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how the current hyperelastic-viscoplastic constitutive material model for thermoplastics made at Structural 
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The volume change was studied by conducting tension tests on axisymmetric smooth and notched 
specimens made of high-density polyethylene (HDPE) and polyvinyl chloride (PVC). In order to change the 
stress triaxiality, the notched specimens had four different notch radii. All tests were monitored by a digital 
charge-coupled device (CCD) camera. To map the deformations of the specimens, the images were post 
processed in a custom-made digital image correlation (DIC) algorithm that was created in the numerical 
computing environment and programming language MATLAB. Further, simulations of the tests were run in 
the finite element software LS-DYNA, using the implemented material model for thermoplastics developed at 
SIMLab. SIMLab's material model is currently based on the Raghava yield surface and plastic potential. A 
modification of the model, employing the Gurson - Tvergaard - Needleman (GTN) yield surface and plastic 
potential incorporating the evolution of voids during deformation of the material, was also evaluated. 
  
A relationship between the stress triaxiality and the volume strain during plastic deformations was found from 
the tests. The stress triaxiality was also found to affect the yield stress, the local strain rate, the radial strain, 
the equivalent plastic fracture strain and the fracture surface. The tests also suggest that nucleation of voids 
should be described as strain controlled. Comparing the tests to the simulations it was evident that the 
volume change in the materials was not captured properly with the model employing the Raghava potential. 
The simulations using the GTN potential however, showed far better estimations of the volume strain. 
Adjustments of the model employing the GTN yield surface and plastic potential are still required to simulate 
the strain softening properly. 
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1
Introduction

Polymers are cheap, easy to form, light, ductile and - depending on the

additives and environment - sustainable. Because of these characteristics the

demand for polymers has increased significantly for the last decade; their

use is widely spread in the production of structural and safety parts for

automobiles, and because of their outstanding energy absorption abilities

they are becoming adopted into fields where other materials - such as metals

- earlier were the common choice.

Numerical simulations are an important part in the design of load carrying

components today. As the use of polymers has increased, so has the desire

for running precise numerical simulations for these materials. The need

for a reliable constitutive material model for polymers is therefore of an

increasing importance. Material models for elastomers and thermosets are

already rather well defined, but for thermoplastics there is still need for

improvements according to Bois et al. [2005].

At the Structural Impact Laboratory (SIMLab), a centre for research-based

innovation at the Department of Structural Engineering at NTNU, a hyperelastic-

viscoplastic constitutive material model for thermoplastics has been under

development for the last few years. The project was initiated at the request

of SIMLabs industrial partners, such as Statoil, Audi and Renault, who

wanted an improvement of the existing thermoplastic models. The SIMLab
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developed model now describes different stress states for large deformations in

a satisfying way, but - it does not include the evolution of damage. Polymers

are - in opposition to metals - compressible, and may therefore change volume

during plastic deformation. The volume change is often related to damage,

i.e. voids and microcracks occurring in the material.

The objective of this thesis was to study how the plastic dilation in

polymer material is affected by triaxiality in stress. The plastic dilation

were studied through tensile tests and numerical simulations of axisymmetric

smooth and notched specimens made of the thermoplastics high-density polyethylene

(HDPE) and polyvinyl chloride (PVC). The notched specimens had four

different notch radii, in order to obtain different triaxial stress states.

To map the stress and strain fields of such specimens are a demanding

task. Techniques similar to the one described by Hovden [2010] and Kamaya

and Kawakuboa [2011] has been performed several times at e.g. SIMLab;

introducing small black dots on the surface of a specimen and mapping the

deformation of the specimen using digital image correlation (DIC) software,

such as 7D, to compare images acquired with a charge-coupled device (CCD)

camera during the test. Using such techniques have however failed due to

the large displacements over relatively small areas and difficulties with a low

depth of focus. To overcome these problems, a custom made DIC algorithm

capturing the displacement of given points as well as the curvature of the

root of the notch was created for the post-processing of the tests.

The report starts by describing the background theory for the work

executed in this thesis in Chapter 2. Further, in Chapter 3, the laboratory

tests are described, and basic results from the tests are presented. The

numerical simulations performed in LS-DYNA using the current material

model are presented in Chapter 4, and in Chapter 5 the results of the tests

and simulations are compared. In Chapter 6 simulations in LS-DYNA with

a modified version of the material model is presented, and in Chapter 7

fractures and fracture surfaces from the tests are examined. Last, in Chapter 8,

conclusions and recommendations for further work are presented.

2



2
Theoretical Background

In order to interpret the experimental work and numerical simulations presented

later in the thesis, some background knowledge is required. In the following

chapter polymer materials are described, and a material model for thermoplastics

is introduced. Stress triaxiality is defined and prediction of fractures and

fracture surface topology are discussed.

2.1 Polymer Materials

The term Polymers stems from Greek and means many parts [Ram, 1997],

aiming to describe a molecule composed of many identical units. These

identical units are called monomers. Numerous monomers together forms

macromolecules, often as large molecular chains held together by covalent

bonds between the atoms. In one chain there are typically 103 to 105 monomers,

which gives a molecular length of up to a few micrometers [Rösler et al., 2007].

These molecular chains are also bonded to each other, but usually by

much weaker bonds such as van der Waals, dipole, or hydrogen bonds.

However, there can also be covalent bonds between the chains. Such cross-links

creates a molecular network by fixing the chains relative to each other.

Based on this knowledge, polymers can be divided into three different types:

Thermoplastics, elastomers and duromers (see Figure 2.1). A thermoplastic

3



CHAPTER 2. THEORETICAL BACKGROUND

has no cross-linkage. Elastomers - also called rubbers - has a small number

of cross-links, about 1 cross-link per 1000 atoms of the main molecule chain.

Duromers - also called thermosetting polymers, thermosets or resins - has

many cross-links, may be as many as 1 for every 20 atom in the main molecule

chain. Thermosets are therefore much stiffer than elastomers [Rösler et al.,

2007, Polanco-Loria et al., 2010].

(a) Thermoplastic (b) Elastomer (c) Duromer

Figure 2.1: Schematic Sketch of the Cross-linking of Different Polymers

[Rösler et al., 2007]

The cross-linking between the molecular chains is very important when

deciding the mechanical properties of a polymer - when cross-links fix chains

relative to each other, it can make it impossible to draw out single molecules.

In addition, the length of the molecules - which is proportional to the relative

molecular mass - also affects the mechanical properties of a polymer [McCrum

et al., 1997].

A region with regular arrangement of the molecular chains is called a

crystalline region. If there are no regular arrangements the region is called

amorphous. The volume fraction of crystalline regions compared to the

volume fraction of amorphous ones is termed as the crystallinity of the

material. Cross-links make it impossible for elastomers and duromers to

have a regular arrangement of the chain molecules, and thus they will always

be completely amorphous. Thermoplastics, which has no cross linkage, can

contain both amorphous and crystalline regions, i.e. be semi-crystalline.

4



2.2. MATERIAL MODEL

It is generally not possible for polymers to be fully crystalline. In theory,

the chain molecules could form a parallel, regular structure, but because of

their length this is not very likely. Usually a chain molecule will be twisted

and entangled with other molecules, and a polymers structure is therefore

always at least partially amorphous [Rösler et al., 2007].

2.2 Material Model

Thermoplastics occupies certain characteristics, and a material model for

thermoplastics should allow for these. First of all, when thermoplastics

deforms it involves large elastic and plastic deformations. They often have a

higher yield strength in compression than in tension [Raghava et al., 1973],

and their mechanical response is often temperature and strain rate sensitive

[Arruda et al., 1995, Dupaix and Boyce, 2007]. Volume change during plastic

deformation has also been observed [Delhaye, 2010]. And, after the yield

limit, some polymers show a stress softening behaviour, while others show

monotonic hardening [G’Sell et al., 1992].

SIMLab has developed a hyperelastic-viscoplastic constitutive material

model for thermoplastics [Polanco-Loria et al., 2010]. The developed material

model is a modification of a model that was proposed by Boyce et al. [2000].

The model is assumed to consist of two parts, A and B, representing the two

basic resistances to deformation. Part A represents the hyperelastic-viscoplastic

resistance related to intermolecular strength; i.e. the forces acting between

the molecular chains. Part B is an entropic resistance evolving due to

molecular orientation; the entropy is reduced as the molecular chains are

stretched. Both parts have the same deformation gradient F = FA = FB,

and thus the same volume change J , since J = det(F). The true stress σ is

the sum of the contributions from each part, σ = σA + σB.

In Figure 2.2, the main constituents of the model are summarised. A

conceptual illustration of the kinematics of the model is shown in Figure 2.3.

Ω0 represents the reference configuration, Ω̄A the intermediate configuration

5



CHAPTER 2. THEORETICAL BACKGROUND

and Ω the current configuration. Fe
A is the elastic part of FA and Fp

A is the

plastic part, JA = det(Fe
AF

p
A). The model does not include thermal effects.

(a) Principle of Material Model (b) Uniaxial Stress - Strain Relationship

Figure 2.2: Proposed Constitutive Model [Polanco-Loria et al., 2010]

Figure 2.3: Kinematics of the Model [Polanco-Loria et al., 2010]

2.2.1 Inter-molecular resistance (Part A)

It is assumed that the elastic part of the deformation follows the compressible

Neo-Hookean material model, which is an extended version of Hooke’s law

for large elastic deformations. The Kirchhoff stress τ A on Ω̄A gives the elastic

constitutive law [Polanco-Loria et al., 2010]

6



2.2. MATERIAL MODEL

τ A = λ0ln(J
e
A)I+ µ0[B

e
A − I] (2.1)

where JA is the Jacobian of Part A, JA = det(FA), representing the volume

change, and can be decomposed in a plastic and an elastic part by a multiplicative

split as JA = det(Fe
AF

p
A) = Je

AJp
A. Further Be

A = Fe
A · (Fe

A)
T is the elastic

left Cauchy-Green deformation tensor, and I represents the second order unit

tensor. It is assumed that the intermediate configuration Ω̄A, defined by F
p
A,

is invariant to rigid body rotations of the current configuration.

λ0 and µ0 represents the classical Lamé constants of the linearised theory

- and are, according to the classical theory of elasticity, related to Young’s

Modulus E0 and Poisson’s ratio ν0 by

E =
µ0(3λ0 + 2µ0)

λ0 + µ0

(2.2)

ν =
λ0

1(λ0 + µ0)
(2.3)

Between the Kirchhoff stress τ A and the Cauchy stress σA on Ω̄A there

exist a relationship defined as [Belytschko et al., 2000]

τ A = Je
AσA (2.4)

The current material model uses the Raghava yield criterion and plastic

potential. The Gurson - Tvergaard - Needleman (GTN) yield criterion and

plastic potential has also been proposed as suitable by Delhaye [2010], to

modify the material model to account for macroscopic damage owing to

growth of cavities in a material. Both yield criterions and plastic potentials

are therefore presented next.

7
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Raghava Yield Criterion and Plastic Potential

As the von Mises criterion is based on the deviatoric stress component only,

the Raghava criterion [Raghava et al., 1973] takes the hydrostatic stress

component into account. The latter also accommodates differences for the

yield stress in tension and compression.

The Raghava criterion can be stated as

(σ1−σ2)
2+(σ2−σ3)

2+(σ3−σ1)
2+2(|σC |−|σT |)(σ1+σ2+σ3) = 2|σCσT | (2.5)

where σ1, σ2 and σ3 denotes the principal stresses of the applied stress state.

σC is the compressive yield strength, and σT the tensile yield strength. Thus,

for σC and σT being equal, Equation (2.5) will be reduced to the von Mises

criterion.

By using the first invariant of the stress tensor I1, the influence of the

hydrostatic portion of the applied stress state is introduced. Further, α =

σC/σT ≥ 1 is introduced as the yield stress ratio, describing pressure sensitivity.

The yield surfaces for the Von Mises criterion and the Raghava criterion with

α = 1.3 are shown in Figure 2.4.

Figure 2.4: Yield Surfaces

8



2.2. MATERIAL MODEL

Yielding occurs when the yield criterion fA = σ̄A − σT = 0 is satisfied.

The equivalent stress σ̄A is defined as [Raghava et al., 1973]

σ̄A =
(α − 1)I1A +

√

(α − 1)2I2
1A + 12αJ2A

2α
(2.6)

J2 is here the deviatoric stress invariant.

When choosing a flow rule for Part A, an associated flow cannot be used -

as it predicts unrealistic large volumetric plastic strains [Polanco-Loria et al.,

2010]. A non-associative flow rule should therefore rather be used, to ensure

control over the plastic dilatation. The Raghava-like plastic potentials flow

rule can be written as

gA(I1A, J2A) =
(β − 1)I1A +

√

(β − 1)2I2
1A + 12βJ2A

2β
≥ 0 (2.7)

where β ≥ 1 is a parameter controlling the volumetric plastic strain.

From the flow rule, the plastic rate-of-deformation tensor isDp
A = ˙̄ǫp

A∂gA/∂σA.

The equivalent plastic strain rate is chosen as Polanco-Loria et al. [2010]

˙̄ǫp
A =







0 if fA ≤ 0

ǫ̇0A

{

exp
[

1

C

(

σ̄A

σT

− 1
)]

− 1
}

if fA > 0







(2.8)

C and ǫ̇0A can easily be found from uniaxial strain-rate tests.

Gurson - Tvergaard - Needleman Yield Criterion and plastic potential

The GTN model was originally a theory of dilatational plasticity developed

by Gurson [1977], which was later modified by Tvergaard and Needleman

[1983] to make the model correspond better with their numerical studies. The

model takes into account the dependency of the yield stress upon hydrostatic

stress and incorporates damage owing to growth of cavities[Lemaitre and

9
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Desmorat, 2005]. Cavity growth is included in the function by introducing

the volume fraction of voids f as a damage variable.

To model yielding and plastic flow, an elastic-viscoplastic framework is

used. Thus, yield will occur when a certain yield criterion YA is satisfied

YA = σ̄A − σY = 0 (2.9)

where σ̄A is an equivalent stress and σY is a yield stress. A formula for the

yield criterion can then be written as [Delhaye, 2010]

YA =
(

σe

σmatr

)2

+ 2ΛY cosh
(

qI1A

2σmatr

)

− (1 + Λ2

Y ) = 0 (2.10)

here, σe is the equivalent von Mises stress and σmatr is the yield stress of the

matrix material of the cell, which is assumed to increase with the straining

of the material. ΛY is assumed to be a rational function of f , similarly as

suggested by Pijnenburg and Van der Giessen [2001]. ΛY accounts for f

affecting the size of filaments formed between voids in the matrix, and is by

Delhaye [2010] assumed as

ΛY = fh (2.11)

where h > 0 is a parameter depending on the matrix properties. Further,

q is a parameter that is introduced analogous to Tvergaard and Needleman

[1983], and I1A = tr(Σ̄A) is the first invariant of the Mandel stress tensor Σ̄A.

Since Σ̄A is symmetric, due to the assumption of isotropic elasticity, I1A can

also be found using the Kirchhoff stress tensor τA, I1A = tr(τA).

Since both σ̄A ≥ 0 and σY ≥ 0, the yield criterion can be formulated as

YA = σ̄2

A − σ2

Y = 0. Equation (2.10) can then be rewritten as

σ̄A = σe (2.12)

10



2.2. MATERIAL MODEL

σY = σmatr

√

1 + Λ2

Y − 2ΛY cosh
(

qI1A

2σmatr

)

(2.13)

σY is now decomposed into two contributions, after Equation (2.13). A

matrix contribution, σmatr, and a square root factor accounting for the void

growth effect. If the material is unvoided, i.e. f = 0, σY will equal σmatr,

which is logical.

To account for the effect of the onset of plastic flow depending on the

state of stress, it is assumed that the matrix is pressure dependent as

σmatr = σ0 + ϕp (2.14)

where σ0 represents the shear strength of the matrix, analogous as suggested

by Pijnenburg and Van der Giessen [2001]. ϕ is an adjustment parameter

and p is the pressure given as

p = −1
3

tr(τ A) = −1
3

tr(Σ̄A) (2.15)

The parameters describing the pressure dependency of the material ϕ and

σ0, can be calculated using the yield stress in compression and in tension at

the reference strain rate. Using the yield criterion in Equation (2.13) leads

to [Delhaye, 2010]

σT =
(

σ0 − ϕ

3
σT

)

√

√

√

√1 + Λ2

Y − 2ΛY cosh

(

qσT

2(σ0 − ϕ
3
σT )

)

(2.16)

σC =
(

σ0 +
ϕ

3
σC

)

√

√

√

√1 + Λ2

Y − 2ΛY cosh

(

qσC

2(σ0 +
ϕ
3
σC)

)

(2.17)

To determine ϕ and σ0, the set of Equations (2.16) and (2.17) can be

solved numerically or graphically.
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The flow rule is defined on the intermediate configuration Ω̄A, and predicts

the evolution of the plastic flow as

L̄
p
A = ˙̄ǫp

Ar̄A , r̄A =
∂ΦA

∂Σ̄A

(2.18)

here, ˙̄ǫp
A is a viscoplastic multiplier, and gives the flow amplitude. r̄A is a

gradient defining the direction of the flow of the plastic potential ΦA.

Further, the plastic potential is defined as [Delhaye, 2010]

ΦA =
σ2

e

σ2
0

+ 2ΛΦ cosh
(

qI1A

2σ0

)

− (1 + Λ2

Φ
) (2.19)

where

ΛΦ = f g , g ≥ 0 (2.20)

The definition in Equation (2.19) is based on a non-associated theory to

predict the plastic flow in a more realistic way, and especially to predict the

volume changes related to the evolution of cavities.

According to Polanco-Loria et al. [2010], the viscoplastic multiplier ˙̄ǫp
A

can be found from

˙̄ǫp
A =







0 if YA ≤ 0

ǫ̇0A

{

exp
[

1

C

(

σ̄A

σY

− 1
)]

− 1
}

if YA > 0







(2.21)

where the coefficients ǫ̇0A and C easily can be determined from strain-rate

tests.

The GTN model has gained popularity when it comes to simulating

plastic flow localization and ductile fracture due to its ability to incorporate

the explicit softening processes, such as the softening that arises from microvoid

nucleation and growth [Zhang and Niemi, 1995]. The change of the microvoid

volume fraction can, according to Belytschko et al. [2000], be written as
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2.2. MATERIAL MODEL

ḟ = ḟgrowth + ḟnucleation (2.22)

where ḟgrowth represents the growth of existing microvoids and ḟnucleation the

nucleation of new microvoids. It is assumed that fnucleation is negligible

because the materials considered contain a great deal of particles. Thus

ḟ = ḟgrowth (2.23)

Using the condition that the matrix material is plastically incompressible,

the growth of existing microvoids can be determined from the equation of

mass conservation as [Delhaye, 2010]

ḟgrowth = ˙̄ǫp
A(1− f)tr(r̄A) (2.24)

To use the evolution law in Equation (2.24), the void density of the

undeformed material f0, is needed.

Since the elastic parameters E and ν changes with the density of voids,

they have to be corrected during the calculations. They can be corrected by

[Steenbrink and Van der Giessen, 1999]

E =
2E0(7− 5ν0)(1− f)

2(7− 5ν0) + (1 + ν0)(13− 15ν0)f
(2.25)

ν =
2ν0(7− 5ν0) + (1 + ν0)(3− 5ν0)f

2(7− 5ν0) + (1 + ν0)(13− 15ν0)f
(2.26)

where E0 and ν0 are Young’s modulus and Poisson’s ratio of the matrix

material, respectively.

2.2.2 Network resistance (Part B)

The intra-molecular forces are assumed to follow Anand’s constitutive model

for compressible elastomeric solids [Anand, 1996]. The resistance of the

13
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polymer network is assumed to be hyperelastic and the network orientation

is represented by the deformation gradient FB. The elastic constitutive law

in terms of the Kirchhoff stress τ B = JB · σB on Ω is given by the following

[Polanco-Loria et al., 2010]

τ B =
CR

3

λL

λ
L−1

(

λ

λL

)

(B∗
B − λ

2

I) + κ(lnJ)I (2.27)

where JB = det(FB), identical as for Part A. L−1 is the inverse of the

Langevin function

L(χ) = cothχ − 1/χ (2.28)

and λ is the effective distortional stretch given as

λ =

√

1

3
tr(B∗

B) (2.29)

where, B∗
B = F∗

B · (F∗
B)

T is the distortional left Cauchy-Green deformation

tensor. F∗
B = J

−1/3
B FB is the distortional part of FB.

2.2.3 Summary of Material Model Parameters

The required input parameters for the two parts of the current material

model is presented in Table 2.1 and 2.3 [Polanco-Loria et al., 2010]. The

input parameters needed for Part A if using the GTN yield surface and

plastic potential is presented in Table 2.2 [Delhaye, 2010].
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Table 2.1: Parameters Part A (Raghava)

˙ǫ0A Reference strain rate

C Magnitude of strain rate dependency

E Young’s Modulus

ν Poisson’s Ratio

σT Yield stress in uniaxial tension

α Yield stress ratio in uniaxial loading

σs Saturation stress

H Ramping parameter of stress between σT and σs

β Dilatation parameter in plastic potential function

Table 2.2: Parameters Part A (GTN)

ǫ̇0A Reference strain rate

C Magnitude of strain rate dependency

E0 Young’s Modulus of the matrix material

ν0 Poisson’s Ratio of the matrix material

σ0 Shear strength of the matrix material

h Matrix properties

g Matrix properties (Volumetric changes)

q Void growth parameter

ϕ Scaling Parameter for Pressure dependency

f0 Density of voids
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Table 2.3: Parameters Part B
CR Initial elastic modulus of Part B

(stiffness in Langevin spring)

λ̄L Locking stretch

κ Bulk modulus
(used in applications where only Part B is active)
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2.3. STRESS TRIAXIALITY

2.3 Stress Triaxiality

The stress triaxiality is, besides the strain intensity, the most important

factor that controls the initiation of a ductile fracture. When specimens are

subjected to a tensile load a neck will form and induce significant modifications

of the stress triaxiality ratio, which in turn will affect the stress - strain curves

[Mirone, 2006]. The dominant failure mode for large triaxiality is void growth

[Bao and Wierzbicki, 2004].

Commonly, the triaxiality σ∗ is represented by the dimensionless stress

triaxiality ratio, which is the relationship between hydrostatic stress σH and

the equivalent von Mises stress σeq [Bridgman, 1964]

σ∗ =
σH

σeq

=
I1/3√
3J2

(2.30)

where

I1 = σx + σy + σz (2.31)

and

√

3J2 =
√

σ2
x + σ2

y + σ2
z − σxσy − σyσz − σzσx + 3(τ 2

xy + τ 2
yz + τ 2

zx) (2.32)

thus Equation (2.30) can be written as

σ∗ =
(σx + σy + σz)/3

√

σ2
x + σ2

y + σ2
z − σxσy − σyσz − σzσx + 3(τ 2

xy + τ 2
yz + τ 2

zx)
(2.33)

Bridgman [1964] found that a relationship between σeq and σx, where σx

is in the axial direction, could be expressed as

σx

σeq

= 1 + ln

(

a2 + 2aR − r2

2aR

)

(2.34)

17



CHAPTER 2. THEORETICAL BACKGROUND

Here, a is the specimens radius in the necked zone, R the curvature radius

of the neck and r the distance from the specimens centre axis. Assuming

that the stress state in the notch is axially symmetric, that is σy = σz,

Equation (2.30) can be written as

σ∗ =
σx

σeq

− 2

3
(2.35)

Then, Equation (2.34) becomes

σ∗ =
1

3
+ ln

(

a2 + 2aR − r2

2aR

)

(2.36)

The maximum value of σ∗ is obtained in the centre of the specimen, where

r = 0. Thus, combining Equations (2.35) and (2.36), the maximum value for

σ∗ will be

σ∗
max =

1

3
+ ln

(

1 +
a

2R

)

(2.37)

Further, the radial stress σr = σy = σz can be found using the triaxiality

ratio.

J2 =
1

2
(σ′

ijσ
′
ji) =

1

3
(σ2

x + σ2

r − 2σ2

xσ2

r) =
1

3
(σx − σr)

2 (2.38)

The triaxiality factor can then be expressed as

σ∗ =
1

3

σx + 2σr

σx − σr

(2.39)

solving for σr renders

σr = σx · 3σ
∗ − 1

2 + 3σ∗
(2.40)

When the notch radius is known, the stress triaxiality ratio in the centre

of the notch can be calculated. This can be used to make a plot of the second
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invariant as a function of the first from

√

3J2 =
I1

3σ∗
max

(2.41)

and further to find the yield surface.

2.4 Prediction of Fracture

Damage can be described as the nucleation, growth and coalescence of microvoids

or microcracks in solid materials. Looking at damage from a physical point

of view, it is always related to plastic strains [Lemaitre and Desmorat, 2005].

When a specimen fractures - the elastic deformation will be reversed.

Therefore, by measuring the area of the specimen immediately after fracture

and comparing it to the initial area, the plastic strain at fracture pf can be

found [Clausen et al., 2003].

pf = ln
(

Lf

L0

)

(2.42)

where L is the length of the specimen. Since polymer materials are used, the

volume change has to be taken into account. The change can be described

by

A0L0 exp(ǫvf ) = AfLf (2.43)

thus

pf = ln

(

A0 exp(ǫvf )

Af

)

= ln

(

D2

0
exp(ǫvf )

Df⊥Df‖

)

= ln

(

D2

0

Df⊥Df‖

)

+ ǫvf (2.44)

D0 represents the initial diameter of a specimen, measured before performing

a test. Df⊥ and Df‖ represents the diameter of the specimen measured in two

perpendicular directions immediately after the test. ǫvf is the true volume

strain.
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2.5 Fracture Surfaces

Compared to metals, fracture in polymers is in general more ductile. Even

for fractures occurring at low temperatures, ductile deformed films and fibrils

are visible at high magnifications. But, from a macroscopic point of view a

brittle fracture for polymers still can be defined. Engel et al. [1981] defines

a brittle fracture as a fracture producing fibrils less than 1µm long.

McCrum et al. [1997] states that whether a polymer, in any given circumstance,

is ductile or brittle, depends upon it’s resistance to yield and to crazing

followed by crack propagation. Which of the two competing mechanisms who

becomes the dominating one depends on temperature, strain rate, type of

loading, component geometry and the presence of aggressive liquids. Normally,

polymers such as HDPE and PVC will withstand a high degree of plastic

deformation and behave as ductile materials [Engel et al., 1981].

Earlier at SIMLab, micrographs of the original microstructure of HDPE

and PVC have been obtained by cooling down undeformed specimens in

liquid nitrogen and breaking them, see Figure 2.5 and 2.6. The particles

visible in the PVC material is calcium carbonate.

Figure 2.5: Fracture Surface of Undeformed HDPE
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Figure 2.6: Fracture Surface of Undeformed PVC

By examining the fracture surfaces of tensile specimens of rubber-modified

polypropylene reinforced by mineral particles Delhaye et al. [2010] observed

two distinct morphologies. The initiation area, where the fracture initiated,

is more ductile and consists of rather long pulling ligaments. The propagation

area, where the crack rapidly propagated in the end of the fracture process,

has more of a cleavage morphology. Examples are shown in Figure 2.7.

(a) Initiation area (b) Propagation area

Figure 2.7: Fracture Surface Morphologies [Delhaye et al., 2010]

Voids can occur when particles present in the material debonds from the

matrix around them, or when the particle itself cavitates. On a larger scale,
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cavitation can visually be observed as whitening of the material. It occurs

when the stress level is close to the yield stress [Morawiec et al., 2001].
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3
Materials and Laboratory Experiments

For investigation of how the plastic dilation in polymers is related to the

triaxiality in stress, tensile tests of axisymmetric smooth and notched specimens

were performed. The notched specimens had different notch radii, in order

to obtain different triaxial stress states. This chapter first describes the

materials used. The test method is then presented, followed by the post-processing

of the tests and some basic test results. The main test results are presented,

and compared to numerical simulations, in Chapter 5, and in Chapter 7 the

results concerning fracture and fracture surfaces are presented.

3.1 Materials

Two different polymer materials were used, HDPE and PVC. They were

made at SIMONA AG around three years before the testing took place. The

materials were machined at NTNU into axisymmetric smooth and notched

specimens.

3.1.1 HDPE

HDPE is a type of polyethylene (PE), which is an addition product consisting

of the monomer ethylene shown in Figure 3.1. It has a high crystallinity,
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about 75%. HDPE is a thermoplastic, and it is commonly used for producing

tubes, bottles and household articles [Rösler et al., 2007].

Figure 3.1: PE Monomer [Rösler et al., 2007]

From experimental testing to calibrate the material model employing

the Raghava yield surface and plastic potential, and information from the

material supplier SIMONA-AG [1995], Hovden [2010] found the HDPE used

here to have the properties presented in Table 3.1.

Table 3.1: Mechanical Properties of HDPE

Part A Part B

E [MPa] 800 CR [MPa] 1.74

ν0 0.40 λ̄L 7.75

σT [MPa] 13.00 κ 0

α 1.00

σs [MPa] 23.90 Other

H 39.60 K [MPa] 1333

β 1.04 G [MPa] 286

ǫ̇0[s
−1] 0.0007 ρ [kg/m3] 950

C 0.108

3.1.2 PVC

PVC consists of a monomer similar to ethylene, but with one hydrogen

atom substituted by chlorine, see Figure 3.2. The chlorine atom changes

24



3.1. MATERIALS

the performance of PVC compared to HDPE. Tg increases to 85 ◦C, and

makes PVC relatively rigid at room temperature. PVC is a thermoplastic

with a so low degree of crystallinity, about 5%, it is basically amorphous

[Ram, 1997]. The low crystallinity is due to the fact that the chlorine atom

takes up more space than a hydrogen atom, and makes it almost impossible

for PVC to have crystalline regions. In addition PVC is usually modified by

adding particles, which also makes it difficult to have crystalline regions.

Figure 3.2: PVC Monomer [Rösler et al., 2007]

PVC can be combined with stabilisers, lubricants, plasticisers, fillers,

pigments and other additives. This results in many different physical properties,

depending on the additives. PVC has therefore many areas of application,

including the production of tubes, packages, floor coverings and window

frames [Ram, 1997].

When comparing PVC and PE, it is found that PVC is more stable

towards the environment, more permeable and easier to modify using additives

[Ram, 1997].

The mechanical properties for the PVC used here found from experimental

testing to calibrate the material model employing the Raghava yield surface

and plastic potential, and information from the material supplier SIMONA-AG

[1996], by Hovden [2010] is presented in Table 3.2.
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Table 3.2: Mechanical Properties of PVC

Part A Part B

E [MPa] 3000 CR [MPa] 6.07

ν0 0.30 λ̄L 1.71

σT [MPa] 46.80 κ 0

α 1.30

σs [MPa] 37.80 Other

H 15.00 K [MPa] 2500

β 1.27 G [MPa] 2142

ǫ̇0[s
−1] 0.001 ρ [kg/m3] 1430

C 0.070

3.2 Test Method

In Figure 3.3 the geometry of the specimens made for the tests are shown.

The geometry of the smooth specimens is shown to the left, and the geometry

of the other specimens to the right.

Figure 3.3: Geometry of Specimens [mm]

The notched specimens had four different initial notch radii: R = 0.8mm,

R = 2mm, R = 5mm and R = 20mm. All the different geometries were

represented in each material, adding it up to ten different tests in total.

They were named on the form (material)_R(radius)_(test no.), e.g. for the
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first test of a PVC specimen with R = 2mm, the name would be PVC_R2_1.

The smooth specimens were named as (material)_smooth_(test no.).

To map displacements and other geometry changes during the tests, a

custom made DIC algorithm was created. The tests were monitored by a

CCD camera creating pictures for input to the DIC code. Markings were

applied to the surface of the notch of the specimens prior to the tests, to be

able to map the deformations.

A line of small dots were applied as markings as reference points for the

DIC, starting 1mm from the centre of the specimen to each side, continuing

with 1mm distance to the edge of the curved surface of the specimen, see

Figure 3.4(a). The light grey PVC was marked with black dots, and the

black HDPE with white dots. A microscope was used to obtain the desired

accuracy of the placing of the dots, see Figure 3.4(b).

(a) Marked Specimens (b) Microscope used for Marking

Figure 3.4: Preparation of Specimens

Earlier at SIMLab, another DIC technique, similar to the one described

by Hovden [2010] and Kamaya and Kawakuboa [2011], had been applied to

the same test set; introducing small black dots on the surface of the specimens

and mapping the deformation of the specimens using the DIC software 7D to

compare images acquired with a CCD camera during the tests. The test set

had been carried out twice, with two different grades of fine-grained patterns.

None of the test sets were however successful in representing the stress and
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strain fields for the specimens correctly, because of the large displacements

over relatively small areas. Also, the old method was not able to both map

the strain field of the front of the specimen and measure the changes in the

specimens contour at a time; focusing on one of them during a test would

make the other one diffuse and impossible to measure.

A new approach, using a custom made DIC algorithm, was therefore

employed. The custom made script returns the desired measures for all the

pictures taken during a test. From these measures deformations, stresses and

strains could be calculated. During the tests, only one camera was used, and

thus only planar displacements and strain fields could be mapped.

Several tests were performed for each different specimen to prove the

repeatability. The tests were performed using a Dartec M 1000 RK machine

with a 20 kN load cell, see Figure 3.5(a), connected to an Instron controller,

see Figure 3.5(b). The Instron controller logged time, displacement and

force with the same frequency as the pictures were taken, with the software

Wave Matrix. To monitor the deformation of the specimens, a Prosilica

GC2450 CCD camera was placed on a tripod facing the dotted side of the

specimens, taking one picture per second. For PVC_R08 and PVC_R2

pictures were taken twice per second. The pictures were taken using the

software SAVEN-GV.

To make the post-processing of the tests easier, a black plate for the

light grey PVC and a white plate for the black HDPE were placed behind

the testing machine, so a sharp contrast between the specimens and the

background was obtained. Three light units were also used, directed towards

what would be the edges of the specimens in the pictures, to make the contour

as sharp as possible.
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(a) Dartec Machine (b) Instron Controller (c) Mounting

Figure 3.5: Laboratory Testing

The same global strain rate ǫ̇ and cross head deformation speed v was

used for all samples

ǫ̇ = 10−3 s−1 (3.1)

v = 0.04mm/s (3.2)

Thus, the tests could be characterised as quasi-static. At a strain rate

this low, temperature effects, which are not included in the material model,

are assumed to be negligible.

3.3 Post-processing

3.3.1 Extraction of Force - Displacement Curves

Initial noise may occur in force-displacement curves extracted from tension

tests due to the fact that the specimens may not be totally fixed in the test

machine. Thus crosshead displacement may be registered even though there

is none. This initial noise may be removed from the curves by using a method

from Lemaitre and Chaboche [1990], see Figure 3.6.
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Figure 3.6: Force - Displacement Curve [Lemaitre and Chaboche, 1990]

First, the stiffness is derived from the data from the elastic area, thus

over the displacement ue. This is done by using a curve fitting tool in e.g.

the numerical computing environment and programming language MATLAB,

finding a linear polynomial fitting the line, resulting in an equation on the

form

F = au+ b (3.3)

Then, since the deformation so far is elastic, the stiffness is used to find

the initial displacement uj.

uj =
−b

a
(3.4)

The force - displacement curve is then shifted sideways a distance uj and

the straight line in the elastic area is extended to the origin.
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3.3.2 Yield Stress

There are different methods that can be used to determine the yield stress. If

the true stress - true strain curve shows a clear first maximum, this maximum

value can be used for the yield stress, as used in the calibration of the material

model for PVC by Hovden [2010]. This equals the point where the tangent

to the true stress - true strain curve is horizontal, dσ/dǫ = 0 (see Figure 3.7).

Figure 3.7: Using dσ/dǫ = 0 to Determine the Yield Stress

If such a maximum point is difficult to find, Considère’s construction can

be applied. Considère’s construction assumes that the material is rate-insensitive.

The extension ratio is defined as [McCrum et al., 1997]

λ =
L

L0

(3.5)

The volume is not constant during the deformation. However, when using

Considère’s construction for ductile polymers, such as HDPE and PVC, the
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volume can be approximated to a constant one [McCrum et al., 1997]. Thus

A0L0 = AL (3.6)

A0 = Aλ (3.7)

Using the true stress σt and the engineering stress σ

F = σtA = σA0 (3.8)

thus

σ =
σt

λ
(3.9)

If σ and λ is plotted against each other the slope of this plot will be

dσ

dλ
=
1

λ

dσt

dλ
− σt

λ2
(3.10)

At yield both dσ/dǫ = 0 and dσ/dλ = 0, thus

dσt

dλ
=

σt

λ
(3.11)

According to this equation, in a plot of σt versus λ yield will occur where

a tangent can be drawn from the origin to the nominal stress - extension

ratio curve at a point M, as shown in Figure 3.8.
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Figure 3.8: Considère’s Construction [McCrum et al., 1997]

3.3.3 Necking and Cold-Drawing

In Figure 3.8 it is also shown how it, in some cases, is possible to find a

second tangent from the origin crossing the curve at a point N. This point

defines a minimum in the true stress - extension ratio curve, and here the

molecular orientation stiffens the drawn polymer in the neck to resist further

extension. After point N the neck stabilises and extends by drawing fresh

material from either side of the neck [McCrum et al., 1997]. This is defined

as cold-drawing. The conditions for cold-drawing are satisfied if both a point

M and N can be found [Vincent, 1959].

Cold-Drawing takes place because of a mechanical instability. This instability

is caused by the increase in a polymers modulus when subjected to tensile

forces, and it makes the stress-strain curve bend downwards. Necking will

then initiate as a consequence of the instability and further the molecules will

be oriented, and cause a strain-hardening process where cold-drawing occurs.
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Insufficient strain-hardening will hinder cold-drawing [Vincent, 1959].

3.3.4 Interpreting Images

To extract desirable data from the tests, a custom made DIC algorithm

was created. The algorithm was implemented in MATLAB. It was desirable

to map the smallest diameter D, the radius of the neck in the centre of

the contour R and the volume V between the dots nearest to the centre

of the specimen, and the distance L between these dots, for each picture

(see Figure 3.9). In the following a description of the script is presented.

A representative example of the algorithm as used in the post-processing is

included in Appendix A.

Figure 3.9: Sizes Returned from MATLAB Script

The MATLAB script uses all pictures taken during a given test as input,

and maps displacements by comparing the pictures. First, two methods are

called for each picture in turn. The first method, illustrated in Figure 3.10,

makes the picture black and white, and finds the edge of the specimen (see

step 1 in Figure 3.10) and the smallest diameter D (see step 2 in Figure 3.10).

Further the middle of the specimen is located, and the distances from

the middle out to the two nearest dots is found and added together to give

the distance between them, L (see step 3 in Figure 3.10). Then, the method

finds the volume of the specimen between the dots by calculating the volume
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of small discs, enclosed by the edge that was found, from the centre and out

to the nearest dots. Each disc has the height of one pixel, and adding the

discs up gives the total volume V (see step 4 in Figure 3.10).

Figure 3.10: Illustration of Steps in First Method

The second method, illustrated in Figure 3.11, uses the contour of the

specimen and finds the circle that best fits the neck in the centre of the

contour. The best fitting circle is found using the method of least squares

on the distance between the contour and the circle (turquoise area in step 1

in Figure 3.11) to minimise the distance. This is done by using the built-in

MATLAB function lsqnonlin, which solves nonlinear least-squares problems.

The circle is then used to calculate the radius of the root of the notch, R.

As a visual control, small stars are plotted where the diameter search starts

and ends, and where the search for the dots starts and ends. The best fitting

circle is also plotted, see Figures 3.12 and 3.13.

Figure 3.11: Illustration of Steps in Second Method

Last, the script converts D, L, V and R from pixels to millimetres.

The relationship between pixels and millimetres is found using the image

processing program ImageJ, counting the number of pixels for certain distances
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in images of the specimens, and comparing them to measurements of the same

distances done directly on the specimens.

(a) Picture from Test (b) Picture in MATLAB

Figure 3.12: Post-processing in MATLAB of PVC_R2

(a) Picture from Test (b) Picture in MATLAB

Figure 3.13: Post-processing in MATLAB of HDPE_R20

To ensure that the MATLAB script gave correct results, hand measurements

of a selection of pictures from every test was performed for comparison, using

ImageJ.
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All the sizes found in MATLAB were plotted against the crosshead displacement,

to easier discover errors or irregularities. Further, plots such as true stress -

true strain and true volume strain - true strain were made.

3.3.5 Calculation of Stresses and Strains

Using the measures shown in Figure 3.9, stresses and strain could be calculated.

From the distance L, the longitudinal true strain could be calculated as

ǫl = ln
(

L

L0

)

(3.12)

assuming homogeneous strain over L, where L0 is the initial length of the

distance. The radial true strain could be calculated in the same manner

using the smallest diameter D

ǫr = ln
(

D

D0

)

(3.13)

where D0 is the initial diameter of the specimen. Further, the smallest

diameter D could also be used to find the smallest area at all times, and

thus the largest longitudinal true stress

σl =
F

(πD2/4)
(3.14)

The true volume strain could be found using

ǫV = ln
(

V

V0

)

(3.15)

assuming homogeneous volume strain over V , where V0 is the initial volume

of the region.
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3.4 Basic Test Results

To ensure that each experimental test was correct and accurate, a test was

performed several times to prove its repeatability.

3.4.1 Key Values

Summaries of key values from the third test set are shown in Tables 3.3 and

3.4. ∆max is the maximum crosshead displacement each test was elongated

to, while Fmax is the maximum registered force. σT is the yield stress that

was found for each specimen.

Table 3.3: Summary of Results from HDPE Tests

Test ∆max[mm] Fmax[N ] σT [MPa]

HDPE_R08_3 4.0 949 38.1

HDPE_R2_3 7.1 889 34.5

HDPE_R5_3 9.31 832 32.3

HDPE_R20_3 9.41 694 27.7

HDPE_smooth_3 26.01 592 21.5

Table 3.4: Summary of Results from PVC Tests

Test ∆max[mm] Fmax[N ] σT [MPa]

PVC_R08_3 1.9 1563 55.2

PVC_R2_3 2.1 1549 55.0

PVC_R5_3 3.4 1543 55.9

PVC_R20_3 6.2 1472 52.2

PVC_smooth_3 9.03 1304 47.7

1The test was stopped before the specimen ruptured
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3.4.2 Force - Displacement Curves

In Figures 3.14 and 3.15, the force - displacement curves for HDPE_R20 and

PVC_R20 are shown. All of the force - displacement curves are shown in

Appendix B.

Figure 3.14: Force - Crosshead Displacement for HDPE_R20

Figure 3.15: Force - Crosshead Displacement for PVC_R20
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3.4.3 Yield Stress

The yield stress for the PVC specimens was found using the first maximum

stress value on the true stress - true strain curve. For the HDPE specimens

however, such a maximum point was hard to define for the largest notch radii.

Therefore, Considère’s construction was applied to all the HDPE specimens.

Both of the methods for determining the yield stress are described in

Section 3.3.2. The methods are consistent with the ones used in the calibration

of the material model employing the Raghava yield surface and plastic potential

for HDPE and PVC by Hovden [2010].

The yield points of all curves are in the following plots marked with a

black circle.

3.4.4 Necking and Cold-Drawing

All the PVC specimens fractured before cold-drawing occurred. For all the

HDPE specimens however, cold-drawing could be observed. For the HDPE

specimen with the highest triaxiality, HDPE_R08, the onset of cold-drawing

coincided with the yield point.

In the following plots, the points where cold-drawing started are marked

with a magenta coloured circle for all curves.

The point at which cold-drawing started can be seen in a radius - crosshead

displacement plot, see Figure 3.16, where the radius is calculated from a circle

placed in the root of the notch.

The moment when the local radius starts to decrease is defined as the

onset of necking. Cold drawing starts when the neck propagates, observed

as an increase of the radius value.
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Figure 3.16: Radius versus Crosshead Displacement for HDPE

3.4.5 Evaluation of Basic Test Results

From Figures 3.14 and 3.15 it can be seen that the repeatability of the tests

is very good. The other force - displacement curves, shown in Appendix B,

were even closer together than the ones shown in Figures 3.14 and 3.15.
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4
Numerical Simulations

The numerical simulations are performed for two purposes: To validate

the method used in the post-processing of the tests and to reveal possible

deviations between the material model used for the simulations and the

material behaviour in the tests.

In this chapter the modelling and the simulations are described, together

with some basic simulation results. Further, in Chapter 5, the main simulation

results are presented and compared to the test results.

4.1 Modelling

The specimens were modelled using the finite element software LS-DYNA.

A representative keyword-file for the modelled specimens can be found in

Appendix C. One of the modelled specimens is shown in Figure 4.1.

The cross-section of the same specimen is shown in Figure 4.2, and it

shows how the elements are partitioned to avoid triangular elements in the

centre. Key data for the specimens is given in Table 4.1.
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Figure 4.1: R2 Modelled in LS-DYNA

Figure 4.2: Cross-Section of LS-DYNA Model

Table 4.1: Key Data for Specimens

Specimen Element type Nodes Elements

R08 Solid 64559 57000

R2 Solid 50443 43136

R5 Solid 51375 44032

R20 Solid 51375 44032

Smooth Solid 41256 36000

For the modelling of the specimens the element formulation used was

EQ1 - Constant stress solid elements. This means that the elements behave

essentially as nonlinear, to be able to permit the severe distortions sometimes

seen in honeycomb materials [LSTC, 2007]. The elements are shorter in the

longitudinal direction than in the two other directions. This was done to

improve aspect ratios as strains grow large in the necking zone. The notch of
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the specimens were modelled with smaller elements since the deformations

were larger here.

The specimens were fixed in all directions at one end, and a displacement

was applied in the longitudinal direction at the other end, using a smooth

amplitude function. In the moving end, displacements in all directions except

the longitudinal one were fixed. The material model used was the SIMLab

developed model using the Raghava yield criterion and plastic potential.

Tables 3.1 and 3.2 shows the material parameters used for the simulations

for HDPE and PVC respectively.

All the information from the simulations were extracted in the same way

as for the tests, to get a better basis for comparison with the tests.

In the modelling the set of consistent units tonne, mm, s, N and MPa

was used.

4.2 Results

In Figures 4.3 and 4.4 the force - crosshead displacement curves for all the

specimens simulated are shown.

Figure 4.3: Force - Crosshead Displacement for HDPE Simulations
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As can be seen the force - displacement curves from the simulations

resemble the force - displacement curves from the tests, shown in Appendix B.

Figure 4.4: Force - Crosshead Displacement for PVC Simulations

4.3 Evaluation of Simulations

From Figure 4.4 it looks as though the different simulations of the specimens

had different stiffness. An analysis with an, in comparison, infinite large

yield stress was therefore carried out, to check if the stiffness in fact varied

for the different specimens simulations. The result can be seen in Figure 4.5.
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Figure 4.5: Simulations Using Different Yield Strength for PVC_R20

Clearly, the stiffness is the same for the different simulations. The apparent

deviations in stiffness originates from the initiation of yielding in some elements,

which makes the curves soften.

To reduce the central processing unit (CPU) time, mass scaling was

introduced in the simulations. First, the mass was scaled with a factor 109,

however this gave an unstable force, as shown for PVC_R2 in Figure 4.6.

The effect decreased when less mass scaling was used.

Figure 4.6: Comparison of Different Mass Scaling with Test Result
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As can be seen, the force converges towards the test result the less the

mass is scaled. It was however chosen to not scale the mass less than with a

factor 106, since this would give a CPU time of 7 days or longer, depending

on the specimen simulated.

The ramping of the force was also varied to see if it could make the load

path smoother, and both a normal load curve definition and a smooth load

curve definition was tested. However, none of the attempts had any notable

effect on the smoothness of the curve.

To measure the radius in the simulations correctly, calculated from a circle

placed in the root of the notch, was difficult because of the mid elements

being largely stretched out. This in turn affected the triaxiality. It was also

difficult to define an initial length and an initial volume that had the exact

same size as the ones used in the tests, since the initial length and volume

had to be defined using the existing element partitioning.

Energy Balance

In Figure 4.7 the total energy for the analysis of HDPE_R2 is compared

with the external work.

Figure 4.7: Comparison of the Total Energy and the External Work
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It can be seen that the total energy is constant in comparison to the

external work. A comparison of the values show that they never deviate

with more than 0.5%.

The internal energy and the hourglass energy for the analysis of HDPE_R2

are compared in Figure 4.8.

As shown, the hourglass energy is relatively low compared to the internal

energy. At most the hourglass energy is 5.2% of the internal energy.

Figure 4.8: Comparison of the Internal Energy and the Hourglass Energy

In Figure 4.9 the kinetic energy is compared to the internal energy for

the analysis of HDPE_R2.

As can be seen, the kinetic energy is negligible in comparison to the

internal energy. A comparison shows that the value for the kinetic energy is

at most approximately 0.01% of the value for the internal energy.
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Figure 4.9: Comparison of the Internal Energy and the Kinetic Energy

For all simulations the energy comparisons described here has been checked.

None of them deviated significantly from the comparisons shown above.
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5
Tests and Simulation Results

To find possible deviations between the material model used for the simulations

and the material behaviour in the tests, the results from both were compared.

In this chapter the main results from the tests and simulations are presented

and compared.

The smooth specimens in the tests fractured differently than expected. It

seemed as if the fractures developed along a spiral pattern on the outside of

the specimens. Since this happened to each and all of the smooth specimens

it is assumed to be an effect from the machining. The results from the smooth

specimens are therefore not included in all the plots.

5.1 Results

5.1.1 True Stress - True Strain

In Figures 5.1 and 5.2, the true longitudinal stress - true longitudinal strain

curves for HDPE tests and simulations are compared. Figures 5.3 and 5.4

shows the same comparison for PVC.
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Figure 5.1: True Stress - True Strain Curves for HDPE Tests

Figure 5.2: True Stress - True Strain Curves for HDPE Simulations

As can be seen the curves for both HDPE and PVC commence with a

steep slope, this is related to the inter-molecular forces. The slope starts to

gradually flatten right before the yield point, because yield is reached in some

parts of the specimens before the yield point. An apparent trend is that the

yield stress increases when the initial notch radius decreases, especially for

HDPE.
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Figure 5.3: True Stress - True Strain Curves for PVC Tests

Figure 5.4: True Stress - True Strain Curves for PVC Simulations

During the deformation in the laboratory tests of these materials two

mechanisms compete: The stretching of the molecular network increases the

stiffness, while damage due to void growth tends to soften the material. After

yield the curves for HDPE_R08 and HDPE_R2 bottoms out because of the

damage triumphing the network forces, while the curves for the other three

specimens surges due to the network forces dominating over the damage. For

PVC all the test curves peaks when yield is reached.
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Young’s modulus was found to be in agreement with the values found by

Hovden [2010] for both HDPE and PVC in uniaxial tension, see Tables 3.1

and 3.2. The yield stress and the start of cold-drawing for the simulations

were found in the same manner as for the tests.

5.1.2 Local Strain Rate

In Figures 5.5 and 5.6 for HDPE and Figures 5.7 and 5.8 for PVC, true

longitudinal strain is plotted against time.

Figure 5.5: Local Strain Rates for HDPE Tests

The slope will thus represent the local strain rate for the area between the

two dots closest to the centre used to measure the distance L (see Figure 3.9).
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Figure 5.6: Local Strain Rates for HDPE Simulations

As can be seen, the local strain rate varies with initial notch radius, and

as expected the local strain rate is higher for the specimens with the smallest

notch radii.

Figure 5.7: Local Strain Rates for PVC Tests

55



CHAPTER 5. TESTS AND SIMULATION RESULTS

Figure 5.8: Local Strain Rates for PVC Simulations

5.1.3 Triaxiality

In Figures 5.9 and 5.10 a plot of the true longitudinal strain versus the

stress triaxiality for PVC is shown. The calculation of the stress triaxiality

is described in Section 2.3. A black x is used to mark the point of fracture.

The current material model does not contain a fracture criterion, so a point

of fracture cannot be found for the simulations. This is solved by assuming

fracture after the same amount of elongation before fracture as for the tests.

Figure 5.9: Stress Triaxiality for PVC Tests
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The figures shows that the specimens have non-proportional load paths,

though the paths are somewhat more uniform for the simulations.

Figure 5.10: Stress Triaxiality for PVC Simulations

It can also be seen from the figures, although not entirely consistent,

that a smaller initial notch radius leads to a higher longitudinal strain before

fracture.

5.1.4 Yield Surface

In Figures 5.11 and 5.12 for HDPE and Figures 5.13 and 5.14 for PVC, the

equivalent von Mises stress plotted against the hydrostatic stress. Also, the

yield surfaces for a strain rate equal to zero, defined by the parameters in

the material model is shown in each plot.
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Figure 5.11: Yield Surface for HDPE Tests

Figure 5.12: Yield Surface for HDPE Simulations

The hydrostatic stress is calculated using Equation (2.40) to find the

radial stress with σr = σy = σz, and the yield surface is found using the

Raghava yield criterion. As can be seen, some of the curves has a sudden

shift in directions. This is due to the fact that the Bridgman equation only

is valid up to a certain point of the curves. It can also be seen that the yield

points from the simulations tends to lie a bit above the yield surfaces.
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Figure 5.13: Yield Surface for PVC Tests

Figure 5.14: Yield Surface for PVC Simulations

5.1.5 Volume Strain

The volume strain from the simulations and the tests are compared in Figures 5.15

and 5.16 for HDPE and Figures 5.17 and 5.18 for PVC.
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Figure 5.15: Volume Strain for HDPE Tests

Figure 5.16: Volume Strain for HDPE Simulations

As can be seen, the deviations between the volume strain in the tests and

in the simulations are relatively large. The volume strain is higher for the

PVC simulations than the HDPE simulations because the material parameter

β was set to be higher for PVC.
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Figure 5.17: Volume Strain for PVC Tests

Figure 5.18: Volume Strain for PVC Simulations

From the experimental tests it is evident that the volume strain is dependent

on the initial notch radius. A smaller initial notch radius gives a larger volume

strain. This effect is due to the fact the specimens with smaller initial notch

radii have a higher triaxiality and thus higher radial stress components. The

specimens will then to a higher degree be stretched out in all three directions

in the localised area, which will create greater void growth and thus greater

volume changes. The variations in radial stress for the tests are shown in
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Figures 5.19 and 5.20, where the radial stress is calculated as described in

Section 2.3.

Figure 5.19: Radial Stress for HDPE Tests

Figure 5.20: Radial Stress for PVC Tests

From the figures it can be seen that the smooth specimens will experience

an uniaxial stress state initially. It can also be seen that increasing the initial

notch radius gives a higher radial stress component. For HDPE the radial

stress starts to sink around the point of cold drawing.
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5.2 Evaluation of Tests and Simulations

From the information presented above it is evident that a smaller neck, and

thus a larger triaxiality, leads to the following effects:

• A higher yield stress value, especially noticeable for HDPE

• A higher local strain rate

• Larger volume strain during plastic deformations

• Larger radial strain components

Figures 5.1 to 5.4 shows that more strain hardening is induced in the

simulations than in the tests. The PVC experimental tests also had a larger

stress drop after yielding than the PVC simulations. This larger drop in the

tests might be due to the fact that the damage reduces the ability to carry

load; as the voids grow the effective area is reduced. The area from which

the stress is calculated is the area that can be measured from the outside of

the specimen. In reality, the cross-section of the specimen will have a smaller

area due to the void growth. For the tests the real stress σeff is

σeff =
F

Aeff

> σ =
F

A
(5.1)

where A = Aeff + Avoids is the area that can be measured from the outside

of the specimen. Thus, the stress in the material surrounding the voids is

actually higher than the plot shows. The load drop for the tests may also

imply that there is an increase in void nucleation around yielding, and that

the load drop occurs when nucleation around the particles present in the

material happen. If this assumption is correct a stress driven nucleation

criteria could be included, so that the void density f will change with the

evolving stresses, to improve the material model further.

It was difficult to find the yield point for the simulations of the PVC

specimens using the same method as for the tests, since the simulations did
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not give a clear maximum on the true stress - true strain curve, as the tests

did. Yielding may occur for a lower stress in reality, since the yield point

found occurred after maximum load. However, it was chosen to still use the

same method as in the tests for a better basis for comparison.

The yield point for the tests tends to be a bit lower than for the simulations,

see Figures 5.11 to 5.14. Since the strain rates are similar, as shown in

Figures 5.5 to 5.8, the yield point should also be similar. This indicates that

the Raghava yield surface does not represent the exact material behaviour.

The yield points for the simulations also tends to lie a bit above the purple

line stretched as the yield surface. The reason for this is that this line applies

to a theoretical zero strain rate. It can be seen that the specimens with the

smaller initial notch radii has a yield point further from the yield surface

than the larger radii. This is in accordance with the local strain rate varying

with the initial notch radii, as shown in Figures 5.5 to 5.8.

For PVC the yield point can also be somewhat inaccurate because of the

method used for determining the yield point not being very applicable for

the simulations.

The volume strains predicted by the simulations, especially for HDPE,

deviated from those observed in the experimental tests, see Figures 5.15

to 5.18. Clearly, the current material model, using the Raghava plastic

potential, does not capture the volume changes that arises properly. It is

believed that the GTN plastic potential, accounting for the void volume

fraction f , will give a more correct material model when it comes to volume

changes. The volume change is assumed to arise from void growth, which

will be discussed further in Chapter 7.

Using the GTN model could also have made the yield surface for PVC

curve more in accordance with the yield points, depending on the input

parameters.

The volume strain in the simulation of PVC_R08 does not follow the same

pattern as the other specimens. This is assumed to be a consequence of the

volume strains being measured from different initial volumes V0. Different
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initial volumes V0 may also give contributions to the deviations between the

tests and simulations.

Accuracy of Longitudinal Strain and Volume Strain

It is assumed that the true longitudinal strain and the true volume strain are

homogeneous over the area which they are calculated from. In reality, the

strains will vary over the area. The true radial strain however, is calculated

over an area with homogeneous strains. Comparing the longitudinal strain

and the volume strain to the radial strain will therefore give an idea of how

inhomogeneous the strain over the area from which the longitudinal strain

and volume strain are calculated. It can also be a measure of the accuracy

of the method employed for mapping the deformations.

The procedure for calculating the volume in order to find the volume

strain ǫV , as described in Subsection 3.3.4, is rather demanding. Another

way to calculate the volume strain ǫv2 is using the trace of the finite strain

tensor

ǫv2 = ǫ11 + ǫ22 + ǫ33 = ǫl + 2ǫr (5.2)

However, since the longitudinal strain is measured over a distance with

varying radial strain and the radial strain is measured over a distance with

uniform longitudinal strain, the longitudinal strain will not be as local as the

radial. Thus, the radial and longitudinal strain will not be comparable, and

will create a negative volume strain for some of the specimens. The method

described in Subsection 3.3.4 is therefore preferable to use to find the volume.

To be able to compare the longitudinal strain and the volume strain to

the radial strain, a mean radial strain was calculated. The mean radial

strain is the radial strain taken over the area where the longitudinal strain

is measured, calculated as

ǫr =
ǫv − ǫl

2
(5.3)

65



CHAPTER 5. TESTS AND SIMULATION RESULTS

In Figures 5.21 and 5.22, the measured local radial strain and the mean

radial strain from the tests are plotted together.

Figure 5.21: Local and Mean Radial Strain for HDPE tests

Figure 5.22: Local and Mean Radial Strain for PVC tests

Comparing the local and the mean radial strain gives an idea of the degree

of localization and the accuracy of the longitudinal strain and the volume

strain. As can be seen, the difference between the measured local radial strain

and the mean radial strain increases with decreasing initial notch radius. This

is due to the fact that for a specimen with a small initial notch radius the
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diameter varies more over the area where the longitudinal strain is measured,

than for a specimen with a larger initial notch radius. Thus the radial strain

will vary more too. For instance, the relationship between the smallest and

the largest diameter over the measuring area for R08 is approximately 0.79,

while for R20 it will be approximately 0.99.
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6
Numerical Simulations with Modified

Material Model

As described in Section 2.2.1, a modified version of the material model

employing the GTN yield surface and plastic potential is suggested. In this

chapter simulations using the modified version implemented in LS-DYNA

are presented. This material model was still under development when the

simulations were performed. Therefore, the simulations are only an indication

of what needs to be done in order to complete the modified material model.

Only simulations on one material, PVC, were conducted to try out the

modified material model. PVC was chosen over HDPE because a good

estimate of the initial void volume fraction f0 in PVC was already acquired

at SIMLab. Simulations were also only performed for two geometries, R08

and R2. The specimens with the smallest initial notch radii were chosen

because they had the highest stress triaxiality, and thus the highest volume

strain.

6.1 Calibration

To be able to run simulations with the modified material model, the parameters

in Tables 2.2 and 2.3 were needed as input.
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The parameters E and ν were already calibrated by Hovden [2010], and

could be used to find E0 and ν0 solving the set of Equations (2.25) and

(2.26) numerically. σ0 and ϕ was found solving the set of Equations (2.16)

and (2.17) numerically, using the values for σT and σC found by Hovden

[2010]. The parameter ϕ was set equal to zero to make the material model

easier to calibrate. This could be done because the only states of stress that

would be investigated were the ones located between tension and biaxial

tension. σT was also somewhat adjusted to get a better approximation for

the yield stress, since the parameter g, which affects the yield stress, was not

accurately calibrated for the simulations.

Further, the parameters ǫ̇0A, C, CR and λ̄L were also already calibrated

by Hovden [2010], and could be used directly.

The parameter g was set to be g = 1, and h was set equal to g. q was

set to be q = 1, as suggested by Delhaye [2010]. f0 was set to be f0 = 0.2,

a value estimated at SIMLab from micrographs of PVC. The parameters are

summed up in Table 6.1.

Table 6.1: Set of Calibrated Parameters for PVC
ǫ̇0A 0.001

C 0.07

E0 4500

ν0 0.3263

σ0 55

h 1

g 1

q 1

ϕ 0

f0 0.2

CR 5.5

λ̄L 1.92

70



6.2. RESULTS

In addition H, the bulk modulus K, the shear modulus G and the

retraction coefficient R were needed as input for the material model in

LS-DYNA. H was set equal to zero, and K = 2500 and R = 0.32 were

taken from Hovden [2010]. G was adjusted up to G = 4142, to increase the

stability of the model.

To adjust the parameters, analyses on a single element model and on the

notched specimens PVC_R08 and PVC_R2 were performed.

6.2 Results

The true stress - true strain curves for the tests and the simulations, with both

the current and the modified material model, are compared in Figures 6.1

and 6.2.

Figure 6.1: Comparison of True Stress - True Strain Curves for PVC_R08

The comparison shows that the softening in the modified material model

is overestimated. The modified material model manages to model the fall

in the stress value seen immediately after yielding in the tests, however the

shapes of the drops are a bit different in the tests.
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Figure 6.2: Comparison of True Stress - True Strain Curves PVC_R2

In Figures 6.3 and 6.4, the volume strain for the tests are compared to

the volume strain for the simulations with both the current and the modified

material model.

Figure 6.3: Comparison of Volume Strain Curves for PVC_R08

As can be seen, the GTN potential estimates the volume strain better

than the Raghava potential. The volume strain gradient for PVC_R08 is

similar for the simulation using the GTN potential and for the test. For

PVC_R2 the volume strain gradient is a bit steeper in the simulation using
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the GTN potential than in the test. The simulated volume strain for longitudinal

strains lower than approximately 0.07 deviate from the tests.

Figure 6.4: Comparison of Volume Strain Curves for PVC_R2

73



CHAPTER 6. NUMERICAL SIMULATIONS WITH MODIFIED MATERIAL MODEL

6.3 Evaluation of Modified Material Model

The modified material model captures the volume changes that arises in

polymer materials exposed to strain better than the current one. The GTN

plastic potential will thus give a more correct material model. However, the

strain softening is not yet simulated properly. The volume strain gradient

should also be adjusted by approximating a better value for the parameter g

using the volume strain in uniaxial tension tests.

In order to simulate the strain softening properly, the parameters from

part B, CR and λ̄L should be adjusted to get the correct level of strain

hardening at the end of the test. Adjustments of the parameters needs to

be done because Part A exhibits softening during plastic deformation in the

modified material model, instead of a plateau as with the original model, so

the strain softening can be overestimated.

A problem that occurred while running simulations with the modified

material model, was numerical instability. The instability was caused by

mass scaling, which was introduced to reduce the CPU time. Since the

analysis was so sensitive to mass scaling, only scaling of a factor 10
3 could be

used. This gave a very long CPU time, and consequently the analyses were

rather time consuming to perform.
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7
Fracture Criterion and Fracture

Surfaces

Examining fractures and fracture surfaces can give useful information about

the fracture process and the failure cause.

In this chapter first a plot of equivalent plastic fracture strain from the

tests is shown. Further the fractures and fracture surfaces from the tests are

described and evaluated.

7.1 Equivalent Plastic Fracture Strain

The equivalent plastic fracture strain pf , found as described in Section 2.4,

is plotted against the triaxiality ratio at fracture in Figure 7.1.

As can be seen the smaller the neck, the lower the equivalent plastic

fracture strain.
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Figure 7.1: Equivalent Plastic Fracture Strain for PVC Specimens

7.2 Fracture Surface

To examine the fracture surface of the specimens from the tension tests, a

Canon 40D single-lens reflex (SLR) camera with a high definition lens and

two external light sources was used. The results are shown in the following.

During the testing, all PVC specimens fractured. For HDPE, only HDPE_R08

and HDPE_R2 fractured.

7.2.1 Results

In Figure 7.2 the fracture surface of HDPE_R2 is shown. As can be seen,

the voids are relatively large in the centre of the specimen. Presumably

this is where the void growth started, and then propagated from these voids

out to the outer shell. This is in accordance with the theory of Bridgman,

Equation (2.37); the centre region is where the highest stress triaxiality is

present, and therefore the region most exposed for void growth.
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Figure 7.2: Fracture Surface of HDPE_R2

In Figure 7.3 the fracture surface of PVC_R2 is shown. Clearly, PVC

have smaller voids than HDPE. The fracture surface also looks as though the

fracture process was less ductile for PVC due to the length of the fibrils on

the surface.

Figure 7.3: Fracture Surface of PVC_R2

Comparing the fracture surfaces from the tests for PVC it was seen that

the lower the initial notch radius, the more topographic the fracture surface,
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see Figure 7.4. Thus, higher triaxiality leads to more brittle fractures.

(a) PVC_R08 (b) PVC_R20

Figure 7.4: Differences in Topography due to Triaxiality

Looking at Figure 7.5, where pictures taken some seconds after yielding

are shown, it can be seen that local whitening of the material has occurred.

As described in Section 2.5, this is a sign of cavitation.

(a) HDPE_R2 (b) PVC_R2

Figure 7.5: Local Whitening of the Material due to Void Growth
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7.3 Evaluation

From the information presented above it is evident that a smaller neck, and

thus a larger triaxiality, leads to the following effects for PVC:

• A lower equivalent plastic fracture strain

• A less topographic fracture surface

It was seen that there were voids present on the fracture surfaces for both

HDPE and PVC. This is in accordance with the volume changes that were

registered in the tests, and the assumption that volume change is due to void

growth.
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8
Conclusions

The post-processing of the tests, using the custom made DIC algorithm

outlined in Subsection 3.3.4, showed results in agreement to the hand

measurements conducted in ImageJ. Also, the comparison of the local with

the mean radial strain in Figures 5.21 and 5.22, showed manageable deviations

between the two, and thus a good enough degree of localisation of the

longitudinal strain and volume strain. The developed algorithm is therefore

a good way to post-process the tests, avoiding the earlier stated problems,

and giving accurate results.

From the tests and simulations, the triaxiality was found to affect several

parameters. A smaller neck, and thus a larger triaxiality, leads to the

following:

• A higher yield stress value, especially noticeable for HDPE

• A higher local strain rate

• Larger volume strain during plastic deformations

• Larger radial strain components

• A lower equivalent plastic fracture strain for PVC

• A less topographic fracture surface for PVC
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It is clear that voids nucleate in both HDPE and PVC in tension, this

causes volume change. Both visual whitening of the test specimens right

after yielding and voids at the fracture surfaces supports this assumption.

The simulations where the Raghava potential was used showed that volume

change could not be predicted properly. The Raghava yield surface and

plastic potential could therefore be replaced with the GTN, as a modification

of the material model as suggested by Delhaye [2010]. However, obtaining

the initial void volume fraction of a material is a rather extensive process,

and the modified material model will thus be more demanding to calibrate.

If simple calibration is the most desired quality, the Raghava yield surface

and plastic potential will be preferable.

The testing of the material model employing the GTN yield surface and

plastic potential showed that the volume strain now is far better estimated.

However, the simulations overestimated the strain softening, and adjustments

of the B part has to be made.

Recommendations for further work

The modified material model needs to be adjusted to get the correct level of

strain softening. Also, all the parameters for the model should be properly

calibrated for all the relevant thermoplastics.

A stress driven nucleation criteria should be tested, since it is believed

that the load drop on the stress - strain curves is caused by a sudden increase

in nucleation around yielding.
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Appendix A

Representative MATLAB Code used in Post-Processing

of Tests

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% IMAGE PROCESSOR %

% PVC_R2 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c l c

c l e a r a l l

c l o s e a l l

%s e t a f a t t e r l i n e w i d t h to make l i n e s and dots more v i s a b l e

s e t (0 , ' d e f a u l t l i n e l i n e w i d t h ' , 2 )

%f i n d a l l f i l e s in the cur rent f o l d e r with the extens i on ∗ .bmp

f i l e s = d i r ( ' ∗ .bmp ' ) ;

%c r e a t e s t o r a g e space v e c t o r s

l=length ( f i l e s ) ;

h = z e r o s ( l , 1 ) ;

v = z e r o s ( l , 1 ) ;

d = z e r o s ( l , 1 ) ;

r=z e r o s ( l , 1 ) ;

%a s s i g n the number o f p o in t s that i s going to be found on the contour o f the

%specimen to c a l c u l a t e the r a d i u s
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num_points=300;

%a s s i g n a t h r e s h o l d v a l u e .

%Try d i f f e r e n t t h r e s h o l d va lue s f o r a b e t t e r c o n t r a s t in the images

t h r e s h o l d=0.18 ;

%i f the specimen isn ' t proper ly centered , use moved to ad jus t

movedx=−10;

movedy=0;

%show the f i r s t p i c t u r e and use the data c u r so r to f i n d s t a r t o f contour search :

%The x−value=l e f t c o l and the y−value=bottomrow

l e f t c o l =708;

bottomrow =1300;

%Use bottomrowset i f the p o s i t i o n o f bottomrow needs to move f o r every p i c t u r e

bottomrowset=bottomrow ;

%s e t a minimum diameter , he ight and r a d i u s in p i x e l s to avvoid e r r o r measurements

dmin=600;

hmin=200;

rmin=dmin /2 ;

%guess an approximate c e n t r e and r a d i u s o f the f i r s t

%optimized c i r c l e in the specimens notch in p i x e l s [ y0 x0 r ]

P0 = [1158 556 2 6 0 ] ;

%a s s i g n a value to be used f o r adjustments o f other va lue s

d e s i =0;

%t e l l MATLAB which p i c t u r e s to i n c l u d e

s t a r t =0;

stop =100;

%use the method VolumeAndHeight on a l l the f i l e s found.

%The method VolumeAndHeight i s inc luded l a t e r .

f o r i =1: l

i f i <= stop && i>s t a r t

f i l ename = f i l e s ( i ) .name ;

I = imread ( f i l ename ) ;

[ he ight , volume , diam , contour ]=

VolumeAndHeight ( I , num_points , thresho ld , movedx , movedy , bottomrow , l e f t c o l , dmin , hmin , rmin ) ;

h ( i ) = he ight ;

v ( i ) = volume ;

d( i )=diam ;

%wr i t e out the number o f the cur rent p i c t u r e

i

end

%adjustment o f va lue s as p i c t u r e s are changing during a t e s t

num_points=num_points −1;

d e s i=d e s i+1. 8 ;
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bottomrow=round ( bottomrowset−d e s i ) ;

%use a l e a s t square r o u t i n e to f i n d an opt imized c i r c l e f i t t i n g the contour

%with the method Opt imCirc le . Optim C i r c l e i s inc luded l a t e r .

i f i <= stop && i>s t a r t

P = l s q n o n l i n ( @OptimCircle , P0 , [ ] , [ ] , [ ] , contour ) ;

%p l o t the c i r c l e

theta = 0 :0 . 01 :2∗ pi ;

x = P(3)∗ cos ( theta ) + P( 2 ) ;

y = P(3)∗ s i n ( theta ) + P( 1 ) ;

p l o t (x , y , 'm ' )

%s e t a new c e n t e r and r a d iu s f o r the s t a r t o f the next c i r c l e op t imiza t i on

P0 = [P(1) P(2) P ( 3 ) ] ;

%s t o r e the r a d i u s

r ( i )=P( 3 ) ;

end

end

%convert p i x e l s to mm. The r e l a t i o n s h i p between them i s found us ing ImageJ

mmINpx=0.007188 ;

h=smooth (h∗mmINpx, 1 0 ) ;

v=smooth ( v∗mmINpx^ 3 , 1 0 ) ;

d=smooth (d∗mmINpx, 1 0 ) ;

r=smooth ( r ∗mmINpx, 1 0 ) ;

%wr i t e height , volume , diameter and r a d i u s to an e x c e l shee t o u t p u t . x l s

out =[h , v , d , r ] ;

x l s w r i t e ( ' o u t p u t . x l s ' , out , ' Output ' )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% VolumeAndHeight %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ height , volume , diam , contour ]=

VolumeAndHeight ( I , num_points , thresho ld , movedx , movedy , bottomrow , l e f t c o l , dmin , hmin , rmin )

%make image black−white

BW = im2bw( I , t h r e s h o l d ) ;

%i n v e r t c o l o u r s f o r HDPE

%BW=~BW;

%hold an image to p l o t a l l p o i n t s found

f i g u r e (1 )

imagesc (BW)

A3



colormap gray

hold on

%zoom in on p i c t u r e i f nece s sa ry

%a x i s ( [ 8 0 0 1500 700 1 4 0 0 ] )

%Find the s t a r t i n g po int f o r the contour

%whites g i v e s the p o s i t i o n s o f white p i x e l s in a row

whites = f i n d (BW( bottomrow , : ) ) ;

%id g i v e s a l l the e lements in whites to the r i g h t o f l e f t c o l an id−number

id = f i n d ( whites > l e f t c o l ) ;

%the column with the f i r s t id−number i s where the search i s supposed to b e g i n .

white1 = whites ( id ( 1 ) ) ;

%p l o t the s t a r t i n g po int f o r the search

p l o t ( white1 , bottomrow , ' c∗ ' )

%Find the contour o f the specimen

c o n n e c t i v i t y = 8 ;

contour =

bwtraceboundary (BW, [ bottomrow , white1 ] , 'N ' , c o n n e c t i v i t y , num_points ) ;

%smooth the contour

contour ( : , 2 ) = smooth ( contour ( : , 2 ) , 5 0 ) ;

contour ( : , 2 ) = round ( contour ( : , 2 ) ) ;

%p l o t the contour

p l o t ( contour ( : , 2 ) , contour ( : , 1 ) , ' c ' , ' LineWidth ' , 2 ) ;

%the l e a s t diameter can be found where contour ( : , 2 ) has i t s l a r g e s t va lue

[ xneck , e lxneck ]=max( contour ( : , 2 ) ) ;

ymid=(contour ( e lxneck ,1))+ movedy ;

%p l o t where the diameter search i s supposed to s t a r t

p l o t ( xneck , ymid , ' c∗ ' )

%f i n d the c e n t r e and the s m a l l e s t diameter o f the specimen

i=xneck ;

j=ymid ;

diam=0;

whi l e BW( j , i )==1 | | diam<dmin

diam=diam+1;

i=i +1;

end

%p l o t the po int where the diameter measurement s tops to check i f i t s c o r r e c t

p l o t ( ( xneck+diam ) , ymid , ' c∗ ' )

%p l o t where the search f o r the l ength between the black dots should s t a r t

xextenso=round ( xneck+diam/2)+movedx ;

p l o t ( xextenso , ymid , ' g∗ ' )

%Find the n e a r e s t b lack dot on the specimen , up

i=xextenso ;
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j=ymid ;

he ightu =0;

whi l e BW( j , i )==1|| heightu<hmin

he ightu=heightu +1;

j=j −1;

end

p l o t ( xextenso , ymid−heightu , 'b∗ ' )

%Find the n e a r e s t b lack dot on the specimen , down

i=xextenso ;

j=ymid ;

he ightd =0;

whi l e BW( j , i )==1|| heightu<hmin

he ightd=heightd +1;

j=j +1;

end

p l o t ( xextenso , ymid+heightd , 'b∗ ' )

%Find r a d i u s e s from the middle and up to the n e a r e s t b lack dot

rad iu=z e r o s ( heightu , 1 ) ;

r =0;

xmid=round ( xneck+diam / 2 ) ;

xmids=xmid ;

ymids=ymid ;

f o r n=1: he ightu

whi l e BW( ymids , xmids)==1 | | r<rmin

r=r +1;

xmids=xmids −1;

end

xmids=xmid ;

ymids=ymids −1;

rad iu (n)=r ;

r =0;

end

p l o t ( xmid−rad iu ( 1 ) , ymid , ' c∗ ' )

%Find r a d i u s e s from the middle and down to the n e a r e s t b lack dot

rad id=z e r o s ( heightd −1 ,1) ;

r =0;

xmids=xmid ;

ymids=ymid+1;

f o r n=1: heightd −1

whi l e BW( ymids , xmids)==1 | | r<rmin

r=r +1;
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xmids=xmids −1;

end

xmids=xmid ;

ymids=ymids+1;

rad id (n)=r ;

r =0;

end

p l o t ( xmid−rad id ( 1 ) , ymid , ' c∗ ' )

%Find the volume o f the r e g i o n between the black dots

volume=0;

f o r i =1: heightu −1

volume=volume+(0 . 5 ∗( rad iu ( i )+ rad iu ( i +1)))^2∗ pi ;

end

f o r i =1: heightd −2

volume=volume+(0 . 5 ∗( rad id ( i )+ rad id ( i +1)))^2∗ pi ;

end

%Find the height , thus the d i s t a n c e between the n e a r e s t dots

he ight =(he ightu+heightd ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% OptimCircle %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n F = OptimCircle (P, contour )

xc = P( 1 ) ;

yc = P( 2 ) ;

r = P( 3 ) ;

f o r i = 1 : l ength ( contour ( : , 2 ) )

s = s q r t ( power ( xc−contour ( i , 1 ) , 2 )

+ power ( yc−contour ( i , 2 ) , 2 ) ) ;

F( i ) = abs ( s−r ) ;

end

end
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Appendix B

Tension Tests on Circumferentially Notched Specimens

In this appendix the test setup and the basic results of tension tests on

axisymmetric smooth and notched specimens performed at the Department

of Structural Engineering at NTNU in January and March 2011 are presented.

Test Setup and geometry of specimens

The notched specimens had four different notch radii, R = 0.8mm, R =

2mm, R = 5mm and R = 20mm, in addition to the smooth one. Each of the

different specimens were made in both PVC and HDPE, giving a total of ten

tests. Both materials were made by SIMONA AG, Germany. The specimens

were named on the form (material)_R(radius)_(test no.), e.g. for the first

test of a PVC specimen with R = 2mm, the name would be PVC_R2_1.

The smooth specimens were named as (material)_smooth_(test no.).

In figure B.1 the geometries of the test specimens are shown. The geometry

of the smooth specimens are shown to the left, and the geometry of the other

specimens to the right.
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Figure B.1: Geometry of Test Specimens

The tests were performed using a Dartec M 1000 RK machine with a

20 kN load cell, see figure B.2(a), connected to an Instron controller, see

figure B.2(b).

(a) Dartec Machine (b) Instron Controller (c) Mounting

Figure B.2: Laboratory Testing

Results

For each test pictures of the specimens before deformation and under deformation

are shown. Also, force - crosshead displacement curves for all three test

rounds, and true stress - true strain curves from test set no. 3, is given. In

addition the key data presented in figure B.3 and table B.1 is given for each

of the PVC tests. Pictures of the fracture surfaces from one of the test sets

are also shown.
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Figure B.3: Initial Diameter D0

Table B.1: Key Data

D0 Initial diameter

D⊥

Diameter immediately after fracture,

perpendicular to d‖

D‖

Diameter immediately after fracture,

perpendicular to d⊥

B3



HDPE_R08
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HDPE_R2
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HDPE_R5

Comments: The specimens did not fracture.
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HDPE_R20

Comments: The specimens did not fracture.
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HDPE_smooth

Comments: The smooth specimens in the tests fractured differently than

expected. It seemed as the fractures developed along a spiral pattern on the

outside of the specimens, and since this happened to all the smooth specimens

it is assumed to be an effect from the machining. Some of the results from

the smooth specimens may therefore be incorrect. The specimens did not

fracture.
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PVC_R08
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D0 6.00mm

D⊥ 5.48mm

D‖ 5.48mm

B15



PVC_R2
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D0 5.98mm

D⊥ 5.25mm

D‖ 5.19mm
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PVC_R5

B18



D0 5.99mm

D⊥ 4.78mm

D‖ 4.85mm
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PVC_R20
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D0 6.03mm

D⊥ 4.31mm

D‖ 4.31mm
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PVC_smooth

Comments: The smooth specimens in the tests fractured differently

than expected. It seemed as the fractures developed along a spiral pattern

on the outside of the specimens, and since this happened to all the smooth

specimens it is assumed to be an effect from the machining. Some of the

results from the smooth specimens may therefore be incorrect.
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D0 5.99mm

D⊥ 4.82mm

D‖ 4.52mm
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Appendix C

Representative LS-DYNA Keyword File from Tests

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$# LS−DYNA Keyword f i l e c r ea ted by LS−PREPOST 3 . 0 $

$ PVC_R2 $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

∗KEYWORD

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ Control Options $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

∗CONTROL_CPU

$# cputim

1 .0000E+10

∗CONTROL_DAMPING

$# nrcyck d r t o l d r f c t r drterm t s s f d r i r e l a l e d t t l i d r f l g

0 0 .000 0 .000 0 .000 0 .000 0 0 .000 0

∗CONTROL_ENERGY

$# hgen rwen s l n t e n r y l e n

2 2 2 2

∗CONTROL_OUTPUT

$# npopt neecho nrefup iaccop o p i f s i p n i n t i k e d i t i f l u s h

0 0 0 0 0 .000 0 0 0

$# i p r t f i e r o d e te t10 msgmax ipcurv

0 0 2 50 0

∗CONTROL_SOLID
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$# e s o r t fmatr ix n i p t e t s s w l o c l p s f a i l

1 0 4 2 0

$# pm1 pm2 pm3 pm4 pm5 pm6 pm7 pm8 pm9 pm10

0 0 0 0 0 0 0 0 0 0

∗CONTROL_TERMINATION

$# endtim endcyc dtmin endeng endmas

67 .000000 0 0 .000 0 .000 0 .000

∗CONTROL_TIMESTEP

$# d t i n i t t s s f a c i s d o t s l i m t dt2ms lctm erode ms1st

0 .000 0 .000 0 0 .000 0 .000 0 0 0

$# dt2msf dt2mslc imsc l

0 .000 0 0

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ Database Options $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

∗DATABASE_GLSTAT

$# dt binary l c u r i oopt

0 .500000 0 0 1

∗DATABASE_SECFORC

$# dt binary l c u r i oopt

0 .500000 1 0 1

∗DATABASE_BINARY_D3PLOT

$# dt l c d t beam np l t c p s e t i d

0 .500000 0 0 0 0

$# ioopt

0

∗DATABASE_CROSS_SECTION_PLANE_ID

$# c s i d t i t l e

1

$# ps id xct yct zc t xch ych zch r a d iu s

0 −0.975448 −43 .654499 4 .903930 −0.975448 −21 .684500 4 .903930 0 .000

$# xhev yhev zhev l e n l lenm id i t y p e

0 .000 0 .000 0 .000 0 .000 0 .000 0 0

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ Mater ia l D e f i n i t i o n s $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

∗MAT_USER_DEFINED_MATERIAL_MODELS

$ MID rho User mat # LMC # Hist var IBULK IG

$# mid ro mt lmc nhv i o r t h o i b u l k i g

1 1 .430E−3 48 16 50 0 15 16

$−−−+−−−−1−−−−+−−−−2−−−−+−−−−3−−−−+−−−−4−−−−+−−−−5−−−−+−−−−6−−−−+−−−−7−−−−+−−−−8

$ IVECT IFAIL ITHERM IHYPER IEOS

$# i v e c t i f a i l itherm ihyper i e o s
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0 0 0 1 0

$−−−+−−−−1−−−−+−−−−2−−−−+−−−−3−−−−+−−−−4−−−−+−−−−5−−−−+−−−−6−−−−+−−−−7−−−−+−−−−8

$ E Poisson eps0 C sigma_T Cr N ( lamda_L) a l f a

$# p1 p2 p3 p4 p5 p6 p7 p8

3000 .0000 0 .300000 0 .001000 0 .070000 46 .800000 6 .070000 1 .710000 1 .300000

$−−−+−−−−1−−−−+−−−−2−−−−+−−−−3−−−−+−−−−4−−−−+−−−−5−−−−+−−−−6−−−−+−−−−7−−−−+−−−−8

$ beta kappa sigma_ss H K G

$# p1 p2 p3 p4 p5 p6 p7 p8

1 .270000 0 .000 37 .800000 15 .000000 0 .000 0 .000 2500 .0000 2142 .0000

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ Part D e f i n i t i o n s $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

∗PART

$# t i t l e

$# pid s e c i d mid e o s i d hgid grav adpopt tmid

1 1 1 0 1 0 0 0

∗HOURGLASS

$# hgid ihq qm ibq q1 q2 qb/vdc qw

1 5 0 .000 0 0 .000 0 .000 0 .000 0 .000

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ Sec t i on D e f i n i t i o n s $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

∗SECTION_SOLID

$# s e c i d e l fo rm aet

1 1 0

∗SET_SOLID

$# s i d s o l v e r

1MECH

$# k1 k2 k3 k4 k5 k6 k7 k8

∗ELEMENT_SOLID

$# e id pid n1 n2 n3 n4 n5 n6 n7 n8

∗NODE

$# nid x y z tc rc

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ Load Curve $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

∗DEFINE_CURVE_SMOOTH

$# l c i d s i d r d i s t t s t a r t tend t r i s e v0

1 0 2 .080000 1 .0000E −5 67 .000000 0 .020000 0 .000
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$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ Node Sets $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

∗SET_NODE_LIST_TITLE

moving

1 0 .000 0 .000 0 .000 0.000MECH

50441 50442 50443 0 0 0 0 0

∗SET_NODE_LIST_TITLE

f i x e d

2 0 .000 0 .000 0 .000 0.000MECH

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

$ Boundary Condit ions $

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

∗BOUNDARY_PRESCRIBED_MOTION_SET

1 2 0 1 1 .000000 01 .0000E+28 0 .000

∗BOUNDARY_SPC_SET

1 0 1 0 1 1 1 1

∗BOUNDARY_SPC_SET

2 0 1 1 1 1 1 1

∗END

∗COMPONENT

1 0 .769000 0 .004000 0 .110000 0 .000 0 0 0

Part 1

∗COMPONENT_PART

1 1

∗COMPONENT_END
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