of pilot symbols per fading block. This, however, decreases the
spectral efficiency as the training symbols consume the bandwidth from informa-
tion bearing transmission so that there is an optimum trade-off between the number
of training symbols and CSI accuracy. Alternatively, if the system is delay toler-
ant and using pilot-aided channel estimation, we could make the transmit antennas
highly correlated while keeping the receive antennas as uncorrelated as possible.
This of course causes a design conflict for the uplink / downlink transmission and
should be carefully balanced so that a desired trade-off is reached. The final rem-
edy is suggested by the iterative algorithms, studied in the next chapter, that may
have potential to provide significant gains over non-iterative channel estimation and
MUD also in MIMO CDMA systems. This topic is, however, left for future research
and not considered in the present dissertation.

3.5 Chapter Summary and Conclusions

In this chapter, the performance of a randomly spread MIMO DS-CDMA system
using non-iterative linear channel estimation and multiuser detection was studied.
The considered channel estimators included the optimum pilot-aided LMMSE-CE,
two covariance mismatched LMMSE-CEs and a maximum likelihood CE. The mul-
tiuser detectors included the non-linear MAP-MUD, linear MMSE and decorrelat-
ing MUDs and the single-user matched filter. Rayleigh fading single-path MIMO
channel with spatial correlation was assumed between the transmitters and the re-
ceiver.

The performance analysis was carried out with the help of the replica method
that provided a single-user characterization of the multiuser system in the large sys-
tem limit. In contrast to some earlier results, we took into account the CSI mismatch
caused by the pilot-aided channel estimation, as well as the effect of antenna corre-
lation in the mathematical analysis. As a performance measure for the considered
system, the QPSK constrained capacity with separate decoding was derived.

The results indicated that the ergodic spectral efficiency achieved with uncor-
related transmit antennas could be significantly improved if the transmit antennas
were allowed to be correlated. This is in contrast to the case of perfect channel
information, where correlation between the transmit antennas has no effect on the
ergodic performance of the system. It is important to remark that the improve-
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Figure 3.6. Spectral efficiency vs. angular spread at the transmitter Jy, €
[0.1,16] for the MAP-MUD and the LMMSE detector. Uncorrelated receive
antennas and optimum LMMSE channel estimator (spatial correlation known
perfectly). Equal transmit power per antenna, 4 x 4 MIMO channel, coherence
time of Teop, = 50 symbols, number of pilots per fading block 7, = 4. User
load o = 2 and average SNR per receive antenna snr = 10 dB.

ment in spectral efficiency required no information at the transmitter. The channel
estimator, however, needed the knowledge of the long-term spatial correlation in
advance. Neglecting the transmitter side correlation at the receiver resulted to the
same spectral efficiency as obtained for uncorrelated transmit antennas. The ef-
fect of neglecting the receiver side correlation turned out to have little effect on the
performance.
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Chapter 4

Iterative Receivers for DS-CDMA in
Multipath Fading Channels

In this chapter, the performance of DS-CDMA systems using iterative channel
estimation, multiuser detection, and single-user decoding is studied. Multipath
Rayleigh fading channel model described in Section 2.2.2 is considered. For sim-
plicity, both the transmitter and the receiver are assumed be equipped with a single
antenna. Throughout the chapter, it is also presupposed that the coding and mod-
ulation is provided by the BICM introduced in Section 2.3.2, and the code word is
long enough to span several independent fading blocks.

The outline of the chapter is as follows. Section 4.1 derives the iterative chan-
nel estimators and multiuser decoders that will be studied in the latter parts of the
chapter Both hard and soft feedback are considered. The specific estimators studied
in detail are:

* Channel estimators: iterative LMMSE channel estimator with soft feedback,
approximate ML estimator using hard feedback;

* Data estimators: iterative maximum a posteriori, LMMSE and SUMF MUDDs
with soft feedback, SUMF with hard feedback.

In Section 4.2, the decoupled single-user channel models related to the estimators
given above are derived in the large system limit with the help of the replica method.
Using the obtained single-user characterization, the performance of the iterative
multiuser receivers is studied in Section 4.3. Numerical examples and discussion is
provided in Section 4.4. Selected set of proofs can be found in Appendices B — F.
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4.1 Iterative Multiuser Receivers via Bayesian
Framework

The iterative multiuser channel and data estimators for the DS-CDMA system dis-
cussed in Section 2.2.2 are derived in this section. To help the reader to keep track of
the derivations, the outline for the rest of the section is given below. The estimators
are presented there in a decreasing order of complexity.

* Section 4.1.1 describes the general algorithm for iterative channel estimation
and MUDD that will be considered in this chapter.

» Section 4.1.2 considers an iterative channel estimator that takes full advan-
tage of the feedback information provided by the single-user decoders. This
estimator turns out to be non-linear with exponential complexity.

* In Section 4.1.3, a set of low complexity iterative channel estimators based on
linear filtering are introduced. Due to the simplifying assumptions, however,
these estimators experience inevitable performance degradation compared to
the non-linear CE given in the preceding section.

» Section 4.1.4 derives an iterative MAP detector that utilizes directly the CSI
and the feedback information it receives from the channel estimator and the
single-user decoders. This iterative MUDD gives the upper bound for the
performance of the rest of the data decoding algorithms studied in the chapter
but has exponential complexity.

* In Section 4.1.5, low complexity data estimators utilizing linear filtering and
parallel interference cancellation are presented. Several suboptimal solutions
resulting from different levels of model mismatch are considered.

4.1.1 General Framework for Iterative Channel Estimation,
Detection, and Decoding

In the following, the postulated channel and data symbols fortheuserk = 1,..., K,
at time instant ¢ = 7 + 1,...,Teon, are written as fzk,t[c] e CM and Zp4[c],
respectively. Note that the postulated channel depends on ¢, while the true channel
hy[c] does not. The reason for this will become clear later. We also denote & [c] =
[Zkrgt1lc] - Ty, [c]]T € C™ for the postulated data symbols of the kth user
in the cth fading block, and assign the priors (to be defined later) Q(Z[c|) and
Q(hy4[c]) to the above RVs forall k = 1,..., K.

By assumption, the channel and the data estimator have knowledge of the re-
ceived vectors ). as well as the training symbols and the spreading matrices, i.e.,



4.1. lterative Multiuser Receivers via Bayesian Framework

I. = {Pc, S } at each fading block ¢ = 1,...,C. The estimators may have also
received some information via feedback from the single-user decoders. Note that
the content of the feedback has been obtained during the previous iteration.

Consider iteration £ = 1,2,... and let ]ng(t_l)(xkjt) and Ing,_pl)(xk,t), be the
extrinsic and approximate a posteriori probabilities, respectively, of the transmitted
symbol z3; € M. For convolutional codes, both probabilities are easy to obtain
by using the BCJR algorithm [193—-196]. Let the feedback from the single-user de-
coders be in the form of probabilities Qgﬁ;l) (Zg+) and Qgﬁ;l) (Zk,+), where again
Tyt € M. The relation between the decoder outputs and the feedback is defined
by the operators ey and @app that transform the probability measures (or distribu-
tions) Pey: and P ,pp to Qexe and Qapp, respectively, i.e.,

pot P V(@) = Qe V@ =2), zieM, @1
papp : PV (2) = QY (@ =12), z,2eM. (4.2)

Throughout the thesis we assume that the operators (4.1) and (4.2) do not depend
on the iteration index ¢, and the feedback probabilities Qﬁ_ﬁ;” and ng)_pl) are well-
defined over M. The specific forms of (,p, and @ey: define the type of feedback
used and will be detailed in the next section.

Note that we used above the nomenclature common to iterative ISI cancellation
and MUDD, where the extrinsic probabilities of the coded bits do not contain chan-
nel information, whereas the approximate APPs do (see for example, [16, 125]).
Both probabilities are obtained using the knowledge of C;. We make two small
remarks before proceeding to the iterative algorithm itself:

* The approximate APPs Pgﬁ;l) (xkt[c]) obtained by the single-user decoders

are in general different from the true APPs P (x4[c] | {V.}.,) forall £ =
1,2,...;

* Also the APP-based feedback to the channel estimator has to be extrinsic to
the CE in the sense defined for message passing algorithms in factor graphs
[21-26, 124].

With the above in mind, a high-level algorithm for iterative channel estimation
and MUDD is given in Table 4.1. The details of the steps are postponed to the later
parts of the chapter, where some special cases of this framework are considered.
To initiate the iterative process, we let Qg%(iht[c]) and Qggi (Zg.t[c]) be equal to
(2.19). The block diagram of the receiver is depicted in Fig. 4.1, where we omitted
the iteration index £ = 1,2, . . ., for clarity.
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Table 4.1. Iterative channel estimation and MUDD

. Consider the problem of obtaining the CSI at time index ¥ € D during the /th

iteration. Let the channel estimator postulate the priors {Q(hy. s[c]) | Vk € K}

and assume that the approximate APPs {ng;pl)(im [d]) | Vk € K,t € D\ 9}
obtained by the single-user decoders during the previous iteration have been
received from the iterative MUDD. Given the information

¢ 1),

T[] = {Ze, Ve \ wolel {QU " (Fnale]) | VR € Kt € D\ WY}, (43)
and its knowledge about the system model (2.10), the iterative channel estimator
calculates the posterior probabilities {Q“) (hy, +[c] | It(g) [c]) | Vk € K,t € D}
forallc=1,...,C, and sends the obtained CSI to the iterative MUDD.

. Let the data estimator assign the postulated prior Q(Z¢ ;[c]) to the the data sym-

bol of user £ € K at time instant ¢ € D. Given the information

1) = {Zeswilel {QUV (@rald) | Vi € K\ €1,
{QOele | 1) [ VR €KY} @)

and its knowledge about the channel (2.10), for each fading blockc =1, ..., C,
the data estimator of the £th user calculates the symbol-by-symbol posterior
probabilities { Q) (¢ 4[c] | I(‘lZ [c]) | Vt € D} and sends them to the single-
user sum-product decoder.

. Fork = 1,..., K, the posterior probabilities of the data symbols { Q“) (i, ;[c] |

I}i@g [c]) | Ve, t € D} and the code book Cj, are used by the sum-procuct decoder

to calculate the approximate a posteriori ]Pg@p (xy,) and extrinsic IPg()t (xy,) prob-

abilities of the data symbols. For trellis codes these probabilities can be easily
obtained by the BCJR algorithm [193-196].

. The operators @ex: and ,pp are applied to the outputs of the sum-product de-

coders Péf()t(xkt [c]) and ]Pg@p(a:m [c]), respectively, to produce the correspond-

ing feedback probabilities Qg()t(i'k’t[c]) and Qgﬁ)p(ik,t[c]). The former are sent
to the channel estimator while the latter are stored and used by the data estimator
during the next iteration.
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Figure 4.1. Simplified block diagram of a receiver employing iterative channel
estimation, detection, and decoding.
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4.1.2 Non-Linear Channel Estimation with Soft Feedback

Let us start by omitting the block index c for notational simplicity and postulate a
new channel model related to (2.10) as

1 &,
7i > Skihyoprg + e € ck, teT,
7 . i (4.5)
\Fzskthkat+wte<c teD\9,
where the noise vectors are IID Q(w;) = CN(0; 0?I ) and the training symbols
P = {pks | Vk,t € T} are known at the receiver. We denote Hy = {fzk’qg}kelc, for
the postulated channel at time instant ¥ and Y \ 9y = {@, | t € T UD \ ¥} for the

set of all received signals in (4.5). For notational convenience, we also introduce
vector representation (similarly for other variables and index sets)

-
~ ~ ~ ~ ~ T4—1
Tpp\w = [l‘k,mﬂ o Tko-1 Tkl e xk,Tmh} cC,  (406)

ford € Dand k € K.
Now, postulate Q(Hyg) = [Ir; Q(hy.9), where Q(hy.9) = CN(0; Qp, ), and
let p4pp be the identity operator. We assign the prior probabilities

Q(@(ik,p\ﬁ =T p\w) = Pgﬁpl)(wk D\9)5 4.7

to the data symbols, where Pgﬁ;l) (xy,p\p) are the approximate APPs obtained by
the sum-product decoders during the previous iteration, as discussed in the previous
section. In the following we shall abbreviate the equalities of the kind (4.7) simply
as Q) (& kD\9) = Ing,_pl) (x1,p\v)- Note that albeit the probabilities (4.7) are APPs
in the typical turbo processing jargon, they represent extrinsic information to the
channel estimator.

The postulated posterior probability of the channel coefficients hy, given Iq(f)
and the knowledge of (4.5) reads
QO Ay | )

Q(hy,9)
E;qﬁ{ S TI QY @pw) QI \ 9y =Y\ Yy | #1.p\9s 7:119,11(96))}

{Zr,D\0} KEK

XEHﬂ\hk 19{ Z H Q wk D\ﬂ (j) \ @19 = y \ Yy | ik,’D\ﬁvﬁﬁazéZ))},

{Zk,D\0} kEK

(4.8)
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where the expectations are with respect to the postulated a priori distribution of the
channel. The summations are over all possible transmitted signals vectors of all
users during the time instants ¢t € D \ ©. The GPME is thus given by

(o) (o) = /Flks,ﬂdQ(f)(ﬁk,ﬁ 1), k=1,...,K (4.9)

For arbitrary a priori probabilities of the data symbols!, however, the number of
computations required to calculate the the summations in (4.8) grows exponentially
with K and the number of elements in &}, p\ 9, making this channel estimator highly
impractical. Thus, the emphasis in this thesis is on the iterative linear channel esti-
mators, introduced in the next section, which have only polynomial complexity.

4.1.3 Linear Channel Estimation with Information Feedback

Consider estimating the CST { Q) (hy, 5[c] | 21(94) [c])} for fixed time index ¥ € D
during the cth fading block. As above, we let (4.3) be available at the channel
estimator and drop the block index c for notational convenience.

Assume that the receiver is at its ¢th iteration. Let the feedback based posterior
mean estimates of the data symbols {xy; | Vk,t € D\ ¥} from previous iteration
be given by

(@) = Y 7,Q (Fky),  Vhte D\ Y. (4.10)
:ﬁkﬂgEM

Following the notation introduced in (4.6), let (ﬁzk,p\wgf,?) € C™9~! be the vector

consisting of the symbols (4.10) of theuser k = 1,..., K, i.e.,

(Zk.0\0) op

= [Eeni)? - @l Gl o (Era]
4.11)

and define the error terms
A = Azy, p\ghim € CTa), (4.12)
AZpp\g = Tpprg — (Er.D\0) ep - (4.13)

Given qug) [c], the RVs (4.12) — (4.13) are zero-mean in the limit of large code
word length, and we denote the corresponding conditional covariance matrices by

1By this we mean other than the case when H rex Q(Z) (ik’p\ﬁ) is non-zero for only one com-
bination of transmitted symbols from all users and, thus, perfectly known at the receiver.
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Q%Lk’m and Q(AZ;;)DW, respectively, where the iteration index for Awuy, ,,, is chosen
to be ¢ instead of ¢ — 1 by a notational convention. For future reference, let us also
write the spreading sequences related to the training and data transmission phases
of (2.10) in the matrix form

Sk,T,m = diag(8k717m7 ) Skﬂ'tr)m) S CTtrLXTtrv 4.14)
Si.p\0m = A (Sk ry41,ms - - -+ Skid—1,m» Sk,d+1,ms - - - » Sk, Toonm)
c (C(Tdfl)LX(Tdfl)7 (415)
respectively.

The information contained in the set ) \ y, and the channel model (2.10) can
now be written in the form

Yy SkTmp hkm + wT, (416)
= g 2 S

| KM ) )
Yow = T kz: Sko\0m (1 D\9) S e
=1m=1

| K M
Z > Sk p\9m AU + Wp\y, (4.17)
=1 m=1

where the noise vectors are independent zero-mean complex Gaussian RVs with
distributions P(w7) = CN(0; 6°I,1) and P(wp\g) = CN(0; 021 (5,_1y1).
Since the fading is assumed to be an ergodic process over the code words (cf. Sec-
tion 2.3.2), we can regard Az, p\y and hy, ,, to be independent RV's and therefore

Qgﬂik’m = %k,mﬂﬂf;;’;w cCla=Ux(e=1) k1 . Km=1,..., M.
(4.18)
Furthermore, E{AukmAugﬂ-} = 0if £ # k or m # i. Note that so-far we have
not changed the system model and substituting (4.10) — (4.15) to (4.16) — (4.17)
gives back the received vectors {y, | V¢ # 9} in (2.10).

Now, create a new channel model from (4.16) — (4.17) by replacing the set of
true channel coefficients H = {hy,,, | Yk, m} by postulated ones Hy = {h.9.m |
Vk,m}. Let also the noise vectors have a postulated variance 52, ie., Q) =
CN(0; 6°1I,) and Q(wp\y) = CN(0; 521, _1). If we also postulate that (4.12)

are independent zero-mean Gaussian RVs? uncorrelated with (&, D\w%pl), and

Note that given only the mean g and the covariance 2 of a continuous RV defined on CT, the
maximum entropy distribution is CN(g; €2) [11, Chapter 12].
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5 ()

having postulated covariance matrix €2,,,, . the receiver’s knowledge about the

channel is

1 K M

Ur =g S Sk mPrhigm + W, (4.19)
L k=1m=1
1 XM 3

Upo=—= 2 3 Sko\gm @00 ep ko .m
L k=1m=1
1 K M
= Z Z Sk D\9.m At + W\ g (4.20)

The posterior probability of the postulated channel coefficients given information
(4.3) reads

QH)QHr =y | 7:119711(9@)@(37@\19 =Yp\v | 9, T3))
Egﬂ{Q(QT = y7 | H0.Z") QG0 = ¥p» | 7219,11(93))}
(4.21)

QV(Hy | T,") =

where

Q@p\g = Yo\ | Hoo ZY)
= E{aap, vk} 1Q@p\0 = Uprg | {AGn}, Ho I)) ). (422)

By definition
0 K M
Q(QT = yT ‘ H’&)Iﬁ ) - CN (\/7 Z Z Sk’Tmpkhkmﬁa o ITn) )
k=1m=1
(4.23)
and solving the Gaussian integrals with respect to { At ,,, | Yk, m} gives
~ Y 4
QY (gp\g = yD\q? \ 7'119711(9 )
= (¢
=CN ( Z Z S0\ 9. (Eh.\0) o e, QirZ) ; (4.24)
k 1m=1
where
- (0 L - - - (0
Qerr = &QI(Tdfl)L + I Z Z Sk, 0\0,m ¥ Auy SII:,D\ﬁ,m‘ (4.25)

k=1m=1
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The marginal probability of the kth user’s postulated channel is therefore given by
T l
Q) (ko | 7,)

~ ~ "~ 4 ~ Y J4
Q) By, i, {Q(I7 = yr | 7o Z)QY (g = ypro | Ho. T3))}
E; {QUr=yr| 7:119711(96))(@(6) (Up\w = Yp\w | 7%1972(9[))}

)

(4.26)

and the corresponding GPME (4.9) is parametrized by:

1. the operator @,pp, defines the type of feedback;
()

. N
2. the postulated covariance matrix €2;,,
ledge about the feedback error statistics;

, determines the estimators know-

3. the postulated prior Q(ﬁkﬂg) and noise variance &2, give the type of linear
filtering used.

By choosing these parameters appropriately, we can derive all the usual iterative
channel estimators with linear filtering. In the following cases, we assume the chan-
nel estimator knows the correct statistics of the channel, i.e., the postulated prior is
Q(his) = CN(0; Qp, ), forall t = 7y +1,. .., Teoh.

Example 8. Let ¢,p, be the identity operator, so that Qgﬁ;l) () = Pgﬁ;l) (kt)s
forall k € K and ¢t € D\ ¢. Furthermore, let QXLk L= Q(Azztk . and 52 = o2
The GPME (4.9) with (4.26) is then the LMMSE channel estimator for (2.10), given

. -1 ¢
[P, 8,V \ v A (@1 p0)o0 Hor {00, HL}- ¢
Example 9. Postulate 52 = 0 and ngk _=0. Let
a%,(ft_l) = arg max Pgﬁ,_pl)(:ck,t), Vte D\ 9, (4.27)
7 Tkt EM
and define
- = .
app : P () = 0, (25, ), kg = s (4.28)

The symbols (z k,t>§,€‘pl) defined in (4.10) represent now hard feedback symbols and

the estimator treats them as error free pilots since the error covariance is neglected.
Thus, (4.9) with (4.26) yields the hard feedback based “maximum likelihood” chan-
nel estimator studied approximately in [138]. &
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4.1.4 Iterative MAP Detector

In this section, we consider a non-linear data estimator that uses the extrinsic proba-
bilities from the single-user decoders to iteratively approximate the prior probabili-
ties of the transmitted symbols of the interfering users (see [126, Egs. (14) — (15)]).

Consider the data transmission part ¢ € D in (2.10) and denote the user of
interest by £ € K. Let (4.4) be available to the data estimator and postulate a new
channel model for the /th iteration

- 1 ~ - 1 = - _
yt[c] = ﬁS@JL&dC}lﬁ&AC] + ﬁ jez:lc\g Sj,thj’t[c]xj,t[c] + wt[c] S (CL, (4.29)

where the postulated prior of the user of interest is Q(Z¢ +[c]) = P(x¢ ¢[c]), and the
data symbols of the interfering users have postulated a priori probabilities

QO (F4ld]) = Qi V(@julel),  VieK\&. (4.30)

As before, we let 52 to be the postulated noise variance and w;[c] ~ CN(0; 521 )
are IID Gaussian RVs. After omitting the block index ¢ for notational simplicity,
the iterative non-linear data estimator for the £th user calculates the probabilities

QO (7e, | 7))
Q) S I Q@009 @ = vy | {E 11 TL))

{Zj4} JERNE

Y Q) Y., I QV@0Q0 @, =y, | {Er )iy 1)

imeM {i“j’t}jE]C\f

4.31)

where the summations are over the symbols whose a priori probabilities were given
in (4.30). The channel estimates are introduced via

- - l
QO @, =y, | {En} 0 I

K
= Y =Yt kot S ee1> Wkt Slom1> Le ¢ kt | L), .
Q( | TR oy AT o ) T 4@ (i | ), 4.32)
k=1

where the CST {Q) (hy,; | It )} k 1 is provided by the channel estimator. The
obtained probabilities { Q) (Fy; | Ik t) | Vk € K,t € D} for all fading blocks are
then forwarded to the respective sum-product decoders of the users.
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Example 10. Let 52 = 02 and (e, be the identity operator, i.e., Qgﬂ;l) () =
Péﬁ;l) (zx,:) Vk. We call the iterative MUDD consisting of this non-linear data
estimator and the bank of single-user sum-product decoders, the iterative MAP-

MUDD. &

Note that the iterative MAP-MUDD uses directly all the information provided
by the channel estimator and the extrinsic probabilities obtained during the previous
iteration. This gives an upper bound for the performance of the class of iterative
MUDDs with the same feedback and channel information, but requires O(| M%)
summations for each estimated symbol. This is too high for large practical sys-
tems and, therefore, lower complexity parallel interference cancellation approach
is considered in the next section.

4.1.5 Iterative Multiuser Detection and Decoding with Parallel
Interference Cancellation

Having obtained the optimum, but computationally complex, MAP detector in pre-
vious section, we next consider how to estimate the data symbol ¢ ; of the {th user
at the /th iteration by using linear filtering and parallel interference cancellation.
The derived class of estimators avoids the exponential complexity in the number of
users present in the system and are therefore more suitable for practical applications.
For notational convenience we drop again the block index c =1, ..., C.

Consider the /th iteration and let £ € /C be the user of interest. Recall that
Igt) defined in (4.4) is available to the data estimator and assume that the posterior
mean estimates of the channel coefficients of all users and the data symbols of the
interfering users, i.e.,

(i) = [ FradQO (it | Z0), VK, (4.33)
(Foee ) = Y. FuQbe (@),  VieK\ (4.34)
Zj1eEM
respectively, have been calculated with the help of Igt). Define also the RVs
Agir — 2. NG ,
Tjt = Tjt — (Tjthext - Vi€ K\¢, (4.35)
Ahkﬂg =hy — <hk,t>(£)a vk € K, (4.36)
Avyy = Ahy 4, Vk e K, (4.37)

which are all zero-mean in the limit of large code word length and given Ig(et).
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Let Q( ) and Q(e) , be the receiver’s knowledge about the true covariances

ng b and Q( )k of (4 35) and (4.37), respectively. Denote the postulated noise

variance in (2.10) by &2.

In Appendix B, we derive the marginalized posterior
probabilities of the data symbol z¢ ;, that will be shown in Remark 4 to be analogous
the outputs of linear filtering and parallel interference cancellation at the receiver.

The posterior probabilities are given by (see Appendix B for details)

Qi) QY (g, = ymcu, 7))
E:Eé,t{Q(Z) (U =y | Tetn T )}

~ ¢
Q(@ (Tet | I,ét)) =

(4.38)
where Q(Z¢ ;) is the postulated a priori distribution for the desired user’s data sym-
bols and the postulated channel model reads

- 1 . pic
b= Up Www%”yfzj%t DeEie +@E, (439

JER\E

?)

where wg'c O N (0; ﬂplc o ) and the modified noise covariance is given by

ic ~ 1 () Z
Qp (6 _ =61+ fsivtﬂ(Azfs-,tsvat

+ % > Sjs (lej,t + (hje) (z)Q%;t) <’~1’I;t>(£)> S%,. (4.40)
JERNE

Note that when the second term on the RHS of (4.39) is moved to the left hand side
(LHS) of the equation, we get the parallel interference cancellation (PIC) operation.
The probabilities (4.38) are parametrized by:

1. @ext : P — Q, defines the type of interference cancellation (soft / hard);

2. Q%;ﬁ and le o quantify the estimator’s knowledge about the error statis-

tics;

3. &2, defines the type of linear filtering used by the data estimator.
By choosing these parameters appropriately, all the usual iterative data estimators
using PIC can be obtained, as will be shown below.

Remark 4. The GPME based on (4.31) or (4.38) is given by

i), tek. (4.41)

(Te) o) = /fg,t dQ®¥ (z,

When iterative decoding is considered, however, instead of the posterior mean (4.41),
the BCJR algorithm needs in fact the probabilities (4.31) or (4.38) with the correct
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prior Q(Z¢¢) = P(x¢ ) for the user of interest. Under QPSK and Gray mapping, it
is trivial to obtain the desired probabilities from the posterior mean estimate (4.41)
if non-linear estimator (4.31) is used. A problem arises, however, when the GPME
is represented by a linear filter as we shall see next.

Consider the case where Gaussian prior Q(Z¢;) = CN(0; 1) is postulated for
the user of interest £. Then, the GPME (4.41) with the probabilities (4.38) simplifies
the to the familiar form

L (he )t SE(QO) !
- N 0P¢Et _
(Fea) @) = M Bes = — VLo NSy Yer € C,
L+ 7 (he )y Se (2 7) ™ Sealhe)
(4.42)
where we denoted
@g,t:flt \/» Z S]t (z -T]t>(z) (4.43)

JERN\E

By selecting the parameters appropriately, mgt € C'™ becomes, e.g., the the
LMMSE estimator or SUMF with PIC. This form does not, however, produce the
information desired by the decoders as remarked earlier. An easy solution to this
problem exists if the CDMA system under consideration is sufficiently large. Then
the output of a linear data estimator is in general accurately approximated by the
Gaussian distribution [55, 56, 197]. The approximate symbol probabilities can thus
be obtained by considering (Z¢ 1) (¢) to be the output of a channel

(Tea) ) = miSeslhedpres + Bers e ~ CN(O; mfl QP Oy ),
(4.44)
where IP(xy, ;) is given in (2.19). See, e.g., [117] for an example of this approach.
Since we study large systems, in the following the outputs (4.38) and (4.42) are
considered to be equivalent. &

Example 11. Consider estimating the {th user and let the postulated noise variance
be correct 52 = o2, Define ey to be the identity operator, so that, Qgﬁ;l) (Tey) =
]Pg(t_ )(azg 1) Vj € K\ & Given Q(Azjk = ng) for all k£ = , K, the
GPME (4.41) with posterior probabilities (4.38) is an extension of the LMMSE
data estimator studied in [59] to include soft PIC. We call this data estimator the
LMMSE-PIC MUDD for the rest of the chapter. &

Example 12. Let 52 — 0o and define e, to be the identity operator or

Y4 ~
Goxt : P (@0) = 820, (Bht)s Bkt = T, (4.45)
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where

Ere = argmax PG (2p.¢). (4.46)
zp,tEM

Then, the GPME (4.41) with marginal probabilities (4.38) reduces to the “SUMF-
Based Soft IC” and the “Hard-IC” receivers, respectively, studied under the assump-
tion of perfect CSI in [125, Proposition 2]. &

4.2 Decoupling Results

In this section, the single-user characterization for the multiuser system using the
iterative multiuser estimators derived in Section 4.1 is presented. The decoupling of
the multiuser channel is obtained via an application of the replica method by using
the same methodology as in [85, 89, 92]. In the analysis, the standard assumptions
in the replica trick are considered to be valid and the replica symmetry is assumed
to hold — see Assumptions 6 and 7 in Appendix C, respectively. Before proceeding
we make an assumption for the rest of the chapter.

Assumption 5. Let {/C,}U_, be a finite partition of K into U user groups. Fur-
thermore, let all users in the same group have equal power delay profiles. &

We also note that the replica method relies on the large system limit where K =
aL — oo with fixed system load 0 < o < oo and number of user groups U.

4.2.1 Linear Channel Estimation with Information Feedback

Letus consider user £ € K in the multiuser system defined in Sections 2.2.2 and 4.1.
Fix the time instant ¢ € D and let the channel estimator be at its ¢th iteration. Define
a set of single-user channels, indexed by m = 1, ..., M where M is the number of
multipaths, during the training and the data transmission phases

¢
26T m = Pl + Wi Ton € Cw) 70 ~ CN(0; CF), (447)
-1
2k D\9;m = Tl D\9Mkm + Wi p\9m € CO77, (4.48)
respectively. The additive noise vectors are zero-mean complex Gaussian wy, 7, ~

CN(0; C%@) and wy, p\y,m ~ CN(0; Cg)\ﬁ) and IID form = 1,..., M. Follow-

ing the notation of (4.6), &}, p\y are the transmitted data symbols for time indices
t € D\ 9. Let the postulated channel related to (4.47) — (4.48) be

2.7 m = Pl m + T m € CT, (4.49)

ZED\Om = <53k,1>\19>g€_pl)ilkn9,m + At + Wy p\9m € Ce=b,  (4.50)
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where Wy, 7.m ~ CN(O; Cg@) and Wy, p\g,m ~ CN(O; C’g)\ﬁ) are IID complex
Gaussian RVs form = 1, ..., M with postulated covariances C’g@ and C’g)\ﬁ The

feedback vector <£k7D\ﬁ>gpp ) is defined in (4.11) and Ay, ,,, ~ CN(O; Q(AZZ% )
corresponds to the receiver’s knowledge about Auy, ,, defined in (4.12). We also
define a set

¢ 1)~
J,C(yg,m = {zk,T,m, 21, D\0,m> P> {Q:Ef)pl)(xk,t)}tel)\ﬂ}a (4.51)

and conditional expectation

¢
S =B mep ATt (452)
for notational convenience. The noise covariances in (4.47) — (4.50) are then given

by

0 _ 2 O A
CY =0l +a lgrloo?;;lzwm c\ . cy ,Cpig); (4.53)

l
Cg)\ﬂ_a—zITd 1+« hm 72 Z EkD\ﬂm(Cg)\ﬁ,C() ng)\ﬁ), (454)

k=1m=1
0 1 & &g 0 A0
Cy =61, +a 15nmgzgl 2 7m(CF, Cprg), (4.55)
() 1 &K 0 A0
Cpyg="In-1+a lim -3 > Spwom(Cr, Cpyy), (4.56)
k=1m=1

respectively, where
S7m(CF. OF . Crly)

= Ej, {(ukTm — (g, Tm>§f3n) (Uk,T,m - <ﬁk,7,m>§on)H} , (4.57)
S oom(Coly €7 Chly)

= Ej, {(Uk D\d,m — <ﬁk,D\z9,m>§j)m> (uk,D\ﬂ,m - <ﬁk,p\ﬂ,m>;(£n)H} , (4.58)
Si7.m(CF, Cply)

= Ef, {(ﬂk Tm — (’llkTm>;(f)m) (ﬁk,’f,m - <ﬂkTm>;(f)m)H} ; (4.59)
S D\0,m (C(z) Cg)\ﬁ)

H
= I {('&'k,D\ﬁ,m - <'&’k,D\19,m>§f2n) (ﬁk,p\ﬂ,m - <ﬁk,D\19,m>](f3n) } . (4.60)
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We used the shorthand notation

Uk Tom = PPk W Tom = PPk m 4.61)

U p\gm = T D\oPhms Wk D\gm = (ED\0) g Rlestm + Ay, (4.62)

above and defined the single-user GPME

l
o,
- - ¥ ~ Y4
B o am, L QO (BT Bup\oum | tsms A, j,fﬂ;m)}

- ©

. - _ - , (4.63)
Ehk,ﬂ,m:Aak,m {Q(Q (Zk’T7m7 Zk:,'D\ﬁ,m | hk"7197m’ Aukv”” jk,’ﬂ,m)}

where

) ) . - l
Q(E) (Zk,T,m; Zk,D\,m ’ hkﬂ:m’ Auk’m’ jkiq%,m)
— Q(@ (219,7'7771 = Zk,T,m | ilk,ﬁ,mv jkg,%,m)

xQ® (ZeD\0m = ZkD\0m | Pk 9.ms A jk(%m) (4.64)

Claim4. Let T = 7qC — oo and K = al. — oo with o and 74 finite and fixed.
Also, let ¥ € D be an arbitrary time index during the data transmission phase, and
¢ = 1,2,... the iteration index. Conditioned on the set {{p;}1 |, {wk7'D\19}£{:1,
{ng;pl) (ik’D\ﬂ)}gzl . Ppdp }» the joint distribution of the true and postulated chan-
nel coefficients and the estimates {(hy.9 1r) () }YN_ of the multiuser system in Sec-
tion4.1.3 converges in probability to the joint distribution of the true and postulated

0 \m

ket m—1 Of the above single-user

channel coefficients and the estimates {<iLk7197m>
system.

Proof: See Appendix C. O

4.2.2 Iterative MAP Detector

Let us consider the £th user in the multiuser system discussed in the previous sec-
tion. Fix the time instant ¢ € D and let the iterative MUDD be at its ¢th iteration.
Define a set of M single-user channels

Zetm = hg,mxg’t + We tms m=1,..., M, (4.65)
where we ¢ ~ CN(0; Dt(g)) are IID complex Gaussian RVs. Let

Zetm = e gme s + Ve t.m m=1,..., M, (4.66)

Tl
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be the receiver’s knowledge about (4.65), where ¢ ¢, ~ CN(0; f)t(e)) Vm are IID
complex Gaussian RVs with postulated noise covariance Dt(z). We also define for
notational convenience the conditional expectation

B} =B{ | {mdhr, G0}, k=1, K, (4.67)
where
T8 = {LreamP AQO (e | 1L, ), (4.68)
and
T8 = {zm M AQO (o | TR QS (@50}, @469)
for j € KC\ . The noise variances in (4.65) and (4.66) are given by the fixed point
equations
DO 02 o i LSy © 5o
;=0 ta lim ;n; Skem(Dy7, D), (4.70)
5O 52 ot LSS5 © po
=6 —i—aKll_1)11<>oKk§::1m§::12k,t7m(Dt , D), (4.71)
where
Skt (DY, DY = B¢ b mans — (gmiins) 2}, (4.72)
St (D, DY) = B b ot — (ipmra)) [}, (473)

and the notation (- - - >,(f) in (4.72) — (4.73) denotes for the single-user GPME
4 ~
(o = 3 Q)

a”:k,teM

M
11 QGritm = 2ttm | hk,t,majk,tajk(i))dQ(g)(hk,t,m F
m=1

X
Z Q(Tk) /Q(fk,t,m = Zktm | hk,t,rmi'k,tyjk(?)dQ(g)(hk,t,m \It(é))
.'Z'k,tGM
4.74)

of the user £ = 1,..., K. Furthermore, the a priori probabilities of the data sym-
bols in (4.72) — (4.73) are given for the desired user by Q(Z¢¢) = P(x¢; = T¢ )
(see (2.19) — (2.20)) and for the interfering users by

Q&) = QS V(F0),  jek\& (4.75)
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The channel information Q) (hy; | It(e)) = 17, Q9 (hpsm | It(g)), k =
1,..., K, is provided by the channel estimator.

Claim 5. Let T = 7qC — oo and K = al. — oo with a and 14 finite and fixed.
Conditioned on the set {P,H,{Q") (hy.; | It(e))}ﬁ(zl, {Qg(t_l) (Zj,6)}jek\& Ppdp }-
the joint distribution of the true and postulated inputs and the estimate <f£7t>(g) of
the multiuser system in Section 4.1.4 at the (th iteration converges in probability to
the joint distribution of the true and postulated inputs and the estimate (i&t)g) of
the single-user system described above.

Proof: Omitted. O

4.2.3 Iterative Multiuser Detection and Decoding with Parallel
Interference Cancellation

Consider the same setup as in Section 4.2.2. Let the true single-user channel be
given by (4.65) and postulate for m = 1, ..., M, the set of channels

~ ¥ ~ ~ ~ ~ ~ (¢
Zepm = <h§,t,m>(£)x§,t + A’U&t,m + We t.m,; We tm ™~ CN(O; Di ))’ 4.76)

where {(h¢ 4 m) (0)}51_, are the posterior mean estimates of the channel (4.33) and
given by the channel estimator. As in Section 4.2.2, the noise variances are given
by (4.70) — (4.71), with (4.72) — (4.73) replaced by

St (DL, DY) = BY { e = (@em) 1P} (4.77)
Siaom (DL, D) = B {8 1m — (Bamd P} (4.78)
where k =1,..., K and
Orym = (Pt (0) kit + Db m- (4.79)
The RV
Abgy = [Abpgs -+ Adgen]' €CY, (4.80)

is the receiver’s knowledge about (4.37), as discussed in Section 4.1.5. The single-
user GPME of the kth user is given by

N 8 . ¢
(O Bz, ave,{ - Tnet Q(Zrtm = 2kam | Erts ATk t.m, jk(,t))}

E = - - - ¢
Bz, av{ =1 Q(Zrtim = Zktm | Ertr Abg,m, J,ﬁj)}
481)

<..
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The expectations over the data symbols are taken for the desired user & with re-
spect to the postulated a priori probability Q(Z¢ ), and for the other users over the
Gaussian distribution

- =1) &1 .
QO(@50) = CN((#506a L 04, JERNE (48D
where the mean is given by (4.34), and Qggj}t) is the postulated variance of the
estimation error in the feedback symbols.

Claim 6. Let T = 7qC — oo and K = aL —> oo with a and 14 finite and fixed.
Conditioned on the set {P, H, {Q) (y; | TV H | {0 (50) Viexcres Poan )
the joint distribution of the true and postulated inputs and the estimate <a:kt> of
the multiuser system in Section 4.1.5 at the (th iteration converges in probability to
the joint distribution of the true and postulated inputs and the estimate <.fi'k’t>(g) of

the single-user system described above.
Proof: Omitted. O

The consequence of the Claims 4 — 6 is that the performance of an iterative
multiuser DS-CDMA system described in Sections 2.2.2 and 4.1, can be analyzed
by concentrating on the equivalent single-user system defined by the appropriate
equations in (4.47) — (4.81). The next section reports the performance analysis
of the iterative DS-CDMA system based on the equivalent single-user description
given above.

4.3 Performance of Large DS-CDMA Systems Using
Iterative Channel Estimation, Detection, and
Decoding

We now turn to the analysis of the multiuser DS-CDMA system described in Sec-
tion 2.2.2 that uses the iterative estimators derived in Section 4.1. As in Chapter 3,
the large system performance is obtained with the help of the decoupling results
reported earlier. Thus, for the rest of this chapter the replica symmetric solutions
of Claims 4 — 6 are assumed to be valid and all results are obtained by studying the
equivalent single-user system defined by (4.47) — (4.81).

Due to the relatively high amount of different results that will follow, the outline
of the section is provided below.



4.3. Performance of Large lterative DS-CDMA Systems

* Section 4.3.1 briefly recaps the assumptions made in the density evolution
for the rest of the analysis.

* Section 4.3.2 considers the iterative channel estimators described in Sec-
tion 4.1.3. The output statistics of the following CEs in increasing order of
model mismatch are obtained:

1. Iterative LMMSE channel estimator with soft information feedback
and full knowledge of second order error statistics;

2. Iterative “maximum likelihood” channel estimator using hard feedback
and neglecting all error statistics.

» Section 4.3.3 concentrates on the performance analysis of the iterative data
decoders introduced in Sections 4.1.4 and 4.1.5. The following iterative es-
timators, arranged in decreasing order of complexity, are considered:

1. Iterative MAP-MUDD with soft feedback;
2. Tterative LMMSE-PIC MUDD with soft feedback;
3. Iterative SUMF with soft and hard feedback.

» Section 4.3.4 briefly recaps the notion of multiuser efficiency and presents a

related performance measure suitable for mismatched channel information.

4.3.1 Density Evolution with Gaussian Approximation

Consider the BICM encoded channel inputs {zj;} in (2.10). By (2.19) — (2.20),
the extrinsic probabilities of the data symbol z, ;, obtained by the BCJR algorithm
during the /th iteration, factor as

1 )
Pgi)t <$k,t = ﬁ(ak,t,l +Jak,t,2)> = IP(EQC(ak,t,l)IPfch(ak,t,Q)7 (4.83)

in the limit of large code word length 7' — oo. For later use, let

aext,(@)

l
kitq — argmax ng{(ak,t,q)» q=1,2, (4.84)

ag,t,q€{£1}

be the extrinsic information based hard estimate of ay, ; 4, and define the error prob-
ability

2 T
ext,(¢) 1 ext,(0)
Ek B ﬁ ]z::l ; Pr (ak,t,q ;é ak7t7Q) . (485)

Naturally, equations completely analogous to (4.83) — (4.85) for the approximate a
posteriori based feedback can be defined.
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To simplify the density evolution, we make the Gaussian approximation [125,
126, 133, 173, 174] for the log-likelihood ratios obtained by the sum-product de-
coders, i.e., given ay ¢ 4,4 = 1,2,

IP(@ — 1 X X
A7) = log ea(0hta =) ) | Nog, 20, 4,00), a86)
IPext(akytaq - 71)

where
ext,(¢ — ext,(£)]2 1
My o0 {Q l(gk ul ))} ) ( 8')

and Q™! is the functional inverse of the Q-function [5]. The approximate APPs
IPglf,)p (x,) are handled in a completely analogous manner. One should also remem-
ber from Section 2.2.2, that the power delay profiles £, € R have a distribution
Ppdp Over the users. Therefore, one needs to take the expectations over the joint
distribution of £ and &} P.(6)

The probabilities ]Pg)t (z1,) obtained through (4.86) — (4.87) are transformed

via eyt tO Qg()t (Zr,) as discussed in Section 4.1.1. The posterior mean estimate

60 (or 5Zp for the case of channel estimation).

reads

Enba = S #,Q% () (4.88)

i’k,tGM

and the MSE of the extrinsic information based symbols conditioned on the feed-
back is denoted

xt, (¢ l
O = B {Jon — (Fe)Sa? | (Era)Se) (4.89)

Note that the explicit form of (4.89) depends on the type of feedback used. Com-
pletely analogous notation is used for the feedback based on approximate APPs
Pg?p (@h,t)-

In the following, we omit the user and time indices k and ¢t when they are deemed
unnecessary for the presentation.

4.3.2 Linear Channel Estimation with Information Feedback

Proposition 8. Forthe LMMSE channel estimator described in Example 8, we have

S 7 (CF,CR5) = Sirm(CY,CP,ER,), (4.90)
3 ~ /4 l
Ek,D\ﬂ,m(C(T CD)\ﬁ) Ek,D\ﬁ,m(C%)\,g,C() C(D)\ﬂ)7 4.91)
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in (4.53) — (4.56). As a result, (4.57) — (4.60) simplifies to

¢y =c¥=clr,, o e (4.92)

Chly = C(,f{ ,=CVT, cgf) cR. (4.93)

The MSE of the mth path for the user k at time index ¥ € D reads

msekﬂg’m

Tir xk t>g€p1)| B
+ Z app (€-1) ’

=K, _ @1 § ten | 14 thym
oy teD\Y cl? + 1, mSUA

(mk,’D\ﬁ)app

(4.94)
(0)

where the noise variances Cy,’ and C y) are given by the solutions to the coupled

-1
Tir xt>app |2

cp) tED\ﬂC +tm Qapp(

fixed point equations

M
Y =0 +a S E{in <1+tm

m=1
(4.95)
M 7 A0
tmC 3
o0 _ ;2 +a E mCy 2PP.(t=1)
d mzzzl Céf)_’_%mgzz),(f—l) [ Ax

RS
C'()—Hf Qapp( 1) m

(t=1))2 !
Ttr xt)app |
+ Z app( )]) ’

Ctr teD\ﬂC + tm Q5

(4.96)
respectively. Due to soft feedback,

szﬁt(ﬁ H_q_ (&) D2, (4.97)

app

The power delay profile t = [t1 -+ Ta] " has distribution Dpdp, and the expecta-
tions in (4.95) — (4.96) should be taken with respect to the joint distribution of t,
the feedback symbols <ip\19>g€_pl), and conditional variance (4.97).

Proof: See Appendix D. O

Remark 5. If we let 7y = 0 or 52""’“_1) =0Vk = \(xt>§,€,pl)\ = 1 and
QZ’;’(Z_” = 0, Proposition 8 reduces to the previous result [59, Thm. 2], as ex-
pected. Furthermore, from (4.95) — (4.96) we find that the use of soft feedback can

never increase the per-path MSE of this channel estimator. &
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Corollary 3. Let us consider the special case where all the users have the same
total received average power t > 0. Furthermore, let the PDP have M equal power

multipaths so that
Prdp = O(7/M)ens (), te R (4.98)

If we define the ratios
Ay = 7'tr/Tcoh and T = Tcoh/Mﬂ (4.99)

taking the limit Ty, 74, M — o0 while keeping A, Y finite and fixed gives the
asymptotic normalized per-path MSE

(0 _ mse®
- t/M

-1

(A | (1—Ay) -\ (=1))2

1+Tt<0(£)+ -0 E{|(z){557 1%} . (4.100)
d

tr

where t € D is a dummy variable. The noise variances (4.95) and (4.96) are given
by the simplified fixed point equations

e = o2 + afe®, 4.101)
Cff =0 + a1 - (1= €DE{(E) 5 P (4.102)
respectively.
Proof: The result follows from simple algebra and is therefore omitted. O

Remark 6. The scenario considered in Corollary 3 is highly ideal, but allows for
simplified numerical evalution of the fixed point equations given in Proposition 8.
One can make a physical interpretation for the case as follows:

1. The system has a very broad bandwidth and the environment rich scattering
so that there are many solvable multipath components with relatively equal
received powers;

2. The transmission rate is high compared to the user mobility so that one fad-
ing block contains a long sequence of transmitted symbols;

3. Very long code words are used so that they span several fading blocks.

Furthermore, if we use the notation of [6, 158] and denote the delay and Doppler
spread of the channel by 7,, and By, respectively, T turns out to be the inverse of the
channel spread factor, i.e., Y—! = T,,B,. Accurate channel estimation is known to
be feasible when T,,, By < 1, which in our notation translates to Y > 1. &
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Proposition 9. If 1 4+ aM < Ton, the per-path MSE of the approximate ML esti-
mator given in Example 9 converges in the large system limit to

(1)1 ,(—1
mseML’(e) - o2 n 4€pr ( )tk,m(Td -1) [1 + €pr( )(Td — 2)}
kym Teoh —1—aM (Tcoh - 1)2

1 —1

(Tcoh - 1)2(Tcoh -1- aM)

where t = Y tn, and the expectation is with respect to the joint distribution of
the PDP and the BEP of the feedback.

Proof: See Appendix D. O

Corollary 4. Consider again the special case of Corollary 3. Then, for the approx-
imate ML channel estimator

gML,(E)_M
/M
2
Tir, T ’M 00 g —
2 g A
(t-1) 1 _ =1
Lol Atr¥1_ == (L=2)l  10s)

is the asymptotic normalized MSE when Ay, = T /Teoh and T = Teon/M are
finite and fixed.

Proof: The result follows from simple algebra and is therefore omitted. O

Remark 7. The results in [138] were obtained by making several approximations
in the analysis. In order to compare our exact replica symmetric solution for the
approximate ML channel estimator to the main result of [138, Sec. III], consider
Corollary 4. Following the assumptions in [138], set ¢ = 1 along with the approxi-
mations: 4[5%;1)(1 - Atr)]2/(T —a)x0,and Teop > M = Teop — aM =
Teoh so that Y — o &= Y. The first two terms of (4.104) now coincide with the
variance A, in [138, Sec. III], and (4.114) with (4.104) corresponds to the variance
of the interference term [138, Eq. (13)7°. &

3We remark that [138, Eq. (13)] has an error in it. There is also no separation in the bit error
probabilities (in the notation of [138]) P, related to channel estimation and interference cancellation.
This implies that the authors use the same type of feedback (extrinsic information or APP based) for
both tasks. The type of feedback is not defined in the paper.
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4.3.3 Iterative Data Detection and Decoding with Feedback and
Mismatched CSI

Let us assume that for iteration ¢ = 1,2, ... and any ¢t € D, the non-random limiting
distribution

F(e)(Pl, . PM,]E’l(Z),. Pﬁ), msegg), .. .,mseg\?)

= Klgnoof]; Hl]l ap, (Pu)lgr (B)) Lage (msely)),  (4.105)

exists almost surely, and is independent of ¢. The auxiliary sets for the indicator
functions are defined as

Ay = {Pm = 0| [hgm[* < P}, (4.106)

for the received powers of the true channel, and

At = (PR 2 0] [{rem)io| < B}, (4.107)
Ase, = {msell) >0 | mse,(:g’m < msel)}, (4.108)

for the received powers and MSEs of the channel estimates, respectively. With
some abuse of notation, we refer to (4.105) also when the MSEs are given by the
approximate ML channel estimator, denoted by {mseML Oy m _1

Proposition 10. Consider the SUMF-based iterative MUDD in Example 12. For
hard or soft feedback and any channel estimator, the noise variance in (4.70) is

given by
M

DO =0+ a S Bl — () o@O).  @109)

m=1
The expectation should be taken with respect to the limiting empirical distribution
of the true and estimated channel and data symbols, calculated over the user pop-
ulation whose power delay profile is drawn according to ppqp.

Proof: See Appendix D. O

Proposition 11. Let the channel estimation be performed by the LMMSE estimator
of Example 8, or the approximate ML estimator of Example 9. The noise variance
for the SUMF with the LMMSE based channel estimator reads

sum m

M
D=0 +a Y E{msel) + ol VAO}, (4.110)
m=1
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where the expectations are with respect to (4.105) and the error variance of the
extrinsic information based feedback QX;U. When the CSI is provided by the ap-
proximate ML channel estimator, the noise variance for the SUMF utilizing hard
and soft PIC is given by

M
ML, () ML, (¢ 1) ¢-1) Td—1
Dsumg hard = O —i—ocZIE{msem ()—I—Q(Ax Pm< — 2 gpp>Tc0h_1)}

m=1
@.111)
M
Dl\ﬂrl;;tg{)soft =0’ +a Z & {mse L.(6) + Q(Am )( - mseML (4))} ,
m=1
4.112)

respectively. The instantaneous SINR for the SUMF with LMMSE based channel

estimators reads

M
¥ Y4
Smrkt (Z (R )| ) /(Z [(hetmd o) |* (D §u211f+msel(<:7)fm)>'
m=1

(4.113)

Proof: Equations (4.110) and (4.113) follow from the fact that for the LMMSE CE
of Example 8, the channel estimate and the error are uncorrelated. For the case with
approximate ML channel estimator, using Lemma 1 in Appendix D gives (4.111).[]

Remark 8. It is easy to verify that if we let (Z )g )t =0 = Q(Z Doy, Proposi-
tion 11 gives [59, Proposition 2], and setting (fL Yoy = bm = mse%) =0, re-
duces it to [125, Proposition 2]. &

The case of ML channel estimator is in general slightly cumbersome to deal
with numerically. We therefore consider again the special case of Corollary 3, that
gives the next simplified result.

Corollary 5. Let the PDP be drawn according to (4.98). Then,

Doyt = 0% + o [0 + (1 - B{()E2) (1 - MO)], @114

DsMurl;’Eli)hard = 02 + at (§ML +4e <(ef<t b [1 2e gpp )(1 - Atr)]) ) (4.1 15)
n (¢-1) 2
71— 28501 — Ay
sineMb(0) = [[ sapp )] (4.116)

14 M0 — 480 (1 - Ay)]

sumf
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in the limit Ty, 74, M — 00 when Ay = Toy/Teon and T = Teon/M are finite
and fixed The normalzzed per-path MSE M- s given by (4.104) and the noise
sum f in (4.116) is either pML©) pML.©)

sumf—soft sumf—hard’ depending on the
type of feedback used for interference cancellation.

variance D

Remark 9. If we make the approximation 1 — Ay, /~ 1 in Corollary 5, and & ML, (€)
is modified as discussed in Remark 7, (4.115) — (4.116) reduce to the main result
of [138, Sec. IV]. &

Proposition 12. Let the multiuser decoding be performed by the non-linear MAP-
MUDD of Example 10, or the LMMSE-PIC MUDD described in Example 11. As-
sume the channel estimation is performed by the LMMSE estimator of Example 8.
The instantaneous post-detection SINR at (th iteration for the user k and time index
t € D is given by

M 2
) (et (o) |
smrkt mEZI —D( 0 mse,(fi . “4.117)

The noise variance DY is given for the MAP-MUDD or the LMMSE-PIC MUDD
by the solution to the fixed point equation

2
DO — 0?40 % gl DY
— DY + msel)

m=1

() (6) N .
) (Eee ) 4 P v (000, PO s

(4.118)
where for the MAP-MUDD
_ (1)
V(DO APOPL, msel}2,) =1 - E{ o Aralie
ale{:l:l} 2
M PO M 20 AE-D
tanh +v m + a2 Dv
/ mzzjl DO 4 mse) mz::l DY 4 mseld) o

‘ {P }m 1» {msem } 1} (4119)
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and for the LMMSE-PIC MUDD

V(DY {PIIN, {msef}al )

M H(0) !
=B {ngl) (1 +olY > DO T )

=1 DU+ mse(})

(PO {msea?}%:l}.
(4.120)

In the following the noise variances for the MAP and LMMSE MUDDs that are
solutions to (4.118) — (4.120) are denoted by D) and D"

map Immser T€Spectively.

Proof: See Appendix E. O

Remark 10. Let mse,, = 0 Vm in (4.118) — (4.120). We immediately retrieve the
results in [85, 125, 126]. On the other hand, if we set )\Efl_l) = )\ff;l) = 0 and
consider the distribution (4.98) for the user PDPs, we get [59, Eq (12)] after some

algebra, as expected. &

Interestingly, there is a common part in (4.118) for both data estimators that
does not depend on the extrisic information based feedback at all. Note that these
terms vanish if and only if mse — 0. Furthermore, there is a connection with the
estimator specific terms V(- - - ) to the related terms in the case of perfect CSL.

Remark 11. Consider the terms (4.119) and (4.120), specific to the MAP-MUDD
and the LMMSE-PIC MUDD, respectively. One can verify that for fixed D) and
a single path M =1,

B{V (DO (PO, {msel )l )} = E{la = @)ol"},  @121)

where (7)) is the estimate of the desired user’s data symbols and given for the
MAP and LMMSE MUDDs by (4.74) and (4.81), respectively. Furthermore, these
MSEs of the data symbols are equal to the corresponding terms for the case of
perfect CSI [85, 125, 126], with the noise variance increased by the MSE of the
channel estimates and the channel power reduced accordingly. &

Corollary 6. Let us assume the same conditions for the channel parameters as in
Corollary 5 and define

f(1-¢0)

(O (DY —
sinr'™ (DY) = 30

(4.122)
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Then, in the limit T, 7q, M — 00 with Ay = Tr/Teoh and Y = Teon /M finite and
fixed,

-\ (£-1)
_ 1+ a1(a1)ex
DY), =o” + at]E{l —1-¢9 3 <2>“
al G{il}
A\
X /tanh (sinr(@ (D,(Tgp) + vy/sinr®) (Dgfgp) + a1a12> Dy} ,
(4.123)
for the MAP-MUDD and
~ Q=11 _ ¢
DY =5+ alE{ O+ Ty 1-¢ ()@ , (4.124)
1+ QAm Sinr(g) (Dlmmse)
for the LMMSE-PIC MUDD.
Proof: The result follows from simple algebra and is therefore omitted. O

Note that when the solution to the fixed point equation (4.123) or (4.124) is
obtained, the post-detection SINRs for the MAP and LMMSE-PIC MUDDs are
given by (4.122) with sinr(¥) (D(g) ) and sinr(®) (DY), respectively.

Immse map

4.3.4 Multiuser Efficiency and Related Performance Measures

Consider the case of perfect CSI and let

2
snrilc] = ||h1;[20]|’ (4.125)

be the instantaneous received SNR of the kth user during cth fading block in (2.10).

Furthermore, let sinrg) [c] be the corresponding SINR of the same user at the output

of the MUDD during iteration £ = 1,2,.. ., and given in Section 4.3. If we define

n® = %7 0< n® <1, (4.126)

where D(®) is the noise variance of the single-user system given in Sections 4.2.2 and 4.2.3,
the output SINR of the iterative MUDD reads

sinrl(f) (] = 19 snri[d]. (4.127)
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Note that for ergodic Rayleigh fading channel and BICM this is consistent with the
definition of the asymptotic multiuser efficiency 7,2_,q in (1.1) if we take the high
SNR limit 02 — 0 and let the functions &g, (3nF) and em, (3AF) be coded BERs.
Following the notation of [125, 126], we let

W [0,1] = [0,1] : pt=1) = ®), (4.128)

be the mapping function that describes the DE for a specific iterative MUDD.

One might be interested in tracking (4.128) for the DE-GA when channel esti-
mation is added to the system. In this case, however, some caveats in how to define
the corresponding mapping function exists. Below we follow one approach that
considers the loss in effective SNR, arising from both the MAI and the imperfect
CSIL

Let us consider the simplest case of equal power users with uniform power delay
profiles and LMMSE channel estimation. We omit the user and block indices and
define a new parameter related to (4.126) — (4.127) as

inr® 2
0 _ sinr . o
Tlee” = snt (@&/M)(D@4mse®) (4.129)
/M —mse(®

Corollary 3 g 2

D)
where (4.130) corresponds to the simplified case of large number of multipaths,
considered in Corollary 3. Naturally néﬁ) — 7 when mse® — 0or £ — 0.
One should note, however, that by using this definition:

(1— g(ﬁ))’ 0< 77(? <1, (4.130)

C

* We are comparing a multiuser system with channel mismatch to a single-user
system having perfect CSI;

¢ In addition to the choice of iterative MUDD, néﬁ) depends on the choice of
channel estimator and the system parameters related to it (number of training
symbols 7, per block, coherence time 1o, number of multipaths M) via
mse®) or £©) as well;

« Even with error free feedback '), s?f)p — 0, for all finite coherence times

Teon or ratios Y, we have néﬁ) < 1 since msel® > 0 and & © > 0, respec-
tively.

Therefore, instead of describing just the MAI suppression capacity of the iterative

MUDD like (4.126) does, ngf_) provides information about the efficiency of the entire

iterative channel estimation and MUDD scheme. For the following, we let

Wee : [0,1] — [0,1] : iV s D), (4.131)
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be a mapping function related to (4.128), that describes the evolution of (4.129) —
(4.130) with Gaussian approximation.

Finally, let us consider the situation when the feedback symbols tend to correct
decisions, that is,

Q=1 _o DY (4)
DO e T pl) _p2 g p> ]E{ RS L @13
map -+ msey,
Q(471) 0 M
DY = 0% +a Y B {mse(l) ] (4.133)
m=1

Plugging the solution of (4.132) or (4.133), depending on the iterative MUDD, to

(4.129) gives the upper bound for maximum achievable néﬁ) for a given MSE of
(0)

lower bounded by considering the corresponding non-iterative channel estimator

channel estimates. For iterative channel estimator, on the other hand, mse;,;’ can be
with Ti.on — 1 known training symbols.
Note that in contrast to the case of perfect CSI, where

Q(FU—)O

p) . =pY =Dy A T 52 (4.134)

sumf — ~Immse

with CSI mismatch the performance of the SUMF and the LMMSE-PIC / MAP
MUDD:s can be different in this this limit. For the special case ¢y, ,, = t/M,

Dmap

(02 — (1 — aM)mse® + \/Zlmse(e)a2 +[o2-(1- aM)mse(e)]Q) :
(4.135)

1
2

The maximum difference in the average post-detection SINR between the LMMSE-
PIC / MAP-MUDD and SUMF occurs for this scenario at load

mse + o2
a = e (4.136)

From (4.133), (4.135) and (4.136) we get

. —
SiNfmap Q(AI Y0 mse + o?

- 2
SINFsumf | o % mse + 02 + /o mse + o2
(4.137)

where the MSE of the channel estimates is assumed to be non-zero. Note that M —

<2 (~3dB),

oo == mse — 0 and, thus, for large numbers of multipaths the maximum loss for
SUMEF approaces zero (in dBs). Thus, for wideband channels there are, in general,
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Figure 4.2. Loss in output SINR for the iterative SUMF when compared to
LMMSE / MAP MUDD given error-free feedback. Equal power paths, ¢ = 1
and snr = 10 dB.

little differences between the performances of the different iterative MUDDs, if they
converge to their maximum values of 7ce. It is important to remember, however, that
their convergence properties may differ strongly.

Finally, Figure 4.2 depicts the asymptotic loss for the SUMF in the case of a
finite number of equal power paths with ¢ = 1, sntf = 10 dB and genie-aided feed-
back. The black line gives an upper bound for the SINR loss in dBs as obtained
in (4.137). Any combination of values for the user load, the number of multipaths
and the MSE of the channel estimates corresponds to a point within the gray area.
One can thus infer from the above figure that even for small number of multipaths,
the performance loss is much smaller than the upper bound of 3 dBs for typical
system parameters. Therefore, even for small numbers of solvable multipaths we
get the same conclusion as in the wideband limit that the performance of the itera-
tive MUDDs can be expected to be roughly the same given they converge to their
maximum values of 7ce.
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Figure 4.3. DE-GA with equal power users and AWGN channel. User load
a = 1.8, and average SNR of snr = 6 dB.

4.4 Numerical Examples and Discussion

In this section we present a set of numerical examples derived from the analytical
results obtained in Sections 4.2 and 4.3. We again remind the reader that the nu-
merical examples given here are based on the asymptotic large system analysis and
for finite systems are approximations.

For all considered cases the binary ECC for the BICM is a half-rate convo-
lutional code. Two maximum free distance codes defined by the polynomials in
octal notation (5,7)s and (561, 753)g, with respective constraint lengths of three
and nine, are used [198]. The codes were selected to represent two extremes —
the first one is a very simple “textbook code” whereas the latter is a much stronger
code adopted in the current state-of-the-art cellular UMTS network. Modulation
mapping is Gray encoded QPSK and, thus, the BICM has code rate R = 1 and the
average SNR per information bit is snry, = #;, /0.

We start the numerical examples by considering the density evolution of two
iterative MUDDs under the assumption of perfect CSI at the receiver. Figure 4.3
depicts ¥ given in (4.128) for the DE-GA of the MAP-MUDD (see Section 4.1.4)
and the LMMSE-PIC MUDD (see Example 11). Equal power users and AWGN
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Figure 4.4. Mapping function ¥ for the case of perfect CSI and V.. when
channel estimation is employed. Three equal power paths, channel coherence
time of T.op = 101 symbols, snr = 6 dB, user load o = 1.2, LMMSE-PIC
MUDD and (561, 753)g convolutional code for all cases. Channel estimation
by non-iterative or iterative LMMSE estimator. The dotted lines show the
upper bounds obtained by using (4.135).

channel was assumed. Note that the curve for the LMMSE-PIC MUDD and (5, 7)s
code can be found also in [125, Fig. 4]. As expected, the MAP-MUDD obtains
higher post-detection SINR for the same level of feedback reliability due to its more
efficient MAI suppression. This allows the system to be more heavily loaded while
still guaranteeing a single-user performance. Another observation to be made is
that while the combination of LMMSE-PIC MUDD and (561, 753)g code is close
to its maximum load at o = 1.8, the shorter memory (5, 7)g code converges for
much higher loads (see the curves for higher loads in [125, Fig. 4]).

In Figure 4.4, we have plotted W, given in (4.131) for the case of LMMSE
based channel estimation and LMMSE-PIC MUDD. For comparison, the upper
bounds discussed in Section 4.3.4 (dashed lines), and the corresponding curve ¥
for the case of perfect CSI are also included. Ergodic Rayleigh fading channel with
three equal power multipaths is assumed. Only the (561, 753)g code is considered
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Figure 4.5. Bit error probability vs. SNR of the SUMF based MUDs with soft
and hard feedback and LMMSE or ML channel estimation. Training overhead
of 10 %, user load o« = 0.7 and inverse of channel spread factor T = 20.
Rate-1/2 convolutional code (561, 753)s and Gray encoded QPSK. Dotted
lines show the minimum BEP bounds obtained using (4.135).

and all users are restricted to have the same average received power. It is clear
that for both cases with channel estimation, the iterative MUDD converges to its
maximum value of 7. Therefore, in this case where the user load is a = 1.2, the
limiting factor in the performance is not the MAI but the imperfect CSI, and no
better performance can be obtained by using MAP-MUDD instead of the LMMSE-
PIC MUDD (cf. Section 4.3.4). We also remark that the upper bound for the case of
iterative channel estimation was obtained by using (4.135), where the MSE of the
channel estimates was lower bounded by assuming a non-iterative LMMSE channel
estimator using 7y, = Tcop — 1 known training symbols. Therefore, the combination
of iterative LMMSE-CE and LMMSE-PIC MUDD in fact achieves the optimum
performance for the given channel conditions. It is quite remarkable that this is
can be accomplished by using only one pilot symbol. With non-iterative LMMSE
channel estimation and ten training symbols, on the other hand, severe loss in output
SINR is observed. The interesting shape of the curve W, for the case of iterative
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channel estimation is due to the use of approximate APPs in the feedback to the CE.
The intuitive explanation goes as follows. For low input SNR, the channel decoder
output is dominated by the symbol-by-symbol a posteriori probabilities obtained by
using the channel information rather than the extrinsic information that arises from
the code constraints. Therefore, for small output SINR after MUD front-end, we can

et — (.5 while €2PP < 0.5. For the extrinsic information

have a situation where ¢
based feedback symbols then |(Z)ex:|*> = 0 and no MAI suppression is attainable.
This corresponds to the flat region at the beginning of the DE curves in Figure 4.3.
At the same time, however, the feedback to the channel estimator can be reliable
enough to lower the MSE of the channel estimates since |()app|? > 0. This in turn

affects (4.118) and (4.129), so that Wee(7ce) > 7ce-

Let us next look at the performance of the multiuser DS-CDMA system when
the receiver has converged to its maximum value of 7.. Figure 4.5 depicts the BEP
vs. SNR for the SUMF with linear channel estimators under the simplifying assump-
tions of Corollary 3. To guarantee convergence for all considered cases within the
given SNR range, the user load was set to oo = (0.7 and pilot overhead of 10 % was
used. Inverse channel spread factor Y = Tcon/M = 20 was assumed. From the
previous density evolution analysis it is clear that a notable performance loss should
occur with linear channel estimation when compared to the case of perfect CSI. The
asymptotic performance of the MUDs was again obtained by using the techniques
discussed in Section 4.3.4 and plotted with dotted lines. First observation from
the figure is that for both the soft and the hard PIC there is a phase transition in
BEP from one half to the minimum attainable, for the given receiver and system
parameters. Furthermore, there is very little difference between the non-iterative
ML channel estimator (ML-CE) given in Example 9 and the non-iterative LMMSE
channel estimator (LMMSE-CE) in the latter region. There is, however, a signifi-
cant difference in the threshold SNR when the phase transition occurs for the soft
and hard feedback, as illustrated by the three arrows in the figure. For the case of
perfect CSI this is well known and with the channel estimation the effect is roughly
the same (LMMSE-CE) or worse (ML-CE). At high SNR, the loss caused by im-
perfect CSI is roughly 2 dBs, but the difference in the convergence threshold is up
to 5.5 dBs. Due to the poor performance of the hard feedback based PIC, we drop
it from further discussion in this section and concentrate on presenting results for
the iterative MUDDs that use soft interference cancellation.

As a final comparison between the two feedback strategies, we shall look at
the iterative approximate ML and LMMSE channel estimators described in Exam-
ples 8 and 9. Figure 4.6 depicts the normalized MSE for the approximate ML-CE
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Figure 4.6. Normalized MSE £) = mse(®) /(/M) vs. ngi_l) for the linear
channel estimators with soft and hard feedback given in Examples 8 and 9,

respectively. Three equal power paths, 7, = 10 pilot symbols, user load @ =
1.2 and snr = 4 dB.

and the LMMSE-CE. The solid lines represent the normalized MSE of an itera-
tive (approximate) ML-CE that uses feedback only when it helps to improve the
performance of the pilots-only case. The flat part of the solid curves roughly at
Nee € [0,0.3] corresponds to the MSE obtained by the estimator when using only
known pilot symbols. The dotted lines represent the MSE of the channel estimates
when the feedback is enabled. Thus, in this region the MSE is higher with feedback
than without and performing iterative channel estimation is detrimental. When the
reliability of the feedback improves, the MSE can be lowered by using the feed-
back symbols as additional pilots. The dashed lines give the normalized MSE of
the LMMSE-CE with soft feedback. As noted in Remark 5, the feedback is never
harmful for this channel estimator, so there is no need to check whether to use it
or not. The MSE is lowered for all values of 7... As expected, the LMMSE-CE
provides lower MSEs than the approximate ML-CE, although when the feedback
symbols get realiable enough, the performance of these channel estimators is virtu-
ally the same. For the rest of the section, we shall concentrate on the LMMSE-based
channel estimator only.
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Figure 4.7. Bit error probability vs. SNR for the LMMSE-PIC MUDD and
the SUMF with soft feedback. Iterative or non-iterative LMMSE-CE. Three
equal power paths and coherence time of T, = 101 symbols. Rate-1/2
convolutional code with generator polynomials (561, 753)s and Gray encoded
QPSK.

Bit error probability vs. SNR for an iterative system consisting of the LMMSE
or SUMF-based MUDDs with soft PIC and the iterative LMMSE-CE is shown in
Figure 4.7. The user load is set to & = 1.2, channel coherence time of T, = 101
symbols and three M = 3 equal power paths are assumed. This time we have not
plotted the BEP lower bounds for clarity. As the DE-GA analysis in Figure 4.4
already implied, using iterative channel estimation and MUDD only one pilot is
needed to converge to the BEP lower bound (not shown) and close to single-user per-
formance with perfect CSI. Increasing the training overhead to ten pilots but using
non-iterative LMMSE channel estimation, however, causes an additional 2 dB loss
in performance. Due to the relatively poor MAI suppression capability of the SUMF
even soft feedback is used, the load was reduced o = 0.8 in order to converge within
the given range. This serves as an example of the different convergence properties of
the different iterative MUDDs although we found previously that their genie-aided
performances are essentially equal. We conclude that mismatch in channel infor-
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mation can easily destroy the benefits of having a data detector capable of efficient
MALI suppression, especially if the system needs to operate at relatively low SNR.
This can, however, be effectively circumvented by using iterative channel estimator
utilizing soft feedback.

The previous result showed that for fixed channel load a@ = 1.2, iterative CE
was able to provide the same BEP as linear CE, with 2 dBs lower SNR and only
one pilot symbol when LMMSE-PIC MUDD was employed at the receiver. We
next consider the case when the system is operating at moderate to high SNR and
we are allowed to vary the user load in order to achieve maximum throughput. The
loss in spectral efficiency due to transmission of known training symbols is taken
into account in the results. In addition to the LMMSE-based data decoder, the non-
linear MAP-MUDD is considered as well.

Spectral efficiency vs. training overhead for two mobility scenarios, namely
Y = Teon/M = 30 and T = 80, under the simplifying assumptions of Corollary 3
are plotted in Figures 4.8a and 4.8b, respectively. The system load is adjusted to
meet the minimum bit error rate requirement BER < 10~° and only selected com-
binations of system parameters are plotted for clarity. We know that the LMMSE
based channel estimator discussed in Section 4.1.3 is suboptimal when there is un-
certainty in the transmitted symbols. Obtaining an upper bound for its performance
by studying the optimum estimator discussed in Section 4.1.2 is, however, difficult.
We therefore plot instead an upper bound for the considered channel estimator by
assuming a genie-aided feedback, much like we did previously with the iterative
MUDDs. We remark the following:

* The spectral efficiency with the (5, 7)s code and non-iterative channel esti-
mation was found to be close zero in all cases. The corresponding curves
were therefore omitted from the figures.

 Significant improvement over the non-iterative data estimators studied in [59,
74, 85] can be achieved by using iterative MUDD, even with non-iterative
LMMSE channel estimator. As expected, the receivers using non-linear MAP
detector show notable gains in spectral efficiency over the LMMSE based
receivers. The difference is, however, smaller in the iterative cases.

e For T = 30, the upper bounds (omitted) and the curves for the fully itera-
tive receiver overlap almost perfectly in the case of (5,7)s code. The max-
imum spectral efficience is, however, around 0.68 bits per chip. Note that
throughput of over > 1.3 bits per chip is achievable with non-iterative chan-
nel estimator and (561, 753)s code. This opposite to the case of perfect chan-
nel knowledge shown in Figure 4.3. There the system with iterative MUDD
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achieves higher spectral efficiency with the (5, 7)s code for the same SNR.

* For T = 80, the highest loads with iterative MUDD and CE are obtained by
using the (5, 7)g code. In this case, the performance of the iterative LMMSE
channel estimator also follows closely the upper bound, showing that every-
thing else being equal, little can be gained by using a more complex channel
estimator.

* Iterations over the channel estimator provide only minor improvements in
the spectral efficiency if the (561, 753)s code is used, and the performance
is quite far from the upper bounds in this case. This hints that matching the
channel code to the provisional channel conditions might be very important
for the iterative MUDD and CE.

Figures 4.9a and 4.9b show the minimum training overhead that achieves the
target BEP < 107° as a function of the inverse channel spread factor Y, for the
channel loads o = 1.0 and o = 1.8, respectively. The simplifying assumptions of
Corollary 3 are considered and the receiver is equipped with the LMMSE-CE and
LMMSE-PIC MUDD or MAP-MUDD. The following is observed:

e For channel load o« = 1.0, the iterative receiver allows for successful com-
munication with vanishing pilot overhead if Y = 12 for the (561, 753)s code,
and Y = 42 for the (5, 7)s code. In the case of a = 1.8, the situation reverses
and vanishing pilot overhead within the plotted region for both LMMSE-PIC
MUDD and MAP-MUDD is achieved when using the (5, 7)g code, whereas
MAP-MUDD is required for the (561, 753)g code.

* With the shorter constraint length code, performing iterations over the chan-
nel estimator allows for transmission with negligible pilot overhead whenever
coherent communication is possible with the given system set-up. Thus, there
is a phase transition in the amount of required training overhead as a function
of the channel spread factor.

» With the LMMSE-based channel estimator and (5, 7)s code, the LMMSE-
PIC MUDD achieves in practice optimum performance under the given sys-
tem parameters.

» Using the constraint length nine code requires uniformly less training than
the constraint length three code for the same error rate performance when
the load is « = 1.0. This is true also for the higher load o = 1.8 if linear
channel estimation is used. For fully iterative receiver, however, using the
(5, 7)s code is beneficial if T is sufficiently large.
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Figure 4.8. Spectral efficiency aR(1 — Ay,) vs. the training overhead Ay,.
Average SNR of 6 dB, target BER < 102, and convolutional code (5,7)g or

(561, 753)s.
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Figure 4.9. Minimum training overhead vs. ¥ = T, /M for target BER <
10~°. Average SNR of 6 dB, LMMSE channel estimator and convolutional

code (5,7)g or (561, 753)s.
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Table 4.2. Minimum Y for A, < 0.001 and BER < 107° at sar = 6 dB

Load Code Pilot Bias
(7,5)s 43 42

a=10" 753 561y 12 12
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Figure 4.10. Minimum training overhead vs. T = T, /M for target BER <
1075, Pilot symbol and biased signaling based channel estimation. Average
SNR of 6 dB, LMMSE channel estimator, LMMSE-PIC MUDD and convo-
lutional code (5, 7)g or (561, 753)s. User load o = K/L = 1.8.

Total training overhead Aot (see Section 2.4) vs. the inverse channel spread fac-
tor ¥ = Teon/M for the iterative receiver with LMMSE-PIC MUDD and LMMSE-
CE is shown in Figure 4.10. The average SNR is snr = 6 dB, user load is fixed at
a = 1.8 and target bit error rate BER is set to 107°. Conventional pilot-aided
channel estimation and the probability biased signaling introduced in Section 2.4
are considered. Table 4.2 summarizes the approximate minimum Y € [0, 200] that
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achieves BER < 107° and training overhead Ao < 0.001 with iterative channel
estimation and MUDD for the same system parameters. The following is observed:

1. With biased signaling the phase transition for the (7,5)s code disappears,
although the required amount of training still drops from maximum to neg-
ligible within a very narrow region.

2. With iterative CE and MUDD, the numerical experiments suggest that the
bias based (A, = 0) channel estimation is uniformly better than the tra-
ditional approach of transmitting known pilots. This is in agreement with
the theoretical findings in [172]. We would like to point out, however, that
a more careful study of the combination of bias transformation and coding
has to be carried out before final conclusions.

4.5 Chapter Summary and Conclusions

In this chapter, the large system analysis of randomly spread code division multiple
access over a frequency-selective Rayleigh fading channel was considered. Itera-
tive channel estimation and multiuser detection based on extrinsic feedback from
the single-user decoders was studied. By means of the replica method, both esti-
mators were shown to have an equivalent decoupled single-user characterization in
the large system limit, that could be analyzed separately. In contrast to some earlier
results, we took into account the CSI mismatch in the iterative multiuser decod-
ing and studied an iterative channel estimator that utilized information feedback to
refine the initial training symbol based decisions.

The specific channel estimators considered included an LMMSE-CE with soft
feedback and an approximate ML-CE that used hard feedback. The iterative data
estimators included non-linear MAP-MUDD and LMMSE-PIC MUDD, both of
which used soft feedback. Single-user matched filter with soft or hard feedback
was also considered. The performance of the system was investigated by means of
DE-GA analysis. Analytical evaluation of the bit error rate and spectral efficiency
was carried out. In addition to new results regarding soft feedback based channel
estimation and data detection and decoding, we also considered the hard feedback
based scheme studied previously in [138]. Our result is exact in the large system
limit, whereas the previous result was obtained by making several approximations
in the analysis.

The theoretical results indicated that the soft feedback has never detrimental
effect on the estimators that take into account the error statistics. On the other hand,
the hard feedback can increase both the MSE of the channel estimates and the BER
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of the bit decisions. In contrast to the case of perfect CSI, where all considered
estimators converge to single-user performance when the feedback tends to correct
decisions, with channel mismatch the performance of the iterative SUMF can suffer
a loss of up to 3 dBs in the output SINR compared to LMMSE or MAP MUDDs.
For reasonable system configurations, however, the difference was found to be very
small.

Via numerical examples, it was demonstrated that for loads of up to o = 1.8,
iterative channel estimation and MUDD was able to meet the desired quality of
service (in terms of target BER) with vanishing training overhead for all practi-
cal channel conditions. The iterative CE was also found to provide superior per-
formance compared to simple pilot-aided CE when the goal was to maximize the
system spectral efficiency. With non-iterative channel estimation the system was
found to be very vulnerable to underestimated training overhead, whereas iterative
CE provided robust performance also in scenarios where the amount of pilots was
well below the optimum. Interestingly, when iterative channel estimation was used
in the system, the effect of ECC on the performance of the entire system became
highly non-trivial and dependent on the channel parameters. This suggests that
matching the code to both the CE and MUDD, as well as, the provisional channel
conditions is an important part of optimizing the system performance.

Finally, the novel training method based on probability biased signaling and in-
troduced in Section 2.4 was examined via numerical examples. It was found that
the proposed scheme can provide performance gain over the traditional pilot sym-
bol based channel estimation. Further research is, however, needed to efficiently
implement the signal biasing scheme in a way that does not hamper the error rate
performance of the error correction code or cause severe degradation in the spectral
efficiency of the system.



Chapter 5

Conclusions

5.1 Summary and Discussion

The large system analysis of randomly spread CDMA channels with mismatched
CSI at the receiver was carried out. Both channel estimation and multiuser detection
and decoding algorithms were investigated with and without information feedback.
Flat fading multi-antenna channels and multipath fading single-antenna channels
were considered.

The signal model for the single and multiple antenna systems studied in the latter
parts of the thesis were introduced in Chapter 2. Necessary background informa-
tion on channel coding schemes and the mathematical methods used in the analysis
were discussed. A novel training method based on probability biased signaling was
proposed.

Multi-antenna CDMA with per-antenna random spreading was the topic of the
Chapter 3. Spatially correlated block Rayleigh fading MIMO channels were consid-
ered. A set of linear channel estimators and non-iterative multiuser detectors were
derived as special instances of a general Bayesian inference problem. In addition to
the optimum pilot-aided LMMSE-CE, several suboptimal channel estimators were
considered. The multiuser detectors included the non-linear MAP-MUD as well as
the linear MMSE, decorrelating and conventional detectors. By an application of
the replica method, the multiuser system with the derived estimators was shown to
admit an equivalent single-user characterization in the large system limit. Using the
decoupled channel model, the QPSK constrained ergodic spectral efficiency with
single-user decoding was obtained. The analytical results showed that when pilot-
aided channel estimation is employed at the receiver, the ergodic capacity of the
system increases with the correlation between the transmit antennas. This obser-
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vation was in contrast to the previously reported studies considering perfect CSI
[92, 154], where the transmit correlation was found to have no effect on the ergodic
spectral efficiency of the system. Notably, no information at the transmitter was
required to attain the improvement in performance, but the channel estimator was
required to have a priori knowledge about the long term transmit correlation.

In Chapter 4, iterative DS-CDMA receivers for multipath fading channels were
considered. An iterative algorithm based on extrinsic information exchange be-
tween the channel estimator and the MUDD block was proposed. Both hard and
soft feedback schemes, as well as linear and non-linear estimators were included in
the framework. The multiuser system with the given iterative receiver was shown
to decouple to a set of independent single-user channels via the replica method.
The bit error rate performance and spectral efficiency were studied. The analytical
results showed that while the use of soft feedback could never impede the perfor-
mance of the iterative process, the use of hard feedback was potentially detrimental.
The numerical experiments suggested that near single-user BER performance with
perfect CSI was attainable in overloaded multiuser systems using channel estima-
tion. Furthermore, this could be achieved with a vanishing training overhead when
the system bandwidth and data transmission rate was allowed to grow in proportion
with the amount of resolvable multipath components in the channel. Optimizing
the user load for maximum system spectral efficiency as a function of training over-
head revealed that iterative MUDD provided significant gains over non-iterative
MUD even if linear pilot-aided channel estimation was used. As expected, further
improvements were obtained by using iterative channel estimation. As a side ef-
fect, with iterative CE the system became also very robust against underestimated
training overhead — something the non-iterative system was found to be vulnerable
to. Taking the channel estimation into account in the analysis was also revealed to
affect the optimal choice of error correction code in a non-trivial manner. Matching
the ECC to the projected channel conditions was observed to have a great impact
on the maximum achievable spectral efficiency.



5.2. Contributions of the Thesis

5.2 Contributions of the Thesis

The main contributions of the thesis are summarized below.
Large system analysis of MIMO DS-CDMA systems in spatially correlated
channels:

* The results extend the previous results reported in [92, 154] to the case of
mismatched channel information at the MUD;

* Related work concerning uncorrelated MIMO channels can be found in [183]
and [199]. Here the analysis was extended to antenna correlation and to chan-
nel estimators that were misinformed about the channel statistics;

* The observation that transmit correlation can be very beneficial for multi-
antenna communication, even when not known at the transmitter, may pro-
vide new design approaches for practical systems.

Large system analysis of iterative DS-CDMA systems in multipath fading
channels:

* The results of [S9] were generalized to iterative channel estimation and mul-
tiuser detection and decoding. Equivalently, the work presented in this thesis
can be seen as a follow-up to [125, 126] where iterative MUDD with perfect
CSI was considered. The previously reported results in [137] were extended
to iterative channel estimation and the analysis of [ 138] were performed with-
out resorting to approximations.

* To the best of our knowledge, the analysis of general iterative receiver with
soft / hard feedback and linear / non-linear estimators was performed the first
time. Related work that derives capacity bounds for optimal receivers with
channel estimation can be found in [172, 200].

* The finding that iterative channel estimation and MUDD provides spectrally
very efficient method for coherent communication may increase the inter-
est to fully iterative systems also in practical applications. Furthermore, the
observation that the choice of channel code depends heavily on the channel
conditions might provide new approaches to how to optimize the overall per-
formance of a system with channel estimation.
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5.3 Future Research Directions

In the following we provide some future research topics related to the work carried
our in the present dissertation that might be of interest.
Multi-Antenna Transmission Schemes:

e [terative receivers for MIMO DS-CDMA. Here the study of multi-antenna

systems was limited to non-iterative receiver. As the results in Chapter 4
showed, iterative channel and data estimation have potential to provide sig-
nificant improvements in performance over non-iterative receivers. Natural
continuation of the research in Chapter 3 is to extend it to the iterative case
of Chapter 4.

Comparison of the MIMO DS-CDMA considered in this thesis to multiuser
MIMO without per-antenna spreading. As shown in [92, 93], the per-antenna
spreading is simpler but sub-optimal approach for uncorrelated MIMO chan-
nels with perfect CSI at the receiver. How the combination of channel es-
timation and antenna correlation would affect the situation is an interesting
topic for investigation.

Channel information at the transmitter. Utilizing some form of a priori chan-
nel knowledge at the transmitter is known to improve the performance of both
single-user and multiuser communication systems (see for example [8, 9] and
references therein). Investigating adaptive coding and modulation or linear
pre-coding schemes in systems with channel estimation and CSI mismatch
at the receiver would be an important topic, especially if the system is delay
constrained.

Single-Antenna Iterative Receivers:

* Code optimization. In the present thesis, only two convolutional codes with

constraint lengths three and nine were considered. An important follow-up
would be a careful investigation of code optimization for systems employing
iterative channel estimation and MUDD, for example, in the spirit of [134]
where LDPC codes in MIMO systems were considered.

User power profile optimization. The asymptotic analysis of [126] revealed
that optimizing the received power profile of the users via linear programming
allowed for greatly improved channel loads and spectral efficiency of iterative
MUDD. Interesting future research topic would be to extend this approach to
the iterative receivers considered in the present dissertation.



Appendix A

Diagonalization of the Noise
Covariance Matrices C and D for
MIMO DS-CDMA

Here we show that the postulated noise covariance matrices C' and D of the decou-
pled single-user channels presented in Section 3.2, and the postulated correlation
matrix at the receiver side R, are simultaneously diagonalized by a unitary matrix.
The same result follows immediately for the covariance matrices C and D, only
with the postulated covariance matrix R replaced by the correct one R.

Let us first consider the postulated noise covariance of the channel estimator

M
C=5In+a) Qan,. (A.1)
m=1
Since C'is Hermitian, we can write C' = V[XCVH, where AC is a diagonal matrix
containing the eigenvalues of C' while the columns of V are the corresponding
eigenvectors. We can thus write the RHS of (A.1) as

M
Ac =35Iy + aVH( > QAhm)V =52 I N + alapy ARy, (A2)
m=1

where the diagonal matrix A Ahy+-+Ah,, contains the eigenvalues of Ef\,{:l Q Ah,,
[201]. If V simultaneously diagonalizes {2 ARy, M|, i.e., they all share the same
eigenvectors but possibly different eigenvalues, then

AAh1+~'~+Ah]\/[ = AAhl +--- 4+ AAh]\/[? (A3)

where Q Ah, = V[XAhmVH, forallm = 1,..., M. The other, rather pathological
possibility, is that for some subset of {1,..., M} we have VHQAhmV #+ [\Ahm
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while the sum of these matrices is diagonal. This would mean that their off-diagonal
elements cancel each other perfectly in the summation. However, the structure of
the estimators considered in this thesis do not allow for this to happen since for all
m, the noise and receive antenna covariances are the same.

Now, let us consider the first case. Recalling that R = UA RUH,

Qap = Qg+ (In©C) ' (In®C)
:QE—QQ[QE—F(IN®é/Ttr)}_1QE, (A4)
and denoting U = VHU, we can write
(INn@VHQAr(IN2 V)
= (T®UARU") — (T @ UARU™) (T ® UARU"™)
~ 1, = ~ ~ H
+(IN @ VAV /r)] (T @ UARU")
~ ~ ~ ~H ~ ~ H ~
= (T@UARU") ~ (T2 U") {(In ® Ag)
L AH~ oA _ ~ - ~H
<[(T®AR)+ (In@U AcU/ry)] 1(IM®AR)}(T®U )
(A.5)

By assumption, the N x N main diagonals of (A.5) have to be diagonal matrices,
which is satisfied if and only if U is diagonal. Since U is unitary, U = Iy =
V = U. As aresult, U simultaneously diagonalizes C, R, {Qap, }M_, and
{Q<ﬁm>}%:1-

Now, consider the linear MUD. Along the lines of Appendix D, we get from
Section 3.2.3 that

M
D=5Iy+a ) E{D[D+Qa0,) ' ((hn)miD+Qry,.)}, (A6
m=1
where ~ o .
ho) (D + Q -

1 (MDD + Q) ()
From the previous discussion, we know that if R = UAgrU" then Q<Em> =
UA <,;m>UH and Ah, = UA AthH. For the detectors considered in this thesis
Qpy,, = 00r Qp,, = Q<,~Lm>. For the first case, let g ~ CN(0; Iy) so that
U\/m g has the same distribution as (h,,,). Then,

_ M VA ; HVA ;
D=U|(&Ix+a), ]E{ Latiad e } U",
o S G gH\/A<,~Lm>UD UH\/A<,~lm>g

(A.8)



and, therefore, U diagonalizes D. In the latter case

{D(D+9Ah ) ) () (D + Qap,.) ' D
1+ (hp)H(D + Qan,) " ()

+D—D(D+QAhm)1D}. (A.9)

M
D=5Iy+a) E

m=1

If D=VApVH, by similar arguments as before, we get a condition that U =
UMV has to be a diagonal unitary matrix and, therefore, V' = U. The MAP-MUD
can be handled in a similar manner
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Appendix B

Derivation of (4.38)

Consider the problem of obtaining the APPs of the data symbol z¢ ; of the {th user
at iteration £ = 1,2... and time instant ¢ € D. Assume that {<i~zk7t>(€)}ke;¢ and
{<:z:k,t>§§;”}j€,<\5 defined in (4.33) and (4.34), respectively, are available at the
receiver. The received signal (2.10) can then be written as

Yy = \F Seilhes) :EgH—\f > Skilhi) 0z

JGK\£

fZSktAvkt—i—wt ect, (B

where Avy; = Ahy o, € CM Vk € K was defined in (4.36) — (4.37). In the
limit of large code word length and for fixed coherence time 7o, we can regard
Ahy; and 1, to be independent. Therefore, if Ahy; ~ CN(0; Q(e) ) then

Awvy s ~ CN(0; Q(A;lm). By (4.34) and (4.35), the data symbols of the 1nterfering
users can be written as

zje = (E)ba )+ Daje,  JEKNE (B.2)

where Az;; € Cis arandom variable with conditional mean and variance
Hi) = B{Az, | T} } =0, jek\& (B3)
ey, = E{|Ax]t|2| N dek\e (B.4)

respectively. Note, however, that neither for the hard nor the soft feedback the esti-
mation error Az, ; is Gaussian.
Now, postulate the conditional Gaussian prior for the interfering users

T | I8 ~ N (@b s 08, ), dek\g (B.5)
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1 . ( )

where the mean (Z;, t>g¢ is known and Q

about (B.4). Let Ahy; ~ CN(0; Q(Aézlk t) be the receiver’s knowledge about the
channel mismatch related to (4.36). Unfortunately, with the Gaussian priors, the

. represents the detectors knowledge

term Awvy, ¢ in (B.1) makes the estimator non-linear. Thus, we further postulate that
{Avy 4} | are independent Gaussian RVs

~ ~ (¢
Avgy | 7] ~ CN(O; Q%) ), (B.6)

uncorrelated with {;}cx\¢» and let the channel model at the receiver be

Yy = \/>S£t<h£t>(€ 3«"£t+\f > Sitlhyt) s

JER\E

1 K
+—=3" S8, Aby; + wy € CL, B.7
NG 1;1 kt AVt ¢ (B.7)

where w; ~ CN(0; 62I). The marginalized posterior probabilities of the data
symbol z¢ ; based on the channel model (B.7) reads

Qe | 767

Q(Zet)

]E{ik,t}ke;c{E{Aﬁk,t}keK{Q(@ =y | {Zre iy, { A0 171(?)}}
XE{i:j,t}je,c\f{E{Am,t}ken{Q (U =y, | {jk,t}kzlv {Af’k,t}kzng(?)}}
QE)Q0 @, =y, | Fer IY)
Es QO =y, | Eer, I}

where Q(Z¢ ) is the postulated prior of the desired user’s data symbol x¢ ;. The
expectations with respect to (B.5) and (B.6) in (B.8) and leading to (B.8), were be
calculated with the help of the Gaussian integral (C.22). Furthermore, the resulting

(B.8)

distribution
QO @, =y | 0, I1)) = CN(EZY; @291), (B.9)

is complex Gaussian with mean and variance given by

_ pic,(¢

et = fsgt<hgt> 0t oz 3 SthidoEde,  B10

JGIC\ﬁ
ic,(€) (¢
Qpc( =0 IL+ SﬁtQAlg,tsiH,t

l ~ ~ (40— H
+2 Y 8 (0 + Rid @S R 0) St B
JERNE



respectively. Note that the second term on the RHS of (B.10) corresponds to the
parallel interference cancellation employed by the MUD front-end.
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Appendix C

Proof of Claim 4

The proof of Claim 4 is divided in two parts. The first one gives an informal proof by
deriving the free energy for the system and concluding from its form that the system
decouples to parallel single-user channels. The second part modifies the derivation
to show that the joint moments of the single-user and the multiuser systems co-
incide. The reason for two different derivations is that the first approach gives a
more pedagogical presentation of the replica method in the context of Bayesian es-
timation by omitting some extra variables present in the latter part. It also provides
an example how to derive the mutual information for a given system via free en-
ergy. The derivations follow closely the approach of [85, 89, 92] and differ in some
parts slightly from the presentation given in Section 2.6. Note that similar calcu-
lations were also performed by Tanaka in a slightly different context in [74, Proof
of Lemma 1 and Appendix III]. Here we consider only the RS solution of the free
energy and leave the investigation of RSB as a future topic.

C.1 Derivation of the Free Energy

Consider the channel estimator defined by (4.9) and (4.26). Let

{Sk1=[Skri1 - Sk,t,l,M]}lel, (C.1)

be the rows of the spreading matrix Sy, ; € MEXM ip (2.10) that is modified accord-
ing to the Assumption 1. Fix the time index ¥ € D, and define for notational con-
venience two diagonal matrices Sy 1)1m € C™™, Sy 9)1m € C(ra=1)x(7a—1)

as
Sk nim = diag([sk1m = Skrtml)s (C.2)
Ski2)m = dag([Skr+1m 0 Sk9-10m Sk9+1lm ° SkTondml), (C.3)
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respectively. Assuming the (th iteration at the receiver, we may write the input-
output relation of the DS-CDMA channel over multipath fading as

1 K M

Yy - VL Y Sk mbhempy +wry € C™, (C.4)
k: 1m=1
Y21l Z Sk 21m (P (Er.\0) S + Aty ) + wpr gy € C7L (C.5)

where Auy, ., is defined in (4.12) and P(w...;) = CN(O; o2I). Now the set of
vectors {Yp1, y[z},z}zL:1 in (C.4) — (C.5) has the same information as ) \ y, in
(2.10). Similarly, let the postulated channel information {g, QDW} in (4.19) —
(4.20) be written as {g, Q[Q]’l}le, where

“”_\FZZ ,Lm hi9.mPy, + W7, € C™,

k=1m=1
(C.6)
) | K M ) ) )
Y= f > 21 S 2t (oo (Zh.p\0) Sy + A ) + Wy g € T
k=1m
(C.7

and Q(w...;) = CN(0; °1).
In the following, we shall associate the zeroth replica index with the channel
variables in (C.4) — (C.5) and write

HO = (% = b | VE,m), AU = {Aul® = Aug | VE M),
(C.8)
Similarly, the replica indices a = 1, ..., n are connected to the postulated variables
in (C.6) — (C.7) and we denote with a slight abuse of notation

e =l |vk,m), AUl = {aul | vEm), (€9

where the replicated RVs are assumed to be IID and drawn according to the same
distribution as the postulated RVs {hy 9. | Vk, m} and { Ay, | Vk,m} in Sec-
tion 4.1, i.e., h,Ea% ~ QO (hkﬁm) and Au{a} ~ Q(Z)(Aﬁkm). For notational
convenience, the iteration index is omitted in the following discussion and we de-
fine a set

KXot = {Pk> i D\9» (Tk,D\0)app | VE T, (C.10)

related to all transmit symbols and their estimates present in the system.



C.1. Derivation of the Free Energy

The denominator in (4.26) is the partition function of our system of interest and
will be denoted by Z in the following. Just like earlier in Section 2.6, the partition
function could in theory be used to calculate interesting macroscopic parameters of
our system, e.g., the MSE of the channel estimates. As we learned though, direct
computation of Z is infeasible and we therefore resort to computing the free energy
via the replica method.

Before proceeding to the actual calculation of the free energy for the system
arising from (C.4) — (C.7), we present some assumptions made on the course of the
following replica analysis. It should be remarked that what is given below should
be proved and not simply postulated to be true. This is, however, out of the scope
of the present dissertation.

Assumption 6 (Self-averaging property and replica continuity). The free energy
at the thermodynamic equilibrium is self-averaging with respect to the quenched
randomness of {V, S, AU {0} } (see Assumption 4), and can be written in the form

1
Fypy=—1lim — lim — log =", (C.1D)

n—0 On K=aL—o0o K

where = = IE){Z " Xtot} and the expectation is conditioned on the true and

estimated information about the transmitted signal as defined in (C.10). The nth
power of the “moment generating function” =" is evaluated for positive integers
n and analytic continuity in the vicinity of 0 is assumed to hold. &

The L channels in {yM’l}lL: , and {@[y},z}le that arise from the matched filter-
ing of the spreading waveforms are conditionally IID, and we may thus write

2
-
v=1

L 1 1 {a}
XES[V]{ 1:[0 (71-0'621)7—[”] P <_O-L2l Hy[y] N \/a’v[l’]

il

We denoted above 7(1) = Tir, T2 = 74 — 1 and 03 =02, 02 =

Xtot}. (C.12)

52,a=1,2,...,n
so that yj,) € C"0,v = 1,2. The random matrices in Sj,) = { Sk [],m | Yk, m},
for v = 1, 2, are independent with IID elements that are distributed as the elements
of (C.2)—(C.3)forany [ = 1,..., L. The random vectors {vt{a} }Zzo in (C.12) are

V]
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given by
{a} Z Z Skmhipy € C™, (C.13)
—1m 1
{a} = Z Z Sk,[2lm (hkm<$k¢ D\o)app + Aut’ }) ceC™ !l (C.14)
k 1m=1

Let us define for m = 1,...,M and k € K the RVs wy, [1),, € C™FD™ and

wk,[2],m c C(n+1)(7d_1) as

Wh[1]m = Vec([th}E?r}n pkhiﬁi}),

(C.15)
Wk, [2),m = Vec([h{ (@), D\0)app T AU{O} o h{ }<$k D\9)app T+ A“{n}])
(C.16)
respectively, so that in the large system limit and conditioned on the set
{Xeor, {H1 Yoo (AU, (C.17)
the vectors
vy = vee([ol) ofl) W) ecttim =12 (s

converge by the central limit theorem to independent zero-mean Gaussian RVs with
conditional covariance matrices

Q= Jim QP —KIIL%O*Z > whmly € COI, y =12
k=1m=1
(C.19)

Following [74, Appendix II] it can be shown that for finite I,

=Kn _ { f[ exp [Ka—l (ij]v”( ) +0 )} ’ Xtot} . (C20)
v=1

where
o)~V o “
((W st o {50 [ = S0P - 5 2 o]

{
exp[ (U 2 )l

n H
RO {a}

Q[V]} (C.21)
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and vVl ~ CN(0; Q[Ig]), v = 1,2, are independent Gaussian RVs. Let M be a
positive definite matrix and apply the vector form complex Gaussian integral

TCO
/e*yHMy+2§R{bHy}dy _ d:U\;’)ebHM_lb’ M >0, (C.22)
€

to (C.21), first for the integrals with respect to y(,, then again to calculate the ex-
pectations with respect to v(,; ~ CN(0; Q[Ilf]). The end result reads

I o 52)~nT)
GK,n K — g (770' ) ’
exp ( ] (Q[u])) (&2 i n02> det (Q[flf]) det ((Q[Ilf])_l + Ap)

(C.23)
where A, € ROV X+ 170§ 4 symmetric matrix defined as
o n —e!
A[y] 2 5 | : 7777777777 ; 777777777777777777 ® IT[,,] ) (C24)
g% +no €n (]— + n%)In %enez

and e,, denotes for the all-ones vector of length n. For later use, we write

—G[Ifj"( [Ilf]) =T [(n —1)log(6?) + log (&2 + no’z)}
+n7y logm + log det (I 41y, + ApiQf) - (C25)

Let V) be the set of positive definite (n+1)7),) x (n+1)7,) Hermitian matrices
for v = 1, 2, and define the conditional probability measure on V1 X Vjg) as

2 K M
pt (V) =E { 111w, [KQM => > wmy],mw,':,[y],m] ‘ X} , (C26)
v=1

k=1m=1

where V = (V7y), Vi) C Vj1) X Vjg and 1 is the indicator function. Since the
users are assumed to have independent channels, the moment generating function
induced by (C.26) reads

[
>
=

M*M(Q) (Q)

i
L

[
=

M
E {exp [Z > tr(wk,[y],me[VLmQ[V])] ’ Xtot}, (C.27)

v=1m=1

B
Il
—
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where Q = (Qm, Q[Q]) € V1) X Vjg). The inverse Laplace transform and change
of variables K Q) — Q| yields with some abuse of notation'

pR(dQ) = (;;)H lim / _exp [—KCK’”(Q, Q)} A(dQ), (C.28)

I'—oo

where & = >.0_[(n 4+ 1)7,]% @ = (Qpy, Q) € Vi) x Vg, I = (—iT, i)
and

- 2 _ 1 X -
MQ,Q) = tr(Q Q) — = > " log M (Q). (C.29)
v=1 k=1

Using (C.28) we can write (C.20) as

= foulor{orer@)] e o

(C.30)
= /e*K(fa GHmM(Q) l<2> lim _e Q.9 'i(dQ)| de,
Wi I'—oo Tk
(C.31)
where we dropped the vanishing term in (C.31) and wrote
G Z Ghi" Q) (C32)

Intuitively, if the exponents in (C.31) converge in the limit K — oo as ¢ (Q, Q) —
*(Q, Q) and GK(Q) — G™(Q), the integrals are asymptotically dominated by
the points in the neighborhood of the (local) minimas of ¢*(Q, Q) and —G"(Q).
This is stated in more detail by the saddle point method (or Laplace’s method) of
integration, derived for the class of real-valued functions with complex arguments
in Appendix F.

Now, let K — oo and use (F.12) for the integral in the parenthesis on the RHS
of (C.31) while the variables connected to Q are arbitrary and fixed. Then consider

!"The Laplace transform is defined for functions with real arguments and, thus, for the inverse
transform we represent the set of complex Hermitian matrices Q = (Qm, Q2 ) by an equivalent set
of k = Zizl[(n + 1)7,1])? independent real variables. Similarly we represent O = (Q Q[Q])
by x complex variables with fixed real part and let the integral measure fi be the correspondmg K
dimensional product measure. Since we are not interested in the exact evaluation of the integrals, we
keep the same notation for the variables regardless how they are presented.



C.1. Derivation of the Free Energy

Q as a set of real variables and apply (F.11), that is,

—/exp "(0.8°) —a'c"(Q)]}

. K 1/2
% [ Gi) (det (%{(é%/c{"‘(()Q, Qs)})) 10@

(C.33)
= oxp { K [(€5, &%) — a7'a"(@9)])
X {det (éR{V% (98, QS)}) det [V% (C"(QS, o°) — OflGn(Qs))] }_1/2 ;
(C.34)

where V ¢"(Q, QS) and V%E (c"(Qs, Q) — a~1G™(Q%)) are complex and real
Hessian matrices, independent of K and defined in Appendix F. From (C.33) we
get

QS == inf Cn(Q7 Q), (C35)
QeEV X Vg
&=l {e"(2,09) - (@)}, (C.36)

where Q is arbitrary and fixed in the first optimization problem and

lim —Llog 557 = 0~ G7(QY) - Q% &), (€37)

K—o0

Note that for ny],QfV] € Vv =1,2, we get G"(Q°) € Rand c"(Q°, Q%) eR
so that (C.37) is real valued, as expected. With the help of [202], the extremas in
(C.35) — (C.36) are found to satisfy the coupled equations

1 & 1
H = lim - —_——=
M7 Khe K kz::l MM(Q)

M 2 M
E{ Z wk,[u},mwﬂ[y],m exp lz Z w27[y]7mey}wk,[u],m] ‘ Xtot}7 (C.38)

m=1 rv=1m=1
=S —1 s -1
Q= =07 (T, + AwQL)  Aw (C39)

To make the numerical evaluation of the saddle point equations feasible, we make
next a simplifying assumption that limits the space of allowed saddle points drasti-
cally.
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Assumption 7 (Replica symmetry). The saddle point solution to the system of
equations (C.38) — (C.39) for v = 1, 2, is invariant under permutations of the replica
indices, that is, we have the (n + 1)7,] x (n + 1)7),) Hermitian matrices

Q{O ,0} ‘ 6 ® Q{O 1}
Qi = ,,,,,,,,,,,,,,,,,,,,% ************************************************* , (C.40)
v en ® (Q[{l% 1})H In ® (Q{l 1 Q[{l,lf2}) + ene;l; ® QE,,I]Q}
O S re Q[{ff” _
Q= [t L o |, (can

where {Q{O 0},Q[{B] O},Q{1 1},Q{1 1},Q{1 2},Q{ 2}} are 7, X T[,) Hermitian

matrices. %
Under the Assumption 7,

Q" = —n(Cy +nCy) " o0, (C.42)

Q{O o ( M +nCp))~ 1 n=20, C‘[;]l, (C.43)

Q= u] 1C1(Cpy +nC) " 2% € Oy (C.44)
1,1 C = ~ -1 ~{1,2 = —1

Q{ P& (1 -n)Cy - €u)(Cpy +nCy) " = Q[{V] F_c™ (45

where we defined for notational convenience the new matrices
Cp) =L, +o (QR” = @GV + @M + @), 46
Cpy =L, +a (@ - Q™). (C.47)

With the assumption of replica symmetry, the first term on the RHS of (C.25) can-
cels and the remaining terms from the log-det yield

Gn(QS) = —ndconlog ™

2
- Z [log det(é[,,] +nCp) + (n—1)log det(C’M)} e R. (C48)
=1

The replica symmetric form of the trace in (C.29), on the other hand, reads
~s 0,0 0,1 0,1
00— () [ (UG a0l
fntr (Q[ vel M) +nm -1 (Q[l 2Qly ) er (C.49)
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Let us denote

M = Prhi A = PrEhES, (C.50)

| [}2} = ‘”k,D\ﬁhl{f?r}m ”/{f,[;;],m = <$k,D\ﬁ>g?ph1£flgm + Aul{c(ﬁw (C.51)

so that the replica symmetric moment generating function (C.27) is given by

(@) =B 1T T oo [0l @15l
v=1m=1
a {1 1} {a 0 (01} {a
* 2R ¢ 2wl el )
+ZZ ”lia[]h {1 Y ib[}y] ] Xtot}. (C.52)
a=1 b#a
Plugging
{01} —1 121
Qu =Cyn CM +Cp)” Chs (C.53)
QL = Cu (nCy + O Ty (C.54)

to (C.52) gives after some simplifications

{0} 1, {0} {a} =1 {a}
- (“k,[y] )" C[y] Pr w)m Z(“k [v],m ' V] “k,[u],m]
and using (C.22) from right to left on the first exponential term in (C.55) yields

v=1m=1

MI?(QS) = r?wgf {/H H f 2k, [l/]m|uk [V]m’ C[V])

x [1 f(zkp)m] M;{f[i],m; C))dzk ).m Xtot}v (C.56)
a=1
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where

2
mgr = 1 [ ] det(Cp,))" ! det(Cpy) +nCyy), (C.57)

v=1
is a normalization factor imposed by the introduction of the complex Gaussian den-
sities
—T

det(€2)

fz | @) = oxp (~(z - )"z -p), zueC Q>0

(C.58)
Xtot}

2 M ~ n M
X <E{H 11 fGzeprm | B pym s Cp) ‘ Xtot}> II 11 425 w1m:

Since the replicas are assumed to be IID, we may write

M
MP(O®) = ( fégf)M/E{ IT II 7 Grpim! Bepim: C)

v=1m=1

v=1m=1 v=1m=1
(C.59)
where
P [1],m = Prhim, Bk (1]m = Prlkgm (C.60)
M olm = Thp\ohems Bl = @k D\0) e 0.m + Aty (C.61)

When n — 0, we get from (C.57) and (C.59) that M,?(QS) — 1 Vk =
1,..., K. With some abuse of notation, the replica symmetric saddle point (C.38)
becomes thus

1 K M y
QfV] = lim ? Z Z E{ /dzkv[’/]vm “Z,[V],m(uz,[u},m)

Koo 8T 01
2 M

< IT 11 f@wprm | s o Cpn)

v'=1m/=1
G = 2k | B o s Cln)

X — ~ = Xtot} ;
E{ T =i o= f G = 2 joryan | B o) Clon) | Kot } |
(C.62)

where

HTkL,[u] m VeC( [“k,[l/],m e;IL— ® ﬂ‘k,[l/],m]) S C(n—l—l)TM : (C.63)
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Denoting

< > Eﬁkﬂg,m,Aﬁk_’m { e H12/=1 f(zk,[u],m ‘ ﬁk,[u],m ; é V})}
Ve =

[
By i ATt £ (2 | k) n s C ) |

(C.64)

for a single-user GPME indexed by k£ and m, the elements of (C.40) are given by

| K M

Q{O O Iggﬂoo K kz::l Z: E {Mk v, mu,';' [v],m | Xtot} ) (C.65)

Q%Y = 1 >3 { "ol C.66
O ey 7 2_: z:: B vlm >k7m| tot}, (C.66)

Q{l,l} ~ hm L i ]ZW: { > x } 67
2 Kgnoo K — FLy, v, m”’k [v], tot ( 5 .

Q{1’2} . KM v o8
V] —K@M*Zg {uk[,, e ok [, >,m! tot}. (C.68)

1 K M
Cpy= 0Ly, +a lim - Z ZIE{ (ot = B o)
X (u'k,[zx},m - <ﬂ’k,[u],m>k7m>H |Xtot}a
(C.69)
_ 1 K M
Cpy =06y, +a lim - kZl Zl B{ (it )m = (Bt o))

In order to evaluate the free energy (C.11) under the RS ansatz, we need to
calculate

Frn_ts = — lim g {a_lG”(QS) —c"(Q°, QS)}

2
Zilgban{z Q[V]QV])—*GH(QS)— lim *ZlOng Q)}

K—o0 k 1
(C.71)
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After some algebra, we find?

9 n( S 2 ~—L ~
lim =-G™(Q%) = = Y [y logm + tr (€}, Cpy ) +log det(Cy)] , (C.72)

and

—uf - e[l - @ + @M + QlyY]
{1,1} {1,2}
+Cp CCy (Y - Q™) } (C73)

= —a7ltr [I, +62C1, CLCy) — (62 + 09)C | (C.74)

V] V]

where (C.74) follows by using (C.46) — (C.47) and simplifying. Similar calculations
yield
o 2
hm L o log Cligs = MTeon logm + M Z [tr( v CM) + logdet(CM)} .

v=1
(C.75)
If we exchange the limits in (C.71), the RS free energy finally reads

Fim- rs—_hIn ZE{/HHfzku]m|“ku]mv 1/])

v=1m=1
FZrplm = 2l B p)m = B pm ' Cp)
E{f(ék,[y], = 2L, m| H’k: [v], m?C[u) ‘ Xtot}

1—aM\ & ~—1 ~
+ ( ) Z [T[V] log m + tr (CM C[V]) + log det(c[u])}

x log dzg []m

Xtot }

« v=1
LSS 1, 4626t — (52 + ) 6
—azltf[ iy +6°Ch CrCy) — (3 +0°)Cy |- (C.76)

Comparing this to, e.g., [73, (229)] and [85, (180)] suggests that the decoupling
result stated in Claim 4 is indeed correct.

C.2 Sketch of a Derivation of the Joint Moments

For simplicity of notation, the channel coefficients are treated as real random vari-
ables in this section. Extension to the case of complex channel vectors is made along

*The following differentials are useful (see, e.g. [182 186, 202]) d(logdet(X)) =
(X 0(X)), B(tr(X)) = (X)) and H(X ) = —X19(X) X
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the lines of [92]. The calculations follow closely the ones taken in [85, 89, 92],
with the modifications introduced in (C.2). Therefore, only a brief sketch of proof
is given for completeness.

Let us start by defining a function

ot = T1 (A0)" (™ 11 (nle)). em
m=1 am=1

where b,, > j, € {1,2,...,n}VYm=1,..., M, and
He={h |m=1,...,Ma=0,1,...,n}. (C.78)

Fix the time index ¥ € D and denote the received signals in (4.16) — (4.17) by
N = {yr, yD\,g}. Let the corresponding postulated received signals (4.19) —
(4.20) be Yy = {97, @D\ﬂ}, and denote the set (4.3) for some fixed iteration
and block indices £ and ¢ by Zy. The postulated conditional distribution of the ath
channel replica reads then

QO | Zo. H1, AU = Q@7 | T, HI)Q(Gp\9 | Zo, 11, AU,
(C.79)
Let {K,, }U_, be a partition of KC so that K, = |KC,,| is the number of users belonging
to the uth group, as stated in Assumption 5. We also write 3, = K, /K € (0,1)
so that >, 3, = 1. For further development, a free energy like quantity related to
(C.11) for the users in the uth group is defined as

1

5 _ I — éKu,n C.80
f K:aL:%il/ﬂu_mo Ky % ’ ( )
where
éKu,n(r) =1 exp <T Z 9(H§)>
Eey

n

x [T Qs = Mo | Zo, H%, Autedy ‘ X} . (C81)

a=1

and r is a real variable. Note that

lim 20" () = 20, (C.82)

where 257 is given in (C.12).
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We first consider obtaining the moments of the channel inputs and the estimator
outputs for the multiuser system described in Section 4.1.3. A bit of calculus gives

9z
or r—0
1 n N
— lim  — > E{g(?—[g) [T Qs =2 ]Iﬁ,H{a},AU{“})‘ xtot}
K=alL—oco K,
K=Ky /Bu—+00 EEK. a=1

- ol {08y )"

K=Ky /Bu—oo " &€k

jm n
x { I1 11 (r%7) @K™ | 47, Z0)Q(H | g, Ty, AU

am=1a=1
o Egtay {Q(j/w =N | Ty, Ha}, Au{a})}
" l(pl Q(HAat) Kot ¢ -

(C.83)

Recalling the definition of the multiuser GPME (4.9) and (4.26), using the fact that
the users within the uth group have IID channels with uncorrelated multipaths, and
taking the limit n — 0 in (C.83) yields

M
lim {;f T_J = }:[1 E { nin Ry (e g,m) ™ ‘ Xtot} . ek, (C.84)
where <7~1§,19,m> are the posterior mean estimates given by (4.9) and (4.26) for a user
¢ in the uth group. Hence, the moments on the RHS of (C.84) can be expressed in
terms of (C.80) by first differentiating with respect to r and then taking the limits
r — 0 and n — 0, in this order.

We now turn to deriving the joint moments of the decoupled channel given in
Section 4.2.1. Recall the definition of G*"(Q) from (C.25) and (C.32), where
Q = (Qm, Qm) and Qp),v = 1,2, are defined in (C.19). Let the probability
measure akin to (C.26), but modified for (C.81), be given by

p(vir)=E {eXp (7“ > 9(%))

£elly

2 K M
< tw, [KQM =22 wk,[y],mwﬂ,[y],ml

k=1m=1

Xtot } )

(C.85)
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where V = (V[y], V|g) C V|3) X Vjg)- The moment generating function induced by
(C.85) reads thus

MEM(Qir)y= ] M&(r) [ MO (C.86)
£eky ]E/C\’C

where Q = (Q[ll’ Q[g]) €V x Vi) MJ”(Q) are given in (C.27) and

2

M
Mg(@, r)=FE {exp [rg(He)] exp [Z Z tr(wg’[l,}’mwg[y]ymé[y})] | Xtot}.

v=1m=1

(C.87)
Furthermore, define function
&, Q1)
2
= Ztr(QM [ Z log Mg ;) + Z log MJ”(Q)], (C.83)
v=1 ey JER\Ku

related to (C.29) and let &5 (Q, Q; ) — &(Q, Q; r) and GE™(Q) — G™(Q),
in the limit X' — oo. Then,

f= lim —log Zhun _ 1 [a_lG”(Qs) —&(Q°, 0% T‘)} , (C.89)

Koo K,y B

where
S G (C.90)
O = oaltly, {#(e.&5n -6}, (C91)

coincide with the solutions of (C.35) and (C.36), respectively, when » — 0 by
(C.82). Since G™(Q) does not depend on 7, we have the partial derivative

9 Ll o
af r=0 B /Bu [ (Q Q ) r:()]
1 . 5
T BuK fgc:u LW(Q) r ME(Q ) r:o] . (C92)

where we omitted the terms in (C.88) that do not depend on r in the second equality.
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Recalling the definition of g(#j) in (C.77), taking the partial derivative with
respect to 7 in in (C.87) and finally the limit » — 0 yields

9 (o T 0N Yo T () ()
| <e{ 11 ()" )" T 0
2 M
X eXp [Z > tr(wg,[u],mw?,[y},mc?[y])] ‘ Xtot}-
v=1m=1
(C.93)

By the same techniques as used in the derivations of (C.59) and (C.62), and using
the assumption that the users in K,, are IID with uncorrelated multipaths, we get

o

M 2 ] 2
= [ I Tl dzemke { [h?,"m 1/ Gepiml pepim: © M)]
v=1

m=1v=1

y [ﬁlm [Tom1 f Gepim = Zeiml Aef)m Cpi) ]
ST o1 f (Zepin = 2ew)m| e um s ) | Xrot )
ﬁ hewm [1oey F(Zepm = Zep)ml ﬂf,[ul,m ; C'[u])
am=1 E{ H12/:1 f(éﬁ,[u],m = z{,[y},m’ ﬁ{,[u],m ; C[zx}) ‘ Xtot}

| X} |

(C.94)

From the definition for the single-user GPME (C.64) and the fact that a,, is a
dummy variable, we finally get

lim {af

n—0 | Or

M

| = 1 B{ ki it heamllin] B} €€ Ko

r=0 m=1
(C.95)

which coincides with (C.84).

From above we may conclude that the joint moments for the user € IC,,, given
by the multiuser and the single-user characterizations (C.84) and (C.95), respec-
tively, coincide, that is,

M M
-m 7 lm 7 4m —_— 'm 7 lm T "’YL

[T E{hirn iy o heom)™ | Xeor} = TT B { bty e m), | Koot
m=1 m=1

(C.96)
where (---) and (- - - )¢ ,, are the multiuser and single-user GPMEs defined in Sec-
tion 4.1.3 and Section 4.2.1, respectively. Assuming that the joint distributions are
fully determined by their moments (see [89, Section 1.4.3]), we get the Claim 4.

134



Appendix D

Proof of Propositions 8 and 9

Let us assume that the replica assumptions are valid so that the Claim 4 holds.
Consider iteration ¢ = 1,2, ... and time instant ¥ € D. In the following we drop
the iteration index and write (---) = (--- ),(fzﬂ for notational convenience. The

proper indexing should be always clear from the context.

Solving the Gaussian integrals in (4.63) by using (C.22) and the identity

/ye_yHAy+2§R{bHy}dy — $(14)14—1b6b'—|1471b7 y c CT,A > 07 (Dl)

gives the channel estimate

(Resp.m) = MU T 2o, Tom + m;':,p\g,mzk,p\ﬁ,m, (D.2)
where
T o
MRT = #P? Cr (D.3)
,Uv,m

t - . _

H H k, - H 1
M p\w,m = M D\om = F ;n (@ D\0)app (2w, TCprvw) »  (D4)

b 7m

and we denoted

~ - =1 g ~ = 1,
Fkﬁ,m =1+ tk,m [pEC'T Py + <mk,D\19>apr (QAukm + CD\ﬁ) <mk,’D\19>app}-
(D.5)
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Let us also define for the following

Zy 9 = vec([py, Tpp\v)); (D.6)
Zy, 9 = vec([pp  (Zpp\0)app])s (D.7)
Ady,,, = vec([Op, 1 Adtgym]), (D.8)
Qaw, ,, = diag (0, xry, Qau,,,) (D.9)
C = diag(C7,Cp\y), (D.10)
C = diag(C1,Cp\y), (D.11)
Zewm = vee([ZkTm  ZeD\om)) (D.12)
MY = (M7 M\, (D.13)

so that by using the above notation, the per-path MSE reads

msey, 9.m = IE {|hk,m — (fbkﬂg,mHQ}
= T mE {1 — m! Ay E{mY, om! D.14
enB |1 —my gy 5" +E{my g, Cmy g e (D.14)
However, in order to calculate (D.14) we first need to obtain the expressions for the

noise covariance matrices given in (4.53).
Using (4.61) — (4.62) and the notation defined above, we write

U 9.m = TPk m, Wy = gyl m + Al (D.15)

and
My = Gl o (C+ Qau, )7 (D.16)
Cpom=1+ sz,mi}:ﬂg(é + ngm)_lik,lg. (D.17)

With the help of (C.22) and (D.1) we get from (4.61) — (4.63) after some simplifi-

cations!

(T 9.m) = 2,9 (hes.m) + (Awy, )
- = ~ =1~ AH -l
= [Ek,ﬁm;:,ﬁ,m + Qau, ,, (QM,W +C+ tk,m@k,ﬁ@llj,ﬁ) } Zk.9,m

- a1 ~ =1
= C(Qpu, , +C) [Eromfy .+ Qo C 2o (D.18)

"The following identities are helpful (see, e.g. [182] and the references therein). Let u, v be com-
plex vectors and A, B invertible complex matrices. Then (A+uv™) ™' = A= ' — A" luw A~ /(14
WA ') and (A+ B) ' =A"'—A' A+ BTH)TTATL



The matrices (4.57) — (4.60) are then the block diagonals of

Zkwm = Ej {(ﬂk,ﬁ,m — (g, 9.m)) (Wh9.m, — (T, 19,m>)H} = C’(ng’m +C)7!

x {(ILoh - ik719m|l;|,19,m) (fk,mikz,ﬁ@?,ﬁ) (Izcoh - mk,197miltl,19)
~ ~ ~ —1 ~ 1~
+(£k,ﬁmi':,z9,m +Qpy, , C )C(mk,ﬁ,m%':ﬁ +C QMW)}
x(Qpu,  +C)'C, (D.19)

Sko.m = B {(@k,ﬁ,m = (@ 9,0m)) (Tkp,m — <@k,ﬁ,m>)H} =C(Qpy,, + o)

x| (I, = &homllo ) Cemio@ly + Q) (1., — Mo mh)
- ~ =1\ £ - ~—1x
(@ mfl g+ Qau,, € )C (Mm@l + C Qau,, )]
xRy, +C)'C, (D.20)
where £, was defined in (4.52) and, with some foresight, we used a shorthand

notation T'..y, = Tconh — 1. Since Skﬂg’m depends only on the postulated variables,
(D.20) can be further simplified by using the identity f‘ﬁg =1- mk 9.m&h9 10

Skom =C(Qau,, +C) " [Qau,, C (2, +C)
+Zy 9 (fk,mll —mfly o Zpsl® + m?,ﬁ,m(ﬂgk,m + C)mk,ﬁ,m> i?,ﬁ}
X (ng’m + C’)_lé
= C(Qnau,, +C) " (Qau, , +Zpymfy,,C). (D.21)

On the other hand, using (4.53) — (4.60) and cancelling the common terms yields
the following relation between the matrices C and C,

N LA 2 — .
C~' lim KZ{H@ wtaY C@ay,  +C) 7 (I-zymfy,,)

K=o 87 m=1

_ _ ~ ~ 1 =
X (T my oz o) (I — ™y 9 0 p ) (Qaw,,, +C) C}
K

M
o1& o AT
_¢ IggnooKI;{a%whwZlc<nmk,m+c> (T & omly,)

X (emp gy + Lo, ) (I~ Mg ml o) (R, ,, + C’)_lé}-
(D.22)

Since we consider the symbols in zj, 4 and in &}, 4 to be uncorrelated, the true and
postulated noise covariance matrices simplify as C = diag(CyI5,, Cql-,—1) and
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C = diag(étrI T Cyl ra—1). To further simplify (D.22), however, we need to
specify the operator y,p, for the feedback (cf. Section 4.1.1), and the parameters
that define the channel estimator in Section 4.1.3.

Consider the approximate ML estimator defined in Example 9, that is, £ Au,,, =
0 and ||&;, 9[> = Tcop. Using (4.55) — (4.56) and (D.21) reveals that Cy = C,
where 3

Cy =524 a lim — Z Z M (D.23)
K—oo K k=1 m=1 Ctr + tkacoh

If Toop, > aM, as usually is the case?, we get from (D.23) that 52 — 0 =
Ci — 0. Furthermore, by (D.23) the RHS of (D.22) simplifies as

5 ty métr ) 520 aM
—|—ahm— Ip <1— )IT .
(Ct K—oo K kzjlynz:l Ctr + tk- mTcoh)2 —=coh Icoh =coh
(D.24)

In order to tackle the LHS of (D.22), we present a small lemma related to the statis-
tics of the hard feedback.

Lemma 1. Recall from Section 4.3.1 that for the approximate APP based hard feed-
back with Gray mapped QPSK symbols,

Pr (R{zpi} # R{(Tr1)app}) = Pr(S{@ps} # S{(Ert)app}) = 5lacppv (D.25)

for any given data symbol xy,t € D\ . Let us also assume that the bits cor-
responding to the real and imaginary parts of the QPSK symbol, and the feedback
symbols for time instances t,t' € D\ 9 with t # t’' are independent. Then for all
k=1,...,K,

E{%{xk 9Zi 9t} = Teon — 26370 (74 — 1), (D.26)

so that

[E{%{ik,ﬂ(i?,ﬁikﬁ)i}:ﬁ}}} tt

. Icoh - 2€pr(7_d - 1)7 te T»
Teoh — 2637 (14 — 1) — 260 [Teop — 2(1 + 57 (14 — 2))], t €D\,
(D.27)

“Much like we did in Chapter 3 in the case of decorrelating MUD, one could define and analyze
a similar estimator also for ', < aM. We do not consider this in our analysis since such a case
arises rarely in channel estimation.



and

E{| &} &r,|*} = Toon — 4637 (ta — 1) [Teon — 3" (1a = 2) — 1] . (D.28)

Proof: By using (D.25), we find that

E{R{(&.p\o)hopTrD\0 ]

2(rq—1)
2(rq — 1
— Z (Td 1 t)( (Tdt )) (€pr)t(1 _ €pr)2(7—d_1)_t. (D29)
t=0

Since the last three terms on the RHS of (D.29) is just the binomial distribution
with 2(74 — 1) trials, each having a success probability of £;"°, we immediately get

(D.26) and the first part of (D.27). For ¢ € D \ ¥, note that
E{R{(Zk,t) sop (Ter + (T1 \0) oo T, 0\0) Tt} }

=1+ (1—263%)

2 T4—2
& _9) _ 2(7q —2) __app\2(1q—2)—t/_appyt
X | T + Z (ra—2) =27 7)1 - (€2PP)
t=0
=1+ (1—26%P) [y + (rq — 2)(1 — 22°P)] (D.30)

which gives the second part of (D.27) after re-arranging the terms. Proof of (D.28)
is similar and therefore omitted. ]

Let us consider the first 7, diagonal terms of the user & in (D.22). Using
Lemma 1, we get

{E{ I — & ymily )iy (I — mk,ﬁ,milﬂ,ﬁ)}}tt

I
" C’tr + Ek’,ﬂ’LIcoh

—I—ii I(2:oh - 4€pr(7-d — 1) [Icoh — Z_:pr(Td - 2) - 1]
m

) ~ T 2
(Ctr + tkmLcon)
for all t € T. Thus, the first 7, diagonal terms on the LHS of (D.22) are

o>+ a lgnooEZZ

2
k=1m=1 Ctl’+tk‘mTcoh)

., (D31

tr

ka,m (C’t% + 4¥k,m52pp(7'd — 1) [étr + Ek’m(l + €2pp(7’d — 2))])

(D.32)
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D. Proof of Propositions 8 and 9

Equating (D.24) and (D.32), and taking the limit =0 = (jtr — 0 yields

5 2T Ates (1g — 1) (14 &3 (14 — 2))
C “—0 = coh li . k .
tr toam Z (Icoh - aM)Icoh

(D.33)

Similarly, from the lower 74 diagonal terms of (D.22) we get with the help of
Lemma 1,
K 47 _app app
1 8 A8 L — 2(1+ 57 (rg — 2))]
C’d—>0tr+ahm ?Z Tor — ol )

(D.34)

Plugging (D.33) — (D.34) to (D.14) and using once more Lemma 1 finally yields

~92 0 1
E {mi?,ﬁ,mka,ﬂ,m} o TT(TtrCtr + (14 — 1)Cy)

+coh

K 421,68 (14 — 1) [T — (1 + €57 (14 — 2))]

B Teop —aM K—oo X k=1 I3oh (Teoh — aM) ’
(D.35)
- 21 5250 Lk -
i mIo {|1 - milj,ﬁ,mik,ﬂ } o T2 - {|(Td -1) - <mk,D\19>la—|ppmlc,D\19|2}
£ coh
Aty PP (1qg — 1)1+ 3PP (14 — 2
Tcoh

where the fact that I’ ,, = 7 + 74 — 1 was used to simplify the last equation. This
concludes the proof of Proposition 9.
Consider next the iterative LMMSE channel estimator with soft feedback, de-

scribed in Example 8. By definition, 62 = o2,

H . T A AH
Bl o mkgm | Zkot = thmZyoZ g + Qaa, (D.37)

where Qghm = diag(o’&rxﬁra QAuk’m)’ and E{igﬁgk,ﬁ‘jk} = Ttr+H <ik,D\19>apr||2'
This implies by (D.22) that C' = C' and, thus,

(0 _ ~(0) ¢
Y =cP,  Chl,=C, (D.38)
in (4.53) — (4.56) and
= Y4
E{S)7m(C,CY. Cm)} E{S).7m(CY, C%)w)} (D.39)
YA ~
E{Ekl’\ﬁ,m(cg\ﬁa ey, D\z?)} E{Zp\, n(CY, D\ﬁ) (D.40)
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in (4.57) — (4.60). Plugging this to (D.14) yields

mser 9.m

Ek,m
=B < Hov—1 = H iz ’
1+ lie,m [pk CT P+ <mk,D\19>app (QAuk,m + CD\ﬁ) <$k7D\ﬁ>app]
(D.41)

where the noise covariances are given in (D.21). A little bit more algebra results to
(4.94) — (4.96).
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Appendix E

Proof of Propositions 10 and 12

E.1 Derivation of (4.118) and (4.119)

Consider the set of single-user channels defined in (4.65), and assume the receiver
postulates the channels (4.66). Let & € K be the user of interest and consider
the GPME defined in (4.74). The CSI is provided by the LMMSE estimator of
Example 8 for all users £ = 1,..., K in the form

QO (Mt | T) = CN((tm) (03 msels) ), E.D)

and the (unconditional) posterior mean of the channel has a complex Gaussian dis-
tribution

(Piom) (¢) ~ CN(O; Ty — msell) ), (E.2)

in the large system limit, as found in Proposition 8. We also make an assumption
that due to bit-interleaving and coding over several fading blocks, the data symbols
and the channel estimation errors are independent.

Recall from Sections 2.3.2 and 4.3.1 that for Gray encoded QPSK signaling the
extrinsic probabilities factor as given in (4.83). We postulate the priors for the data
symbols

1 .
Tjt = f(aj7t11 +Jaj7t72) e M, teD, (E.3)

V2

of the interfering users j € K\ € as Q(xj+) = Q(a;,1)Q(aj+,2), where

(e-1)
1+ tanh(\S ) /2)
2

1 — tanh(AS, Y /2)
2

Q(aknﬁ,q) = 5aj?t,q (+1) + 5aj,t,q(_1)’

(E.4)
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E. Proof of Propositions 10 and 12

for ¢ = 1, 2, are the probabilities and

M) = log (Poe Y (ajeq = +1)) —log (PG V(ajeg = -1)) . (B5)

q

the extrinsic log-likelihood ratios of a; , € {£1}, ¢ = 1, 2, obtained by the single-
user decoders. Note that we assumed in (E.5) that @e, is an identity operator.
With the help of (C.22) and (D.1), some (tedious) algebra gives the posterior mean
estimates of the data symbols of interfering users

~ ~ T ~ /4
()0 = S aeemt T4 QE ) Ty F (2m | (hjm) T35 Di+msel),)
j:t j - ~ 7 ~ V4
! s 0em Q) Thnzi £ (Zj6m | (hjtm) (0 %j0; D+ mse) )

(E.6)

_ 1
V2

(e-1) M
)\a- \/5 7 *
tanh (]2“ + Z m%{<hj,t,m>(z)zj7t,m})

m=1 D¢ + mse; ;

_ Mos L V2 ;
+j tanh (JQt2 + Z —(@% {<hj,t,m>>(ke)zj,t,m} )

m=1 Dt + mse; ;

where f (z | p; Q) is the complex Gaussian density (C.58). Similarly we get

PN, D 7 NG 0 e
(higmsa)y) = D me 5 (g (T35 + mseS D7 2jm). (E.8)
t mse

j7t7m

The corresponding terms for the user of interest £ are obtained from (E.7) — (E.8)
by setting )\((fgfq) = 0,q = 1, 2. It is interesting to note that (E.8) and (D.18) have
similar form.

2

Let us now concentrate on the case 52 = o2, Assuming the replica symmetry

holds, the noise variance D; is given by the solution to the fixed point equation

Skt (Di, Dy = Dy) = S 4. (Dy, Dy = Dy)
= Ef{lhtmrs — (Frpmri) g}, k€K, (B9)

where E¢{ - } is defined in (4.67). Denoting Xy ¢ 1, (Dt) = Sk ¢.m (Dt D, = Dy),
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E.1. Derivation of (4.118) and (4.119)

and simplifying yields

Zktm(Dt) = Ez“hk,mxk,t - <7~lk,t,m55k,t>1(f)|2}
_ Df
(Dt + mseg t.m)?
h 2 T ¢ * )~ Y4

B mdo|” (B @001} — 28 (B {2 ()"} )

— 2R {Ahzﬂr,m(ﬁk,t,m>(3)Eg{3227]5(92',679%) } H (E.10)
_ Df
(Dt + mseg t.m

[|hk7m|2 + D 'msel

_ 7 ~ l
5 (1l 4+ D s = ({0 PER{ (0”1}
(E.11)

where Ahy ¢ m = higm — <iLk,t,m>(Z)- The last term of (E.10) vanishes in (4.70) for
the LMMSE channel estimator as X — oo, and is therefore is omitted in (E.11).
We also used the first equality in (by symmetry same holds for the imaginary part
of the signal)

S Q) R{EN =Y Qlarg)R{(E) ) (E.12)

ak,;,1€{£1} ag,t1€{£1}

_ oy Lhe tanh(AS;," /2)
o 2

g ¢,1 G{:I:].}

X /tanh a )\((li’_t’ll) + v ﬁ/[: M + Z hk,t,m NEm/ () ‘ Dv
kit 175 k Dy + msegs.m D; + msejsm ks

m=1 m=1
(E.13)

where we used the fact that for A € Rand £ > 0

[0 ()

2
_1—tar;h()\/2) tanh (—E +WE + /2\> Dv

= /1 + taI;h(/\/2) tanh <E +vVE + ;)
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E. Proof of Propositions 10 and 12

where Dv is defined in (2.44). Using (E.13) and the knowledge that {am’q}g:l are
IID yields

_ Dt2 2 -1 2

(D¢ + mseg, t.m)?

‘(hk,t,m>(£)‘ IE ge 1)

k,t,1

{ Z 1+ ag,1 tanh(A akt1/2)
2

ag.t, 1€{il}

(e—1) M/ 2

A |(Pe,tm) (0)]
tanh k,t,1 _—
x/ an (ak,tl 5 +w\lmz_: Dy + msey, ¢ m

k,t,m/(£) |
D . E.15
+ZDt+m5ektm> w” (E.15)

Little bit of algebra and re-organizing the terms completes the proof.

E.2 Derivation of (4.110) and (4.120).

Consider the set of single-user channels defined in (4.65), and assume the receiver
postulates the channels (4.76). The GPME is defined in (4.81) and the posterior
mean estimates {(ﬁk@m)(@) }M_. of the channel are provided by the LMMSE esti-
mator of of Example 8 for all users £ = 1, ..., K. The (unconditional) posterior
mean of the channel has a complex Gaussian distribution (E.2) in the large system
limit, as found in Proposition 8. We also define the vectors

Zit = 2ken o 2eam] (E.16)
(Pisad o) = [P i)y -+ (heenn) o] (E.17)
Ukt = (Pt) (0) Tkt + Ay, (E.18)

where Avy; € CM is given in (4.80). For notational convenience the iteration
index will be omitted in the following.

Let the user of interest be & € K. For the interfering users j € K \ &, the
postulated a priori probability is given in (4.82). Performing the Gaussian integrals
in (4.81) by using (C.22) and (D.1) yields

@ _ , H (e=1)

(F005 = mzje + T (Fja)ex (E.19)
H Q%I;B T \H (7 50 -1

myy = r (hji) @y (Ded ag + Q) (E.20)

=14 08, (Rioth (D + 9%, ) Ry ). (E21)
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E.2. Derivation of (4.110) and (4.120).

A little bit more algebra gives

~ - ~ (¢ ~(0—=1) , 7 ~ -1
(8,00 = @, | [DeLas + QW + Q) ) (i)
X (Zj,t — (i) (0 (Fj0) e 1)) : (E.22)

and, thus,

(80508 = (Rind (a5 + (855
= Di(DeIar + 9%, )7
h ¥ T Mk (1)
X | ((hje) @ymfy + Qi Di ) zj0 + 151 (hya) (o) (F ) ext
-1 /5 0 ~_
Dy(Dedy + Q%) )7 (<hj,t>(f) @0+ Q, Dilzi) . (E23)
where (E.23) is similar to the expressions (D.18) and (E.8). Like in the previ-

ous section, we can obtain the desired user’s equation by setting Qg;g =1 and

<gz§,t>§i1 = 0. Since

() (0 Ts = (Tar — (haes) (mi) (Bact) o) (E.24)
we have

- 4 -

hixy, — <Uk,t>§f) Dt(DtIM + Q(Alk ) !

X {(IM — flk,t)(ﬁ)mk t) (hkwkt - <hk t>(£) <§jk,t>ext
Wt/ (0)

((Pkt) e mk + Q(AL,C tDt )wk,t] ) (E.25)
’lN)k%t — <7~)k,t>](f) = E (thM + Q( ) )_1

Avk t
X {(IM () (oymi ) (Mg + (P e) (o) (Frey — (F, D)

V4 ~ 1y ~
—((Pe) (ymip, + Q(Alk,tDt 1)wk,t]. (E.26)

( )
(

Recalling the definitions (4.35) — (4.37) we get
Aviy + () o)Az = by — (R ) (@, 0%, (E.27)

so that writing AZy; = Ty — (T, t>£:xt , by (4.70) and (4.77) the connection
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E. Proof of Propositions 10 and 12
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between the true and postulated noise variances is obtained

1 ~
D;'o® + lim KDt Z tr [B { Do(Dudas + Qaw, )~ (Tns = (R rymfly)
X (A’Um + (Pt) () D) (A + <fbk,t>(e)A9?k;,t)H
X (Ing — mu g (b)) (Do s + QAvk,t)_lf)tH
= D; 52 + Klgnoo Z tr [Ek {Dt (DtIM + QAka t) 1(IM — <ﬁk,t>mll;|7t)

Dy k=1
X (Avgys + (B ) (o) Azpy) (Avgy + <flk,t>(e)A$k,t)H
X(Tar = mue (g )) (Ded s + Q) D}

(E.28)
For the postulated noise covariance, on the other hand,
EQ{ Dk, — (Ok,e)) (e — (Ore))"}
= Dy(DiIpr + Qap,,) " (QA,,,C,,& + <ﬁk,t>m,';[t[)t) : (E.29)

which has the same form as (D.21).

Let us now consider the special case of SUMF-based receiver described in Ex-
ample 12. Given arbitrary QAIW > 0, we get from (4.71) and (E.29) 72 =00 =
D; — oo and 62 / D; — 1. On the other hand, postulating first {2 Az, = 0 and
taking then the limit 2 — oo gives also D; — oo and 2 / D; — 1, as expected.
Since

lim  (Ipy — (hig)mf,) = I, (E.30)

Dt‘)OO

the general expression for the decoupled noise variance of the data detector in Ex-
ample 12 reads

K
. N
D;=oc%+ a lim Z: [ { hang — (Pug) o )<l“k,t><(ext V)

x (kg — (i) (Era)be )}, E3D)

which completes the proof of Proposition 10.

Now, recall that the multipaths are uncorrelated and let the CSI be provided
by the LMMSE CE defined in Example 8, so that E{Ahy,(hy, )1} = 0. For the
LMMSE-PIC MUDD described in Example 11, 52 =02 and Q Avyy = Q Avpy =



E.2. Derivation of (4.110) and (4.120).

diag([mseg 1, - - -, mse ¢ ar]) Vk, where {msey. ;. }21_, are the per-path MSEs
obtained by the channel estimator. This implies due to (E.28) that Dt = Dy. Using
(4.71), (4.78) and (E.29) gives after some algebra (4.118) and (4.120).
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Appendix F

Saddle Point Integration for Multivariate
Functions with Complex Arguments

Consider calculating an integral of the form
Ix = / h(z)e K= qz, (F.1)
c

where the integral is along the curve C, z € C¢, g is a real valued function and h
changes slowly compared to g. With some abuse of notation, let

z=x+ jy, where ¢,y € R? <= ¢= [z*l € C* 5o that g(z) = g(c),
z

(F.2)
be two equivalent representations of the function g with complex argument z. We
define

59_{39 39} 89_1(89_-59> 59_1(394,‘99)
de |0z O0z* 9z 2\oz ’‘oy)’ 9z 2\9zx oy’
(F.3)

and expand g(z) as Taylor series around the point zy € C? (= ¢ € C?%)

o) = gleo) + 2L (c— e
——
=Veg(co)
H
() e
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F. Saddle Point Integration for Multivariate Functions with Complex Arguments

where V. g(cp) is the complex gradient and
sz g(CO) Vz*z g(CO)
*
(V2-29(c0))” (V2. 9(co))
the complex Hessian of g at ¢y [203]. Note that the Hessian is a Hermitian matrix
and, thus, the block matrices satisfy V2, g(cg) = (V2, g(co))H and V2., g(cp) =

T
(V22 9(c0)) -
Now, let 2o be a local extrema' so that V. g(cg) = 0, and approximate g(z)

V2. 9(co) = ., (E.5)

near zg by the linear and second order terms on the right hand side of (F.4). Write
z—zo = Bt where = diag([e)?! --- €l%d]) € C™*Dandt = [t; --- t4]T € R
Fix the angle ® and the integral in (F.1) becomes
1
I ~ h(zo)e*Kg(ZO)/ exp [—2KtT (23‘%{V?§ g(co)}) t} det(®)dt, (F.6)
Rd
where
V% g(co) = (V2 g(co))® + 8"(V2., g(co)) @ € C?, (F.7)
is a Hermitian matrix. Performing the Gaussian integral over ¢ yields the final result

(m/K)*
det (R{V g(co)})’

I = h(zg)e K9(z0) det(rb)\/ zeCl (R

Two special cases
e z=xzcR,®=1;
e z=jycCl ycRL® =jI;
are obtained from (F.3) and (F.7) by noticing that

USRI 1 8(8g<mo>>T a

2 1l oy 1 0 <8g(jy0)>H d
Virg(co) = 5V 9(iye) = 28y oy ) Y€ R, (F.10)

and, therefore,
_ 27/ K)4
In ~h Kg(ao) @r/K) RY  (El1
K (wo)e det (V?Rg($0)) Tg € ) ( )
(2m/K)“

yo € R (F12)

I ~ h(jyo)e_Kg(ij) det(de)\/det (R{V2 9(Gyo)})’
& 0

'In fact, it has to be a saddle point in this case.
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