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Der theoretisch arbeitende Naturforscher ist nicht zu beneiden, denn
die Natur, oder genauer gesagt: das Experiment, ist eine unerbittliche und
wenig freundliche Richterin seiner Arbeit. Sie sagt zu einer Theorie nie ja
sondern im gilinstigsten Falle wvielleicht, in den meisten Féllen aber einfach
nein. Stimmt ein Experiment zur Theorie, bedeutet es fur letztere vielleicht,
stimmt es nicht, so bedeutet es nein. Wohl jede Theorie wird einmal ihr
nein erleben, die meisten Theorien schon bald nach ihrer Entstehung.

Albert Einstein, November 11th, 1922






Abstract

Single mode and multiple mode distributed feedback fiber lasers (DFB-FLs)
are analyzed and experimentally investigated, with emphasis on properties
that have importance for sensor applications.

It is experimentally found that optical feedback from discrete reflectors
and Rayleigh backscattering is a serious challenge for remotely pumped
DFB-FL sensors. Strong and long DFB-FL gratings are therefore desired
to reduce feedback sensitivity in some sensor applications. Unfortunately,
higher order modes can be induced if the DFB-FL grating strength is too
high. The threshold grating strength of DFB-FL higher order modes is
calculated and compared with the fundamental mode threshold as a function
of gain, background loss and various types of grating errors. Higher order
modes are found to be greatly enhanced by quadratic chirp. It is proposed to
reduce the problem of higher order mode operation by spatially window the
gain. The spatial overlap between the fundamental and higher order modes
is small, and windowing the gain around the former therefore dramatically
increases the threshold of the latter.

A large part of the thesis is devoted to multiple wavelength DFB fiber
lasers and gratings. These gratings can be viewed as superpositions of mul-
tiple Bragg gratings with different periodicity. A static analysis of multiple
wavelength DFB fiber lasers (MW-DFB-FLs) is performed, and the modal
powers are calculated as a function of individual grating strength, gain pa-
rameters, relative phase and frequency separation between the superimposed
gratings, grating phase shift errors, and saturation level of the UV induced
refractive index change. Due to spatial hole burning in the form of satu-
ration induced gain gratings, MW-DFB-FLs can operate in multiple modes
even if the strengths of the superimposed gratings are not equal. However,
both phase shift errors and saturation of the UV induced refractive index
could lead to imbalance between the modal output powers.

A comprehensive dynamic model of multimode DFB-FLs is also pre-
sented. The dynamics of the spatial distributions of gain, gain gratings,
and spontaneous emission is taken into account. The relative intensity noise
(RIN) is found for several types of lasers and laser modes, and for some of
the lasers as a function of pump RIN and spontaneous lifetime quenching.
The modes of MW-DFB-FLs have somewhat more noise than corresponding
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single wavelength DFB-FLs, but the RIN of the total output is similar in
the two types of lasers. Higher order modes could have several orders of
magnitude higher RIN than the fundamental mode.

Further, a distributed sensor based on either an active or passive phase
shifted multiple wavelength fiber Bragg grating with novel design is pro-
posed. Depending on the fiber type, a maximum spatial resolution in the
range 0.1 - 5 mm is predicted.

Finally, the use of DFB-FLs as acoustic sensors in air is discussed. Two
uncoated DFB-FLs are investigated, and the sensitivities vary between 0.61
MHz/Pa at an acoustic frequency of 100 Hz and 0.34 kHz/Pa at an acoustic
frequency of 15 kHz. The larger sensitivity at lower frequencies is explained
by adiabatic temperature shifts associated with the acoustic wave.
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Chapter 1

Introduction

1.1 DFB Fiber Lasers

The distributed feedback (DFB) laser was first proposed and demonstrated
by Kogelnik and Shank [1] in 1970. The cavity boundaries in a DFB laser are
not sharply defined by discrete mirrors as in most lasers, but by distributed
feedback from a periodic perturbation of either gain or refractive index
that runs along the whole laser length, as illustrated in Figure 1.1. This
feedback will be wavelength selective, with a maximum at the so-called
Bragg wavelength given by:

_ ety

AB 5

(1.1)
Here, Ay is the pitch of the periodic structure, or Bragg grating, and neg
is the effective refractive index of the waveguide. The optical frequency
corresponding to Ap is called the Bragg frequency. However, in a uniform
index grating, the round trip phase at the Bragg wavelength will be 7 [2],
prohibiting any laser oscillation. Instead two laser modes at each side of the
main reflection peak will have the lowest threshold, which could lead to a
rather unstable dual-mode operation. This problem was solved by adding
a phase shift of 7 in the center of the grating [3], which results in stable
single longitudinal mode lasing at the Bragg frequency. As illustrated in the
figure, the power distribution is confined around the center, with the power
falling almost exponentially with increasing distance from the phase shift.
DFB fiber lasers (DFB-FLs) [4] have a refractive index grating induced
by a holographic UV pattern [5], and gain is provided by doping the fiber
with a rare earth element, typical Er3*-ions, and optical pumping. Because
of their intrinsic fiber compatibility, relative ease of fabrication, and narrow
linewidths in the order of 1-10 kHz, DFB-FLs are promising candidates for a
range of applications in sensing and optical communications. An interesting
property of DFB-FLs compared with semiconductor DFBs is that they have
quite strong hole burning in the form of saturation induced gain gratings.
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1t Phase Shift

Figure 1.1: Schematic illustration of a distributed feedback fiber laser, with the
modal power distribution shown on top. The figure is grossly out of scale, as there
are typically ~ 10° periods of the refractive index modulation in a real DFB-FL.
P, is the power of the incoming pump, whereas P,; and F; , are the left and right
traveling output powers.

Thus, by superimposing several gratings with different periodicity, multiple
wavelength DFB-FLs can be fabricated.

1.2 Outline of the Thesis

The aim of this study is to present numeric models and results that could in-
crease the understanding of single and multiple mode DFB-FL operation, to
point out particular challenges for DFB-FLs in optical fiber sensor systems,
and propose ways of meeting these challenges.

The thesis is divided in 10 chapters. All chapters, except Chapters 1, 2,
8, and 10, are reproductions of work that is either published, accepted for
publishing, or submitted for publishing in scientific journals or conference
proceedings, and all chapters, except the current chapter and Chapter 10,
can be read independently. Since the chapters are written one by one, there
is some variation in notation from article to article. Therefore, a table with
definitions of the symbols and acronyms used in the thesis are given in
Appendix B.

Chapter 2 contains a review of DFB-FL technology and theory. Specifi-
cally, an introduction to the two most important building blocks of the DFB-
FL, the fiber Bragg grating and rare earth doped fiber, will be given, and
also DFB-FL characteristics, applications, and analysis will be discussed.

In Chapter 3, the effect of exposing DFB-FLs to optical feedback is
investigated experimentally. When used as a sensor, especially in offshore
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applications, it is likely that an array of DFB-FL sensors will be remotely
pumped from a lead fiber that could be several km long. In such systems,
the DFB-FL sensors will be exposed to Rayleigh back-scattering from the
lead fiber and in some cases discrete reflections from the sidebands of other
DFB-FL gratings in an in-line sensor array. The effects of optical feedback
to semiconductor DFBs have been well documented, but compared with
DFB-FLs, important laser parameter differ by orders of magnitude, as will
be discussed in Chapter 2.

In order to get better noise performance and decrease the detrimental
effects of optical feedback, high DFB-FL grating strengths are often desir-
able. Unfortunately, as observed in for instance Chapter 3, DFB-FLs with
moderately high grating strengths often operate with one or more higher
order modes in addition to the fundamental one. As will be discussed in
Chapter 7, these modes see a rather low finesse and are thus particularly
noisy. However, for a uniform grating with normal gain parameters, sim-
ulations show that such modes should only get close to threshold at very
high grating strengths. In order to better understand why higher order
mode operation is still seen in practice, Chapter 4 presents a calculation
of the threshold margin between fundamental and higher order modes as a
function of gain, background loss, and various grating errors.

Chapter 5 proposes a novel solution to the higher order mode problem
of high finesse DFB-FLs. By windowing the gain of DFB-FL to fit the
fundamental mode, the higher order mode threshold may be substantially
increased.

In Chapter 6 a static analysis of multiple wavelength DFB lasers is
given. The importance of saturation induced gain gratings for stable mul-
timode lasing is discussed, and modal powers of a dual mode DFB-FL are
calculated as functions of a range of parameters, including the strength of
each superimposed grating, Bragg frequency separation and phase differ-
ence between the gratings, phase shift errors, and saturation level of the
UV-induced refractive index change.

Chapter 7 presents a dynamic analysis of single and multiple mode DFB-
FLs. The model includes spontaneous emission and the dynamics of the
mean gain and gain gratings. The relative intensity noise (RIN) resulting
from spontaneous emission and various degrees of pump RIN is presented
for various laser structures, such as single mode lasers, lasers with higher
order mode operation, and multiple wavelength DFB-FLs with up to 5 su-
perimposed Bragg gratings.

Chapter 8 proposes a new type of distributed fiber grating sensor. The
sensor counsists of superimposed phase shifted gratings, where the phase
shifts of the individual gratings are spatially separated. This type of multi-
wavelength grating can either be interrogated as a passive sensor, or, if
written in a rare earth doped fiber, it can be used as a multi-wavelength
laser. In any case, this type of sensor may have high resolution both in
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space and the measurand.

In Chapter 9, theory and measurements of the response of two DFB-FLs
exposed to acoustic fields in air are presented. The motivation of this work
was both to explore the potential of using DFB-FLs as acoustic sensors,
and, perhaps more importantly, to understand the influence of acoustic
noise on a DFB-FL used as a source for optical communication or fiber
sensor networks. It was found that adiabatic temperature shifts associated
with the acoustic fields were more important than the pressure wave itself
at lower frequencies.

Finally, in the last Chapter 10 some concluding remarks and suggestions
for further studies will be given.
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Chapter 2

Background

The emergence of distributed feedback fiber lasers (DFB-FLs) [1] is a result
of the rapid development of fiber optics technology during the last decades
involving multiple disciplines of physics and chemistry!.

In 1974, only a few years after the DFB laser was reported [3], a patent
for DFB fiber lasers was filed [4]. However, practical demonstration of DFB-
FLs proved difficult. It was only after the development of high power and
low cost pump lasers, techniques for writing fiber Bragg grating utilizing
the photosensitivity of some optical fibers, and, not least, rare earth doped
single mode fibers with low loss and high photosensitivity, that the first
realization of a DFB-FL was reported as much as 20 years later [1].

In this chapter we will give a short introduction to fiber Bragg gratings
and erbium doped fibers, and discuss some of the characteristics, applica-
tions and analysis methods of DFB-FLs. Hopefully this chapter, and the
many references cited herein, will ease the reading of the following chapters.

2.1 Fiber Bragg Gratings

Fiber Bragg gratings were first introduced by Hill et al., who discovered that
extremely wavelength selective mirrors could be formed in germanosilicate
fibers by letting the fiber guide intense counter-propagating light from an
argon ion laser [5]. Either the 488 or 514 nm Ar line could be used, and
the original setup is illustrated in Figure 2.1(a). The wavelength selective
reflectivity was attributed to periodic perturbation of the refractive index
in the fiber created by the standing wave pattern of the light. Such fiber
index gratings are today usually called fiber Bragg gratings (FBGs), since
the center wavelength of the main reflection peak satisfies the Bragg law
known from crystallography, but gratings produced using guided counter-
propagating waves are still usually named after Hill. Although some tuning

'Readers interested in the fascinating history of fiber optics, will find an excellent
starting point in [2].
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(a) Historic self-induced technique by Hill et al. [5]
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Figure 2.1: The two principal techniques for FBG fabrication

of the Hill grating periodicity could be achieved by applying strain, the use
of counter-propagating guided waves offered little flexibility, since the Bragg
wavelength had to be close to the wavelength that wrote the grating. Since
the fiber was not photosensitive to infrared light, this ruled out extensive
use in for instance telecommunications. An additional problem was that
a rather high intensity of light was needed, since the change of refractive
index required a two-photon process [7].

Thus, there was relatively little interest in FBGs until Meltz et al. [6]
demonstrated the side-writing technique using two coherent UV beams with
wavelength 244 nm, as illustrated in Figure 2.1(b). With such a setup, the
period of the interference pattern, and thus the Bragg wavelength of the
grating, can be increased without limit by changing the angles between the
UV beams. In addition, the refractive index increase using UV light is a
one-photon effect, and thus much less power is needed to write a grating
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with a given strength than when using 488 nm.

UV photosensitivity has been demounstrated for silica fibers with a range
of different dopants in addition to Ge, including Sn, B, and Al, and for UV
wavelengths other than 244 nm. In order to increase the photosensitivity
of the fiber further, hydrogen [8] or deuterium loading can be used. For
Ge doped silica fibers, a refractive index shift in the order of 5:10~% can be
achieved, whereas a refractive index shift ~ 0.01 can be made in a hydrogen-
loaded fiber. This corresponds to transmission at the Bragg wavelength of
ounly -38 and -876 dB, respectively, for a 1 cm long grating. In all cases,
and especially for hydrogen-loaded fibers, the grating strength will decay
somewhat over time [9], but long time stability of the grating can be achieved
by annealing the gratings at high temperatures. The physical mechanisms
behind the UV induced refractive index change are still an area of debate
and active research. Examples of popular explanations are that the index
change is caused by color center absorption [10], release of built-in tension
in the fiber core [11], or local densification [12,13]. It is not the scope of
this thesis to discuss this complicated question in detail, but reviews can be
found in [14-16].

Initially, the side-writing technique was implemented by using a beam
splitter and an interferometer, for instance a Talbot-interferometer as illus-
trated in Figure 2.2. In this setup, the Bragg frequency of the grating can
be changed by adjusting the mirror angles. In its simplest form, such inter-
ferometric setups are only capable of writing gratings with length equal to
the UV spot size diameter D;. However, by moving the fiber relative to the
UV spot a grating period A, [17] or steps of multiples of A, [18,19] between
each exposure, longer gratings can be made. Moreover, by controlling the
phase between subsequent writing steps, the discrete phase shifts needed
for stable single longitudinal mode DFB-FL operation can be included in
the structure. Using the same method, also grating with complex profiles
including chirp and, through phase dithering, amplitude modulation can be
fabricated.

Although highly flexible, the interferometric techniques generally require
quite tedious aligning procedures, are sensitive to vibrations and other envi-
ronmental disturbances, and for writing longer gratings using the step writ-
ing technique sophisticated opto-mechanics and opto-electronics are needed.
Most commercial FBG manufacturers therefore use the simpler phase mask
technique [20] illustrated in Figure 2.3. In this technique, the UV beam is
diffracted by a periodic phase mask, and by placing the fiber immediately
behind the mask, the -1 and +1 order diffracted beams will produce an
interference pattern on the fiber with a pitch A, equal to half the phase
mask period A,y,. By scanning the beam across, gratings can quite easily
be made as long as the phase mask. Phase shifts, chirp and amplitude mod-
ulation can either be achieved by imprinting the desired grating profile in
the phase mask [21], or by moving and dithering the mask relative to the
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Figure 2.2: Typical interferometric setup for FBG fabrication

fiber [22]. However, when using this direct writing method, each mask offers
little wavelength tunability, so in some setups the phase mask is combined
with an interferometer [23-25].

2.2 Erbium Doped Fiber Amplifiers

The first optical fiber laser was reported as early as 1964 using Nd3* doped
glass [26], and the first erbium doped glass laser was demonstrated shortly
thereafter [27]. However, the interest in such devices was small until 1985
when Poole and coworkers managed to fabricate low-loss optical fibers doped
with Er3t and Nd3T [28]. Soon the first fiber laser [29] made in single
transversal mode erbium doped fiber was reported, and the potential of
erbium doped fibers as an optical repeater in the “third telecommunication
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Figure 2.3: Fabrication of FBGs with the phase mask technique

window” around 1550 nm was pointed out [30].

Erbium ions have, like most stable rare earths elements, a multitude of
atomic transitions that have been used in experimental glass lasers. How-
ever, the 1530 nm transition between the 4113/2 and 4115/2 energy levels
has lately received the most attention both from scientific and commercial
interests, because of its importance in telecommunications. Today, erbium
doped fiber amplifiers (EDFAs) using this transition are used extensively
instead of electrical repeaters in long haul fiber optic communication links.
With one exception [31], this is also the transition that has been utilized
for all reported DFB-FLs. It is beyond the scope of this chapter to dis-
cuss the properties of EDFAs in detail?, but a few important points will be
mentioned.

In addition to having a convenient wavelength, the 41,5 /2 - 415 /2 tran-
sition in erbium doped fibers has two properties that make it very favorable
for use in optical amplifiers. Firstly, the spontaneous emission lifetime of
this transition is quite long, typically around 10 ms. This means that it
is possible to invert the gain medium of an EDFA using an optical source
with relatively small power, and that there is little cross talk if several sig-
nals are amplified simultaneously when their modulation frequency is 2 10
kHz. Secondly, the 4I13/2 - 4115/2 transition in EDFAs has a rather broad
linewidth. The linewidths of the absorption and gain peaks are broadened
due to the splitting of the 7 and 8 Stark levels of the 4113/2 and 4I15/2 energy
levels, respectively. This splitting is caused by the crystal field of the glass
host, and leads to a full width half maximum (FWHM) linewidth that de-
pends on the silica fiber composition. Thus, although the center wavelength
of the absorption peak at full inversion is very close to 1531.5 nm for most
fibers, the FWHM linewidth varies from 8 nm for a pure silica glass host

%A thorough discussion of EDFAs is given in [32-34], in the latter two references also
other transitions and rare earth elements are discussed.
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to 43 nm for Al-P doped silica [35]. However, the line is shifted to longer
wavelengths and widened further if the gain medium is saturated by the
signal. Gain flattening of EDFAs remains a very active area of research.

Note that the different Stark levels of the %15 /2 and ‘15 /2 manifolds
are both inhomogeneously and homogeneously broadened. The inhomoge-
neous broadening is caused by the differences in crystal field seen by the
Er3* ions. The homogeneous broadening is a lifetime broadening caused by
the rapid phonon-induced transitions between the Stark levels within the
41 /2 and ‘I /2 manifolds for a given Er3T ion. Both the homogeneous
and inhomogeneous linewidths are of the same order as the Stark split-
tings at room temperature, and energy can be transferred between different
ions through phonon interactions. In practice, the 41,3 /2 and ‘I /2 energy
levels therefore have the saturation characteristics of quasi-homogeneously
broadening [35].

A consequence of the wide, homgenously broadened bands of the 414 /2
and 41 /2 manifolds is that the absorption and gain peaks of the transition
are shifted relative to each other. This could be understood from a detailed
balancing approach [36,37], since the bandwidth of both manifolds is larger
than kT at room temperature, and the relaxation within each manifold is
much faster than the spontaneous emission rate between them. Thus, at
a given population inversion level, the EDFA can have net absorption at
the low wavelength edge of the transition band, while it has gain at higher
wavelengths. This is why the gain spectra of EDFAs shift to higher wave-
lengths under saturation. The mismatch between the gain and absorption
spectra also makes population inversion possible with pumping directly into
the 15 /2 manifold at the edge of the transition around 1480 nm [38]. In
addition to 1480 nm, 980 nm is today the most popular pump wavelength
for EDFAs. As opposed to 1480 nm pumping, full inversion is possible with
980 nm, and the absorption is larger. However, more power is dissipated,
and since the erbium absorption peak at 980 nm is quite narrow, pump
laser frequency noise could easily lead to noise in the absorption process.
Because of the high absorption, it is also difficult to uniformly pump long
amplifier structures or arrays with 980 nm. With both pump solutions, the
non-radiative decay from the pump-level to the meta-stable laser level is so
fast that the gain medium can be modeled as a quasi two-level system [39].

Although the spontaneous emission lifetime of the 414 /2 energy level is
quite long for solitary Er3* ions, the effective lifetime can be shortened by a
factor of more than 1000 if two or more ions are close to each other. This is
caused by a process called cooperative upconversion [40-42], where two or
more excited Er?t ions interact. In this process, one ion is de-excited and
transfers it excitation energy to another ion, which is upconverted to the
higher *I, /2 energy level. Unfortunately, upconverted ion decays quickly
and non-radiatively back to the meta-stable 415 /2 level and the excitation
energy is lost. The decrease in excited state lifetime eventually leads to a
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decrease in the achievable gain if the Er3* concentration increases beyond a
certain level. To worsen the problem, the Er3* ions tend to cluster in pure
and Ge-doped silica, since Er3t ions are very much larger than the Ge and
Si atoms and thus fit poorly in the glass matrix. Cooperative upconversion
has thus been identified as the main source of performance degradation
of EDFAs [42-45]. However, the degree of clustering can be significantly
reduced by doping the fiber core with other dopants than Ge, like Al, P, or
Yb. In addition to decreasing the degree of clustering, a combination of the
latter dopants increases the absorption of 980 nm [27]. Perhaps the highest
gain reported in an EDFA to date was 120 dB/m achieved with a silica core
codoped with Lu, P, and Al in addition to Er [46].

2.3 DFB Fiber Laser Characteristics and Appli-
cations

2.3.1 Characteristics

Since the demonstration of the first DFB-FL [1], which used a heat induced
phase shift to ensure single mode operation, the DFB-FL technology has
reached reasonable maturity, and today three manufacturers market DFB-
FLs. Permanent center phase shifts are included in the DFB-FL structure
either by UV post-processing [47] or during writing [31,48]. DFB-FLs are
for most fibers inherently operating in dual polarization modes. The polar-
ization beat frequency is dependent on the birefringence of the fiber, but is
usually in the range 0.5 - 2 GHz. Dual polarization DFB-FLs can be forced
to operate in single polarization by twisting [49-51] or injection locking [52],
and can be made permanently single polarization by writing a polarization
dependent grating [53] or adding a polarization dependent phase shift dur-
ing post processing [54,55]. Lasers can be made with either bidirectional
or close to unidirectional output by adjusting grating asymmetry [53, 56].
By superimposing DFB gratings with different pitch, it is also possible to
fabricate multiple wavelength DFB-FLs [57].

As mentioned in Section 2.2, clustering of Er3* ions in glass may lead
to a drastic reduction of the lifetime of the excited state. Under normal
conditions, clustered Er*t will therefore act as saturable absorbers with
short time constants compared with the other gain atoms. In addition to
lowering the gain, it is well known that even a small amount of fast saturable
absorbers in a laser cavity leads to a reduced stability margin and even self-
pulsing [58-60]. Thus clustering should be avoided at all cost, and normally
the maximum gain of a DFB laser fiber is less than 30 dB/m. At the laser
wavelength, which normally is above the gain peak for larger output powers
and higher lasers stability, the maximum gain could be only fractions of
this value. Since the highest feasible Er3t concentration is limited, DFB-
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FLs typically have a rather low slope efficiency, often less than 1 % for a
4 c¢m long laser when pumped with 1480 nm [61], but almost 20 % slope
efficiency has been reported for a Er-Yb doped DFB-FL using a 980 nm
pump [53].

Because of the rather low gain, quite strong gratings are needed to reach
threshold, typically with a mirror round trip transmission loss in the range
between -13 dB and -35 dB. For a symmetric and phase-shifted, but oth-
erwise uniform, grating, this corresponds a xl value ranging from 5 to 10,
where k is the coupling coefficient to be defined in Section 2.4, and [ is the
total grating length. In contrast, semiconductor DFB lasers usually have
kl values ranging between 0.5 and 4 [62]. The threshold grating strength
depends on the DFB-FL gain and length, which typically is 4 to 10 cm.
Fabricating longer DFB-FLs is in principle possible, but maintaining the
required grating quality becomes increasingly difficult. Unfortunately, Al
or P is needed instead of germanium in the core of erbium-doped fibers
in order to reduce clustering, and alumino- and phosphosilicate fibers have
low photosensitivity. For Er3T fibers without ytterbium, this problem may
be partly solved by codoping aluminum with large fractions of germanium
(> 20%) [63], giving a fiber with reasonable photosensitivity and low clus-
tering.

However, often Yb/Er codoping is desired. Not only does Yb increase
the 980 nm pump absorption and thus slope efficiency of the laser, but Yb
also acts as a buffer that filters out some of the pump-induced noise [64].
A phosphosilicate host is needed for efficient energy transfer between the
Yb3* and Er3* [65]. Unfortunately, phosphorus is known to bleach the UV
absorption around 240 nm, and strong gratings using this wavelength have
only been possible with a high degree of hydrogen loading [66]. Although
some photosensitivity in phosphosilicate has been observed using an ArF
excimer laser at 193 nm [67], these sources are generally not stable enough
to write high quality gratings needed for DFB-FLs. However, the problem
of low photosensitivity of phosphosilicate fibers can be avoided by codoping
a ring around the fiber core with Ge and B [63]. Strong gratings can then
be made in the Ge-doped ring, which overlaps with the fundamental fiber
mode and gives sufficient reflectivity levels. Boron is needed to cancel the
average refractive index shift otherwise provided by the germanium.

A thorough analysis of the frequency and intensity noise properties of
single mode DFB-FLs is given in [60]. The linewidth of DFB-FLs is in the
range ~ 1—10 kHz [48,60], and DFB-FLs with linewidths of 1 kHz are com-
mercially available. Because of the long cavity and photon life times of DFB-
FLs, this linewidth is normally not determined by the spontaneous emission
seeding, but rather by thermal fluctuations in the cavity [68]. Thus, un-
like many semiconductor lasers, the linewidth of DFB-FLs, although small
compared with most lasers, is usually significantly larger than the modified
Schawlow-Townes limit [69,70]. Still, it is important to note that the DFB-
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FL frequency stability against temperature fluctuations is good, typically 1
GHz/K [71]. The noise spectra of DFB-FLs are characterized by a sharp
relaxation oscillation resonance at a few hundred kHz with a rather high
Q-value.

Short single mode distributed Bragg reflector (DBR) fiber lasers, where
a piece of erbium doped fiber separates two FBGs [72,73], share many of the
favorable properties of DFB-FLs. In fact, these lasers might operate with
even narrower linewidths, since the effective cavity length is longer and the
relative thermal noise becomes smaller from the central limit theorem. They
are also in some ways easier to fabricate, because the FBGs can be made
in an ordinary photosensitive fiber without erbium. However, these lasers
have lower side mode suppression, and can be subject to mode hopping and
multimode behavior for small physical perturbations. However, the side-
mode suppression is enhanced with shorter spatial separation between the
FBGs until the distance is zero, when the DBR laser becomes a DFB-FL.

2.3.2 Applications

Because of their inherent fiber compatibility, low noise, high stability, and
easy selectivity of the laser wavelength, DFB-FLs are promising candidates
for a number of telecommunication and sensor applications. In optical com-
munications, most works have focused on the use of DFB-FLs as sources in
wavelength division multiplexing (WDM) systems [74-77]. Although the
signals from DFB-FLs need to be externally modulated for satisfactory
bit-rates, the number of pump lasers and thus system costs can be sub-
stantially decreased by multiplexing several DFB-FL channels, either in the
same fiber [75], in parallel [77], or by using multimode DFB-FLs [57]. When
the pump signal passes through several DFB-FLs the slope efficiency of the
system also increases. In either case, high reliability can be ensured by
addressing several pump lasers to the same DFB-FL array [77]. Since the
modes of a dual polarization or longitudinal mode DFB-FL share essen-
tially the same cavity, the beat frequency between the two modes will be
extremely stable, and such DFB-FLs are therefore promising candidates for
micro and millimeter wave [78] and soliton generation. Other possible tele-
com applications include the use of DFB-FLs as a pump for optical phase
conjugation [79] and as an absolute wavelength reference [80].

In this thesis, the primary focus is on limitations and possibilities of
DFB-FLs in optical fiber sensor systems. Utilizing breakthroughs in optical
fiber communications, optical fiber sensor technology has had a tremendous
development over the last decades. Several rather recent reviews [81, 82]
and books [83-85] are written on this diverse subject. Fiber optic sensors
have been developed to measure a range of different physical properties like
temperature, strain, static and acoustic pressure, electric current, acceler-
ation, and concentrations of chemical substances. These measurands lead
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to changes in the effective index, length, birefringence, Faraday rotation,
rare earth gain, and/or Raleigh, Raman, or Brillouin scattering of the fiber,
and these shifts are sometimes enhanced for instance by special fiber design,
winding the fiber on a mandrel, or using a chemical sensitizer. Advantages
of fiber optic sensors compared with traditional sensors include their small
size, their immunity to electromagnetic noise, potential for distributed sens-
ing, and that the interrogation electronics can be placed far away from the
sensor, which can thus be placed in quite hostile environments. Typically,
the changes in fiber properties are measured by use of some kind of optical
frequency (OFDR), time (OTDR), or coherence (OCDR) domain reflectom-
etry, or by interferometric means. Perhaps the biggest commercial success
of optical fiber sensors so far is the optical fiber gyro [86-88], which makes
use of a Sagnac interferometer. Fiber optic gyros are now routinely installed
in modern passenger and transport aircrafts [89,90].

The development of FBGs was a major breakthrough for optical fiber
sensor technology [91,92]. When the effective index or periodicity of the
grating is changed by a physical measurand, this can be measured as a shift
in the Bragg frequency. FBGs can easily be wavelength multiplexed. The
width of the main reflection peak of a uniform FBG is quite broad, typi-
cally 2 20 pm or 2 2 GHz, corresponding to >2 K or 20 pe resolution in
temperature or strain, respectively, but this is sufficient for many purposes.
Higher resolution can be achieved by resolving the finer details of the re-
flection spectrum, and especially high resolution can be achieved by using
phase shifted FBGs, which have a narrow notch in the middle of the main
peak of the reflection spectrum [93-96].

1480/980 nm WDM
Pump —
A .
m‘ DFB-FL signal
<_
Frequency Isolator
Interrogation

DFB-FL Sensors
| N
<—H+HH#H++H+HH++H++HH—H+HH++H++HH+H++H++HH—HH+H++H++HH+H++H#HH—;

Figure 2.4: Typical DFB-FL sensor array. WDM: Wavelength division multiplexer
that separates DFB-FL and pump signal.

A DFB-FL sensor has the same wavelength shift from a physical mea-
surand as a FBG sensor in a similar fiber, but since the linewidth is very
narrow, typically 1-10 kHz, high resolution is easily achieved. Just like
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FBGs, DFB-FLs can be wavelength multiplexed, as shown in Figure 2.4.
In that typical setup, the pump light passes through a wavelength division
multiplexer (WDM) and a lead fiber to the DFB-FL sensors. The DFB-FL
laser signal could be interrogated at the other end of the fiber, or fed back
through the lead fiber and into the 1550 nm arm of the WDM coupler, as
illustrated in the figure. Although a 980 nm pump will lead to a higher
absorption by the DFB-FL sensors, a 1480 nm pump is preferred in most
sensor applications. When pumping with 980 nm, more heat is generated
by the DFB-FLs [97], which could perturb the measurements and lead to
additional laser noise. In addition, because of the high losses at 980 nm in
the silica fiber, serial multiplexing becomes more difficult. In offshore ap-
plications the lead fiber could be several km long, in which case the pump
light could be seriously attenuated before even reaching the first DFB-FL
sensor in an array. Demonstrated sensor applications of single polarization
DFB-FLs in the literature include measurements of temperature distribu-
tion [97], and sound in water [98,99] and air [100], the latter results will
be presented in Chapter 9. For dual polarization lasers, the beat frequency,
which is proportional to the birefringence of the laser, and laser frequency,
which is proportional to the optical path length in the grating, do not scale
proportionally for different measurands, and this has been utilized for si-
multaneous measurements of temperature and force [101] and strain [102],
respectively. In addition, a simultaneous measurement of strain and temper-
ature employing only two beat frequency measurements has been reported
for a dual polarization and longitudinal mode DFB-FL [103].

1480/980 nm
DFB-FL  wpwm Pump Coupler .
o O =] 1mn {f Fiber
Isolator Sensor
Detector

Figure 2.5: Typical setup for a fiber sensor system using a DFB-FL source. WDM:
Wavelength division multiplexer that separates DFB-FL and pump signal.

The wavelength of DFB-FLs can be tuned several nm by applying ten-
sile or compressive strain to the fiber. Because of their narrow linewidth
compared with conventional tunable lasers, DFB-FLs are also an attrac-
tive alternative for interrogating passive fiber sensors based for instance on
FBGs or interferometric principles, as illustrated in Figure 2.5. This was
clearly demonstrated in [104], where an interrogating system with a relative
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accuracy of 30 kHz over a bandwidth of 800 GHz was presented.

2.4 Numerical analysis of DFB-FLs

A large portion of this thesis is devoted to numerical analysis of DFB-FLs,
and a short introduction to modeling of single mode waveguides with quasi-
periodic structures will therefore be given here.

OO

T
2An

Figure 2.6: Illustration of the interaction between counter-propagating waves in a
single mode waveguide with periodic coupling.

The interaction between the counter-propagating waves in a single mode
waveguide with a periodic index modulation is illustrated in Figure 2.6.
Although other methods exist, for instance the Rouard method adapted
from thin film theory [105,106], the most popular analysis tool for FBGs is
the coupled mode theory, which is sometimes also called the coupled wave
theory. It was originally developed by Miller [107] to describe coupling
between co-propagating waves in transmission lines, but was later extended
to waveguides with periodic coupling [108,109]. Numerous works have since
been published that use the coupled mode theory to analyze waveguides with
periodic and quasi-periodic index modulation [110-112]. With the addition
of gain and gain gratings to the model [113,114], the coupled mode equations
describing the interaction between the forward and backward propagating
waves of a single mode waveguide can be written:

0A ) ) "
“ (2.1)
0B ) o
o, (9o —j0)B + (jr" + g2) A.

Here, A and B are the slowly varying complex amplitudes of the right
and left propagating waves, while gy is the amplitude gain coefficient. ¢ =
B — K is the detuning of the propagation constant S of the optical waves
from the Bragg wave number K, given by K = mw/A4, where A4 is the



2.4 Numerical analysis of DFB-FLs

17

periodicity of the grating. x and g, are the refractive index coupling coef-
ficient and gain-grating coefficient, respectively, of the periodic structure,
and the superscript * indicates complex conjugation. These parameters
are proportional to the modulation amplitude in refractive index and gain,
respectively, as long as the modulation amplitudes are small [113]. Note
that the gain grating can be either permanent or saturation induced by the
counter-propagating waves [114]. A chirped grating, i.e. a grating with
a spatial varying A4, can be modeled either by using a spatial varying §
or by varying the phase of k and go. Equations (2.1) are only valid for a
strictly single transverse mode guide, and thus ignores coupling to cladding
modes which typically induce some transmission loss a few tens nm below
the Bragg wavelength. In addition, higher diffraction orders of the grating
are ignored, and it is also required that the relative reflection over a grating
period is small. This is true for most FBGs.

In the general case, equation (2.1) can be solved by integration, for
instance by first transforming the problem to a Riccati differential equation
with only one unknown [110]. However, for uniform gratings exact solutions
exist [107,108]:

[ AW ] -7 [ A(0) ] (2.2a)

B(l) B(0)
where
_ ssinhyl i sinh oyl
T = [Tﬂ 1 ] A D st |
Ty, Toy — g SRt coshyl + jo=—-+ (2.2b)
fY g |,“{,|2 — 52

Here [ is the grating length. The gain parameters are omitted for peda-
gogic reasons, but the full matrix including the gain parameters is given in
Chapter 6. T is called the transfer matrix of the grating. A popular method
for solving the coupled mode equations for a spatially varying grating is to
divide the grating into small sections, and assume that the grating param-
eters are reasonably constant within each of them. The transfer matrix
for each segment is then given in equation (2.2b), and the solution for the
whole structure can be found by multiplying the transfer matrices of all the
different sections. [115-117]. This is commonly known as the transfer ma-
trix method. It is stable and usually more numerically efficient than direct
integration of the coupled mode or the Riccati equations for comparable
accuracies.

From the transfer matrix, the transmission and reflection coefficients of
the grating are easily found. Specifically, the transmission coefficient ¢ of a
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uniform grating becomes [116]:

B(0) _ 1 L (2.3)
B(l) | 40y=0 T2z coshyl +jdsmTh7l

As long as |§] < |k|, v is real, and we get a monotonically decreasing ¢
with increasing [, and the decrease in t is close to exponential for xl 2 2.
However, if |0] > ||, 7 is imaginary, and the transmission coefficient will
vary periodically with [. Thus, the frequency band limited by [d| < |k| is
called the stop band of the grating, and the central peak in the reflection
spectrum around § = 0 will never be narrower than 2|x|. However, for short
gratings the central reflection peak may be significantly wider. For DFB-
FLs, the gain medium and possible phase shifts perturb the result given
in equation (2.3). However, at lasing, the transmission coefficient of the
structure at the laser frequency is infinite, i.e. Ty = 0, and this may be
used to find the laser power and wavelength in a model that includes gain
saturation. Alternatively, this condition can be used to find the threshold
condition of a laser mode [116].

Both from equations (1.5) and (2.1) it can be deduced that the product
between the forward and backward reflection coefficient at 6 = 0 is a neg-
ative number. Since the round trip phase of a lasing mode needs to be a
multiple of 27, no lasing is therefore possible at the Bragg frequency of DFB
lasers with a uniform index grating [113]. The modes closest to the Bragg
frequency lie just outside the stop band. However, with a 7w phase shift in
the grating [118], which corresponds to a quarter Bragg wavelength, one of
these resonances is shifted to the Bragg frequency. Since the reflectivity is
at a maximum at 6 = 0, this mode, which is called the fundamental mode
of the laser, normally has much lower threshold than the other modes of the
phase shifted structure.

We have in this section discussed how to calculate the response of a
grating, but excellent inverse scattering techniques also exist to synthesize a
grating from a desired response [119-122]. However, these inverse techniques
break down for xkl 2 5 , and are therefore not directly applicable for strong
DFB-FL gratings.
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Chapter 3

Stability of Distributed
Feedback Fiber Lasers with
Optical Feedback!

Abstract

The tolerance of two fiber distributed feedback lasers to external
back-reflection from discrete reflectors and to Rayleigh back-scattering
has been investigated. The results show a reduced feedback sensitivity
for the longer laser grating.

3.1 Introduction

Fiber distributed feedback (DFB) lasers used as sensor elements with optical
frequency interrogation is an attractive high resolution alternative to passive
Bragg grating sensors. Remote pumping and interrogation of such sensor
lasers without the use of an optical isolator near the sensing point may be
required. However, this will introduce Rayleigh back-scattering into the
laser from the lead fiber. If in addition several laser sensors at different
wavelengths are serially multiplexed along the same fiber [1], each laser may
also experience discrete external reflections from the grating side-bands of
the other lasers.

It is known that back-reflections into narrow linewidth semiconductor
lasers may cause increased frequency noise, or even self pulsing. The tol-
erable back-reflection level of such lasers has been found to decrease with
increasing external cavity length and with decreasing laser mirror reflectiv-
ity [2]. However, important laser parameters such as the frequency and rel-
ative linewidth (inverse Q-value) of the relaxation oscillation resonance and

!This chapter contains a reedited version of [E. Rgnnekleiv and S. W. Lgvseth, “Sta-
bility of distributed feedback fiber lasers with optical feedback,” in 138th International
Conference on Optical Fiber Sensors (B. Y. Kim and K. Hotate, eds.), vol. 3746 of Pro-
ceedings of SPIE, pp. 466-469, 1999.]
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the coherence length of the solitary laser differ largely, typically by orders
of magnitude, between semiconductor lasers and fiber DFB lasers. There-
fore, few quantitative conclusions can be made about the back-reflection
tolerance of fiber DFB lasers from existing work on semiconductor lasers.

In this paper we investigate the feedback attenuation required for stable
operation of Er*T fiber DFB lasers experiencing Rayleigh back-scattering
or discrete end-reflection from fiber lengths ranging from ~ 10 m to 13
km. We also discuss the possibility of improving the tolerance to back-
reflections by increasing the DFB grating strength and/or by using a laser
with asymmetric output characteristics.

3.2 Experiments and Results

Two Er3*t doped fiber DFB lasers, made by IONAS, Denmark, with grating
lengths of 5 and 10 cm and nominal 7/2 phase-shifts at the grating center
have been investigated. In the following they will be denoted DFB1 and
DFB2, respectively. From a heat scan measurement [3], the coupling co-
efficients were estimated to x = 170 m~! for DFB1 and x = 150 m ! for
DFB2, giving total grating strengths of xl = 8.5 and 15, respectively. Fun-
damental mode operation at the Bragg resonance frequency was verified for
DFB1, while it was found that DFB2 could switch from the fundamental to
a higher order longitudinal mode, depending on how the fiber was mounted.
The higher order mode of DFB2 was found to be highly asymmetric, with a
15.8 dB ratio between the left and the right output power. When operating
in the fundamental mode this ratio was 0.9 dB for DFB1 and 6.0 dB for
DFB2. Both lasers were operating in only one polarization mode, and the
laser wavelengths were 1551.1 nm for DFB1 and 1554.6 nm for DFB2.

The experimental setup is shown in Figure 3.1. The fiber laser was
pumped at 1480 nm from the left through a 1480/1550 wavelength division
multiplexer (WDM). Both lasers were pumped through their high output
power ends. The output from the 1550 branch of the WDM was guided
through a 50 dB optical isolator (ISO) and split by a 3 dB coupler, enabling
the fiber laser frequency and the output power from the left to be mea-
sured simultaneously. The frequency was measured using a Mach-Zehnder
interferometer (MZ), having an imbalance of 101.5 m and fringe sensitivity
of 321 kHz/rad. A polarization controller (PC2) was used to optimize the
interferometer response, and quadrature operation was ensured by feedback
from the differential detector (D1 and D2) to a PZT stretcher inside the
interferometer through a low-pass filter (LPF). The laser output power to
the left was measured with detector D3, and was kept at 121 yW for DFB1
and 313 pW for DFB2 during all the experiments. The relative intensity
noise (RIN) and frequency noise of the lasers without back-reflection in the
frequency range from 2.4 to 930 kHz were measured to be 5.6 kHz and -36
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Figure 3.1: Experimental setup for investigation of DFB fiber lasers with optical
feedback.

N
o

w
[é)

o O

Attenuation (dB)

£ ﬁ( | L
=4

=

10 10 10
Length of Fiber Coil (m)

o o1 O O

\=4
2

“m

10*

Figure 3.2: Attenuation needed for stable operation in frequency and intensity of
DFBI1 and DFB2 exposed to Raleigh scattering from fiber delay as a function of
delay lengths. Curves with square markers () show the smallest attenuation mea-
sured to get CW operation (see main text), whereas curves with circular markers
(o) show the smallest attenuation needed for max. +20 kHz relaxation oscillation
amplitude.

dB (RMS values) for DFB1 and 6.5 kHz and -43 dB for DFB2. The 3 dB
bandwidth and center frequency of the relaxation oscillations were roughly 8
kHz and 207 kHz for DFB1 and 18 kHz and 238 kHz for DFB2, respectively.

The right end of the fiber laser was connected through a variable optical
attenuator (VA) to various fiber delay coils, ranging in length from a few
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meters to 13 km. By terminating the ends of the delay coils with bending
losses, the effect of Rayleigh back-scattering at different attenuator settings
could be investigated. To study the effect of back-reflection from a discrete
point, we used a mirror with -0.75 dB reflectivity or a -14.5 dB cleaved fiber
end reflector. The PZT phase modulator and the polarization controller
(PC1) were used to control the phase and polarization of the feedback signal.
Standard telecom fiber of varying fabricates were used in the delay coils, and
the back-scattered Raleigh power per unit length may have varied by £1
dB between the coils. The lengths and transmission losses were measured
with an OTDR. Connector and splice losses were measured, and have been
included in the stated attenuation values.

For Rayleigh scattering, one important parameter is the length of back-
scattering fiber the laser can tolerate before the noise induced by back-
reflection start to dominate over other noise sources. For longer lengths, it
is interesting to know the attenuation required to maintain stable operation.
The RMS frequency noise of DFB1 seemed unchanged for fiber lengths up to
37 m, but at 142 m the laser was self pulsing with excessive frequency noise.
The noise of DFB2 seemed unchanged for lengths up to 273 m. With 13 km
of fiber, RMS noise of 37 kHz with bursts of £170 kHz could be observed.
We also measured the attenuation needed between the delay fiber and the
DFB fiber lasers to avoid frequency noise bursts with amplitudes exceeding
£ 20 kHz during a period of 12 s and the attenuation needed for continuous
wave (CW) operation for the same duration. By CW operation we mean
that the intensity should not have any noise with amplitude larger than 30
% of the DC value.

The results of the Rayleigh measurements are displayed in Figure 3.2.
As seen from the figure, DFB2 is considerably more stable than DFB1 for
fiber lengths above 100 m. At 13 km, the attenuation needed to avoid
excess noise with DFB1 was 19.2 dB higher than with DFB2. DFB2 was
only showing small signs of self oscillation at 13 km delay, with only 0.5 dB
attenuation required for CW operation. DFBI1, on the other hand, started
self-oscillations for attenuation levels only slightly below those where the
frequency noise started to increase, and at 13 km delay, 36.7 dB attenuation
was needed for CW operation. Also note that the attenuation needed seems
to approach saturation for the longest fiber delays from 2 to 13 km. This is
expected, since the Rayleigh scattering feedback per fiber length levels will
be lower far away from than close to the laser due to the fiber transmission
losses. In addition, the longest lengths correspond to several relaxation
oscillation periods [2].

As discussed by Petermann [2] and others, a discrete reflector will shift
both the intensity, frequency, and linewidth of the laser, depending on the
phase of the back-reflection. In a real sensor application, the phase of back-
reflections may drift at various speeds due to mechanical vibrations in the
lead fiber. It is thus interesting to investigate how the laser frequency and
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Figure 3.3: Laser intensity (top) and frequency (bottom) response as a function
of phase modulation frequency of feedback from a distance of 28.5 m (DFB1) and
29.5 m (DFB2).

intensity amplitudes vary with the phase modulation speed. Setting PC2
to the position of largest possible response, we measured this frequency re-
sponse for a distance between the reflector and the fiber lasers of 29 meter.
Phase modulation was obtained by driving the PZT ring in the delay with
a triangular waveform. For phase modulations speeds far below the relax-
ation oscillation frequencies, this produced fringes in the laser frequency and
intensity which easily could be measured with an oscilloscope. For larger
phase modulation speeds, large relaxation oscillations were triggered and
we had to estimate the frequency response from the Fourier spectra of the
oscilloscope traces. The results are shown in Figure 3.3. Note that different
feedback levels were used in the measurements, and that DFB1 starts to
self-oscillate for modulation speeds close to the relaxation oscillation peak
even at a feedback level less than -60 dB.

Similar to the Raleigh scattering case, we measured the largest feedback
with less than 6 dB worst case increase in RIN, with less than £20 kHz
relaxation oscillation amplitude, and with CW laser operation. The two
latter results are shown in Figure 3.4. The phase of the feedback was again
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Back-Reflection Level (dB)

Distance to Reflector (m)

Figure 3.4: Maximum feedback allowed from discrete reflectors for stable operation
in frequency and intensity of DFB1 and DFB2. Curves with circular (o) and
square () markers show the largest feedback allowed to get a maximum relaxation
oscillation amplitude of + 20 kHz for a back-reflection phase modulation speed of
1 and 10 kHz, respectively. Curves with diamond (¢) markers show maximum
feedback allowed for CW operation for a back-reflection phase modulation speed
of 1 kHz

modulated with the PZT, yielding comparable noise bursts at each fringe.
The figure shows the feedback level for a phase modulation speed of 1 and
10 kHz for the frequency noise and 1 kHz for the CW limit measurements.
The largest feedback levels for 10 kHz are slightly larger than for 1 kHz.
The explanation is probably that the laser in the former case are shorter
period of time in the unstable regime. The tolerable feedback seems to
approach constant levels for delays longer than one relaxation oscillation
period, corresponding to a fiber delay of roughly 500 m. This is in agreement
with the theory for semiconductor lasers [2].

3.3 Conclusion

We see from the measurements that the 10 cm DFB2 with </ ~ 15 can
tolerate back-reflection levels that are about 20 dB higher than the 5 cm
DFB1 with «l =~ 8.5. This is believed to be due to a weaker coupling
of the laser modal power of DFB2 to the external cavity [2]. Since the
longitudinal mode of operation in this laser during the experiment is not
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known, clear conclusions cannot be made about the reason for this weak
coupling. If DFB2 was operating in its fundamental mode, an important
reason is probably the increased intensity concentration near the phase-
shift position for higher xl values [3]. In theory, an increase in xl by 6.5
corresponds to a reduction in coupling efficiency by e~%% | and the tolerable
back-reflection level should thus be increased by 20log;,(e®°) = 56 dB.?
Not included in this estimate are possible effects of non-linearities due to
the high intensity inside high sl lasers, which may contribute to a reduced
stability.

If DFB2 has been operating in the higher order mode, the improved
tolerance to back-reflection should rather be explained by the 16 dB output
asyminetry of this mode. This corresponds to an external cavity coupling
coefficient that is 16 dB lower to the left than to the right, and the tolerable
feedback level sho uld thus be higher by 16 dB at the right side. In principle,
asymmetric output lasers could be exploited by mounting the laser with the
low output end pointing towards the source of back-reflections, i. e. the
lead fiber. The expense of such a solution would be a reduced output power
returned through the lead fiber.

The maximum length of Rayleigh back-scattering fiber that would give
no excess noise without attenuation was found to be around 100 m for DFB1
and around 300 m for DFB2. DFB2 can however be made free from excess
noise for all the investigated fiber lengths up to 13 km by introducing a 10
dB attenuator at the laser wavelength near the laser. Again, this would give
a 10 dB reduction in output power.
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Fundamental and Higher Order Mode Thresholds of
DFB Fiber Lasers

Sigurd Weidemann Lgvseth and Erlend Rgnnekleiv

Abstract—Higher order modes are detrimental for distributed
feedback (DFB) fiber lasers. The thresholds of these modes are cal-
culated as functions of gain, loss, and various types of grating de-
fects, like harmonic, linear, quadratic, and random chirp, and dis-
crete phase errors. The higher order modes are particularly en-
hanced by high gain, quadratic chirp, and discrete phase errors
close to the center of the grating.

Index Terms—Distributed feedback (DFB) lasers, laser modes,
laser stability, optical fiber Bragg gratings (FBGs), optical fiber
lasers, optical hole burning.

[. INTRODUCTION

ISTRIBUTED feedback fiber lasers (DFB-FLs) [1] are at-

tractive for a range of optical communications and sensing
applications because of their narrow linewidth, short length, and
relative ease of fabrication. They are typically made by writing
an ultraviolet (UV)-induced Bragg grating in a photosensitive
fiber doped with a rare earth element, and externally pumped
by a semiconductor source. As with semiconductor DFB lasers
[2], stable single-longitudinal-mode operation can usually be
achieved by introducing a phase shift in the center of the grating.
Permanent single-polarization DFB fiber lasers have been fabri-
cated by writing a polarization-dependent grating [3] or adding
a polarization-dependent phase shift during postprocessing [4],
[5].

Although DFB-FLs have many similarities with their semi-
conductor counterparts, many laser parameters differ by orders
of magnitude. In particular, DFB-FLs are longer, typically
4-10 ¢m, and have lower intrinsic loss but also lower gain than
semiconductor DFBs. Thus, in order to reach threshold, inte-
grated coupling coefficients [ in the range from five to 10 are
usually needed. « is the coupling coefficient of the grating and !
is its length, and the transmissivity of a uniform grating without
gain and loss is given by 1/ cosh(2xl) at the Bragg frequency.
In contrast, semiconductor DFBs usually have grating strengths
rl ranging from 0.5 to 4, and typically kIl =~ 2 [6], which
means that their mirror reflectivities are order of magnitudes
lower. For DFB-FLs, it is often desirable to be well above the
threshold limit in order to reduce sensitivity to backreflection.
For sensing applications, backreflection into the cavity can
lead to increased frequency noise and even self-pulsing [7].
Unfortunately, if the grating is too strong, DFB-FLs often lase
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Fig. 1. Power distribution of the forward- and backward-propagating waves

of the fundamental and higher order modes of a DFB-FL with kI = 12.9 and a
quadratic chirp centered at the grating center of 500 GHz/m, corresponding to
a detuning between the edge and center of the grating of d 5, max = 1.06 GHz.
Laser parameters are otherwise given in Table L.

in one or more higher order longitudinal modes in addition to
the fundamental, as reported for kI Z 14 in [7], [8]. Typical
spatial distributions of a fundamental and higher order mode are
shown in Fig. 1. By fundamental mode, we mean a mode with
frequency close to the Bragg frequency in the grating stopband
and with the power concentrated around the center phase shift.
Higher order modes, on the other hand, have a frequency close
to the edge of the grating stopband. Such modes are also often
called side modes. They have much broader spatial power
distributions, and above threshold they will, therefore, usually
have larger slope efficiencies than the fundamental modes.
The long effective cavity length also means that the thermal
noise, which usually is the dominating frequency noise source
of the fundamental modes [9], will be lower, and low-finesse
distributed backreflection (DBR) fiber lasers with comparable
effective cavity length noise experimentally have been found
to have a Schawlow—Townes limited linewidth of only 60 Hz
[10]. However, because the effective mirror reflectivity for the
higher order modes is much lower than that for the fundamental
mode, it is far more vulnerable to optical feedback. In addition,
the lower cavity finesse also means that the higher order modes
have shorter photon lifetimes, leading to much higher intrinsic
relative intensity noise (RIN) [11]. Because the higher order
modes are spread out in the grating, they are generally also
more affected by bending and twisting of the fiber than funda-
mental modes. Note that even when the side modes have low
output power, they will increase the overall RIN and frequency
noise by cross-saturation effects. For semiconductor DFBs, it
has been found that even when the side modes are suppressed
by more than 30 dB, compared with the fundamental modes,
they can cause an increase in the laser linewidth [12]-[15].
In DFB-FLs, the mode partition noise will be smaller due to
mode selective negative feedback from saturation-induced gain

0733-8724/02817.00 © 2002 IEEE
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gratings [11], and, thus, a somewhat higher side mode level is
probably permissible.

The detrimental effect of the higher order modes on the
laser performance necessitates an understanding of the phys-
ical mechanisms controlling their threshold levels. However,
although it has been suggested to increase the threshold of
higher order modes by apodization of the laser grating [16] or
by winnowing the gain[17], little work has been published that
addresses this problem. Despite the strong global spatial hole
burning in DFB-FLs, the threshold grating strength for typical
fiber gain parameters and grating length is, in theory, as high as
rkl =2 22.5 for a perfect and uniform grating [18]. The threshold
grating strength will, of course, decrease with increasing
gain, and will also be affected by other fiber parameters like
background loss level. However, it is clear that the relatively
low threshold seen experimentally must be caused by grating
errors, It is the aim of this work to show to what degree different
types of grating defects enhance higher order modes, and what
the correlation is between higher order mode threshold and the
gain and unbleachable background loss of the laser fiber.

II. NUMERICAL MODEL AND INPUT PARAMETERS

In order to calculate the modes of the different grating
structures, we have solved the coupled mode equation using
a transfer matrix method and gain model that are described
in detail elsewhere [18]-[21]. The model can calculate the
power and frequency of the modes of DFB-FL structures with
arbitrary grating amplitudes and phase profiles supporting any
number of modes.

The gain model includes local and global spatial hole burning,
and in order to account for UV-induced lifetime quenching [22],
[21], the model adds the gain contribution from Ng,, number
of gain media, each consisting of a fraction & of the ions and
having a spontaneous emission lifetime quenching by a factor
Cr» where £ is the gain media number. We have assumed that
both the fundamental mode and the higher order mode with the
lowest threshold are in the same single polarization, implying a
polarization dependent grating [3]. The results of a model where
polarization effects are taken into account will depend on the
type of grating, i.e., if we have a polarization-dependent grating
or phase shift. For instance, if only the phase shift were polariza-
tion-dependent, the higher order modes would possibly benefit
from polarization hole burning. Generally, however, we expect
results from a model accounting for polarization effects to be
similar to those presented here.

The fiber and laser input parameters of the model include
signal (gs) and pump (g,,) gain at full inversion and signal (a,)
and pump (a,) absorption at zero inversion, respectively, un-
bleachable loss (ag), pump power (/%,), spontaneous emission
power before the onset of UV-induced quenching (F;;), and
the ratio between the pump and signal wavelengths (7). Ex-
cept where otherwise explicitly stated, the values of the param-
eters in this work are taken from measurements performed on a
codoped erbium—ytterbium DFB-FL presented in [21] and are
summarized in Table I. In all calculations, we have assumed
a grating length of [ = 9.22 cm. We have assumed a grating
with uniform coupling strength and with a center phase shift of
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TABLE [
LASER PARAMETERS USED IN THE CALCULATIONS

Parameter Value
a5 15.9 dB/m
as 11.7 dB/m
9p 3.0 dB/m
ap 8.9dB/m
ap 0.24 dB/m
B 4.1 mW/m
P 140 mW
Nym 2
L=1-§ 0.38
(G, ¢l L, 26]
Twl 1480/1550=0.955
{ 9.22 cm

7. All DFB-FLs are pumped from the left with a pump power
of F,, = 140 mW. The modal threshold coupling coefficient is
found by iteration with an accuracy of at least Ax = 0.5 m™.

III. DFB-FL THRESHOLD DEPENDENCE ON FIBER
PARAMETERS

A. Gain

In order to obtain higher laser slope efficiency, high gain
fibers are preferred for most DFB-FL applications. Phospho-
silicate fibers codoped with erbium and ytterbium [23], [3]
yield the best results in the 1500-nm telecommunications
window because ytterbium increases the absorption of 980-nm
pump light and reduces the cooperative upconversion effects
of erbium clusters. Unfortunately, high-power DFB-FLs, par-
ticularly when pumped with a 980-nm source, are significantly
affected by self-heating [24], which leads to grating chirp,
lower stability, and excess noise. Thus, in some applications
where low linewidth is important, fibers with lower gain but
higher photosensitivity are preferred, and 1480-nm pumps are
used in order to minimize pump induced heating.

However, if we have higher order modes above threshold,
the stability of the fundamental mode is of little interest. Laser
thresholds are often expressed in terms of gain or pump power.
For a DFB-FL, however, almost maximum gain for a given
pump wavelength is obtained for a relatively low pump power.
Therefore, we have chosen to look at thresholds in terms of inte-
grated grating strength x4, instead of gain, because the former
remains easier to manipulate for a DFB-FL designer. Yet, the
dependence between threshold in gain and in grating strength is
of interest, and, in Fig. 2, modal thresholds in integrated cou-
pling coefficient x.,l are plotted as functions of signal gain at
full inversion g, for perfect, uniform gratings. The other gain
parameters as, g, ap, and Py, are scaled proportionally with g,
to simulate the effect of varying the concentration of the gain
atoms or their overlap with the fundamental mode of the fiber.
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Fig. 2. Threshold integrated coupling coefficient «¢),! of the fundamental
mode and for lasing in higher order modes with and without the fundamental
mode present as a function of the signal gain at full inversion g,. The other
gain parameters a,, g, «,, and P, are scaled proportionally with g, from
the values given in Table 1. Also shown is the analytical estimate of the
fundamental mode threshold given in (1), which is valid for k., >3 1.

Concentration-dependent effects like cooperative upconversion
are ignored. The threshold for higher order mode operation with
and without the fundamental mode present is shown together
with the threshold of the fundamental mode itself. Note, how-
ever, that because the fundamental mode threshold is lower than
the higher order mode threshold for a uniform 7 phase-shifted
DFB-FL grating, it is not physical to have higher order modes
present without the fundamental mode.

For kl > 1 and reasonably low values of the laser gain go,
the cavity mirror reflectivity for the fundamental modes in the
center of the grating stopband is R = 1 — 4 exp(—«l), whereas
the effective cavity length is l.g = 1/x, yielding

o = Ak exp(—£ul) + ao. ()

At threshold, there is no saturation, and gy can easily be calcu-
lated from the gain parameters and the value of the pump power
[19]. From Fig. 2, we see that we have a good fit between the
analytical formula (1) and our numerical model even for relative
small values of k1.

Calculations of the threshold of higher order modes are more
complex even with large values of xl, and there is no coun-
terpart to (1). However, from Fig. 2, it is clear that the higher
order mode threshold in absence of the fundamental mode de-
creases faster with increasing gain than the fundamental mode
threshold. However, the difference in threshold g, between the
two types of modes increases from 87 dB/m at x,l = 5.5 to
115 dB/m at sl = 3.3. Because the effective cavity length of
the fundamental mode equals 1/« for sl > 1, the overlap be-
tween the higher order modes and fundamental mode increases
with decreasing #. Thus, the difference in threshold g, between
the fundamental mode and the higher order modes with the fun-
damental mode present is very large for low values of &l.

In short, it is possible to design stable single-mode DFB-FLs
regardless of the fiber gain chosen, but because syl for the
higher order mode threshold decreases with increasing g, a
compromise between slope efficiency and fundamental mode
cavity finesse has to be made in cases where backreflection into
the cavity is an issue.
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Fig. 3. The threshold sl of the higher order modes as a function of

unbleachable loss ag. g, = 15.9 dB/m, as in Table 1. Compared with the
higher order mode x.1,{, the fundamental mode thresholds do not vary much in
the plotted interval of @.

Instead of scaling the gain parameters g, as, Ops @p, and Py,
the round-trip gain of the modes could be scaled by changing the
device length [. However, the threshold curves of Fig. 2 would
then look different because the round-trip background loss aq
also scales with I. As will be discussed in Section III-B, ag is
very important for higher order mode thresholds.

B. Unbleachable Loss

The intrinsic unbleachable loss ag in DFB-FLs is usually
much higher than in standard telecom fibers; commonly as-
sumed major sources of the increase in ag are UV exposure [25]
and, when used, hydrogen or deuterium loading of the fiber for
increased photosensitivity. In Fig. 3, we have plotted the higher
order mode thresholds with and without the fundamental mode
present as a function ay. As expected, the threshold without
the fundamental mode increases monotonically with increasing
loss. More interesting, perhaps, is that the threshold with the
fundamental modes present has a minimum near ag = 0.2, i.e.,
close to the measured value in Table I. The reason that the mul-
timode threshold increases for lower values of ay is the increase
in the gain saturation power of the fundamental mode. For small
values of @ and moderate values of [, the fundamental mode
will saturate the gain in most of the grating structure. However,
if the grating strength and ag became large enough, ay would
become the dominating loss mechanism [18], [26]. The max-
imum power of the fundamental mode around the center phase
shift will then not increase with increasing !, and the funda-
mental mode will saturate the gain at the ends of the structure
less effectively because the ratio lg /I becomes smaller. How-
ever, as long as ag < 0.1, the higher order modes will not be sig-
nificantly affected by the intrinsic losses because of their larger
mirror losses, but will benefit from the increasing gain left by
the fundamental mode with increasing ag. For lower &1, the fun-
damental mode has relatively large mirror losses as well, and its
threshold, which is not included in Fig. 3, does not change sig-
nificantly with ag in the plotted interval. However, even if the
measured value of ag = 0.24 dB/m is close to the minimum of
the higher order mode ry,! curve, purposely increasing aq fur-
ther is probably not a good idea because it would decrease the
output power and increase the RIN [9] of a DFB-FL written in
the fiber. On the other hand, low values of ag would ensure both
high side-mode suppression and large output power.




LOVSETH AND R@GNNEKLEIV: THRESHOLDS OF DFB FIBER LASERS

—— Forward
Backward

g of
/m
=z
3 :
E i
0.33 GHz ° S
~10 U : L :
=4 -2 0 2 4
z (ecm)
(b)

Fig. 4. (a) The thresholds of higher order and fundamental mode operation
for a DFB-FL with linear chirp as a function of detuning between the center and
edge of the grating. Curve definitions as in Fig. 2. (b) The power distribution of
the forward- and backward-propagating waves of the lasing higher order modes
of a DFB-FL with linear chirp corresponding to a detuning 8 g, juax 0f 0, 0.33,
and 0.94 GHz in Bragg frequency between the center and the outer edge of the
grating, and with &1 at 23.0, 19.4, and 17.5, respectively.

IV. EFFECT OF GRATING ERRORS

From Section III it is clear that the low higher order mode
threshold of w¢,! ~ 14 found experimentally cannot be ex-
plained from the laser gain and loss parameters alone, but prob-
ably by a combination of grating errors and relatively high gain
and intrinsic loss. Grating errors can arise from a number of dif-
ferent sources that will produce different types of grating errors,
and we will here discuss the most typical ones and their effect
on higher order and fundamental mode threshold.

A. Linear and Quadratic Chirp

Unintended linear and/or quadratic chirp is a common
problem in grating writing setups and can come from a number
of different sources, including drift of the laser power and
beam direction, fiber photosensitivity and diameter variations
[27]-[29], misalignments of the setup, and, for strong gratings,
variation in the degree of coherence between the interfering
beams along the fiber grating [18]. Quadratic-like chirp profiles
can also be induced by self-heating caused by the fundamental
mode and the nonradiative decay from the pump level to the
upper laser level, especially for high power DFB-FLs pumped
at 980 nm.

In Fig. 4, we have plotted the thresholds of the fundamental
mode and higher order modes as functions of linear chirp. The
chirp is quantified in terms of detuning in Bragg frequency be-
tween the center and edge of the grating, 83, ax. The power
distribution of the higher order mode with the lowest threshold
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Fig. 5. Thresholds as functions of quadratic chirp quantified by maximum
detuning between the center and outer edge of the grating ég  max-

is shown in the lower half of the figure for selected values of
OB, wmax- As the chirp increases, the side-modes are detuned rel-
ative to the grating period in one half of the grating, and will
increasingly only be supported by and oscillate in the opposite
grating half. The asymmetry of the higher order modes leads
to a small difference in x,l between modes with opposite de-
tuning from the mean Bragg frequency, since the DFB-FL is
pumped from the left. The linear chirp also broadens the reflec-
tion spectrum and perturbs the round-trip phase of the higher
order modes, and this leads to a slightly lower higher order mode
rignl for some values 6, max compared with the uniform grating
case &g, max = 0. With increasing linear chirp, the effective
cavity length, and at some point also the cavity finesse, of a
given higher order mode decreases, resulting in a mode hop to
the next higher order mode. Each mode hop is associated with
the occurrence of an extra lobe in the spatial power distribution,
as seen in the lower half of Fig. 4. However, regardless of the
value of the linear chirp, the higher order mode threshold remain
high, and for é g, max = 1 GHz the local minimum levels of the
multimode ¢y curve seem to increase rapidly with increasing
8B, max. Thus, linear chirp is probably not a major cause of
higher order mode operation. However, linear chirp causes a
decrease in the cavity finesse seen by the fundamental mode,
leading to an increase of its threshold.

In Fig. 5, we have plotted the threshold for higher order
and fundamental modes of DFB-FLs with quadratic chirp
symmetric around the center of the grating. In contrast to
linear chirp, even a relatively small amount of quadratic chirp
leads to a drastic decrease in higher order mode threshold.
At a detuning §p, max between the center and outer edge of
the grating of 1.95 GHz, corresponding to a quadratic chirp
coefficient of 920 GHz/m?, the higher order mode threshold
becomes lower than the fundamental mode threshold. In effect,
the outer edges of the grating become mirrors for a DBR-like
cavity for the higher order mode. In Fig. 1, the spatial power
distribution of the modes of a DFB-FL with quadratic chirp
operating above the higher order mode threshold is shown.
It is interesting to note that, assuming uniform gain in the
structure, linear chirp leads to a symmetric reflection spectrum
and asymmetric spatial higher order mode power distributions,
whereas quadratic chirp leads to an asymmetric reflection
spectrum and symmetric modes.
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Fig. 6. Threshold ! for single fundamental and multiple mode operation of
DFB-FLs with a discrete grating phase error. (a) Thresholds as functions of the
position of a phase error Ag.,. = 7/2. (b) Thresholds as functions of the value
A@q,, of a phase error positioned at z,,,, = 0, 1.2, and 3.5 cm.

B. Discrete Phase Errors

Discrete phase errors can be induced during grating fabrica-
tion for instance due to errors in phase masks or inaccuracies
in translation stages. On Fig. 6(a), the two lowest modal thresh-
olds of a DFB-FL with a single rather large discrete phase error
of A¢perr = /2 is plotted as function of the phase error posi-
tion z, relative to the central phase shift. It is expected that a
number of smaller phase errors distributed over a short length
will enable similar laser modes with similar thresholds. As dis-
cussed in [30], a grating with multiple phase shifts will have
multiple resonances in the stopband. For the asymmetric per-
turbation modeled in Fig. 7, an extra fundamental-like mode
will oscillate around z.,, at high grating strengths. The extra
mode has its lowest threshold when the phase error is in a rela-
tive short distance, ze;y &~ 1.2 cm, from the center phase shift.
Due to the grating asymmetry, the forward and backward output
power of the extra mode will be different, as illustrated in the
plot of the modal power distribution on top of Fig. 7. Although
this extra mode is fundamental in nature for small values of
Zeyr, 1t als0 sees a relatively low cavity finesse compared with
the fundamental mode, and beat and mode partition noise will
make the lasers with two such modes useless for many purposes.
Around ze, &~ 3 cm in Fig. 6(a), there is a mode hop on the
multimode threshold curve, leading to another minimum around
Zerr & 3.0 cm. As illustrated in Fig. 7(b), this mode is similar to
more conventional higher order modes, with less asymmetry but
larger spread in the power distribution. Note also that this mode
seems to have three lobes, indicating a second-order mode.

In Fig. 6(b) the thresholds as functions of the phase error
value Age,, are plotted for ze,, = 0, 1.2, and 3.5 cm. For ze,, =
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Fig. 7. Power of the modes of DFB-FLs with one discrete phase error of

Ay, = 7/2 and with kl = 16.1. Definitions as in Fig. 1. (a) zeyr = 1.2 cm.
(b) Zere = 3.5 cm.

1.2 cm, corresponding to the minimum multimode threshold in
Fig. 6(a), we see that the major decrease in multimode threshold
comes at relatively small values of Age,,. When the value of the
phase error equals the center phase shift, Ageyy = Adeenter =
m, the two modes with lowest threshold become degenerate,
in line with the theory for passive multiple phase shifted grat-
ings [30]. The multimode threshold for z.,, = 3.5 cm also de-
creases fast with increasing Ad,,, after an initial mode hop at
Aerr == 0.057. However, unlike the case z = 1.2 cm, we do
not observe any degeneration at A¢e,, = 7, because a phase
error as far as 3.5 cm from the center cannot support a mode in
the stopband.

An early technique of fabricating DFB-FLs that remains
popular is writing a uniform grating and adding the center phase
shift by UV postprocessing [31], [32]. The center phase-shift
value A¢eenter is often decided by maximizing the output
power. However, with background loss ag present, the output
power actually decreases if the effective cavity finesse seen
by the fundamental mode increases above a certain limit [18],
[26], and Agcenter found by maximizing the output power will
not equal the ideal value for side mode suppression, which
for a uniform grating is Adeenter = 7. With more advanced
grating writing setups [33], [34] that allow incorporation of the
center phase shift during the writing [35], [36], inaccuracies
may still cause deviations from A¢center = 7, but in most
cases self-heating [24] would probably be of more concern for
the effective value of A¢eenter. In Fig. 6(b), we have plotted
the multimode and single mode thresholds as functions of
phase error Age,, in the center for a uniform grating, with
Apeenter = T £ Adpeyy. With increasing phase-shift error,
there is a steady increase in the fundamental mode threshold
as the mode is pushed further from the center of the grating
stopband. However, because the fundamental mode spreads
out in the grating, the increase in cavity finesse that the higher
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Fig. 8. Thresholds in ! for single and multimode operation of DFB-FLs with
a discrete grating phase error of A¢,,, = 7/2 positioned at z.,, = 1.2 and
Zeee = 3.5 cm as functions of center phase shift value A¢coneer.

order mode with lowest threshold may see is countered by an
increase in modal overlap with the fundamental mode. Thus,
there is little change in the multimode threshold until Age,,
reaches 0.87. When A, = 7, the DFB-FL no longer has a
phase shift (Agcenter = 0) and there is no longer a fundamental
mode in the grating stopband but two higher order modes just
outside with equal thresholds [37].

With other grating errors present, a deviation from ideal value
of Agpcencer 18 far more serious, as illustrated in Fig. 8; the mul-
tiple and single mode thresholds for two DFB-FLs with phase
errors of A¢e,, = m/2 located at zer, = 1.2 and zer = 3.5 cm,
respectively, are plotted as functions of center phase shift value
Apeenter- Because A,y is not equal to 7 or zero, the curves
are not symmetric around A¢eener = , and they are char-
acterized by many mode hops. The slope efficiency is much
higher for higher order modes than for the fundamental modes
for DFB-FLs with strong gratings. Thus, if the grating strength
were k£l = 15 in the two cases ze,r = 1.2 and zer = 3.5 cm,
and the center phase shift were tuned by uncritically maximizing
the output power, the resulting DFB-FL would probably have
1.5 < A¢center < 1.9 in the case zey = 1.2 cm, and
0 < Aenter < 0.57 in the case ze,, = 3.5 cm, with the higher
order modes dominating the output.

C. Periodic Chirp

Some types of grating errors, like phase mask stitching
errors or inaccuracies in moving parts of the grating writing
setup, are likely to be of periodic nature with short periods
Aepr compared with the DFB-FL length. Other errors, such as
those caused by diameter and composition variations along the
fiber or variations in UV exposure, are likely to be of a more
random character with lower spatial frequencies. As discussed
in Sections IV-A and IV-B, more repeatable errors such as
those caused by misalignment are also likely to occur with
a low spatial frequency compared with the inverse DFB-FL
length. In Fig. 9, the thresholds s,/ for multimode and funda-
mental mode operation are plotted as functions of the spatial
frequency oy = 1/Aer, of a sinusoidal chirp with a maximum
[i.e., dvp o Cco8(2moenz)] Or zero [ie., fivp o sin(27oey)]
detuning évp from the unperturbed uniform grating at the
center z = 0. As expected from Section IV-A, low-frequency
chirp leads to a dramatic decrease in higher order mode
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Fig. 9. (a) Thresholds in sl of a DFB-FL with a cosine modulated detuning,
with an amplitude of 1 GHz, as functions of spatial frequency of the detuning
0o scaled with the grating length . (b) The same for a sine-modulated
detuning.

threshold, with a minimum at oI = 1, which is lower in the
cosine than the sine case. The reason is that the higher order
modes will oscillate between grating sections detuned with
the same sign. However, reflections from different periods of
the sinusoidal will not be added in phase for these modes, so
with higher spatial frequencies the higher order mode threshold
is only moderately affected by the periodic chirp, and could
even increase if the chirp amplitude were larger. Note that the
minimum in s,/ for the multimode operation corresponds to
a maximum in the fundamental mode threshold, making low
frequency chirp particularly detrimental compared with high
frequency chirp. As the spatial chirp frequency approaches
zero, the sine detuning approaches linear chirp with amplitude
decreasing linearly with o, whereas the cosine detuning
approaches quadratic chirp with the amplitude proportional
to o2.,. As expected from Section IV-A, this leads to series
of mode hops in the sine case with higher order mode thresh-
olds sometimes higher than a uniform grating, whereas low
frequency cosine chirp is always detrimental.

D. Random Spatial Detuning Fluctuations

Many of the aforementioned sources of grating errors have
a random character, and the effect of random grating errors
are, therefore, investigated. Little work has been pﬁblished re-
cently on the spectral density distributions in the spatial fre-
quency space of the most likely sources of random detuning.
Of the different sources, fluctuations in diameter and composi-
tion along the fiber are most difficult to control for the DFB-FL
fabricator. We have, therefore, assumed that optical fiber diam-
eter fluctuations are the dominating grating error source, and
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Fig. 10. Multiple and single-mode lasing thresholds #.,,! for an ensemble
of 640 different DFB-FLs with random spatial Bragg wavelength detuning
profiles. (a) Spectral density in the spatial frequency space of the expected
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90, and 95 percentiles of x4,/ for single-mode operation plotted as functions
of expected rms amplitude 8175 1,5 of the detuning.

that the noise density spectrum of fiber diameter is flat up to
a spatial frequency of oo, = 10 m™, followed by a decline
o 1/, in amplitude, as illustrated in Fig. 10. This is roughly
the spectral shape found in some early work [27]-[29] on fiber
diameter measurements, and is plausible also for contempo-
rary fiber production facilities, with the cutoff frequency de-
termined by the distance between the preform and fiber diam-
eter monitoring device during fiber drawing. In terms of grating
phase noise [38], this corresponds to a decline in root mean
square (rms) amplitude o< 1/0e, for oy < 10 m™*, and
o 1/02, for gy > 10 m™t. We picked 640 random error
profile samples from a distribution with an expected detuning
spectrum, as shown in Fig. 10(a). Each spectral element has a
Gaussian-distributed imaginary and real part. For each DFB-FL
sample, the thresholds ryy,! for multimode and single-mode op-
eration were calculated for varying degree of detuning ampli-
tude. In Fig. 10(b), the resulting lower percentiles of multimode
threshold and higher percentiles of single-mode threshold are
plotted as functions of expected rms Bragg wavelength detuning
O, vms. The single-mode thresholds generally seem to have a
monotonic increase with increasing grating errors. The five and
10 percentiles of the multimode thresholds decrease rapidly up
to évp, rms = 0.5 GHz before flattening out. The multimode
threshold five percentile comes down to iyl ~ 10 at b1/, rms ~
2 GHz. At this detuning amplitude, the single-mode 95 per-
centile has reached kil = 13.3. Of course, these extremes are
caused by different members of the ensemble, but, still, this is an
indication that 2-GHz, or even 1-GHz, integrated rms detuning

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 3, MARCH 2002

would make it very difficult to make high quality DFB-FLs
with high yield. Note that a 1-GHz rms detuning at 1550-nm
wavelength corresponds to an rms diameter variation of approx-
imately 0.04% for a fiber with a numerical aperture of 0.2 and
core diameter of approximately 5 pm. However, as discussed in
Section IV-C, variations with spatial frequencies much larger
or much smaller than the inverse length of the DFB-FL grating
will not have much effect.

V. CONCLUSION

Higher order modes have proven to be a problem for the
realization of stable high-finesse DFB-FLs. High-finesse
DFB-FLs can be especially useful in sensing applications
where high backreflection tolerance is desirable. We have
analyzed the dependence of the fundamental and higher order
modes thresholds on gain, background loss, and grating defects.

We have confirmed that higher fiber gain leads to lower higher
order mode thresholds, making the realization of high-finesse
single-mode DFB-FLs more difficult. However, as long as prob-
lems like spontaneous lifetime shortening caused by erbium
clustering are avoided, higher gain also means that the funda-
mental modes become more powerful and stable at lower values
of cavity finesse, and for many applications where a low cavity
finesse is acceptable, high gain is, therefore, very welcome. If
the fiber has a high photosensitivity, it is also possible to fab-
ricate high-finesse single-mode DFB-FLs by writing a strong
but short grating, thus making the round-trip gain for the higher
order modes smaller.

We have also found that although background loss weakens
the fundamental modes of high-finesse DFB-FLs, the higher
order modes actually can experience an increase in the effective
round-trip gain and decrease in threshold in terms of integrated
coupling coefficient with increasing loss. Thus, a better under-
standing of the loss mechanisms of UV-exposed photosensitive
fiber is desirable, and known sources of loss, such as hydrogen
loading of the fiber, should be eliminated.

Although gain and loss must be controlled and measured in
order to predict higher order mode thresholds, grating errors
could be far more serious for the threshold margin between the
fundamental and higher order modes. Particularly detrimental
are grating errors with spatial frequency approximately equal
to the inverse laser length. For instance, for quadratic chirp, we
have found with our laser parameters that the threshold margin
is zero with a quadratic chirp coefficient of 940 GHz/m?, corre-
sponding to a detuning between the center and outer edge of the
grating of only 2 GHz. We have also found that discrete phase er-
rors in the grating reduce the higher order mode threshold signif-
icantly, especially if the phase errors are positioned close to the
center phase shift, in which case we get two fundamental-like
modes operating in the grating stopband.

In many cases, grating errors are not repeatable but have a
rather random character. We simulated an ensemble of DFB-FLs
picked from a Bragg frequency detuning profile distribution
that we believe is realistic when fiber diameter variations is
the dominating error source. For many of the samples, it was
found that there is a significant decrease in higher order mode
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threshold and increase in fundamental mode threshold for a frac-
tion of a GHz in rms Bragg frequency detuning, which corre-
sponds to a few parts per 10* in fiber diameter variations. There-
fore, tight control of the fiber diameter and other grating error
sources is imperative for a repeatable fabrication of high-quality
DFB-FLs.
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Chapter 5

Selective Gain Tuning in Erbium
Doped Fibres'

Abstract
A new technique for spatially windowing the effective gain in erbium doped fibre
is presented. The technique is demonstrated experimentally and an application for
this process is described with supporting numerical results.

5.1 Introduction

Erbium doped fibre lasers offer several key advantages that make them attractive
for use in remote sensing applications. In 1994, Kringlebotn ef al. demonstrated
the first distributed feedback fibre laser (DFB-FL) [1]. Based on a phase shifted
fibre Bragg grating, a short cavity length DFB-FL produces an output with very
narrow linewidth and robust single frequency operation.

For remote sensing applications of DFB-FLs, sensitivity to back reflections
[2] and noise performance [3] are important considerations. A common
dependency to both these characteristics is the product term &I of the fibre
Bragg grating, where x is the coupling coefficient and L is the length of the
grating. Subject to a limit defined by internal loss [4] and non-linear refractive
index changes, reflection sensitivity and laser noise performance are expected to
improve with host gratings of increasing xZ value [5]. However with high «Z
gratings, all longitudinal modes have reduced gain thresholds, and hence higher
order longitudinal modes may be close to threshold. Further, for practical
gratings it is expected that grating phase imperfections manifest in a reduced
threshold margin between the fundamental and higher order modes. Therefore,
improving threshold margin is an important consideration for high-xZ DFB-FL
designs. In this paper, we present a new technique for sidemode suppression
based on apodizing the effective signal gain over the length of the grating in the
DFB-FL. We demonstrate for the first time a method of achieving selective gain
tuning based on CO2 laser exposure.

! This manuscript is submitted to the postdeadline session of OECC / I00C 2001 Conference —
Incorporating ACOFT, (Sydney, Australia), July, 2001. Authors: M. A. Englund, S. W. Lgvseth,
D. Yu. Stepanov, and E. C. Magi.
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5.2 Technique

It is well known that core dopants in germanosilicate fibre diffuse at high
temperatures [6]. Diffusion of core dopants alters the refractive index profile of
the fibre which correspondingly changes the mode field diameter (MFD). It is
also clear that diffusion of the core dopants in erbium fibres during fibre
manufacture can lead to changes in the maximum signal gain achievable [7].
Diffusion at raised fibre temperatures alters the overlap between the signal and
pump fields and the erbium distribution. The magnitude and sign of the resulting
gain change is dependent on the dopant concentration profiles. Therefore, the
local signal gain in a section of erbium doped fibre may be tuned by exposure to
an appropriate heat source. Extending this notion to a length of erbium doped
fibre provides a means of imposing a longitudinal signal-gain profile. In the
context of a DFB-FL, this provides a means for discriminating against higher
order modes of the cavity.

To appreciate how this process can be used for higher order mode
suppression we consider the spatial distribution of the longitudinal mode
intensities in a DFB-FL cavity, as depicted in Fig. 1(A). The power distribution
of the fundamental mode in high xZ lasers is tightly confined around the phase
shift in the grating. In contrast, the =1 and +2 higher order mode power
distribution is less concentrated and have peak intensities towards the outer
regions of the grating structure. By decreasing the relative signal-gain available
in these outer regions an increase in the threshold of the higher order modes is
induced relative to the fundamental mode. In addition, by not apodizing the
grating strength in these regions, a higher xL value is maintained for the
fundamental mode and all the aforementioned performance advantages.

5.3 Modelling Results

To examine the effect of apodizing the signal gain across a DFB-FL cavity, a
modified version of the transfer matrix method used in [8] was developed. We
configured the model for a 10 cm long grating structure with a x of 167.5 m™,
and gain parameters multiplied by a factor of two compared to [8]. We have
assumed that the thermal diffusion process is able to reduce the signal gain by a
maximum of 50%.
A series of apodization functions, G(z), of the form,
6

G(2)=0.5(1+ exp(—(fv) )
of varying width w were applied to the signal and pump absorption and gain
coefficients. z is the position relative to the centre of the grating. The model
calculates the steady state output power of the lasing modes of the structure as a
function of window width. A plot of the results appears in Fig. 1(B), where the



output power of the fundamental mode and the total output power of the side
modes are plotted as a function of w. It is clear that the window has minimal
effect on any of the modes until the width of the window decreases to 6 cm.
From this point, there is a rapid decrease in the power of the side modes until, at
w = 4.2 cm, the side modes are below the lasing thresholds. The power of the
fundamental mode is largely unaffected, and does not significantly decrease until
w is less than 2 cm. The threshold grating coupling coefficients for the higher
order modes were also calculated for a window width of 2 cm and then
compared to a uniform gain DFB-FL that otherwise had the same characteristics.
The grating strength required for the gain-apodised laser to reach higher order
mode threshold was 213.5 m™ and for the uniform-gain laser it was significantly
lower at 162 m™. It should also be noted that the thresholds of the higher order
modes were particularly sensitive to changes in gain parameters. Overall these
results suggest there is a significant advantage in reducing the available signal
gain on the wings of the grating structure. This increased threshold margin
provides the potential to fabricate DFB-FLs with very high grating strength
without the onset of higher order modes. For sensor applications where it is not
always possible to isolate the laser from perturbations, this increased threshold
margin is particularly important.
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Figure 1: A) Plot of theoretical intensity distribution of fundamental and higher order modes for
typical DFB-FL. B) Plot of power distribution between modes as a function of apodization length.

5.4 Experimental Results

To verify the proposed technique a CO2 laser was set up to repeatedly scan a
length of Er fibre as depicted in the schematic of Figure 2.

The Er fibre used in this experiment had a small signal absorption of 17
dB/m at 1530 nm. A series of CO2 scans were done across an 80 mm section of
the 100.mm Er fibre sample. The induced fibre temperature was estimated to be
in the range of 1400-1700 C. At the conclusion of each scan, the small signal
absorption and the background loss were both characterised. The former was
measured at 980 and 1530 nm and the latter at 1300 nm, these results are plotted
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in Figure 3. The absorption peaks at 980 nm and 1550 nm were observed to
decrease monotonically, whereas the background loss was seen to slightly
increase but remain relatively stable. It should be noted that the signal level at
the absorption peaks moved in the opposite direction to the signal level at

WLS  Translation stage -2 jaser OSA
-— _____
[ £ ]
=
100 mm Er fibre sample

Figure 2: Experimental setup for CO2 processing of Er fibre. OSA: optical spectrum analyser,
WLS: white light source.

1300 nm and increased. These results firmly suggest that the CO2 exposure has
decreased the overlap between the MFD of the pump and signal and the Er
distribution. Therefore, we have correspondingly reduced the small signal gain
in the fibre. During the exposure intervals the cut-off wavelength was seen to
remain within a few nanometres of the original value of 970 nm, suggesting the
normalised frequency remained approximately invariant. The magnitude of the
absorption change achieved at 980 nm and 1530 nm was ~1.25 and ~2 dB/m
respectively. To achieve a spatial profile in gain the CO2 exposure time and/or
induced fibre temperature can be profiled during the CO2 exposure.
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Figure 3: Small signal absorption change at 980 and 1530 nm plotted with signal level change at
1300 nm.



5.5 Conclusions

We have proposed a new technique for achieving high xZ DFB-FLs with
high.side mode suppression. A numerical model has been developed to
investigate the quantitative implications of modifying the local gain. The
numerical results indicate a significant improvement in the threshold margin of
the side modes in a DFB-FL. We have demonstrated for the first time the use of
a CO2 laser for selective gain tuning along a length of Er fibre. Tailoring the
spatial distribution of signal gain is expected to have wider applications to other
optical waveguide devices, this may include multimode (transverse modes)
waveguides and optical amplifiers.

We acknowledge P. Blazkiewicz, J. Canning, J. Chow and G. Town for
assistance in the experimental work. S. W. Lgvseth acknowledges support from
the Norwegian Research Council.
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Analysis of Multiple Wavelength DFB Fiber Lasers

Sigurd Weidemann Lgvseth and Dmitrii Yu Stepanov

Abstract—The behavior of multiwavelength distributed feed- its presence is destructive for the corresponding laser mode. On
back fiber lasers is simulated in a comprehensive numerical the other hand, its interaction with other laser modes is small
model. Multiple fundamental modes can coexist, even though the because of the frequency mismatch. Thus, the effect of the gain

coupling coefficients of their respective refractive index gratings - . . )
are not equal, due to induced dynamic gain gratings. We have gratings is a reduction of the power of the dominant mode and

investigated the effect on the lasing state of variations in coupling @n increase of the available gain for the other modes, resulting
strengths, gain parameters, grating Bragg frequency separation, in stable multiple wavelength operation of the laser. This type
relative phase between the gratings, length of the structure relative of spatial hole burning has been well understood since the
to the beat lengths between the gratings, grating center phase-shift 19505 [7], [8] and was early identified as the reason for multiple
errors, and saturation level of the UV-induced refractive index L L - )
change. longitudinal mode lasing in other types_of er_blum—doped flbgr
Index Terms—DPistributed feedback lasers, erbium, optical fiber Iasers [?.]' However, lﬁecalise (.)f carfrler dlf'f_usmg, (:yn?mlc
Bragg gratings, optical fiber lasers, optical hole burning, sampled gain gra '”Qs_afe usu_a y not an issue for semiconductor lasers
optical fiber Bragg gratings. [10], and similar semiconductor DFB lasers would, therefore,
probably show a lot of mode partition noise or be single mode.
By combining the theory given in [6] with the conventional
coupled-mode formalism, we have constructed a numerical
ULTIPLE wavelength, distributed feedback (DFB) fibermodel that calculates the power and detuning of an arbitrary
lasers [1], [2] are attractive for a range of applicationgumber of modes for an arbitrary complex index coupling
in optical communications, including soliton and microwavéunction. We have simulated multiwavelength phase-shifted
generation. In conventional DFB fiber lasers, comprising @FB fiber lasers as a function of gain parameters, coupling
UV-induced Bragg grating fabricated in a rare-earth-dopedrengths, laser frequency separations, grating phase-shifts,
fiber, two fundamental polarization modes can coexist, anélative phases between the superimposed gratings, structure
such lasers are analyzed in [3]-[5]. However, in conventionl&ingth relative to the beat length and the degree of saturation of
doped single-mode fibers, the frequency spacing between the UV-induced refractive index change during writing of the
two polarization modes is a function of both intrinsic angrating.
UV-induced birefringence and, as such, is difficult to control
and limited to a few gigahertz. In this work, we will consider [I. MULTIPLE A DFB GRATING STRUCTURES
erbium-doped DFB fiber lasers where the grating structures . . .
" L ) .. In this work, we consider multiple number of Bragg grat-
are superpositions of several individual Bragg gratings with L S . . .
. . . mgs with different periodicity\; superimposed in a single rare
different Bragg frequencies, and each laser operates with tw , . ST i
. i . ; earth-doped fiber, as illustrated in Fig. 1(a). For the remainder
or more lasing modes sharing the same gain medium. The g L . .
i . . 0 Jne paper, the individual superimposed Bragg gratings and
grating structures can also be viewed as sampled gratings, gn ) . .
. . : ?he resulting grating structures will be referred to as subgrat-
offer predictable and flexible frequency separation. Althouq ; .
. ngs and multiple\ DFB structures, respectively. DuAlgrat-
such lasers have been demonstrated experimentally [2], the

has been little work in the literature regarding the understandihn S are also known as a_Mowe-gratmgs, and if the tWO. Sub-
tings have equal coupling strength, a duatructure will

of multiple wavelength DFB lasers. In this paper, we argue th%é a Bragg grating without chirp and with a sinusoidally mod-

the coexistence of two or more fundamental modes of the same ; - X
o ) . ulated coupling coefficient, as illustrated at the bottom half
polarization can be attributed to the effect of dynamic gaurL

|I. INTRODUCTION

. : . : : of Fig. 1(a). With the sinusoidal modulation functiony @hase
gratings set up by_ the mtra_—cawty Staf‘d'”g waves of d|ffereg ift has to be introduced at each zere:pand the beat length of
Ia;er modes. A.‘S discussed in [6], a gain gratmg IS 1N ant|-phatﬁ9é modulation is inversely proportional to the Bragg frequency
with the standing-wave pattern that created it, and, therefoFﬁfsmatcmV between the subgratings. If the subgratings do not

have equal strength, the periodic amplitude modulationweil

Manuscript received September 6, 2000; revised February 22, 2001. The Wﬁ(ﬁlonger be purely sinusoidal, and the discrete phase shifts will
of S. W. Lgvseth was supported by the Norwegian Research Council. . . .

S. W. Levseth was with the Australian Photonics CRC, Optical Fibri2€ replaced with a continuous chirp.
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Technology, N-7491 Trondheim, Norway, and also with Optoplan AS, N-7448 . . [ .
Tmndheir%y Norway. Y prop modulation will be periodic if the Bragg frequency separation

D. Y. Stepanov was with the Australian Photonics CRC, Optical Fibre Techetween the subgratings are multiples of each other. Multiple
nology (;entre (OFTC), University of Sydney, Australia. He is now Wlth RedA structures are, therefore, often called sampled gratings and
fern Optical Components Pty. Ltd., Australian Technology Park, Eveleigh, NSW . . h h
1430, Australia. viewed as a sampling of a uniform Bragg grating with a gener-
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............ .W””_W._l.I‘(P??FS??}?{#PP?‘SltIOH or 0, the reflectivity of the two halves of the grating will be
Subgrating 1 n 1K Ay different even though they have the same length, leading to an
asymmetric power output.
Subgrating 2 The influence ofA¢ on detuning, cavity finesse, and power
U Ad=0 KA output decreases with larger Bragg frequency separation be-
NN tween the subgratings and smaller coupling strength. The reason
is that the coupling strength integrated over a sampling period
IN then will be smaller, or, as seen in the frequency domain, that

the overlap between the reflection spectra of the different sub-

| lbeat/ZI \A¢ =N

fe—— = gratings becomes smaller.
l_hbeat/ZA lbeat/Z é'
(@) I1l. NUMERICAL MODEL
Ap=0 Ap=1

A. Coupled-Mode Analysis

\/V\/\/W\/\MV\/W\/\/\[\/ MA/VWMWWW An We have constructed a numerical model that calculates the
steady state of all the modes of a general, single polarization,
T T T

TT 7T multiple A DFB fiber laser. We describe the spatial distribution
PS PS PS PS NoPS PS of the laser modes by slowly varying complex amplitudés,
®) and B,, for the right and left propagating mode number re-

. . . spectively. In this notation, the total local field of the mode be-
Fig. 1. (a) DualA DFB grating structure. (b) Index profile around the center

phase shift of a dual DFB grating structure witl\¢ = 0 andA¢ = «. The comes
7 phase shifts (PS) of the index modulation are indicated. ) _ ) _
En(z, t) = Ap(2)e?@nt=02) L B (2)ed@mt+02) (1)

Just as in conventional semiconductor DFB lasers, we intrlg]-
o . . ere
duce an additional phase shiftofn the center of the grating to
facilitate single-mode lasing in the transmission stopband ¢

,/3 is the average Bragg wavenumber of the subgratings,
which will be used as a reference for the detuning, apdis

. : ) 1d Cohe angular frequency of mode. In order to calculate the spa-
responding to each subgrating. These modes, which will h & field distribution of the modes, we use a coupled-mode for-

their power distribution concentrated around the center pharﬁglism [11] with a spatially varying complex coupling coeffi-

shift, we call fundamental. This is in line with the terminolog%g.)enm given by

used in other papers on DFB lasers, but note that there may be

several such fundamental modes for a multipl®FB struc- N,

ture, one for each subgrating. With large gain or grating strength, K= Z jje IRUG=P)zte] 2)
higher order modes, with frequency outside the stopbands and im1

with a wider spatial distribution, may also reach threshold. _

A superposition of Bragg gratings will not lead to a supef€e xi, &£; = m/A;, A; and ¢; are the coupling strength,
position of their reflection spectra, because the resulting spd¢€ Bragg wavenumber, the period, and a generadigpendent
trum is dependent on the phase relation between the subgPii2se term, respectively, of subgrating numbe, is the total
ings. This is particularly important in center phase-shifted, mytumber of subgratings. . _ _ _
tiple A DFB structures, because most of the power is concen-ncluding the effect of dynamically induced gain gratings [6],
trated in a small region around the phase shift. Depending on #&l: the relevant coupled-mode equations become
phase relation between the subgratings, the local superstructure 9A,,
around the phase shift will be very different, leading to different 3

. . z
values for the detuning of the laser modes from the subgrating
Bragg frequencies. In the case of a diadtructure, the two ex- _9Bm
treme cases are if the subgratings are in phasg £ 0) and 0z
anti-phase f¢ = =) at the center. This means that the phasghere
shift is located at a node and anti-node, respectively, of the beat
pattern of the structure, as illustrated in Fig. 1(b). For dual Ay = g0 — G0 — J6rm-
structures where the two subgratings have equal strength, the
caseA¢ = w corresponds to a removal of the sign shift of onklere, §,, is the detuning of the mode from the average Bragg
of the beat pattern nodes. wavenumbeps, go andg, are the average gain and gain grating

Apart from the detuningA¢ could affect the effective re- coefficients, respectively, to be discussed and properly defined
flectivity of the two half sections of the grating at each side af Section IlI-B, andag is the unbleachable losses of the fiber.
the center phase shift. If we again consider duatructures,  Since the laser modes have different frequencies, there is no
the integrated values df| of the two half sections, and thusdirect coupling between them. However, the modes influence
the cavity finesse seen by the two modes, are dependedton each other through the gain parametgraindg..
if the total laser lengthd is not equal to an integral number of Equations (3) have to be modified in order to describe the in-
half-beat lengthg,.../-. If, in addition, A¢ is not equal tor  teraction between laser modes in different polarizations, and an

= drnArn + (1’{ + g;) Brn

= drnBrn + (Jﬁ* + .92) Arn (3)
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in-depth analysis of dual-polarization DFB fiber lasers was per- From (4) and (5), it can be deduced that the presence of a
formed in [3]-[5]. Here, we assume that all modes are operatistanding wave patterr. # 0) increases the average gainX
in the same polarization. Permanent single-polarization DFfBmpared to the case where all waves are incoherent. If one
fiber lasers have been fabricated by writing a polarization-detode locally has a higher power than the other mogesyill
pendent grating [13] or adding a polarization-dependent phasmiple the forward and backward propagating waves of that par-

shift during post processing [14], [15]. ticular mode in a destructive manner, since the phasg of
determined by the phase &%, which is again largely depen-
B. Gain Model dent on the field of the high power mode. However, the other

We assume that homogeneously broadened Er-doped méBfies will be almost unaffected iy because of the spatial
can be described by two-level rate equations [16], which 1irsequency mismatch, and only benefit from the increasgoof

a good approximation for Er-doped silica fibers, even whéfl- If @ll modes have approximately equal amplitudgswil

pumped with a 980-nm source [17]. It is further assumed th%rtovide negative and equal feedback for all modes. Thus, the

the erbium doping radius is small compared to the mode fidpjesence of gain gratings will reduce any threshold differences
radius of the fiber. so that the radial variation of theEr between laser modes, and enable multiple modes to simultane-

inversion can be neglected [18]. Using the formalism develop84S!Y COeXist in the laser. The negative feedback from the gain
in [5], we divide the erbium ions into sub-media to allow fodrating will decrease for each mode with an increasing number

UV-induced lifetime quenching for a certain fraction of thé)f modes. Therefore, the stabilizing effect of the gain gratings

ions. By performing a Fourier integral, the zeroth-orger, ' f}tf‘?”%?ﬁst for lasers with :je_lapvely_few .mod?si o
and second-order Fourier componegt; with respect te8 of ain diffusion, i.e., nonradiative migration of electronic exci-

the total spatially varying, but locally pseudo-periodic, gaiﬁJltion O,f Er, i's igporgd in_th'e model used in this work. We do
function [6], [12], [19] for each gain mediudacan be found [5] not believe gain diffusion is important for the ®rconcentra-
tions typically found in DFB fiber lasers, but if diffusion played

apraly a role, the higher harmonics of the gain function would attain
Poir s) (42) smaller values [10]. We have also assumed that no clustering is

' present in the gain medium. Apart from increasing the lasing

Gk, 0 = Gunsat, k /« /a? — |b|? (4b) threshold and inducing self-oscillations, such clustering will re-

duce the mean lifetime of the erbium ions, thus lowering the

2 _ b 2 _ i i
vaz—1b? —a (4c) strength of the gain grating.

9k, 2 IQZ,_Q = Gk,0 b

gunsat, k= £k <

C. Numerical Implementation
where

The DFB fiber structure was divided into several sections, and
Ck in each section the coupled-mode equations were solved using a
Psa ¢ — "W P o Ps p s s .
ok <(a” + 9p)rn Ly + 2 % (a5 +9.) transfer matrix approach [20]. Thus, we calculated the complex
amplitudes of mode: at the right end of sectiopfrom the field

=1 PO an, o5 :2P(* -Psa.‘ i
a + Piot/P. t, k b / bk of the sections to the left

No, No,
R D I e N e el
m m Brn, q " Brn, g—1 " Brn, 0
gky_o_and gi, 2 are _called thanean gainand g_ain grating co- =7 - lpe-1la=2pa=2,4-3 1,0 [Am’o} (6a)
efficients, respectively. In (4), mediudconsists of a fraction m, 0
&, of the total number of erbium ions, that have their sponta-
neous emission lifetime quenched by a factogpf P, is the with
pump powerr,, is the ratio between the pump and signal wave- ro4dos (g% + 7
. . . . 1 m M2 .92 +J’i)3nl
lengths,F;;, is the spontaneous emission power per unit length 7297+ = i
before the onset of UV quenching, and g, a5, anda,, are the —(g2 + JK)Sms T — (_inilsm A
S|gna_l and pump gain fat full inversion and signal and pump ab- P = cosh Az, 5 = SN ym A Zg
sorption at zero inversion, respectively. Furthermdég, is the TYm
total number of modes, and the superscrigtdenotes complex . :\/d,%l — (UK + g3)(Jr* + g2). (6b)

conjugation.

The total gain parame_ters usedin t_he (_:oupled-mode e_quati%e'Azq is the length of sectiog, and in expressions (6b),
(3) are found by summing the contributions from the different ,,,antities are to be evaluated in the center of segiméftte

gain media [S]; thus section numbers are assigned in increasing order from left to
N right. In order to get accurate results, the length of each section
Gon = i: Gk, 2 r=0,1. ) Az, needs to be short enough to resolve the spatial variation
— of the modes and in the structure, i.e., in a multipl& struc-
ture Az, needs to be considerably shorter than the shortest beat
Here, N, is the total number of gain media. length between the individual subgratings. The lasing condition
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TABLE |
LASER PARAMETERS USED IN THE CALCULATIONS
(SYMBOLS ARE DEFINED IN THE TEXT)

Parameter Value
9s 15.9 dB/m
as 11.7 dB/m
9 3.0 dB/m
ap 8.9 dB/m
ag 0.24 dB/m
Py 4.1 mW/m
P, 140 mW
Ngm 2
L=1-& 0.38
[Cla C'-’] [l’ 26]
Twl 1480,/1550=0.955

is fulfilled when the transmissivity of the structure is infinite for
all modes [20], or

(T )2,2 =0, m=1...Np,. (7)

Here IV, is the total number of segments. It can be shown that
this condition is mathematically identical to the round-trip corfFig- 2. Spatial distribution of gain parameters and the power of the two modes
dition used in [3] of a dualA DFB fiber laser withAr = 10 GHz, A¢ = =, andl = 10 cm.

: sl . . . The stopbands of the two subgratings with coupling coefficients of 73.5

Equation (7) is solved by iteration, where the detuning and the* andx. = 160 m~* support one mode each, plotted with solid and dashed
left output power of the modes are varied. The gain parametéyges, respectively. Top: Local power @f,,, with B., plotted with a dotted
. . rve. Middle:g, and|gz|. Bottom: 2 F,,.

go andg are found as a function of the local signal and pumfp'
fields from (4) to (5). The pump absorptieg...,, and, thus, the

local pump powet?, is found fromgo through the following spatial distribution ofyy, g2, and the power of the laser modes.

Not only the amplitude, but also the phasegefis important.

relation [3]:
3] In order to understand the significance of the phasg,pfve
Gpump = Gp +aog — I * ap (90 + as)- (8) define for moden
gs +as A
Frn = g2 BZZ - (9)

V. SIMULATION RESULTS It can be deduced from (3) that if the phase of this feedback

Using the algorithm outlined in Section llI, we investigategarameter/ F},, averages aroungtr, the coupling due to the
the laser performance as a function of a range of different vagiain grating provides destructive interference for megdeOn
ables, including coupling strengths, Bragg frequency sepathe other hand, i’ F,, fluctuates quickly, the reflections from
tion, grating phase shift, erbium concentration, degree of Wifferent sections of the gain grating will not be in phase and the
saturation during fabrication of gratings, phase relationship bgain grating will not affect the power of the mode.
tween the subgratings, and laser length. Although the numericaln Figs. 2 and 3, we have plotted the power distribution of
model can handle an arbitrary number of subgratings, we hate lasing modeg,, g2, and /F,, for two lasers with dual\
for simplicity restricted the analysis in this work to duastruc-  gratings. We have chosen a relatively small separation between
tures. In all calculations, we assumed a laser grating structtie Bragg frequencies déf = 10 GHz, so that the beat lengths
that wasl ~10-cm long. Except when considering saturatioare long enough to be clearly seen in the plots. The fundamental
effects, each subgratirigalso had a uniform coupling strengthmodes of singlé. DFB lasers have a close to exponential growth
r;, and had a phase shiftin the center 0. Exceptwhenthe ef- of the fields on both sides of the phase shift. In the top graph of
fect of varying this phase shift was investigated, its valuemas both Figs. 2 and 3, we see that these profiles are perturbed by
corresponding to a quarter of the Bragg wavelength of the suipples. This will generally be the case for multiplegratings,
grating. All other laser parameters common for the simulatiohgcause the local degree of coupling between the forward and
are given in Table |, where the gain parameters are taken fr@qckward traveling waves is dependent on the absolute value
one of the DFB fiber lasers characterized in [5]. That laser hafl the total complex coupling function, and the phase rela-
alength of onlyl = 4 cm, but we have chosen longer structureson between the grating and the standing wave pattern of the
in our examples since the photo-sensitivity has to be shared htxde, both of which are varying in a periodic manner. The re-
tween two subgratings in a dudlstructure. sulting ripples in gain and mode field power distribution will

o o have an increase in frequency and decrease in amplitude with
A. Spatial Field and Gain Distributions larger Bragg frequency separation between the subgratings.

In order to understand the mechanism behind multimodal op-In Fig. 2, the DFB laser structure hag = 73.5 m™1, ko =

eration of DFB fiber lasers, we have found it useful to plot th#60 m—!, A¢ = ¢» — ¢ = «, andl = 10 cm. The structure
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are only able to saturate the gain around the phase shift of the
laser, and enough gain is left for two higher order modes to
reach threshold. Because of the symmetry in the duBIFB
structure, also the frequencies of the higher order modes are
detuned in a symmetrical manner from the two subgrating
Bragg frequencies, and thus also the two higher order modes
have identical power distribution. Although the total stored
energy of the higher order modes is smaller, and they have a
higher threshold, their output power is larger than that of the
fundamental modes, and their frequencies are located between
the two grating stopbands. In most applications, such higher
order modes are not wanted because they are less stable and
more susceptible to back reflections into the cavity. Because of
the symmetry of the frequencies and amplitudes of the modes,
g2 now has zeros. One of the zeros is at the phase shift, which
is as expected sinc&¢ = .

N

-1 \\\I ~

S o B. Laser Operation as a Function of Coupling Strengths,
5 4 -3 -2 -1 0 1 2 3 4 5 Laser Length, and\¢
z(cm) Prior to the fabrication of DFB fiber laser, it is useful to know
Fig. 3. Same as Fig. 2, buthefe = s = 150 m-". The two fundamental whaF grating strength is needed to reach Ia;ing threshold and
modes (solid curve) and higher order modes (dashed curve) are plotted. SR@XIMuUmM output power [21]. In many applications also, the
L F,, for one of the fundamental modes and higher order modes are plotted; fhreshold of higher order modes is of interest. In Fig. 4, the total
the other fundamental mode and higher order mode, the sign is opposite. |aft output power of the fundamental and higher order modes
of dual A DFB lasers are plotted as functions of the integrated
is lasing in two fundamental modes, operating in the stopbaodupling coefficients;! = xsl for different structure lengths
of the subgratings that will be denoted grating 1 and grating &nd the two extreme values &f¢, A¢ = 0 andA¢p = x. The
respectively. Since grating 2 is much stronger than grating dower is plotted for lasers withr» = 10 GHz, and with lengths
the corresponding laser mode 2 has a lower lasing thresh@dual tohy,ea: /2 = 1/lpear/2 = (K2 — K1) /7 = 9,9.5,10, and
However, as discussed in [21], 4f of a DFB fiber laser be- 10.5 half-beat lengths of the grating amplitude modulation func-
comes large enough, the maximum power of its fundamentadn. For comparison, the power of singldasers with identical
mode around the phase shift will be clamped due to the intrinsgrating lengths are shown in the same plots.
unbleachable losseg of the fiber. Once the maximum power As mentioned in Section Il, the reflectivity of the grating will
of the mode is clamped, the output power will decrease whehange withA¢ if hy,c.. /2 Is Not an integer, leading toa¢-de-
the coupling strength is increased as the mode becomes mugadent threshold whehy,...,» = 10 & 0.5 in Fig. 4. For
confined to the area around the phase shift. Thus, more gaikis,;» = 9.5, the reflectivity is larger for the casa¢ = =
left for other modes, and mode 1 has, in fact, larger output powtban for A¢ = 0, resulting in a lower threshold in the former
than mode 2. As predicted by (4), the profilesggfand espe- than for the latter and singlé case. As can be deduced from
cially g- do not depend only on the total average powgr, but  Fig. 1(a), this will generally be the case when the integral part
also on the standing wave phadarof the fields. For instance, of A, /2 is an odd number. However, when the integral part
the small values of, aroundz ~ +1 cm indicate that”. is  0f /i,cai/2 iS @an even number, the casep = 0 has a higher re-
close to zero in these areas, and the local maxima and miniftetivity, and thus has the lowest threshold. Witgg, /. is an
of go do not correspond to the local minima and maxima, réateger, the reflectivities of the two dualcases and the single
spectively, of the sum of the power of the modes. In regiorsse are similar at the lasing wavelength, and no significant dif-
where mode 1 has much larger power than modéi2,~ +x, ference in threshold; has been found. For larger values-gf
whereas the phase 6f is oscillating rapidly in regions where where the output power drops, the cas¢ = 0 has the highest
mode 2 is larger, and vice versa foF5. Thus, the gain grating power regardless of the length of the structure. As mentioned in
locally suppresses the dominating mode. If the subgratings Hagbsection IV-A, the internal loss determines the output power
approximately the same coupling coefficients, the fundamentalthis regime. For the cas®¢ = =, the coupling coefficient in
modes would have approximately the same spatial field distritilre middle of the laser is zero. Thus, the central peak where the
tion, and if one mode grew much larger than the other, it woulghin medium is bleached the most is broader than in the single
experience negative feedback in the whole laser structure. Thiis;ase, and the fundamental mode will, therefore, experience
the gain gratings always try to equalize the powers of the mod&sger loss. The casA¢ = 0, on the other hand, has a max-
In Fig. 3,k1 = k2 = 150 m™*, A¢ = #, andl = 10 cm. imum of the coupling coefficient at the phase shift, and thus has
Since the coupling coefficients of the two subgratings are equtile largest output power.
the spatial distribution of their corresponding fundamental For some applications, back reflection into the cavity is not
modes are also identical. Again, since the coupling coefficieragoidable, but the detrimental effect on laser performance can
of the two subgratings are rather large, the fundamental modesreduced if the reflectivity of the cavity mirrors are increased
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?_‘, Fig. 5. lllustration of subcavities formed for higher order modes around each
a 7 phase shift of duak DFB structures. Top: The subcavities at the grating ends
5 are symmetric, corresponding fo¢ = 0 and odd integehy,cat 2 OF A = m
O and even integel,...,2. Bottom: The subcavities at the grating ends are not
£ T — symmetric, leading to higher mirror losses.
@ “ Single A
= Grating as illustrated in Fig. 5. If all subcavities are symmetric, as will be
% -207 the case fo\p = 0, Ayenr/2 = 9 ANAAG = T, hyyears2 = 10,
a the thresholds for these modes are significantly lowered com-
3—40 I pared to the singlé\ case. However, if the outermost phase
g shifts of the dual\ structure are closer to the edge of the grating,
A—60 e — the cavity at the ends of the fiber will not be balanced. Such
QED Or -z :'”/’ e unbalance causes an increase of cavity loss and, thus, higher
z / threshold for higher order mode operation. Keepihg and
g -201 I Single A 1 Pheat/2 = 9 constant, thes; I-threshold for higher order modes
2 Grating will decrease slightly with increasing cavity length, as it does
5 -40+ A0=0 1 for the singleA cases plotted in Fig. 4. Although the lowest
% A | threshold we simulated for the dudl lasers was as high as
o d=m e . . . .

-60 s k1l = 14, it is important to bear in mind that this threshold

5 10 15/ 20 25 is strongly dependent on the unbleachable losses, and could go
1 as low as<;! = 12 for larger values ofiy. If the center phase

Fig. 4. Calculated total left output power of the fundamental (solid curve) ar_?cr"ft 1S ”9t pptlmal, if there_ are phase errors in the gratings, or
higher order (dashed curve) modes of disaDFB fiber lasers witthr = 10 If the gain is higher, the higher order modes could be further
GHz and differentA¢ and! as functions of integrated coupling strengttl.  enhanced. In Fig. 4, also the higher order modes¥or= 50

The corresponding curves of single DFB lasers are also plotted. Top:= ik _

9.22 cm equal tohy,cat/2 = 9 half-beat lengths. Also shown is the higherGHZ are shown for t_he two casesas for hbeat/Q - {1‘)' As ex
order modes of structures withy = 50 GHz and the same= 9.22 cmand Pected, the separation betwesp = 0 andA¢ = = is smaller

hycar/2 = 45. Upper middle! = 9.73 cm andiiyca: /2 = 9.5. Lowermiddle:  than in the cas@\r = 10 GHz, hpear2 = 9, Which has the
— — ] — brd S — =4 .
1 = 10.24 cm andhy,ca 2 = 10. Bottom:! = 10.75 cm andhycat 2 = 10.5. same physical length.

[22]. Unfortunately, as discussed in Section IV-A, high valugs: Unbalanced Coupling Strengths

of x enable higher order modes to lase. The thresholds of thesén the previous section, we assumed that the coupling coef-
modes are, therefore, of interest, even though these threshdildents of the subgratings were equal. In practice, however, the
can be increased somewhat by removing the sharp outer edgfésctive coupling coefficients often will be different either pur-

of the grating through apodization [23]. By comparing the difposely, due to imperfections of the grating fabrication setup, or,
ferent curves of Fig. 4, it is evident that the onset of higher ordas discussed in Section IV-E, due to saturation of the UV sen-
modes for the dual\ lasers is highly dependent ahg, es- sitivity of the fiber. At the top of Fig. 6, the powers of the two
pecially whenhy,.,; /o is an integer. Usually, the thresholds ofundamental modes of dudl DFB fiber lasers are plotted as
higher order mode operation are lower than in the sidgtase, functions ofx; for A¢p = 7 andA¢ = 0. There is a detuning
because the higher order modes with lowest threshold will opf A = 10 GHz between the subgratings, and the structure
erate between the stopbands of the subgratings, and, therefienggth ishy,c.; 2 = 9.5. k2 is kept constant aty = 72.5 m—!

their detuning will be smaller. However, higher order modes iind x, = 80 m™!, respectively. Whem; = k2, this corre-

the singleA case will see a bit higher gain, since the two fundaponds to the maxima of the output powers plotted in Fig. 4.
mental modes of a dudl structure saturate gain to a larger deMode 1 has the higher frequency of the modes, but for the output
gree than a single mode because of the gain gratings. The lagiogrer it does not matter which mode has the lowest frequency,
higher order modes of a dualstructure in the case dfi» = 10  since we have assumed that the gain is equal for the two modes.
GHz are close in frequency to the Bragg frequency of the corRer a fairly large range of values af arounds, the two fun-
pound grating. Thus, around each phase shift of theAlFB  damental modes are lasing with comparable output powers. In
structure there will be a DFB-like subcavity for these modethe same graph we have also plotted the power of the modes
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15 - — e '_ Mode 1 ' T guency, all the detuning values would shift sign because of the
% b~ - — - Mode 2 symmetry of the problem. For the cage) = 0, the modes
T D + Mode 1, No Gain Grating- | are detuned toward each other, whereas in the dase= r,
S /\-2 + Mode 2, No Gain Gr,-* _ | the modes are repelled from each other. This will be the case
9‘3 N Ap=0 _ L7 for all values ofAv, hy,eai /2, #1, @ndsky for a dualA structure
205 o= //~’ ] with a center phase shift value of and could be understood
g : _-" ] by extending the discussion of Section II. A fundamental lasing
. - condition is that the round-trip phase should be zero, which for
Or Agem a symmetric cavity means that each grating half needs to have a
< 1 - real reflectivity. For ar phase-shifted singlé DFB fiber laser,
(:‘5: of T 77 \A 0>~ - - ] this condition will be met at the Bragg frequency, when reflec-
§ ~ - _ 9= T~ tions from all parts of the grating mirrors will be added in phase.
< -1 Tt~ For a dualA DFB fiber laser, reflections from different parts of
g ol T~a ] the grating will not be added in phase because of the phase shifts
A= S ~o or chirp of the grating, and the two modes will be at frequencies
-3 : - where the imaginary contributions cancel each other. For a weak
% IEZT /A _fe/oim grating or largeAr, these two laser frequencies will be close to
= the Bragg frequency of the subgratings. However, for stronger
S —7om R gratings and smalleAr, the cancellation will not be exact at
Y 5_ . \ - : - ] the subgrating Bragg frequencies because of the quasiexponen-
3 - - _- tial decline of the modal power with increasing distance from
g _ /K’=\70 m! the phase shift. This has to be compensated by a detuning of the
0~ : 2 modes, whose sign dependsAm, i.e., the location of the sign
50 100 150 200

shift in the beat pattern.
We also investigated the effect of varyirg for higher and

Fig. 6. Calculated left output power and detuning of the laser modes of ddQV"ef values ofx,, and an example is shown in the lower part

A DFB fiber lasers as a function af; . The frequency of mode 1 and modeOf Fig. 6 fOr hj,ea /2 = 9 andA¢ = 7. The maximum output
Eezgee icf:_tgtla Stlgcl))rb;rll(é ;fcﬂ::t%l:gratingi;fvgmcogﬁgzg Coefficiegtgnt_irg% . power of the laser in this case isa = ~x; = 79.1 m~L.
vely. ulatl v = z beat/2 — J.9. . . . 1
Power of modess, = 725 m-t andA¢ — 7, andr, = 80 m-* and When increasing to 90 - , the slopeg of the_ curves become
A¢ = 0, respectively. Fon® = =, also the case with the gain gratings ignoredower aroundss = k1, but this decrease in fabrication tolerance
is included. Middle: Detuning of the modes in the top plot. Bottom: Power gfomes at the expense of lower output power. For values; of
modes withx, as a parametefN¢ = 7 andhy,car 2 = 9. 1
lower than 79.1 m*, the output power also decreases but, at the
same time, the power dependence of the modes;oaround
Ko & K1 INCreases, because the fundamental modes are closer
when the gain gratings are ignored by settiig= 0 in the to the lasing threshold. We have also investigated the effect of

gain model. In this case, the two modes cannot coexist, unlégreasing or decreasing the gain parameters, and found that an

the difference in coupling coefficient between the two subgrdficrease in gain increases both the robustness of the dual mode

ings is very large and we have global spatial hole burning of ti@sing and the output power, but in fiber fabrication higher gain

type shown in Fig. 2. Thus, the gain gratings enable multipféten comes at the cost of lower photo-sensitivity and/GrtEr

fundamental modes in a DFB fiber laser. For different values efustering.

hpeat 2, keepingrz at the overall power maximum, the plots

are similar around; = r2, but gengrally the slopes are smallep, Dependence on the Value of the Center Phase Shift

in the caseA¢ = = thanA¢ = 0, since the latter has a larger

output power for higher coupling coefficients, as discussed inlf the discrete center phase shift of an ordinary singleFB

Section IV-B. For most grating fabrication setups, it is probablyjber laser deviates from the optimal valuemgtthe frequency of

also easier to fabricate good gratings willp = =, so that is the fundamental mode will gradually be moved away from the

perhaps the preferred choiceAf for most applications. Note Bragg center frequency. Also the fundamental mode frequencies

that for A¢ = = at the top of Fig. 6, both modes are lasing foof a multiple A laser will move, but the individual modes will

all values ofk; above the threshold of Mode 1. This will alsobe affected differently. In the dual case with equal subgrating

be the case for many values/f..;,» whenA¢ = 0, although strength, the detuning of the two modes fromwill no longer

itis not the case fohy,..;/» = 9.5. The difference between thehave the same absolute value. This asymmetry in detuning leads

extreme cases a@k¢ decreases with increasing frequency sep& an asymmetry in the mirror reflectivity, because the real, con-

ration, since the amplitude and period of the ripples in the spatstuctively interfering, contributions to the reflectivity for the

power distributions become smaller. two modes will come from different regions of the amplitude
The middle graph in Fig. 6 shows the detuning of the modesodulated grating mirrors. In Fig. 7, this effect has been illus-

plotted in the top graph. The detuning is referenced relative trated by plotting the output power of various dialasers as a

the closest Bragg frequency of the subgratings. Mode 1 still hamction of the center phase-shift value. We have assumed that

the highest frequency of the two modes; if it had the lowest fréhe deviation from the optimal phase-shift value is the same for

€, (m™)
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note that at quite high, but obtainable, values of the coupling co-
z 1 efficient and rather low frequency separations, the DFB struc-
Eos ture will never cease to lase with at least one mode, regardless
’g 0.6 of the value of the phase shift, as shown by Curve 4 in Fig. 7.
o Since a change in the value of the phase shift leads to a change
304 ?\ 1 of the power difference between the modes, it should be possible
5 N to equalize the power of the two modes by tuning the phase
c02 4\, shift. This is exemplified in the lower part of Fig. 7, where the
0 : : : response of the modal output powers to the tuning of the phase
1 1.2 Ph;i shift (:{fj/n) 1.8 2 shift for a dualA structure v_vithm =79.1 m_—l, Kz = 85 m~t,
s 1} ZEEEN ' " Mode 1 | Ay = 10 GHz, andA¢ = « is plotted. In spite of the difference
= / S — - Mode 2 in the subgrating coupling coefficients, the output powers of the
‘a'-; 08 // -~ ] two modes are equalized at a phase-shift value ofdra8ians.
g 0.6 J
% 0.4 I E. Errors in Chirp and Grating Amplitude Modulation Due
=W // to UV Saturation
© 0 : ; ; : : : Except for variations in the value of the center phase shift, we
0 0.5 1 125 15 2

have so far assumed that the gratings are perfect. However, in a
typical grating writing setup, the quality of the grating could be
Fig. 7. Left output power of all modes for various duaDFB fiber lasers as “.mlted by factors.such as u.mntended qu_adratlc and “n.ear chirp,
a function of center phase shift. Mode 1 (solid curve) has higher frequency tHifite UV beam size, and, finally, saturation of the UV-induced
mode 2 (dashed curve), ahe= 9.22 cm corresponding to an odd integer valuerefractive index change of the fiber. Quadratic and linear chirp
Of hrcac/2 for all structures. 1Av = 10 GHz, Ag = m, k1 = x> = 79-1 gy affect the quality of a multipla DFB fiber laser, but can in

m1. 2:Av = 10 GHz,A¢ = 0,k; = k2 = 80.4 m~1. 3: Av = 90 GHz, . X R .
Ad =7 k1 = ky = 80.7mM-1. 4 Av = 10 GHz,A¢ = =, r, = x, = heory be measured and corrected for during fabrication. Since
110 m=*. Bottom:Av = 10 GHz,A¢ = 7, k1 =85 m~1, x, = 79.1m~'.  the UV beam size is finite in any setup, the spatial resolution is
limited, and it may, therefore, be difficult to write several super-
imposed Bragg gratings with large frequency separation in one

both subgratings in the DFB structures. Both subgratings of tﬁ'}% ﬂ'ile)IZC:lcnéanowever, the problem can be eliminated by using

structures plotted in the top plot of Fig. 7 have equal strength,For a specified subgrating strength, the maximum absolute

and the curves are, therefore, antisymmetric around the center . . . oo
. value of the intended total multipla coupling function in-
phase-shift value of.

- . creases with the number of subgratings. Thus, saturation of the
For A¢ = =, the mode lasing in the stopband with the lowe J v

: _%V-induced refractive index change of the fiber is more likely
frequency will move further away from the closest subgratln[% cause problems in multiplé gratings than in singlé grat-

Bragg frequency when the value of the phase shift gets lar ﬁés. Such saturation generally limits the maximum achievable

"c:hant;]r » and, thﬂs’ thf %felctl\iel f|nﬁ§shef of thehcaV|tyh<_jf(tecr(|aas%§ating strength, but in the multiple case it also leads to peri-

for © I((:jasecl = 0 rtn W Ifh orap a‘?‘(;s : vda ue_l dic errors in the absolute value ®fand, more seriously, peri-
ot yields maximum output power, the power of e Mode Wi ;. chirp. In order to evaluate these effects, we chose an expo-
then decrease with increasing phase shift. However, for h|gmeer

: - A ntial response of the refractive index change as a function of
coupling coefficients, the output power will initially increase fo'ihe UV fluence:
reasons discussed in Section IV-B. The other mode, however, '

will initially get closer to its Bragg frequency and its output

Phase shift (rad/r)

power will thus increase for lower coupling coefficients and de- Anjoe(2) = Angy [1 —exp <_M>}
crease for higher coupling coefficients. When the phase shift is Afsa
around1.23x for the case:; = ko = 79.1 m—1, the high-fre- 2 (1 _ e—a(Z)) . (10)

quency mode is lasing at the subgrating Bragg frequency, but

continues to gain power as the power of the other mode de-

creases, and it ceases to lase only for a phase-shift value arod&te,Anunsat () is the intended local index change assuming a
1.77r with a negative detuning 6f1.93 GHz, not far from the linear response to the UV fluencAps,; is the saturation level
edge of the stopband. Fax¢ = 0, we see roughly the sameof the index change, antin,.. is the actual local index change.
trends with opposite signs for the two modes. Again, in this cakiethe following, it is assumed that the total fluence averaged
the curves are slightly steeper than in the cAge= 7. When over a period of the grating is constant along the DFB structure
the frequency separation between the two modes is larger, it is
expected that the modes respond to changes in the phase shiftin
a more uniform manner. However, the power difference between
the two modes in the case &f» = 90 GHz is still considerable,

with a maximum power difference of 0.15 mW, or about 30%lere,«o > «; is constant, whereas, (=) is proportional to the
relative to the mode with the highest power. It is interesting iatended local amplitude of the complex coupling functign

a(z) = an + a1 (2) cos (28z + Po(2))) . (11)
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Fig. 8. Saturation of the UV-induced refractive index change in a dual o 2
grating structure. The intended (dotted curve) and actual (solid curva):.of 4 -2
and |«| are shown in the top and middle graph, respectively. The saturation 500 1000 1 1500 2000

level isk... = Ang.,, = 20. The bottom graph shows the resulting variation Keat (m>)

in detuning,6corx -
Fig. 9. Left output power and detuning of modes as a function of saturation
level for a dualA laser where both subgratings have an unsaturated coupling
strength of 130 m* over alengthh = 9.22 cm. Both the cases with and without

e ite ; chirp induced by UV saturation are plotted, but the detuning for the unchirped
and CI)O(Z) is its intended phase. By assuming that and case is omitted. TopArv = 50 GHz, A® = #. Middle: Av = 10 GHz,

the derivative of®, are slowly varying, we can calculate theaq = . Bottom: Av = 10 GHz, A® = 0.
zeroth- and second-order Fourier componentAafy,. from
(10) and (11). The zeroth-prdgr Fourier component correspond?n Fig. 9, we have plotted the power and detuning of the two
to the mean local refractive index, whereas the second-order . 1 :

. . odes of a duak DFB with kynsat = 130 m~+ as a function of
Fourier component corresponds to the local grating strengm.

Performing these Fourier integrals leads to the foIIOWinsaturanon levek,,; for various laser structures, with the modi-

expressions for the additional detunifig,, and absolute value ]%d coupling functions given in equation (14). In addition, we
) L have plotted the power of the modes for the same structures, but
of the complex coupling coefficient

with no chirp induced by saturation of the UV-induced refrac-
tive index change, of..,. = 0. The figure shows that the sat-
Scorr = 2nkisare” " [1 — Io(au)] (12)  uration seriously affects the output power of the lasers. Firstly,
|] = 2Ksare™ L1 (). (13) the deviation from the correct values efleads to a lower re-
flectivity in the two stopbands of the gratings. In addition, there
Here, we have definefla; = Funsat /1, Whererysa: is the Wil be several weaker stopbands in the reflection spectrum of

coupling coefficient expected from a linear response, and the fée grating, since the deviation from the correct profile repre-
lationship between refractive index modulation and the coupli§nts an introduction of higher order harmonics in the amplitude
coefficient provided by [11] has been usdg«v, ) is the mod- modulation function. However, the two fundamental modes are
ified Bessel function of the first kind and ordgrandn is the affected in a symmetrical manner, and in the absence of any
refractive index. The effect of saturation of the UV induced re&xtra chirp, their powers remain equal to each other. On the
fractive index shift oM\ ny., || andé... is illustrated in Fig. 8. other hand, the introduction 6., leads to a split of the output
The average shit\n,:(1 — e=**) is ignored in equation (12), Power levels and breaks the symmetry of the detuning of the
and, thusg$.... = 0 whena; = 0 andé.,, < 0, otherwise. modes. Sincé..., decreases with increasirg|, the low-fre-
The reason that we get a negative shif6f. for larger values quency mode will be less detuned from the grating in regions
of runsat, IS that there is larger saturation for higher values fith large values ofx| than in regions whergs| is smaller,
Anioc. Thus, at average there will be more saturation in regioMdile the opposite will be true for the high-frequency mode.
of the fiber with larger index modulation, even though the meakherefore, the effective mirror reflectivity will be larger for the
UV fluence, quantified byx, is constant along the fiber axis.low-frequency mode than the high-frequency mode. Again, the

From (12) and (13), the coupling function corrected for UV sagffect seems to be larger fax¢ = 0 and for smallerAr, in
uration effects becomes the latter case becauég,, becomes larger relative to the total

detuningé,,, between the grating and the laser modes.

K = |k|e? (PoEHPeom) where e = —2/ Seorr 7.
—L)2 V. CONCLUSION
(14)  We have analyzed multiple wavelength DFB fiber lasers
using a comprehensive numerical model. Such lasers consist of
In the integral of (14), it is, as before, assumed that the gratisgveral superimposed phase-shifted Bragg gratings, and modes
center is located at = 0. can lase in or at the edge of the stopbands of the individual
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gratings, sharing the same gain medium. We have studigae mode lasing. In addition, such saturation leads to periodic
the effect of variations of grating coupling strengths, phashirp in a structure with multiple superimposed Bragg gratings,
relationship between the superimposed gratings, structf@goring the mode with lowest frequency. However, if using a
length, gain parameters, grating Bragg frequency separatidfitser with sufficiently high photo-sensitivity and compensation
grating phase-shifts, and saturation level of the UV-inducddr any periodic chirp, saturation of the UV-induced refractive
refractive index variation, on the number of lasing modes airtdex does not need to be a problem. The periodic chirp can be
their respective powers and frequencies. compensated for by either using a spatially periodic UV fluence

We have found that several fundamental modes with sirduring grating writing, writing one of the gratings stronger than
ilar spatial field distribution can lase simultaneously with iderthe other one, or deviating the phase-shift value froradians.

tical polarization in the same gain medium, although the modes
have slightly different thresholds. The simultaneous lasing of
multiple modes is attributed to the dynamically induced gain
gratings, which cause destructive feedback for the modes wi
the highest power. Without this effect, the mode with lowe
threshold would clamp the gain to its threshold value, and two
or more modes would not coexist.

A structure with two superimposed Bragg gratings sharing [1]
the same gain medium can support two fundamental modes with
comparable output powers, even though the difference betweerp)
the coupling strengths of the two gratings is quite large. If the
two gratings are in anti-phase around the phase shift, we have
found that the difference in lasing powers usually is less sen-
sitive to changes in coupling strength than if the two superim-[3]
posed gratings are in phase. The location of the phase shift in
the former case also puts fewer demands on the spatial resolys;
tion of the grating writing process, since the phase shift would
be located at a minimum of the grating superstructure, and is
thus, probably the preferred choice in most applications. The
importance of the phase relationship between the two gratings
decreases with increasing frequency separation. We have al
found that an increase in the available gain leads to more stable
dual-mode operation, as well as higher output power. (7]

The thresholds for both the fundamental and higher orderg
modes are dependent on the phase relationship between the
superimposed gratings and the length of the structure relative
to the beat lengths between the superimposed gratings. For
structure with two superimposed gratings of equal strength,
the threshold for higher order mode operation is highestlO]
if the gratings are either in phase at the center phase-shift
position and an even number of half-beat-lengths long, or im1]
anti-phase at the center phase-shift position and an odd number
of half-beat-lengths long. [12

Deviation from the ideal phase-shift valueobetween the
two halves of the gratings leads to changes in the difference bé-3l
tween the output powers of the lasing modes. These changes
in the output powers are caused by detuning of the resonant fre-
quencies of the superimposed gratings. Even if the phase shift [ils4
correct, the resonances are detuned from the center frequenc e§
of their respective solitary Bragg gratings because their refleg4s]
tion spectra interact in the superimposed structure. For a dual
wavelength DFB fiber laser, where the modes initially do not
have equal output powers, it is in many cases possible to cons]
pensate for the imbalance by tuning the phase shift.

Saturation of the UV-induced refractive index change had”!
been identified as a possible limitation for the fabrication of
multiwvavelength DFB lasers. This saturation puts a limit on thd18l
maximum grating strength, and it could make it impossible to
obtain the relative large coupling coefficients needed for mul-
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Dynamic Analysis of Multiple Wavelength
DFB Fiber Lasers

Sigurd Weidemann Lgvseth and Dmitrii Yu Stepanov

Abstract—The behavior of multi- and single-wavelength
distributed feedback fiber lasers is simulated in a comprehensive
dynamic model. The evolution of the spatial distribution of gain,
saturation-induced gain gratings, and spontaneous emission is
taken into account. Stability and relative intensity noise (RIN)
of the different laser types and laser modes are compared, and
the effect of varying degree of pump RIN and quenching of
spontaneous emission lifetimes is analyzed.

Index Terms—Distributed feedback lasers, erbium, laser modes,
laser noise, laser stability, optical fiber Bragg gratings, optical fiber
lasers, optical hole burning,.

I. INTRODUCTION

ULTIPLE wavelength distributed feedback fiber lasers

(DFB-FL) [1], [2] are attractive for a range of appli-
cations in optical communications, including soliton and mi-
crowave generation. In [3] we performed a static analysis of
such lasers. However, probably more interesting is the dynamic
behavior of multi-wavelength DFB-FLs. The fluctuations of the
optical roundtrip path length due to fundamental thermal noise
[4] and environmental acoustic and thermal perturbations [5]
are thought to be dominating sources of frequency noise out-
side the relaxation oscillation peak [6] for a laser that is shielded
against optical feedback [7]. Thus, the frequency noise of mul-
tiple wavelength DFB-FLs will be close to that of single wave-
length lasers with similar gain and grating parameters, since
there will be large overlap between their modal field distribu-
tions. Using the same logic, we also note that there will be a high
degree of temporal correlation between the frequency noise of
the modes of a multiple wavelength DFB-FL. Thus, an optically
isolated multi-wavelength DFB-FL would provide a very stable
beat frequency.

Such a stable beat frequency would, however, be of little use
if the laser had excess intensity noise. As argued in [6], the fre-
quency noise has little effect on the intensity noise of the laser.
In this work, we will therefore analyze the dynamics of both
single-mode and multiple-wavelength DFB-FLs, ignoring the
frequency noise. Other dynamic models for DFB-FLs that have
been published [8]-[11] treat only the single-mode case and ig-
nore gain gratings, which is very important in order to under-
stand the operation of multiple wavelength lasers. References
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[10], [11] in addition ignore variations in the spatial distribution
of the laser, and the former also assumes low saturation, which
is clearly wrong in the case of the high-finesse DFB-FLs.

I1. NUMERICAL MODEL
A. Dynamic and Static-Coupled Mode Analysis

We have constructed a numerical model that calculates the
dynamic evolution of all the modes of a general, single-polar-
ization, multiple-wavelength DFB-FL. We describe the spatial
distribution of the different laser modes by slowly varying com-
plex amplitudes A, and B,, for the right and left propagating
mode number m, respectively. In this notation, the total local
field of the mode becomes

Epn(z, t) = Am(z, )ei@nt=B L B (5 )ei(omt+B2) (1)

Here, /3 is the average Bragg wavenumber of the gratings, which
will be used as a reference for the detuning, and w,,, is the an-
gular frequency of mode m.

In[12] and [13], a large-signal dynamic model for DFB semi-
conductor lasers was proposed. We use a similar time-dependent
coupled-mode [14] formulation with some notable alterations.

Firstly, in order to correctly account for the interaction be-
tween several superimposed gratings, a complex index-coupling
function & is defined

N, 3
p=3 R i EmBlatio

i=1

(2)

Here, ;, Kp, ; = n/A;, A;, and ¢; are the coupling strength,
the Bragg wavenumber, the period, and a generally z-dependent
phase term, respectively, of grating number %. IV, is the total
number of gratings. A laser with several superimposed Bragg
gratings with different Bragg wavelengths will be referred to as
multiple A DFB-FLs for the remainder of the paper.

Secondly, we have to add saturation induced gain gratings [3],
[15]-[17] to the formalism of [12] and [13], and we then get
the following dynamic coupled-mode equations [14] for mode
number m of the laser

dA, . * :
c")z = (dm - I"L1+n) Am. + (Jﬁ + .fiz) Bm + tf,m
aBm = sl .
—_0—3'— = (dm - _le) Bm + (Jh' " 92) Am =t ?b,m (33)
where
104, S aB,,
P, et e EE o
dm =go— Gp — j‘s‘m- (3b)
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Here C, is the group velocity of light in the fiber, &,, is the de-
tuning of the mode from the average Bragg wavenumber. 3, go
and g» are the mean gain and gain grating coefficients to be dis-
cussed in Section 1I-B, ag is the unbleachable loss of the fiber,
and the superscript “*” denotes complex conjugation. 4y, ,,, and
iy, m represent the spontaneous emission into the forward and
backward traveling mode, respectively, which will be discussed
in Section [I-C.

B. Gain Model

We have assumed the same nature of the gain medium as in
our previous work [3]. Following the ideas of [18], the erbium
ions are divided into different sub-media to allow for UV-in-
duced lifetime quenching. Starting with the two-level rate equa-
tions, the time evolution of the gain medium consisting of a frac-
tion &, of the total number of ions and having a quenching of
the spontaneous emission lifetime by a factor ¢ may be written

9 265

;ﬂgloc,k = T),,], (ys + Ct"a)

. |:(ap7'wle + a.sPs) - (M T (}.5)
&

= (R‘;ah, k S g Rs)] (43)

»Psat,.‘.: = ((arp +_(]p)7'wlpp + % I::sp)/ (0,,.; +Gq)

1\’"‘ R
Po=)" |Anl* +|Bul + 2R»e(AmB;e"2”j”’)-(4h)

m

Here, gioc, & is the local amplitude gain of medium &, 7 is the un-
quenched spontaneous emission lifetime, P}, is the spontaneous
emission power per unit length before the onset of quenching,
and g, gp, G5, and @y, are the signal and pump gain at full in-
version and signal and pump absorption at zero inversion, re-
spectively. P, and P, are the local signal and pump power, re-
spectively. Furthermore, 7y is the ratio between the pump and
signal wavelengths and {V,, is the total number of modes. Al-
though we can set the quenching factor arbitrarily large in this
formalism, we cannot model saturable absorber states induced
by clustering properly, since such clusters have to be modeled
as systems with three or more excitation levels [19].

From (4a), we find the following coupled equations for gan, %,
the 2nth-order spatial Fourier components of the medium & gain
with respect to /3:

ad . i .
— go,x =Fo, & — [FY g—2,1 + Fa 1(go, x + &xas)F1g2. 1]
ot

(5a)

=— (I gan—2, 1 + F2 k9201 + F1G2n42, 1)

(5b)
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22 —
Qoc, k = Z gzn‘k(‘ﬂznﬂ
= 261(9s + )
TPy
2(gs +as)

3 :;_MP(
AR,
_ 29 +a,)
P

Nom
Prot = Z lAm|'Z + |Bm!2

™
Nuw

AP(‘. = Z ArnB:;l-

m

FO, k (ap?'wle + asPtot.)

FQ.k (-Psat,k + Ptot)

(5¢)

By setting dgioc, » /0t = 0, (4a) reduces to the steady-state so-
lution known from previous work [16], [20], [21]

Gunsat,k

oc, ss, k = 6
Gloc, ss, k B (6a)
CL,'J"“.P,
gmm¢=&(§;Li—%). (6b)
sat, k

The Fourier components at steady-state gss, 2,,,  can be found
by performing Fourier integrals on gioc, ss, x given in (6a) [16],
[17],[22]. Alternatively, we can set the derivative in (5b) to zero,
and find a simple expression for the higher order Fourier com-
ponents

90, ss, k = Qunsat, k / V a? — |b|2 (7a)
N a® — b2 —a
92,55,k =92 55,k = 90,55,k + (7b)
* 92,5,k \ "
92n,ss, k n>0 =Y _2n,ss,k = Y0,s5,k (C]():,: 5 ) (70)
with
a = 1+Plot/-Psat,ks b:zpc/Rsat_.k- (7(!)

The total gain is found by summing the contributions from the
different gain media [18], thus

;
Ngm

92n = E J2n, k-
k=1

Ngm

o = Z Gloc, k> (8)
k=1

Here, Ng,, is the total number of gain media.

Gain diffusion, i.e., nonradiative migration of electronic exci-
tation of Er®*, is ignored in this work. We do not think gain dif-
fusion is important for the Er** concentrations typically found
in DFB-FLs. If diffusion played a role, the higher harmonics of
the gain function would attain a smaller value [23]. We have also
ignored shot noise of I, I, and P,y in (5). This is an approx-
imation that yielded good agreement with experiments in [6].
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C. Spontaneous Emission

The spontaneous emission is essential in the model because
it provides the seeding for the laser. Since we have assumed no
optical external feedback into the laser, spontaneous emission is
also the most important source of relative intensity noise (RIN),
possibly in addition to pump noise, but it is thought to play a
small role for the frequency noise of DFB-FLs [6]. The sponta-
neous emission is a white noise process both in time and space.
However, in order to integrate (3) numerically, iy, ,, and 2y p,
have to be kept constant in finite spatial and temporal steps. A
generalization of the discrete time step formalism of [24] yields

. [ R .
taym = 2IAIAZ (xs, e = J-’rs,'a‘) (9)

where @51 and x, o are Gaussian variables with (z2 )+
($§,2> = 1 that are independent for any integration time slot of
length At, mode m, and section of length Az in the forward
(s = f) and backward (s = b) case. R is the spontaneous
emission energy injected into the modes per length. Note that
the spectral power density of i, as given in (9) approaches
white noise for At — 0, but the power spectrum has its first
zero at a frequency 1/A¢, and thus 1/A¢ should be much larger
than the relaxation oscillation frequency [24].

The spontaneous emission power is proportional to the inver-
sion. It follows from general laser theory that, when the gain
medium is fully inverted, the spontaneous photon emission rate
into a mode is equal to the power gain. Thus

g{)+as

.qS 5

R =2hwgsI = 2hwy, (10)
where % is Planck’s constant divided by 27 and I is the inver-
sion.

D. Numerical Implementation

The DFB fiber structure was divided into several sections, and
in each section the coupled-mode equations were solved using a
transfer matrix approach [25] modified to include spontancous
emission [12]. Thus, we calculated the complex amplitudes of
mode m at the right end of section ¢ by multiplying the fields at
the left end of the section with the transfer matrix and perturb
the result with the spontaneous emission

A q Al A -1 -'-f m

m,q | _ Pe.q ™, q +Az fom,q 11a

o] =men [ ean S ]

with

Tt a1 — o= (=1, /2) Az [ Tm + f}‘-’tsnh (95 +j"“3)'sm:|
" —(92 + ]ﬁ*)Sm_, Tm — fmsm

Tm = coshynAzy,  fm =dp — —,uj! ;”;’
~_sinhy, Az,

Sm = T

T =\ F2 = (5 + g3) A" + 92). (11b)

In (10) and (11b), all quantities are to be evaluated in the center
of section g, except Ay, 4, By, 4, and ,ui which are evaluated

m?

at the end of the section. The section numbers g are assigned in

increasing order from left to right. Expression (11a) can be cas-
caded, so that fields at the right end of section g can be found
from the amplitudes A,, o and B,, o to the left of the struc-
ture and the random spontaneous emission in sections 1 ---gq.
In order to get accurate results, the length of each section Az,
needs to be short enough to resolve the spatial variation of the
modes and  in the structure, i.e., in a multiple A structure Az,
needs to be considerably shorter than the shortest spatial beat
period between the individual subgratings.

The dynamic lasing condition is fulfilled when we have infi-
nite transmission through the structure for all lasing modes, or

By, o0, =0; H=lNa (0D

Am,0=0, By, 0#0

Here, N is the number of segments, and NN, is the number
of modes. Equation (12) is valid also when the system is out
of equlibrium because the time derivatives 4}, and p;,, are in-
cluded in the transfer matrix formalism.

The set of equations (12) is simultaneously solved by iteration
in each time step, where the detuning é,,, and left output power
B, o of all modes m are optimized. The gain parameters are
taken from the previous time step, and 4%, and y;;, are estimated
from the local fields of the previous time step and current trial
solution

m,q—.l,trial(t) = Am,q—l(t — At)
A-m, q—1, Lrial(t)CyAt

an: q—1, Lrial(t) - Bm,qfl(t — At)
Bm, q—1, trial(t)GQAt

A
ik )=

Hm, o(E) = (13)

The pump absorption @y, and thus local pump power P, is
found from gg through the following relation [21]:

gp +ap
gs +as

Qpump = p +ap — (QO * as)- (14)

When a solution is found, the gain is updated through the
coupled equations (5). Note that, in principle, we need to keep
track of an infinite number of Fourier components in order to
calculate the time-dependent gg and go. In practice, however, the
higher order Fourier components are small, and inspired by the
steady-state solution (7c), we terminate the sequence of Fourier
components gz, x With

G200, k(E + AL)
= OGNz k(E+ AL /g2 —a, x(t + AL).  (15)

We found no significant change in the simulation results if we
increased V), above 3.

III. SIMULATION RESULTS

Using the algorithm outlined in the previous section, the dy-
namic evolution starting from any physical initial condition of
a range of single polarization grating fiber lasers could be cal-
culated. Except for the simulations in Section III-C, where &,
and ¢, are varied, the fiber and laser parameters summarized
in Table I have been used for all calculations in this work. Ex-
cept for 7, they are identical to the ones used in [3] and are
taken from one of the DFB-FLs characterized in [18]. Fig. 1
shows the simulated startup of a dual A DFB-FL, where the two
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TABLE |
LASER PARAMETERS USED IN THE CALCULATIONS. EXCEPT THE EFFECTIVE
REFRACTIVE INDEX n.rr, ALL SYMBOLS ARE DEFINED IN THE TEXT

Parameter Value
9s 15.9 dB/m
as 11.7 dB/m
9p 3.0dB/m
ap 8.9 dB/m
ag 0.24 dB/m
Pap 4.1 mW/m
Py, 140 mW
Nym 2
L=1-§ 0.38
(G, &l (1, 26]
Twl 1480/1550=0.955
T 10 ms
Theff 1.465

Power (dBm)

0.14 0.16 0.18 0.2

Time (ms)

0.1 0.12

Fig. 1. Simulation of startup of a dual A DFB-FL with k; = k2 = 79.1
m~!, a structure length of I = 9.21 cm, and a center phase shift of 7. The
two superimposed subgratings have a Bragg frequency separation of Ar = 10
GHe, and the relative phase between the subgratings at the center phase shift [3]
is Ap = 7.

sub-gratings have equal grating strength. The pump is switched
on with a constant pump power of 140 mW at the time ¢t = 0,
and we assume zero inversion of the gain medium for ¢ < 0. The
threshold for both modes are reached after roughly 126 us, and
both modes are self-pulsing with an amplitude that is damped
with a time constant of roughly 20 ps. Since the spontaneous
emission processes of the two modes are not correlated, the os-
cillations of the two modes are not in phase. After the intensity
oscillations have relaxed, the time-averaged output power of the
two modes are equal to the powers calculated in the static model
of [3].

A. RIN Spectra of Multiple A DFB-FLs

By initiating the simulations with the steady-state solution
and letting the simulation run for a long time, we can find the
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Fig. 2. Calculated RIN spectra of total output and single modes of dual A
DFB-FLs. Top: Laser parameters as in Fig. 1. Single-mode RIN when the gain
gratings are ignored (P. = 0) is also shown. Bottom: k;, = 79.1 m~}, kp =
70 m~1. Laser parameters are otherwise as in Fig. 1.

RIN spectra of the laser by performing a discrete Fourier trans-
form on the time dependent laser output powers. For the sym-
metric dual A structure discussed above, a calculated RIN spec-
trum of the total output and of one of the modes are shown on
top of Fig. 2. The simulation was performed with time steps of
At = 0.1 ps over a period of 13 ms, corresponding to a sam-
pling frequency of 10 MHz and a frequency resolution of 77 Hz,
respectively. The spectra in the plot are smoothed with progres-
sively larger resolution bandwidth with increasing frequencies
in order to damp the random ripple caused by the spontaneous
emission.

The RIN of the total intensity shows a relaxation oscilla-
tion peak of fr = 257 kHz, which is a typical number for
single-mode DFB-FLs we have characterized in our laboratory.
In fact, this spectrum is not distinguishable from the spectrum
calculated for a single-mode DFB-FL in the same fiber with
similar grating parameters. The noise of the individual modes
exceeds the noise of the total output by approximately 11 dB at
low frequencies, and has a second noise peak at f;, = 138 kHz.
The excess noise seen in the spectrum of the individual mode
compared with the spectrum of the total output is called the
mode partition noise. Since the second noise peak is not vis-
ible in the RIN spectrum of the total output, it means that the
two modes oscillate in anti-phase at this frequency. Such be-
havior was theoretically predicted for two-mode lasers with spa-
tial hole burning already in the 1960s [15], but has attracted
considerable attention recently [26]-[31]. In [31], an analyt-
ical expression for the ratio between phase and anti-phase re-
laxation oscillation peak frequencies (fz,/fr) as a function of
cross saturation was found. fr, will always be smaller than fg
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because the feedback loop for the total intensity, characterized
by the transfer function between the relative intensity and go,
has a cutoff frequency proportional to sy + Fiot [6], whereas
the mode selective feedback, given by the transfer function be-
tween the relative intensity and g2 has a cutoff frequency propor-
tional to only P, Similar arguments can also be made for other
types of hole burning mechanisms. Anti-phase states have been
experimentally observed for Nd: YAG lasers [26], LiNdP4Oy2
lasers [27]-[29], and Nd**-doped [27] and Er*t-doped [30],
[31] fiber lasers.

It is important to note that semiconductor DFB lasers do
not have strong gain gratings because of carrier diffusion, and,
therefore, cannot lase stably in multiple longitudinal modes
[32]. To illustrate this fundamental difference, a plot of the RIN
of a single mode of the same dual A laser with the gain gratings
omitted from the simulations (P, = 0) is also given on top of
Fig. 2. This spectrum is very similar to what is reported for
semiconductor lasers, with RIN in excess of —56 dB (Hz~%/2)
at low frequencies.

As mentioned above, the mode partition noise peak of the two
modes cancel each other at the top of Fig. 2, and it is not vis-
ible in the RIN spectrum of the total laser output. If the grating
strengths of the two modes are not equal, the differences in
photon lifetime and spatial-mode distribution between the two
modes [3] will break the reciprocity in the gain cross satura-
tion, and a second noise peak can be seen also for the RIN of
the total output power. An example of such a laser is shown at
the bottom of Fig. 2, where we have plotted the RIN of a dual
A DFB-FL with k; = 79.1 m™* and x; = 70.1 m~*. Similar
effects have been observed experimentally between transverse
modes of a LINdP4 0,2 micro-chip solid state laser [29]. The de-
gree of anti-phase behavior will decrease with decreasing spatial
overlap and increasing difference in cavity photon life time and,
when we have fundamental and higher order longitudinal modes
lasing simultaneously in the same DFB structure [3], the noise
spectra of the modes are almost independent of each other.

For all types of cross saturation, like spatial, frequency,
or polarization hole burning, there will also be anti-phase
dynamics for lasers with more than two modes. In theory [26],
[28], the number of resonance frequencies for each individual
mode equal the total number of modes, and if the modes have
identical photon lifetimes, the noise spectra of the total output
power will display only the relaxation oscillation noise peak
with the highest frequency. In Fig. 3, we have plotted the RIN
spectra of multiple A DFB-FLs with three, four, and five super-
imposed subgratings, with nearest neighbor separation between
the subgrating Bragg frequencies of Ar = 10 GHz. Even
with all the subgratings having an equal coupling coefficient
r; = 90 m™L, the cavity finesse seen by each laser mode and
their spatial distribution will be different due to interference
between the reflection spectra of the subgratings [3]. With
many modes, smaller threshold differences are tolerated, and
although the phases between the subgratings of the lasers
plotted in Fig. 3 are optimized with respect to equal modal
output powers, the output power of and cavity finesse seen
by the different modes for each DFB-FL is not equal. Thus,
just like for the laser plotted in the bottom graph of Fig. 2, the
reciprocity in the cross saturation is broken and the RIN curves
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Fig. 3. RIN of the total output and the individual modes of a multiple A
DFB-FL with three modes (top), four modes (middle), and five modes (bottom).
The grating length is I = 8.2 cm and each superimposed subgrating ¢ has a
strength of x; = 90 m~*. The Bragg frequencies of the subgratings of each
structure are in an equidistant sequence with a nearest neighbor separation of
Ar = 10 GHz.

of the total output have multiple resonance peaks. So far, RIN
seeded by the pump has been ignored. It is, however, often of
interest to know how stable the pump source needs to be in
order to get minimum DFB-FL RIN. In Figs. 4 and 6, the RIN
of various DFB-FLs are plotted as a function of pump RIN,
RIN,,. It is assumed that the pump RIN is white, which is a
good approximation except for very low frequencies. Note that
noise can be induced by the pump not only due to its RIN, but
also from fluctuations in its polarization state and frequency
due to, for instance, pump-mode partition noise, since the
effective ap, will vary with these parameters. Such fluctuations
can, however, be considered as an addition to RIN,, and will not
be treated separately here. In addition, there will also be shot
noise in the absorption of the pump by the laser gain medium
[6], effectively limiting the lowest possible pump RIN.
Although the multiple A DFB-FL RIN spectra are quite com-
plex, some general trends can be extracted from Fig. 3. The RIN
of the individual modes increases with the number of modes, es-
pecially at lower frequencies. The reason is that the gain grating
amplitude has to be shared between the modes, and the negative
feedback of each mode thus become less effective. An excep-
tion to this trend is the low noise mode of the five-mode laser in
the bottom plot of the figure, because this mode is responsible
for more than half of the output power of the laser and, thus, in-
duces most of the gain grating amplitude. We also see that the
number of resonance peaks increases with an increasing number
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Fig. 4. RIN as a function of RIN,, for a DFB-FL with parameters as in Fig,. |
together with a single A structure with x = 81.3 m~!. Top: RIN integrated
over all frequencies. Bottom: RIN integrated up to 1 kHz.

of modes, while the resonance ) values decrease, which is par-
ticularly true for the main relaxation oscillation resonance of the
cavity. This blurring of the spectrum can also be attributed to the
decreasing reciprocy in the gain cross saturation, i.e., to the dif-
ferences in cavity finesse between the modes.

B. Pump-Induced RIN

The top graph of Fig. 4 shows the total frequency integrated
RIN of the symmetric dual A structure analyzed in Fig. 1 and
the top of Fig. 2. In the same plot, the RIN of a single A struc-
ture with a coupling coefficient that gives a similar effective
cavity finesse [3] is given. The noise is relatively unaffected
for RIN, £ —140 dB (Hz~%/?), but for RIN, £ —130 dB
(Hz~*/?), the RIN of DFB-FLs increases with a rate that ap-
proaches proportionality with RIN,,. The RIN of the total output
of the dual A laser shows a similar dependence on RIN,, as the
single A structure. The RIN of each individual mode is a bit
higher because of the mode partition noise, but since we have
ignored polarization effects and have assumed identical gain pa-
rameters for the two modes, the mode partition noise does not
increase with RIN,,. For many applications, and in particular
sensing, the high-frequency noise is not a major concern, as it
can be filtered out. Thus, in the lower half of Fig. 4, we have
plotted the RIN below a noise frequency of 1 kHz. For the total
intensity and single A case, the shot noise limit of the pump ab-
sorption is estimated to be RIN,, = —156 dB (Hz~'/?), whereas
it is approximately RIN, ~ —153 dB (Hz~*/?) for the indi-
vidual modes. In contrast to the total RIN, the RIN below 1 kHz
increases with RIN,, for all values above the shot noise limits.

In Fig. 5, the RIN spectra is plotted for the dual-mode struc-
tures with RIN,, = —147 dB (Hz~'/?) and RIN,, = —87 dB
(Hz~/2). For RIN,, = —147 dB (Hz~'/?), there is no signifi-
cant difference from the case RIN,, = 0 plotted on top of Fig. 2
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Fig. 5. RIN spectra of a dual A DFB-FL with a pump RIN of RIN, = —87
dB (Hz=*/?) and RIN,, = —147 dB (Hz~'/?). Laser parameters otherwise as
in Fig. 1.

except for the increase in low frequency RIN. However, when
RIN, = —87 dB (Hz~!/2), the anti-phase resonance has dis-
appeared and the modes are oscillating in phase. A second har-
monic of the relaxation oscillation peak has appeared, which is
a first sign that the laser is approaching a pulsed state.

In Fig. 6, we have plotted the total RIN and the RIN below 1
kHz of a dual A laser with k1 = x» = 160 m~*, which corre-
sponds to a rather large integrated coupling strength of k) ol =
14.7. From [3], we know that this laser operates with two higher
order modes, in addition to the two fundamental modes. The
side modes, which have much higher output power than the
fundamental modes, have significantly higher noise floor in-
duced by spontaneous emission. This is expected, since the side
modes have shorter photon lifetime, and thus a higher sponta-
neous emission rate. In addition, because of the high intra-cavity
power of the fundamental mode compared with the higher order
mode, the latter has a much stronger partition noise resonance.
The difference between the total RIN of the fundamental modes
and side modes is 33 dB in the low RIN,, limit; however, as RIN,,
increases, this difference is reduced to 8 dB. The pump-induced
RIN for a mode increases with the relaxation oscillation center
frequency, its resonance (Q-value, and the change in round-trip
gain gy as a function of relative pump power change [6]

a
ksat,p = Pp ai;;- (16)
ksat, p is larger for the higher order modes, since its effective
gain is not as saturated. Closer studies of the spectra reveals that
the higher order modes also have much higher relaxation oscil-
lation (Q values, but they have lower relaxation oscillation fre-
quencies. When calculating the low-frequency RIN, the relax-
ation oscillation resonances are filtered out, and the differences
between the higher order modes and the fundamental modes are
smaller than the differences in total RIN, especially in the high
RIN,, limit. Note that even if the difference in RIN between the
fundamental and higher order modes is reduced in the high RIN,,
regime, it is expected that the higher order mode will tolerate
much less optical feedback and will also be affected much more
by twisting and bending of the fiber.

In Fig. 6, we have also plotted the RIN of a dual A grating
where the two subgratings have slightly different coupling co-
efficients, k&1 = 79.1 m~* and k2 = 70 m™}, i.e., the struc-
ture that had its RIN spectrum drawn at the bottom of Fig. 2.
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Fig. 6. RIN as a function of RIN,, of a fundamental and a higher order mode
of a dual A laser with & = &y = s> = 160 m™" and of the modes of a
dual A laser with k1 = 79.1 m~*! and ks = 70 m~*, Both structures are
9.21-cm long, and have a relative phase between the subgratings at the center
phase shift [3] of A¢ = &. Top: RIN integrated over all frequencies. Bottom:
RIN integrated up to 1 kHz.

Although the difference in mirror transmissivity is only about
4 dB, the weaker mode has more than 18-dB larger total spon-
taneous emission induced RIN than the other mode. However,
the weaker mode has a lower relaxation oscillation frequency
and, therefore, it in fact has a lower RIN than the more powerful
mode when the performance is limited by the pump. Because of
internal unbleachable loss, the stronger mode in this DFB-FL
also has higher intracavity intensity than the fundamental modes
of the laser with £ = 160 m™!, leading to a lower low-frequency
RIN.

C. Spontaneous Emission Lifetime Quenching

UV-induced spontaneous emission lifetime quenching is ex-
perimentally observed [33], [34], but although it has been shown
by the use of Kramers—Kronig relations that UV-transitions of
erbium gain media are important for its interaction with infrared
light [35], no clear physical explanation of the quenching has
been reported so far. This type of lifetime shortening is orders
of magnitudes smaller than what is seen due to Er®* clustering,
but still, UV quenching leads to a significant decrease of the
output power of DFB-FLs and an increase of laser threshold,
and perhaps more seriously, it leads to a reduction in the sta-
bility phase margin of the lasers [6]. Thus, although the relation
between UV exposure and spontaneous lifetime quenching is
poorly understood, it is of great interest to know its effect on the
noise properties of DFB-FLs.

On top of Fig. 7, the RIN of dual and single A lasers is plotted
as a function of the quenching factor {z, keeping & = 0.38.
Starting from {; = 0, the RIN of both the single and dual
A DFB-FLs increases slightly more than exponential, before
reaching a critical value around ¢, = 170, where both the
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Fig. 7. Spontaneous lifetime quenching and DFB-FL stability. Laser
parameters as in Fig. 4. Top: RIN of single and dual A DFB-FLs and ¢ynsac, 2
as a function of the quenching factor (>, with £, = 0.38. Middle: Left output
power and relaxation oscillation () factor as a function of (z., with £z = 0.38.
Bottom: RIN as a function of quenching fraction £z, with (> = 26.

single and dual A DFB-FL start to self-pulsate (RIN Z 1). In
order to understand this behavior, the unsaturated gain of the
quenched medium gyunsae, 2. the left output power, and the re-
laxation oscillation quality ((2) factor of the single-mode laser
is plotted in the same figure. The ) factor is defined as the ratio
of the relaxation oscillation peak frequency fg to the 3-dB band-
width of the resonance and is estimated from the RIN spectra.
Yunsat, 2 decreases monotonically from its unquenched value of
3.4 dB/m down to —1.8 dB/m at {» = 175. As long as Guusat, 2
is positive, the stability phase margin of the DFB-FL decreases
with decreasing laser power, but will increase with decreasing
spontaneous emission lifetime [6]. Accordingly, we see that the
(2 factor, which is approximately inversely proportional to the
phase margin, does not increase much for low values of (5.
However, when gynsat, 2 turns negative, the quenched ions act
as saturable absorbers that provide positive feedback to the re-
laxation oscillation. With growing values of (s, the strength of
these absorbers increases, due to a smaller gunsat, 2 and a weaker
bleaching by the close to exponential falling power level of the
mode. In addition, they relax faster, and thus give a more effec-
tive positive feedback to the relaxation oscillation. At {2 = 170,
corresponding to a spontaneous emission rate of 15% of fg, the
DFB-FL becomes unstable. Clustered Er®t ions, on the other
hand, have a spontaneous emission rate that is many times larger
than fr, and DFB-FLs are expected to self-pulsate with a frac-
tion of clustered ions of only a few percent [19].
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Fig. 8. RIN spectra of a dual A DFB-FL with &, = 0 and £&2 = 1. Laser
parameters otherwise as in Fig, 1.

At the bottom of Fig. 7, we have plotted dual and single A
DFB-FL RIN as a function of the fraction of quenched ions
& with ¢» = 26. The increase in RIN from & = 0to & =
1 is 6.4 dB in the single-mode case and 6.6 dB in the dual A
case. The laser power drops by approximately 4 dB in the same
interval, indicating that most of the increase in RIN comes from
an increase in the ratio between the spontaneous emission and
the laser mode powers, and not from a decrease in the stability
phase margin of the laser.

In Fig. 8, RIN spectra are given for two dual A DFB-FLs.
One of the lasers is without quenching (&2 = 0), whereas all
the erbium ions of the other laser are quenched by a factor 26
(&2 = 1 and {3 = 26). For DFB-FLs, the peak frequency of the
relaxation oscillation resonance decreases with its @ factor [6].
Similar arguments can be made for the anti-phase resonance,
and thus, both resonance peaks have shifted to lower frequen-
cies for the case £&2 = 1. There will be similar shifts for larger
values of (o with & = 0.38, but when the laser approaches
self pulsation, the anti-phase behavior partly breaks down, and
higher order harmonics appear in the spectra.

IV. CONCLUSION

A comprehensive numerical model has been presented that
calculates the dynamic operation of multi-moded DFB-FLs. The
model gives realistic predictions for the temporal evolution of
the modal output powers for any physical initial condition. Ef-
fects like spontaneous emission and dynamically varying pump
levels are included. The model may easily be extended to in-
clude optical feedback or modes in different polarizations [7],
[18], [21], [36].

The operation of single-mode DFB-FLs has been com-
pared with DFB-FLs that are lasing in multiple fundamental
modes [3]. When the cavity finesse seen by the mode in the
single-mode case and both modes in the dual-mode case is
similar, it has been found that the RIN spectra of the total output
power in the two laser structures are approximately equal.
Saturation-induced gain gratings provide negative feedback
for the mode partition noise process, and thus the RIN of the
individual-modes in the dual-mode case is only a few decibels
larger than the RIN of the single-mode laser. However, the
gain grating feedback provides an additional noise resonance
in the noise spectra of the individual modes, and this will
limit the resolution of, for instance, acoustical sensing at
frequencies around the noise peak. For lasers with more than
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two fundamental modes, the mode partition noise generally
increases as a function of the number of modes. Most of the
increase is, however, below the main relaxation oscillation
peak, and the total integrated modal RIN levels are far from the
pulsing regime even for a MW-DFB-FL with five modes. Thus,
the individual modes of such a laser are expected to have only
negligible larger linewidths than a comparable single-mode
DFB-FL [6]. In a MW-DFB-FL, modes that see a lower finesse
in the structure generally displays larger RIN in the low pump
RIN limit, but this is not necessarily the case if the pump is the
most important source of RIN for the DFB-FL.

High mirror reflectivities are often of interest in order to re-
duce the effect of optical feedback in sensing applications. How-
ever, as reported in [7], the laser may operate with higher order
modes with high output powers if the grating strength is too
large [3]. The dynamical model presented here predicts that the
side modes have very large RIN compared with the fundamental
modes, and they are in addition more susceptible to optical feed-
back, and should thus be avoided at all costs.

UV-induced spontaneous lifetime quenching potentially can
degrade the stability and RIN performance of a DFB-FL. Qur
results indicate that the quenching factor is more important than
the ratio between the quenched and unquenched erbium ions.
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Chapter 8

Intra-Grating
Quasi-Distributed Sensing

using Active and Passive

Phase-Shifted
Multi-Wavelength Fiber
Bragg Structures !

Abstract

We present a novel active and passive multiple wavelength Bragg
grating sensor. The basic structure consists of several superimposed
quarter-wavelength-shifted Bragg gratings with different periodicity.
The center phase shifts will lead to one notch per grating in the reflec-
tion spectrum in the passive case, or one laser mode per grating in the
active case. The center frequencies of these notches or laser modes are
very sensitive to local perturbations around the corresponding phase
shifts. Because of the narrow bandwidth of the notches and laser
modes, a sensor with high spatial resolution in the range 0.1 - 5 mm
can be made by separating the phase shifts. High finesse phase-shifted
FBG sensors also provide ultra-high measurand resolution. With two
superimposed Bragg gratings, the device may be used as an accurate
gradient sensor.

8.1 Introduction

There has been a lot of interest in fiber distributed sensors during the last
decades. Almost all techniques utilize a physical backscattering, loss, or

!This chapter is based on Norwegian patent application no. 2001.2593 authored by
Sigurd Weidemann Lgvseth and Jon Thomas Kringlebotn
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Intra-Grating Distributed Bragg Sensor

gain mechanism, for instance Rayleigh or Raman scattering, spontaneous or
stimulated Brillouin scattering, or rare earth gain [1,2]. The general sensor
principle is that the strength and/or characteristic optical frequencies of
these effects are dependent on physical parameters like temperature and
strain. The distribution of the measurand is typically found by using some
kind of optical frequency (OFDR), time (OTDR), or coherence (OCDR)
domain reflectometry. Distributed sensing of time-varying perturbations has
also been demonstrated using a Sagnac interferometer in combination with a
Mach-Zehnder interferometer [3] or a dual loop Sagnac interferometer [4,5].
Recently a distributed pressure sensor was demonstrated by determination
of the free-spectral range shift induced by mode coupling in a mode locked
fiber ring laser [6].

A different approach is to multiplex several fiber Bragg grating (FBG)
sensors along the same fiber [7]. The center frequency vp, of the main peak,
also known as the stop band, in the reflection spectrum of a FBG for light
in polarization ¢ is given by:

C C

yBi B g - anA

(2

(8.1)

vp, is also known as the center Bragg frequency, and Ap, is the Bragg wave-
length. c¢ is the speed of light, n; is the generally polarization dependent
refractive index, and A is the periodicity of the grating. Thus, a pertur-
bation of n; or A by a measurand will be detected as a shift in the Bragg
frequency vp,.

When the FBG sensors are multiplexed, the localization of a pertur-
bation can be determined by using different periodicity for each grating.
Similar quasi-distributed sensing can be achieved with Bragg grating based
fiber lasers in rare earth doped fibers [8-10].

A common problem with most of the aforementioned techniques is that
their highest spatial resolution is in the order of meters. However, Bragg
gratings can be made quite short, with the minimum length limited by the
UV beam size during the grating inscription. Alternatively, intra-grating
perturbations of a Bragg structure can be measured by simultaneously mea-
suring the group delay and power of the reflection spectrum [11-14]. Un-
fortunately, when using conventional FBGs, an enhancement in spatial res-
olution better than 10 cm inevitably will lead to a lower resolution in the
measurand.

It is well known that by introducing a phase shift in an otherwise uniform
Bragg grating, the two gratings at each side of the phase shift will act as
the mirrors of an optical resonator, and there will be a notch in the peak
of the grating reflection spectrum [15-19]. When the phase shifts equal ,
the notch center frequency will equal the Bragg frequency. The notch is
very narrow (typically less than one pm) compared with the stop band of
the grating, and, therefore, much smaller perturbations can be measured
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than for conventional FBGs. The narrow notch will also be split by the
birefringence B = n, — ny [20] caused by the fiber itself or a birefringent
Bragg grating. Since shifts in different measurands perturb the birefringence
to varying degrees, simultaneous measurements of two measurands can be
achieved by tracking the notches of both polarizations [21].

As discussed in Chapter 1, distributed feedback fiber lasers (DFB-FL)
with stable single longitudinal mode operation can be made by writing a
phase-shifted FBG in a rare earth doped fiber [15,22]. Single polarization
operation can be obtained for instance by using polarization dependent grat-
ings [23]. The laser frequency will equal the notch frequency in the grating
stop band of the grating in the laser mode polarization. The linewidth of the
laser modes are typically ~ 1 — 10 kHz, which means that DFB-FL sensors
have much higher resolution in the measurand than corresponding passive
phase shifted FBGs. Another advantage with DFB-FL sensors compared
with the passive alternative is that no complex opto-electronics is needed
to interrogate the sensor. DFB-FLs have been demonstrated for a number
of sensor applications, some of which are listed in Chapter 1. Like phase-
shifted FBGs, dual polarization DFB-FL can be used to simultaneously
measure two measurands [24].

Both in passive and active phase-shifted FBG sensors, the resonant field
at the reflection spectrum notch frequency falls off in an exponential manner
from the phase shift. The effective cavity length is approximately inversely
proportional to the grating strength. Thus, the effective sensing length is far
shorter than the length of the grating [25], meaning that perturbations far
away from the phase shift do not significantly affect the resonance frequency.

FBGs with periodic superstructures are often called sampled gratings or
multiple wavelength fiber Bragg gratings (MW-FBG). A simple sinusoidal
sampling function corresponds to a superposition of two uniform Bragg
gratings with different vp. The reflection spectra of such gratings will have
two reflection peaks slightly detuned from the stop bands of the two su-
perimposed Bragg gratings. By using more complex sampling functions,
or superimposing more gratings with different periodicity A, gratings with
several reflection peaks with similar shapes and widths can be made [26].
However, since there is a limit to the refractive index contrast that can be
achieved in a fiber grating, the maximum achievable reflection strength will
decrease with increasing number of superimposed Bragg gratings.

Recently, a dual wavelength DFB-FL was reported, using dual wave-
length FBGs with a center phase shift [27]. Such lasers do not have a semi-
conductor equivalent, since semiconductor lasers do not have the spatial
hole burning mechanism required for stable multimode operation [28]. Be-
cause the two modes have almost overlapping mode profiles, these lasers will
have a very stable beat frequency, which can be utilized in microwave [29]
and soliton generation. A DFB-FL of this kind operating with four modes
distributed in two polarizations and two stop bands, has also been used for
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Figure 8.1: Illustration of MW-FBG (a) and MW-DFB-FL (b) distributed sensors.

simultaneous strain and temperature measurements [30]. It is possible to
make DFB-FLs with more modes, but the maximum number of modes is
limited by the available refrative index contrast of the fiber. We call such
lasers multiple wavelength DFB-FLs (MW-DFB-FLs).

In this chapter, we will show that it is possible to use a combination of
multiple phase-shifted FBGs to make active and passive sensors with high
resolution in space and the measurand, utilizing that phase-shifted FBG
and DFB-FL sensors are most sensitive to perturbations around their phase
shifts.

8.2 Technique

The proposed intra-cavity distributed sensor comnsists of several superim-
posed or partly overlapping phase-shifted FBGs with different vg. In Fig-
ure 8.1(a) an example with Ny, = 4 superimposed gratings, which we will
call subgratings in the following, is shown. The subgratings ¢ = 1...N, have
individual phase shifts, PS,, separated from each other along the fiber axis.
The frequencies of the narrow reflection spectrum notches corresponding
to the different subgratings will then be most sensitive to perturbations in
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different spatial regions of the structure. The spatial distribution of a per-
turbation can be measured by tracking each notch frequency in the trans-
mission T'(v) or reflection R(r) spectrum of the MW-FBG structure. The
notch frequencies can for instance be measured by use of a tunable laser
with interferometric control [31].

By using rare earth doped fibers with gain, such structures may also be
used as MW-DFB-FLs, as illustrated in Figure 8.1(b), where a DFB-FL is
pumped by a source with wavelength A,. Provided the structure has large
enough gain and subgrating strengths, it can start to lase in the stop band
of all N, subgratings, with frequencies v, ¢ = 1..N,. The same spatial res-
olution can be achieved with even higher resolution in the measurand than
for the passive structure. Sensors based on MW-DFB-FLs can be pumped
from one or both ends and interrogated from either end. For gradient and
higher order differential measurements only the beat frequencies between
the modes need to be measured. If also the absolute value of the measur-
and is needed, at least one laser frequency has to be measured using for
instance interferometric techniques. Alternatively, all laser frequencies can
be measured directly.

As with phase-shifted FBGs sensors and dual polarization DFB-FLs, the
ratio of change in birefringence to change in Bragg grating frequency as a
result of a perturbation differs between measurands. Thus, the proposed dis-
tributed MW-FBG sensor can simultaneously measure two measurands by
detecting both the frequency shift and the polarization frequency splitting of
the reflection spectrum notches of each subcavity. In a dual polarization im-
plementation of the proposed MW-DFB-FL sensor, the two measurands can
be separated by simultaneously measuring the polarization beat frequency
and one or both of the laser frequencies of each subgrating.

As with all FBG devices, MW-FBG and MW-DFB-FL sensors can be
wavelength multiplexed serially or in parallel. Thus, it is for instance pos-
sible to measure the spatial distribution of a measurand gradient.

In Figures 8.2 the sensor principle is illustrated in more detail. The
power distributions P, ¢ = 1...N,, resulting from incoming optical waves
E with frequencies v, in a MW-FBG like the one shown in Figure 8.1(a)
are sketched. As above, v, is equal to the notch frequency of subgrating
q. At each v,, the optical wave will resonate around the phase shift of
the corresponding subgrating. The power will drop sharply in a close to
exponential manner as a function of ky|z — 24|, i.e. the product of distance
from phase shift ¢ and the subgrating strength. In cases where x, is varying
along the fiber axis, k4|2 — z4| should be substituted with the integral of &,
with respect to |z —z,|. The modes of a MW-DFB-FL, like the one shown in
Figure 8.1(b), will have a similar modal spatial power distribution. In Figure
8.2, we have also plotted a spatial distribution of a measurand M along the
fiber axis. The measurand can for instance be temperature, strain, static or
acoustic pressure, force, or any other physical quantity that can perturb the
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Figure 8.2: Sketch of power distributions at the resonances of the proposed MW-
FBG or MW-DFB-FL distributed sensor. The spatial distribution of a measurand
M is also plotted.

effective refractive index, n, or n,, periodicity A of the grating structure,
or the birefringence B = n, — ny of the fiber. Since there is little overlap
between the spatial power distributions, and thus sensing lengths [25], of
the different modes, they will have different response to M, and the notch
frequency shifts of mode 1 and 2 will be of opposite sign compared with the
frequency shifts of mode 3 and 4.

8.3 Design and Fabrication Considerations

The strength or number of subgratings that can be superimposed in a given
fiber is limited by the maximum UV-induced refractive index change of the
fiber. For both MW-FBG and MW-DFB-FL distributed sensors that means
there is a limit on the achievable spatial resolution for a given grating length.
For the MW-DFB-FL, the number of lasers that can be superimposed will
be limited since the mirror reflectivity has to be above threshold in all
subgratings. For a passive MW-FBG, there is no fundamental lower limit
on the subgrating strength. However, as the subgrating strength becomes
lower, the power distribution becomes wider at each resonance, effectively
broadening the sensitive length of each subgrating. At the same time the
spectral width of the reflection spectrum notch will be larger, leading to
lower resolution in the measurand. However, how effectively the available
refractive index contrast can be utilized is largely a question of clever design
and fabrication techniques, and in this section we will discuss the feasibility
of different approaches.
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Figure 8.3: Illustration of a MW-FBG sensor structure produced by superimposing
three phase-shifted uniform subgratings with different periodicities A. The coupling
coefficients ry, ¢ = 1...3 and Ko are in arbitrary units.

Figure 8.3 illustrates a superposition of three uniform subgratings with
equal coupling coefficients k; = k2 = k3, that all have a phase shift PS,
of m in the middle. The gratings, including their phase shifts, are spa-
tially shifted from each other, leading to a grating structure similar to the
ones shown in Figure 8.1. The subgratings are only partially overlapping,
and the phase relation between the subgratings changes at each subgrating
phase shift. This results in a total coupling coefficient |kiot(2)| where both
the beat amplitude and DC level vary significantly along the grating axis.
|Ktot| 1s proportional to the required refractive index contrast, and if the
sections with high peak values of |kot| are to have the correct profile, the
potential refractive index contrast in other sections of the grating will be
poorly utilized.

In Figure 8.4 another MW-FBG with three phase-shifted subgratings is
illustrated. The distances between the m phase shifts PS, of the different
subgratings ¢ = 1...3 are the same as in Figure 8.3. Also here the reflec-
tivity of the subgrating mirrors are equal to each other, but the subgrating
strengths are varied along the fiber axis in such a way that the ripple peak
values of |kiot| is the same in all sections of the grating. Compared with
the previous example shown in Figure 8.3, this leads to a relaxed refrac-
tive index contrast or structure length requirement for a given subgrating
reflectivity level. Furthermore, in order to increase the spatial resolution of
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Figure 8.4: Illustration of a MW-FBG sensor structure produced by superimposing
three phase-shifted subgratings with different periodicity, spatially separated phase
shifts, and phases and local coupling coefficients optimized for efficient use of the
refractive index contrast. The coupling coefficients are in arbitrary units.

the sensor, the resonant mode field distributions should have as little over-
lap as possible. This overlap decreases with increasing subgrating strength
between the phase shifts. Thus the relative phase differences between the
subgratings are optimized between the phase shifts in order to maximize the
subgrating strength for a given refractive index contrast, i.e. maximum x.
In short, it is ensured that the three subgratings are never in phase. This
optimization technique will discussed in further detail in Appendix 8.A.

The third example shown in Figure 8.5, is also a structure consisting of
three superimposed phase-shifted Bragg gratings, with the same phase shift
separations as in Figures 8.3-8.4. Here the subgratings are not overlapping
between the phase shifts. Instead, the overlap between the resonances is
minimized by assigning each subgrating all available index contrast around
its phase shift. Otherwise the structure is similar to the one shown in Figure
8.4, in that the required refractive index contrast everywhere is the same,
but since there is no grating superposition between the phase shifts, the
inter-subgrating phase can in this case be optimized at the edges of the
grating.

8.4 Analysis

In the upper half of Figure 8.6, the calculated modal field distributions of
a MW-DFB-FL of the design type illustrated in Figure 8.4 is plotted. The
modes are found using a coupled mode transfer matrix method [28]. The
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Figure 8.5: Illustration of an alternative way of implementing a MW-FBG sensor
with high utilization of the refractive index contrast. The coupling coefficients are
in arbitrary units.

grating structure consists of 3 superimposed subgratings, and the subgrat-
ing phase shifts and Bragg frequencies are spaced 2.5 ¢cm and 10 GHz apart,
respectively. The total grating length is 12.3 cm, and the maximum total
grating strength || is 200 m ! corresponding to a refractive index modu-
lation amplitude of approximately An = 10~*. With the optimized relative
phase in the length of fiber between the phase shifts, this corresponds to a
subgrating strength of 89 m™!.

The power difference between the most powerful and next most powerful
mode at the phase shifts is 20 dB at the center phase shift and 22 dB
at the outer phase shifts. The spatial power distribution of the field at
the different spectral notches with an identical passive structure will be
similar, as illustrated in the lower half of Figure 8.6. This indicates that
the maximum resolution for a passive system can be much higher than 2.5
cm as in this example. In fact, for strong gratings it can be shown that the
cavity length for each resonance ¢ is approximately 1/k,(24), where kq(zq) is
the coupling coefficient of subgrating ¢ around its phase shift. Thus, we can
hope for a maximum spatial resolution of the sensor equal to the maximum
achievable grating strength, or [32]:

1 A
AZres,max ~ = B (8.2)

Rmax TANmax
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Figure 8.6: Power distributions in passive and active triple-wavelength FBG dis-
tributed sensors with identical grating. Top: The modes of a single-polarization
MW-DFB-FL. The forward propagating waves are shown with solid, dashed, and
dash-dotted curves, whereas the backward propagating waves are shown with dot-
ted curves. Bottom: The power distribution resulting from an incoming wave at the
central reflection spectrum notch in a passive MW-FBG. For reference the power
distribution of the central laser mode of the MW-DFB-FL is shown in the same
plot with dotted lines.

Here Azies,max is the maximum achievable spatial resolution of the sensor,
Anmax 18 the maximum UV-induced refractive index amplitude, and A is
the grating periodicity. With hydrogen loading germanium doped fibers
Anpax 2 5-1073 can be achieved [33], corresponding to AZres,max ~ 0.1mm
at Ap = 1550 nm. However, gratings written in non-hydrogenated fibers
tend to be more stable and have lower loss, and in non-hydrogenated Ge-
doped or co-doped B-Ge silicate fibers the maximum refractive index ampli-
tude is typically Anmax ~ 2.5- 1074 and Angyay = 4-107* [34], correspond-
ing to AZresmax ~ 2 mm and Azpesmax ~ 1 mm, respectively. It is more
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Table 8.1: Typical maximum achievable index modulation amplitudes, coupling
coefficients, and spatial resolutions for various silica fiber types.

Fiber dopant composition ~ Anmax  Amax (mm ') AZres,max (mm)

Ge, no Hy 2.5-10°14 0.5 2

B-Ge, no Hy 4.10~4 0.8 1

Ge, hydrogenated 51073 10 0.1

Er-Yb-B-Ge, no D, 51075 0.1 10

Er-Yb-B-Ge, Dy-loaded 1.1-1074 0.23 4
v S :

Transmission (dB)
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Figure 8.7: Transmission spectrum of a MW-FBG with Av; » = Avy 3 = 10 GHaz.

difficult to fabricate non-hydrogenated rare earth doped fibers needed for
DFB-FLs with high photosensitivity, but Anyay > 5- 1075, corresponding
t0 AZres,max ~ 10 mm can be achieved using a Ge-B doped photosensitive
ring [35], whereas Anmax > 1.1 - 107* corresponding t0 Azresmax ~ 4 mm
has been reported for a deuterium (D3) loaded fiber of this kind [25]. The
maximum refractive index amplitudes and corresponding maximum resolu-
tions for the various fiber types are summarized in Table 8.1.

In Figure 8.7, the calculated transmission spectrum of the grating struc-
ture discussed in the previous paragraph is plotted, but this time without
gain. Even with this relatively small subgrating Bragg frequency separa-
tion, there is only some overlap between the sidebands, and the three stop
bands in the spectrum are clearly separated. This eases the interrogation
and, as will be discussed below, ensures a relative linear response of the sen-
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sor. The stop band notches, which in the transmission spectrum appear as
narrow peaks, are too narrow to be completely resolved in the simulations.
Closer studies however reveal that the full-width half-maximum (FWHM)
of the central stop band notch is approximately 0.6 MHz, corresponding
to 0.35 mK in temperature [36] or 4.4 ne in strain [37] at a wavelength
of 1550 nm. However, as mentioned in Section 8.3, the linewidth depends
strongly on the grating length and strength. Following the discussion from
the previous paragraph, each subgrating ¢ will have a length of approxi-
mately 1 mm= 1/k, in a MW-FBG sensor designed for maximum spatial
resolution along the entire grating length written in a non-hydrogenated
B-Ge-codoped fiber with many subgratings. Such a short length and high
kg result in a notch linewidth as broad as 60 GHz, corresponding to 35 K
in temperature and 0.4me in strain. Thus, in order to make the resonances
sharper and have reasonable resolution in the measurand, the total grating
should be made longer than the sensitive length. That is, each subgrating
should extend a certain length past the edge of the sensitive subgrating
phase shifts region at each side of the MW-FBG structure. In principle, the
reflection spectrum notch can be made arbitrarily sharp, a grating with the
same strength kK, =1 mm ! of length 3 cm for instance has a transmission
notch linewidth of only 8 mHz. Such a narrow notch would of course be
extremely difficult to detect. In practice the actual measurand resolution
depend on the interrogation technique and can be both higher and lower
than what the transmission notch linewidth suggests. In comparison, the
resolution of the MW-DFB-FL sensor depends more directly on the laser
mode linewidth, although the resolution also here will depend on the inter-
rogation system. For static signals it is in principle possible to average over
a long time to achieve high accuracy, whereas for dynamic signals like sound
sometimes only a certain frequency band of the noise spectrum is of inter-
est [38]. DFB-FLs with a linewidth of 1 kHz are commercially available,
and typical DFB-FLs have a linewidth in the range ~ 1 — 10 kHz [39, 40],
corresponding to approximately 0.5-5 pK in temperature and 0.1-1 pe in
strain.

A measurand that varies linearly or quadratically along a fiber grat-
ing induces a linear or quadratic chirp, respectively, of the grating period.
We therefore investigated the effect of applying a chirp of varying ampli-
tude to the structure plotted in Figure 8.6 consisting of three superimposed
subgratings, and the results in the cases of linear and quadratic chirp are
shown in Figures 8.8 and 8.9, respectively. In the upper half of the figures
the detuning from the 10 GHz Bragg frequency separation between the sub-
gratings are plotted, whereas in the lower half the beat frequencies between
the spatially middle mode and the left and right modes are plotted. In the
linear chirp case, these two beat frequencies are equal to each other because
of the symmetry of the device. The response is reasonably linear, which
eases the interrogation of the sensor, with a linear chirp ranging from -20 to
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Figure 8.8: The detuning of (top) and the beat frequency between (bottom) the
three modes plotted in Figure 8.6 as a function of linear chirp.

20 GHz/m and a quadratic chirp between -550 GHz/m? and 550 GHz/m?.
The range in the linear chirp case corresponds to a temperature gradient
range of approximately £12 K/m or strain gradient range of £146 ue/m.
The range in the quadratic chirp case corresponds to a second order Taylor
coefficient of approximately £320 K/m? in temperature and +4 me/m? in
strain.

We have simulated several other structures of all the design types dis-
cussed in Section 8.3. By comparing different MW-DFB-FLs of different
design with equal cavity finesse it was found that structures of the type
illustrated in Figure 8.3 yielded the highest linearity and largest dynamic
range in the measurand with all modes operating, whereas the type illus-
trated in Figure 8.5 had the most nonlinear response and limited dynamic
range. However, as discussed in Section 8.3 the former design requires longer
gratings and/or higher refractive index contrast, and thus does not give the
best response if limitations are imposed on the size of the coupling coefficient
or length.

Nonlinearity in the response can be calibrated for in a simple gradient
sensor, but this becomes more difficult for a distributed MW-FBG/MW-
DFB-FL sensor with many subgratings that are exposed to arbitrary spa-
tial measurand distributions. We believe the relatively small nonlinearities
that exist in the response are caused mainly by two mechanisms. Firstly, a



118

Intra-Grating Distributed Bragg Sensor

Detuning (GHz)
o

. —— Left mode
-1 — — Middle mode -
Right mode
500 0 500
T115 Quadratic Chirp (GHz/m?)
S
= 1
(6]
C
(0] i
>
O
o
2 1
9.5 : ‘
D% 500 0 500

Quadratic Chirp (GHz/m?)

Figure 8.9: The detuning of (top) and the beat frequency between (bottom) the
three modes plotted in Figure 8.6 as a function of quadratic chirp.

chirp will detune outer parts of a subgrating from the central part around
the phase shift. Thus, for large chirp, the reflectivity of the outer parts will
decrease somewhat compared with the central part. When the subgrating
is not symmetric around the phase shift, as will be the case for some of
the structures discussed in Section 8.3, the notch frequency differences will
not scale proportionally to a linear chirp. This will also generally be the
case if the chirp is not strictly linear. Secondly, and more important, is the
nonlinearity caused by the ripples in the resonance power distributions, as
seen in Figure 8.6. These ripples are a consequence of the superstructure
of the grating [28], and increase in amplitude and periodicity with decreas-
ing subgrating beat frequency and increasing coupling coefficient. When a
notch frequency changes, the ripples of its corresponding power distribu-
tion will move relative to the grating structure and the other phase shifts.
Thus, some nonlinearity will be induced in the beat frequency response be-
cause of changes in the spatial overlap between the resonances, and a large
subgrating Bragg frequency separation is needed for high linearity. On the
other hand, a distributed MW-DFB-FL sensor with a small inter-modal
frequency spacing can be interrogated using a simple beat frequency mea-
surement, and also the passive MW-FBG sensor is easier to interrogate with
a small frequency spacing. In addition a small beat frequency means that
the sensor can be fabricated with efficient use of the photosensitivity using
a single scan of the UV source, as discussed in Appendix 8.A. Thus, in most
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cases it will be desirable to have the Bragg frequencies spaced as densely as
the linearity requirement for the given application allows.

Apart from nonlinearities, a chirp-induced decrease in effective cavity
finesse in the phase shifted MW-FBG sensor will increase the width of the
reflection spectrum notch somewhat. In the DFB-FL case, the decrease in
cavity finesse changes the output power [28,41,42] and noise performance
[43]. With certain types of grating perturbations also higher order modes
may be induced [44]. However, these unwanted modes, which have their
frequencies outside the subgrating stop bands and are less spatially confined
than the fundamental modes, are less likely to be induced in a MW-DFB-FL
with spatially separated phase shifts than in a conventional MW-DFB-FL
with all phase shifts co-located, since the fundamental modes of the former
design saturate the gain in a larger fraction of the grating structure length.

8.5 Conclusion

We have presented a new type of active and passive intra-cavity optical
fiber Bragg grating sensors. In the new design, the high resolution in the
measurand of phase-shifted Bragg grating sensors is combined with high
spatial resolution by partly overlapping gratings with different periodicity.
Since the fundamental resonance frequency of each superimposed grating
is mostly dependent on the periodicity around its phase shift, the spatial
distribution of a measurand can be detected by tracking the reflection spec-
trum notches of the structure, or if the fiber has gain, by measuring the
frequency of the laser modes.

The maximum achievable spatial resolution depends on the desired res-
olution in the measurand, the structure length, and, most importantly, the
maximum photoinduced refractive index contrast of the fiber. We found
that the maximum spatial resolution for a passive sensor type is in the range
0.1 - 2 mm, depending on the fiber type and degree of hydrogen loading. For
a grating written in a rare earth doped fiber applicable for MW-DFB-FLs,
a maximum spatial resolution of 5 mm is more realistic. The measurand
resolution is dependent on the grating design and interrogation technique in
the passive case, whereas a MW-DFB-FL sensor has a potential resolution
in temperature and strain in the range of 0.5-5 uK and 0.1-1 pe, respectively.

Some refractive index contrast and thus spatial resolution can be gained
by optimizing the relative phase between the subgratings and individually
varying the strength of each superimposed grating along the fiber axis. In
advanced grating writing setups, and if the frequency separation between
the superimposed gratings is not too large, limited by the UV spot size,
such structures can be fabricated with one single scan by the UV source.
By overlaying the individual gratings one by one higher frequency sepa-
ration between the notch or laser frequencies can be achieved, but if the
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relative phase between the gratings is optimized, there will be some cancel-
lations between the gratings everywhere. Thus, in contrast to single scan
fabrication some of the available refractive index contrast will be wasted.

We have simulated the response of structures with up to three super-
imposed gratings with varying degree of linear and quadratic chirp. The
frequency shifts of the resonances responded quite linearly with the chirp
amplitude. We therefore believe such sensors can be an attractive alter-
native to measure short distance distributions in for instance temperature
or strain. Alternatively, many such structures can be multiplexed in order
to measure gradient distributions over larger lengths. In any case, experi-
mental work has to be performed in order to decide the practicality of the
proposed devices.

Appendix:

8.A The Optimization of Relative Phase between
Subgratings and its Consequences for MW-
FBG fabrication

As discussed in Section 8.3, the subgrating strength for a given limit of |kt
can be optimized by adjusting the relative phase between the subgratings.
Assuming that all subgratings have equal strength x«; and that we have
equidistant frequency spacing between the subgratings, we have:

Ny Ny

|/<vtot| — 5y Ze_j(w+¢q) = Ky Ze—j(2qAKz+¢q)
g=1 g=1
(8.3)
Ng—1 N,
=K1, | Ng+2 Z Z cos(2¢AKz + Ay r—q)
g=1 r=q+1

Here, Avp is the nearest-neighbor subgrating Bragg frequency difference,
whereas AK is the corresponding Bragg wavenumber difference in the fiber.
¢4 is the phase of grating ¢, whereas A¢,, is the phase difference between
grating q and grating . When all ¢4, ¢ = 1...N, are equal, the maximum
value of |kot| is Ngr1, which is attained at z = Nn/AK, where N is an
integer. However, it is possible to avoid these worst case maxima in |Ktot|
and significantly lower the required refractive index contrast by optimizing
relative phases between the subgratings. For N, = 3 it is easy to realize
that we get the smallest possible ripple in |k4o;| when:

A¢)21 =47+ A¢32 (84)

The maximum value of |k0t| is then reduced from 3k to 2.23k;. Likewise,
it can be shown that the maximum value of |kto| can be reduced from 4k,
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to 2.66k1 for N, = 4 provided that:

Apy = £+ A3y
Agzr = £m — Adao

For Ny = 5 the maximum value of |k | can be reduced from 5k to 2.87x,.
Finding the optimal phase in an analytical way becomes increasingly difficult
with larger N,. However, it is easy to see that if A¢y,—1, ¢ = 2...N, is
distributed uniformly in increasing order from 0 to 27 for large Ny, most of
the cosine terms in equation (8.1) will cancel each other out, and thus the
maximum |ket| is reduced to a value close to r; \/]Tg . In order to find the
optimal solution for a given N4, numerical methods have to be used, and
for Ny = 16 the maximum value of |kot| was found to be 1 (y/Nyg+0.75) =
4.75k1 [45]. In these highly optimized MW-FBGs, much of the amplitude
modulation is in effect transformed to phase modulation. However, it will
not be possible to maintain this ideal phase relation everywhere in the MW-
FBG/MW-DFB-FL sensors discussed in this chapter, since the subgrating
phase shifts are not co-located.

It is important to choose the right method of grating fabrication in order
to utilize the full potential of the amplitude modulation cancellations. There
are two principal ways of fabricating MW-FBGs. Either the MW-FBGs are
produced by overlaying the subgratings one by one, or they are fabricated
by writing the MW-FBG in one scan using a complex sampling function
with an index profile equal to the sum of the individual subgratings. The
advantage of the former method is that, regardless of the Bragg frequency
spacing between the subgratings, a high spatial resolution is not required in
the grating writing setup. However, it may be difficult to control the rela-
tive phases between the subgratings with sufficient accuracy. Anyway, each
independently written subgrating will contribute to a shift in the mean re-
fractive index that is independent of its phase [45]. For a perfect subgrating,
this shift equals half the peak-to-peak amplitude of the index modulation.
Thus, even if the relative phases are ideally optimized, the lower limit of the
needed refractive index contrast for the MW-FBG in this case corresponds
to a grating of strength (Ng 4+ /Ng)k, /2. Writing the subgratings one by
one is a good idea if the sensor application requires a large dynamic range
or, as discussed in Section 8.A, a high linearity is needed which requires a
large frequency spacing between the subgratings. However, if high spatial
resolution and thus efficient use of the available refractive index contrast is
most important, the MW-FBG grating structures should be written in one
scan using a complex sampling function.
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Chapter 10

Conclusions and future work

This thesis is written as a collection of articles, and all chapters except the
introductory ones have their individual concluding sections. The reader is
thus referred to these or the thesis abstract for summaries of the results
obtained. The aim of this chapter is to evaluate implications of the results
given herein and elsewhere for the use of distributed feedback fiber lasers
(DFB-FLs) in sensing and other applications, and point out some of the
problems and challenges that remain to be addressed.

With their narrow linewidths and small size, DFB-FL sensors are promis-
ing candidates for a range of applications, although the technology does not
seem to have matured enough yet to be commercially viable. For instance,
a noise equivalent pressure as low as 13 dB re. 20 uPa/ VHz in water is
reported for an acoustic DFB-FL sensor with an elasto-plastic coating [1],
opening up applications in underwater seismic systems and military surveil-
lance. However, as discussed in Chapter 3, feedback from long delay lines
due to Rayleigh scattering or discrete reflectors could destabilize the DFB-
FLs in such applications. The tolerable feedback decreases with decreas-
ing mirror reflectivities, longer feedback delay compared with the effective
roundtrip time of the solitary laser, and increasing linewidth enhancement
factor [2]. The latter value depends both on both the laser wavelength and
saturation level of the gain medium [3]. A method is developed to measure
the linewidth enhancement factor [4], but further systematic investigations
should be made for this important laser characteristic. In any case, a wave-
length selective optical attenuator between the DFB-FL and the lead fiber
may ease the problems caused by external optical feedback, but in addition
the laser should have a long and strong grating.

Unfortunately, stronger gratings can also enable higher order modes to
lase, as reported in [5] and Chapter 3. These modes may have a higher
output power than the fundamental mode, but are less stable and, because
of their lower effective cavity finesse, they are more vulnerable to optical
feedback, and the calculations of Chapter 7 indicate that they also generally
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have a higher relative intensity noise (RIN) level. Unless the gain is high,
the higher order modes could probably be avoided by writing error free
gratings, as discussed in Chapter 4. It is especially important to minimize
quadratic chirp. It may also be possible to increase the higher order mode
threshold by apodizing the grating [6]. It is probably even better to window
the gain distribution to fit the fundamental mode, as proposed in Chapter 5
, since this approach dramatically increases the higher order mode threshold
without compromising the grating strength. More experimental work has
to be done in order to determine if such lasers can be fabricated with high
enough grating quality.

As is evident from [7] and Chapter 6, background loss leads to an expo-
nential decrease of fundamental mode output power for high and increasing
grating strength. The loss thus puts another limit to how much the grat-
ing strength could be increased. As discussed in Chapter 4, it can also
be seen that low background loss would increase the threshold margin be-
tween higher order and fundamental modes. Unfortunately, UV exposure
increases the loss at 1550 nm [8]. In addition, UV radiation seems to in-
duce a spontaneous lifetime quenching of some of the Er®" ions [9,10]. As
shown in Chapter 7, such quenching leads to an increased relative intensity
noise (RIN) level and lower output power. The physical mechanisms behind
UV induced lifetime quenching is poorly understood, and better knowledge
about how the quenching is affected by grating fabrication and annealing
conditions may potentially help reducing this problem.

If the lead fiber is short, the tolerable feedback level is higher and most
of the problems mentioned above are not an issue. Fortunately, this will
be the case in many potential sensor applications, for instance in structural
monitoring, hostile industrial environments, and medicine.

Using a DFB-FL as a source for telecommunication networks or passive
fiber sensors is in many ways less complicated than using it as a sensor, as
an optical isolator can be put in front of the DFB-FL. However, in order to
utilize the full potential of the narrow DFB-FL linewidth in sensor applica-
tions, it is important to shield the laser against environmental fluctuations,
like for instance acoustic pressure and temperature waves, whose influence
on unshielded DFB-FLs were discussed in Chapter 9. For telecom appli-
cations narrow linewidth is usually less important, but still it is probably
advantageous to use some kind of temperature compensation to avoid drift.

The new breed of DFB-FLs with multiple fundamental modes, which are
called multiple A or multiple wavelength DFB-FLs (MW-DFB-FLs) in this
thesis, are exciting for a number of reasons. In Chapter 7 the calculated RIN
spectra of DFB-FLs with up to five modes were shown. There was some
increase of low frequency RIN with increasing number of modes, but the
total RIN level was still low. Since the wavelengths of MW-DFB-FLs can
be set both flexibly and accurately during production, a few cm of a single
fiber can be used as a compact source for several channels simultaneously



References

141

in a WDM network. These lasers also have potential for microwave and
soliton generation because of their stable beat frequency. However, MW-
FBGs may have applications in other fields than telecommunications as
well. DFB-FLs have most of their power distribution, and thus sensitivity
to a measurand, concentrated around their grating phase shifts. Chapter
8 presented a new type of MW-DFB-FL sensor design, that utilizes this
by superimposing multiple DFB-FL gratings with their phase shifts slightly
spatially separated relative to each other. Such gratings can also be written
in fibers without gain, and interrogated as passive gratings. In any case,
they may provide high resolution both in space and measurand.

So far only dual fundamental longitudinal mode DFB-FLs have been
reported experimentally [11]. As pointed out in Chapter 6, saturation of
the UV induced refractive index shift might be a problem for MW-DFB-
FLs, especially because it will cause the different wavelengths of the laser
to see different reflectivities. It is not straightforward to implement a com-
pensation measure since it has to take into account that the decay of the
grating during annealing and aging varies with the UV saturation level.
The potential of detrimental saturation effects increases with more than
two wavelengths, but fortunately the required index shift scales only with
about the square root of the number of channels when the relative phases
between the subgratings are optimized. However, to fully utilize the po-
tential of controlling the phase, the laser grating has to be written in one
scan of the UV source, which will be difficult with known technology if the
frequency separation between the gratings is large.

Recently, a DFB photonic crystal fiber laser was proposed [12]. A pho-
tonic crystal fiber has a microstructured cross section. Typically small air
tubes are oriented parallel to the fiber axis in a quasi-periodic pattern.
These holes offer high refractive index contrast with the surrounding glass,
which enables engineering of the mode field distribution by inserting defects
in the pattern. For instance, it is possible to make fibers with very small
mode field diameter, and if an erbium-doped material is used there is hence
potential for DFB-FLs with very low pump power threshold. Alternatively,
fibers with very large mode field diameters can be engineered, which would
enable high power DFB-FLs. The technology of photonic crystal fibers is
still in its infancy, and at the moment these fibers are far too lossy to be
good hosts for DFB-FLs. However, all the new design ideas for DFB-FLs
indicate that fiber lasers will continue to be an exciting field full of chal-
lenges also in the coming years, even if almost 40 years of development has
passed since the first fiber laser lit up the world.
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Appendix A

Errata

One error have been found in each of the two published journal papers in-
cluded in the thesis. The correct expression and value were used to calculate
the presented results.

Chapter 6: Analysis of Multiple Wavelength DFB
Fiber Lasers

A complex conjugation of x is omitted in the second line of the transfer
matrix given in equation (6b). The correct matrix is given below:

Tm + dmSm, (95 + JK) Sm (6b)

T%9-1 — _
" - (92 +]H*) Sms  Tm — dmSm

Chapter 9: Fiber Distributed-Feedback Lasers Used
as Acoustic Sensors in Air

In Section 3, third paragraph, it is stated that an interferometer imbalance
of 66 cm corresponds to a fringe sensitivity of 20 purad/Hz. The correct
value is 20 rad/GHz.
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Appendix B

Table of Symbols and

Acronyms

The chapters of this thesis are written independently, and there is some
variation in notation. In addition, the acronyms used may be confusing to a
novice in the field. Hopefully, the table of symbols and acronyms given here
can help a confused reader. The table is alphabetically organized. Greek
characters and other special symbols are categorized after their first letter
in their English spelling. For instance, the symbol ¢ is found with the letter
“p”. Chapter references are not given for acronyms as these have the same
meaning throughout the thesis. Only symbols that are referenced in the
text are listed systematically. I.e., not all symbols used as intermediate

values in mathematical expressions are mentioned, if they do not have a

clear physical interpretation.

Symbol/

Acronym Chapter

*
LF,,
A

— Anuusat (Z)

Angat

ao
Qo
ay

2,6,7
6
2

6

4,6,7

6,7

Definition

Complex conjugation

Phase of feedback parameter F;,
Amplitude of right traveling wave
Saturation parameter of UV induced index
change.

Thermal expansion coefficient of the fiber
material

Background loss

Average value of the saturation parameter «
Amplitude of sinusoidal modulation of

the saturation parameter a

Amplitude of right traveling wave of laser
mode m
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Symbol/

Acronym Chapter

Amyg
Gp
@pump
s

Cw

D,
§=B-K
5B,max

DBR

5COI‘I‘

DFB
DFB-FL
AK

6,7
4,6,7
6,7
4,6,7
2

8

2
6,7

NeliNaRE |

= N © ©

Definition

A, at the end of section ¢

Pump absorption at zero inversion

Pump absorption at actual inversion

Signal absorption at zero inversion
Amplitude of left traveling wave
Birefringence

Optical propagation constant

Average Bragg wave number of

subgratings in a multiple wavelength structure
Amplitude of left traveling wave of laser
mode m

B,, at the end of section ¢

Speed of light

Speed of sound

Constants in differential equation solution
found by boundary conditions

Group velocity of fiber mode

Specific heat capacity of air at constant p
Specific heat capacity of air at constant
volume

Continuous wave

Fiber diameter

Empiric constant

Detuning (of prop. constant)

Detuning between center and edge of grating
(in frequency)

Distributed Bragg reflector

Correction in detuning due to saturation of
the UV induced refractive index change
Distributed feedback

Distributed-feedback fiber laser

Nearest neighbor subgrating Bragg wavenumber
difference

Parameter in coupled mode equations

(dm =9go — Go — J(Sm)

Detuning of the propagation constant of mode
m from B

Refractive index modulation amplitude
Frequency difference between subgratings
Acoustically induced frequency shift
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Table of Symbols and Acronyms

Symbol/

Acronym Chapter

(SI/B

Avpg

Ag
A(Zscenter
A¢err
Adg,r
dqconv
D,
Dr,,
At
AT

ATy

AT(r)

DTsilica
Az

AZres,max

Az

4

Nel

~

O© ~J O N © 00 k= O

0 © o0 o
N

Definition

Detuning between mean and local Bragg
frequency of a grating

Nearest neighbor subgrating Bragg frequency
difference

RMS detuning between mean and local grating
Bragg frequency

Temperature and strain induced change of
refractive index in polarization 4

Actual local UV induced index change

Maximum achievable UV induced refractive index

modulation amplitude

Difference between the Bragg frequencies of
subgrating ¢ and r

Saturation level of UV induced index change
Total laser frequency shift (both from
temperature and pressure)

Intended local index change assuming linear
UV response

Harmonically varying acoustic pressure
amplitude at position r

Phase difference between subgratings at center
Center phase shift value

Grating phase error value

Phase difference between subgrating ¢ and r
Heat transfer due to convection

UV spot size diameter

Thermal diffusivity of air

Length of time step

Amplitude of the harmonic temperature
variation at the acoustic frequency
Amplitude of adiabatic contribution from
the acoustic wave of the harmonic
temperature variation

Harmonically varying acoustic temperature
amplitude

Thermal diffusivity of fused silica

Length of grating section

Highest achievable resolution

Length of section ¢ of grating

Young’s modulus

Electric field of incoming optical wave
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Symbol/
Acronym

EDFA

€

€kl

E,(z,1)

€60

€22

FBG
fL

Am
Fn = 9278,

FWHM
fr

Y =cpfev
90

g2

g2r

9k,0
9k,2
Gk 2r

Gloc
Jloc,k
Ym

9p

9s
Gss,k,2n

Chapter

6,7

Nel

4,6,7
4,6,7

Definition

Erbium doped fiber amplifier

The ith strain vector element in the
contracted matrix notation (See Ref. 31

of Chapter 9)

Element (k,!) of the strain tensor in
concentric layer ¢ of the fiber

Total local field of mode m at position z
and time ¢

Radial strain

Azimuthal strain

Longitudinal strain (as subscript it means
constant €,,)

Acoustic frequency

Fiber Bragg grating

Center frequency of the anti-phase intensity
oscillation closest to the main relaxation
oscillation peak

Feedback parameter of mode m

Full width half maximum

Relaxation oscillation center frequency
Acceleration due to gravity

Gain apodizing function

Damping parameter in transfer matrix
Adiabatic constant (in air)

Amplitude gain coefficient

Gain grating coeflicient

2r’th order Fourier component of gain

with respect to /3

Amplitude gain coefficient of gain medium k
Gain grating coeflicient of gain medium &
2r’th order Fourier component of gain with
respect to 3 for gain medium &

Total local gain amplitude

Local gain amplitude of gain medium k
Damping parameter in transfer matrix of mode m
Pump gain at full inversion

Signal gain at full inversion

Steady state 2n’th order Fourier component
of gain with respect to 3 for gain

medium k
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Symbol/

Acronym Chapter

Jss,loc,k

Gunsat,k

h
hbeat/Z =

%

1
tfm

b,m

R R
w o

x
N
w
<.

1459

K;

Kj

Kmax

Rsat = n‘};‘f"“
Ktot (Z)

Kth

Kunsat

lbeat/Z

7

6,7
7

Definition

Steady state local gain amplitude of gain
medium k

Unsaturated gain of gain medium &
Planck’s constant divided by 2n«

Number of half beat lengths

between subgratings

The second Hankel function of order ¢
Spontaneous emission amplitude into the
forward mode

Spontaneous emission amplitude into the
backward mode

Inversion

The modified Bessel function of the first kind
and order ¢

(Optical) isolator

Imaginary unit

Bessel function of the first kind and order 4
Boltzmann’s constant

Bragg wave number

(Complex) Refractive index coupling coefficient
Thermal conductivity

Bragg wave number of subgrating 4
Constants of the Lamé solution in concentric
fiber layer 4

Bragg wave number of subgrating 4
Coupling coefficient of subgrating ¢
Maximum coupling coefficient

Saturated coupling coefficient

Total complex coupling coefficient
Threshold coupling coefficient

Coupling coefficient expected from a linear
response to UV

Total grating length

Total grating length

Bragg grating pitch

Bragg wavelength

Half beat length between subgratings
Bragg frequency in polarization

Effective cavity length

Pitch of detuning error
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Symbol/

Acronym Chapter

Apr,

7
MFD

[ty

P

MW-DFB-FL

MW-FBG
MZ

n

N

v

n

v2

OCDR
OFDR

OSA

1,2
6,7
8

co

o

— 00 00 © © © 0o O

6,7

Definition

Bragg grating pitch

Pitch of subgrating

Pump wavelength

Low pass filter

Phase mask pitch

Amplitude of any measurand
Poisson ratio

Mode field diameter

Time derivative of A,, normalized with
respect to Ay, and Cy

Time derivative of B,, normalized with
respect to By, and Cy

Multiple wavelength DFB-FL
Multiple wavelength FBG
Mach-Zehnder interferometer
Effective (average) refractive index
An integer

Laser frequency

Empiric constant

Laplace operator

Bragg frequency of grating

Bragg frequency of grating in polarization

Effective refractive index

Noise equivalent power
Number of subgratings
Number of gain media
Effective index in polarization 1

Number of gain Fourier coeflicients calculated

Total number of modes
Laser /transmission notch frequency in
subgrating number ¢

Total number of segments in transfer matrix

calculations

Nusselt number with respect to D
Nusselt number averaged over the fiber
surface

Acoustic angular frequency

Optical coherence domain reflectometry
Optical frequency domain reflectometry
Angular optical frequency of mode m
Optical spectrum analyzer
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Symbol/

Acronym Chapter Definition

OTDR Optical time domain reflectometry

P 9 Pressure (as subscript it means constant p)

Dy(z) 6 Intended phase of complex coupling function
ignoring saturation effects

PC Polarization controller

P, 6,7 Standing wave phasor

®; 6-8 Phase of subgrating ¢

Dij 9 The (i,7)’th element of the elasto-optical

tensor of silica in the contracted matrix
notation (See Ref. 31 of Chapter 9)

P, 1,4,6,7 Pump power

P, 8 Power distribution at the notch (main
resonance) frequency of subgrating ¢

Pr 9 Prandtl number

Py 7 Local total signal (DFB-FL) power

Pt i 6,7 Saturation power, gain medium k&

Py, 1 Left signal power

P, 4,6,7 Spontaneous emission power per length

PSS, 8 Phase shift of subgrating q

Ps 1 Right signal power

Pstatic 9 Static pressure (i.e. not varying at the
acoustic frequency)

Pt 6,7 Sum power of the backward and forward
traveling waves for all laser modes.
(Total average power)

PZT Piezoelectric translator/lead zirconate
titanate

q 9 Heat per unit volume

r 9 Distance from fiber axis

r 9 Spatial position vector

R 4 Mirror reflectivity

R 7 Spontaneous emission energy per length

R 9 Fiber radius

p 9 Density of mass

Rap 9 Rayleigh number with respect to D

Rep 9 Reynolds number with respect to D

RIN Relative intensity noise

RIN,, 7 Relative intensity noise of pump

RMS Root mean square

R(v) 8 Reflectivity as a function of optical

frequency v
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Symbol/

Acronym Chapter

wl

T
t
t
T

Udrift
Uref

WDM
WLS

Ls,1y, L2

&k

N

Ck

Zerr

Oerr

Ozz

4,6,7
2

7.9
2,9

2
7
2

Definition

Pump to signal wavelength ratio
Transmission coefficient

Time

Temperature (as subscript it means
constant T')

Transfer matrix

Unquenched spontaneous emission life time
Element of ¢’th row and b’th column of
matrix T’

Transmissivity as a function of optical
frequency v

Transfer matrix of mode m from the end of
section ¢; to the end of section ¢

(a,b)’th element of matrix T

Static temperature (i.e. not varying with the
acoustic frequency)

Ultra violet

Kinematic viscosity

Volume

Cross flow velocity

Variable attenuator

Convection drift velocity

Reference velocity which vg,ig should

be compared to

Gain window width

Wavelength division multiplexing/multiplexer
White light source

Thermo-optic coefficient of the fiber material
Gaussian, normalized variables

(<zi) >+ <ziy>=1)

Fraction of erbium ions belonging to gain
medium k

Bessel function of the second kind of order i
Position along grating axis

Spontaneous emission quenching factor of
gain medium k

Phase error position

Spatial frequency of detuning error
Position of phase shift in subgrating ¢
Longitudinal stress (as subscript it means
constant o)
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