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Abstract

Death from heart diseases is the most common type of mortality in western
countries and the survival rate of cardiac arrest is dismally low. The focus
of this thesis is signal processing applications to improve the survival rate of
out-of-hospital cardiac arrest.

In the treatment of cardiac arrest, two therapeutic methods are most im-
portant: (1) Cardiopulmonary resuscitation (CPR) providing life preserving
artificial circulation and respiration through chest compressions and ventila-
tions. (2) Defibrillation defined as the termination of the lethal cardiac arrest
rhythms ventricular fibrillation (VF) or pulseless ventricular tachycardia (VT)
by delivery of an electrical shock to the patient’s chest passing current through
the heart hoping to restart the normal heart rhythm.

An automated external defibrillator (AED) is commonly used for such shocks,
and records and performs signal analysis on the electrocardiogram (ECG) in
order to advice when to shock the patient. However, the mechanical activity
from chest compressions and ventilations during CPR introduces artifact com-
ponents in the ECG. For AEDs to perform reliable ECG signal analysis, CPR
is therefore discontinued for a substantial time before the potential delivery
of a shock. So in connection with analyses and shocks, a large part of the
valuable therapy time is wasted by stopping the CPR, thus generating no flow
time (NFT) with no cerebral or myocardial blood flow, lowering the chance
of return of spontaneous circulation (ROSC). If the need for this hands-off
time could be reduced or eliminated by removing these artifacts, it should
significantly improve the ROSC rate.

We propose a method for removing CPR artifacts using a novel multichan-
nel adaptive filter, the MultiChannel Recursive Adaptive Matching Pursuit
(MC-RAMP) filter. MC-RAMP is a computationally efficient and numeri-
cally robust general purpose adaptive filter, but in our setting uses reference
channels providing information correlated with the CPR artifacts in the ECG.
In one of our experiments we test and find MC-RAMP to perform on par with
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the theoretically optimal time-varying Wiener filter, but being more compu-
tationally efficient and numerically robust.

Using the most realistic data set to date, human out-of-hospital cardiac arrest
data of both shockable and non-shockable rhythms, we test CPR artifact filter-
ing by MC-RAMP and evaluate the feasibility of ECG analysis during CPR.
In our experiments we use a shock advice algorithm (ECG rhythm analysis)
and individual ECG signal features to reach the conclusion that after CPR
artifact filtering, ECG rhythm analysis during ongoing CPR is feasible.

Finally, we analyze and quantify the no flow times (NFTs) during external
automatic defibrillation in cardiac arrest patients and show that these patients
were not perfused (did not have any natural or artificial blood flow) around
half of the time. We propose methods using CPR artifact filtering by MC-
RAMP to reduce NFT in connection with analyses and shocks, and show their
significant and promising potential for reducing the NFT. By introducing the
proposed methods into an AED, the NFT would be significantly reduced,
hopefully increasing the survival.
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Chapter 1

Introduction

Death from heart diseases is the most common type of mortality in western
countries. In the USA alone, it is estimated that each year between 400000
and 460000 people die of sudden cardiac arrest (heart stop) in an emergency
department or before reaching a hospital, which accounts for over 60% of
all cardiac deaths [10, 110]. There is an estimated event rate of 1–2 sudden
cardiac arrests per 1000-person years [10,111] with a survival rate of less than
10% [14]. Similar dismal numbers are reported in other countries in the world.
In Norway (1998), more than 6000 persons die suddenly and unexpectedly out
of hospitals each year. About 80 percent of these deaths are expected to be
caused by cardiac diseases [79].

An incident of cardiac arrest may be witnessed by a bystander which then
calls for emergency medical services (EMS). A crucial factor for survival is
whether this bystander, the lay rescuer, knows basic life support (BLS). Ar-
tificial respiration (e.g. mouth-to-mouth ventilation) and circulation (chest
compressions) are key elements of BLS. From the late 1950’s they have been
recognized as parts of a whole and combined to create cardiopulmonary resus-
citation (CPR) as we know it today [81]. The lay rescuer continues CPR until
the arrival of an ambulance with a professional rescue team. They provide
advanced life support (ALS) by clearing the airways and providing CPR, drug
therapy, and defibrillation of the heart using a high-energy electrical pulse
from a defibrillator. Finally, the patient is brought to the intensive care unit
of a nearby hospital. If the outcome is successful, the patient has obtained
return of spontaneous circulation (ROSC), is admitted to the hospital alive,
and finally discharged with normal life functioning.

With the introduction of automated external defibrillators (AEDs) during the
mid-1980s, providing automatic signal analysis and shock advice, a broader
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2 Introduction

group of defibrillator operators was reached. Through development of AEDs,
defibrillation therapy has become easy to use for lay persons with minimal
training. Public access defibrillation (PAD) programs necessitates the use of
AEDs by the lay public during BLS, and as a result defibrillation therapy is
available to a greater proportion of patients early in cardiac arrest.

In the remaining part of this introductory chapter, we first introduce in Sec-
tion 1.1 the key problem discussed in this thesis as well as earlier research on
this problem. Then the scope and contributions of this work are presented in
Section 1.2, before we finally give an outline of the thesis in Section 1.3.

1.1 Key problem and earlier research

There are many varying factors in cardiac arrest resuscitation complicating the
scene described above: previous heart disease, presence of witnesses, quality
of bystander BLS, response time of the ambulance system, the quality of ALS
etc. All in all, the survival rate (to hospital discharge) of cardiac arrest is
generally low, typically less than 20% in Europe [52].

As stated in [14], it is thought that ”successful treatment depends more on
when treatment is done than on what is done”. Early defibrillation has there-
fore been a high priority goal. Recently, it has been recognized that a period
of CPR before defibrillation is beneficial, at least if the patient has been in
cardiac arrest for some minutes [23, 103]. The condition of the heart deterio-
rates fast when no artificial (CPR) or natural circulation is present. Pauses in
chest compressions halts artificial circulation and introduces detrimental no
flow time (NFT), and is thought that only a few tens of seconds significantly
reduces the chance of successful defibrillation and ROSC [17,32,66,88,108].

For AEDs to analyze if the patient can be defibrillated, i.e. has a heart rhythm
susceptible to an electrical shock, the electrocardiogram (ECG) is recorded
and analyzed. The ECG represents the electrical activity of the heart and
plays an important role in assessing the patient’s status during the therapy of
cardiac arrest. However, the mechanical activity from chest compressions and
ventilations during CPR introduces artifact components acting as noise in the
ECG. For AEDs to perform reliable ECG signal analysis, CPR is therefore
discontinued for a substantial time before the potential delivery of an electric
shock. If the need for this hands-off time could be reduced or eliminated
by removing these artifacts, thus enabling analysis during CPR, it should
significantly reduce the NFT and improve the defibrillation success rate. The
primary aim of this work is therefore to develop a method for removing CPR
artifacts in ECG to enable reliable signal analysis in ECG during CPR.
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The work previously done on removal of CPR artifacts, has been done mostly
using animal ECG, or an artificial mix of human and animal ECG. Artifact
removal has been done successfully on animal ECG applying high-pass digital
filters with fixed coefficients [78, 91]. In human ECG, however, the frequency
components of the artifacts overlap with the frequency components of the
heart activity, which makes separation by such filters infeasible and this limits
further analysis. This was indicated by Strohmenger et al. [92] and shown in
Langhelle et al. [69] which also suggested the use of adaptive filters instead
of fixed coefficients filters. In a mix of pig CPR artifacts and human ECG,
Aase et al. used an adaptive filter, the multichannel time-varying Wiener filter,
for filtering of CPR artifacts [1]. However, prior to the work in this thesis,
no studies have been performed on real human out-of-hospital cardiac arrest
ECG of both shockable and non-shockable heart rhythms.

1.2 The scope and contributions of this work

The main motivation factors for removing the CPR artifacts in ECG are:

• To enable reliable signal analysis also during CPR in AEDs, not ”wast-
ing” time that could have been used for maintaining a blood flow to the
tissues (through chest compressions).

• To visually improve the ECG in settings where the users manually as-
sesses the ECG.

The development and usage of a CPR artifact remover is the main focus of
this dissertation, and we might contribute to increased cardiac arrest survival
rates if we can:

• Develop an efficient filter for CPR artifact removal revealing the true
underlying ECG heart rhythm.

• Evaluate if such a filter makes ECG signal analysis during CPR possible
in the out-of-hospital cardiac arrest setting.

• Suggest methods using the CPR artifact filter to reduce the NFT during
cardiac arrest resuscitation using AEDs.

We will develop a new multichannel adaptive filter for CPR artifact removal,
test this filter using real out-of-hospital cardiac arrest ECG and propose a
scheme for using the filter in AEDs. Briefly described, the major contributions
of this work are as follows:
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• Development of a new multichannel adaptive filter, the MultiChannel
Recursive Adaptive Matching Pursuit (MC-RAMP) filter, in general,
and for CPR artifact removal usage.

• Selection of existing, and development of some new ECG signal features
for possible use in an algorithm for rhythm analysis.

• Comparison of the performance of the theoretically optimal time-varying
Wiener filter versus MC-RAMP in the setting of CPR artifact removal
in a mix of human and animal ECG.

• Evaluation of the feasibility of performing ECG signal analysis during
CPR through tests using an existing AED shock advice algorithm and
through investigations of the influence of CPR artifacts on common in-
dividual features used in ECG analyses. Tests are done using ECG
collected from episodes of out-of-hospital human cardiac arrest.

• Development of additional methods to improve the performance of CPR
artifact removal.

• Proposal of a scheme to reduce NFT in AEDs using among other factors
artifact filtering. The potential of the proposed scheme is shown by
comparing NFT in incidences of actual out-of-hospital cardiac arrest
treatment using an AED versus the proposed scheme.

Much of the work presented in this thesis has been or is in the progress of be-
ing published in international journals [55,33,37,38], international conference
proceedings [35], and as abstracts from national or international conference
presentations [36,39].

1.3 Thesis outline

The following chapters constitute the thesis:

Introductory part

Chapter 1 is this introductory chapter introducing the work in this thesis.
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Chapter 2 presents the necessary medical background material to motivate
and explain the potential clinical significance of this work. The key problems
of current therapy of cardiac arrest are discussed, and the problems focused
upon in this dissertation are further discussed along with a short review of
previous work.

Materials and methods

Chapter 3 describes the data used in this work, which includes ECG, related
information, and auxiliary data channels. The data includes both human and
pig cardiac arrest ECG.

Chapter 4 describes the development of a new multichannel adaptive filter,
the MC-RAMP filter, which we will use later in the thesis for removal of CPR
artifacts in ECG. Modifications to the basic MC-RAMP algorithm improving
its performance are also presented.

Chapter 5 presents some features and algorithms to be used to evaluate
the CPR artifact removal performance of the MC-RAMP filter. This includes
a proprietary AED shock advice algorithm, some features published in the
literature, and some features developed by us in this thesis.

Experiments: Removal of CPR artifacts and reduction of NFT

Chapter 6 evaluates the MC-RAMP performance in terms of signal-to-noise
ratio (SNR) improvements in filtering of artifacts in a mix of animal CPR
artifacts and human cardiac arrest ECG. The performance is compared with
the theoretically optimal multichannel time-varying Wiener filter.

Chapter 7 uses a shock advice algorithm to further test the performance
of CPR artifact filtering using MC-RAMP. Using ECG segments with and
without CPR artifacts close in time and with the supposed same underlying
heart rhythm, we filter CPR artifacts from human ECG to see if a shock advice
algorithm will advice the same.

Chapter 8 presents methods to improve the results of Chapter 7. The
methods include adding a short verification analysis in clean ECG and/or
postponing analysis in segments with too difficult noise.
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Chapter 9 uses various cardiac arrest rhythms from human ECG to examine
the influence of CPR artifacts on individual features used in signal analysis of
ECG, and if artifact filtering can reduce this influence.

Chapter 10 analyzes and quantifies the detrimental no flow times (NFTs)
in our human ECG collected during external automatic defibrillation. We will
propose methods to reduce the NFT and see how much time could have been
saved.

Conclusive part

Chapter 11 summarizes the major contributions and conclusions from this
work, and finally suggests some directions for further research.

In addition there are two appendices:

Appendix A presents a quantitative complexity analysis of the basic MC-
RAMP algorithm.

Appendix B lists the available patient episodes from a human cardiac arrest
database used in this work, and for what studies they were used.



Chapter 2

Background

In this chapter we will first present the necessary medical background material
to motivate and explain the potential clinical significance of our work. This
includes some physiology of the heart, definition of cardiac arrest, ECG and
cardiac arrest rhythms, as well as current therapy of cardiac arrest. We will
further outline the key problems of current therapy, including the problem
with no flow time which is the core problem to be studied in this thesis.
Successful filtering of CPR artifacts is essential to solving this problem, and
will be discussed, along with a short review of previous work and the outline
of directions to be followed.

Some of the material in this chapter is adapted from [33].

2.1 The heart and its conduction system [11,43,99]

The heart and its conduction system is shown in Figure 2.1. The heart is a
hollow muscular organ (the myocardium – the cardiac muscle) about the size
of a clenched fist. It serves as a four-chambered blood pump for the circulatory
system. The two main chambers, the ventricles, supplies the main pumping
function, while the two antechambers, the atria, primarily store blood during
the time the ventricles are pumping. The heart cycle has two phases; the
resting or filling phase (the diastole) and the contractile or pumping phase
(the systole).

For the heart to adequately pump blood through the body, the heart must con-
tract in a highly synchronized fashion. First both atria contract, then both
ventricles contract. The contractions are coordinated by an elaborate con-
duction system spreading an electric impulse, the cardiac impulse, throughout

7



8 Background

Figure 2.1: The conduction system of the heart (frontal view). The illustration is taken
from Principles of Human Physiology [43], c© 2002 Pearson Education.

the heart. This determines the sequence of excitation (activation) of cardiac
muscle cells.

In a healthy heart, the sinus node (sinoatrial node) in the right atrium serves as
a pacemaker and initiates the cardiac impulse1, causing the atria to contract.
The impulse is spread through the atria reaching the atrioventricular (AV)
node, which leads the impulse into the AV bundle (bundle of His) and its
branches (left and right bundle branches and the Purkinje fibers) causing the
ventricles to contract. This is repeated for each heartbeat, with the heart rate
set by the sinus node (normally about 70 beats per minute (bpm)).

2.2 Cardiac arrest

In cardiac arrest, the normal pumping operation of the heart described above
has stopped. Cardiac arrest is defined in the Utstein II international consensus
workshop (1991) as the ”cessation of cardiac mechanical activity, confirmed

1As a backup, if the sinus node fails to function, the AV node or even certain cells in the
Purkinje fibers will serve as the heart’s pacemaker, although at a lower heart rate.
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by the absence of a detectable pulse, unresponsiveness, and apnea2 or agonal,
gasping respiration” [27]. Sudden cardiac death is the term usually used for
unexpected death of cardiac causes occurring immediately or within 1 hour of
onset of first symptoms [14].

As mentioned in Chapter 1, sudden cardiac arrest claims many lives, several
hundred thousand each year in the USA alone. The survival rate of sudden
cardiac arrest is dismally low. The chance of having a cardiac arrest increases
with age, and men seem to be more prone to cardiac arrest than women
[53, 110]. In a study from Seattle, Washington, in 1999-2000, 64.9% of the
cardiac arrest patients were men and the mean age was 69.9 years [24].

There are many causes of cardiac arrest, both cardiac and non-cardiac causes3.
Of the cardiac causes, coronary artery disease is the most common cause.
Other possible cardiac causes include cardiac arrhythmias, acute myocardial
infarction, valvular heart disease, cardiomyopathy or myocarditis, prolonged
QT interval, congenital heart disease, intracardiac tumor, Wolff-Parkinson-
White syndrome, and pericardial tamponade [4]. Some non-cardiac causes
of cardiac arrest include pulmonary embolism, choking and asphyxia, drug
ingestion, substance abuse, stroke, hypoxia, hypoglycemia, alcoholism, allergic
reactions, and electrical shock [4].

2.2.1 ECG and cardiac arrest rhythms

The ECG is a recording of the bioelectrical activity of the heart and plays an
important role in assessing the patient’s status during the therapy of cardiac
arrest. The normal heart rhythm is called the sinus rhythm, with electrical
impulses originating in the sinus node producing various waves on the ECG
as they spread throughout the heart. A typical sinus rhythm is shown in
Figure 2.2 characterized by regular P waves, QRS complexes, and T waves
representing each heartbeat.

During cardiac arrest, the mechanical pumping of the heart stops and the
normal sinus rhythm in the ECG changes to some cardiac arrest rhythm, an
arrhythmia. The most common groups of rhythms found during cardiac arrest
are listed below:

2An absence of spontaneous circulation [11].
3Since they are not important to us later in the thesis, we only mention the causes without

explaining them. We just want to give an impression of the variability of causes. For more
information, we refer to a medical dictionary, such as [11], or other medical literature.
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P

QRS

T

Figure 2.2: ECG of a normal sinus rhythm with its characterizing waves and complexes:
The P wave originates from the sequential activation (depolarization) of the right and
left atria, the QRS complex is due to right and left ventricular depolarization (normally
the ventricles are activated simultaneously) and the T wave is due to the ventricular
repolarization.

• Ventricular fibrillation (VF) is a seemingly chaotic rhythm that orig-
inates in the ventricles. The ventricles quiver and, as a result, there is
no useful contraction and no pulse. The fibrillation is maintained by
the presence of multiple activation waves moving randomly through the
myocardium around areas of refractory tissue [97]. The resulting ECG
rhythm is irregular with chaotic deflections that vary in shape and am-
plitude. Figure 2.3(a) and (b) show two VF examples, both ”coarse”
VF (high amplitude waves) and ”fine” VF (low amplitude waves). VF is
considered shockable and should be treated with a defibrillatory electro-
shock. Left untreated, the VF amplitude seems to decay, and the rhythm
converts to asystole (see below) over time. In a study of out-of-hospital
cardiac arrest patients in Sweden between 1990 and 1995, initial VF
rhythm was estimated in 80–85% of the patients [53], making VF the
most common initial cardiac arrest rhythm. For more information on
the mechanisms of VF, see [56].

• Ventricular tachycardia (VT) is a rapid ventricular arrythmia with
rate over 100 beats per minute (bpm). VT consists of three or more
premature ventricular complexes4 (PVCs) occurring in immediate suc-
cession. VT may occur with or without pulse, and could have essentially
regular waves (monomorphic) or be more irregular and varying in shape
(polymorphic). Normally, the P wave is absent and the QRS complex
is wide (greater than 120 ms) [5]. In the cardiac arrest context, non-
perfusing (pulseless) VT with rate over 150 bpm is considered shockable.

4An arrhythmic heartbeat characterized by ventricular depolarization occurring earlier
than expected. Appearing on the ECG as an early wide QRS complex without a preceding
related P wave. [11]
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Figure 2.3(c) shows an example of VT.

• Asystole is total absence of ventricular activity, with no ventricular rate
or pulse. Some atrial electrical activity may be present [5]. Asystole is
not considered shockable, but is often treated with chest compressions,
ventilations and medications (hoping to induce VF which is shockable).
Figure 2.3(d) shows an example of asystole.

• Pulseless electrical activity (PEA) is a clinical situation, not a spe-
cific arrythmia, and was previously known as electromechanical dissoci-
ation (EMD). PEA exists when organized activity (other than VT) is
observed in the ECG, but no pulse is palpable [5]. PEA waveforms can
differ greatly in shape and amplitude, with narrow or wide QRS com-
plexes, but are generally regular and organized. Narrow complex PEA
is often associated with higher likelihood of successful resuscitation than
wide complex PEA [12], and is often difficult to separate from pulse-
giving rhythms in ECG. PEA can sometimes be a transitory rhythm
after a shock, or have other causes which may be specifically treated.
PEA is not considered shockable, but is often treated with chest com-
pressions, ventilations and medications. Figure 2.3(e) and (f) show two
examples of PEA.

2.3 Treatment of out-of-hospital cardiac arrest

During cardiac arrest, the heart stops its normal pumping of blood to the
body, resulting in death in a matter of minutes. There are at present only
two factors thought to reverse this process and make the heart start pumping
again [9]:

1. Cardiopulmonary resuscitation (CPR) defined as external cardiac mas-
sage (chest compressions) and artificial respiration (ventilation) [11].
This is the basic life support (BLS) providing some circulation of the
blood counteracting death or brain damage due to lack of oxygen. Chest
compressions compresses the heart between the breastbone (lower ster-
num) and spine (thoracic vertebral column) forcing blood through the
body. Both hands of the rescuer with the fingers interlocked are placed
on the patient’s chest and the breastbone is depressed 3.8–5.1 cm [9].
This is repeated at a rate of 100 compressions per minute. Ventilation
of the patient is done through mouth-to-mouth breathing in BLS or a
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Figure 2.3: Some examples of ECG tracings of cardiac arrest rhythms.
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mechanical form of ventilation, often after intubation5, in advanced life
support (ALS). During BLS with mouth-to-mouth breathing, the cycle
of 15 compressions before 2 full breaths are repeated. After intubation,
ventilations may be provided without stopping the compressions so the
patient may be compressed continuously. Note that even well executed
CPR can only provide 25%–35% of the normal blood flow [11].

2. Defibrillation defined as the termination of VF or pulseless VT by de-
livery of an electrical shock to the patient’s chest [11]. The purpose of
the shock is to pass current through the heart, hoping to knock out the
chaotic electrical activity of the heart during VF or VT, anticipating
that the regular rhythm-generating system in the heart again can take
over and generate a pulse. The machine delivering these shocks is called
a defibrillator.

The current recommended treatment of cardiac arrest is described in inter-
national guidelines, with the latest from 2000 [9], and can be summarized as
follows: The AED records ECG, and uses a software algorithm analyzing the
ECG waveforms to determine whether the rhythm is shockable (VF or VT) or
not. Based on the analysis results, a voice prompt recommends defibrillation
or not. The current CPR guidelines recommend immediate defibrillation if
the first recognized rhythm is shockable. If this first shock is unsuccessful in
terminating the VF or VT, up to two more shocks are recommended before
CPR is started. Thereafter series of defibrillation attempts and CPR periods
are repeated until return of spontaneous circulation (ROSC) is achieved or the
whole resuscitation attempt is discontinued. For non-VF/VT rhythms, CPR
is continued until a shockable rhythm is achieved, or the whole resuscitation
attempt is discontinued.
Although drugs are also being used during ALS, no drugs have been shown to
improve the outcome clinically [9]. Without the use of a defibrillator very few
patients with VF obtain ROSC. With the use of a defibrillator approximately
40–60% of the VF/VT patients might achieve ROSC [24, 50, 94, 103], with a
survival rate to hospital discharge varying usually between 5 and 30% [24,40,
50,52,94,103]. For other cardiac rhythms, the prognosis is dismal, usually with
a survival rate of 1–5% [24, 40], and most of the survivors have gone through
a stage with VF and successful defibrillation before achieving ROSC.
Current international guidelines state that early defibrillation within 5 minutes
of call-receipt by the EMS is a high priority goal [9]. To achieve this, non-
medical personnel must be enabled to defibrillate in so-called public access

5Insertion of a breathing tube through the mouth or nose into the trachea to ensure an
open airway [11].
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defibrillation (PAD) programs using automated external defibrillators (AEDs,
see Section 2.3.1). Therefore, the current focus has turned onto development
of more defibrillation efficient, lightweight, and easy-to use defibrillators. For
a review on the role of the automated defibrillator in improving survival from
sudden cardiac death, see [72].

The most important factors influencing the survival rates of out-of-hospital
cardiac arrest patients are:

• Time elapsed from collapse until the first defibrillation attempt [50, 70,
103].

• Whether CPR has been provided or not [26].

• The quality of both CPR and ALS [98,100].

The interplay of these factors is decisive for the final outcome. Recent stud-
ies strongly indicate that it is time-dependent whether defibrillation should
be attempted as soon as a defibrillator is available, if good-quality CPR has
not been provided in the meantime. If more than a few minutes have passed
from the time of arrest until the defibrillator arrives (more than 4–5 minutes
response time), a 1.5–3 minute period of CPR should precede the defibrilla-
tion attempt [23, 103]. This is probably the result of a deterioration of the
myocardium due to lack of myocardial circulation resulting in an inability of
the regular rhythm-generating system in the heart to take over after a defib-
rillation attempt.

2.3.1 The automated external defibrillator (AED)

The AED is a machine capable of delivering electrical shocks to terminate
VF/VT rhythms. A capacitor is charged and the energy stored in it is dis-
charged through a pair of electrodes connected to the chest of the patient,
normally one electrode at the upper right portion of the chest6 and one at the
left side of the chest below the armpit7. The strength (energy) of the electrical
shock is expressed in joules (J). The current can be delivered through differ-
ent waveforms. The two most common groups are monophasic and biphasic
waveforms. The newer biphasic waveforms are shown to be more effective in
terminating VF/VT rhythms using a lower energy setting (typically 150 J)

6Placed to the right of the upper sternum below the clavicle [11].
7Placed to the midaxillary line of the left lower rib cage [11].
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than monophasic waveforms (typically 200–360 J) [44, 45, 74]. This is benefi-
cial since the electrical shock in itself can be harmful to the heart, increasingly
so for higher energies [107].

An AED records the ECG which is shown for monitoring purposes. More im-
portantly, an AED can analyze the ECG to determine if a shockable rhythm
is present. AEDs may be fully automated or semi-automated. If a shockable
rhythm is present, a fully automated AED will, after press of an ”analyze”
button, automatically charge its capacitor and deliver the shock without fur-
ther input of the operator. In semi-automatic mode, also called shock advisory
mode, the AED will analyze and indicate if a shock is advised, automatically
charge the capacitors, but wait for the operator to press a ”shock” button
to deliver the shock. Note that the AEDs in semi-automatic and automatic
mode advice the operators when to pause and resume treatment (e.g. CPR).
For instance, when the machine is analyzing, the operators are told to pause
the treatment. Such pauses are detrimental to the patient as will be further
discussed in the next section. Some AEDs can also be operated in manual
mode, that is, with no machine ECG rhythm analysis, and manual start of
capacitor charging and delivery of shock.

2.4 Key problems in cardiac resuscitation today

There are many factors complicating and contributing to the outcome of the
cardiac resuscitation, and unfortunately the survival rate of cardiac arrest is
generally low, typically less than 20% in Europe [52]. The key problems in
cardiac resuscitation today are:

• Much time without blood flow being generated, i.e. no flow time

• A large number of unsuccessful shocks

• Quality of compressions and ventilations delivered might be poor

This section will discuss these factors weakening the treatment of cardiac ar-
rest.

2.4.1 Aspects of no flow time

Many shocks given to a patient today is unsuccessful, i.e. no ROSC occurs
or even the shock fails to terminate the VF. It is important to consider that
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each such defibrillation attempt requires a time period for rhythm analysis,
capacitor charging, shock delivery and new postshock rhythm analysis where
no CPR can be given, as the rhythm analysis software requires that the patient
lies completely still to avoid any ECG artifacts being created. In one study, the
median time from initiation of rhythm analysis until shock was given, was 20
seconds [94]. In a follow-up study of the same material, it was shown that the
myocardial condition deteriorated substantially during that same period [32].
In a study using swines [108], an increase of the hands-off time (time from
CPR end to shock) from 3 to 15 seconds decreased the portion of successfully
resuscitated animals (ROSC restored) in each group from 100% to 40%. In
the group with 20 seconds hands-off time, no animal survived. Other studies
also indicate the same [17,66,88].

Hands-off time is often used as the time from CPR end to shock delivery.
More generally, we define no flow time (NFT) as time with no natural or
artificial myocardial and cerebral (brain) blood flow, which occurs in several
situations, both as a consequence of the current guidelines [9], the defibrilla-
tors, and for other reasons. Some reasons for NFT periods include delivery
of shocks, rhythm evaluation (automatic or manual), charging of the capaci-
tor, checking for pulse, ventilations in unintubated patients (which is done in
between compression series), intubating, and starting intravenous lines. Nor-
mally, more NFT has been associated with AED use compared to manual
defibrillation [17]. Overall, a study investigating 184 patients treated with
AEDs showed that CPR was performed only 45% of the connected time [7].

Reducing the NFT is the main objective in this thesis, and we will later in-
vestigate the means to do so.

2.4.2 The large number of unsuccessful shocks

Many studies report very high defibrillation success rates, 95–99%. Yet the
ROSC-rate is frequently less than 50%, and many patients achieving ROSC
require many defibrillation attempts [50,94]. This might be somewhat confus-
ing, and is due to the definition of defibrillation success. As mentioned above,
the immediate purpose of using the defibrillator is to terminate the VF or VT,
hoping that this will give room for a pulse-generating rhythm (ROSC). Thus
defibrillation success is frequently defined as the absence of VF or VT for at
least the first 5 seconds after the shock [45]. Clinically, we are interested in
ROSC which as suggested above does not only depend on the quality of the
defibrillator and defibrillation attempt, but also on the condition of the my-
ocardium, which again depends on the duration of the cardiac arrest and the



2.5 Medical decision support system 17

CPR provided [103]. A clinical definition of a successful defibrillation attempt
could therefore be ROSC, stable or not [94]. In these terms, only 10% of 883
shocks were successful in the study by Sunde et al [94].

It has been shown that a defibrillation attempt in itself is harmful to the
myocardium [107]. Therefore, it would be a great potential advantage if de-
fibrillation attempts not resulting in ROSC could be predicted and avoided.

2.4.3 Poor quality of compressions and ventilations

In general one might say that the chance for ROSC is at its highest level
immediately after the arrest, when the heart muscle still has a high supply of
energy resources and oxygen. As time passes, these resources are drained. The
rate of this drainage can at least be reduced by properly performed CPR, which
as mentioned above, probably can even improve the myocardial situation if
there has been a period without properly executed CPR before the defibrillator
is available. However, the quality of CPR given by both lay persons and
rescue personnel may be poor (e.g. too shallow chest compressions [104]).
The skills involved in the performance of chest compressions and ventilations
may be poorly acquired and poorly retained [19,63,106]. To improve this, voice
advisory systems have been introduced with good results in training [101,102]
and for actual CPR feedback in AEDs [49,112].

2.5 Medical decision support system

The last 15 years has seen advances in research addressing the problems stated
in Section 2.4, investigating methods that have a potential for improving the
survival rates from cardiac arrest. In essence, the rescuer should be guided
by information at least partly gathered on-line and processed in real-time, in
her/his decision making on which therapeutic component to use. Such meth-
ods are parts of a decision support system. A decision support system might
be considered as representing the knowledge of former therapy. A framework
for medical decision support system in AEDs was proposed by Eftestøl [30].
The modules in such a system are illustrated in Figure 2.4. In the following,
we will discuss the components of the decision support system. This includes
the CPR artifact remover component, the main contribution of this work. Its
primary function is to remove CPR artifacts in the ECG to enable analyses
during CPR. The clinical value of this is reduced NFT related to analyses and
shocks, since CPR can be continued for a longer period of time.
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Figure 2.4: The modules in a medical decision support system for cardiac arrest resusci-
tation.

2.5.1 The raw ECG and other data sources

The integration and availability of multiple information sources are crucial for
the other parts of the decision support system and the technical improvements
in cardiac arrest resuscitation.

For clinical use in a decision support system we only have the information
provided by the defibrillator, i.e. the time series recordings of ECG, an event
report (with information on internal statuses and operations), and in some
cases other related data channels such as impedance and accelerometer mea-
surements.

For further retrospective analyses the therapy of cardiac arrest is documented
in report sheets carrying information about patient demographics and impor-
tant therapy. Both defibrillator event records and report data are synchronized
to the time series data. Based on the integration of this information, compo-
nents in a visualization of the time series data with events and report details
shown, the medical experts are able to interpret and annotate the data. Such
structured information can be used to train the decision support system.

2.5.2 The CPR artifact remover

The feature extractor and classifier in the decision support system rely on
clean data for reliable analyses. Because of this, CPR must be stopped during
analyses in current AEDs. This is because the mechanical activity from chest
compressions and ventilations during CPR introduces artifact components in
the ECG, affecting and disturbing the analyses. The role of the CPR artifact
remover is to remove these artifacts, providing clean data to the feature extrac-
tor. As a consequence, NFT around analysis and shocks can be reduced. As
discussed in Section 2.4.1, NFT is detrimental in cardiac arrest resuscitation,
with more NFT currently being associated with AED use compared to man-
ual defibrillation. Functionality for removing CPR artifacts is not currently
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implemented in AEDs, and it is currently not certain if such functionality can
enable reliable analyses during CPR.

Developing an efficient CPR artifact remover, evaluating the feasibility of anal-
yses during CPR, and ultimately how to reduce the NFT in AEDs are the main
problems we will investigate in later chapters. We discuss these problems fur-
ther in Section 2.6.

2.5.3 The feature extractor and classifier

In general, a feature extractor measures certain properties or characteristics,
termed features, in a signal. For a given purpose, this enables the signal
to instead be represented by these features – which are most often of lower
dimension or size. A classifier uses features to discriminate between different
signal classes and may calculate the probability of a certain signal belonging to
a certain class. The classifier contains prior knowledge about the classes and
features, and is often trained using a training set, a particular set of signals
where their true class belongings are known. For more information, see pattern
classification books such as [28,96].

This section will discuss several uses of a feature extractor and classifier that
are, or proposed to be, used in an AED during cardiac resuscitation. In the
testing of our CPR artifact remover, we will use a proprietary feature extractor
and classifier for rhythm analysis, as well as individual features. See Chapter 5
for a description of these.

Shock advice – rhythm analysis

Rhythm analysis is used to distinguish between shockable rhythms such as VF
and VT with rate over 150 bpm, and non-shockable rhythms such as asystole,
PEA, and various pulse rhythms. This is used to make a shock advice; a
shock/no-shock decision.

A rhythm analysis is implemented in all AEDs, often termed the shock ad-
vice algorithm. Most of these algorithms are proprietary and their internal
operations are not publicly available. However, through publicly available
application notes, some properties of the algorithms can be deduced. The
shock/no-shock decision can be based upon features such as the average am-
plitude, the isoelectric baseline content, QRS detection, waveform organiza-
tion/regularity and rate [83]. Other features are also tested experimentally
and described in the literature [68,13,87,86,20,109,58,59,60]. Some of these,
as well as a few developed for this thesis, are described in Chapter 5.
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Predicting shock outcome – VF analysis

VF analysis is the analysis of VF and VT rhythms to predict the success of
defibrillation (shock outcome prediction) in order to avoid wasting time on
unsuccessful and potentially harmful defibrillation attempts.

Work aiming at predicting the shock outcome goes back almost 20 years with
several research groups having been involved as reviewed by Amann et al [8].
However, no AED available has this kind of functionality. It has only been
used for retrospective analysis. The ability to predict the outcome of defib-
rillation is a key issue in improving resuscitability. The idea is that one or
several predictors of defibrillation outcome can be measured from the ECG
waveform. There are now quite a few studies showing that the VF waveform
contains such information [29,78,84,89,93]. Thus, if the predictors (features),
have good discriminative power, we will be able to avoid unsuccessful defibril-
lation attempts (no ROSC) and shock only when we know that the chance for
success (ROSC) is high. Such a decision should be based on a compound anal-
ysis of several features, and the predictor’s (classifier’s) output could be a hard
decision SHOCK/DO NOT SHOCK or a soft decision producing a continuous
outcome variable, for instance the probability of ROSC, PROSC [31]. Possible
features considered for shock outcome predictors include amplitude features
such as mean VF voltage, frequency features such as median frequency, non-
linear dynamics features such as correlation dimension and scaling exponent,
bispectral energy, amplitude spectrum analysis (AMSA), wavelets, and N(α)
histograms [8].

Measuring the effects of therapy – online monitoring

In addition to shock outcome prediction, features could be used to measure the
effects of therapy [32], such as performance feedback during CPR. This could
be used to optimize the sequence and quality of the various components of ALS
and BLS. Not only the ECG waveform is used for extracting useful features.
A recent animal study implies the application of transthoracic impedance sig-
nals for breath- and pulse-check [82]. This offers the opportunity to shorten
therapy-decision-time following a defibrillation. Also the Zoll AED PLUS
defibrillator offers accelerometer based measurements of compression depth.
Further processing of these measurements facilitates automated feedback on
chest compression performance in order to increase CPR quality [112].
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2.6 Problem formulations

We have given some clinical background on cardiac arrests and the key prob-
lems in the treatment of cardiac arrest today. The medical decision support
system described in Section 2.5 includes a CPR artifact remover component.
The main motivation factors for removing the CPR artifacts in ECG are:

• To enable reliable signal analysis also during CPR in AEDs, not ”wast-
ing” time that could have been used for maintaining a blood flow to the
tissues.

• To visually improve the ECG for decision support in manual mode de-
fibrillation where users manually assesses the ECG.

The development and usage of a CPR artifact remover is the main focus of
this dissertation, and we might contribute to increased cardiac arrest survival
rates if we can:

• Develop an efficient filter for CPR artifact removal.

• Evaluate if such a filter makes ECG signal analysis during CPR possible
in the out-of-hospital cardiac arrest setting.

• Suggest and evaluate methods using the artifact filter to reduce the NFT
during cardiac arrest resuscitation using AEDs.

These tasks, to be investigated in later chapters, are further discussed in this
section. We also provide a short overview of earlier work in these areas.

2.6.1 Enabling ECG analyses during CPR – filtering CPR ar-
tifacts

The mechanical activity from chest compressions and ventilations during CPR
introduces artifact components in the ECG. These artifacts will often fool al-
gorithms for ECG signal analysis. For AEDs to perform reliable ECG signal
analysis, CPR is therefore discontinued for a substantial time before the po-
tential delivery of an electric shock. If the need for this hands-off time could
be reduced or eliminated by removing these artifacts, enabling signal analysis
during CPR, it should significantly improve the defibrillation success rate as
discussed in Section 2.4.1.

In the remainder of this section, we will discuss CPR artifacts, earlier work,
and our own work on reducing these artifacts in ECG.
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CPR artifacts

The CPR artifacts vary a great deal in shape and amplitude, and may be more
or less prominent in the ECG – from apparently not disturbing the heart’s
own activity at all to being completely dominant with amplitudes exceeding
several mV. Artifacts from chest compressions are the dominating artifacts,
with ventilation artifacts normally appearing in ECG only as a small baseline
drift. Some examples of ECG with CPR artifacts are shown for VF, asystole,
and PEA/PR segments in Figures 2.5, 2.6, and 2.7, respectively. The first
10 seconds of each example are with CPR artifacts (mainly chest compression
artifacts), whereas the last 10 seconds are without (or with small ventilation
artifacts as seen as small baseline ”jumps”).

The CPR artifacts can have several origins. A CPR artifact model was sug-
gested by Langhelle et al. [69], where the artifacts are composed by the sum
of four individual artifact generators:

1. Artifact components originating from the heart due to mechanical stim-
ulation.

2. Artifact components generated by mechanical stimulation of thorax mus-
cles.

3. Artifact components originating from the electrode-skin interface due to
mechanical deformation (electrode drag or tap).

4. Artifact components caused by static electricity and the following charge
equalizing currents between measurement equipment and patient.

The mechanical activity from both chest compressions and ventilations will
generate artifact components from the first three generators, whereas the last
more depends on the conditions for static electricity during CPR. The knowl-
edge of these generators can contribute to the identification of physical mea-
surements reflecting the artifacts in some way. These measurements can then
be used in a system to remove the artifacts. This is the idea behind the artifact
remover we develop and test in later chapters.

Earlier work on CPR artifact filtering

Artifact removal has been done successfully on animal ECG applying high-
pass digital filters with fixed coefficients [78,91]. In human ECG, however, the
frequency components of the artifacts overlap with the frequency components



2.6 Problem formulations 23

2 4 6 8 10 12 14 16 18 20
−1

0

1

E
C

G
 [m

V
]

(a)

2 4 6 8 10 12 14 16 18 20
−1

0

1

E
C

G
 [m

V
]

(b)

2 4 6 8 10 12 14 16 18 20
−1

0

1

E
C

G
 [m

V
]

(c)

2 4 6 8 10 12 14 16 18 20
−1

0

1

E
C

G
 [m

V
]

Time[s]
(d)

Figure 2.5: Four examples of VF segments with CPR artifacts of varying shape and
amplitude. First 10 seconds of each example are with CPR artifacts, last 10 without.
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Figure 2.6: Four examples of asystole segments with CPR artifacts of varying shape and
amplitude. First 10 seconds of each example are with CPR artifacts, last 10 without.
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Figure 2.7: Four examples of PEA segments with CPR artifacts of varying shape and
amplitude. First 10 seconds of each example are with CPR artifacts, last 10 without.
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of the heart activity (e.g. VF), which makes separation by such filters infeasible
[69]. In studies by Strohmenger et al. investigating frequency features in VF,
the mean dominant frequency in pigs was 9.0 Hz [91] and 3.0 Hz in humans [92].
The rate of chest compressions normally ranges between 80–120 compressions
per minute. This corresponds to artifacts with fundamental frequencies in the
range 1.33–2 Hz as well as one to three distinct harmonic frequencies. The
difference in pigs and humans is illustrated in Figure 2.8 with spectrograms8

of both pig and human VF with CPR artifacts. The distinct horizontal lines
in the spectrograms in the first 10 seconds are the chest compression artifacts
(pig: 1–4 Hz, human: 1–7 Hz), which can be seen to not overlap with the
pig VF (7–16 Hz) in Figure 2.8(a), but do overlap with the human, more low-
frequency (1–4 Hz), VF in Figure 2.8(b). Similar results were also shown by
Langhelle et al. [69] which instead of fixed coefficients filters suggested the use
of adaptive filters9 for CPR artifact removal.

There have been few studies using real human out-of-hospital cardiac arrest
ECG for CPR artifact removal. The only one we know of is a study by
Strohmenger et al. [92] showing that the effect CPR has on amplitude and
frequency signal parameters in VF is removed by limiting the frequency range
to 4.3–30 Hz. However, this frequency range also significantly alters the true
values of the parameters (without CPR artifacts) compared to the reference
0.3–30 Hz frequency range. This deteriorated the predictive value (in terms
of shock outcome prediction) of the frequency parameters examined.

In a mix of pig CPR artifacts and human VF/VT, Aase et al. used a mul-
tichannel time-varying Wiener filter for filtering of CPR artifacts [1]. This
theoretically optimal adaptive filter calculates the optimal Wiener solution for
every sample [85]. The filter assumes that the CPR artifacts are a sum of
several sources and models the artifacts as a sum of contributions from so
called reference channel signals. Reference channels are signals that correlate
with/resemble the different artifact sources and are recorded simultaneously
with the ECG. In the case of [1], compression depth and thorax impedance
was used. Using this filter, the CPR artifacts were successfully reduced [1].
However, the solution relies on the inversion of an estimated multichannel au-
tocorrelation matrix for every sample, a computationally expensive solution.
Furthermore, given that reference signals encountered in practice, from time to
time, give rise to ill-conditioned autocorrelation matrices further complicates
the situation (will suffer numerical problems).

8A spectrogram is a time-frequency plot where each vertical line can be said to be the
power spectrum density for a given time instant – showing the frequency content of a signal
with respect to time. Lighter shades of gray indicate higher content.

9An adaptive filter is a filter with time-varying filter coefficients.
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(a) Spectrogram of CPR in pig showing non-overlapping frequency components of pig VF and
CPR, making such a signal trivial to filter using standard frequency-selective filters.
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(b) Spectrogram of CPR in human showing overlapping frequency components of human VF
and CPR, making the filtering non-trivial.

Figure 2.8: Spectrograms of ECG with pig and human VF with CPR artifacts in the first
10 seconds. Lighter shades of gray indicate higher energies.
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Our work on CPR artifact filtering

The previous work on CPR artifact filtering has only used VF or VT rhythms,
not including any non-shockable rhythms which are also commonly encoun-
tered during cardiac arrests. These also need to be addressed, as the CPR
artifacts can often resemble VF/VT confusing the analyses in AEDs. For
these broad group of rhythms, the CPR artifact filtering face new and differ-
ent challenges.

Following the lines of [1] using multichannel adaptive filtering, we develop in
Chapter 4, a new algorithm, the multichannel recursive adaptive matching
pursuit (MC-RAMP) algorithm, more robust and suitable for filtering CPR
artifacts. This algorithm is then further tested and used in later chapters,
mostly using real human ECG of both shockable and non-shockable rhythms.
The feasibility of ECG analysis during CPR is also discussed, primarily in
terms of rhythm analysis, but also VF analysis.

Both the multichannel time-varying Wiener filter and MC-RAMP use refer-
ence signals that correlate with/resemble different artifact types, although we
will use additional reference channels compared to [1]. Using these signals,
the CPR artifacts are modeled in the filter and subtracted from the ECG,
revealing the underlying heart rhythm.

2.6.2 Reducing NFT related to analyses and shocks in AEDs

There has recently been an increased attention to the importance of reducing
the NFT during CPR [17, 32, 66, 88, 108]. However, aspects of NFT have
not been an issue in the current CPR guidelines [9] and thus not especially
considered in most AEDs.

There seem to be little work published on reducing NFT in automatic external
defibrillation, although some studies address and quantify the problem [7, 15,
17,94,104].

NFT occurs for several reasons, caused by both human and machine. If CPR
artifact filtering enables signal analysis of ECG during CPR, NFT in connec-
tion with analyses and shocks could be reduced. This and other means of
reducing NFT are addressed in Chapter 10.
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2.7 Summary

This chapter has presented some background on cardiac arrest, ECG, CPR,
and some of the crucial problems in cardiac arrest resuscitation: the large
number of unsuccessful shocks, poor quality of compressions and ventilations,
and too much NFT without any therapeutic treatment.

The problem of filtering CPR artifacts in ECG, thus enabling machine signal
analysis of ECG during CPR and reducing NFT in AEDs, has been motivated.
Finding a useful method for filtering CPR artifacts and using this in an AED
policy minimizing NFT are the main problems addressed in later chapters.

A short overview has been given on earlier work in CPR artifact filtering
and NFT reduction. Earlier work in CPR artifact filtering are usually lim-
ited to animal, or animal/human mix studies, although indicating that CPR
artifact filtering is possible in such cases. There have been no studies using
real human out-of-hospital cardiac arrest ECG including both shockable and
non-shockable rhythm types.
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Chapter 3

Human and animal data

This chapter describes the data used in this work, which include ECG and
auxiliary data channels. Human data from a project termed the Laerdal Sister
project is our primary source for data in the CPR artifact filtering and NFT
reduction experiments. Animal data from a pig experiment as well as human
ECG from a Laerdal AED rhythm library are used for creating a controlled
mix of human ECG and animal CPR artifacts for the initial tests of CPR
artifact filtering.

3.1 Human data

The human data described in this section includes ECGs of VF and VT
episodes from a Laerdal AED rhythm data, VF segments from an EMS database
from Oslo, and finally ECG and reference channels of out-of-hospital cardiac
arrests recorded in the Laerdal Sister project containing a larger selection of
rhythms and from multiple cities.

3.1.1 The Laerdal AED rhythm library

The AED rhythm library (proprietary of Laerdal Medical AS, Stavanger, Nor-
way) consists of 481 ECG episodes. These episodes were recorded with various
models of Heartstart defibrillators (Laerdal Medical AS) during out-of-hospital
cardiac arrests. Each episode is of 15 seconds duration sampled at 100 Hz with
8 bit resolution and annotated by cardiologists. The episodes have no CPR
artifacts.
The human VF/VT records were highpass filtered in order to reduce baseline
drift appearing in some of the VF/VT records.
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Relevance

The database provides 200 episodes of VF and 71 episodes of VT that we used
to mix with animal CPR artifacts in the CPR artifact removal experiments in
Chapter 6. This mix is used for evaluating our method for removing artifacts
using a new adaptive filter in terms of SNR improvements and comparing this
filter with the theoretically optimal, but less useful in practice, time-varying
Wiener filter.

3.1.2 Human data in prediction of defibrillation outcome

The human ECG is taken from the EMS database described in [94]. The
database consists of ECGs, annotations and demographics from out-of-hospital
cardiac arrested patients collected over a two-year period (1996–1998) in Oslo.
The last 7.5 seconds before each defibrillation shock were extracted from the
ECG records. The ECG records are sampled at 100 Hz and consist mainly of
VF segments without CPR artifacts. For our purpose the extracted preshock
segments are divided into two classes, shocks giving ROSC and shocks not
giving ROSC, consisting of 87 and 781 segments, respectively.

Relevance

The database is used in a mix with animal CPR artifacts in an experiment to
examine what influence CPR artifacts have on a shock outcome predictor by
Eftestøl et al. [29]. The experiment is described in Chapter 9.

3.1.3 The Sister data

The Sister project is an ongoing project (2004) initiated by Laerdal Medical
AS in Stavanger, Norway. The goal of the project is to increase the survival
rate of sudden cardiac arrest. This is to be done by efforts in several areas:

• Better quality of CPR.

• Reduction of the no flow time in which the patient is not perfused.

• Reduction of the number of unsuccessful shocks.

• Individualization of the treatment – choose treatment according to the
patient’s state and response to the treatment.
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• More precise determination of the patient’s circulatory state – when can
the CPR cease.

Data in the Sister project are collected using Laerdal HeartStart 4000SP defib-
rillators. These are HeartStart 4000 defibrillators modified to digitally collect
the ECG as well as several reference channels containing additional informa-
tion for research use, some of which are mentioned in the following. Data
have been collected both during in-hospital and out-of-hospital resuscitation
attempts of cardiac arrest patients. The use was approved by the regional
ethics committee, and CPR was performed by paramedics according to the
guidelines 2000 for CPR and ECC (Emergency Cardiovascular Care) [9].

The data used in this thesis were extracted from the first part1 of the Sis-
ter project and were collected from out-of-hospital cardiac arrest patients in
Akershus (Norway), Stockholm (Sweden), and London (UK) between March
2002 and October 2003. Several patients from a total of 106 patients from
Akershus (manual mode defibrillation), 64 from London (AED mode), and 77
from Stockholm (AED mode), have been excluded for use in the studies in
this work due to unavailability at the time of a particular study (not recorded
and/or annotated), missing data/files, instrumentation failure etc. Complete
annotated data are available from 70 patients from Akershus, 54 from London,
and 53 from Stockholm.

Collected signals

All collected signals were sampled at 500 Hz with 16 bits resolution. The ECG
(differential) signal had a resolution of 1.031 µV per least significant bit and
a bandwidth of 0.9 – 50 Hz.

To remove CPR artifacts using an adaptive filter as described in Chapter 4,
signals correlated with the CPR artifacts are needed. In addition to the ECG,
the HeartStart HS4000SP defibrillators collect several such signals. Among
these are four which we will use as possible reference channels in the adaptive
filter for CPR artifact removal:

1. Thorax impedance (transthoracic impedance) is the impedance measured
between the defibrillator electrodes (pads) and is a factor determining
how much electrical current that traverses the heart during a defibril-
lation shock (lower impedance means higher current). The impedance

1Prior to implementation of CPR feedback in the defibrillators used in the Sister project.
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is measured using a 32 kHz current giving an approximation of the re-
sistance as seen between the electrodes at high-voltage shock discharges
through the chest. The average transthoracic impedance of the adult
human is 70 to 80 ohms, but is altered by several factors such as dis-
tance between the electrodes, electrode size and couplant with the chest,
phase of respiration, electrode-chest wall contact pressure, selected shock
energy and number of shocks previously given [64]. However, the aver-
age DC value of the impedance is not of interest to us, but rather the
variations around this value. During CPR, these variations will reflect
ventilation and chest compressions.

Thorax impedance is therefore used as a reference signal for ventilation
and compression induced artifact components. The collected signal has
bandwidth of 0 – 80 Hz.

2. The ECG common mode voltage is related to the ECG differential am-
plifier in the defibrillator and denotes the voltage common to both elec-
trodes with respect to ground. It is normally the unwanted part of the
voltage between each input (of the differential amplifier) and ground that
is added to the voltage of both input signal.

However, the common mode voltage will reflect external noise influences
on the ECG, and serves as a possible reference signal for removal of static
electricity type artifact components. The collected signal has bandwidth
of 0 – 50 Hz.

3. Using the HS4000SP, a pad is placed between the resuscitator’s hands
and the patient’s chest during CPR. This pad contains an accelerometer
and a pressure sensor which provides the signals compression acceleration
and pad pressure.

Compression acceleration is used for deriving compression depth, but
observations of this signal also indicate it may be correlated with the
compression artifacts itself. It is therefore used as a possible reference
channel. The collected signal has bandwidth of 0 – 50 Hz.

4. In addition to the pad accelerometer, another accelerometer is placed in
the HS4000SP defibrillator itself, termed board acceleration, providing
the reference system acceleration.

Compression depth is estimated through the recorded pad pressure, board
acceleration, and compression acceleration. In principle, by a double in-
tegration of the difference between the compression acceleration and the
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board acceleration signal2. This is similar to the method described in [2],
but with the pad pressure used instead of a logic signal indicating the
beginning of each chest compression. Compression depth is used as a
reference signal primarily for compression induced artifacts.

Relevance

Data from the Sister project is used for the studies in Chapters 7–10. In Chap-
ter 7 we filter CPR artifacts from the human ECG from the Sister project to
see if a shock advice algorithm will result in the same recommendation when
we look at ECG segments close in time with the supposed same underlying
heart rhythm, but with and without CPR artifacts. Although improved by
CPR artifact filtering, the results still show some degradation in performance.
By adding a short verification analysis in clean ECG and/or postponing anal-
ysis in segments with too difficult noise, we try to improve these results in
Chapter 8. In Chapter 9 we use VF, PEA, and asystole rhythms from the
Sister project data to examine the influence of CPR artifacts on individual
features used in signal analysis of ECG, and if artifact filtering can reduce this
influence. Finally, in Chapter 10 we use the Sister project data to analyze and
quantify the no flow times (NFTs) during external automatic defibrillation.
We will propose methods to reduce the NFT and see how much time could
have been saved.
The studies use data from different sets of patients according to availability
at the time of the study, defibrillation mode, specific events in the ECG etc.
Appendix B includes a list of the available patient episodes, some demograph-
ics, and for what chapters in this dissertation they were used. More about the
patient demographics in the Sister data can be found in a study by Wik et al.
investigating CPR quality in the Sister data [104].

3.2 Animal data

An animal experiment was conducted in May 2001 to verify the measurement
system of the HeartStart 4000 SP defibrillators used in the Sister project. This
animal experiment was also used to collect artifacts and reference signals for
filtering of CPR artifacts in ECG. The animal artifact signals were mixed with
clean human ECG to create realistic examples of artifact corrupted human
ECG signals.
The details of the animal experimental protocol, as well as reference channels
and preprocessing, are described in the remainder of this section.

2To remove external acceleration components.
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Figure 3.1: Protocol timeline indicating sequence of actions and events during animal
experiments. These annotations are used: CPR, cardiopulmonary resuscitation; PAC-
ING, pacing; DFB, defibrillation; VF, inducing ventricular fibrillation (including 1 minute
preparation); SR, sinus rhythm; A/PEA, asystole or pulseless electrical activity.

Experimental protocol

The study was approved by the Norwegian Council for Animal Research using
a well-established model described in [69], and conducted in two healthy anaes-
thetized pigs (Sus scropha domestica, 22 and 25 kg). The sequence of events
of the experimental protocol reported below is, for clarity of presentation, also
visualized in the time-event diagram of Figure 3.1.

After preparation, baseline measurements were obtained for three minutes. All
measurements were continuously recorded throughout the experiment. The
ventilator and anaesthesia were discontinued and VF was introduced by a
transthoracic current (90 V AC) for three seconds through separate electrodes
and confirmed by characteristic ECG changes.

After three minutes of VF, manual chest compressions (120 min−1) and bag-
valve-tube ventilation with 100% oxygen was started (CPR). After three min-
utes of CPR, defibrillation shocks were given with interspersed CPR and
epinephrine 0.5 mg doses intravenously if needed following the guidelines 2000
for CPR and ECC [9] until return of spontaneous circulation (ROSC). The pig
was thereafter allowed to stay in sinus rhythm with controlled bag-valve-tube
ventilation.

The whole sequence was repeated twice more, but now with only one-minute
intervals. Initiation of VF, one minute of untreated VF, CPR for one minute,
defibrillation attempts with interspersed CPR and epinephrine if needed until
ROSC, followed by one minute of sinus rhythm and controlled ventilation.
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VF was thereafter again induced, ventilations were discontinued, and the ani-
mals allowed to spontaneously develop asystole or pulseless electrical activity
(PEA). After one minute of asystole or PEA, CPR was given for one minute,
followed by three shocks given in rapid sequence of 50 J, 100 J, and 150 J.
With the animals in continuous asystole and no CPR, external pacing through
the chest electrodes was initiated at 180 min−1 for three minutes. The pace-
maker was discontinued and CPR again given for three minutes followed by
two more loops with shocks, pacing and CPR, all with three-minute intervals,
before the animal was killed by discontinuing CPR.
Pacing is not commonly used during resuscitation, but was included here to
generate high DC offset values on the electrodes, which makes the electrode-
skin interface artifact component more prominent.
The resuscitation attempt from VF in pig 1 lasted for 26 minutes and included
the delivery of 4 shocks and two doses of epinephrine. In the same animal, the
resuscitation episode starting from asystole lasted 16 minutes and required 6
shocks and 2 doses of epinephrine. In pig 2 the corresponding numbers were
30 minutes with 21 shocks and 5 doses of epinephrine, and 15 minutes with 6
shocks and 2 doses of epinephrine respectively.

Collected signals

A prototype of the Laerdal Heartstart 4000SP defibrillators used in the Sister
project was used to digitally collect the ECG and reference channels, all sam-
pled at 500 Hz with 16 bit dynamic range. The ECG (differential) signal had
a resolution of 1.031 µV per least significant bit and bandwidth 0.9 – 50 Hz.
To get additional information about the CPR artifacts, reference signals cor-
related with the CPR artifacts were recorded. Four such signals are later used
when developing an adaptive filter for removing CPR artifacts in ECG:

• Thorax impedance (transthoracic impedance) with variations due to ven-
tilation and chest compressions, bandwidth of 0 – 80 Hz. Used as ref-
erence signal for ventilation (and compression) induced artifact compo-
nents.

• ECG common mode, bandwidth of 0 – 50 Hz. Possible use as reference
signal for removal of static electricity type artifact components.

• Compression acceleration primarily due to chest compressions, band-
width of 0 – 50 Hz. Compression acceleration is used for deriving com-
pression depth, but observation of this channel also indicate it may be
correlated with the compression artifacts itself. Thus, it is a possible
reference signal.
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• Logic signal indicating the beginning of each chest compression, made
available from a switch placed beside the chest accelerometer. Compres-
sion acceleration and the switch signal form the basis for an estimated
compression depth signal as described in [2], which in turn is used as a
reference signal primarily for compression induced artifacts.

The animal ECG and reference channels were originally sampled at 500 Hz
and preprocessed before being downsampled to 100 Hz to match the sampling
rate of the human ECG available.

The animal ECG was filtered with an analog bandpass filter (0.9 – 50 Hz)
before it was sampled. Since this analog filter did not have linear phase in the
passband, the reference channels were filtered with a digital equivalent of the
analog bandpass filter in order to ”match the phase” of the ECG channel. This
is done to make the reference signals as equal to the correlated components
in the artifacts as possible. This bandpass filter is equivalent to the analog
bandpass filter used for the animal ECG.

Relevance

In Chapter 6 we use episodes of asystole with CPR artifacts from the animal
data in a mix with human ECG to create realistic ECG with CPR artifacts.
This mix is used for evaluating our artifact removal filter in terms of SNR
improvements and comparing this filter with the theoretically optimal time-
varying Wiener filter.

In Chapter 9 a similar mix is used in an experiment to examine what influence
CPR artifacts have on a shock outcome predictor by Eftestøl et al. [29].



Chapter 4

Adaptive filter for CPR
artifact removal

The main focus of this work is to develop a method for removing CPR artifacts
in ECG, enabling signal analysis during CPR, and thus reducing the adverse
intervals of no patient blood flow termed NFT.

In this chapter we start by placing the CPR artifact remover in the context
of a decision support system for AEDs. Then in Section 4.2 we develop a new
multichannel adaptive filter to be used later in this dissertation for removal of
CPR artifacts in ECG.

4.1 The decision support system and the role of the
artifact remover

The CPR artifact remover is part of a medical decision support system as
shown in Figure 2.4 and discussed in Section 2.5. In current AEDs, however,
the CPR artifact remover component is absent requiring clean ECG, with no
motion or CPR artifacts, for the subsequent signal analysis. CPR must there-
fore be discontinued for reliable signal analysis. The lack of myocardial and
cerebral blood flow during these periods is harmful to the tissues as discussed
in Section 2.4.1. The role of the CPR artifact remover is then to be able
to present filtered clean ECG so that the subsequent signal analysis can be
performed reliably not needing to pause CPR.

The decision support system also contains a feature extractor and a classifier.
As discussed in Section 2.5, rhythm analysis (shock advice) and VF analysis
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(shock outcome prediction) are two applications of a feature extractor and
classifier. Currently, VF analysis is not incorporated into AEDs, only the
rhythm analysis. The two types of analyses may require different features.
Some features are good for distinguishing classes of rhythms, others for char-
acterizing the variations within one class. So, when a VF analysis system is
ready to be incorporated into an AED, we will need the rhythm analysis to
first find the VF/VT rhythms that will be presented to the VF analysis to
predict the shock outcome. A modified decision support framework to reflect
this is shown in Figure 4.1.

CPR artifact
remover

Rhythm
analysis VF analysis

DecisionIf 
VF/V

T

Filte
re

d 
ECG



Raw ECG

and other
data sources First feature

extractor and
classifier

Second feature
extractor and

classifier

Figure 4.1: The modules in a medical decision support system for both rhythm and VF
analysis.

4.2 Multichannel Recursive Adaptive Matching Pur-
suit (MC-RAMP)

In this section we develop a new multichannel adaptive filter which will be
used in this thesis for removal of CPR artifacts in ECG. An adaptive filter
is a filter with time-varying filter coefficients. Such a filter is used when the
characteristics of what we want to filter are unknown and/or varying with time.
It adapts, automatically, to changes in the properties of its input signals. The
adaptive filter we will develop, the MultiChannel Recursive Adaptive Matching
Pursuit (MC-RAMP) filter, is an extension of a new adaptive filter algorithm
first presented in [54]. This section is adapted from [55] and [37].

Figure 4.2 shows the structure of our multichannel adaptive filter for CPR
artifact removal. In the figure d(n) denotes the artifact corrupted ECG sig-
nal, e(n) the restored signal, while x(0)(n), x(1)(n), . . . , x(K−1)(n) are the K
artifact correlated reference signals. As introduced in Chapter 3, we will use
four possible artifact correlated reference signals, namely ECG common mode,
Thorax Impedance, Compression Depth, and Compression Acceleration. In the
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following two sections we derive our multichannel adaptive algorithm in a gen-
eral context, before, primarily in chapters 6 and 7, we test its practical use
for CPR artifact removal. The last section of this chapter introduce some
modifications of MC-RAMP for increased performance and robustness.

h(0)(n)

+d(n) e(n)

-

+
x(0)(n)

h(1)(n) +
x(1)(n)

h(k-1)(n)
x(K-1)(n)

y(n)

Figure 4.2: Structure of multichannel adaptive filter used in CPR artifact removal.
x(0)(n), x(1)(n), . . . , x(K−1)(n) are the K artifact correlated reference signals, d(n) is
the artifact-corrupted ECG signal, while e(n) is the restored ECG signal.

4.2.1 Notation and problem formulation

Again, looking at Figure 4.2, our objective is to find y(n) as the best possible
estimate of the artifact part of d(n) so that it can be removed through subtrac-
tion of y(n) from d(n). This is a classical problem in adaptive filtering and is
commonly solved through finding filter coefficients h(k)(n), k = 0, 1 . . . , K−1,
for each time instant n that approaches the minimum of the objective function:

J(n) =
n+L1∑

i=n−L2

[d(i)− y(i)]2 (4.1)

over some rectangular window of size determined through the selection of L1

and L2. Note that other windows, such as the Hamming window or exponen-
tially weighted windows could also be used. For the present purposes, however,
rectangular windows with appropriately chosen sizes work well while requiring
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less computation than other window selections. We note that selecting L1 = 0
corresponds to using data up to and including time n in finding the filter vec-
tors, h(k)(n) to be used at time n. This corresponds to a causal solution to the
problem at hand, whereas selecting L1 > 0 implies a non-causal solution using
future signal samples in computing the filter coefficients to be used at time n.
To avoid confusion, we point out here that the filter to be used at time n is
always applied causally to the signal. As we shall see later, selecting L1 > 0
proves beneficial, and the attendant delay imposed by this is acceptable in
the present application. In deriving the MC-RAMP algorithm, we shall treat
the generic adaptive filtering problem. In the setting of CPR artifact filtering
d(n) denotes the artifact corrupted ECG signal and e(n) the restored signal.
However, to be consistent with established terminology in the generic adap-
tive filter context, we will here refer to e(n) as the error signal and d(n) as
the desired signal. Also, for notational convenience and consistency with the
literature on adaptive filtering, we shall assume, with no loss of generality,
that L1 = 0 and that L2 = L− 1.

Numerous adaptive filters for the generic problem described above have been
proposed, the least mean squares (LMS) and recursive least squares (RLS)
adaptive filters being prominent examples. None of these are well suited to
the present application. The main reasons for this are related to slow conver-
gence (LMS type of algorithms) and temporarily ill-conditioned autocorrela-
tion matrix estimates (RLS) [51]. In the following we present the MultiChannel
Recursive Adaptive Matching Pursuit (MC-RAMP) which is computationally
efficient, has good convergence behavior, and deals nicely with signals that
would give rise to ill-conditioned autocorrelation matrix estimates. The idea
underpinning the algorithm is the Matching Pursuit (MP) technique first to
receive prominence in the signal processing community following the 1993 pub-
lication of [71].

Before presenting the MC-RAMP algorithm we pause to emphasize that, in
general, the motivation for applying an adaptive filter, such as the LMS or
RLS algorithms, is to find or track the Wiener solution to the problem at
hand as accurately as possible, while the computational complexity is kept
as low as possible. Thus, all adaptive filter applications involve an explicit
complexity/performance tradeoff. A remarkable property of the MC-RAMP
algorithm in the present application is the fact that we obtain a performance
quality on par with the time-varying Wiener filter of [1], while fully realizing
the computational benefits of an adaptive filter.
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Looking again at Figure 4.2, the error signal can be expressed as:

e(n) = d(n)−
K−1∑

k=0

Mk−1∑

m=0

h(k)
m (n)x(k)(n−m), (4.2)

where K is the number of channels and Mk is the number of filter coefficients
for the filter in channel no. k. Note also that h

(k)
m (n) denotes filter coeffi-

cient no. m of channel k at time n. In deriving adaptive filter algorithms
it has proven useful to define vector and matrix quantities corresponding to
the signals and filter unit pulse responses involved [51]. In the following we
introduce such suitable definitions for the multichannel adaptive filter in com-
plete analogy with standard practice used in single channel adaptive filter
theory [51]. Thus, h(k)(n) = [h(k)

0 (n), h(k)
1 (n), . . . , h(k)

Mk−1(n)]T is the vector of
filter coefficients for channel k at time n. Defining

d(n) = [d(n), d(n− 1), . . . , d(n− L + 1)]T , (4.3)

and e(n) similarly, the channel data matrix for channel no. k as

X(k)(n) = [x(k)
0 (n), x(k)

1 (n), . . . , x(k)
Mk−1(n)], (4.4)

where the columns are given by

x
(k)
j (n) = [x(k)(n− j), x(k)(n− j − 1), . . . , x(k)(n− j − L + 1)]T , (4.5)

and finally the complete multichannel data matrix and the corresponding mul-
tichannel filter vector as

X(n) = [X(0)(n) | X(1)(n) | . . . | X(K−1)(n)], (4.6)

and

h(n) =




h(0)(n)
h(1)(n)

...
h(K−1)(n)


 , (4.7)

respectively, a little thought reveals that Equation 4.2, for time indices in the
range n − L + 1 to n and when we assume that the filter for time n is used
throughout this range, can be written as

e(n) = d(n)−X(n)h(n). (4.8)

Our desire is now to iteratively improve the current h(n) such that the norm
of e(n) is made successively smaller. For this purpose we shall use a computa-
tional procedure known as basic matching pursuit (BMP). BMP was presented
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in [25] as a possible procedure for finding a sparse representation of a given
vector using a linear combination of vectors selected from a dictionary with
more elements than the dimension of the space it spans. While our objective
is not the same as that of [25], the computational steps to be described below
are the same as those of the BMP.

In the sequel it will be convenient to number the columns of X(n) sequentially,
i.e. denote them as xl(n) with l = 0, 1, . . . ,

∑K−1
k=0 Mk − 1. Thus, when we

define M as M =
∑K−1

k=0 Mk, X(n)h(n) can be written as

X(n)h(n) =
M−1∑

l=0

hl(n)xl(n), (4.9)

where we note that the hl(n)’s are the filter coefficients numbered sequentially
with no reference to channel number. The connection back to channel numbers
can be found by writing the index l as

l = νq +
q−1∑

k=0

Mk (4.10)

for νq = 0, 1, . . . ,Mq − 1 and q = 0, 1, . . . ,K − 1. Interpreting l this way, we
can also say that xl(n) is column no. νq of the data matrix for channel no. q,
i.e. the vector we would denote x

(q)
νq (n).

4.2.2 Algorithm development

Using the notation introduced in the previous section, we can explain the
algorithm as if we were treating a single channel adaptive filtering problem.
Following this explanation we indicate the computational complexity of the
algorithm, and show how it can be efficiently used in situations where the
estimate of the multichannel autocorrelation matrix, XT (n)X(n) may be ill
conditioned. Details of the algorithm as well as a complexity analysis are
presented in Appendix A.

Examining once more Equation 4.8, what we really want is to find elements of
h(n) so that X(n)h(n) is as good an approximation to d(n) as possible. If we
started with an initial value of h(n) equal to zero and are allowed to update
only one element of h(n), we would select the one term of the expansion in
Equation 4.9 that gives us the best approximation to d(n). Denoting this term
hj0(n)(n)xj0(n)(n), we realize that we have to find the index, j0(n), of a column
in X(n) along with its weighting factor hj0(n)(n). The best we can do in this
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situation is to select the j0(n)th column of X(n) if this column is the one that
is best aligned with d(n). Given this column selection, it would be optimal to
find the coefficient, hj0(n)(n), by projecting d(n) onto the normalized selected
column. This process of vector selection and coefficient computation is called a
matching pursuit iteration or an MP-iteration for short. If we were to improve
the approximation we could repeat the same procedure as outlined above, but
now starting with the new approximation error, i.e. d(n)− hj0(n)(n)xj0(n)(n),
rather than with d(n). This could be repeated a given number of times, say
P times, and each time with a new improved error vector resulting from the
previous iteration, for each time instant n. At the next time instant, n+1, we
would continue with P new MP-iterations starting with the error vector being
a consequence of the newly arrived signal samples and the filter coefficient
vector of the previous time instant, i.e. d(n + 1)−X(n + 1)h(n).

When a vector that has been selected before is re-selected, the corresponding
element of the filter coefficient vector is updated in the same way as the initial
value of the filter coefficient was updated from a zero value as described above.

Formalizing the above line of thought somewhat, we derive the Recursive Adap-
tive Matching Pursuit algorithm as follows: Assume that we have an approx-
imation to d(n − 1) at time n − 1 given by X(n − 1)h(n − 1), the a priori
approximation error at time n is

e0(n) = d(n)−X(n)h(n− 1). (4.11)

In building a better approximation through the update of only one coefficient
in h(n− 1), we would write the new error as

e1(n) = e0(n)−X(n)hupdate
j0(n) (n)uj0(n). (4.12)

Note that j0(n) is the index of the coefficient to be updated in the zero’th
MP-iteration at time n, and uj is the M -vector with 1 in position j and 0 in
all other positions. Selecting j0(n) as the index of that column of X(n) that
is best aligned with the a priori approximation error of Equation 4.11 is the
best we can do. Thus, j0(n) is found as the index of the column of X(n) onto
which e0(n) has its maximum projection, or in other words:

j0(n) = arg max
j

|< e0(n), xj(n) >|
‖xj(n)‖ , (4.13)

where < ., . > denotes an inner product between the two vector arguments.
Given the index j0(n), the update equation of the corresponding filter coeffi-
cient is

hj0(n)(n) = hj0(n)(n− 1) + hupdate
j0(n) (n), (4.14)
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where hupdate
j0(n) (n) is the value of the projection of e0(n) onto the unit vector

with direction given by xj0(n)(n), i.e.:

hupdate
j0(n) (n) =

< e0(n), xj0(n)(n) >

‖xj0(n)(n)‖2
. (4.15)

Thus, the zero’th MP-iteration updates the filter vector as follows:

h(n) = h(n− 1) + hupdate
j0(n) (n)uj0(n). (4.16)

Given this, the updated error expression of Equation 4.12 can be written as:

e1(n) = d(n)−X(n)h(n). (4.17)

If we want to do more than one MP-iteration at time n, the procedure de-
scribed above starting with finding the maximum projection of e0(n) onto a
column of X(n) can be repeated with e1(n) taking the role of e0(n). This can
be repeated as many times as desired, say P times1.

The main steps of the adaptive algorithm is summarized in a flowchart, see
Figure 4.3. Note that in the flowchart we have simplified the notation some-
what.

In Appendix A it is shown that the algorithm is characterized by a computa-
tional complexity given by (7+K)M−K(K−1)

2 multiplications, M +1 divisions
and M − 1 comparisons. This is valid if we do one MP-iteration for each time
instant n. It is also shown in the appendix that each possible subsequent
MP-iteration at time n, requires M multiplications, 1 division, and M − 1
comparisons. Thus, relative to the zero’th MP-iteration at time n, the subse-
quent MP-iterations are cheap. Finally, we point out that the complexity is
linear in the total number of filter coefficients for a given number of channels
and MP-iterations.

4.2.3 Modifications to the basic MC-RAMP algorithm

For improved filter performance and robustness, some modifications to the ba-
sic MC-RAMP algorithm described above are introduced for the experiments
using MC-RAMP in later chapters. The modifications will of course intro-
duce additional computational complexity, but it is tolerable in the present
application.

1Note that if P > 2 it is entirely possible that one particular coefficient is updated more
than once at a given time n.
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Figure 4.3: Flowchart indicating the computational steps of the MC-RAMP algorithm.
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Dealing with rank deficiency

In the present application, it will happen from time to time, that some of
the reference signals have very low power levels. This is for example the
case when the Depth reference signal disappears as a consequence of a pause
in the administration of chest compressions. If we based our CPR artifact
removal system on estimated autocorrelation matrices, we would experience
rank deficiency leading to numerical problems. Such problems were indeed
experienced in earlier work [1]. While such problems, in the context of [1],
could be solved through monitoring of the condition number of the matrix or
by computing pseudo-inverses through the use of the singular value decompo-
sition (SVD) [75], these are all computationally demanding solutions. In the
proposed MC-RAMP algorithm all we need to do is to monitor the norm of
the columns of X(n), i.e. ‖xj(n)‖ for j = 0, 1, . . . , M −1. The norm value will
reflect the local energy, or average power, of the reference channel. Since these
quantities are already computed as part of the algorithm, no additional com-
putational effort is involved in this step. To avoid instability in MC-RAMP we
simply prevent columns of X(n) having a norm below a certain threshold in
participating in the vector selection process of the MP-iterations. It is evident
from the detailed algorithm presentation in Appendix A that this is easily
accomplished.

Note that this threshold may vary for each reference channel as a consequence
of the reference channels not being normalized in any way and thus having
different power. When a reference channel goes below the norm (energy)
threshold, its contribution to the reconstructed artifact signal may still be
non-zero, since its filter coefficients are no longer updated, but not necessarily
zero. To avoid the contribution acting as noise, we let filter coefficients of
reference channels that are inactive decay exponentially towards zero.

Rank deficiency resulting for other reasons than that mentioned above pose
no problem for the present algorithm simply because it is not dependent on
estimated inverses of the autocorrelation matrix.

Dealing with low correlated reference signals

Sometimes a reference channel will have very low correlation with the ECG
signal. This may indicate that the contribution of that reference channel will
be insignificant or even possibly harmful given incidental similarities with the
underlying heart rhythm. Therefore, the zero-lag cross-correlation coefficient
between the ECG and each reference channel (or actually the columns of X(n),
i.e. ‖xj(n)‖ for j = 0, 1, . . . , M − 1) are calculated for the current window
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defining the short-term analysis region and iteratively updated for each time
instant. That is, for time instant n, the absolute value of the cross-correlation
coefficient at zero lag, |ρj(n)|, defined as

|ρj(n)| = | < d(n), xj(n) > |
‖d(n)‖2‖xj(n)‖2

, (4.18)

is calculated for j = 0, 1, . . . ,M − 1. Reference channels having too low cor-
relation with the ECG are set inactive and their filter coefficients are decayed
exponentially towards zero.

Adjustable window length

We have the option to adjust the window length, defined by L1 and L2, ac-
cording to the maximum correlation coefficient between the reference channels
and the ECG. In practice, higher correlation often indicate large CPR arti-
facts in the ECG, compared to the underlying heart rhythm, and suggests
using smaller window lengths letting MC-RAMP adjust its coefficients more
locally. Note that the window length is chosen from only a few choices accord-
ing to some correlation thresholds found empirically, and only adjusted every
50 samples.

Lowpass filtering the reconstructed artifact signal

Finally, the reconstructed artifact signal y(n) is lowpass filtered with corner
frequency fLP before subtracting it from the original ECG d(n). This is to re-
move high-frequency noise that may be introduced due to the constant change
of the MC-RAMP filter coefficients or from noise present in the reference
channels.
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Chapter 5

Features used for evaluating
the CPR artifact removal

In this chapter we present some features and algorithms to be used in the
validation of the CPR artifact removal capabilities of the MC-RAMP filter
introduced in Chapter 4.

First we briefly describe a proprietary shock advice algorithm found in the
HeartStart 4000 defibrillator containing multiple features and a classification
system. This algorithm is used in Chapters 7 and 8 for evaluating if rhythm
analysis (shock advice) can be performed during CPR by removing the CPR
artifacts using MC-RAMP.

Then we describe some features that are used in Chapter 9 to study the effect
CPR artifacts have on common types of features encountered in rhythm or VF
analysis. We expect that feature values are altered by the presence of CPR
artifacts and want to see if CPR artifact filtering can remedy this situation.

5.1 The HeartStart 4000 AED shock advice algo-
rithm

An AED analyzes a patient’s ECG and determines if a shock can be advised. It
performs feature extraction and rhythm classification to differentiate between
shockable rhythms such as VF and VT with rate over 150 bpm, and non-
shockable rhythms such as asystole, PEA and various pulse rhythms. For
our experiments in Chapters 7 and 8 using an AED shock advice algorithm to

51
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evaluate the performance of CPR artifact filtering, we use an offline PC version
of the AED algorithm found in the Laerdal HeartStart 4000 defibrillator1.

The algorithm is fed with ECG signals sampled at 200 Hz with 16 bits res-
olution, and uses two or three consecutive 3 second segments for one fi-
nal shock/no-shock decision. The decision is based upon measurements of
the average amplitude, the isoelectric baseline content, waveform organiza-
tion/regularity and rate. Since the algorithm is part of a commercial product,
the details of its internal operations are not known to us. For public available
information on this algorithm, see [83].

5.2 Some features found in the literature

Many features have been proposed to characterize rhythms in the ECG for
shock advice or shock outcome prediction purposes. The following sections
describe a few representative features found in the literature. The features will
not be used to design a system for shock advice or shock outcome prediction
in this dissertation. We will only investigate the effect CPR artifacts have
on these features (Chapter 9). That is, how much will artifact noise affect
the feature values, and can the artifact filter described in Chapter 4 reset this
influence.

5.2.1 VF-filter (Kuo and Dillman, 1978)

The VF-filter algorithm was originally applied by Kuo and Dillman in 1978
in an ECG monitoring system for detection of VF when no QRS complexes
or paced beats could be detected [68]. The VF-filter corresponds to a narrow
band-stop filter applied to the signal, assumed to be quasi-sinusoidal, with
central frequency equivalent to the mean signal frequency. The output of the
filter is the VF-filter leakage and is computed as

leakage =
∑L

n=1 |x(n) + x(n− [T/2])|∑L
n=1(|x(n)|+ |x(n− [T/2])|) , (5.1)

where the mean signal period

T =
2π

∑L
n=1 |x(n)|∑L

n=1 |x(n)− x(n− 1)| , (5.2)

1aka. Philips HeartStart XLT
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with [ · ] denoting rounding towards nearest integer, x(n) the signal samples
and L the number of samples in the signal segment.
If the VF-filter leakage was below a certain threshold (0.625), VF was detected.
The original threshold value is not of interest to us, as we will only consider
leakage and T as possible features in a classifier for rhythm or VF analysis.

5.2.2 Spectral analysis (Barro et al., 1989)

For a system to detect ventricular arrhythmias in real time, Barro et al. in-
troduced some features based on spectral analysis [13]. The detection of VF
is based on VF reportedly consisting of a narrower band of frequencies than
rhythms with complexes. Rhythms with complexes, such as sinus rhythm or
PEA, often present more distinct and organized (and over a wider frequency
range) peaks in the spectrum, corresponding to the heart rate and its harmon-
ics, than VF rhythms [13].
Each segment of ECG is passed through a Hamming window to minimize
the effects of segmentation on the spectra. The discrete Fourier transform
of a segment is found and the amplitude spectrum is approximated by the
absolute value of the complex Fourier coefficients2. That is, the components
of the amplitude spectrum, ai, are approximated as

ai = |X(fi)|, (5.3)

where the N -point discrete Fourier transform X(fi) of a signal x(n) is defined
as

X(fi) =
N−1∑

n=0

x(n)e−j2πnfi/fs (5.4)

for discrete frequencies fi = i
N fs for i = 0, 1, . . . , N

2 − 1 with fs denoting the
sampling frequency.
After calculating the amplitude spectrum, the frequency of the maximum peak
in the range of 0.5–9 Hz is found, denoted FP . All amplitude spectrum com-
ponents whose value is less than 5% of this maximum are equated to zero.
Thus, insignificant components are not allowed to influence the features sub-
sequently calculated. FP is used as a feature in itself, named peak frequency
(PF). In addition to the peak frequency, four other spectrum features are ob-
tained, termed the normalized first spectral moment (FSMN), A1, A2, and
A3:

2In the original paper [13], each coefficient in the amplitude spectrum was approximated
by the sum of the real and imaginary component of the corresponding fourier transform co-
efficient. This is a consequence of the high cost of computations in real time implementation
15 years ago.
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1. FSMN is defined as

FSMN =
1

FP

∑
aifi∑
ai

, (5.5)

The sum includes spectrum components ranging from 0 to 100 Hz3.

2. A1 is the ratio between the area contained within the band 0.5 Hz and
FP /2, and the total area between 0.5 Hz and 20FP . High values indicate
noise.

3. A2 is the ratio between the area in the range 0.7FP to 1.4FP , and the
total area between 0.5 Hz and 20FP . High values indicate VF.

4. A3 is the ratio between the sum of areas around the second to eighth
harmonic (area around is ±0.3FP around each harmonic frequency4),
and the total area between 0.5 Hz and 20FP . Low values indicate VF.

In the orignal paper [13], VF was identified if FSMN ≤ 1.55, A1 < 0.19, A2 ≥
0.45, and A3 ≤ 0.09.

5.2.3 Lempel-Ziv complexity measure (Lempel and Ziv, 1976)

The circulatory system is a complex system with many feedback paths and
nonlinear dynamic behavior [6]. Experiments have shown, in response to elec-
trical stimulation, the generating of complex temporal or spatio-temporal pat-
terns in the heart exhibiting typical chaotic or nonlinear system behavior, e.g.
spiral waves and rotors in VF [21, 22, 46, 47, 56, 80, 86, 95, 105]. Since different
nonlinear physiological processes of the heart have different complexity, this
can be used to separate different heart rhythms. For instance, VF appears
more chaotic and complex than normal sinus rhythm, and this is reflected
in various complexity measures. For instance, the degree of complexity mea-
sured by correlation dimension [61] is larger for VF than for sinus rhythm [86].
However, correlation dimension calculations are computationally demanding

3In the original paper [13], the range of the sums are limited from 0.5 Hz to the frequency
of the 20th harmonic or 100 Hz, whatever comes first. The paper is somewhat confusing
as to whether the range is summed using only the multiples of the peak frequency (i.e. the
harmonics), or if all points of the calculated amplitude spectrum in the range are included
in the sum. Papers by others testing the spectral analysis by Barro, have used the latter of
the two variants [20, 59]. As will we. However, both variants of the FSMN feature will for
most cases reflect the same.

4Note that the papers [20, 59] differ in the calculation of A3 compared to the original
paper [13] (the band centered on each harmonic defined as 0.6 Hz versus 0.6FP in the
original paper).
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and require long data sequences to be accurate, excluding them for clinical
use [109]. Lempel and Ziv introduced a simple-to-compute complexity mea-
sure in 1976 which can instead be used to characterize the complexity of a
signal.

Zhang et al. used and described the Lempel and Ziv complexity measure
for detecting VF and VT [109]. We have implemented the algorithm as it is
described in [62].

The Lempel-Ziv complexity measure are obtained from first converting an
ECG segment into a string of symbols by binary or tertiary5 quantification
of the samples6. Then, the algorithm calculates the complexity of the string
in relation to the number of insert symbol(s) and copy a substring opera-
tions needed to reproduce the string. Briefly described, the string sequence
of characters is scanned from left to right and the complexity measure c(n)
is increased by one unit every time a new subsequence of consecutive charac-
ters is encountered in the scanning process. The complexity c(n) for a string
of length n is then normalized giving the normalized Lempel-Ziv complexity
measure:

C(n) =
c(n)
b(n)

, (5.6)

where
b(n) =

n

logbase(n)
, (5.7)

with base = 2 for binary representation or 3 for tertiary representation. Af-
ter normalization, the complexity measure reflects the rate of new pattern
occurrences with time.

For further details, and a complete development of the algorithm, we refer
to [62] or [109].

5.2.4 Irregularity measure (IRM) (Ripley et al., 1989)

Ripley et al. described techniques for recognition of ventricular arrhythmias
which included a measure of irregularity based on the intervals between thresh-
old crossings in the ECG signal [87].

5Binary representation was used in [62] and [109]. We have tested both binary and tertiary
representation. Tertiary representation is useful for letting baseline content and noise with
values near zero have its own symbol. Preliminary rhythm analysis results indicate that
using tertiary representation, better distinction of classes is achieved.

6Binary: x(n) > 0 mV → 1, x(n) < 0 mV → 0. Tertiary: -0.01 mV < x(n) < 0.01 mV
→ 0, x(n) > 0.01 mV → 1, and x(n) < −0.01 mV → −1. x(n) is the sample value.



56 Features used for evaluating the CPR artifact removal

From an ECG segment, the times of each positive threshold crossing are
recorded. The threshold is set to 0.3 mV. To prevent double-counting of
multiphasic deflections, a ”refractory period” of 100 ms follows each threshold
crossing. The mean interval between the threshold crossings are calculated
along with the standard deviation from the mean. The irregularity measure
IRM is defined as the ratio of the standard deviation to the mean.

5.2.5 Count20

Count20 is a simple feature reflecting the amount of baseline content in an
ECG segment. Count20 is defined as the number of signal samples between 0
and 20% of the maximum absolute signal value in the analyzed segment [60],
and then normalized to the segment length.

5.2.6 Spectral features: centroid frequency, peak power fre-
quency, energy and spectral flatness measure

For a classifier used to predict outcome of defibrillation in patients with VF,
Eftestøl et al. studied four spectral features [29]. The four features thought
to contain information predictive of shock outcome were centroid frequency7,
peak power frequency, energy, and spectral flatness.

All four features are computed from the estimated power spectral density
(PSD) of an ECG segment. Often, the PSD is estimated by averaged modified
periodograms (the Welch method) [85]:

P̂ (f) =
1
K

K−1∑

m=0

1
L

∣∣∣∣∣
L−1∑

n=0

w(n)xm(n)e−j2πnf/fs

∣∣∣∣∣

2

, (5.8)

where f is the physical frequency (from 0 to fs/2, with fs denoting the sam-
pling frequency) and xm(n) denotes sample n in a block m of ECG. Each ECG
segment is divided into K blocks, each of length L. The blocks are normally
overlapping. Each block is weighted by a window function w(n). The window
function and averaging of blocks are methods used to produce a smoother
estimate of the PSD.

The centroid frequency (CF) is defined as

CF =

∫ fu

fl
fP̂ (f)df

∫ fu

fl
P̂ (f)df

, (5.9)

7aka. median frequency
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where fl and fu are the lower and higher frequency band limits. In this work,
we use 0 and 25 Hz for lower and upper limits, respectively, as was also used
in [29].

The peak power frequency (PPF) is defined as

PPF = arg max
f

[P̂ (f)]. (5.10)

The frequency band-limited energy (ENRG) is defined as

ENRG =
∫ fu

fl

P̂ (f)df. (5.11)

The spectral flatness measure (SFM) [57] is defined as

SFM =
e
∫ fu

fl
ln P̂ (f)df

e
∫ fu

fl
P̂ (f)df

. (5.12)

SFM ranges from 0 (peaky spectrum) to 1 (flat spectrum).

5.2.7 Amplitude spectrum analysis (AMSA)

Used as a feature to predict optimal timing of ventricular defibrillation, AMSA
was first introduced as amplitude spectrum area in a journal article by Marn-
Pernat et al. in 2001 [73], but renamed to amplitude spectrum analysis in [84].

AMSA is defined as the sum of products of individual frequencies and the
corresponding amplitudes of the amplitude spectrum8 from 4 to 48 Hz:

AMSA =
∑

i

aifi, (5.13)

where ai is the amplitude value of the ith sinusoidal component of the spectrum
with frequency fi. The range of the sum is the component indices correspond-
ing to frequencies from 4 to 48 Hz.

8In [73] AMSA was termed ”the area under the curve that defines the amplitude spec-
trum” which it is not. However, it might be termed the frequency weighted area (approxi-
mation) under the amplitude spectrum curve.
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5.3 Additional features developed for this work

There have been many features in the literature that reflect the ECG wave-
form rate in some way. We developed an algorithm that will find the rate of
beats (QRS complexes) in organized rhythms as well as the frequency of the
dominant sinusoidal component in VF-like rhythms.
We have also developed some other features partly as by-products of the rate
feature. These include two amplitude measures, ratio of residual to total
energy, slope count and a complexity measure.
The outlines of our algorithm for finding the features will be presented in the
following subsections. Note that details such as logic for exception handling
and most threshold values are omitted for clarity of presentation since we
have not fully developed a shock advice algorithm, and we will only use these
features when investigating the influence of CPR artifacts in the ECG.

5.3.1 Preprocessing

Each ECG segment (typically 3–5 seconds duration) is first checked for maxi-
mum absolute amplitude, average power (PAV G = 1

L

∑L
n=1 |x(n)|2, a feature in

its own) and the number of signal peaks over a threshold. If these three mea-
sures are not above their respective thresholds9, further processing is futile,
and the algorithm returns zero values.
Subsequently the signal is smoothed using a simple 3 tap FIR lowpass filter.
However, care is taken to preserve the amplitude of all peaks over 70% of the
maximum absolute amplitude. Using the difference signal (x(n) − x(n − 1)),
large noise spikes in the ECG are detected and removed using interpolation
between the spike start and end.

5.3.2 Beats per minute (BPM)

The technical criteria interpreting the human use of ”rate” depends on the
heart rhythm present. For instance, rate of QRS complexes in pulse rhythms
and dominant frequency in VF rhythms need different detectors and mea-
surements. Since we normally do not know the heart rhythm in advance,
we employ seven different rate calculation alternatives and use the one best
suited. We will present the rate as beats per minute (bpm), although we are
not always measuring actual heartbeats.
The seven rate alternatives are:

9Empirically determined thresholds: maximum absolute amplitude > 0.08 mV, average
power > 1.25e-3 (mV)2, number of peaks over ±0.08 mV > 2
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1. Find positive peaks over a (signal dependent) threshold amplitude. Find
intervals between peaks. Check for missing peaks, false detections or
outliers. Calculate median peak interval and standard deviation.

2. Same as alternative 1, but with negative peaks.

3. Calculate autocorrelation and find the lag at the largest peak besides the
peak at zero lag. This lag is the period. The signal is then divided into
non-overlapping blocks of one period length and standard deviation is
calculated from either positive or negative peaks, or positive or negative
flanks, whatever gives the smallest standard deviation.

4. Find positive zero crossings (from negative to positive amplitudes, ig-
noring small baseline activity). Calculate median period and standard
deviation of interval between crossings.

5. Same as alternative 4, but with negative zero crossings.

6. The local maximum and minimum points are found (using sign crossing
of the differential signal). Limit ”false” and uninteresting peak points
by employing different thresholds such as minimum peak to peak am-
plitude. The intervals between maximum points are found and median
and standard deviation of the intervals are calculated.

7. Same as alternative 6, but with the intervals between the minimum
points.

Then the period T from the ”best” alternative is chosen. ”Best” is based on
the lowest standard deviation among the alternatives, along with additional
logic to discriminate between likely and unlikely alternatives.

The BPM feature is then calculated as

BPM = 60fs/T (5.14)

where fs is the sampling frequency in Hz and the period T is given in number
of samples. Typically, VF and VT rhythms will have more bpm (> 150) than
most PEAs and pulse rhythms.

5.3.3 Ratio of residual to total energy (RRTE)

Using the median period length T found during the calculation of the BPM
measure, the ECG segment is divided into K non-overlapping blocks of length
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T , and each block is normalized to unit variance. For an organized ECG
rhythm, each block then contains one period of the repeating rhythm. The
total energy for the segment is now

Etotal =
K∑

k=1

T∑

n=1

x2
k(n), (5.15)

where xk(n) denotes sample number n in block number k.
The ensemble mean of the signal blocks is found by

xmean(n) =
1
K

K∑

k=1

xk(n), (5.16)

representing one typical period or cycle of the present heart rhythm.
This ”typical” signal period is then subtracted from each block of ECG and
the residual energy is calculated:

Eresidual =
K∑

k=1

T∑

n=1

(xk(n)− xmean(n))2, (5.17)

As a feature of how repetitive and predictable the heart rhythm is, we calculate
the ratio of residual to total energy (RRTE):

RRTE =
Eresidual

Etotal
, (5.18)

and use this as a potential feature for a shock advice algorithm. The higher
the RRTE is, the less predictable and chaotic the rhythm is. Contrary, low
RRTE indicates a highly repetitive rhythm. Typically, VF rhythms will have
larger RRTE than PEA and pulse rhythms.

5.3.4 Complexity measure (COMPL)

A variant feature correlated with, but not the same, as RRTE can be calculated
from the blocks of ECG as used in the previous section. The ensemble standard
deviation of the ECG blocks are calculated:

xSD(n) =

√√√√ 1
K − 1

K∑

k=1

(xk(n)− xmean(n))2 (5.19)

The median value of xSD(n) is a number used as the complexity measure fea-
ture COMPL reflecting the predictability and complexity of an ECG rhythm.
Typically, VF rhythms will have larger values than PEA and pulse rhythms.
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5.3.5 Slope count

Slope count is a measure reflecting the ratio of steep to gentle slopes in the
ECG segment, and defined as the percentage of signal samples with absolute
slope rate below 5% of the maximum absolute slope in the segment. The
absolute slope rate for sample number n, adx(n), is simply defined as

adx(n) = |x(n)− x(n− 1)|. (5.20)

Typically, segments of pulse rhythms and PEA with narrow QRS complexes
will have few, but steep slopes, giving a high slope count value. VF and VT
rhythms often have slopes within a narrow slope range giving a low slope count
value.

5.3.6 Peak amplitudes

During the calculation of the BPM feature, the position of the peaks and
troughs in the ECG segment are found. We can then calculate the mean peak
amplitude (MPA) as the mean absolute amplitude value of the peaks and
troughs. By matching the corresponding peaks and troughs, the mean peak-
to-peak amplitude (MPPA) is also calculated. However, MPA and MPPA are
normally highly correlated (with MPPA about twice the value of MPA for
sinusoid rhythms) so in the following we will only use MPPA.

5.4 Example calculation of the features

In this chapter, we have presented many features designed for either rhythm
or VF analysis in ECG. To illustrate the various features and the unfortunate
influence of CPR artifacts on the features, we calculate features values in three
examples of ECG with and without CPR artifacts. The examples, consisting
of one VF, one asystole, and one PEA rhythm, are shown in Figure 5.1. The
ECG tracings are all 20 seconds in length, with CPR artifacts in the first 10
seconds. Values for all the features presented in this chapter are calculated
from a 5 second window in artifact corrupted ECG, and from a 5 second
window in clean ECG, for all the three examples as indicated by the shaded
areas in the figure. The values of the features are presented in Table 5.1. Note
that these calculations serve only as an example. More on how CPR artifacts
affect different features and if CPR artifact filtering can improve the situation
are presented in Chapter 9.
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Figure 5.1: Three ECG examples of human cardiac arrest rhythms used for illustrating
different signal features. First 10 seconds of each tracing have CPR artifacts. The shaded
areas indicate where the features have been calculated. The feature values are shown in
Table 5.1
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Table 5.1: ECG feature values in examples of one VF, one asystole, and one PEA rhythm.
The features are calculated both in clean ECG and ECG with CPR artifacts as indicated
in Figure 5.1.

VF Asystole PEA
Feature name w/CPR clean w/CPR clean w/CPR clean
Leakage 0.44 0.62 0.20 0.90 0.73 0.88
T 71 35 81 17 53 40
FSMN 1.57 1.59 1.13 23.62 3.18 4.94
A1 0.010 0.079 0.000 0.000 0.029 0.008
A2 0.56 0.40 0.89 0.15 0.20 0.10
A3 0.31 0.27 0.11 0.49 0.44 0.37
PF 2.05 3.47 2.25 0.34 1.86 1.12
Lempel-Ziv 0.16 0.32 0.16 0.29 0.20 0.36
IRM 0.15 0.30 0.07 0.98 1.05 0.00
Count20 0.25 0.37 0.26 1.00 0.72 0.94
CF 2.63 4.50 2.38 2.94 3.15 4.35
PPF 2.34 3.52 2.34 0.00 1.76 1.76
ENRG 49.58 3.25 3.13 0.01 2.89 2.68
SFM 0.04 0.26 0.01 0.26 0.12 0.17
AMSA 8.07 7.30 2.53 0.64 5.40 4.69
BPM 124 364 135 0 112 34
RRTE 0.10 0.97 0.06 0.00 0.52 0.07
COMPL 0.31 1.61 0.25 0.00 0.64 0.21
Slope count 0.12 0.17 0.04 1.00 0.62 0.88
MPPA 0.95 0.34 0.37 0.00 0.38 0.48
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Chapter 6

Comparing MC-RAMP and
the time-varying Wiener filter

The mechanical activity from chest compressions and ventilations during CPR
introduces artifact components in the ECG. For AEDs to perform reliable ECG
signal analysis, CPR is therefore discontinued for a substantial time before
the potential delivery of an electric shock. If the need for this NFT could
be reduced or eliminated by removing these artifacts, it should significantly
improve the defibrillation success rate [17,32,66,88,108].
The artifact components from CPR originate from mechanical stimulation
of the heart and thorax muscles, and from the electrode-skin interface due
to mechanical deformation [69]. Static electricity and the following charge
equalizing currents between measurement equipment and patient during CPR
also cause artifacts [69]. We will simulate CPR artifacts in human ECG, by
manually adding artifacts collected during pig resuscitation to human VF and
ventricular tachycardia (VT) rhythms as also done by Langhelle et al. [69] and
Aase et al. [1].
To test the MC-RAMP adaptive filter developed in Chapter 4 for removing
CPR artifacts in ECG, we will in this chapter filter a mix of animal CPR
artifacts and human VF/VT. The performance will be evaluated in terms of
signal-to-noise ratio (SNR) improvements, and compared with the theoreti-
cally optimal multichannel time-varying Wiener filter from a previous study
by Aase et al. [1]. This chapter is adapted from [55].

6.1 Materials and methods

In the study by Aase et al. [1] CPR artifacts were successfully reduced in
the recorded ECG signal using a multichannel time-varying Wiener filter, and

65
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this made subsequent successful ECG signal analysis possible. Two reference
channels were used: thoracic impedance and compression depth. Here, we
will also investigate the use of two additional reference channels: compression
acceleration and ECG common mode voltage.

The previous study [1] also showed that CPR artifact removal becomes in-
creasingly more difficult when the compression rate goes from 60 to 90, and
to 120 min−1 which is the highest rate that should be of clinical interest. This
is due to a higher degree of overlap between the artifact and VF signal in the
frequency domain. We select the worst-case scenario for our experiments, i.e.
a compression rate of 120 min−1.

The filtering experiments performed by Aase et al. focused on artifacts due
to chest compressions and ventilation [1]. In the filtering experiments, the
Wiener filter used reference signals proportional to the compression depth
(measured directly by a mechanical compression device) and the ventilations
(represented by the thorax impedance measurement, as seen between the de-
fibrillator electrodes). The experimental setup by both Langhelle [69] and
Aase [1] minimized the electrode-skin interface artifacts by collecting ECG
from separate monitoring electrodes that were not mechanically affected dur-
ing CPR as well as the use of a separate ground electrode which minimized the
possible influence of static electricity. As discussed by Aase et al., successful
filtering was limited by the reference signals having a low sampling rate of 25
Hz, compared to 100 Hz for the ECG. Also, the experimental setup indicated
additional artifact components not reflected by the two reference signals used.

In [1] the multichannel Wiener filter required, for each new signal sample, the
inversion of an estimated multichannel autocorrelation matrix of dimension
given by the sum of the number of filter coefficients in all artifact correlated
channels. Two artifact correlated reference channels and filters with just a
single coefficient resulting in 2 × 2 autocorrelation matrices were used in [1].
In a more realistic setting, the possibility of adding more artifact correlated
reference channels and using longer filters is desirable. For such situations the
computational complexity of the matrix inversion of the solution of [1] quickly
becomes prohibitive. Furthermore, given that reference signals encountered in
practice, from time to time, give rise to ill-conditioned autocorrelation matri-
ces further complicates the situation. To deal with these issues we will use the
MultiChannel Recursive Adaptive Matching Pursuit (MC-RAMP) filter devel-
oped in Chapter 4. Note that the modifications in Section 4.2.3 are not used
in this chapter, only MC-RAMP in its basic form.
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6.1.1 Simulating CPR artifacts in human ECG

New animal experiments were conducted to collect artifacts and reference sig-
nals. To evaluate the feasibility of online CPR artifact removal in a more
realistic setting, the data were collected in a setup where the chest compres-
sions were manually performed (rather than by a mechanical device), and all
the reference signals had sufficient resolution and bandwidth. The details of
the animal experiment are described in Section 3.2.
To simulate CPR artifacts in human ECG, pig asystole ECG with CPR arti-
facts were added to human VF/VT (described in Section 3.1.1). The signal
records used in the experiments are as follows:

• Artifacts: Animal asystole data with CPR artifacts are used to model
artifacts in human ECG. 15 second records from two pigs were used, 12
records from each animal making a total of 24 records to mix with the
human ECG. Each record was normalized to unit variance.

• Human ECG: The data records are 15 seconds each and of type:

VF: 200 records.
VT: 71 records.

In order to simulate a wide range of noise conditions, we added the animal data,
now considered artifact noise, to the human VF/VT data using an adjustable
scaling factor. Denote by xh(n) the human VF/VT signal and an(n) the
normalized artifact signal. Setting

a(n) = C · an(n) (6.1)

where C is a chosen constant, the noisy signal x(n) is modelled as

x(n) = xh(n) + a(n). (6.2)

Given a target SNR defined as

SNR = 10 log10

(
σ2

xh

σ2
a

)
. (6.3)

with σ2 denoting variance, the constant C is found as

C =

√
σ2

xh

10
SNR

10

(6.4)

By individually computing C for the construction of every noisy signal record,
a fixed SNR is ensured for the whole ensemble.
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6.2 Results

In this section we describe the selection of the MC-RAMP parameters, show
two examples of artifact filtering, before we present and discuss the full scale
experiment.

6.2.1 Parameter selection

Although VT segments are available, we will select the filter parameters using
VF segments only. This is reasonable since VF is more commonly encountered
in the out-of-hospital defibrillation scenario [24,53].

In the proposed filter structure of Figure 4.2, the filter lengths for all reference
channels, M0, . . . ,MK−1, must be chosen. The window length, L1 + L2 + 1,
must also be chosen. Note that L1 and L2 for a rectangular window, as in
our case, need not be equal. That is, the number of future and past samples,
respectively, to take into account when calculating the filter coefficients, can be
different, making the window non-symmetric. For the MC-RAMP algorithm,
the number of MP-iterations, P , for each time instant and the norm threshold,
τ , preventing rank deficiency, must be chosen. Experimental evidence suggest
a setting of τ = 0.2, which is the value used in the following. In the experiments
reported, we have set P = dM/2e, where M =

∑K−1
k=0 Mk. While the results

are not very sensitive to the exact value of P , in fact a P of 1 or 2 gives only
marginally inferior results, the selected P is indicative of the best possible
performance with the proposed algorithm. When computing the results, only
the 9 second center part of each 15 second segment is used in order to avoid
filtering edge effects. The parameter settings are selected for maximum SNR
improvement. In order to limit the search for the best parameter settings, two
constraints are introduced:

• The parameter selection experiments are performed on a limited data
set (6 animal artifact signals mixed with 20 human VF signals giving
120 mixed signals). The obtained SNRs after restoration are averaged
over the 120 signals.

• Only one input SNR (i.e. VF+artifact SNR before filtering) setting is
used: 0 dB.
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Selecting parameters for the two-channel system

For tuning of the parameters L1 and L2, we only use two reference channels,
thorax impedance and compression depth. The filter lengths M1 (for thorax
impedance) and M2 (for compression depth) are also set equal, M1 = M2 =
Mc.

For MC-RAMP, the number of past (L2) and future (L1) samples taken into
account when calculating the filter coefficients can be adjusted independently.
The average restored SNRs obtained for Mc = 3 as a function of L1 and L2 are
shown in Figure 6.1. We observe that the SNR results are fairly symmetrical
about the diagonal with respect to L1 and L2, indicating that we can set
L1 = L2. Using this additional constraint, the results obtained for filter
lengths 1 through 6 are shown in Figure 6.2. Using future samples (i.e. non-
causal solution, L1 > 0) will introduce a time delay in a real-time system.
Observing that the system performance increases with increased window size,
the choice of L1 must be a compromise between an acceptable time delay and
signal restoration performance. From Figure 6.2 a suitable compromise is a
window size of 300, i.e. L1 = L2 = 150, giving a delay of 1.5 s in the present
situation. The performance also increases with increased filter length. This is
in contrast to the result in [1] where single tap filters gave the best results. The
reference channels in [1] were originally sampled at 25 Hz and upsampled to 100
Hz. This low time resolution, along with rank problems, may explain why 1 tap
filters worked best in those experiments. Regarding the filter length selection,
we furthermore observe from Figure 6.2 that the largest benefit comes from
increasing the number of filter coefficients M from 1 to 2. Increasing M further
results in improvements, but increasing M beyond a value of 5 or 6 leads only
to marginal gains in the artifact reducing capabilities. We conclude for now
that 5 tap filters for the thorax impedance and compression depth channels
seems to be reasonable choices.

Extending the number of reference channels

As suggested in Section 3.2, the use of additional reference channels may im-
prove the artifact removal performance. The two additional channels of cur-
rent interest are ECG common mode and compression acceleration (i.e. chest
compression acceleration, from which the compression depth is derived). Test
results showing the effect of adding these reference channels in addition to the
original two channels are shown in Table 6.1. The tests are done for two cases;
when the existing channels, thorax impedance and compression depth, have
short (1-tap) filters and longer (5-tap) filters. From the presented table, we
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Figure 6.1: Artifact removal performance of MC-RAMP as a function of the number
of past (L2) and future (L1) samples taken into account when calculating the filter
coefficients. Two reference channels, thorax impedance and compression depth, are used,
each with a filter length of 3. The input SNR is 0 dB. The dotted line is the diagonal
where L1 = L2.

again observe the significant gains in terms of artifact reducing capabilities
when increasing the filter lengths. Furthermore, we observe that the addi-
tional channels seem to be most useful when we use short filters for the thorax
impedance and compression depth channels. For longer filters, we still observe
a slight increase in performance when adding compression acceleration, while
ECG common mode seems to have no significant positive effect. In the follow-
ing experiments, we will not further investigate the use of ECG common mode
since it seems to have little (positive) effect on the performance. Compression
acceleration however, having some positive effect, will be further investigated
in our full scale experiment in Section 6.2.3.
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Figure 6.2: Artifact removal performance of MC-RAMP as a function of the window
length L1 + L2 + 1, (L1 = L2), and the number of filter taps in each channel. Two
reference channels, thorax impedance and compression depth, are used. The input SNR
is 0 dB.

6.2.2 Filtering examples

Before presenting the overall results we visualize the effect of the proposed
system with two filtering examples. Both examples use two reference channels,
thorax impedance and compression depth, each having a 5-tap filter. In the
first example, we select a 15 second human VF record, to which an animal
artifact is added to give an SNR of -5 dB. Figure 6.3 shows the result. In the
second example, a 15 s human VT record is mixed with an animal artifact,
SNR is -5 dB. Figure 6.4 shows the resulting waveforms. Both examples
show good filtering results with SNR improved by over 9 dB. Some errors are
still present in the reconstructed signal, indicating that the artifact exhibits
additional, seemingly high-frequency, features not seen in the two reference
channels. Some reference error might be due to some remaining spontaneous
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Table 6.1: MC-RAMP test results showing the effect of adding extra reference channels
in addition to the original two channels (compression depth and thorax impedance) for
varying filter taps.

Filter taps Performance in dB
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1 1 0 0 5.54 5.42 1.41
1 1 1 0 5.73 5.70 1.62
1 1 2 0 5.77 5.62 1.57
1 1 0 1 5.92 6.13 1.61
1 1 0 2 6.42 6.55 1.43
1 1 1 1 5.88 6.00 1.65
1 1 2 2 6.34 6.48 1.45
5 5 0 0 7.37 7.39 1.82
5 5 1 0 7.24 7.22 1.76
5 5 2 0 7.17 7.10 1.75
5 5 0 1 7.59 7.63 1.83
5 5 0 2 7.23 7.38 2.15
5 5 1 1 7.38 7.49 1.78
5 5 1 2 7.07 7.16 1.91

electric activity in the heart of the animal, indicating that ECG due to the
animal’s heart activity is not completely isoelectric.

6.2.3 Full scale experiment and SNR evaluation

Using all the data, we evaluated two configurations of the proposed artifact
removal system in terms of SNR improvement. The first configuration is the
two channel system, using thorax impedance and compression depth as refer-
ence channels (5-tap filter for each channel) with the MC-RAMP algorithm.
The second configuration is the three channel system, using thorax impedance,
compression depth (both 5-tap filter) and compression acceleration (1-tap fil-
ter) as reference channels. For comparison, these two experiments were also
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Figure 6.3: VF filtering example using the MC-RAMP two channel filter system. Corrupted
ECG SNR is -5 dB. After filtering, the SNR is 4.87 dB.
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Figure 6.4: VT filtering example using the MC-RAMP two channel filter system. Original
SNR is -5 dB. After filtering, the SNR is 4.34 dB.
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Figure 6.5: Average SNR performance of the artifact removal system for the MC-RAMP
and the time-varying Wiener filters. Two (compression depth and thorax impedance) or
three (compression acceleration in addition) reference channels are used.

repeated using the time-varying Wiener filter solution [1] with the same win-
dow length (L1 = L2 = 150) and filter lengths as for MC-RAMP. The results
are shown in Figure 6.5. We observe that VT performance is slightly better
than for VF, but the trends as to channel configuration and filter type are
equal. Wiener and MC-RAMP are quite close in performance, although 3
channel MC-RAMP seems to give the best overall results. The difference in
performance between 2 and 3 channels are larger for MC-RAMP than for the
Wiener filter solution.

6.2.4 Statistical analysis

For the comparison of the restored SNR levels for VF for the two different
filter types and the two channel configurations, Wilcoxon rank-sum test is
used. Statistical significance is set to the 0.05 level. When comparing 3 versus
2 channels for MC-RAMP, 3 channels are significantly better for SNRs -10 to
0 dB (P << 0.001), but significantly worse for SNRs 5 and 10 dB (P = 0.023
and P << 0.001, respectively).1 For Wiener filter, 3 channels are significantly
better for SNR = -10 dB (P = 0.0075), not significantly different for SNRs -5,
0, 5 dB (P = 0.052, P = 0.62, and P = 0.11, respectively), and significantly
worse for SNR = 10 dB (P = 0.0015).

When comparing Wiener filter versus MC-RAMP for 2 channels, Wiener filter
is significantly better for SNRs -10 and -5 dB (P << 0.001), not significantly

1The performance were only evaluated at SNRs -10, 5, 0, 5, and 10 dB.
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different for SNR = 0 dB (P = 0.53), and significantly worse for SNRs 5
and 10 dB (P << 0.001). For 3 channels, MC-RAMP is not significantly
different than Wiener filter for SNRs -10 and -5 dB (P = 0.57 and P = 0.24,
respectively), but significantly better for SNRs 0, 5, and 10 dB (P << 0.001).
Neither MC-RAMP nor Wiener filter have much positive effect for an input
SNR of 10 dB.

6.3 Discussion

The MC-RAMP multichannel adaptive filter was successfully used for removal
of CPR artifacts in ECG signals. We found that at a sampling rate of 100 Hz,
a two channel filter, each with 5 filter coefficients and using thorax impedance
and chest compression depth as reference signals, performed well when the L1

and L2 parameters defining the window of samples used in adapting the filter
were both set to 150. Some improvement was observed when the number of
reference channels was increased from 2 to 3, by including the compression
acceleration.

In [1] it was established that automated ECG analysis could be reliably per-
formed when the artifact corrupted ECG signal was processed by the time-
varying Wiener filter. This was a direct consequence of the filter’s artifact
attenuation capability as measured by the SNR improvement. Here we have
demonstrated equally good SNR improvements using the proposed algorithm,
the MC-RAMP. Given the salient properties of this algorithm in terms of
computational complexity and numerical robustness, the prospects of doing
reliable real time ECG analysis while CPR is being administered are indeed
promising.

6.4 Summary

In this chapter we demonstrated the use of the MC-RAMP adaptive filter de-
scribed in Chapter 4 in a mix of animal CPR artifacts and human VF/VT.
Evaluated in terms of SNR improvements, the CPR artifacts were successfully
reduced. We also showed that the computational efficiency of our solution
was not accompanied by any performance degradations compared to the com-
putationally more expensive time-varying Wiener filter solution of [1]. Also,
MC-RAMP is numerically robust, not having the problem of rank deficiency
sometimes encountered in the time-varying Wiener filter solution.
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Chapter 7

CPR artifact removal in
human ECG

In Chapter 6, the performance of the MC-RAMP filter was shown to be on par
with the theoretically optimal time-varying Wiener filter, but being less com-
putationally complex for longer filters and more robust when ill-conditioned
reference channel signals occur.

We now want to test the MC-RAMP algorithm on human ECG and reference
channel data recorded during actual out-of-hospital cardiac arrests; the most
realistic data set for this application to date. We want to study how an AED
shock advice algorithm performs in ECG episodes with CPR artifacts, before
and after artifact removal. A shock advice algorithm performs feature extrac-
tion and rhythm classification to differentiate between shockable rhythms such
as VF and VT with rate over 150 bpm, and non-shockable rhythms such as
asystole, PEA and various pulse rhythms.

Previous studies have only investigated CPR artifact reduction in situations
with VF and VT, i.e. shockable rhythms. For these rhythms, the aim is
to reduce the CPR artifacts enough to make a shock advice algorithm in-
dicate shock; maintaining a high enough sensitivity. It has not, however,
been established that the artifacts are uninfluenced by the underlying cardiac
rhythm. It is therefore equally important to investigate filtering during non-
shockable rhythms, such as pulseless electrical activity (PEA), asystole, and
pulse-generating rhythms. As the artifacts often can resemble VF/VT, this is
necessary to ensure that the shock advice algorithm maintains a high enough
specificity. These rhythms constitute a new and different problem, and the
challenge is now to clean up the rhythms to make the shock advice algorithm
indicate no shock. This chapter is adapted from [37].
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7.1 Materials and methods

In this section we describe the human ECG data, the data processing, and
experimental methods used in this study.

7.1.1 Data collection

The data used in this study were extracted as part of a prospective study
of out-of-hospital cardiac arrest patients in Akershus County, Norway (47
patients), Stockholm, Sweden (38 patients) and London, UK (20 patients)
between March 2002 and May 2003. The ECG and reference channels for
MC-RAMP were recorded as part of the Sister project and are described
in Section 3.1.3. For this study, all four reference channels were included:
compression depth, compression acceleration, thorax impedance, and ECG
common mode.

To enable comparison of the shock advice analysis performance in ECG seg-
ments with and without CPR, we extracted continuous segments consisting
of 10 seconds with CPR immediately followed by 10 seconds without, padded
with one second buffers in the beginning and the end for filter initialization etc.
Since shocks will not be given when the patient is being lifted or intubated,
segments having large motion artifacts were excluded.

The episodes were annotated and classified into five classes of underlying heart
rhythms:

Shockable:

1) Ventricular fibrillation (VF)

2) Non-perfusing ventricular tachycardia (VT) with rate over 150 beats per
minute

Non-shockable:

3) Asystole

4) Pulseless electrical activity (PEA)

5) Pulse-giving rhythm (PR)
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7.1.2 Data preprocessing

Before applying MC-RAMP, the ECG episodes and reference channels were
downsampled to 200 Hz1, which is the sample rate used by the shock advice
algorithm in our experiments (see Section 5.1). 50 Hz 4th order comb filters
were applied to the ECG and all reference channels in order to remove the
DC and any 50 Hz mains noise, and 20 Hz 40 taps lowpass FIR filters to the
thoracic impedance channel and the ECG common mode channel. The latter
had an additional 8.9 Hz, 2nd order notch filter applied due to observed noise
in the collected data2.

7.1.3 Experiments

To test the MC-RAMP algorithm, we examined how an AED shock advice
algorithm performed in ECG episodes with CPR artifacts, before and after
artifact removal. The shock advice algorithm used for the experiments is
described in Section 5.1. For filtering of CPR artifacts, the basic MC-RAMP
and its modifications as described in Chapter 4 were used.

Each ECG episode consisted of 10 seconds with CPR artifacts3 and 10 seconds
without4. See Figure 7.1 for an example episode. It was assumed that the
underlying heart rhythm was the same throughout each episode, so that the
shock advice in principle should be the same in the subsegments with and
without CPR. The performance of the CPR artifact removal algorithm was
therefore tested by comparing the results from the first half with CPR to the
annotated ”reference” second half with clean ECG.

A total of 184 shockable and 348 non-shockable episodes were randomly dis-
tributed into a training set and a test set, stratified so that each set had 89
VF, 3 VT, 52 asystole, 114 PEA, and 8 PR episodes. Care was taken to ensure
that the episodes from the three geographic locations (Akershus, Stockholm,
and London) were distributed evenly into both sets. The training set was used

1In the analogue electronics of the defibrillator, the ECG is filtered with a second order
bandpass (0.9–50 Hz) filter without linear phase in the passband. The reference channels
were therefore filtered with a digital equivalent of this analogue filter in order to make the
reference signals as equal to the correlated components in the ECG artifacts as possible.

2The 8.9 Hz periodic noise probably originates from an electrical component in the de-
fibrillator, but is only present in the ECG common mode channel and has no effect on the
CPR artifact filtering results.

3As indicated by compressions registered in the Depth reference channel. A CPR period
is allowed up to 3 seconds of break in the midst of the compressions, eg. due to administering
of ventilations.

4Padded with one second buffers in the beginning and the end for filter initialization etc.
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Figure 7.1: Example of an episode. First half is with CPR, second half without. Un-
derlying heart rhythm is PEA throughout the whole episode. A noise spike is present at
approximately 17 seconds.

for tuning the MC-RAMP algorithm and the test set for evaluating the CPR
artifact removal system.

The performance was evaluated in terms of sensitivity and specificity. Sen-
sitivity is defined as the number of episodes correctly classified as shockable
divided by the total number of shockable episodes (class 1 and 2), and speci-
ficity as the number of episodes correctly classified as non-shockable divided
by the total number of non-shockable episodes (classes 3-5).

7.2 Results

In this section we first tune the MC-RAMP algorithm, before we present the
overall experimental results and show some filtering examples.

7.2.1 Tuning the MC-RAMP algorithm

The training set was used for tuning the MC-RAMP algorithm. Our imple-
mentation of MC-RAMP has several parameters, the most important listed
below:

1. The vector M with the number of filter coefficients for each channel.

2. L1 and L2, the number of future and past samples, respectively, to take
into account when finding the filter coefficients.
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3. The -3 dB cut-off frequency, fLP , of the lowpass filter applied on the
reconstructed artifact signal before subtracting it from the original ECG
signal.

4. P , the number of filter coefficient-updates to compute for each time
instant.

5. Energy thresholds for each reference channel. Below this threshold, the
filter coefficients of a reference channel are not updated, but slowly faded
towards zero.

6. Correlation coefficient thresholds for each reference channel. Filter co-
efficients of reference channels with correlation with the ECG channel
below this threshold are not updated, but slowly faded towards zero.

7. Option to turn on/off the possibility of automatic adjustment of L1 and
L2 during filtering, as well as the correlation and energy thresholds that
decides when and to what values L1 and L2 are to change. Also, we may
set how often this adjustment is to take place.

An exhaustive search for the best MC-RAMP performance with respect to
all these parameters simultaneously will be too computationally expensive
and time consuming. Based on preliminary experiments, we chose to fix the
parameters of items 4-7 without further testing 5. The remaining MC-RAMP
parameters were selected by running filter tests on the training set. Due to
the large number of degrees of freedom in adjusting the parameters, we ran
decoupled tests, adjusting only one parameter type at a time.

We begin by adjusting the vector M with the number of filter coefficients for
each channel. Test results with the performance for different values of M are
shown in Table 7.1. From this table we suggest using 5 filter coefficients for
each of the reference channels, i.e. M = [5 5 5 5].

In Chapter 6, best result was achieved by making the observation window
symmetrical, i.e. L = L1 = L2. Table 7.2 lists the performance for different
values of L. From this table we suggest using L = 200.

Using M =[5 5 5 5], and L1 = L2 = 200, the cut-off frequency, fLP , of the
reconstructed artifact lowpass filter was thereafter adjusted over the range
5–20 Hz, and 11 Hz appeared to give the best balanced result (see Figure 7.2).

5The energy thresholds are set to about 20% (30% for the common mode channel) of
the mean standard deviation of each reference channel during CPR in the training set. The
correlation coefficient threshold is set to 0.35 for all reference channels. L1 and L2 are
automatically adjusted every 50 samples. P is set to 4 unless otherwise noted.
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Table 7.1: MC-RAMP performance in terms of sensitivity and specificity in the training
set for different number of filter taps for each reference channel. Both for ECG with and
without CPR artifacts. L1 = L2 = 200, fLP = 11 Hz

Filter taps MC-RAMP performance
CPR no CPR
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1 1 1 1 2 97.8 74.7 98.9 100
2 2 2 2 2 96.7 79.3 100 99.4
3 3 3 3 4 97.9 79.9 100 99.4
4 4 4 4 4 98.9 81.0 100 99.4
5 5 5 5 4 98.9 82.2 100 99.4
6 6 6 6 4 97.8 81.0 100 99.4
5 0 0 0 2 94.6 75.3 100 100
0 5 0 0 2 95.7 73.0 100 100
0 0 5 0 2 92.4 73.6 100 100
0 0 0 5 2 96.7 74.7 100 100
5 5 0 0 3 97.8 75.9 100 100
5 0 5 0 3 96.7 75.3 100 100
5 0 0 5 3 96.7 79.3 100 100
0 5 5 5 3 97.8 76.4 100 100
5 0 5 5 3 96.7 79.9 100 99.4
5 5 0 5 3 98.9 81.6 100 99.4
5 5 5 0 3 98.9 75.9 100 100

From the parameter selection tests, we choose to use M =[5 5 5 5], L1 = L2 =
200, and fLP = 11 Hz for all following tests. We note, however, that generality
of these settings may not be assured due to the small size of the training set.
The settings have also been adapted to give good results using the current
shock advice algorithm, and will likely need to be adjusted for other shock
advice algorithms.

During compressions, which create the most prominent artifacts, the compres-
sion depth reference channel seems to be the one contributing most (indicating
the highest correlation with the artifact components in the ECG). The com-
pression acceleration and thorax impedance follows thereafter. The ECG com-
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Table 7.2: MC-RAMP performance in the training set for different values of L reflecting
the length of the observation window. M =[5 5 5 5], fLP = 11 Hz

MC-RAMP performance
L CPR no CPR
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50 92.4 83.3 97.8 100
100 96.7 82.2 98.9 99.4
150 98.9 81.0 100 98.9
200 98.9 82.2 100 99.4
250 97.8 79.3 98.9 100
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Figure 7.2: Sensitivity and specificity after artifact filtering using MC-RAMP in CPR cor-
rupted ECG from the training set for different cut-off frequencies fLP of the reconstructed
artifact lowpass filter. M =[5 5 5 5], L = 200
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Table 7.3: Sensitivity (sens.) and specificity (spec.) for the training and test set.

Performance in (%)
CPR no CPR

Sens. Spec. Sens. Spec.
Training set Unfiltered 90.2 76.4 100 100

w/MC-RAMP 98.9 82.2 100 99.4
w/4.3 Hz HP filter 73.9 91.4 69.6 98.9

Test set Unfiltered 81.5 67.2 97.8 98.9
w/MC-RAMP 96.7 79.9 97.8 98.3
w/4.3 Hz HP filter 64.1 90.2 53.3 98.3

mon mode channel is mostly used for various non-CPR noise phenomena in
the ECG. However, keep in mind that the MC-RAMP filter will automatically
choose which and what amount of the reference channels needed for making a
model of the CPR artifacts as present in the ECG. In general, over an ECG
episode, all four reference channels will normally contribute at some time.

7.2.2 Results of the CPR artifact removal

Using the best parameter setting found in Section 7.2.1, we tested the per-
formance of the shock advice algorithm after filtering the test set using the
MC-RAMP filter. For comparison, we also tested the performance after arti-
fact filtering using a fixed coefficient 4.3 Hz highpass (HP) filter (40 taps FIR
filter) as tested by Strohmenger et al. for removal of CPR artifacts [92] for
VF analysis. The results are shown in Table 7.3. As can be seen from the
table, the 4.3 Hz highpass filter is inferior to MC-RAMP, and gives even worse
results than using no filter at all.

Only considering MC-RAMP: From the training set a sensitivity of 98.9% and
specificity of 82.2% were achieved during CPR, an increase of approximately
8% and 6%, respectively, compared to the unfiltered training set. The test set
gave a sensitivity of 96.7% and specificity of 79.9%, an increase of approxi-
mately 15% and 13% respectively, compared to no filtering.

Figure 7.3 shows three examples of successful filtering where false classification
during CPR is turned into correct classification after filtering. Each plot is
an episode of 20 seconds with first 10 seconds with CPR. From the top, the
original ECG, filtered ECG, reference channels compression depth, thorax
impedance, ECG common mode, and compression acceleration, respectively,
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are plotted. The results of the shock advice algorithm are written in the ECG
plots for each half of the episodes.

For some episodes, the shock advice algorithm will give correct classification
for both unfiltered and filtered ECG. The CPR artifacts may be small or of
such a character that the algorithm will not be misled. However, filtering of
CPR artifacts will often visually improve the ECG and is of interest for an
AED operator. Figure 7.4 shows three such examples.

Unfortunately, sometimes MC-RAMP fails to filter an episode properly. Pos-
sible reasons for this are discussed in Section 7.3. Figure 7.5 shows three
examples where we (still) get wrong shock advice after filtering.

7.3 Discussion

CPR artifacts have previously been successfully removed from VF/VT seg-
ments in animals [78, 91] and in a mix of human VF/VT and animal CPR
artifacts [1, 55, 69]. The present study indicates that this is also possible for
clinical human data. The 96.7% sensitivity for VF/VT after filtering in the
present study (versus 81.5% unfiltered) is close to the 97.8% sensitivity in seg-
ments without CPR in the present study, and similar to previously reported
sensitivities for semi-automated defibrillators [76,77]. Thus most patients with
a shockable rhythm could have been shocked earlier without a hands-off inter-
val for ECG analysis, and thus an increased probability of ROSC [32,88,108].

It is however also important that the defibrillator accurately assesses non-
shockable rhythms. It is vital that no shocks are given to patients with a
potentially perfusing rhythm, and unnecessary shocks should be avoided in
patients with asystole or PEA where they can do no good. Previous studies
have not included non-shockable rhythms in the artifact filtering evaluation
[1, 55, 69, 78, 91, 92]. In the present study the specificity of only 79.9% for the
test set (versus 67.2% unfiltered and 98.3% in the segments without CPR)
indicate that artifact filtering of non-shockable segments constitute a more
difficult problem than for VF/VT episodes.

A possible reason for this is the great variability in CPR artifact size and
character. There were episodes with large and spiky CPR artifacts without
similar spikiness in the reference channels, and the filter can only remove
artifacts reflected in the reference channels. The residuals after filtering were
sometimes relatively large, resembling VF, e.g. in Figure 7.5(b), especially
apparent for some asystole episodes. This could be due to insufficient filtering
or missing components in the reference channels, but it cannot be excluded



86 CPR artifact removal in human ECG

that compressions could induce VF-like activity in the heart which disappears
immediately with the cessation of compressions. Thus it cannot be excluded
that the underlying heart rhythm was not the same during the ten seconds
with and ten seconds without CPR artifacts in some of the analyzed ECG
episodes.
We assumed a linear mix of CPR artifacts and underlying heart rhythm in
the ECG, but this assumption is probably not true under all conditions. This
is particulary seen in episodes with large and spiky CPR artifacts where the
spikiness is not found in the reference channels. We might need to use our
reference channels in some nonlinear fashion in order to shape the reference
channel more to the ”nonlinear” CPR artifacts sometimes seen in the ECG.
The large and spiky artifacts may also be the result of an instrumentation
problem or a particular electrode/skin condition.
Another type of troublesome episodes occurs when the rate of the compressions
and underlying heart activity (e.g. PEA complexes) are almost the same. For
these, the MC-RAMP algorithm will often remove portions of the underlying
heart activity in the ECG signal as well. Components in the ECG corre-
lated with the reference channels are removed, unfortunately also incidental
similarities.
The shock advice algorithm used in this study is based on hard decisions, that
is, fixed thresholds for various ECG features. There are always borderline
cases for shock/no-shock classification, also for ECG segments without CPR
artifacts, and we have observed several in our data set. Sometimes a borderline
case will be correctly classified on the non-CPR ECG, but incorrectly on the
CPR part due to some small residual after filtering. Figure 7.5(c) shows
one such example. It is possible that another shock advice algorithm could
be developed with features less sensitive to such post-filtering residuals and
decision rules based on pattern recognition principles [28].

7.4 Summary

Using the MC-RAMP multichannel adaptive filter, we have filtered human
ECG episodes of out-of-hospital cardiac arrest with CPR artifacts, and eval-
uated the result using a shock advice algorithm. A satisfactory VF/VT sensi-
tivity of 96.7% was achieved. The specificity was only 79.9%, indicating that
artifact filtering of non-shockable episodes constitutes a more difficult problem
than for VF/VT episodes. Several factors are speculated to have contributed
to the relatively low specificity, such as missing artifact components in the
reference channels, inadequate shock advice algorithm, and spontaneous un-
derlying heart activity.
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(b) Successful PEA episode

Figure 7.3: Three examples of successful filtering – segments with false classification
during CPR, but correct classification after MC-RAMP filtering.
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Figure 7.3 (continued)
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(b) ”Indifferent” PEA episode

Figure 7.4: Three examples of ”indifferent” filtering – segments with correct classification
both during CPR and after MC-RAMP filtering. However, filtering visually improves the
ECG.
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Figure 7.4: (continued)
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−1

0

1

E
C

G
 [m

V
]

Shock No Shock

0 2 4 6 8 10 12 14 16 18 20
−1

0

1

E
C

G
 a

fte
r 

fil
te

rin
g 

[m
V

]

Shock No Shock

C
om

pr
.

 d
ep

th

Reference channels (normalized plots):

T
ho

ra
ci

c
 im

pe
da

nc
e

C
om

m
on

 m
od

e

0 2 4 6 8 10 12 14 16 18

C
om

pr
.

 a
cc

el
.

Time [s]

(b) Unsuccessful asystole episode

Figure 7.5: Three examples of unsuccessful filtering – wrong classification after MC-RAMP
filtering.
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Figure 7.5: (continued)



Chapter 8

Improving performance:
adding verification and noise
detection

In Chapter 7 we tested CPR artifact filtering in human ECG and viewed the
performance of a shock advice algorithm before and after artifact filtering.
Although improvement in performance after filtering, the specificity found,
about 80%, is probably too low for clinical use1 [65]. The sensitivity exceeding
95% is good and satisfactory for clinical use [65].

The reason for having rhythm analysis done during CPR is to reduce the
adverse NFT with no blood flow to the tissues. Ideally, having rhythm analysis
during CPR should save all NFT currently used for rhythm analysis. However,
this may not be feasible if we require very high sensitivity and specificity of the
shock advice algorithm. By introducing methods to increase the performance,
some NFT may be introduced as well, although less than current practice.

In this chapter, we want to investigate and test such methods for improving
the specificity. Low specificity means that too many analyses indicate shock
where we actually have a non-shockable rhythm. A straightforward remedy to
consider would be to add a short verification analysis after an analysis during
CPR that indicated shock. This verification could be after CPR is stopped,

1According to the recommendations in [65], AEDs in artifact free ECG should have >99%
specificity of normal sinus rhythm, >95% in asystole. Although PEA is not mentioned, for
some other non-shockable arrhythmias, giving at least some degree of circulation, >95%
specificity is recommended. We also note the >90% and >75% sensitivity recommendations
for coarse VF (peak-to-peak amplitude >200µV), and rapid VT, respectively.
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in clean and easy to analyze ECG, just prior to delivering a shock. Another
method for improving the specificity is to detect when we can not trust the
result of the CPR artifact filtering, and rather postpone our decision until
CPR is stopped.

8.1 Methods for improving specificity in rhythm
analyses during CPR

This section describes two methods for improving specificity in rhythm analy-
ses during CPR. We note that methods for improving specificity may influence
sensitivity as well.

8.1.1 Verification before shock

To improve specificity for rhythm analyses during CPR, we propose to add a
short verification analysis after CPR is stopped. If an analysis during CPR
indicates shock, this justifies a stop of CPR, and a short verification analysis
is then run in clean ECG. If the verification analysis also indicates shock, a
shock is delivered. If not, the shock is cancelled and CPR resumed.

The time used for a short verification analysis will vary depending on what al-
gorithm used, but should typically be 3–5 seconds. The shock advice algorithm
described in Section 5.1 primarily uses majority voting of results from (max-
imum) three consecutive 3 seconds segments of ECG for one final shock/no-
shock decision. As shown in Figure 7.1, the data in our experiments consist
of ECG episodes of 10 s with CPR following 10 s without. For verification
analysis in this chapter, we will simply use the result of the first 3 s segment of
the shock advice algorithm as run on the clean last half of the ECG episode.

In general, during the time allocated to the verification analysis, a VF analysis
could also be run. This could be the PROSC analysis introduced by Eftestøl
et al. [31]. The PROSC analysis is based on four spectral features (see Sec-
tion 5.2.6). Using principal component analysis and a histogram technique
this multidimensional information was expressed in a single variable, PROSC ,
reflecting the probability of defibrillation success. Using such a scheme, with
both rhythm verification and VF analysis, the total analysis would not only
verify if the rhythm is shockable, but if the following shock is likely to give
ROSC.
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8.1.2 Detecting too difficult noise and artifacts

Sometimes the CPR corrupts the ECG to such a degree that artifact filtering is
very difficult, and indeed, will not remove the artifacts satisfactorily. A typical
situation occurs when the CPR artifacts in the ECG are very large and spiky,
appearing ”non-linearly” or poorly correlated with the reference channels. In
such instances, the result of the artifact filtering will often be confusing or
cluttered up. It would be favorable to be able to detect such ECG, and instead
of making a shock/no-shock analysis based on difficult ECG, rather postpone
the analysis until the CPR is stopped and the ECG is clean. Three examples
of such ECG episodes are shown in Figure 8.1.

We propose a detector of difficult artifacts in an ECG segment primarily based
on the detection of one or more of the following traits:

• large noise spikes in the ECG not correlated with the compressions,

• large amplitude of peaks in the ECG corresponding to peaks in the
compression depth channel, and

• low relative sharpness of the compression peaks, i.e. compression ar-
tifacts in the ECG being very spiky and narrow compared with the
compressions in the compression depth channel.

Together with the correlation coefficient between the ECG and compression
depth channel, these items will produce features that are thresholded to indi-
cate when we have ECG with too troublesome noise and artifacts.

Correlation between the ECG and compression depth channel

The maximum cross correlation coefficient between the ECG and compression
depth channel is found as well as the delay between the two signals. The
maximum positive correlation coefficient is used unless the absolute value of
the minimum negative correlation coefficient is ”much” larger.

Detecting noise spikes

Detecting noise spikes is based on counting the number of times the ECG
voltage exceeds a certain noise amplitude threshold. We have used 2 mV for
positive peaks and -2 mV for negative peaks. If we have a minimum of two
positive or two negative peaks in a segment of ECG, noise spikes are flagged
as present.
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(a) Generally noisy VF episode, with large and spiky CPR and motion artifacts.
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(b) Asystole episode with very large, and somewhat spiky and varying CPR artifacts.
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(c) PEA episode with very large and spiky CPR artifacts.

Figure 8.1: Examples of ECG with very high amplitude and/or ”non-linearly” artifacts
resulting in poor artifact filtering results. It would be better to postpone the shock advice
in such cases. Note the values on the amplitude axes.
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In some cases, amplitudes exceeding ±2 mV can be valid QRS complexes and
not noise. To exclude such instances being classified as noise, we calculate the
rate of the ECG using the BPM feature described in Section 5.3.2. The rate
of the peaks found are then compared with the ECG rate, and if within 5% of
each other, the peaks exceeding ±2 mV are not classified as noise.

Detecting large compression artifacts

First, the local maximum and minimum points in the depth channel are found.
Points corresponding to peaks with too low amplitude are removed so that the
remaining points correspond to real compressions. Then, we search for positive
and negative peaks in the ECG around local neighborhoods where we expect to
find peaks corresponding to compressions as found in the depth channel. The
maximum/minimum amplitude of the peaks are found and the upper quartile
value (75 percentile) of the positive and negative peaks, calculated separately,
are recorded as two features. Very high values of these features indicates large
compression artifacts that may be difficult to remove completely.

Relative sharpness

With relative sharpness we want to measure and compare the sharpness of
the compression artifacts in the ECG to the sharpness of the peaks in the
compression depth channel. Low relative sharpness indicates that the artifact
peak in the ECG are spiky and more narrow than the corresponding peak in
the depth channel.
To calculate relative sharpness, we find how many samples of every peak in
the ECG and depth channel that exceeds 75% of the peak’s maximum (or
minimum) value. For every corresponding pair of peaks, the ratio of the
number of samples of the ECG and depth channel are calculated. The median
value (50 percentile) of the relative sharpness for the positive and negative
peaks are calculated separately and recorded as two features.

Using the features together

Finding more than two peaks exceeding ±2 mV will always flag the ECG
segment as noisy. Else, for flagging a segment as potentially troublesome for
the artifact filtering, we use a combination of the maximum cross correlation
coefficient, peak amplitudes, and relative sharpness. Also, the ECG waveform
rate must be below 180 bpm since we seldom experience troublesome and
dominating artifacts over this rate. The features are thresholded progressively,
i.e. at lower correlation values, we need higher peak amplitudes and lower
relative sharpness number to flag it as noisy.



98 Improving performance: adding verification and noise detection

Table 8.1: Sensitivity (sens.) and specificity (spec.) for the training and test set using
various methods (verif = added verification analysis (Section 8.1.1), pp = detecting
difficult artifacts and postponing the decision (Section 8.1.2))

Performance in (%)
CPR no CPR

Sens. Spec. Sens. Spec.
Training set Unfiltered 90.2 76.4 100 100

w/MC-RAMP 98.9 82.2 100 99.4
w/pp 98.9 83.9 100 99.4
w/verif 97.8 97.1 100 99.4
w/pp+verif 97.8 97.7 100 99.4

Test set Unfiltered 81.5 67.2 97.8 98.9
w/MC-RAMP 96.7 79.9 97.8 98.3
w/pp 96.7 82.2 97.8 98.3
w/verif 92.4 95.4 97.8 98.3
w/pp+verif 92.4 96.0 97.8 98.3

8.2 Experiments

To test if the methods proposed will improve the specificity, we redo the ex-
periment from Section 7.1.3 using the MC-RAMP filter parameters found in
Section 7.2.1, augmenting it with the proposed methods. The data sets are
the same as described in Section 7.1.1.

8.2.1 Results

Table 8.1 shows the effects of the added methods on both the training and
test set from Chapter 7. For both sets, the specificity is increased significantly
to clinically acceptable levels. The short verification analysis seems to con-
tribute the most to the increased performance. Unfortunately, the sensitivity
is slightly reduced for both sets when introducing a short verification analysis.

Too difficult conditions for CPR artifact filtering was detected in 6% of the
segments (15 and 16 segments in the training and test sets, respectively), thus
postponing the analysis until CPR stopped (i.e. the last 10 s without CPR of
each ECG segment).
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8.3 Discussion

The two proposed methods increases the specificity. However, the results
show that the method postponing analysis on very noisy ECG segments yield
perhaps surprisingly low performance increase. Only about 2% increase in
specificity. This may be because most very noisy segments found are during
non-shockable rhythms with very distinct noisy artifacts in the ECG. After
filtering, the ECG will often still be so noisy that the shock advice algorithm
used will classify it as non-shockable regardless. Nevertheless, for visualization
and confidence in the filtering results, the method postponing the analysis
under difficult conditions may be useful for an AED user.

The method using a short verification analysis will increase the specificity
about 15%. Unfortunately, the sensitivity seems to be reduced (by 1.1% and
4.3% in the training and test sets, respectively). This may be because some
of the VF segments in our data sets are borderline cases with small VF am-
plitudes. The verification analysis checks the first 3 seconds after CPR and
sometimes these 3 seconds will contain VF with too low amplitude resulting
in a negative verification and no shock advice. The verification analysis used
here is rather simple and the drop in sensitivity could be avoided using a bet-
ter verification analysis. Also, the verification analysis could include a PROSC

analysis [31], in which case the VF segments with low amplitudes most likely
would result in too low probability of ROSC and thus no shock is advised
anyhow.

Both methods introduced here will cause an increase in NFT, compared to
having no methods for increasing specificity. The verification analysis used in
this chapter need 3 seconds, whilst if we need to postpone our analysis, the
whole analysis time (typically 6–7 seconds) is needed.

Using both methods gave the best results, giving specificity only about 2%
lower than the specificity in clean ECG, which should be good enough for
clinical use [65]. However, the improved performance by the difficult conditions
detector is rather small and further experiments should be conducted to see if
the additional computational complexity and cost in NFT are worthwhile.

8.4 Summary

The specificity of a shock advice algorithm after artifact filtering in ECG with
CPR artifacts was found too low for clinical use in Chapter 7. This chapter
have introduced two methods for increasing the specificity of analyses during
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CPR. The methods are introducing a short verification analysis after CPR is
stopped, prior to the shock, and adding detection of conditions where we can
not trust the results of artifact filter and should rather postpone our analysis
until CPR is stopped. Tested on human ECG, the performance was found
high enough to be considered for clinical use.

The reason to introduce artifact filtering and shock advice during CPR, is to
reduce the NFT. The potentials of our methods in terms of reducing NFT in
cardiac arrest resuscitation will be discussed in Chapter 10.



Chapter 9

Robustness of ECG features
during CPR

In Chapter 5 we presented several features used to discriminate different
rhythms and states of the heart. Studies have shown that CPR over time
has a beneficial effect on the arrested heart, and this is reflected in ECG fea-
tures [3,34]. However, CPR generates artifacts in the ECG which temporarily
influence and disturb the features, making ECG analysis during CPR unre-
liable. This disturbance is instantaneous and temporary and often make the
feature values reflect the nature of the CPR artifacts instead of the underlying
heart rhythm.

In previous chapters we have investigated CPR artifact reduction using the
MC-RAMP filter and primarily evaluated the performance in terms of SNR
improvement (Chapter 6) or sensitivity and specificity of a shock advice algo-
rithm (Chapter 7 and 8). In this chapter we will examine in detail the degree of
robustness of the individual ECG features. That is, how CPR artifacts affect
different features and if CPR artifact filtering can reset this influence. We will
study feature trends and illustrate the feature variability for three different
rhythm classes: VF, asystole, and PEA. Also, we will examine if the degree of
robustness of the features can indicate the feasibility of rhythm classification
and VF analysis during CPR.

9.1 Materials and methods

For this study we use all the VF, asystole, and PEA segments from the two
data sets used in Chapter 7. That is, we have 178 VF, 104 asystole, and 228

101
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Figure 9.1: Two examples of feature values in VF segments. Solid line is actual calcula-
tions. Dotted line is after smoothing using a first order low-pass Butterworth filter.

PEA segments, each of 20 seconds duration, with the first 10 seconds corrupted
by CPR artifacts. We will use both unfiltered and MC-RAMP filtered ECG
segments. MC-RAMP is applied with the optimal settings found in Chapter 7.

20 features from Sections 5.2 and 5.3 will be used in the experiments: VF-
filter leakage, mean signal period (T), BPM, RRTE, slope count, COMPL,
MPPA, Lempel-Ziv complexity measure, IRM, AMSA, CF, PPF, ENRG,
SFM, count20, FSMN, A1, A2, A3, and PF.

For each ECG segment, we will calculate each feature every 0.25 s in (over-
lapping) blocks of 3 s length. That means, ECG blocks for calculation start
times up to 7 s will contain CPR artifacts, blocks with start times from 7–10
s are transition blocks partly containing artifact corrupted ECG, and blocks
with start times from 10 s and above are without CPR artifacts. Figure 9.1
shows two examples of feature values in two VF ECG segments. The feature
values will often fluctuate from calculation to calculation as can be seen in
these examples. This may be due to high sensibility to measurement noise.
As they probably represent little clinical value, these fluctuations are not so
important from a clinical point of view, but rather the trend the feature fol-
lows. The fluctuations might be reduced using larger block lengths. However,
another way of smoothing the feature values to reveal the trend is by applying
a low pass filter to the feature values. We will use a first order Butterworth
low-pass IIR filter1 [85].

1With cutoff frequency corresponding to 0.2 Hz with the feature sampling rate of 4 Hz.
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9.2 Results

In the following we will not study feature values of individual ECG segments,
but rather the feature trend and variability (in terms of median and quartile
values) of the three rhythm classes (VF, asystole, and PEA), with and with-
out CPR artifacts. Also, in terms of CPR artifact influence on features, the
feasibility of rhythm classification and VF analysis during CPR are evaluated.

In order to compare feature values in ECG with and without artifacts, we will
assume, as a working hypothesis, that most of the ECG segments will have
stable feature values over the time period considered here, i.e. 20 seconds.
This should be valid for most of the segments in this study.

9.2.1 Feature trend and variability during CPR

All the calculated values for one feature in one ECG segment constitute the
individual trend. The ensemble of all these trends were used to determine the
general trend and variability of a feature for the different rhythm classes. To
lessen the influence of outliers, the general trends were calculated using the
ensemble median of all trends for all features and classes. The variability of a
feature was calculated from the ensemble lower and upper quartile values.

The feature trend and variability for the 20 features are shown in Figures 9.2
to 9.5. The figures illustrate the class separating abilities as well as the varying
influence of CPR artifacts on the features before and after artifact filtering.
Details on the feature values can be found in Table 9.1 (VF), Table 9.2 (asys-
tole), and Table 9.3 (PEA). The tables present values for four situations:

1. Unfiltered right side (URS): Averages of the ensemble median and quar-
tiles of the feature calculations with start from 11 to 17 s, i.e. from ECG
with no CPR artifacts. The ECG is not filtered with MC-RAMP. This
situation gives the ”reference” values for each feature.

2. Filtered right side (FRS): Same portion of the ECG segments as URS,
but filtered with MC-RAMP. Deviations from URS should be minimal.

3. Unfiltered left side (ULS): Averages of the ensemble median and quartiles
of the feature calculations with start from 1 to 6 s, i.e. from ECG with
CPR artifacts. The ECG is not filtered with MC-RAMP. Deviations
from URS are expected.
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4. Filtered right side (FLS): Same portion of the ECG segments as ULS, but
filtered with MC-RAMP. Deviations from URS should lessen (improve)
after filtering.

The tables also show the relative deviations of the averaged median values for
FRS, ULS, and ULS compared to the URS value.

For most features in unfiltered ECG, the CPR artifacts alter the feature values,
both in terms of median and quartile values. After filtering, both median
value and variability are generally improved (more alike values for ECG with
no artifacts) during CPR for VF segments . For asystole and PEA, the results
are more varying.

9.2.2 Feasibility of rhythm analysis during CPR

In Chapter 7 we have seen that the performance of a shock advice algorithm
for rhythm analysis was degraded by CPR artifacts, but improved again after
filtering using MC-RAMP. In this section we illustrate these findings from
a feature space perspective by studying some examples of features in a 2D
feature space.

The rhythm analysis use features for discrimination between different rhythm
classes, normally shockable rhythms versus non-shockable rhythms. The re-
sults from Section 9.2.1 show that features are influenced by CPR artifacts,
and that artifact filtering will not always cancel this influence. However, the
situation may still be improved and class separation abilities be preserved. Fig-
ure 9.6 shows two examples of 2D feature spaces populated by 100 segments
each of VF, asystole, and PEA in settings of no artifacts, with artifacts, and
after artifact filtering. The four features used, BPM, slope count, RRTE, and
count20, are examples of features showing promising class separating abilities
in Section 9.2.1.

It can be seen that the original clustering of the shockable and non-shockable
rhythms in the feature space is reduced with CPR artifacts present, but im-
proved again after CPR artifact filtering. However, there is still some per-
turbation of the features present illustrating the problems of reduced shock
advice performance encountered in previous chapters.

9.2.3 Feasibility of VF analysis during CPR

VF analysis is used to predict the outcome of a potential shock given shortly
after the analysis, hoping to avoid futile defibrillation attempts. To reduce the
NFT, it is desirable to do the VF analysis during CPR.
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Figure 9.2: For the features Leakage, T, FSMN, A1, and A2: Ensemble median and
quartile feature values for different rhythm classes in ECG segments with first half having
CPR artifacts. There are two plots for each feature, one before artifact filtering (left) and
after (right). Horizontal axis on each plot indicate start of feature calculation in seconds.
The solid lines are ensemble median values of different rhythm classes: black line denotes
VF, green line denotes asystole, and red line denotes PEA. The area between the lower
and upper quartile is also plotted, gray shaded area for VF, green shaded area for asystole,
and red shaded area for PEA.
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Figure 9.3: For the features A3, PF, Lempel-Ziv complexity measure, IRM, and count20:
Ensemble median and quartile feature values for different rhythm classes in ECG segments
with first half having CPR artifacts. Layout, symbols and shadings as in Figure 9.2.
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Figure 9.4: For the features CF, PPF, ENRG, SFM, and AMSA: Ensemble median and
quartile feature values for different rhythm classes in ECG segments with first half having
CPR artifacts. Layout, symbols and shadings as in Figure 9.2.
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Figure 9.5: For the features BPM, RRTE, COMPL, slope count and MPPA: Ensemble
median and quartile feature values for different rhythm classes in ECG segments with first
half having CPR artifacts. Layout, symbols and shadings as in Figure 9.2.
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Table 9.1: Feature values in VF. URS = Unfiltered right side (calc. start 11–17 s, no
artifacts). FRS = Filtered right side. ULS = Unfiltered left side (calc. start 1–6 s, CPR
artifacts). FLS = Filtered left side. Each cell includes the averaged (over the given range)
ensemble median feature value, and average lower and upper quartiles in parenthesis. The
percentage value in square brackets is relative deviation from URS median value.

Feature name URS FRS ULS FLS

Leakage 0.57 0.57 [+0%] 0.59 [+2%] 0.59 [+3%]

(0.50, 0.65) (0.50, 0.65) (0.50, 0.65) (0.52, 0.65)

T 35.9 35.5 [-1%] 45.9 [+28%] 35.4 [-1%]

(29.6, 43.3) (29.3, 43.1) (38.6, 55.8) (29.5, 41.1)

FSMN 1.69 1.69 [-0%] 1.83 [+8%] 1.71 [+1%]

(1.40, 2.20) (1.40, 2.18) (1.49, 2.35) (1.40, 2.25)

A1 0.08 0.08 [+1%] 0.04 [-47%] 0.09 [+15%]

(0.05, 0.10) (0.05, 0.10) (0.02, 0.08) (0.06, 0.12)

A2 0.39 0.39 [+0%] 0.39 [+2%] 0.36 [-6%]

(0.32, 0.46) (0.32, 0.46) (0.32, 0.48) (0.30, 0.43)

A3 0.25 0.25 [-0%] 0.30 [+23%] 0.26 [+3%]

(0.20, 0.30) (0.20, 0.30) (0.23, 0.37) (0.20, 0.31)

PF 3.75 3.78 [+1%] 2.41 [-36%] 3.73 [-1%]

(2.85, 4.62) (2.87, 4.64) (2.01, 3.39) (2.95, 4.70)

Lempel-Ziv 0.33 0.33 [+0%] 0.32 [-3%] 0.35 [+7%]

(0.24, 0.39) (0.24, 0.39) (0.27, 0.37) (0.28, 0.40)

IRM 0.37 0.37 [-0%] 0.36 [-2%] 0.38 [+3%]

(0.31, 0.44) (0.31, 0.44) (0.31, 0.43) (0.32, 0.46)

Count20 0.42 0.42 [-0%] 0.39 [-7%] 0.43 [+1%]

(0.38, 0.48) (0.38, 0.48) (0.34, 0.45) (0.39, 0.48)

CF 4.46 4.51 [+1%] 3.50 [-21%] 4.59 [+3%]

(3.73, 5.29) (3.75, 5.33) (3.00, 4.28) (3.94, 5.46)

PPF 3.66 3.69 [+1%] 2.61 [-29%] 3.65 [-0%]

(2.82, 4.52) (2.84, 4.54) (2.15, 3.52) (2.91, 4.54)

ENRG 2.96 2.90 [-2%] 7.51 [+154%] 3.35 [+13%]

(1.13, 6.69) (1.07, 6.50) (3.47, 20.94) (1.46, 7.95)

SFM 0.20 0.20 [+2%] 0.12 [-39%] 0.21 [+5%]

(0.12, 0.27) (0.12, 0.27) (0.07, 0.18) (0.14, 0.29)

AMSA 4.13 4.13 [+0%] 5.24 [+27%] 4.50 [+9%]

(2.64, 5.82) (2.63, 5.81) (3.62, 7.27) (3.26, 6.48)

BPM 272 271 [-0%] 227 [-16%] 296 [+9%]

( 213, 324) ( 213, 324) ( 159, 298) ( 242, 356)

RRTE 0.89 0.88 [-0%] 0.80 [-9%] 0.92 [+4%]

(0.79, 0.94) (0.80, 0.94) (0.46, 0.92) (0.85, 0.95)

COMPL 1.07 1.07 [-0%] 1.05 [-2%] 1.13 [+6%]

(0.98, 1.17) (0.97, 1.16) (0.72, 1.26) (1.03, 1.27)

Slope count 0.14 0.14 [-2%] 0.13 [-7%] 0.14 [-4%]

(0.12, 0.17) (0.12, 0.17) (0.12, 0.16) (0.12, 0.17)

MPPA 0.28 0.28 [-0%] 0.42 [+49%] 0.30 [+5%]

(0.19, 0.41) (0.19, 0.41) (0.30, 0.65) (0.21, 0.43)

Median abs. dev.: 0.4% 16.5% 3.3%
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Table 9.2: Feature values in asystole. Same notation as Table 9.1.

Feature name URS FRS ULS FLS

Leakage 0.82 0.83 [+1%] 0.54 [-34%] 0.70 [-15%]

(0.76, 0.88) (0.76, 0.88) (0.35, 0.67) (0.65, 0.75)

T 25.4 23.4 [-8%] 60.5 [+138%] 30.6 [+20%]

(18.4, 37.3) (16.7, 32.3) (51.0, 71.4) (24.2, 38.5)

FSMN 5.25 5.77 [+10%] 1.66 [-68%] 2.76 [-47%]

(3.28, 9.03) (3.38, 9.73) (1.33, 2.19) (1.87, 4.43)

A1 0.04 0.04 [-5%] 0.03 [-21%] 0.08 [+121%]

(0.02, 0.07) (0.02, 0.07) (0.01, 0.06) (0.05, 0.12)

A2 0.22 0.21 [-5%] 0.48 [+117%] 0.26 [+16%]

(0.17, 0.28) (0.16, 0.27) (0.36, 0.66) (0.20, 0.32)

A3 0.31 0.30 [-2%] 0.28 [-8%] 0.30 [-2%]

(0.27, 0.34) (0.26, 0.33) (0.19, 0.37) (0.25, 0.34)

PF 1.73 1.86 [+7%] 2.14 [+24%] 3.10 [+79%]

(1.17, 2.50) (1.21, 2.70) (1.95, 2.46) (2.12, 4.42)

Lempel-Ziv 0.03 0.03 [-12%] 0.21 [+614%] 0.09 [+199%]

(0.02, 0.06) (0.02, 0.05) (0.17, 0.26) (0.03, 0.22)

IRM 0.47 0.46 [-1%] 0.31 [-34%] 0.43 [-8%]

(0.33, 0.65) (0.32, 0.62) (0.18, 0.44) (0.35, 0.53)

Count20 0.98 0.99 [+1%] 0.40 [-60%] 0.72 [-26%]

(0.85, 1.00) (0.89, 1.00) (0.25, 0.56) (0.56, 0.98)

CF 3.57 4.00 [+12%] 2.78 [-22%] 4.76 [+33%]

(2.64, 4.91) (2.87, 5.37) (2.43, 3.25) (3.80, 5.85)

PPF 1.45 1.59 [+10%] 2.20 [+52%] 2.82 [+94%]

(0.79, 2.39) (0.85, 2.59) (1.94, 2.53) (1.90, 4.07)

ENRG 0.12 0.09 [-32%] 3.46 [+2672%] 0.44 [+255%]

(0.05, 0.31) (0.03, 0.20) (1.40, 8.43) (0.13, 1.67)

SFM 0.23 0.27 [+18%] 0.06 [-74%] 0.27 [+18%]

(0.12, 0.36) (0.15, 0.41) (0.03, 0.11) (0.15, 0.39)

AMSA 0.91 0.86 [-5%] 2.49 [+175%] 1.93 [+113%]

(0.53, 1.48) (0.52, 1.43) (1.54, 4.15) (1.12, 3.28)

BPM 1 0 [-41%] 124 [+21397%] 65 [+11160%]

( 0, 7) ( 0, 2) ( 104, 144) ( 0, 193)

RRTE 0.00 0.00 [-40%] 0.17 [+3830%] 0.33 [+7439%]

(0.00, 0.06) (0.00, 0.02) (0.08, 0.37) (0.00, 0.78)

COMPL 0.01 0.00 [-30%] 0.35 [+6445%] 0.45 [+8397%]

(0.00, 0.07) (0.00, 0.02) (0.22, 0.56) (0.00, 1.01)

Slope count 0.99 1.00 [+0%] 0.19 [-80%] 0.58 [-41%]

(0.89, 1.00) (0.96, 1.00) (0.12, 0.31) (0.25, 0.99)

MPPA 0.00 0.00 [-53%] 0.36 [+7349%] 0.12 [+2431%]

(0.00, 0.06) (0.00, 0.02) (0.24, 0.54) (0.00, 0.22)

Median abs. dev.: 12.1% 116.6% 121.0%
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Table 9.3: Feature values in PEA. Same notation as Table 9.1.

Feature name URS FRS ULS FLS

Leakage 0.74 0.74 [+0%] 0.67 [-9%] 0.69 [-6%]

(0.67, 0.80) (0.67, 0.80) (0.61, 0.73) (0.64, 0.75)

T 39.7 39.2 [-1%] 47.4 [+19%] 39.1 [-1%]

(32.9, 49.3) (32.6, 48.8) (37.6, 57.4) (31.7, 48.8)

FSMN 3.00 2.99 [-0%] 2.43 [-19%] 2.53 [-16%]

(2.13, 4.37) (2.11, 4.44) (1.91, 3.24) (1.91, 3.53)

A1 0.04 0.04 [-0%] 0.05 [+7%] 0.07 [+65%]

(0.02, 0.08) (0.02, 0.08) (0.02, 0.08) (0.04, 0.11)

A2 0.24 0.24 [-1%] 0.29 [+20%] 0.26 [+6%]

(0.19, 0.30) (0.18, 0.30) (0.23, 0.37) (0.21, 0.31)

A3 0.33 0.33 [-0%] 0.34 [+2%] 0.32 [-3%]

(0.29, 0.38) (0.29, 0.38) (0.28, 0.39) (0.27, 0.37)

PF 2.35 2.36 [+0%] 2.28 [-3%] 2.95 [+25%]

(1.63, 3.31) (1.65, 3.35) (1.88, 3.03) (2.10, 3.96)

Lempel-Ziv 0.18 0.18 [+1%] 0.26 [+45%] 0.28 [+56%]

(0.13, 0.24) (0.13, 0.25) (0.21, 0.31) (0.20, 0.33)

IRM 0.49 0.50 [+1%] 0.48 [-2%] 0.49 [+1%]

(0.24, 0.78) (0.25, 0.78) (0.35, 0.69) (0.36, 0.67)

Count20 0.74 0.74 [+0%] 0.57 [-22%] 0.63 [-14%]

(0.58, 0.85) (0.58, 0.85) (0.44, 0.72) (0.52, 0.79)

CF 4.49 4.58 [+2%] 3.81 [-15%] 4.63 [+3%]

(3.43, 5.79) (3.45, 5.85) (3.05, 5.11) (3.66, 5.91)

PPF 2.57 2.61 [+2%] 2.43 [-5%] 2.96 [+15%]

(1.65, 3.52) (1.72, 3.56) (1.93, 3.22) (2.05, 4.00)

ENRG 5.38 5.25 [-2%] 11.17 [+108%] 7.08 [+32%]

(2.22, 18.51) (2.15, 18.09) (4.61, 29.05) (2.50, 19.28)

SFM 0.24 0.25 [+2%] 0.17 [-30%] 0.25 [+4%]

(0.12, 0.39) (0.12, 0.39) (0.10, 0.31) (0.13, 0.39)

AMSA 6.28 6.28 [-0%] 7.73 [+23%] 7.49 [+19%]

(3.83, 10.53) (3.82, 10.53) (5.05, 11.99) (4.77, 11.62)

BPM 55 55 [-0%] 110 [+100%] 106 [+93%]

( 22, 104) ( 21, 104) ( 69, 145) ( 58, 174)

RRTE 0.09 0.09 [+2%] 0.39 [+333%] 0.45 [+405%]

(0.03, 0.31) (0.03, 0.30) (0.17, 0.68) (0.17, 0.78)

COMPL 0.14 0.14 [+4%] 0.53 [+291%] 0.58 [+325%]

(0.06, 0.35) (0.06, 0.35) (0.32, 0.85) (0.30, 1.03)

Slope count 0.67 0.67 [-0%] 0.40 [-40%] 0.45 [-33%]

(0.46, 0.81) (0.46, 0.81) (0.24, 0.62) (0.29, 0.69)

MPPA 0.50 0.49 [-0%] 0.54 [+8%] 0.42 [-16%]

(0.30, 0.83) (0.29, 0.82) (0.37, 0.83) (0.28, 0.68)

Median abs. dev.: 0.7% 23.0% 22.6%
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Figure 9.6: Examples of 2D feature space plots for two sets of features calculated from 100
segments each of VF (dots), asystole (circles), and PEA rhythms (x-marks). (a) Features
BPM and slope count calculated 12 s into each segment. No artifacts nor filtering. (b)
Features BPM and slope count calculated 7 s into each segment. CPR artifacts present,
before artifact filtration. (c) Features BPM and slope count calculated 7 s into each
segment. After artifact filtration. (d)–(f) same as (a)–(c), but with features count20 and
RRTE.
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Using 50 VF segments, we investigate the robustness of two features used in
VF analysis, CF [29] and AMSA [84]. Figure 9.7 shows the 2D feature space
spanned by CF and AMSA populated by the 50 VF segments and individually
marked. Figure 9.7(c) shows the situation in ECG with no artifacts and serves
as a reference. Figures 9.7(a) and 9.7(b) shows the situation 5.5 s earlier during
the CPR, before and after artifact filtering, respectively. Figures 9.7(d) shows
the situation in clean ECG 5.5 s after the reference situation.

As can be seen in the feature spaces of Figure 9.7, CPR artifacts perturb
the features, but the situation is somewhat remedied by the artifact filtering.
Still, most of the individual VFs in Figure 9.7(b) are more or less relocated
compared to the reference situation in Figure 9.7(c). However, note that 5.5 s
after the reference situation, and also in clean ECG, most VFs are also more
or less relocated in the feature space as shown in Figure 9.7(d).

9.2.4 Defibrillation outcome prediction in a mix of animal and
human ECG

To further evaluate the feasibility of VF analysis during CPR, this section
describes an experiment performed to see the influence of CPR artifacts on
a previously published defibrillation outcome predictor by Eftestøl et al. [29].
This experiment uses different material and methods than described in Sec-
tion 9.1, but which will be described below. A mix of animal and human ECG
is used similar to the experiments in Chapter 6.

The prediction is based on a classifier with two main classes, ROSC and No-
ROSC, corresponding to a preshock ECG segment where the consecutive shock
will cause ROSC or no ROSC, respectively. Four features are extracted from
the ECG: CF, PPF, SFM, and ENRG [29] (see Section 5.2.6). An alternate
decorrelated feature set is generated by principal component analysis [75].
Using the highest performing classifier from [29] corresponding to two principal
components, the effect of adding animal CPR artifacts to human ECG is
evaluated. The effect on the defibrillation outcome prediction is evaluated both
with and without using MC-RAMP for CPR artifact filtering. The human
ECG data set is the same as in [29], but with a few changes:

• The complete data set in [29] is used, except for one ECG segment in
the ROSC class being too short for our purpose. See Section 3.1.2 for
description of the data set.

• The 4 seconds preshock ECG presented to the classifier for each shock
in the data set is taken 1.5 seconds earlier than in [29], i.e. the last 1.5
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Figure 9.7: 2D feature space for VF analysis using the AMSA and CF features. The
numbers represent each of the 50 VF segments of length 20 s used. (a) Features calculated
6 s into each segment. CPR artifacts present. Artifacts not filtered. (b) 6 s into segment,
after CPR artifact filtering. (c) 11.5 s into segment. No CPR artifacts. (d) 17 s into
segment. No CPR artifacts.
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Figure 9.8: Overall sensitivity (the portion of ROSC segments correctly classified, in (a))
and specificity (the portion of No-ROSC segments correctly classified, in (b)) in prediction
of defibrillation outcome in noisy ECG, with and without MC-RAMP filtering. SNR=inf
corresponds to no artifacts added.

seconds before the shock is not used by the classifier. This is done to
avoid MC-RAMP filtering edge effects.

The 867 out-of-hospital ECG segments described in Section 3.1.2 are mixed
with the 24 artifact ECGs used in the SNR evaluation of the MC-RAMP
filter in Section 6.2.3 giving a total of 20808 ECG segments evaluated in the
classifier. For filtering of CPR artifacts, the 3 channel MC-RAMP algorithm
with parameters as in Section 6.2.3 is used. Note that the modifications in
Section 4.2.3 are not used in this experiment, only MC-RAMP in its basic form.
The results are evaluated in terms of sensitivity and specificity, i.e. the portion
of ROSC and No-ROSC segments correctly classified, respectively. Figure 9.8
shows the sensitivity and specificity averaged over all artifact mixes. The
sensitivity decreases rapidly towards zero for decreasing SNRs. This trend is
reduced when the ECG segments are filtered with MC-RAMP. The specificity
is actually increased when adding CPR artifacts to the ECG. This is probably
due to the general relocation and clustering of the ECG segments in the feature
space when adding CPR artifacts (see Figure 9.9(c)) pushing more No-ROSC
ECG segments out of the ROSC region. When the ECG segments are filtered
however, the specificity is unfortunately reduced.

The decorrelated feature set classifier from [29] has 2 dimensions. This enables
us to show the feature space and the classifier decision regions in a 2D plot.
Figure 9.9 shows the feature coordinates corresponding to the ROSC and
No-ROSC segments (for one artifact mix) populated in the feature space for
three different scenarios. As can be seen from Figure 9.9(a) and (b) the added
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Figure 9.9: Feature space plots of the shock outcome predictor from [29] with the classifier
decision regions drawn; light shade of gray is ROSC, dark shade of gray is No-ROSC. The
feature space plots show ROSC segments (stars) and No-ROSC segments (dots) under
various noise and filter conditions.
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artifact noise significantly relocates the segments in the feature space. A closer
look on the original features reveals that it is the energy and PPF features
that changes relatively the most. Also, the PPF is significantly influenced by
the CPR artifacts. Since all the segments are mixed with the same artifact,
the PPF is actually equal for every segment in our example. This is probably
reflected in the second principal component, vPCA2 , being almost constant
in Figure 9.9(b). Although filtering of CPR artifacts remedies the situation
somewhat, a certain degree of perturbation is still present as can be seen in
Figure 9.9(c). This might be due to the filter not removing all of the CPR
artifacts or there was some remaining spontaneous electric activity in the heart
of the animal, i.e. the animal ECG used in the mix did not consist purely of
CPR artifacts. In addition, the sensitivity and noise robustness of the features
(or actually the lack thereof) will also account for the reduction in classifier
performance.

9.3 Discussion

In order to further investigate the feasibility of rhythm and VF analysis during
CPR, we have calculated feature values for ECG segments of VF, asystole, and
PEA rhythms, using 20 features described in Chapter 5.

As expected, we have seen that CPR artifacts influences the feature values.
Moreover, PEA, and especially asystole seem to be, on average, more influ-
enced than VF. This does not necessarily mean that a larger portion of PEA
and asystole segments have large artifacts, only that the prominent ones in
these rhythms do more harm to the feature values than for VF. Since CPR
artifacts generally look and appear more like VF than the other rhythms con-
sidered here, we expected and found the feature values to be less displaced
for VFs. An exception is dominant frequency-related features, for instance
PPF, since the chest compressions dominating the CPR artifacts have lower
frequency than most VFs.

The variability of the feature values, in terms of the upper and lower quartiles,
is also increased during CPR for many features. This is an indication of
the highly varying presence of CPR artifacts in the ECG. We also note the
generally larger variability in asystole and PEA rhythms than for VF. This is
to be expected since PEA is a broad rhythm group with many morphological
variants, and the low amplitudes of asystole, often mixed with baseline noise,
will contribute to larger variability.

Even under artifact free conditions, the class separating abilities of the fea-
tures highly differ. Features such as BPM, RRTE, slope count, COMPL, and



118 Robustness of ECG features during CPR

count20 appear to be good for class separation, whereas IRM, CF, SFM, and
A3 are examples of the opposite. However, the features with poor class sep-
arating abilities may be suitable for classification within one rhythm class,
e.g. VF analysis. Such properties were not measured in this study. The best
features for class separation in clean ECG were also the best after filtering in
ECG with CPR artifacts.

After filtering in ECG segments with CPR artifacts, the influence of the arti-
facts on the feature values is lessened. At least, this is the case for VF. Both
the trend and variability of the feature values are improved for most features.
After filtering, the feature median absolute deviation from the reference clean
ECG feature value is 3.3%. Before filtering, the deviation was 16.5%. For PEA
and asystole the situation is not that good. The median deviation in PEA seg-
ments only went down from 23.0% to 22.6% after filtering. For asystole, the
median deviation actually increased, from 116.6% to 121.0%. However, the
CPR artifacts in asystole are very large and prominent relative to the under-
lying heart rhythm. So even if the artifact filter removes large part of the
artifacts, a relatively large residual may be present corrupting the features.
We have often seen spiky artifacts not linearly correlated with the reference
channels for asystole making filtering difficult. Also, for asystole patients, it
can not be excluded that CPR may actually induce a small VF-like activity in
the heart which disappears immediately with the cessation of compressions.

The problem when filtering CPR artifacts in PEA is to reconstruct the orga-
nized PEA components that are disturbed or hidden under the artifact compo-
nents. This disturbance of the PEA makes it more complex or disorganized,
which is reflected in features such as RTTE, COMPL, and the Lempel-Ziv
complexity measure. Unfortunately, as the results show, the artifact filtering
is not able to cancel this effect properly for these features. We speculate it
may reduce the size of the artifacts, but leave small residual adding a disor-
ganized component to the organized PEA. Another problem encountered in
PEA is when we have incidental similarities between the reference channels
and the PEA rhythm, causing the artifact filter to remove or disturb true PEA
components.

Although the artifact filter will not always cancel the influence of CPR artifacts
on the individual features, analyses may still be feasible. As earlier artifact
filtering results from Chapters 7 and 8 show, as well as indications in the
feature space plot in Figure 9.6, rhythm analysis and shock advice during
CPR should be possible. However, with the current results, we might expect a
slight degradation of performance. This might change with new features, shock
advice algorithms or filter improvements. Nevertheless, as will be investigated
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in Chapter 10, the potential reduction of NFT using the artifact filter should
justify a slight performance degradation.

For VF analysis, the feature space plot in Figure 9.7 gives ambiguous indi-
cations. Assuming that no change in the heart’s condition occurs over the
11 s time period considered, the feature vectors2 should ideally be positioned
the same in all the feature space plots. Comparing the situation after artifact
filtering in corrupted ECG in Figure 9.7(b) to the reference situation of Fig-
ure 9.7(c) in clean ECG, this is clearly not the case. This indicates insufficient
filtering. However, 5.5 s after the reference situation and also in clean ECG,
most feature vectors are also more or less relocated in the feature space as
shown in Figure 9.7(d). This is perhaps somewhat unexpected and makes it
more difficult to determine if the feature vector relocations are due to insuf-
ficient filtering, natural measurement variations for the features used, or that
the heart’s condition has changed and this is reflected in the features. It has
been shown that VF analysis features can change rapidly after cessation of
CPR [32], and with 5.5 s between each of the calculations of Figure 9.7(b),
(c), and (d), we can perhaps not expect typical VF analysis features to remain
constant over the time period considered here. This is a potential source of
error for all the feature analyses of this study.

Using a mix of animal and human ECG, we tested the shock outcome predictor
presented in [29] for different levels of CPR artifacts. The feature space plots
in Figure 9.9 show the displacement of the feature vectors caused by CPR ar-
tifacts, and the improved situation after artifact filtering. Despite of artifact
filtering, the performance of the shock outcome predictor was decreased for
increasing levels of CPR artifacts. However, the animal CPR artifacts may
possible have had small amounts of animal heart activity left adding an un-
known component to the mix disturbing the shock outcome predictor. We
also note the possibility of overtraining in the creation of the shock outcome
predictor presented in [29] (very detailed decision regions in Figure 9.9). Nev-
ertheless, we are somewhat skeptical of the feasibility of VF analysis / shock
outcome prediction during CPR, and further studies should be carried out on
VF analysis during CPR, as well as features for VF analysis in general.

9.4 Summary

In this chapter we have examined the influence of CPR artifacts on 20 different
rhythm or VF analysis features. As expected, we have seen that CPR artifacts

2A feature vector is a vector combining the individual features to a point in the feature
space.
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influence the feature values. When prominent, the artifacts alter the features
more for asystole and PEA, than for VF rhythms. The MC-RAMP artifact
filter generally reduces the influence of the CPR artifacts. The amount varies
for different features and ECG rhythms, with VF segments on average being
best cleaned. For PEA and asystole the performance often varies more over
the segments. However, the results of previous chapters and the current study
indicates that rhythm analysis should be feasible during CPR. The robustness
of features for VF analysis on the other hand seems more unclear and further
studies are needed to determine the feasibility of VF analysis during CPR.



Chapter 10

Reducing no flow times
during automated external
defibrillation

There has recently been an increased attention to the importance of reduc-
ing time without blood flow from chest compressions (NFT) during CPR.
Cardiac output up to 25–35% of normal can be achieved with external chest
compressions [11] and maintain or even improve the probability of ROSC [34]
while even short pauses in CPR reduce the probability of ROSC in a human
study [32] and chance for survival and good neurological outcome in animal
studies [16,17,88,108].
The chest compressions and ventilations during CPR introduce artifacts in the
ECG. For AEDs to perform reliable ECG signal analysis and make a shock/no-
shock decision, CPR must be discontinued, introducing NFT. Other factors
such as capacitor charging, the delivery of shocks, checking for pulse, pauses
for ventilations in unintubated patients etc. also contribute to the total NFT.
In a recent study of 176 patients with out-of-hospital cardiac arrest attended
to by paramedics and nurse anaesthetists, CPR was not given 48% of the time
without spontaneous circulation; 38% when subtracting the time necessary for
ECG analysis and defibrillation [104].
This chapter will present a detailed analysis of the NFT time in 105 patients
with out-of-hospital cardiac arrest and propose possible solutions to reduce this
time by incorporating new technology in the AED such as rhythm analysis
during CPR. This is feasible through adaptive filtering as described in the
previous chapters.
This chapter is adapted from [38].

121
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10.1 Material and methods

10.1.1 Data collection

The data were collected as part of a prospective study of out-of-hospital cardiac
arrest patients, the Sister project described in Section 3.1.3. Data for this
study includes patients from Stockholm, Sweden (52 patients) and London,
UK (53 patients) recorded between April 2002 and October 2003 using the
Laerdal HeartStart 4000SP (HS4000) in semi-automatic mode.

10.1.2 Data summary

In our material of 105 patients, there were 365 AED rhythm analyses indicating
shock and 574 indicating no shock as identified from the AED log data. The
underlying heart rhythms were annotated into five classes; VF, VT, asystole,
pulseless electric activity (PEA) and pulse rhythm (PR). Table 10.1 shows the
distribution of the rhythms during the analyses. This gives the AED algorithm
used in HS4000 90.51% sensitivity and 96.01% specificity for shock/no-shock
classification.

There were a total of 239 shock series, of which 163 (68%) were one shock, 35
(15%) were two shock series, and 41 (17%) were three shock series. Table 10.2
shows the rhythm transition array for the shocks. For initial rhythms VF/VT,
the first shock efficiency1 was 84%, and the overall shock efficiency2 for shocks
on VF/VT was 60%. This is possibly somewhat low for a biphasic defibrillator
[44, 74]. A contributing factor to this may have been misplaced defibrillator
pads.

10.1.3 Proposed solution for reducing NFT in connection with
analyses and shocks

The details of our proposed solution for reducing NFT in connection with
analyses and shocks in AEDs are presented and illustrated in Section 10.2,
but the key factors are listed below:

• Rhythm analysis during ongoing CPR, followed by a short verification
analysis if shock is indicated.

1Defined as the portion of first shocks given to the patients with initial VF/VT that
terminated the VF/VT (giving a non-shockable postshock rhythm).

2Defined as the portion of all shocks given to the patients that terminated the VF/VT
(giving a non-shockable postshock rhythm).
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Table 10.1: Underlying rhythm distribution of analyses indicating shock and no-shock.

Num. analyses indicating shock:
VF 323 (90.73%)
VT 11 (3.09%)
Asystole 6 (1.69%)
PEA 15 (4.21%)
PR 1 (0.28%)
Num. analyses not indicating shock:
VF 36 (5.83%)
VT 1 (0.17%)
Asystole 275 (46.48%)
PEA 230 (37.91%)
PR 41 (6.35%)

Table 10.2: Rhythm transition array. One cell shows number of shocks from a preshock
rhythm (row) to a postshock rhythm (column). Percentage numbers are relative to the
total number of one type of preshock rhythm.

Postshock rhythm
VF VT Asystole PEA PR

P
re

sh
oc

k
rh

yt
hm

VF 124 1 121 61 16
(38%) (0.3%) (37%) (19%) (5%)

VT 1 6 3 1 0
(9%) (55%) (27%) (9%)

Asystole 1 0 4 1 0
(17%) (67%) (17%)

PEA 0 0 0 15 0
(100%)

PR 0 0 0 0 1
(100%)
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• Capacitor charging during analysis, not as a separate event following the
rhythm analysis.

• One minute of CPR immediately following all shocks; postponing post-
shock evaluation of rhythm and possible circulation. This omits the
double evaluation (immediately and after one minute) required in the
guidelines [9] for postshock non-VF/VT without a pulse. This also en-
ables the rhythm evaluation at the end of the CPR period reducing the
NFT as well as the CPR being clinically valuable by itself.

• Distinguishing between asystole and organized rhythm in analyses not
indicating shock. Enables the defibrillator to not advice for pulse check-
ing if asystole, avoiding futile pauses checking for pulse.

The key requisite for reducing the NFT in connection with analyses and shocks
is to do the rhythm analysis during ongoing CPR (chest compressions). How-
ever, the artifact components in the ECG introduced by CPR, impair regular
rhythm analyses. As introduced and tested in previous chapters, we propose
to use the MC-RAMP filter to remove the CPR artifacts in the ECG and then
perform the rhythm analysis.

10.1.4 Analyses

For our analyses we define NFT as the duration of all non-compression intervals
where the annotated rhythm is non-perfusing, where a new NFT interval is
defined for a larger than one second time gap between compressions.

Seven situations involving rhythm analysis in AEDs were identified and the
NFTs accompanied with these were found in the HS4000 data:

1. After end of compressions, shockable rhythm (155 incidences).

2. After a shock (1st or 2nd in a series), shockable rhythm (85 incidences).

3. After a shock (1st or 2nd in a series), non-shockable rhythm (159 inci-
dences).

4. After end of compressions, non-shockable rhythm (282 incidences).

5. After pads on, initial shockable rhythm (32 incidences)

6. After pads on, initial non-shockable rhythm (50 incidences)

7. After change to a shockable rhythm (27 incidences)
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The different causes for NFT around these situations were analyzed and NFT
numbers compared with the proposed solution. We present seven figures show-
ing the situations graphically with NFTs as found in the HS4000 data as well
as what is proposed for a new system. Numbers for HS4000 are median times
over all patients found for each interval. Total NFT in the figures is median
time from the first to the last event depicted. ”Machine caused” NFT num-
bers (i.e. NFT due to the AED manner of operation such as analysis time
and charge time) for the proposed solution are theoretical, whilst the numbers
from HS4000 is used for human caused NFT times. We also propose a strategy
for what do to when the ECG is so noisy during CPR that the result of the
artifact filter can not be trusted.

We wanted to find the NFT for the 105 patients in the study, and how much
we could save using the proposed solution. Total NFT for each patient was
found, and the situations where we can reduce the NFT were identified and
replaced with NFTs according to the proposed solution.

10.2 Results

10.2.1 NFT analyses of some common AED situations

Seven AED situations were identified and NFTs accompanied with these were
found in the HS4000 data and compared to the proposed solution.

Figure 10.1 shows situation 1 (after end of compressions, shockable rhythm).
The human causes for NFT are waiting for the user to press the ”Analyze”
button (4.4 s), and waiting for the user to press the ”Shock” button (3.4
s). The machine NFT is due to analysis (7.3 s) and charging (2.3 s). The
machine also waits 3 s after analysis before charging for an unknown reason.
The reduction in NFT in the proposed system is firstly due to having the
main rhythm analysis during CPR at the end of a CPR period. Secondly,
by starting analysis verification automatically after end of compressions, the
human NFT prior to analysis is eliminated. Also, by including charging during
verification, another few seconds of NFT are saved. If shock is advised also
during verification, the system still has to wait for the user to press the shock
button.

Figure 10.2 shows situation 2 (after a shock (1st or 2nd in a series), shockable
rhythm). Before automatically starting the analysis, the machine will wait
7.0 s for the ECG to settle after the shock and a rhythm to appear. We
propose to start chest compressions immediately after a shock and keep going
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Figure 10.1: NFT analysis, situation 1: After end of compressions, shockable rhythm.
Analysis of NFT causes in HS4000 and the proposed solution in one typical AED usage
situation. Numbers for HS4000 are median times found for each interval. Numbers for
the proposed solution are either theoretical (machine caused NFT) or the same as for
HS4000 (human caused NFT). Total NFT for HS4000 is the median time found from the
first to last event. Total NFT for the proposed solution is accumulated interval times.
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Figure 10.2: NFT analysis, situation 2: After a shock (1st or 2nd in a series), shockable
rhythm. Layout and meaning as in Figure 10.1.
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Figure 10.3: NFT analysis, situation 3: After a shock (1st or 2nd in a series), non-
shockable rhythm. Layout and meaning as in Figure 10.1.

for one minute before evaluating the rhythm and potentially giving another
shock. Such preshock chest compressions will reduce the NFT significantly
by enabling the rhythm analysis at the end of the one minute period as in
situation 1, and should also be clinically valuable [18,41]. Note, however, that
this is in conflict with the current guidelines [9].

Figure 10.3 shows situation 3 (after a shock (1st or 2nd in a series), non-
shockable rhythm), a situation starting out similar to situation 2. However,
after the analysis (which is slightly shorter than for shockable rhythms, 6.6 s
median) has concluded with no shock indicated there is 11.1 s human NFT
for pulse checking. As for situation 2, we propose to immediately start chest
compressions for one minute after shock prior to a rhythm analysis. This
analysis should also be able to distinguish asystole from an organized rhythm.
If an asystole is detected, the machine should tell the user to continue CPR
for another minute, not stopping for a futile pulse check. Otherwise, if an
organized ECG rhythm is detected, the machine should tell the user to check
for pulse. However, an automatically started verification analysis will be run
during the pulse checking. If we in spite of the initial analysis have an asystole,
the user should be instructed to start CPR again, saving some seconds of NFT
otherwise spent on futile pulse checking.

Figure 10.4 shows situation 4 (after end of compressions, non-shockable rhythm).
This is situation starting out similar to situation 1, but for the proposed sys-
tem the analysis will distinguish between asystole and organized rhythm, and
call for different actions as in situation 3.

Note that the postshock NFT of situation 1 is covered in situations 2 or 3,
unless it is the third shock in a series. The median postshock NFT after
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Figure 10.4: NFT analysis, situation 4: After end of compressions, non-shockable rhythm.
Layout and meaning as in Figure 10.1.

the third shock in a series was 13.0 s (based on 39 measures of discharge to
compressions resumed, non PR rhythm). Note that after the third shock in a
series, the HS4000 will not automatically start a rhythm analysis.
There are also some more uncommon situations involving rhythm analyses
where we can reduce the NFT. Figure 10.5 shows the situation after pads on
with initial shockable rhythm. From pads on, when there are no compressions
before the initial analysis, we can only save time by doing the capacitor charg-
ing during the analysis. Still, this would reduce the median NFT from 19.3 s
in the HS4000 data to 11.4 s.
Figure 10.6 shows the situation after pads on with initial non-shockable rhythm.
If no shock is indicated and asystole is found, there is no reason to do pulse
checking and we could start CPR earlier and avoid NFT.
Figure 10.7 shows the situation after change from a non-shockable rhythm to a
shockable rhythm. Time can be saved by doing the capacitor charging during
the analysis and also by having an algorithm that detects rhythm changes and
automatically starts a rhythm analysis. The median time today from rhythm
change to start of analysis is 11.1 s. It should be possible to reduce this interval
to, say, 4 s. These changes would reduce the NFT from 28.2 s to 14.5 s.
The total median NFTs for the situations above are shown in Table 3 and we
note that the proposed system have significantly lower NFT for all situations.

Very noisy ECG

Figure 10.8 shows what we can do with very noisy ECG. Sometimes we have
very large and spiky CPR artifacts which are difficult to filter properly. In
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Table 10.3: Summary of the NFT analyses for HS4000 and the proposed solution. NFT
times are median times in seconds with quartile values in parenthesis.

NFT analysis HS4000 Proposal

1) After end of compressions,
shockable rhythm.
Time = CPR end to discharge.

21.4
(18.9, 27.2)

7.4

2) After a discharge (1st or 2nd in
a series), shockable rhythm.
Time = Discharge to next
discharge.

23.1
(22.4, 24.3)

9.2
(2 s before 1 min of
CPR, 7.2 s after)

3) After a discharge (1st or 2nd in
a series), non-shockable rhythm.
Time = Discharge to CPR start.

25.5
(18.8, 36.1)

2 / 13.1 s
(Asystole /
Org.rhythm)

4) After end of compressions,
non-shockable rhythm.
Time = CPR end to CPR start
again.

22.0
(15.6, 30.2)

0 / 9.7 s
(Asystole /
Org.rhythm)

5) After pads on, shockable
rhythm.
Time = pads on to discharge.

19.3
(16.3, 21.0)

11.4

6) After pads on, non-shockable
rhythm.
Time = Pads on to CPR start.

29.1
(17.7, 38.6)

8.7 / 27.5 s
(Asystole /
Org.rhythm)

7) After change to shockable
rhythm.
Time = change to discharge.

28.2
(19.9, 51.6)

14.5
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Figure 10.7: NFT analysis, situation 7: After change to a shockable rhythm. Layout and
meaning as in Figure 10.1.

Chapter 8 we developed an algorithm to detect this which we could use, and in
extreme noise tell the user to pause for analysis as is done today. However, the
analysis should be started automatically at the end of the compressions which
saves the ”pressing the analyze button” human caused NFT. Also, the capac-
itor should be charged during the analysis. For no shock indicated rhythms,
pulse checking should be skipped if asystole is found.

10.2.2 Total NFT per patient

We also wanted to investigate the total NFT for the 105 patients in the study,
and how much could be saved by the proposed solution. Patients receiving/not
receiving shocks have different NFT reduction potentials and were analyzed
separately.

Patients with at least one shock

Of the 58 patients having at least one shock, the mean number of analyze
periods per patient was 12.5 and the mean number of shocks was 6.1. The
median episode time was 23:30 (minutes:seconds) with a median 11:20 of NFT,
i.e. about 48% of the time there was no blood flow to the brain (median NFT
ratio). Of the 11:20 NFT, 4:33 (40%) was in connection with analyses and
shocks, and 1:18 (11%) was due to ventilations outside compressions, analyses
or pulse rhythm. That leaves 49% of the NFT due to other unknown factors.

Figure 10.9 shows the NFT due to analyses and shocks found for each of
the 58 patients in the HS4000 data. The figure also shows what could have
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Figure 10.8: NFT analysis: Proposed solution for what to do when experiencing very
noisy ECG. Layout and meaning as in Figure 10.1.

been achieved for each patient if the proposed solution had been used. This
was done by identifying each incidence of rhythm analysis and shock, and
replacing or removing the NFT intervals according to the proposals in the
above sections. The lengths of each single human NFT interval (rescuer/not
AED dependent) was kept unchanged from the recorded HS4000 data to the
alternative proposed solution. We see improvement in NFT for every patient
and the median NFT in connection with analyses and shocks is reduced from
4:33 to 1:34.

In Figure 10.10 we look at the total NFT for each patient with HS4000 and
the proposed system, i.e. we also include the NFT we can not improve on.
The median total NFT is reduced from 11:20 to 6:51. The median NFT ratio,
defined as the median of the individual NFT ratios (NFT time divided by
total incident time for each patient), is reduced from 51% to 34%.

Patients with no shocks

Of the 47 patients having no shocks, the mean number of analyze periods per
patient was 4.3. The median episode time was 21:50 with a median 9:02 of
NFT, i.e. about 41% of the time there was no blood flow to the brain. Of
the 9:02 NFT, 1:48 (20%) was in connection with analyses, and 1:20 (15%)



10.2 Results 133

N
F

T
 [

s]


(a) (b)

0

100

200

300

400

500

600

700

800

900

1000

5 10 15 20 25 30 35 40 45 50 55

Patient number

N
F

T
 [s

]

HS 4000 Proposed

HS4000 Proposed

0

200

400

600

800

1000

Figure 10.9: NFT in connection with analyses and shocks for patients having at least one
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line) and the proposed system (dotted line). (b) Boxplot analysis of the NFT. The box
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Figure 10.10: 6 Total NFT (i.e. including all causes of NFT) for patients having at least
one shock (sorted on increasing NFT): (a) Total NFT for each patient for HeartStart 4000
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Figure 10.11: NFT due to analyses for patients having no shocks (sorted on increasing
NFT): (a) NFT for each patient for HeartStart 4000 (solid line) and the proposed system
(dotted line). (b) Boxplot analysis of the NFT due to analyses.
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Figure 10.12: Total NFT (i.e. including all causes of NFT) for patients having no shocks
(sorted on increasing NFT): (a) Total NFT for each patient for HeartStart 4000 (solid
line) and the proposed system (dotted line). (b) Boxplot analysis of the total NFT.

was due to ventilations outside compressions, analyses or pulse rhythm. That
leaves about 65% of the NFT due to other unknown factors.

Figure 10.11 shows the NFT in connection with analyses found for each of
the 47 patients with no shocks. The figure also shows what could have been
achieved for each patient if the proposed solution had been used. As the NFT
due to analyses is less here compared to the patients receiving shocks, the
reduction potential is less. Still, NFT could be reduced for every patient and
the median NFT due to analyses is reduced from 1:48 to 0:23. When looking
at the total NFT in Figure 10.12, the median total NFT is reduced from 9:02
to 7:56. The median NFT ratio is reduced from 49% to 39%.

The results of the total NFT analysis for the two groups of patients are sum-
marized in Table 10.4.
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Table 10.4: Summary of the total NFT analysis results for the two groups of patients.
HS4000 = Actual results from data using HeartStart 4000 SP defibrillators. Prop. =
Theoretical results using the proposed methods. All times are (minutes:seconds).

Median Median NFT Median
Patient incident Total Analyses & shocks NFT ratio
group time HS4000 Prop. HS4000 Prop. HS4000 Prop.
with shocks 23:30 11:20 6:51 4:33 1:34 51% 34%
no shocks 21:50 9:02 7:56 1:48 0:23 49% 39%

10.3 Discussion

When ALS was attempted performed according to the international guidelines
for CPR and ECC [9] by paramedics and nurse anaesthetists, approximately
half the time was spent without any blood flow generating chest compressions.
This is identical to a study by Wik et al. also using data from the Sister
project [104], and similar to what van Alem et al. [7] reported for BLS with
AEDs by first responders before the ALS team arrived.

We propose a way to reduce this no flow time from median 51% to 34% of
the total incident time in patients receiving shocks, and from median 49%
to 39% in patients without a shockable rhythm, without dramatic changes in
the guidelines [9] or the way the ALS team functions. This reduction poten-
tial could therefore come in addition to effects of suggested changes such as
chest compressions without ventilation in unintubated patients [66,67], longer
periods of uninterrupted CPR before defibrillation attempts [103], focus on
reducing unnecessary breaks in chest compressions in CPR training, and elim-
inating shocks that are unlikely to cause ROSC as evaluated from VF analy-
ses [8, 29,48,84].

The proposed method for reducing no flow times is based on factors of which
most depend on changing the function of the AED, in addition to one non-
AED dependent guideline change: One minute of CPR immediately following
all shocks before the first postshock ECG analysis. The latter is probably the
most radical suggestion. In most situations this should be of clear benefit. Few
shocks given to a patient result in ROSC, in the present study only 17 of 356
(4.8%) shocks resulted in a pulse-giving rhythm. Thus many patients receive
chest compressions after a shock regardless, in the present situation often after
a long no flow time. When a shock results in ROSC, it is not always achieved
within the time allowed for immediate analysis and pulse check in the present
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guidelines [9] and therefore the patient receives one minute of CPR before
ROSC is recognized even today. For patients who have VF again after the
shock, there is new information that the chance of defibrillation success (i.e.
ROSC) can increase with CPR before the defibrillation attempt [23, 34, 103].
The only patients where this one minute of CPR could be potentially dan-
gerous are those where ROSC could have been recognized in a first postshock
pulse check according to the guidelines. To our knowledge, there is little or
no scientific evidence suggesting that chest compressions can induce VF in a
patient with spontaneous circulation, and it is well established (and therefore
recommended in the guidelines [9]) that chest compressions on top of spon-
taneous circulation are of benefit in newly born with a pulse rate < 60 per
minute. It can be speculated that this also can be the case in adults after
successful cardioversion (i.e. ROSC). It has recently been pointed out [42]
that ROSC with return of a normal cardiac rhythm depends on emptying the
right ventricle to enable left ventricular filling, and shown that this occurs
with chest compressions [90]. Chest compressions after successful cardiover-
sion could potentially function as a manual cardiac assist device. We believe
that it is at least warranted to do a randomized study of this versus the present
guidelines.

The other factors are more AED and less guidelines dependent. Rhythm
analysis during ongoing chest compressions has previously been impossible
due to the inability of the AED algorithms to accurately analyze the ECG
for shockable versus non-shockable rhythms if influenced by artifacts created
by CPR. If these artifacts could be filtered out, rhythm analysis could take
place during ongoing chest compressions. We have in the previous chapters
proposed and tested this using the MC-RAMP multichannel adaptive filter.
The filtering technique is not 100% reliable, however, and it is unlikely that
the medical community and the medical device approving agencies will accept
a significant reduction in the accuracy of the AED algorithm. We therefore
propose that the final verification of the rhythm is done during a four-seconds
hands-off period. In addition we propose that the AED capacitors are charged
during this four-seconds period if the initial ECG analysis indicates a probable
shockable rhythm. This would save time and not endanger the rescuers as
they already have their hands off the patient. If the AED algorithm also
could include the recognition of asystole, it could recommend pulse checks
only for non-VF/asystole situations, thereby removing unnecessary no-flow
situations. Recognition of asystole should be accomplishable with close to
100% accuracy. Another proposed change, that the AED automatically starts
analysis during CPR without requiring the rescuer to actively push the analysis
button, removes additional no flow time.
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During this study we have seen a great potential for improved CPR and thus
reducing unnecessary NFT due to unexplained pauses in CPR. We note that
some of these unexplained CPR pauses are probably manual rhythm evalua-
tion by the paramedics, even though AEDs were used. By introducing CPR
feedback in the defibrillator [49], telling the user what to do to improve the
CPR, the users could produce better and more continuous CPR which would
also reduce the overall NFT.

10.4 Summary

In this chapter we have analyzed and quantified the no flow times (NFTs)
during external automatic defibrillation in 105 cardiac arrest patients. We
found that around half of the time (around 10 minutes), these patients were
not perfused. We have proposed methods to reduce NFT in connection with
analyses and shocks. The key factors were rhythm analysis during ongoing
CPR, capacitor charging during analysis, one minute of CPR immediately
after a shock (with rhythm analysis during CPR at the end of the one minute),
and distinguishing between asystole and organized rhythm in analyses skipping
pulse check if asystole.

The potential reduction in NFT using these methods was calculated theoreti-
cally and we found a reduction in the total NFT of about 4.5 and 1 minutes,
respectively, in the subgroups of patients having at least one shock and pa-
tients having received no shocks. In the present study, the median NFT ratio
could theoretically be reduced from 51% to 34% or 49% to 39% depending on
if the patient would have a shockable rhythm or not.

By introducing the proposed methods into an AED, the NFT would be signif-
icantly reduced, hopefully increasing the survival.
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Chapter 11

Conclusions

The ultimate aim of this thesis was to investigate methods for improving
the survival rate of out-of-hospital cardiac arrest patients. More specifically,
we have focused on removal of CPR artifacts in ECG using a multichannel
adaptive filter, the novel MC-RAMP filter. By removing these artifacts, we
have shown that reliable ECG signal analysis during CPR is feasible. Using
the MC-RAMP filter we have proposed methods to reduce the detrimental
NFT (with no myocardial and cerebral blood flow) during treatment of cardiac
arrest patients using an AED. We have shown a great potential in reduction
of NFT compared to an existing AED. Implementing this scheme in an AED
should contribute to improved survival rate of out-of-hospital cardiac arrest.

The major contributions and conclusions of this work are:

• In Chapter 4 we developed a new multichannel adaptive filter, the Mul-
tiChannel Recursive Adaptive Matching Pursuit (MC-RAMP) filter. It
is a general purpose multichannel adaptive filter which is computation-
ally efficient and numerically robust. In this thesis we have used MC-
RAMP for removal of CPR artifacts in ECG. We have used four reference
channels reflecting the CPR artifacts: compression depth, compression
acceleration, thorax impedance, and ECG common mode voltage.

• Comparison of the performance of the theoretically optimal time-varying
Wiener filter versus MC-RAMP in the setting of CPR artifact removal in
a mix of human and animal ECG was done in Chapter 6. The results of
the study showed that MC-RAMP performed (in terms of SNR improve-
ment) about the same as the theoretically optimal time-varying Wiener
filter, but having the advantages of being more numerically robust and
computationally efficient.

139
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• The MC-RAMP filter was further tested in Chapter 7 comparing the per-
formance of a proprietary AED shock advice algorithm in human ECG
segments with and without CPR artifacts, before and after artifact fil-
tering. After MC-RAMP filtering in CPR artifact corrupted ECG, the
test set gave a sensitivity of 96.7% and specificity of 79.9%, an increase
of approximately 15% and 13% respectively, compared to no filtering.
Although good sensitivity on par with the performance without CPR
artifacts, the specificity is probably too low for clinical use. That is, we
found artifacts in non-shockable rhythms to be more difficult to filter.
Several factors are speculated to have contributed to the relatively low
specificity, such as missing artifact components in the reference chan-
nels, inadequate shock advice algorithm, and spontaneous underlying
heart activity. Methods to increase the specificity were introduced in
Chapter 8, although at the expense of some additional time needed and
slightly reduced sensitivity. Using a short verification analysis in clean
ECG and/or postponing decision when too difficult noise is present, the
performance in the test set was 92.4% sensitivity and 96.0% specificity
– a satisfactory result. From these results we deem rhythm analysis /
shock advice during CPR feasible.

• In Chapter 9, rhythm analysis during CPR was further indicated feasi-
ble through investigations of the influence of CPR artifacts on common
individual features used in ECG analyses. The features used were a col-
lection of existing ones found in the literature and new ones developed
for this dissertation. CPR artifacts were found to influence the individ-
ual features, but artifact filtering reduced this influence. However, we
were not convinced of the possibility of VF analysis during CPR, and
further testing is required.

• In Chapter 10 we analyzed and quantified the no flow times (NFTs) dur-
ing external automatic defibrillation in 105 cardiac arrest patients. We
found that around half of the time (around 10 minutes), these patients
were not perfused. We proposed methods to reduce NFT in connection
with analyses and shocks. The key factors were rhythm analysis during
ongoing CPR, charging of the capacitor during analysis, one minute of
CPR immediately after a shock (with rhythm analysis during CPR at the
end of the one minute), and distinguishing between asystole and orga-
nized rhythm in analyses skipping pulse check if asystole. The potential
reduction in NFT using these methods was calculated theoretically and
we found a reduction in NFT of almost 4.5 and 1 minutes, respectively,
in the subgroups of patients having at least one shock and patients hav-
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ing received no shocks. By introducing the proposed methods into an
AED, the NFT would be significantly reduced, hopefully increasing the
survival.

To sum it up:

• ECG corrupted with CPR artifacts can be filtered using the MC-RAMP
filter.

• Artifacts in non-shockable rhythms are more difficult to filter than arti-
facts in shockable rhythms.

• We believe rhythm analysis during CPR is feasible.

• We are more skeptical about the feasibility of VF analysis during CPR.

• Using CPR artifact filtering to enable rhythm analysis during CPR
should significantly contribute to reduced NFT in AEDs, and hopefully,
increased survival of cardiac arrest patients.

11.1 Directions for future research

Based on the experience gained during this work, we give some possible direc-
tions for future research:

• Clinical studies should be done investigating the nature of CPR artifacts.
Is it reasonable, as we assume today, that filtering of CPR artifacts
will reveal the same heart rhythm as if we ended the CPR and looked
at the same clean ECG? Or may CPR alter the true underlying heart
rhythm momentarily and temporarily, not just contributing to long term
changes?

• It may be possible to find other sources of reference channels in CPR
artifact filtering. Our tests have indicated artifact components in the
ECG not found in, or not linearly correlated with, any of the reference
channels. The preprocessing of the ECG and reference channels could
be further investigated to ensure maximum artifact correlation and zero
delay between channels, possibly compensating for currently unknown
physiological effects.
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• The AED shock advice rhythm we used may not be the best choice
for rhythm analysis during CPR after artifact filtering. Possibly, a new
shock advice algorithm should be developed. One that takes into consid-
eration the types of residuals left after artifact filtering and based upon
pattern recognition principles and possibly trained also on ECG with
filtered CPR artifacts.

• Work may be done to improve the MC-RAMP filter, or try out com-
pletely different types of filter solutions. However, we do not expect
much improvement in just changing the core filter solution. Adding ad
hoc elements for the current application is more likely to improve the
results.

• In Chapter 10 we introduced the concept of an algorithm for distinction
of asystole and organized rhythm to avoid advising for pulse check when
we have asystole. Such an algorithm need to be developed, possible using
features from Chapter 5.

• Further studies on the possibility of VF analysis during CPR should be
carried out. We remain unconcluded, although somewhat doubtful, on
the issue.

• Finally, the concepts and methods of this thesis need to be implemented
in an AED and used in real clinical tests to evaluate the potential benefits
of this work in treatment of out-of-hospital cardiac arrest.



Appendix A

Efficient MC-RAMP
algorithm implementation

In this appendix we develop the elements of the algorithm structure presented
in Section 4.2.2 further, we present a quantitative complexity analysis, and
comment on algorithm initialization. This appendix is adapted from [55] and
applies primarily to MC-RAMP without the modifications in Section 4.2.3.

The adaptive filter algorithm described in Section 4.2.2 corresponds to ap-
plying the computational steps of the BMP algorithm [25] to a dictionary of
vectors given by the columns of X(n) for the purpose of building an approxi-
mation to d(n). The only difference is that we do this for each new time instant
n while keeping the results of the BMP computations from the previous time
instant n− 1. In this way we are also able to maintain the approximation in a
non-stationary environment. It is interesting to note [54] that a slightly differ-
ent, but equivalent, procedure to the one described above would result if we
tried to find the least squares solution to the overdetermined set of equations
(remember L > M):

X(n)h(n) = d(n) (A.1)

subject to the constraint that, given an initial solution, say ho(n), we are
allowed to adjust only one element of this vector.

From the above, it is evident that the key computations of our adaptive filter
algorithm are those of Eqs. 4.13 and 4.15. Making use of Eqs. 4.11 and 4.9,
we find

j0(n) = arg max
j

1
‖xj(n)‖ |< d(n), xj(n) > −

∑M−1
k=0 hk(n− 1) < xk(n), xj(n) >|, (A.2)
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and

hupdate
j0(n) (n) =

1
‖xj0(n)(n)‖2

{< d(n), xj0(n)(n) > −
∑M−1

k=0 hk(n− 1) < xk(n), xj0(n)(n) >}. (A.3)

These are the pertinent equations if one coefficient update, i.e. one MP-
iteration is performed for each new signal sample. Note that having computed
the terms of Eq A.2, very little additional work is involved in finding the
update of Equation A.3.

The inner products < d(n), xj(n) > and < xk(n), xj(n) > evidently play
prominent roles in the computations involved in the algorithm. Having iden-
tified the key computations involved, we proceed by presenting an efficient
implementation of the algorithm. In doing this, we first present the algorithm
implementation, along with its computational complexity when doing only
one MP-iteration for each new signal sample. Following this, we present the
implementation for possible subsequent iterations along with the attendant
computational costs. We close this appendix by some comments on algorithm
initialization.

A.1 Efficient algorithm implementation

The key to a computationally efficient algorithm lies in the time-shift relation-
ship of the input data in each of the K channels. This leads, we will show
below, to efficient recursions for all the key computations of our adaptive al-
gorithm. In counting the number of arithmetic operations, we focus on the
number of multiplications and divisions needed. In the following four subsec-
tions we assume that only one MP-iteration is performed for every new signal
sample (in each channel), i.e. every MP-iteration will uniquely be associated
with a time index. In Subsection A.5 of this appendix we explain the added
steps and computational complexity associated with more MP-iterations for a
given time instant.

Finding ‖xj(n)‖2 and < xk(n), xj(n) >

The term ‖xj(n)‖2 is directly involved in both Eqs. A.3 and A.2 and conse-
quently need to be updated from one time sample to the next . We will also
need to update < xk(n), xj(n) > for each new time instant. Observing that
this latter expression corresponds to the squared norm of xj(n) when k = j,
we need only consider the update of the inner products.
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< xk(n), xj(n) > for k = 0, 1, . . . , M − 1 and j = 0, 1, . . . , M − 1 are the
elements of the matrix XT (n)X(n). Using Equation 4.6, this matrix is seen
to possess the structure:




X(0)T
(n)X(0)(n) · · · X(0)T

(n)X(K−1)(n)
...

. . .
...

X(K−1)T
(n)X(0)(n) · · · X(K−1)T

(n)X(K−1)(n)


 . (A.4)

Recalling the definition of the columns of X(k)(n) given in Equation 4.5 we
observe that x

(k)
j−1(n− 1) = x

(k)
j (n) for j = 1, 2 . . . , Mk − 1 . This means that

in finding X(k)T
(n)X(k)(n) given the knowledge of X(k)T

(n − 1)X(k)(n − 1),
we need only find the upper row and leftmost column of X(k)T

(n)X(k)(n)
as all other elements of this matrix are given by X(k)T

(n − 1)X(k)(n − 1).
Also noting that X(k)T

(n)X(k)(n) is symmetric, we realize that only the up-
per row (or the leftmost column) need be computed for complete determi-
nation of X(k)T

(n)X(k)(n). This entails finding < x
(k)
0 (n), x(k)

j (n) > for j =
0, 1, . . . , Mk − 1. The recursion for this is:

< x
(k)
0 (n), x(k)

j (n) >=< x
(k)
0 (n− 1), x(k)

j (n− 1) >

+x(k)(n)x(k)(n− j)− x(k)(n− L)x(k)(n− j − L). (A.5)

If the result of the multiplication x(k)(n− L)x(k)(n− j − L), which has been
computed in a previous iteration has been stored, the updates needed to find
the inner products of the columns of X(k)(n) require only one multiplication
for each value of j, i.e. we need a total of Mk multiplications.

Continuing with an argument along the lines of that given above for the non
diagonal block sub matrices of XT (n)X(n), i.e. the matrices X(k)T

(n)X(j)(n)
for j 6= k, we finally find that the number of multiplications needed in the
update is given by

K{M − K − 1
2

}. (A.6)

Finding < d(n), xj(n) >

Interpreting the index j as indicated in Equation 4.10, and assuming that
it corresponds to column no. νq in the data matrix for channel no. q, the
recursion for this term is given by

< d(n), xj(n) >=< d(n− 1), xj(n− 1) > +

d(n)x(q)(n− νq)− d(n− L)x(q)(n− νq − L). (A.7)
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The term d(n − L)x(q)(n − νq − L) will have been computed at an earlier
stage and need not be recomputed if we have stored the result. For each
j = 0, 1, . . . ,M − 1 we need to compute d(n)x(q)(n − νq). This obviously
requires M multiplications.

Finding
∑M−1

k=0 hk(n− 1) < xk(n), xj(n) >

The key observation in finding an efficient recursion for this term, is that from
one iteration to the next, only one single filter coefficient is updated. Thus,
suppose that at time n−1, the single filter coefficient updated is coefficient no.
j0(n − 1). A consequence of this is that we can express the filter coefficients
at time n− 1 (after the update) in terms of the filter coefficients at n− 2 and
the update at time n− 1 as follows:

hj(n− 1) = hj(n− 2) + δ(j − j0(n− 1))hupdate
j0(n−1)(n− 1), (A.8)

where δ(n) is the unit pulse. Interpreting the indices j as corresponding to
column no. νq in the data matrix for channel no. q, and k as column no. ρp in
the data matrix for channel no. p, we have the recursion for < xk(n), xj(n) >
as

< xk(n), xj(n) >=< xk(n− 1), xj(n− 1) >

+x(p)(n− ρp)x(q)(n− νq)− x(p)(n− ρp − L)x(q)(n− νq − L). (A.9)

Using this we get the relation below. In the terms of form x′(n − m) and
x′(n − m − L) the index m is to be interpreted as in Equation 4.10, i.e. as
an index to the appropriate element of the appropriate column of one of the
channel sub matrices comprising X(n).

M−1∑

k=0

hk(n− 1) < xk(n), xj(n) >=

M−1∑

k=0

hk(n− 2) < xk(n− 1), xj(n− 1) > +

hupdate
j0(n−1)(n− 1) < xj0(n−1)(n− 1), xj(n− 1) > +

x′(n− j)
M−1∑

k=0

hk(n− 1)x′(n− k)−

x′(n− j − L)
M−1∑

k=0

hk(n− 1)x′(n− k − L). (A.10)
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Note that the first term on the right hand side of the equality sign is the
same as the left hand side expression of the previous iteration. Given the
availability of the column inner products < xk(n − 1), xj(n − 1) > of the
previous iteration, the term hupdate

j0(n−1)(n − 1) < xj0(n−1)(n − 1), xj(n − 1) >

requires M multiplications (one for each value of j). The last two terms
require a total of 4M multiplications.

A.1.1 Putting it all together

The complete algorithm, when doing one MP-iteration at time n, can now be
summarized as follows:

For each time instant n do:

1. Update < xk(n), xj(n) > and consequently also ‖xj(n)‖2. (K{M−K−1
2 }

multiplications)

2. Update < d(n), xj(n) >. (M multiplications)

3. Update
∑M−1

k=0 hk(n− 1) < xk(n), xj(n) >. (5M multiplications)

4. | <d(n), xj(n)>−∑M−1
k=0 hk(n−1) <xk(n), xj(n) > | for j = 0, 1, . . . , M−

1 is computed. For each j divide this by ‖xj(n)‖2 and find the index
j giving the largest result. (M multiplications and divisions (as well as
M − 1 comparisons))

5. Update filter coefficient according to Equation A.3. (One division)

Thus, for each iteration we need (7 + K)M − K(K−1)
2 multiplications, M + 1

divisions and M − 1 comparisons.

A.1.2 Additional MP-iterations

Allowing for more than one MP-iteration at time n, the pertinent update
expressions are given by slightly modified versions of Eqs. A.2 and A.3: hk(n−
1), which denote the previous filter vector element k computed at time n− 1,
must be substituted by the value of hk(n) resulting from the previous MP-
iteration at (current) time n. We denote by h

(i)
k (n), element no. k of the

filter vector after MP-iteration no. i at the n-th time instant1. With this, the
1Since we are not explicitly dealing with channel numbers here, we reuse the superscript-

notation used earlier for explicit channel identification, for our present purpose.
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difference between the zero’th MP-iteration and subsequent such iterations
is in the second term of Equation A.2. This part of that equation for the
MP-iteration indexed i is

M−1∑

k=0

h
(i−1)
k (n) < xk(n), xj(n) > . (A.11)

With the filter update for MP-iteration no. i > 0 given by

h
(i)
ji(n)(n) = h

(i−1)
ji(n) (n) + hupdate

ji(n) (n), (A.12)

where ji(n) denote the index of the filter vector element to be updated, we see
that Equation A.11 can be written as2

M−1∑

k=0

h
(i−2)
k (n) < xk(n), xj(n) > +

hupdate
j(i−1)(n)(n) < xj(i−1)(n)(n), xj(n) > . (A.13)

Since the first term is known from previous iteration no. (i− 1) all we need is
computing the last term which requires M multiplications and M additions.
Computation of the filter update requires in addition one addition and division
per MP-iteration. Putting the above into the modified Equation A.2 we see
that another M additions are needed. Summarizing, each additional MP-
iteration requires M multiplications, 1 division, 2M + 1 additions and M − 1
comparisons. From this we can conclude that, relative to the zero’th MP-
iteration at time n, the subsequent MP-iterations are cheap.

A.1.3 Algorithm initialization

There are several ways to initialize our adaptive filtering algorithm. Whatever
reasonable initialization strategy is selected, the matrices and vectors will be
filled with signals within a short period of time, whereupon the algorithm will
quickly adjust the filter coefficients to remove the CPR artifacts. One good
initialization strategy is as follows: Initialize X(−1), h(−1) and h(−1) to be
all zero. As signal samples arrive for n ≥ 0 we fill the matrices and vectors
with incoming signal samples. While this is being done, the quantities of
item 1 and item 2 in the algorithm implementation in Subsection A.4 of this

2This is not strictly correct for i = 1, but the same observations to be made are easily
shown to be valid also in this case if we treat this situation separately.
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appendix are updated. Only when the matrices and vectors are filled with a
reasonable number of real signal samples, for example 20 − 50 samples, not
just zeros as a consequence of the initialization, the filter coefficient updates
are computed in each iteration.
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Appendix B

Available patient episodes
from the Sister data

In this appendix we list the available patient episodes from the Sister project
and for what studies they were used (Table B.1). The table also lists patient
data such as incident length, initial heart rhythm, number of shocks given,
if ROSC was achieved, and if the patient was admitted to the hospital alive.
More about the patient demographics in the Sister data can be found in [104].
Note that not all of the patient episodes, which would otherwise have been
included, were available at the time the different studies were conducted.

Table B.1: Available patient episodes and for what studies they were
used. Patient filenames reveal origin (a = Akershus, l = London, s =
Stockholm) and date and time of incident (yymmdd-hhmm).

Patient data Used in study

Filename In
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a020317-2307 40:07 VF 5 X X
a020404-1103 42:07 VF 21 X X
a020408-1950 43:57 VF 12 X X
a020418-2130 38:02 PR 0 X
a020501-1706 06:47 VF 0 X

continued on next page
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continued from previous page

Patient data Used in study

Filename In
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a020512-0553 31:32 PR 1 X X X
a020514-1217 55:02 VT? 0 X X X
a020528-0802 44:42 PEA 3 X
a020619-1707 49:31 PEA 3 X X
a020720-0852 50:51 PEA 14 X X
a020724-1851 07:02 VF 0
a020725-1844 32:07 PEA? 0 X
a020726-1033 20:12 VF 1 X X X
a020726-2019 39:57 PEA 2 X
a020728-2053 08:37 Asystole 0 X
a020804-0156 28:17 VF 5 X X X
a020809-1250 32:22 Asystole 2 X
a020812-1312 50:27 VF 7 X X X
a020814-0727 46:37 VF 28 X
a020827-0903 46:37 VF 24 X
a020830-1028 21:07 VF 3 X X X
a020901-1628 30:02 Asystole 0 X
a020910-1248 32:37 VF 15 X
a020913-1357 35:37 PEA 0 X X
a020925-1218 27:47 PEA 2 X
a021002-1838 27:47 VF 12 X
a021007-1202 52:12 VF 15 X X
a021021-1703 32:46 PEA 0 X X
a021025-1925 30:07 VF 4 X
a021117-2015 58:17 VF 5 X X X
a021125-0610 38:27 PEA 0 X
a021205-0814 51:17 VF 7 X X X
a021206-1518 27:47 VF 6 X X
a021209-0910 21:27 Asystole 0 X
a021212-1626 05:02 VF 1 X
a021218-1543 51:31 VF 0

continued on next page
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Patient data Used in study
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a021225-1430 29:42 VF 5 X
a021229-1034 23:07 VF 6 X
a030113-2045 21:37 Asystole 0 X
a030119-1249 43:37 VF 3 X
a030120-1117 22:26 VF 0 X
a030120-2146 32:16 Asystole 0 X
a030203-1133 36:02 VF 19 X X
a030204-1210 59:21 PEA 0 X X X
a030213-1129 14:52 VF 8 X
a030218-1416 40:47 VF 20 X
a030225-1916 32:22 Asystole 15 X X
a030304-1509 13:02 VF 5 X
a030314-1702 37:17 VF 1 X X
a030321-0413 16:51 Asystole 0
a030323-1143 27:17 PR 0 X
a030407-1254 08:27 Asystole 3
a030407-1641 1:01:32 VF 7 X X
a030419-1621 43:37 VF 2 X X
a030502-1657 22:17 VF 2 X X
a030502-1928 24:07 VF 2
a030518-1114 44:07 Asystole 19 X
a030527-1137 53:46 VF 30
a030529-1310 17:21 Asystole 1
a030531-1331 32:52 Asystole 0 X
a030531-1851 30:07 Asystole 3
a030626-0901 25:37 Asystole 0
a030630-1522 1:01:17 Asystole 0 X X
a030701-1105 26:57 VF 8 X X
a030722-1111 24:12 Asystole 0
a030728-0324 28:57 Asystole 7
a030805-1740 24:27 Asystole 0

continued on next page
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continued from previous page

Patient data Used in study
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a030820-2100 19:08 Asystole 9 X
a030826-1903 45:22 VF 1 X X
a030907-2303 25:02 PEA 0 X X
l020920-1932 26:07 Asystole 0 X X X
l020922-0351 28:22 Asystole 8 X X
l020922-2042 26:07 VF 22 X X
l020930-1453 22:27 VF 9 X X
l021010-2040 11:47 PR/PEA 0 X X
l021014-2142 32:57 PEA 0 X
l021020-1844 11:57 VF 3 X X
l021201-0948 10:42 VF 2 X X X
l021203-1953 06:07 VF 11 ? ? X X
l021216-1556 23:32 Asystole 0 X
l021219-1736 15:31 PEA 6 X X
l021223-1253 33:17 Asystole 0 X X
l021223-1600 28:42 Asystole 1 X X
l021228-0410 26:47 PR 0 X
l021229-2355 15:32 PEA 0 X X X X
l030108-1321 36:47 VF 1 X X
l030110-1714 16:47 VF 2 X X
l030114-2142 32:57 PEA 0 X X
l030122-0254 54:22 Asystole 0 X X
l030122-2333 12:52 VF 6 X X
l030124-0924 28:02 Asystole 0 X
l030125-1951 21:17 Asystole 0
l030131-2232 20:37 Asystole 1 X X
l030218-1247 28:52 PEA 0 X X
l030223-0525 22:23 VF 5 X X
l030227-1217 31:02 Asystole 1 X X
l030330-0033 33:52 Asystole 0 X
l030420-1128 23:17 VF 1 X

continued on next page
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Patient data Used in study
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l030427-2131 26:17 PR 2 X
l030504-0819 17:12 VF 9 X
l030513-1657 10:22 Asystole 0 ? X
l030521-0419 24:22 PEA 0 X X
l030524-1247 24:22 PEA 0 X
l030610-1848 20:42 Asystole 0 X X X
l030611-0541 12:22 VF 13 ? X
l030620-0220 20:02 Asystole 0 X
l030701-1635 31:12 VF 3 X
l030715-1124 30:57 Asystole 0 X
l030727-1017 20:47 VF 17 X
l030807-1123 12:17 VF 10 ? ? X
l030809-0911 21:42 PEA 0 X ? X
l030824-0338 26:17 PEA 0 X X X
l030920-0223 43:57 PEA 8 X
l030920-2004 32:37 VF 24 X
l030924-2245 24:52 PEA 1 X
l030926-2053 10:52 Asystole 0 X
l030927-2100 25:02 Asystole 0 X
l030930-1359 25:07 VF 3 X X X
l031001-0515 50:12 VF 13 X X
l031009-0942 41:57 Asystole 20 X
l031010-0948 13:47 Asystole 0 X
l031010-2117 10:22 Asystole 0 X
l031013-1004 24:22 Asystole 0 X
l031016-1658 24:22 VF 10 X
s020409-1241 27:47 VF 1 X X X
s020415-1928 23:27 VF 2 X X X X
s020617-0240 09:32 Asystole 0 X X
s020617-2159 21:07 Asystole 0 X X
s020627-1614 34:47 VF 1 X X

continued on next page
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s020710-1615 32:27 PEA 0 X X X
s020716-2059 27:08 PEA 14 X X X
s020722-0920 28:07 VF 11 X X X
s020726-0940 15:33 VF 9 X X
s020730-0325 19:47 Asystole 0 X X X
s020805-0147 31:02 PEA 0 X X
s020808-0550 31:32 PEA 0 X X
s020821-1350 32:27 Asystole 0 X X
s020903-1258 40:37 PR 4 X X
s020916-0823 35:12 Asystole 3 X X X X
s020920-1430 57:57 PEA 0 X X X
s020921-0844 39:12 VF 12 X X X
s020924-1839 25:17 Asystole 0 X X
s021008-1841 29:57 Asystole 0 X X
s021019-0855 53:47 VF 13 X X X X
s021022-1152 36:37 PEA 7 X X
s021031-0909 24:17 VF 6 X X X X
s021111-1618 30:32 Asystole 11 X X
s021119-1850 31:47 VF 6 X X X X
s021120-1433 20:37 PEA 0 X X X
s021212-1816 10:17 Asystole 0 X X X X
s021218-0304 32:02 VF 2 X X X
s021228-0823 20:57 Asystole 0 X X
s030103-2017 17:52 VF 6 X X
s030107-1428 41:47 VF 8 X X
s030203-1059 34:07 Asystole 1 X X
s030205-2100 20:37 Asystole 0 X X
s030209-1321 1:01:32 VF 10 X X X X
s030215-1112 29:37 VF 2 X
s030215-1704 17:32 VF 2 X X
s030222-1759 39:27 VF 11 X X

continued on next page
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Patient data Used in study
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s030228-2310 30:32 VF 2 X X X
s030301-2016 39:27 VF 2 X X X
s030305-1418 12:42 VF 4 X
s030310-2111 28:22 Asystole 0 X X
s030312-1236 29:37 VF 1
s030318-1623 44:47 Asystole 2 X X
s030417-1154 12:37 VF 8 X X
s030430-1221 15:32 PEA 3 X X
s030501-1712 47:22 PEA 0 X X
s030513-0921 15:37 Asystole 0 X
s030626-0914 22:47 Asystole 0 X X X
s030802-1553 23:12 Asystole 0 X
s030809-1337 22:02 VF 9 X
s030909-2317 16:27 Asystole 0 X
s030919-0922 35:17 PEA 0 X
s031004-1358 20:57 VF 2 X
s031005-1638 33:57 Asystole 0 X X X

Sum: 761 60 35 105 105
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