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Abstract

The need for spectrally efficient transmission on mobile and wireless chan-
nels is prevalent. A promising scheme for such transmission is adaptive
coded modulation. In this thesis, techniques for assessing the performance
of such systems are presented. One of the vulnerable points of such systems
is the need for a reliable feedback channel. Channel prediction is proposed
as a technique to combat the harmful effects of feedback delay.

The Nakagami distribution is often employed in a model for the fading
envelope of a wireless channel; this leads to a gamma-distributed signal-
to-noise ratio. Nakagami (1960) provides expressions for the probability
density function (PDF) of the product, sum, and ratio of two correlated
gamma-distributed random variables (RVs). However, such an expression
for the difference between two such RVs has not been provided by Nak-
agami. A new expression for this PDF is provided in this dissertation, and it
is shown that it is closely related to a distribution first described by McKay
(1932). Applications of the new PDF include outage probability calculation
in an environment with self-interference and assessment of the quality of
certain channel estimation techniques.
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Notation and Symbols

Vectors are usually written in bold, upright, lowercase, whereas matrices
are in bold uppercase. Compare “x”, “x”, “X”, and “X”. Vectors are column
vectors, unless otherwise explicitly defined.

In the occasions where it is important to separate a random variable
(RV) from the corresponding realization, uppercase letters are used for RVs
and lowercase for the realization. This applies chiefly to the second part
of the dissertation. However, it is not always feasible to do this—such a
practice may for instance conflict with the convention of writing vectors as
lowercase and matrices as uppercase. Also, the usage of uppercase Greek
letters can be more confusing than clarifying. In conflicting cases, arising
mainly in the first part of the dissertation, the lowercase vector/uppercase
matrix notation is pursued.

Some symbols are used only short-term during a proof, a lemma, a
small identity or formula, etc. Such symbols are not defined in this list
of symbols.

There is no general accepted consensus regarding the terminology of
“whole numbers”—in this thesis, the terminology suggested on the WWW
site http://mathworld.wolfram.com/WholeNumber.html is followed.

x∗ Complex conjugate

xT Transpose

xH Hermitian (conjugate transpose)

X−1 Matrix inversion

|x| Absolute value

‖x‖ Norm of a vector,
√

xHx

[x]k Element number k in the vector x

[X]mk Element in row m and column k of the matrix X
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αh, αh(k) Branch gain (at time k)

α̂ Predicted channel gain

α̂h Predicted branch gain

β 1. Ratio between minimum squared Euclidean distance
of a code and of a signal constellation, namely d2

E/d2
0

2. Scale parameter to the gamma distribution

β1, β2 1. Scale parameters to the bivariate gamma distribution
2. Scale parameters of two independent gamma-

distributed RVs

γ 1. Channel signal-to-noise ratio (CSNR)
2. Signal-to-interference-and-noise ratio (SINR)

γh CSNR on antenna branch h

γ∗ The fixed CSNR of an AWGN channel

γn The lowest CSNR attaining the target BER when code n
is used

γl
n The lowest CSNR for which the exponential

approximation to the BER–CSNR relationship is
relevant when code n is used

γ̄, γ̄h Expected value of the CSNR (on antenna branch h)

γ̂ Estimated/predicted CSNR

¯̂γ Expected value of the estimated CSNR

γth SINR threshold, below which an outage occurs

Γ(·) Gamma function

Γ(·, ·) Complementary incomplete gamma function

∆, δ Symbol used to denote the RV (and the corresponding
realization) arising from subtracting two
gamma-distributed RVs
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∆dB, δdB The RV (and corresponding realization) arising when
subtracting two gamma-distributed RVs measured in
dB

θ(k) Phase component of the fading at time instant k

λ Wavelength

µZ Mean of the RV Z

ρ Correlation coefficient

Σ, σ Symbol used to denote the RV (and the corresponding
realization) arising from adding two
gamma-distributed RVs

σ2
n Noise variance

σ2
Z Variance of the RV Z

σ2
e(j) Error variance with a feedback delay of jTs

τ Feedback delay (in real time)

Φ, φ The fraction of two gamma-distributed RVs (and the
corresponding realization)

Ω Variance of the fading on one antenna branch

Ω̂ Variance of the predicted fading on one antenna branch

a One of the parameters in the McKay distribution

an Parameter in exponential approximation to the
BER–CSNR relationship for code no. n

ap Pilot symbol amplitude

A Matrix holding the transmitted pilot symbols
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b One of the parameters in the McKay distribution

bn Parameter in exponential approximation to the
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B Transmission bandwidth
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BER Average BER
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BERn(γ | γ̂) BER for a CSNR of γ when the predicted CSNR is γ̂.
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Ix(·, ·) Normalized incomplete Beta function

I1(n) Component in the expression for BERn

I21(n) Component in the expression for BERn
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Chapter 1

Introduction to Adaptive
Coded Modulation (ACM)

Today’s society demands fast and reliable wireless radio communication,
and the radio spectrum grows more and more crowded as a consequence of
this. More spectrally efficient transmission schemes are therefore called for;
being able to transmit more bits per Hz bandwidth can relieve the pressure
on the bandwidth resources. One way of accomplishing this is by trans-
mitting several bits of information per channel symbol, using quadrature
amplitude modulation (QAM) and similar techniques (Hanzo, Webb, and
Keller, 2000). The radio signal often propagates in a very hostile environ-
ment. Unfortunately, this makes spectrally efficient modulation difficult.
For instance, the signal will frequently suffer from dispersion due to multi-
path transmission; transmission via different reflectors causes a large vari-
ety of propagation path delays. For wideband applications, the dispersion
will cause inter-symbol-interference. The hostility of the wireless channel
increases with the degree of mobility. When the receiver or the transmitter
is moving, the interference pattern due to the multipath transmission will
change. The effect of this is commonly known as fast multipath fading. In
addition to specular reflection (caused by obstacles of size much greater
than the radio wave length), also scattering (appearing when the radio
waves interact with objects with dimension on the order of a wavelength or
less) and diffraction (appearing when a radio wave “bends around” an ob-
stacle) perturb the signal (Jamali and Le-Ngoc, 1994; Prasad, 1998; Stüber,
2001). Other contributors to the non-stationary nature of the radio channel
are the slower log-normal shadowing and the change in path loss due to
variation in the relative distance between transmitter and receiver. These
mechanisms will not only affect wideband applications; narrowband radio
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1. INTRODUCTION TO ADAPTIVE CODED MODULATION (ACM)

transmission will also be disturbed by a changing channel signal-to-noise
ratio (CSNR). The multipath fading is for the narrowband case referred
to as flat fading, also denoted as frequency nonselective fading. When the
fading is flat, the bandwidth of the transmitted signal is smaller than the co-
herence bandwidth. In the time domain, this implies that the duration of a
modulated symbol is much greater than the time spread of the propagation
path delays. On the contrary, frequency-selective (or non-flat) fading arises
when the bandwidth of the transmitted signal is greater than the coherence
bandwidth. The flat fading of narrowband transmission is often modeled
well by stochastic distributions, such as Rayleigh, Rice, or Nakagami (Nak-
agami, 1960; Prasad, 1998; Stüber, 2001). The Rice model represents the fad-
ing as a sum of a line-of-sight (LOS) component and an indirect scattered
component—Rayleigh fading is the special case where no LOS component
is present. Although a fading model exists that leads to the Nakagami fad-
ing formula (Yacoub, Bautista, and de Rezende Guedes, 1999), the model
is referred to most often because of its experimental consistency (Sheikh,
Handforth, and Abdi, 1993) and computational tractability. The Nakagami
model also has Rayleigh as a special case, and the Nakagami and Rice dis-
tributions are closely related through certain values of their parameters
(Nakagami, 1960). An advantage of the Nakagami over the Rice model is
the relatively simple expression for the probability density function (PDF)
and bivariate PDF of the received CSNR, since the power of a Nakagami-
distributed signal is gamma-distributed. Indeed, while the gamma PDF
contains no complicated special functions, the PDF of the signal power in
the Rician case contains a modified Bessel function. On the other hand, the
bivariate distribution of two correlated gamma-distributed random vari-
ables (RVs) has a relatively simple closed-form expression, while (to the
best of the author’s knowledge) no simple formula is yet known for the
joint PDF of the power of two Rician RVs.

The changing CSNR exhibited by a fading channel can cause severe er-
ror bursts. A method for combating the channel quality fluctuation is adap-
tive transmission, utilizing a feedback channel to provide channel state in-
formation (CSI) at the transmitter. This is not a new idea. In 1971, Mu-
rakami and Nakagami suggested such a technique to combat the fading
experienced in deep-space satellite-to-earth communication, by using the
earth-to-satellite link as a feedback channel. One way of battling the de-
crease of the channel quality is to use channel inversion. Then the transmit-
ter uses CSI in order to vary the transmitted power so as to keep the CSNR
at the receiver constant. Alas, the high power requirements imposed by a
deep fade will contribute to unpredictable co-channel interference. In ad-
dition, the transmitter will need to be able to transmit at very high power
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levels. In fact, it is shown by Goldsmith and Varaiya (1997) that the capac-
ity of a channel inversion scheme is zero. A different manner of adapting
to the varying channel conditions is to vary the transmission rate. How-
ever, this technique suffers from a varying bandwidth, making it unsuit-
able when fixed bandwidth is required. A promising method is to vary the
constellation size (Steele and Webb, 1991; Webb, Hanzo, and Steele, 1991)
and the coding scheme (Goldsmith and Chua, 1998) according to the qual-
ity of the channel. Combinations of these methods with the other adaptive
techniques have also been proposed (Goldsmith and Chua, 1997). For fur-
ther references to adaptive modulation and coding techniques, look to the
tutorial paper by Hole and Øien (2001).

Goldsmith and Varaiya (1997) have derived the channel capacity of a
flat-fading single-user channel in terms of the PDF of the fading ampli-
tude when perfect CSI is available both at the transmitter and the receiver
at any time. The CSI in question is here the CSNR. The special case of
Nakagami multipath fading (NMF) channel is discussed by Alouini and
Goldsmith (1997). They obtain closed-form expressions for the capacity of
such channels. Goldsmith and Varaiya also showed that the capacity of
a channel with arbitrary fading distribution can be attained using a cer-
tain rate/power-adaptive transmission scheme in which the number of in-
formation bits per channel symbol is instantly and continuously updated
according to the CSNR. It has also been shown that the capacity of a rate-
adaptive system (with constant transmit power) approaches the capacity—
with only a small decline in average transmission rate—of an optimal sys-
tem. The instantaneous transmission rate of this scheme is high when the
CSNR is high, decreasing smoothly as the CSNR decreases and going to
zero below a threshold value.

A more practical adaptive modulation scheme was proposed by Gold-
smith and Chua (1997); Alouini and Goldsmith (2000). This scheme is de-
signed to operate at a bit error rate (BER) below a certain target (BER0),
having a certain set of transmission rates available, and where the transmit
power is constant. Improving the performance of such a system has later
been pursued by introducing channel coding (Webb et al., 1991; Goldsmith
and Chua, 1998). Goldsmith and Chua studied a practical variable-rate
scheme based on multi-level QAM and Ungerboeck’s trellis codes (Unger-
boeck, 1982). This system utilizes a set of 2-dimensional (2-D) trellis codes
with different rate.

An important aspect in phase-modulated communication systems is the
coherent detection, i.e., that the receiver is able to detect the absolute phase
of the incoming signal or that the constellation is rotationally invariant.
The latter can be accomplished with differential encoding such that the re-

3



1. INTRODUCTION TO ADAPTIVE CODED MODULATION (ACM)

R1

γ1 γ2 γ3 γN

R2 RNOutage

FIGURE 1.1: The CSNR range is split into N + 1 CSNR bins. When
the instantaneous CSNR falls in the lowest interval, an outage occurs;
whereas in the upper N intervals, a code with rate Rn is employed.

ceiver only needs to detect the relative phase shifts in the incoming signal.
As Webb et al. point out, the traditional square-shaped QAM constella-
tions have the disadvantage that false phase locks can occur. However, the
square QAM constellations are widely used and this thesis will henceforth
concentrate on such constellations.

Hole, Holm, and Øien (2000) developed a technique in order to assess
the performance merits of a general adaptive coded modulation (ACM)
system on an NMF channel. In such a system, the transmitter will switch
between signal constellations (and, in the case of coded transmission, chan-
nel codes) of varying size at discrete time instants. At a given time, the
transmitter chooses symbols from the biggest constellation meeting the
BER requirements for the available CSI, thus ensuring maximum spectral
efficiency for the given acceptable BER.

The adaptive coder/modulator has available a set of N transmitter–re-
ceiver pairs, denoted as transmitter–receiver pair n = 1, . . . , N. Transmitter
n has a rate of Rn information bits per symbol, such that R1 < R2 < · · · <
RN . The CSNR range1 is split into N + 1 CSNR bins, as depicted in Fig-
ure 1.1, and transmitter–receiver pair n is to be used when CSNR γ falls
in the interval [γn, γn+1〉. Here, γn is—for each n = 1, . . . , N—chosen as
the lowest CSNR necessary for transmitter–receiver pair n to be able to op-
erate at a BER below the designer-specified target bit error rate, BER0, at
transmit power P. Letting γ0 = 0 and γN+1 = ∞ results in γn+1 > γn for
all n ∈ {0, . . . , N}. No available transmitter–receiver pair satisfies the BER
requirement when the CSNR is lower than bin γ1; hence, no information is
transmitted when γ falls in the interval [0, γ1〉, and there will consequently
be an outage during which information must be buffered at the transmitter
end.

Note that a system as the one described above relies on accurate CSI,
which has to be estimated at the receiver and then conveyed to the trans-
mitter through a feedback channel. This process is prone to several types
of errors:

1Most of the calculations are done based on the CSNR γ and not on the square of the
fading envelope α2 or even α. The calculations are then substantially simpler to perform.
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• Depending on the estimation method, the CSNR estimate will exhibit
some inaccuracy.

The receiver will need time to process and generate the CSNR estimate,
the feedback channel is subject to some transmission delay, and lastly the
transmitter may need some time before the updated CSNR estimate can be
utilized to choose a more appropriate code. The total delay will be referred
to at “feedback delay”.

• Due to the feedback delay, it is probable that the transmitter will op-
erate employing outdated CSI.

• There is a probability of errors in the feedback channel.

Of these possible error sources, the last one is the most harmful; an error in
the feedback channel will cause the transmitter and receiver to operate on
different codes, effectively disenabling correct decoding. However, since it
is sufficient to feed back the CSNR bin index only—yielding an information
of at most log2(N + 1) bits—it is fairly easy to protect the fed back CSI with
a strong error control code. In the systems discussed in this thesis, the
feedback channel is assumed to be error-free.

A non-data-aided method (Meyr, Moeneclaey, and Fechtel, 1998) for es-
timation of the channel quality is based on the received signal strength in-
dicator (Steele and Webb, 1991; Webb and Steele, 1995) where the average
magnitude of the baseband signal level is monitored in order to provide an
indication of the CSNR. Data-aided (DA) methods (again Meyr et al., 1998),
in which training symbols are inserted into the data sequence, are able to
provide a more accurate estimate than non-data-aided methods. Unfor-
tunately, DA methods exhibit lower spectral efficiency since the inserted
training symbols do not convey information. However, obtaining accu-
rate CSI is imperative for satisfactory performance of an ACM system, and
it is therefore chosen to pursue a data-aided method here. Cavers (1991)
proposes one such method in which regularly spaced pilot symbols are in-
serted into the data. Pilot symbol assisted modulation schemes have since
been investigated, for instance by Torrance and Hanzo (1995) and Tang,
Alouini, and Goldsmith (1999).

Since the feedback delay can be made predictable, it makes sense to
attempt to take into consideration the full feedback delay. This involves
predicting the CSNR at the time instant in the future when the transmitter
is able to change to the most favorable code. Thus, in order to compete the
two first error sources, a system using prediction based upon received pilot
symbols will be proposed.
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1. INTRODUCTION TO ADAPTIVE CODED MODULATION (ACM)

When studying processes that are described by the Nakagami distribu-
tion, it is advantageous to have good knowledge of its derivatives, and to
assess their statistical properties. While investigating the properties of an
estimate of a Rayleigh random variable (RV), it turned out that an expres-
sion for the PDF of two correlated gamma-distributed RVs would be help-
ful. Nakagami (1960) supplies formulas for the PDF of the product and
ratio of two Nakagami-distributed RVs, and also a formula for the square
root of the sum of the squares of two correlated Nakagami-distributed RVs.
In addition, the PDF of the sum and difference between two uncorrelated
gamma-distributed RVs is known, and it can be shown that the sum and
difference follows the two forms of a distribution known in the literature
as McKay’s distribution (McKay, 1932; Bhattacharyya, 1942; Johnson, Kotz,
and Balakrishnan, 1994). However, to the best of the author’s knowledge,
the PDF of the difference between two correlated gamma-distributed RVs
has not yet been found. The second part of this thesis proceeds to find an
expression for this PDF in closed-form. It will be shown that also the sum
and difference of two correlated gamma-distributed RVs are described by
the two forms of McKay’s distribution. In addition, expressions for the
moments of this distribution is provided, and an important special case—
related to Rayleigh fading—is scrutinized in order to obtain especially sim-
ple expressions. In the special case, closed-form expressions are found for
the moments of McKay’s distribution and also for the cumulative distribu-
tion function (CDF).

The dissertation is largely based on a collection of papers. Every chap-
ter starts with a note on where the material have appeared, or where it is
submitted. In particular, the main contributions of Chapter 3 have not yet
been submitted for publication. Some modifications to the material in the
other chapters have been made, mostly to provide a common notation and
to avoid overlap. Nevertheless, there is some overlap between the chap-
ters, mostly in the introductory sections. Also, some symbols have several
meanings, as is reflected in the list of notations that is provided. However,
it should be clear what each symbol means from its context.

The remainder of the dissertation is organized as follows: In Part I, the
technique proposed by Hole et al. (2000) is discussed. Chapter 2 applies
the technique in order to evaluate the average spectral efficiency of a cod-
ing scheme utilizing any set of multi-dimensional trellis codes originally
designed for additive white Gaussian noise (AWGN) channels. Chapter 3
discusses a method of predicting the future CSI with the aid of regularly
transmitted pilot symbols, and then proceeds to investigate how differ-
ent estimation parameters and channel parameters affect important system
performance merits.
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In Part II of the thesis, the formulas related to McKay’s distribution are
presented as theorems in Chapter 4, as are expressions for the PDF of the
sum and difference of two correlated gamma-distributed RVs. The chapter
concludes with presenting an application of this new result related to out-
age probability calculations in a self-interfering environment. Chapter 5
then proceeds to employ some of the results from the previous chapter in
assessing the quality of certain estimators.

The last chapter, Chapter 6, draws some conclusions, outlines the main
contributions of the thesis, and suggests some areas for further research.

There are, in addition to the regular chapters, four appendices in this
thesis. Appendix A provides closed-form expressions for the average en-
ergy of a QAM constellation, for a variant of the QAM constellation called a
CROSS constellation, and lastly for a special constellation called 8-CROSS.
These formulas are employed in Chapter 2. In Chapter 3, some statistical
properties of a predicted fading amplitude are needed; these properties are
provided in appendix B. Appendix C then provides expressions to aid in
finding the BER of an ACM system utilizing prediction. Appendix D is the
last appendix of the thesis, in which proofs of the theorems in Chapter 4
are provided.
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Part I

Adaptive Coded Modulation
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Chapter 2

Spectral Efficiency of ACM
under Perfect Channel
Knowledge

This chapter is based on a paper presented at the conference NORSIG
(Holm, Hole, and Øien, 1999) and a paper that have appeared in IEEE J.
Select. Areas Commun. (Hole, Holm, and Øien, 2000).

2.1 Introduction

The purpose of this chapter is to obtain an expression for the average spec-
tral efficiency (ASE) of a general variable-rate coding scheme for Nakagami
multipath fading (NMF) channels. Let G be some positive integer. The
coding scheme can utilize any set of 2G-dimensional (2G-D) trellis codes
originally designed for additive white Gaussian noise (AWGN) channels.

The chapter is organized as follows: In Section 2.2, we give a brief
overview of the system model. We then show, in Section 2.3, that there ex-
ists a simple expression characterizing the relationship between the CSNR
and the bit-error-rate (BER) for trellis codes on AWGN channels. In Sec-
tion 2.4, the BER–CSNR relationship is employed to approximate the ASE
of the general variable-rate coding scheme. As an example, we use our
technique to approximate the ASE of a specific variable-rate encoder and
decoder (codec) in Section 2.5. A discussion follows in Section 2.6.
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2. SPECTRAL EFFICIENCY OF ACM UNDER PERFECT CHANNEL KNOWLEDGE

2.2 System Overview

We model the NMF as a multiplication of the transmitted signal by a time-
varying factor. The signal is then disturbed by AWGN. Thus, the receiver
reads a signal with a time-varying CSNR. The probability density function
(PDF) of the instantaneous received CSNR, γ, is found to be (Alouini and
Goldsmith, 2000):

fγ(γ) =
(m

γ̄

)m γm−1

Γ(m)
exp

(
−m

γ

γ̄

)
, γ ≥ 0 (2.1)

where γ̄ is the expected value of the CSNR and m is the Nakagami fading
parameter, a positive number m ≥ 1/2.

It is known that a variable-rate codec based on trellis codes originally
designed for AWGN may be used on a NMF channel (Goldsmith and Chua,
1997, 1998; Goldsmith and Varaiya, 1997; Alouini and Goldsmith, 2000;
Hole et al., 2000). We consider a general codec that utilizes a set of N differ-
ent 2G-D trellis codes for AWGN. The codes are based on 2-D QAM signal
constellations with different number of symbols Mn = 2kn , where kn is
some positive integer and n = 1, 2, . . . , N. For n < N, Mn < Mn+1, thus the
codes have different robustness against noise. The 2G-D code symbols are
transmitted as G consecutive 2-D modulation symbols, each drawn from
one of the QAM constellations. An illustration of such a constellation of
size M = 256 is shown in Fig. 2.1, where the minimum Euclidean distance
between the modulation symbols is denoted by d0.

If the N constellations are nested within each other, as indicated in
Fig. 2.1, then it is possible to design an encoder/ decoder-structure which
is able to encode and decode all N codes (Goldsmith and Chua, 1998). Con-
sequently, the hardware complexity is reduced considerably compared to
a system where a separate encoder and decoder are needed for each of the
codes.

As an example, we consider a variable-rate encoder and a variable-rate
Viterbi decoder based on the International Telecommunications Union ITU-
T V.34 modem standard. The codec utilizes N = 8 nested QAM signal con-
stellations containing 4, 8, 16, 32, 64, 128, 256, and 512 symbols to encode
and decode eight 4-D trellis codes (Hole et al., 2000). The seven smallest
constellations are the ones shown in Fig. 2.1.1

To determine a good variable-rate codec, the relationship between the
CSNR and BER on an AWGN channel must be known for the different

1The 512-QAM constellation is omitted from the figure due to space and visibility re-
quirements.
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d0

Q

I

FIGURE 2.1: QAM constellation with 256 symbols. The 4, 8, 16, 32, 64,
and 128 symbol constellations are nested within the 256-QAM constella-
tion. The crosses constitute the 8 symbol constellation.

codes. The BER performance of the codes used in the example codec have
been simulated, and the BER for different CSNRs are plotted in Fig. 2.2,
represented by boxes. It is shown in Section 2.3 that a simple exponential
function approximates the BER–CSNR relationship closely, as indicated by
the solid lines in Fig. 2.2. The function is invertible, so the smallest CSNR
required to achieve a given target BER, denoted by BER0, can be found.

Assume that N quantization regions (or CSNR bins) are used to repre-
sent the instantaneous received CSNR on the NMF channel. For each code
n, the smallest CSNR required to guarantee the target BER0 is denoted by
γn. The set {γn}N

n=1 constitutes the lower thresholds for the N CSNR bins.
Let Ts be the time between the transmission of two consecutive 2-D

modulation symbols. Every G · Ts seconds, the receiver estimates the value
of the instantaneous CSNR to determine which code n ∈ {1, 2, . . . , N} to
use. The receiver then utilizes a feedback channel to inform the transmitter
of its decision. We assume here that the feedback channel is both delay-free
and error-free. The encoder requests p = G · kn − 1 information bits, and
generates p + 1 = G · kn coded bits. The coded bits determine G transmit-
table 2-D modulation symbols from the signal constellation with Mn = 2kn

symbols.
The information rate for code n, measured in information bits per chan-

nel use, is equal to Rn = p/(G · Ts · B) = (kn − 1/G)/(TsB), where B is

13
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FIGURE 2.2: CSNR/BER relationship for example codec. The boxes rep-
resent simulated BER, and the solid lines represent the values obtained
from a simple exponential function.

the signalling bandwidth. Assuming ideal Nyquist pulses, the bandwidth
used is B = 1/Ts, and the spectral efficiency of code n is equal to

Rn = kn − 1/G (2.2)

measured in bits/s/Hz (or equivalently, in bits per channel symbol). The
codes should have spectral efficiencies which increase with γ, i.e., kn < kn+1
for n = 1, 2, . . . , N − 1. This makes it possible to transmit at high spectral
efficiency when the instantaneous received CSNR is high and to reduce the
spectral efficiency as the CSNR decreases.
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APPROXIMATION OF BER–CSNR RELATIONSHIP

2.3 Approximation of BER–CSNR Relationship

In this section, we show that the BER for a 2G-D trellis code on an AWGN
channel can be approximated by the expression

BER ≈ a · exp
(
−bγ∗

M

)
(2.3)

where γ∗ is the fixed CSNR, the constants a and b are determined by the
weight distribution of the trellis code, and M = 2k is the size of the signal
constellation for some integer k.

An approximation of the BER for a trellis code in AWGN in terms of the
area under the standardized Gaussian tail is (Wicker, 1995, Eq. 14-21):

BER ≈
wdE

p
Q

(√
d2

E
2

γ∗

)
(2.4)

where d2
E is the minimum squared Euclidean distance (MSED) between any

two code words and wdE is the average number of information bit errors
associated with the codewords in squared distance d2

E from the correct one.
The number of information bits per 2G-D code symbol is given by p. Using
the upper bound Q(y) ≤ 1/2 exp(−y2/2), we find that

BER ≈
wdE

2p
exp

(
−

d2
E

4
γ∗
)

. (2.5)

Forney, Jr., Gallager, Lang, Longstaff, and Qureshi (1984) have calcu-
lated approximations for the average energy of QAM constellations with
d0 = 2. In Appendix A, Eq. (A.15), we determine exact expressions for the
average energy of QAM constellations with arbitrary d0 and size M = 2k:

Eavg =


1
6 d2

0(M− 1) for even k ≥ 2
1
6 d2

0
( 40

32 M− 1
)

for k = 3
1
6 d2

0
( 31

32 M− 1
)

for odd k ≥ 5

(2.6)

(Sterian (1997) obtained the expression in Eq. (2.6) for the special case d0 =
2 and k ≥ 4.) For all k, an approximation for Eavg is (1/6)d2

0M, and we
therefore have that

d2
0 ≈

6Eavg

M
. (2.7)
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The MSED is linearly dependent on d2
0, and it may be written as d2

E =
βd2

0 for some positive real β. Substituting Eq. (2.7) for d2
0, we find

d2
E ≈

6βEavg

M
. (2.8)

Substituting Eq. (2.8) in Eq. (2.5), we obtain the following approximation
for BER,

BER ≈
wdE

2p
exp

(
−

3βEavg

2
γ∗

M

)
(2.9)

which has the desired form (Eq. 2.3) for a = wdE /2p and b = 3βEavg/2.
The approximation in Eq. (2.4) is only valid for large CSNR, and so is

the approximation in Eq. (2.9). However, plots of BER found in the lit-
erature (Biglieri, Divsalar, McLane, and Simon, 1991) (see also Fig. 2.2)
strongly indicate that we can use curve fitting techniques to determine val-
ues for a and b so that the expression can be used with good accuracy also
for medium and low CSNRs.

The proposed variable-rate coding scheme utilizes N trellis codes orig-
inally designed for AWGN channels. As we shall see in the next section,
good values of the a and b parameters in Eq. (2.3) are needed for each code
n in order to approximate the ASE of the proposed coding scheme. We
assume that a simulation of the BER performance and a curve fitting tech-
nique are used to obtain good parameter values, denoted by an and bn, for
each code.

2.4 Approximation of the ASE

The variable-rate coding scheme for NMF channels uses a set of N different
trellis codes with spectral efficiencies kn − 1/G. The ASE is the weighted
sum of the information rates Rn = kn − 1/G for the individual codes. The
weight factors are here the probability Pn that code n is used, i.e., the prob-
ability that the CSNR falls in the CSNR bin n:

ASE =
N

∑
n=1

Rn · Pn =
N

∑
n=1

(kn − 1/G)Pn. (2.10)

In order to calculate the probabilities Pn in Eq. (2.10), the thresholds
γn for the CSNR bins must be known. Each code has a BER–CSNR rela-
tionship given by Eq. (2.3) with known an and bn parameters. Thus, it is
possible to calculate the smallest CSNR value γn which guarantees that the
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EXAMPLE CODEC

target BER0 is achieved for code n. Substituting γn, Mn, an, bn for γ∗, M, a, b
in Eq. (2.3) and solving for γn, we obtain

γn =
Mn

bn
ln(an/BER0), n = 1, 2, . . . , N (2.11)

where Mn = 2kn .
For Nakagami fading, the probability Pn =

∫ γn+1
γn

fγ(γ)dγ that the CSNR
falls in CSNR bin n is given by Alouini and Goldsmith (2000, Eq. 34):

Pn =
Γ
(
m, mγn

γ̄

)
− Γ
(
m, mγn+1

γ̄

)
Γ(m)

(2.12)

where m is the Nakagami fading parameter and Γ(·, ·) is the complemen-
tary incomplete gamma function (see Temme, 1996, Eq. 11.2). The upper
threshold for CSNR bin N is γN+1 = ∞.

For the special case when m is a positive integer, Γ(m) = (m− 1)!. Fur-
thermore, there exists a closed-form expression for Γ(·, ·) (Temme, 1996,
Eq. 11.6):

Γ(m, µ) = (m− 1)! e−µ
m−1

∑
i=0

µi

i!
(2.13)

where m = 1, 2, . . . and µ ≥ 0.

2.5 Example Codec

We assume that the example codec described in Section 2.2 is operating
on a NMF channel. Values of the an and bn parameters for this codec are
tabulated in Table 2.1. The thresholds γn calculated from Eq. (2.11) are
also listed in the table for target BER0 = 10−3. The ASE of the example
codec may now be calculated from Eq. (2.10) and Eq. (2.12). The spectral
efficiency for Nakagami fading parameter m ∈ {1, 2, 4} is plotted in Fig. 2.3
as a function of the average received CSNR γ̄ in dB.

Hole et al. (2000) showed, utilizing the closed-form expression obtained
by Alouini and Goldsmith (2000, Eq. 20), that the ASE of the example codec
lies about 1.8 bits/s/Hz from the maximum ASE.

2.6 Discussion

We see from Fig. 2.3 that the variable-rate codec obtains both a large ASE
and a small target BER because it is able to exploit the time-varying na-
ture of the instantaneous received CSNR. To design a fixed-rate coding
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TABLE 2.1: Parameters an and bn for example codec and calculated
thresholds γn for BER0 = 10−3.

n Mn an bn γn (dB)

1 4 896.0704 10.7367 7.1
2 8 404.4353 6.8043 11.8
3 16 996.5492 8.7345 14.0
4 32 443.1272 8.2282 17.0
5 64 296.6007 7.9270 20.1
6 128 327.4874 8.2036 23.0
7 256 404.2837 7.8824 26.2
8 512 310.5283 8.2425 29.0

scheme that guarantees the same BER, it is necessary to design a code that
achieves the target BER for the minimum observed CSNR. This conser-
vative design choice results in a small spectral efficiency. This was first ob-
served by Goldsmith and Chua (1998). They compared the ASE of variable-
rate trellis-coded QAM with that of fixed-rate trellis codes designed for
Rayleigh-fading channels and showed that rate adaption may save up to
20 dB in average received CSNR, dependent on the BER requirements.

For satisfactory operation of the variable-rate coding scheme, both the
variable-rate encoder and the variable-rate decoder must use the same code
at any instant. A fast and error-free feedback channel is therefore essential
to ensure error-free signalling between the encoder and decoder. The effect
of time delay in the feedback channel has been explored earlier by Alouini
and Goldsmith (2000).

During periods of small CSNR, the throughput may be low. A buffer is
therefore required at the transmitter. The appropriate size of this buffer is
a subject for further research.

The investigations in this chapter are done for single-user NMF chan-
nels only. A natural extension is to examine variable-rate coding schemes
for cellular systems.
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FIGURE 2.3: Approximation of ASE for example codec (BER0 = 10−3).
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Chapter 3

Channel Prediction with
Antenna Diversity

The parts of this chapter considering calculations of BER under imperfect
CSI is based on a paper presented at the conference Mobile Communications
Summit (IST) (Hole, Holm, and Øien, 2001), and on an extended version
which will appear in the Norwegian journal Telektronikk (Hole, Holm, and
Øien, 2002). The parts considering linear prediction is based on a paper
submitted to the European Signal Processing Conference (Øien, Holm, and
Hole, 2002).

3.1 Introduction

The previous chapter described an adaptive coded modulation (ACM) sys-
tem where the transmitter had perfect knowledge of the channel. A more
practical scheme will have to incorporate some channel estimation tech-
nique and a feedback channel with nonzero delay. The model will be ex-
tended to take into account imperfect channel estimation and delay be-
tween the time when the channel is estimated and the time when the chan-
nel state information (CSI) can be utilized.1

To improve the reliability of signal detection, a technique called pilot
symbol assisted modulation (PSAM) has been suggested as an aid in chan-
nel estimation (Cavers, 1991; Torrance and Hanzo, 1995; Tang et al., 1999).
Here, pilot symbols are regularly inserted into the data stream. PSAM is

1Note that the “feedback delay” does not consist of the actual transmission delay only;
it will also incorporate the time it takes to perform the estimation and the processing time
needed by the transmitter to activate the code fulfilling the BER requirements. For simplic-
ity, the sum of these delays is referred to as feedback delay.
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FIGURE 3.1: Adaptive coded modulation system with pilot symbol as-
sisted channel estimation (for coherent detection purposes) and predic-
tion (for transmitter adaptation purposes).

also well suited for channel estimation in an ACM system. The require-
ments of the estimation technique are then slightly different from the sig-
nal detection case. The feedback delay should be taken into account by es-
timating the channel-signal-to-noise ratio (CSNR) at the time in the future
where it will be used—one is effectively implementing a channel predictor.
Specifically, a system as shown in Figure 3.1 (baseband model) is assumed.
The figure also covers the case where the receiver has more than one receive
antenna, enabling a potential diversity combining gain.

When performing discrete rate adaptation by switching between the N
available transmitter–receiver pairs, the transmitter must rely on the accu-
racy of CSI periodically fed back from the receiver end. The CSI in practice
provides information about the CSNR as predicted at the receiver at the time
of signal reception, which is denoted t. The true channel quality at the trans-
mitter update time t + τ, where τ is the return channel delay, may therefore
deviate from the value available to the transmitter. The delay τ is a sum of
the processing time used for CSNR prediction, transmission protocol de-
lays, physical feedback transmission time, and time used for transmitter
reconfiguration. The consequence is that the transmitter may make the
wrong assumption about the channel quality, and thus transmit at either
a too low, or a too high, information rate. This may lead to changes both in
average BER and average information rate compared to the case of perfect
CSI. Exactly what kind changes that will occur depends on several factors,
the most important being the fading correlation, the delay τ, the average
channel quality, the number of codes/signal constellations used (i.e., the
degree of adaptivity), and how the CSNR is predicted. In this chapter we
will analyze how these factors influence the effective bit error rate (BER),
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the effective channel throughput (information rate, measured in average
spectral efficiency—ASE), and the outage probability.

The rest of the chapter is organized as follows: In Section 3.2, a more
in-depth description of the system model, and the assumptions made, is
given. Section 3.3 discusses linear pilot-symbol-assisted channel prediction
in general. Section 3.4 analyzes various features of the system—namely
average spectral efficiency, outage probability, and BER—for an arbitrary
linear prediction algorithm. In Section 3.5, the predictor which is optimal
in the maximum a posteriori (MAP) sense is introduced, and the properties
that are necessary to perform the analysis of the system are derived. Sec-
tion 3.6 concerns experiments on a certain example set of codes. Finally, the
contributions of the chapter are summarized in Section 3.7.

3.2 System Model and Problem Formulation

Denoting the transmitted complex baseband signal (after pilot symbol in-
sertion) at time index k by x(k), the received signal after transmission on
a flat fading channel can be written as y(k) = z(k) · x(k) + n(k). For a
diversity system like the one suggested in Figure 3.1, the received signal
on the hth subchannel is denoted as yh(k) = zh(k) · x(k) + nh(k). Here
the random variable (RV) zh(k) is the complex fading amplitude, and nh(k) is
complex-valued additive white Gaussian noise (AWGN) with statistically
independent real and imaginary components. x(k) is the information sig-
nal, except for time instants k = mL (m ∈ Z, L ∈ Z+), when deterministic
pilot symbols are periodically transmitted, to be used on the receiver side as
an aid towards efficient channel prediction and estimation. The size of L
has to be determined as a trade-off between the requirement for adequate
sampling of the fading process, calling for a large L, and the requirement
for high spectral efficiency, calling for a small L. The absolute value and
phase properties of the pilot symbols will not be scrutinized here to any
other extent that the pilot symbols are all assumed to have the same (abso-
lute) value, |x(mL)| = ap. Note that the pilot symbols in practice will often
be modulated according to a pseudo-random sequence, in order to avoid
spectral peaks (See for instance ETSI, 1999, Sec. 4.5).

In order to be able to represent the results in closed-form, it is assumed
that each subchannel is perturbed by flat Rayleigh fading. Then, zh(k) is
a complex-valued Gaussian variable with zero mean. During our analy-
sis, zh(k) is assumed to be constant between two successive pilot symbols
(block fading). As shall be demonstrated, in practice a pilot symbol should
be transmitted every 10th to 20th symbol or so, so this is not a restrictive as-
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3. CHANNEL PREDICTION WITH ANTENNA DIVERSITY

sumption. The channel is assumed to be wide-sense stationary (WSS). The
fading power Ω is therefore time-invariant and the autocorrelation of zh
measured at two different time indices k1 and k2 is only dependent on the
time difference. In practice, a wireless channel will not be WSS. Multipath
fading is only one of the effects contributing to a varying CSNR; the two
other main contributors are log-normal shadowing and path loss (Stüber,
2001). It is reasonable to assume that the CSNR variation due to multipath
fading is considerably faster than the other CSNR perturbations. In addi-
tion, Abbas and Sheikh (1997) have performed measurements suggesting
that the combined slow log-normal shadowing and fast Nakagami fading
together fit the Nakagami distribution. Consequently the distinction be-
tween shadowing and fading might not be necessary. Assuming a WSS
channel over the time span that is considered is therefore not a particularly
restrictive assumption.

Furthermore a constant average transmit power P [W] and a one-sided
power spectral density N0 [W/Hz] of the complex AWGN in every sub-
channel is assumed. For a one-sided information bandwidth B [Hz]—the
noise variance is consequently N0B—the received CSNR on subchannel h
at a given time k is then

γh(k) =
|zh(k)|2 · P

N0B
, (3.1)

with short-term expected value E[γh] = γ̄h = ΩP/(N0B).2

In addition to the time-invariance assumptions, it is also assumed that
the subchannels are statistically independent and identically distributed.
The variance of the channel gain Ω = E[|zh|2] is therefore independent of
h, as is the short-term expectation of γ̄h. However, the latter is indexed by
h anyway to indicate that this is not the overall expected CSNR on the chan-
nel. It is noted that the antenna elements must be spaced sufficiently far
apart—at least half a wavelength λ—for the subchannels to be statistically
independent. For transmission in the 2 GHz band, λ/2 is approximately
7.5 cm. The case of non-independent branches is considered for instance by
Aalo (1995); Lombardo, Fedele, and Rao (1999).

Invoking the assumption of H statistically independent antenna bran-
ches, maximal ratio combining (MRC) can be implemented in the receiver.
In this case, the channel gain zh(k) on each of the branches is assumed to
be known. Each of the H branch signals is weighted by the corresponding

2γh(k) is actually a short-short-term expectation of the CSNR. In a specific time instant,
the noise part of the CSNR will itself be a stochastic variable, whereas it is the noise power
that is referred to in Eq. (3.1).
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channel gain, resulting in an overall received CSNR at time k (Jakes, Yeh,
Gans, and Reudnik, 1994, Ch. 5; Stüber, 2001, Sec. 6.3):

γ(k) =
H

∑
h=1

γh(k), (3.2)

which corresponds to the following effective overall squared channel gain:

α2(k) =
H

∑
h=1

α2
h(k), (3.3)

where αh = |zh|. Note that αh is Rayleigh distributed with average power
E[|αh|2] = Ω, i.e., its probability density function (PDF) is

fαh(αh) =
2αh

Ω
· e−α2

h/Ω for αh ≥ 0. (3.4)

The squared channel gain α2(k) is effectively a sum of 2H squared zero-
mean, real-valued, independent Gaussian RVs, so the RV 2

Ω α2(k) will pos-
sess a chi-square distribution with 2H degrees of freedom. Since a chi-
square-distributed RV with ν degrees of freedom is equivalent to a gamma-
distributed3 RV with shape parameter ν/2 and scale parameter 2, it can be
concluded that α2(k) will be described by the gamma distribution. In short,
this will be written as

α2(k) ∼ G(H, Ω). (3.5)

Naturally, so will the overall CSNR: γ(k) ∼ G(H, γ̄h)—and the expectation
is E[γ] = γ̄ = Hγ̄h.4 Thus, the overall channel in this case effectively
behaves like a Nakagami-H channel, i.e., the effective overall channel gain
α(k) obeys a Nakagami distribution with parameter H and with E[α2(k)] =
HΩ.

The task is now to perform periodical prediction of the CSNR at the re-
ceiver end, at a rate equal to (at least) the highest possible transmitter adap-
tation rate. We shall here simply assume that the CSNR is predicted and
transmitted back to the transmitter every time a new pilot symbol arrives,
and that the return channel delay (understood as the time delay between
the time of CSNR prediction and the subsequent time of allowed transmit-
ter update) is an integer number of pilot symbol intervals, i.e., τ = kLTs,

3see the definition of the gamma distribution in Section 4.2.2
4It is remarked that the the results will mainly be presented in terms of the branch mean

CSNR γ̄h and not the mean CSNR of the combined signal γ̄ = Hγ̄h.
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3. CHANNEL PREDICTION WITH ANTENNA DIVERSITY

where k ∈ Z+ is the number of pilot symbol intervals and Ts [s] is the du-
ration of one channel symbol. Finally, the return channel is assumed to be
free of errors.

It is important to note that channel prediction is only necessary for the
periodically fed back CSI. For the actual signal detection in the receiver,
the signal may be buffered before detection (assuming that a certain re-
ceiver delay is acceptable, such as in data transmission)—cf. Figure 3.1. CSI
estimation can then be accomplished using an optimal non-causal Wiener
interpolator filter (Cavers, 1991; Torrance and Hanzo, 1995; Tang et al., 1999;
Øien and Hole, 2001), which will smooth the noise and improve CSI reli-
ability beyond what can be achieved by a predictor, and it allows for true
coherent detection to be used. In the 2001 paper, Øien and Hole show that
the minimum non-causal estimation error variance in this case is given by

σ2
e =

Ω · 2 fD
B Lσ2

n

PΩ + 2 fD
B Lσ2

n

, (3.6)

where σ2
n is the noise variance, B is the signalling bandwidth, and fD = v

c fc
[Hz] is the Doppler spread due to terminal mobility (Stüber, 2001; Jamali
and Le-Ngoc, 1994). The v is here the terminal speed, fc is the carrier fre-
quency, and c is the speed of light. Nyquist signalling will henceforth be
assumed, rendering B = 1/Ts. Thus,

σ2
e =

Ω
γ̄h/(2 fDTsL) + 1

<
Ω

γ̄h/(2 fDTsL)
≤ Ω

γ̄h
. (3.7)

The latter inequality stems from a result in the same paper by Øien and
Hole; 2 fD

B L ≤ 1 in order to conform to the Nyquist condition. The mini-
mum estimation error variance in each subchannel is consequently upper
bounded by Ω

γ̄h
. Hence, unless the CSNR is very low, it can be assumed that

the CSI used during detection in the receiver is perfect—as opposed to the
CSI fed back to the transmitter.

3.3 Linear Pilot Symbol Assisted Channel Prediction

For any pilot symbol time instant n− kL (n = mL, m ∈ Z; k ∈ Z?), define

z̃h(n− kL) = zh(n− kL) +
nh(n− kL)

ap
(3.8)

which is the result of dividing the noisy signal received on one subchannel
by the known pilot symbol value. As it will be shown in Section 3.5.1, this
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can be interpreted as a memoryless maximum-likelihood (ML) estimate of
zh(n − kL) based on one received observation (Meyr et al., 1998). The two
terms are statistically independent and are also both zero-mean complex
Gaussian, so their sum is a complex Gaussian with variance equal to the
sum of their variances. At time n + j of transmitter update, a prediction
of z(n + j) can be made from K memoryless ML estimates z̃h(n), z̃h(n −
L), z̃h(n − 2L), . . . , z̃h(n − (K − 1)L). Here, K ∈ Z+ is a designer-chosen
constant. Due to the Gaussianity, the optimal predictor in the MAP or
ML sense is known to be a linear function of these observations (Therrien,
1992). Allowing for complex predictor filter coefficients, any linear predic-
tor of order K can be written on the form

ẑh(n + j) =
K−1

∑
k=0

f ∗j,h(k) · z̃h(n− kL) = fH
j,hz̃h,n (3.9)

where fH
j,h = [ f ∗j,h(0), . . . , f ∗j,h(K − 1)] the predictor filter coefficient vector

corresponding to subchannel h and delay j, and where

z̃h,n = [z̃h(n), z̃h(n− L), . . . , z̃h(n− (K − 1)L)]T. (3.10)

is the vector of the K memoryless ML estimates of the complex fading
amplitude—the latest estimate appearing first in the vector, with symbol
index n—on which the MAP prediction at symbol index n + j is based. The
optimal filter coefficient vector shall be discussed in Section 3.5, but for the
moment, we just assume that it is known. Due to the WSS assumption, the
index n can be omitted. This will be done from now on when referring to
z̃h,n and other vectors where it is applicable.

The predicted linear fading envelope is a linear function of zero-mean,
complex Gaussians, so it is itself also a complex Gaussian. Now define

α̂h = |ẑh|. (3.11)

which consequently is Rayleigh distributed, with PDF

fα̂h(α̂h) =
2α̂h

Ω̂
· e−

α̂2
h

Ω̂ for α̂h ≥ 0. (3.12)

Furthermore, for the moment, we assume that E[α̂2
h] = Ω̂ is known. It can

then—following Tang et al. (1999)—be expressed as

Ω̂ = r ·Ω (3.13)
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for some constant r. In Appendix B general expressions for Ω̂ and r shall
be derived as functions of the predictor coefficients and of the fading cor-
relation properties.

Note that for the case when r 6= 1, the predictor in Eq. (3.9) is biased. It
will be shown that for the MAP optimal prediction filter, r < 1—hence the
bias is negative. This means that the CSNR will tend to be underestimated,
and the bias will not contribute to an increase of the BER. The ASE will
however be reduced compared to if the estimate was unbiased.

3.3.1 Maximal Ratio Combining

As discussed in Section 3.2, the receiver will implement MRC and the chan-
nel will consequently look like a Nakagami H channel. Having predicted
the channel gain on each of the antenna branches, a reasonable estimate for
the predicted squared overall channel gain is now

α̂2 =
H

∑
h=1

α̂2
h (3.14)

Again, as was the case for the actual effective channel gain, we have a
sum of squared Gaussian RVs. The effective predicted channel gain hence
obeys a Nakagami-H distribution with E[α̂2] = HΩ̂ = rHΩ. The predicted
overall CSNR γ̂ is—as the actual overall CSNR—Gamma distributed with
shape parameter H and expectation

E[γ̂] = ¯̂γ = H ¯̂γh = rHγ̄h, (3.15)

in short,

γ̂ ∼ G(H, rγ̄h). (3.16)

Note that the parameter r can be viewed both as the ratio between the ex-
pectation of the predicted and the true CSNR γ and as the ratio between
the variance of the predicted and the true complex fading amplitude z—
and that r is independent on the number of receive antennas.

3.3.2 Correlation Coefficient

An important factor affecting the error performance in an ACM system is
the correlation between the predicted and the true CSNR. Note that an
ACM system always utilizes some kind of “prediction”, even if an ad-
vanced predictor is not implemented. An ACM system which “isn’t uti-
lizing prediction”—like the one discussed in Chapter 2—must in fact use
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some kind of causal estimate for the CSNR at any point of the transmission.
It is therefore appropriate to consider the correlation between predicted
and actual CSNR for any kind of ACM system. The BER expressions which
will be developed in the next section will be functions of—amongst other
parameters—the correlation coefficient ρ, i.e., In these expressions, the pa-
rameter ρ is the normalized correlation coefficient between the predicted and
the true CSNR, i.e.,

ρ =
Cov(γ̂, γ)√

Var(γ̂) Var(γ)
(3.17)

By replacing γ and γ̂ by α2·P
N0B and α̂2·P

N0B , respectively

ρ =
Cov(α̂2, α2)√

Var(α̂2) Var(α2)
. (3.18)

Knowing that α2 ∼ G(H, Ω) and α̂2 ∼ G(H, rΩ), it follows that Var(α2) =
HΩ2 and Var(α2) = HΩ2r2. Consequently,

ρ =
E[α̂2α2] + H2Ω2r

HΩ2r
. (3.19)

Concentrating for a moment on the correlation between α2 and α̂2,

E[α̂2α2] = E

[
H

∑
h=1

α̂2
h

H

∑
h=1

α2
h

]
=

H

∑
h=1

H

∑
i=1

E[α̂2
hα2

i ],

and since the fading on each of the antenna branches are assumed indepen-
dent,

=
H

∑
h=1

E[α̂2
hα2

h] +
H

∑
h=1

∑
i 6=h

E[α̂2
h]E[α2

i ]

= HE[α̂2
hα2

h] + H(H − 1)Ω2r. (3.20)

It then follows that ρ may be expressed as

ρ =
E[α̂2

hα2
h]−Ω2r

Ω2r
= ρh, (3.21)

i.e., for a given r, the overall correlation coefficient is independent of the
number of receive antennas, and is therefore the same as the correlation
coefficient for the channel between the transmitter and the hth receive an-
tenna, where h ∈ {1, . . . , H} is arbitrary.
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3.4 System Analysis

When assessing the system performance parameters, the following defini-
tion will be useful:

Definition 1 (The incomplete gamma function)
The incomplete gamma function and the normalized incomplete gamma
function are defined as follows (Temme, 1996):

Γ(a, z) =
∫ ∞

z
ta−1e−tdt (3.22a)

Q(a, z) = Γ(a, z)/Γ(a), (3.22b)

respectively.
When Q(a, z) (and also Γ(a, z)) appears here, a is often a positive in-

teger. In that case, Q(a, z) can be calculated in closed-form (Temme, 1996,
Eq. 11.6):

Q(n, z) = e−z
n−1

∑
m=0

zm

m!
(3.23)

3.4.1 BER Analysis

The BER (averaged over all codes and all CSNRs) is given as the average
number of bits in error, divided by the average number of bits transmitted,
i.e., the average spectral efficiency (ASE) (Alouini and Goldsmith, 2000;
Hole et al., 2002):

BER = ∑N
n=1 Rn · BERn

∑N
n=1 RnPn

, (3.24)

where Rn is the information rate of code n, Pn is the probability that code
n will be used, and BERn is the average BER experienced when code n is
used. The probability Pn is simply the probability that the predicted CSNR
falls in the interval [γn, γn+1〉, i.e.,

Pn =
∫ γn+1

γn

fγ̂(γ̂)dγ̂. (3.25)

It can be shown (see e.g. Alouini and Goldsmith, 2000) that

Pn = Q
(

H,
γn

rγ̄h

)
− Q

(
H,

γn+1

rγ̄h

)
(3.26)

where Q(x, y) is the normalized incomplete gamma function as defined in
the beginning of this section.
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The average BER may now be written (Alouini and Goldsmith, 2000):

BERn =
∫ γn+1

γn

∫ ∞

0
BERn(γ | γ̂) fγ,γ̂(γ, γ̂) dγdγ̂, (3.27)

where BERn(γ | γ̂) is the BER experienced when applying code n, where
the choice of n is based on the belief that the CSNR is γ̂, while it actually
is γ. That is, n—and therefore all functions of n—should be viewed as
dependent on γ̂ in the expressions to follow. Furthermore, fγ,γ̂(γ, γ̂) is the
joint distribution of the actual and the predicted CSNR. In our case this
will be a bivariate gamma distribution (Nagao and Kadoya, 1971) (see also
Definition 5 in Section 4.3).

The key to further analysis of the general BER expression (3.24) is to
approximate the BER–CSNR relationship for code n by an analytical ex-
pression which will make the integral (3.27) solvable. Hole et al. (2000)
demonstrated that a very good fit to the actual BER–CSNR relationship for
multidimensional trellis codes on AWGN channels could be found by apply-
ing the expression

BERn(γ | γ̂) =

{
an · exp (− bnγ

Mn
) when γ ≥ γl

n
1
2 when γ < γl

n
(3.28)

where an and bn are code-dependent constants which may be found by
least-squares curve fitting to simulated BER–CSNR data on AWGN chan-
nels. Mn is the number of points in the symbol constellation used by the
trellis code, and γl

n = ln(2an)Mn/bn. In the subsequent analysis, we as-
sume that multidimensional trellis codes are used as component codes in
the adaptive coder/modulator. Eq. (3.28) will therefore be employed.

For a 2G-dimensional (2G-D) trellis code, one 2G-D symbol is trans-
mitted as a sequence of G consecutive complex (i.e., 2-D) coded symbols.
The G coded symbols have been generated from Rn input information bits
when code n is utilized, as previously explained in Chapter 2. In addition,
pilot symbols are inserted in between the coded sequence so that every Lth
channel symbol does not convey information. The information rate of code
n is consequently expressed as follows:

Rn = (log2(Mn)− 1/G) · L− 1
L

. (3.29)

This expression will be used in Eq. (3.24) when evaluating the average BER.
Note that L will not contribute to the BER via this expression, since Rn ap-
pears both in the numerator and in the denominator of Eq. (3.24). (How-
ever, L will be affecting the ratio r, thus, the average BER will certainly be
affected by L.)
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In Appendix C, the BER–CSNR relation (3.28) is applied, together with
the bivariate gamma distribution, to derive a general closed-form expres-
sion for the average BER of an ACM system when trellis code n is used (i.e.,
Eq. (3.27)) on a Rayleigh fading channel with MRC receive combining. It is
shown that the result can be expressed as a sum of three integrals,

BERn =
∫ γn+1

γm

{J 1(n, γ̂)− (J 21(n, γ̂)−J 22(n, γ̂))} dγ̂

= I1(n)− (I21(n)− I22(n)), (3.30)

where

J 1(n, γ̂) =
∫ ∞

0
an exp

(
−bnγ

Mn

)
fγ,γ̂(γ, γ̂) dγ (3.31)

J 21(n, γ̂) =
∫ γl

n

0
an exp

(
−bnγ

Mn

)
fγ,γ̂(γ, γ̂) dγ (3.32)

J 22(n, γ̂) =
1
2

∫ γl
n

0
fγ,γ̂(γ, γ̂) dγ. (3.33)

and I1(n), I21(n), and I22(n) are the integrals—over the range of γ̂—of
J 1(n, γ̂), J 21(n, γ̂), and J 22(n, γ̂), respectively. Manipulations as shown
in Appendix C yield closed-form expressions for these three integrals. The
expressions involve two special functions, the Gamma function Γ(·), and
the earlier introduced Q(·, ·). The Gamma function is evaluated only for
strictly positive integer arguments k , so Γ(k) = (k − 1)!. We refer to
Eq. (3.22) for the definition of Q(x, y), which can be found in standard
mathematical software packages such as Matlab, Mathematica, or Maple.

The three integrals of interest can now be expressed as follows:

I1(n) = an

(
1

bnγ̄h
Mn

+ 1

)H

×

[
Q
(

H,
γn

γ̄hr
·

bnγ̄h
Mn

+ 1

(1− ρ) bnγ̄h
Mn

+ 1

)
− Q

(
H,

γn+1

γ̄hr
·

bnγ̄h
Mn

+ 1

(1− ρ) bnγ̄h
Mn

+ 1

)]
,

(3.34)
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I21(n) = an

∞

∑
k=0

Γ(k + H)
Γ(k + 1)Γ(H)

(
ρ

1− ρ

)k ( 1
bnγ̄h
Mn

+ 1
1−ρ

)k+H

×
[

1− Q
(

k + H, γl
n

( bn

Mn
+

1
(1− ρ)γ̄h

))]
×
[

Q
(

k + H,
γn

(1− ρ)γ̄hr

)
− Q

(
k + H,

γn+1

(1− ρ)γ̄hr

)]
, (3.35)

and

I22(n) =
1
2

∞

∑
k=0

Γ(k + H)
Γ(k + 1)Γ(H)

ρk (1− ρ)H

×
[

1− Q
(

k + H,
γl

n
(1− ρ)γ̄h

)]
×
[

Q
(

k + H,
γn

(1− ρ)γ̄hr

)
− Q

(
k + H,

γn+1

(1− ρ)γ̄hr

)]
. (3.36)

Note that I1(n), I21(n), and I22(n) are dependent on the value of the
ratio r of the expectations and of the correlation coefficient ρ of the pre-
dicted and the true CSNR. In addition, these are all functions of the num-
ber of receive antennas H and of the short-term expected value γ̄h of the
CSNR. Other parameters affecting the average BER are an, bn, Mn, γl

n, and
the CSNR interval boundaries γn; note, however, that the latter parameters
are constant for a given set of transmitter–receiver pairs.

We are now in a position to finally combine Eqs. (3.26), (3.29), (3.30)
and (3.34)–(3.36), to obtain the average BER from Eq. (3.24).

3.4.2 Average Spectral Efficiency

The ASE is defined as the transmission rate divided by the bandwidth, and
it can be calculated as the average number of bits per channel symbol; i.e.,
the denominator of Eq. (3.24):

ASE =
N

∑
n=1

RnPn

=
N

∑
n=1

(
log2(Mn)− 1/G

)
·
(

L− 1
L

)
·
(

Q
(

H,
γn

rγ̄h

)
− Q

(
H,

γn+1

rγ̄h

))
(3.37)
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3.4.3 Outage Probability

In a situation where the delay constraints are relatively mild, the outage
probability is not too much of a concern—the main system parameters are
throughput (measured by the ASE) and error resilience (measured by the
BER). Real-time systems are in different in this context. If for instance
speech is to be transmitted, the system will work in an acceptable manner
only when there is a continuous flow of data. An outage is not permitted.
Related to the system discussed here, the consequence is that the CSNR
must be higher than γ1. The outage probability (Pout) can then be expressed
as follows,

Pout = P0 = 1− Q
(

H,
γ1

rγ̄h

)
. (3.38)

3.5 Optimal MAP Prediction

For a PSAM system, Torrance and Hanzo (1995) have through simulations
shown that a wiener interpolator, albeit optimal in the minimum-mean-
square-error sense, is not necessarily the interpolator that will result in the
lowest BER. However, for an ACM system aided by pilot symbols, it is
important to have a very good prediction of the future CSNR. Since the
goal of this work is to suggest bounds for the possible BER, ASE, and Pout,
a computationally intensive MAP optimal predictor is chosen.

The following notation is introduced for the normalized correlation vec-
tor, which contains the covariance between the fading at the pilot symbol
instants and the fading to be predicted at time instant n + j:

rj =
1
Ω

E[zhz∗h(n + j)] (3.39)

where zh = [zh(n), zh(n − L), . . . , zh(n − (K − 1)L)]T is a companion of the
vector z̃h,n from Eq. (3.10), this one containing the true complex fading am-
plitude at the time instants of the pilot symbols, for channel h. Since the
signals are zero-mean, the covariance between time indices i1 and i2 will be
Cov(z(i1), z(i2)) = E[z(i1)z(i2)∗], thus, rj also represents correlation. The
components of zh and zh(n, j) are naturally instances of the same process;
rj can therefore be looked upon as a punctured autocorrelation vector—
“skew-punctured” if j 6= mL. It is also remarked that rj is real-valued, since
the imaginary and real-valued parts of the fading process are independent
and zero-mean.

Since the channel is assumed to be WSS, the time index n is omitted in
the notation for zh. In addition, since all the subchannels have the same
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fading properties, the channel index h is omitted from rj. An element [rj]k
of rj will thus be a function of the lag between the relevant pilot symbol
time instant n− kL and of the time n + j of the CSNR to be predicted only.
It is advantageous to introduce and utilize the notion of a general normal-
ized correlation function R(τ), which describes the normalized correlation
between two instances of the fading amplitude as a function of the time
delay between them,

[rj]k =
1
Ω

E[zh(n + j)zh(n− kL)] = R((j + kL)Ts). (3.40)

It will be shown that the optimal filter depends only on the feedback delay
when all subchannels have the same fading properties. The predictor filter
coefficient vector fj,h is therefore also redefined to disregard the subchannel
index h as shown in the following equation:

fj = [ f j(0), . . . , f j(K − 1)]T (3.41)

is the row vector of predictor filter coefficients for an arbitrary subchan-
nel. Lastly, the normalized autocovariance matrix of the fading at the pilot
symbol instants is defined as follows:

R =
1
Ω

Cov(zh, zh) =
1
Ω

E[zhzH
h ] (3.42)

Similarly to rj, R is real-valued and can be viewed as a punctured autocor-
relation matrix of the fading process, each element [R]kl being a function of
the lag between the two pilot symbol time instants n− lL and n− kL only,

[R]kl = R(|k− l|LTs). (3.43)

R is therefore a symmetric Toeplitz matrix.

3.5.1 MAP Optimal Prediction Filter

Meyr et al. (1998) have developed MAP optimal predictors and estimators is
in the case of Gaussian channel perturbation and noise. Since those results
are very general—and rather difficult to grasp at first sight—the expres-
sions relevant to MAP optimal prediction in the case of white, zero-mean
(Gaussian) noise and zero-mean fading are re-developed here.
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The notation is slightly extended as follows: The K× K diagonal matrix
A holds the transmitted pilot symbols:

A =


x(n)

x(n− L)
. . .

x(n− (K − 1)L)

 (3.44)

For the case when all the pilot symbols are equal, x(mL) = ap,

A = apI (3.45)

The noise at the time instants of pilot symbol transmission is gathered in
the vector n with covariance matrix Cn = N0BI = σ2

nI, thus the collection
of received signals after transmission of the K pilot symbols can be written
as

yh = Azh + nh = apzh + nh (3.46)

The ML-optimal estimate of a set of memoryless or static channel pa-
rameters z on the basis of observations y is the estimate that maximizes the
likelihood function fy|z(y | z),5 i.e.,

z̃ = arg max
z

fy|z(y | z) (3.47)

For a Gaussian likelihood function, the estimator that accomplishes the
maximization can be shown to be (Meyr et al., 1998, Eq. 12.27)

z̃ = (AHR−1
n A)−1 · (AHR−1

n y) = A−1y (3.48)

(where Rn is the noise correlation matrix) which, in the case that all the
elements of A are equal to ap, reduces to

z̃ = y/ap = z +
1
ap

n (3.49)

which can be recognized as the noisy fading amplitude vector stated in
Eq. (3.10).

5The antenna branch index h has here been removed for notational simplicity. However,
it should be noted that both z and n—and therefore y—are dependent on the antenna
branch.
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The MAP-optimal estimate of a channel parameter z based on a set of
observations y is the estimate that maximizes the PDF fz|y(z | y)

ẑMAP = arg max
z

fz|y(z | y) (3.50)

Considering the zero-mean Gaussian RVs z and y, their variance, covari-
ance matrix, and cross correlation vector can be determined as follows:

σ2
z = E[|z|2] = Ω (3.51)

Ry = E[yyH] = a2
pE[zzH] + E[nnH] = a2

pΩR + σ2
nI (3.52)

rz,y = E[yz∗] = apE[zz∗] = apΩrj, (3.53)

where R and rj are as defined earlier. It follows that rz,y and Ry are both
real-valued, and that the latter is a symmetric Toeplitz matrix.

When z and y are jointly Gaussian RVs, it is known that the conditional
PDF fz|y(z | y) is also Gaussian; the expectation of z conditioned on y is
then (Therrien, 1992; Meyr et al., 1998)

E[z | y] = rT
z,yR−1

y y, (3.54)

and the variance is

Var(z | y) = σ2
z − rT

z,yR−1
y rz,y, (3.55)

For Gaussian RVs, the optimal MAP estimate obtained by maximizing
the conditional PDF in Eq. (3.50) is equivalent to the conditional mean, thus,

ẑMAP = E[z | y] = apΩrT
j (a2

pΩR + σ2
nI)−1y

= rT
j

(
R +

σ2
n

a2
pΩ

I

)−1
y
ap

. (3.56)

It is now assumed that the power of the pilot symbol ap is kept constant at
the average transmission power, thus, a2

p = P. Recognizing the rightmost

fraction as y
ap

= z̃, the MAP-optimal filter coefficient vector on a Rayleigh
fading channel can be deduced:

fT
j,MAP = rT

j

(
R +

1
γ̄h

I
)−1

. (3.57)

The error variance of the MAP-optimal estimator is

Var(z− ẑMAP | y) = Var
(
z− E[z | y] | y

)
(3.58)
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which—since E[z | y] can be regarded as a constant when y is given—
equals

Var(z | y) = Ω− apΩrT
j (a2

pΩR + σ2
nI)−1apΩrj

= Ω
(
1− rT

j (R + 1
γ̄h

I)−1rj
)

= Ω(1− fT
j,MAPrj) (3.59)

This finally yields the MAP-optimally predicted fading amplitude at sym-
bol index n + j,

ẑh,MAP(n + j) = fT
j,MAPz̃h,n. (3.60)

and the error variance is

σ2
e(j) = Ω(1− fT

j,MAPrj). (3.61)

3.5.2 Ratio and Correlation Coefficient

Following Tang et al. (1999), it is shown in Appendix B (assuming ap =
√

P),
that the ratio r of the expectations and the correlation coefficient ρ between
the estimated and the true squared channel gain can be expressed as:

r =
Ω̂
Ω

= fH
j Rfj +

1
γ̄h
‖fj‖2 (3.62)

ρ =
|fH

j rj|2

r
=

|fH
j rj|2

fH
j Rfj + 1

γ̄h
‖fj‖2

. (3.63)

Note that the parameter ρ, which will be shown to govern the BER expres-
sion, is directly dependent on the type of predictor filter used, which is
again dependent on the feedback delay (expressed through j).

It is finally remarked that a consequence of using the MAP-optimal set
of predictor coefficients is that ρ = r. This can be seen by introducing the
expression for fj,MAP from Eq. (3.57) into the expression for r from Eq. (3.62),
having in mind that the MAP-optimal fj,MAP is real-valued:

r = fT
j,MAPRfj,MAP + 1

γ̄h
‖fj,MAP‖2 = fT

j,MAP(R + 1
γ̄h

I)fj,MAP

= rT
j (R + 1

γ̄h
I)−1(R + 1

γ̄h
I)(rT

j (R + 1
γ̄h

I)−1)T

= rT
j (R + 1

γ̄h
I)−1rj. (3.64)

38



OPTIMAL MAP PREDICTION

By inserting Eq. (3.57) into the numerator of Eq. (3.63),

(fT
j,MAPrj)

2 =
(

rT
j (R + 1

γ̄h
I)−1rj

)2
= r2, (3.65)

and it is concluded that

ρ = rT
j (R + 1

γ̄h
I)−1rj = r. (3.66)

3.5.3 Jakes Spectrum

From here on, it is assumed that the the fading process is described by the
much-used Jakes spectrum (see for instance Meyr et al. (1998, Sec. 12.2.3),
Alouini and Goldsmith (2000, Sec. 5), or Stüber (2001, Sec. 2.1)). This im-
plies that the fading experienced is due to terminal mobility (and thus
Doppler effects) in an isotropic scattering environment. The autocorrela-
tion of the fading is given by the following expression:

E[zh(n + j)z∗h(n− kL)] = Ω · J0(2π fD(j + kL)Ts), (3.67)

where J0(x) is the 0th order Bessel function of the first kind. Henceforth,

[rj]k = R((j + kL)Ts) = J0(2π fD(j + kL)Ts) (3.68)

and

[R]kl = R(|k− l|LTs) = J0(2π fD|k− l|LTs) (3.69)

3.5.4 Illustration of the Prediction Advantage

The discussion here will be concerned with the correlation coefficient ρ.
Since ρ and r are shown to be equal in the MAP optimal case, it will apply
to both of them.

An illustration of the advantage of employing a predictor is is shown
in Figure 3.2. The correlation coefficient is there plotted as a function of
the normalized delay fDTs · j for the MAP optimal predictor (solid) and for
the case when the last received pilot symbol—divided by the pilot symbol
value—is used as a prediction (dash-dotted). The latter is also shown when
there is no noise on the channel (dashed). Relevant parameters are the car-
rier frequency fc = 2 GHz and a terminal velocity v = 30 m/s; the resulting
Doppler spread is consequently fD = 200 Hz. Assuming a transmission
bandwidth of B = 400 kHz and Nyquist signalling, the symbol duration is
Ts = 2.5 µs—the normalized Doppler spread will be fDTs = 5 · 10−4. Hanzo
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FIGURE 3.2: The correlation coefficient as a function of normalized de-
lay fDTs · j.

et al. (2000, Ch. 13) suggest that a mobile speed of 30 mph and a carrier fre-
quency of 1.9 GHz calls for a symbol rate of at least 512 · 103 Ksymbols/s,
corresponding to a normalized Doppler spread of approximately 6 · 10−4.
The parameters considered here consequently lead to a sufficiently low nor-
malized Doppler spread. Other parameters employed in Figure 3.2 is an
expected CSNR γ̄h = 20 dB and a prediction filter length of K = 1000. The
pilot symbols are inserted every 10th channel symbol, i.e., L = 10.

The expression for ρ in Eq. (3.66) is easily seen to be dependent on γ̄h—
an increase in the expected CSNR will naturally cause an increase of ρ, as
is illustrated in Figure 3.3 by letting γ̄h run from 0 dBto 20 dB.

The pilot symbol transmission and detection can be viewed as sampling
of a band-limited process. The Jakes spectrum is strictly band-limited to
fD (Stüber, 2001, Ch. 2), and the pilot symbols should be transmitted at
a rate which is at least 2 · fD (according to the sampling theorem), hence,
L ≤ 1/(2 fDTs). However, this is only valid when the pilot symbols are
not corrupted by noise. In a noise-free environment, any L ≤ 1000 would
yield adequate sampling when the Doppler spread is fDTs = 5 · 10−4. Meyr
et al. (1998, Sec. 14.2.2) suggest that pilot symbols need to be transmitted at
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FIGURE 3.3: The correlation coefficient as a function of normalized de-
lay fDTs · j and expected CSNR γ̄h

a much greater pace. As Figure 3.4 illustrates, relatively small variations
of L yields substantial improvement of ρ—even when L is several orders
of magnitude smaller than 1000. Note that the variations in correlation
are most notable for the smaller CSNRs. For γ̄h = 0 or 10 dB, the relative
gain of decreasing the pilot symbol spacing from L = 15 to 5 is substantial
compared to when the CSNR is more advantageous. As it shall be shown in
the next section, also the BER performance benefits from the oversampling
following from a smaller L.

The number of pilot symbols upon which the prediction is done must of
course be limited, yet remain sufficiently high. Meyr et al. (1998, Sec. 14.2.2)
claims that, for non-causal detection, quasi-optimal performance will be
achieved if (K/2)L � 1/( fDTs). A practical problem is then that the filter
order K can easily become very large if L is to be kept small. For instance,
with parameters from the discussion above— fDTs = 5 · 10−4 and L = 10,
K � 400. For L = 5, K � 800. Fortunately, the results indicate that L
may be decreased without necessarily increasing K correspondingly; note
for instance that K is kept steady at K = 1000 in Figure 3.4. The effect of
increasing the filter order while keeping L steady is shown in Figure 3.5.
Several authors have viewed the fading as an auto-regressive (AR) process
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FIGURE 3.4: Correlation coefficient ρ as a function of delay, plotted for
expected branch CSNR γ̄h = 0, 10,. . . 40, and for pilot symbol spacing
L = 5, 10, and 15. The prediction filter length is K = 1000.

(Aghamohammadi, Meyr, and Ascheid, 1989; Zhang, Fritz, and Gelfand,
1997), which may explain the minute advantage of increasing K compared
to the improvement resulting from decreasing L shown in Figure 3.4. When
making a linear prediction of an AR process, an optimal filter order K equal
to the order of the AR process should be used. In the examples below, it is
chosen to keep the filter order constant at K = 1000.

3.6 Example System

In order to assess bounds for the performance of a system incorporating
antenna diversity and channel prediction as suggested in the previous sec-
tions, a specific system similar to the one in Chapter 2 is investigated. The
system under consideration employs the same codes; however, the path
length of the Viterbi decoder is set to 16 while is was 9 for the system con-
sidered in Chapter 2. This leads to slightly different performance merits.
In addition, the BER requirement is here set to BER0 = 10−4 whereas it was
before BER0 = 10−3; resulting in slightly higher values for the thresholds.
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FIGURE 3.5: Correlation coefficient plotted analogous to Figure 3.4,
however, the pilot symbol spacing is kept still at L = 10 and the filter
order is varied from K = 500 to K = 1500.

The an and bn parameters for the BER expression of the individual codes
are summarized in Table 3.1, along with the calculated thresholds.

Parameters not directly tied to the codes, albeit dependent on the im-
plementation, are the carrier frequency fc = 2 GHz, a bandwidth of B =
400 kHz, and a terminal velocity of v = 30 m/s—the same parameters as
the ones chosen in the previous section. Similarly, a prediction filter length
of K = 1000 is utilized.

3.6.1 BER Performance

In order to calculate the average BER, the expressions from Section 3.4.1 are
employed. In Figure 3.6, the BER has been plotted as a function of channel
CSNR and of feedback delay, for a pilot symbol spacing of L = 10. It is
assumed that the system uses two receive antennas and combines the sig-
nals with MRC. Since a target BER0 is decided, the operation of the system
will be acceptable whenever BER < BER0. When BER > BER0, the sys-
tem does not operate properly. The shape of the BER surface is therefore
not significant, except for the contour at BER0 = 10−4. In Figure 3.7, the

43



3. CHANNEL PREDICTION WITH ANTENNA DIVERSITY

TABLE 3.1: Parameters an and bn for the example codec, along with
thresholds γn for BER0 = 10−4.

n Mn an bn γn (dB)

1 4 188.7471 9.81182 7.7
2 8 288.8051 6.8792 12.4
3 16 161.6898 7.8862 14.6
4 32 142.6920 7.8264 17.6
5 64 126.2118 7.4931 20.8
6 128 121.5189 7.7013 23.7
7 256 79.8360 7.1450 26.9
8 512 34.6128 6.9190 29.7
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FIGURE 3.6: BER as a function of feedback delay and of expected sub-
channel CSNR. H = 2 receive antennas are utilized and the pilot symbol
spacing is L = 10. In this plot—as in all subsequent plots—the prediction
filter length is kept steady at K = 1000.
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FIGURE 3.7: Regions for which system performance is acceptable, plot-
ted for pilot symbol spacing L = 5, 10, 15, and for H = 1, 2, and 4 receive
antennas. The curves indicate largest delay that is allowed in order to
achieve the BER requirements, for a given expected CSNR. Thus, ac-
ceptable performance results when the point specified by a CSNR/delay
combination is below and to the right of the curve for system parameters
L and H.

contour lines at BER = 10−4 have been plotted for pilot symbol spacing
L = 5, 10, 15, and for H = 1, 2, and 4 receive antennas. The middle stippled
line corresponds to the contour curve at BER = 10−4 in Figure 3.6. The
figure shows that a large improvement (in the form of lowering the CSNR
requirements, or equivalently, allowing for a longer delay) can be achieved
by using more than one receive antenna. Naturally, lowering the pilot sym-
bol spacing will also lead to some performance gain since the quality of the
predicted instantaneous CSNR is increased.

The parameters utilized in the simulations incorporate a vehicle speed
of 30 m/s and a carrier frequency of 2 GHz. When the CSNR is 10 dB and
when every L = 10th channel symbol is a pilot symbol, H = 1 receive
antenna lead to an acceptable normalized delay of j · fDTs = 0.038. This
corresponds to an actual delay of j · Ts = 190 µs. Increasing the number
of receive antennas to H = 2 leads to an acceptable delay of 350 µs. Note
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FIGURE 3.8: ASE as a function of feedback delay and expected subchan-
nel CSNR. L = 10, H = 2. Note that the ASE is almost independent on
the feedback delay when normalized delay is in the region 0–0.25 (the
biggest delay corresponding to an actual delay of 1.25 ms.)

that the CSNR here is the CSNR per antenna branch, and the CSNR after
MRC will be approximately 13 dB. Addition of a second antenna branch
causes the power consumption to be doubled. When considering a system
where low power consumption is a requirement, it might be reasonable to
reduce the power in each antenna branch accordingly, effectively reducing
the branch CSNR. For the sake of comparison, assuming that the branch
CSNR on each of the two branches is 7 dB will reduce the acceptable delay
to 270 µs.

3.6.2 ASE Performance

As explained in the previous section, the BER can largely be divided into
two regions—acceptable (smaller than BER0) and unacceptable (larger than
BER0). The BER analysis is therefore significant mainly for determining al-
lowable operation regions. The ASE is more of a key feature of a system
like the one under consideration here. Using the expression in Eq. (3.37),
the ASE is in Figure 3.8 plotted as a function of CSNR and of delay (sim-
ilarly to in Figure 3.6). The dependence on the delay is minimal. This is
reasonable, since the delay only affects the expected value rγ̄h of the pre-
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FIGURE 3.9: ASE as a function of expected subchannel CSNR, plotted
for various L and H, for a normalized delay of 0.25.

dicted CSNR, which appears in the second argument to the normalized
incomplete gamma function in Eq. (3.37). In Figure 3.9, the ASE is plotted
for a delay of 0.25, as a function of the expected CSNR. Plots have been
made for L = 5, 10, 15, and for H = 1, 2, and 4 receive antennas. Note
that plotting the ASE (and later the Pout) on a constant large delay of 0.25
is not in correspondence with the results encountered in the previous sec-
tion when dealing with the BER performance: Those results clearly show
that the system will not operate properly at such a large delay. However,
the 0.25 delay is considered anyway since staying within the delay limits
determined by the BER performance plotted in Figure 3.7 can only lead to
improved results.

It is apparent that the ASE reaches a ceiling when the CSNR grows
large, the ceiling being dependent on L. The reason is that the 2G-dimen-
sional codes have a spectral efficiency of log2 Mn − 1/G—for the system
considered here, G = 2. The spectral efficiency of the largest code—and
hence the largest possible spectral efficiency for the set of codes—is conse-
quently 8.5. But the spectral efficiency of the system under consideration is
also affected by the pilot symbol spacing L. A smaller L naturally leads to
a smaller relative part of the transmission time available for transmission
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FIGURE 3.10: Pout as a function of feedback delay and expected sub-
channel CSNR. L = 10, H = 2. Similarly to the ASE, Pout is virtually
independent on delay in the region under consideration.

of information. Thus the maximal possible ASE—utilized when the CSNR
is at the highest—is R8 = 8.5 · (L− 1)/L. For L = 15 the maximal possible
ASE is 7.933, decreasing to 6.8 for L = 5.

It is here emphasized that the CSNR under consideration is again the
subchannel CSNR, thus most of the difference between the H = 1, 2, and
4 curve bundles in Figure 3.9 stems from the γ̄ = Hγ̄h gain. Even if the
results for the BER in Figure 3.7 were also affected by the beneficial total
CSNR of an MRC system when increasing the number of antennas, the
BER takes advantage of the lower variance of the underlying gamma dis-
tribution when H is increased. This is not the case for the ASE.

3.6.3 Pout Performance

The last figure of merit considered here is the outage probability. Similarly
to the ASE, Pout is also only slightly dependent on the delay, as is shown in
Figure 3.10. As it can be predicted from Eq. (3.38), the pilot symbol spacing
does not affect the outage probability very much. Both the delay and the
pilot symbol spacing only affect the expected value rγ̄h of the predicted
CSNR, appearing in the second argument to the normalized incomplete
gamma function.
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FIGURE 3.11: Pout as a function of expected subchannel CSNR, plotted
for various L and H, for a normalized delay of 0.25.

Note again that Figures 3.8–3.11 can be challenged since not the full
CSNR range is relevant at normalized delay 0.25 (cf. Figure 3.7). Neverthe-
less, it is here chosen to plot at such a big delay. It is again emphasized—as
the three-dimensional plots (Figures 3.8 and 3.10) indicate—that the effect
upon ASE and Pout of varying delay is very slight. In addition, reducing
the delay will only lead to better ASE and Pout performance.

3.7 Conclusions

The results considered in this chapter reveal that delay in the feedback
channel and erroneous CSI due to noise have a big impact on the BER in
an ACM system. The increased BER limits the region where the system can
operate reliably with respect to permitted delay and average CSNR. In or-
der to combat the harmful effects of delay, using channel prediction seems
to be a promising tool. The predictor considered in this chapter results in
MAP-optimal correlation between the predicted fading and the actual fad-
ing. In an implementation of an ACM system, it might be more feasible to
utilize a less complex sub-optimal predictor. The trade-off between com-
plexity and optimality is a subject for further research.
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The ASE and Pout of the system are relatively independent on the feed-
back delay. This is natural, since the only effect of increasing the delay is a
slightly lowered expected value of the CSNR due to the biased predictor.

The system under consideration utilizes a pilot tone with fixed power.
Whether this is optimal has not been considered—more power to the pi-
lot tone could yield a better estimate, whereas less pilot tone power would
leave more to the actual transmission of data. A system where the pilot tone
power is adapted to the channel quality should also be considered. Similar
arguments apply to the pilot symbol spacing. Decreasing the pilot symbol
spacing under adverse channel condition might yield a better channel es-
timate which in turn could cause a lower overall BER—or equivalently a
bigger operable region—and a lower outage probability.
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Chapter 4

Sum and Difference of Two
Correlated Gamma-distributed
Random Variables

This chapter is based on a paper presented at the 35th Annual Conference
on Information Sciences and Systems (Holm and Alouini, 2001), and on an
extended journal version submitted for possible publication in IEEE Trans.
Commun. Theory (Holm and Alouini).

4.1 Introduction

The wide versatility, computational tractability, and experimental consis-
tency (Sheikh et al., 1993) of the Nakagami-m distribution (Nakagami, 1960)
has made it popular as a fading model when analyzing the performance
of wireless systems (see for example Abu-Dayya and Beaulieu, 1991; Yao
and Sheikh, 1992; Eng and Milstein, 1995; Aalo, 1995; Alouini and Simon,
1998; Lombardo et al., 1999; Win and Winters, 1999)). One of the important
features of the distribution is that the power of a signal perturbed by Nak-
agami fading is gamma-distributed. In performance evaluation involving
Nakagami fading, one can therefore often rely on established results (in
the statistics literature) about the gamma distribution. An important spe-
cial case of the Nakagami distribution is the Rayleigh distribution, which
arises in the situation of multipath transmission with no direct component,
i.e., when all of the received power stems from scattered components. The
corresponding distribution for the signal power is the exponential distribu-
tion. Another often employed distribution when modelling wireless chan-
nels is the Rice distribution, which considers the multipath signal as a sum
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of a direct component and a reflected component. When the magnitude
of the direct component is zero, the Rice also reduces to the Rayleigh dis-
tribution. Although the Nakagami-m and the Rice distributions are not
equal, except in the common Rayleigh special case, their probability den-
sity functions (PDFs) can be close when a proper mapping is used between
the m parameter and the Rice-factor K (Stüber, 2001, Eqs. 2.53 and 2.54).
However, as mentioned in the introduction chapter, an advantage of the
Nakagami-m over the Rice model is the relatively simple expression for its
PDF and joint PDF for the signal power. Indeed, while the gamma PDF
contains no complicated special functions, the signal power in the Rician
case is described by a non-central chi-square distribution with two degrees
of freedom, which contains a modified Bessel function. On the other hand,
the bivariate distribution of two squared correlated Nakagami-m random
variables (RVs) (or equivalently two correlated gamma RVs) has a relatively
simple closed-form expression, while (to the best of our knowledge) no
simple formula is yet known for the joint PDF of two correlated non-central
chi-square RVs.

Many of the performance analysis problems in wireless communication
systems over Nakagami-m channels require determination of the statis-
tics of functions of the squared envelope of Nakagami-m faded signals.
In the classical 1960 paper (Nakagami, 1960), relying on a series of pa-
pers (Nakagami and Nishio, 1955; Ota, 1956; Nakagami and Ota, 1957)
appearing in Japanese journals, Nakagami cites expressions for the distri-
bution of the sum, the ratio, and the product of squares of two correlated
Nakagami-m RVs (or equivalently, sum, ratio, and product of two corre-
lated gamma RVs). However, no expression for the PDF of the difference
between two gamma RVs is provided. This PDF can not be derived from
the PDF of a sum, and it has a slightly different form since the sum of
gamma RVs (always positive) naturally is positive—while the difference
can clearly be negative. Apparently, even in the specialized statistics lit-
erature only the difference between two uncorrelated gamma RVs has been
investigated (McKay, 1932; Pearson, Stouffer, and David, 1932; Laha, 1954;
Springer, 1979; Johnson et al., 1994). One of the main contributions of this
chapter is to show that starting from the bivariate gamma distribution, we
are able to derive a closed-form expression for the PDF, moments, and in
certain particular cases the cumulative distribution function (CDF) of the
difference between two correlated not necessarily identically distributed
gamma-distributed RVs.

Much effort has been made in finding general statistical distributions,
or systems of distributions, for the purpose of fitting sample data to a dis-
tribution. The Pearson system (Pearson et al., 1932; Johnson et al., 1994)
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is an example of one of the most general systems of distributions. As an
addition to the Pearson system, McKay (1932) provides what he calls “A
Bessel Function Distribution”, which is a distribution with particularly sim-
ple expressions for the moment-generating function and for the cumulants.
This distribution splits naturally in two forms—depending on the value of
one of the parameters—where one of them describes a RV that can be only
positive while the other describes a RV that can take on all values. The
two forms of this distribution will together be referred to as “The McKay
Distributions”. Since the sum and difference of two uncorrelated gamma-
distributed RVs are described by these two forms, respectively (Johnson
et al., 1994), they will be of particular interest in the context of this chapter.
In particular, another main contribution of this chapter is to show that the
sum and difference of correlated gamma RVs are also described by McKay’s
distributions.

The chapter is organized as follows. Section 4.2 defines the two McKay
distributions. Expressions for the moments of these distributions are stated
as theorems, as are the PDFs of the sum and difference between two uncor-
related gamma RVs. Lastly, an important special case—relevant to Rayleigh
fading—is investigated. Section 4.3 introduces the bivariate gamma distri-
bution and derives the distributions of the sum and difference of correlated
gamma RVs. An application of this new result relevant to the calculation
of outage probability in presence of self-interference is presented in Sec-
tion 4.4. Finally, a conclusion summarizing the main results is given in
Section 4.5.

4.2 McKay’s Bessel Function Distribution

In this section, we define McKay’s distributions and provide expressions
for the moments of these distributions. Next, we remind the reader about
the basic definition of the gamma distribution. Some previously known
results regarding the sum and difference between independent gamma RVs
are stated before an important special case is considered.

McKay defines his distribution in terms of one function with different
forms due to different values of one of the parameters, namely, the c pa-
rameter. However, we find it more convenient to treat the two forms as
separate distributions; called fΣ(σ) and f∆(δ), respectively.

Definition 2 (Type I McKay Distribution)
Σ follows the type I McKay distribution with parameters a > − 1

2 , b > 0,
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and c > 1,1 when the PDF of Σ is given by

fΣ(σ) =
√

π(c2 − 1)a+1/2σa

2aba+1Γ(a + 1/2)
e−σ c

b Ia

(σ

b

)
H(σ), (4.1)

where Γ(·) is the gamma function, Ia(·) is the Modified Bessel function
of the first kind and of order a, and H(·) is the Heaviside unit step func-
tion (Gradshteyn and Ryzhik, 2000, page xliv).

Definition 3 (Type II McKay Distribution)
∆ follows the type II McKay distribution with parameters a > − 1

2 , b > 0,
and |c| < 1, when the PDF of ∆ is given by

f∆(δ) =
(1− c2)a+1/2|δ|a√
π2aba+1Γ(a + 1/2)

e−δ c
b Ka

( |δ|
b

)
, δ 6= 0 (4.2)

where Ka(·) is the Modified Bessel function of the second kind and of or-
der a.

Ka(·) is not defined when the argument is equal to zero. However, with
the aid of an approximation of Ka(x) valid for small x, we provide an ex-
pression for the type II McKay distribution for x = 0, valid when a > 0:

Proposition:
When a > 0, and b and c are as in Definition 3,

f∆(0) =
(1− c2)a+1/2

√
π2b

Γ(a)
Γ(a + 1/2)

. (4.3)

Proof: Use the formula limx→0 xaKa(x) = 2a−1Γ(a) (Abramowitz and Ste-
gun, 1972, Eq. 9.6.9) to find the limit of Eq. (4.2).

Note that when − 1
2 < a < 0, then f∆(δ) is negative and thus undefined as

a PDF value. When a = 0, f∆(δ) is undefined ( f∆(δ) δ→0−−→ ∞). However,
plotting of Eq. (4.2) indicates that the PDF, with a in the range − 1

2 < a ≤ 0,
approaches a Dirac “delta” distribution.

4.2.1 Moments

McKay provides expressions for the moment-generating function and for
the cumulants of his distribution functions (McKay, 1932, Eqs. (10) and (19),
respectively). As will be shown, it is also possible to find general closed-
form expressions for the moments of the McKay distributions.

1The third parameter to the first McKay distribution can also be c < −1. Then, the
distribution function is defined for negative, instead of positive, x.
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Theorem 1 (Moments of McKay’s Type I Distribution)
Let Σ be distributed according to the type I McKay distribution (Defini-
tion 2). Then the moments of Σ can be expressed as

E[Σn] =
(c2 − 1)a+ 1

2 bn

c2a+n+1
Γ(2a + n + 1)

Γ(2a + 1)

× 2F1

(2a + n + 1
2

,
2a + n + 2

2
; a + 1;

1
c2

)
, (4.4)

where 2F1(·, ·; ·; ·) is Gauss’ hypergeometric function (quoted for instance
by Gradshteyn and Ryzhik, 2000, Section 9.1).

Proof: See Appendix D.1.

As indicated, the previous theorem applies solely to McKay’s distribution
of the first kind, i.e., when c > 1. For |c| < 1, the type II McKay distribution
is the appropriate distribution function—and then the moments must be
expressed as in the following theorem:

Theorem 2 (Moments of McKay’s Type II Distribution)
Let ∆ follow the type II McKay distribution (Definition 3). Then the mo-
ments of ∆ can be expressed as:

E[∆n] =
bn

(1− c2)a+n+ 1
2

Γ(2a + n + 1)Γ(n + 1)
Γ(a + n + 3

2 )Γ(a + 1
2 )

×
[
(−1)n(1 + c)2a+n+1

2F1

(
2a + n + 1, a + 1

2 ; a + n + 3
2 ;−1 + c

1− c

)
+ (1− c)2a+n+1

2F1

(
2a + n + 1, a + 1

2 ; a + n + 3
2 ;−1− c

1 + c

)]
. (4.5)

Proof: See Appendix D.2.

The hypergeometric function is commonly available in numerical software,
so the moments can be calculated easily. Expressions for the moments can
also be found by utilizing multiple derivatives of the moment-generating
function. In addition, it is always possible to find an expression for the
n-th moment in terms of the n first cumulants (Kendall, 1947, Chapter 3),
and vice versa. As an example, utilizing (McKay, 1932, Eq. 19) gives the
following expression for the mean and the variance:

µZ =
(2a + 1)bc

c2 − 1
,

σ2
Z =

(2a + 1)b2(c2 + 1)
(c2 − 1)2 .

(4.6)
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The second moment can now be found as µ2
Z + σ2

Z.
Before concluding this section, we mention that in the special case that

arises when a is restricted to a = 1/2, the formulas (4.4) and (4.5) for the
type I and II, respectively become particularly simple, as shown in Ap-
pendix D.3.

4.2.2 Sum and Difference of Two Independent Gamma RVs

Definition 4 (Gamma Distribution)
X follows a gamma distribution with shape parameter α > 0 and scale
parameter β > 0 when the PDF of X is given by

fX(x) =
xα−1e−x/β

Γ(α)βα
H(x). (4.7)

We use the short hand notation X ∼ G(α, β) to denote that X follows a
gamma distribution with shape parameter α and scale parameter β. Note
that the mean of X E[X] = αβ.

As mentioned before, the gamma distribution is related to the Nakagami
distribution. Namely, when a signal is Nakagami distributed with Nak-
agami fading parameter m and average fading power S̄, then the power
(i.e., the square) of the signal is gamma-distributed with shape parameter
α = m and scale parameter β = S̄/m.

Theorem 3 (Sum of Two Independent Gamma RVs)
Let X1, X2 be mutually independent random variables, distributed as
X1 ∼ G(α, β1) and X2 ∼ G(α, β2), respectively. Then Σ = X1 + X2 is
distributed according to the first of McKay’s forms with parameters:

a = α− 1/2,
b = 2β1β2/|β1 − β2|,
c = (β1 + β2)/|β1 − β2|.

(4.8)

Thus b > 0 and c > 1 so the restrictions that applies to the McKay distri-
bution I are fulfilled.

This result is provided without proof in the classical textbook by Johnson
et al. (1994, Sect. 12-4.4), but we could not trace where the result was origi-
nally derived and presented.

Theorem 4 (Difference Between Two Independent Gamma RVs)
Let X1, X2 be mutually independent random variables, distributed as
X1 ∼ G(α, β1) and X2 ∼ G(α, β2), respectively. Then ∆ = X1 − X2 is
distributed according to the second of McKay’s forms with parameters:
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a = α− 1/2,
b = 2β1β2/(β1 + β2),
c = −(β1 − β2)/(β1 + β2),

(4.9)

where we see that the requirements b > 0 and |c| < 1 are met since β1, β2
are positive.

This result is also provided without proof in the classical textbook by John-
son et al. (1994, Sect. 12-4.4) and again we could not trace where the result
was originally derived and presented.

Since the shape parameter/Nakagami parameter α = m ≥ 1/2, the
interesting range of values for the a parameter in the McKay distributions
(for these applications) is a ≥ 0.

4.2.3 Special Case of a = 1/2

In the important special case of Rayleigh fading, the previous PDF and mo-
ment expressions can be used by simply setting m = α = 1. As can be seen
from Eqs. (4.8) and (4.9), this means that the a parameter in the McKay
distributions is a = 1/2. It turns out that this restriction leads to partic-
ularly simple expressions for both the PDFs and the moments, involving
only elementary functions (i.e., no special functions like the hypergeomet-
ric function or modified Bessel functions.) It is also possible to find simple
closed-form expressions for the CDFs.

Corollary 1 (McKay Type I, a = 1/2)
When a = 1/2, the type I McKay distribution reduces to the following
expression:

fΣ(σ) =
c2 − 1

2b
(e−

σ
b (c−1) − e−

σ
b (c+1))H(σ), (4.10)

Proof: Insert a = 1/2 in Eq. (4.1), use the identity
√

xπ/2 · I1/2(x) =
sinh(x) (Abramowitz and Stegun, 1972, Eq. 10.2.13) and the hyperbolic
sine property sinh(x) = (ez − e−z)/2 (Barnett and Cronin, 1986, Eq. 2.8.2),
and collect terms.

Like Definition 2, Definition 3 can be simplified when a = 1/2. The follow-
ing Corollary is a counterpart to Corollary 1.

Corollary 2 (McKay Type II, a = 1/2)
When a = 1/2, the type II McKay distribution reduces to the following
expression:

f∆(δ) =
1− c2

2b
e−

1
b (δc+|δ|) (4.11)
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Proof: Insert a = 1/2 (equivalent to α = 1) in Eq. (4.2), use the identity√
x/(2π) · K1/2(x) = e−x/2 (Abramowitz and Stegun, 1972, Eq. 10.2.17),

and collect terms.

The hypergeometric functions appearing in Eqs. (4.4) and (4.5) are also
possible to simplify when a = 1/2, as is displayed in the following corol-
lary:

Corollary 3 (Moments when a = 1/2)
Let a = 1/2. Then the expression for the moments of both McKay distri-
butions can be written as follows:

E[Zn] =
n!
2

bn

(c2 − 1)n

(
(c + 1)n+1 − (c− 1)n+1) (4.12)

Proof: See Appendix D.3.

Because of the simple PDFs when a = 1/2, it is possible to find closed-
form expressions for the CDFs of both McKay distributions.

Corollary 4 (CDF of McKay Type I)
When a = 1/2, and when restricting, as before, c > 1, the CDF of the
McKay type I distribution can be written as follows:

FΣ(σ) =
1
2
(
(c− 1)e−

σ
b (c+1) − (c + 1)e−

σ
b (c−1) + 2

)
. (4.13)

Proof: Integrate Eq. (4.10) from σ = 0 to σ and collect terms.

Corollary 5 (CDF of McKay Type II)
When a = 1/2, and when restricting |c| < 1, the CDF of the McKay type II
distribution can be written as follows:

F∆(δ) =


1+c

2 exp
(

1−c
b δ
)

, for δ < 0

1− 1−c
2 exp

(
− 1+c

b δ
)

, for δ ≥ 0.
(4.14)

Proof: For δ < 0: Integrate Eq. (4.11) from δ = −∞ to δ and collect terms.
For δ ≥ 0: Find 1 − F∆(δ) by integrating Eq. (4.11) from δ = δ to ∞ and
collecting terms.

4.3 Sum and Difference of Correlated Gamma RVs

When the gamma-distributed RVs are correlated, the bivariate gamma dis-
tribution—which takes into account the correlation—must be employed.
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Definition 5 (Bivariate Gamma Distribution)
X1 and X2 are described by a bivariate gamma distribution with common
shape parameter α > 0, scale parameters β1 > 0, β2 > 0, respectively, and
correlation coefficient ρ = Cov(X1,X2)√

Var(X1) Var(X2)
(0 ≤ ρ ≤ 1) if their joint PDF is

given by

fX1X2(x1, x2) =
(x1x2)(α−1)/2

Γ(α)(β1β2)(α+1)/2(1− ρ)ρ(α−1)/2

× exp
(
− x1/β1 + x2/β2

1− ρ

)
× Iα−1

( 2√ρ

1− ρ

√
x1x2

β1β2

)
H(x1)H(x2),

We use the shorthand notation X1, X2 ∼ G(α, β1, β2, ρ) to denote that X1
and X2 follow a bivariate gamma distribution. When ρ → 0, the joint PDF
reduces to the product of two univariate gamma PDFs (with the aid of
Abramowitz and Stegun, 1972, Eq. 9.6.7).

4.3.1 Sum of Two Correlated Gamma RVs

Theorem 5 (Sum of Two Correlated Gamma RVs)
Let X1, X2 ∼ G(α, β1, β2, ρ). The sum Σ = X1 + X2 follows the type I
McKay distribution with parameters

a = α− 1/2,

b =
2β1β2(1− ρ)√

(β1 + β2)2 − 4β1β2(1− ρ)
,

c =
β1 + β2√

(β1 + β2)2 − 4β1β2(1− ρ)
,

(4.15)

where, since 0 ≤ ρ < 1, the restrictions b > 0 and c > 1 are met.

Proof: See Appendix D.4.

It can be concluded that Nakagami and Nishio’s result (Nakagami and
Nishio, 1955; Nakagami, 1960) is in fact on the McKay form. McKay’s
first form which is known to be valid for the sum of independent gamma-
distributed variates, is hence also valid for the sum of correlated ones.
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Corollary 6 (Sum of Two Correlated Exponential RVs)
Let X1, X2 ∼ G(1, β1, β2, ρ). The sum Σ = X1 + X2 has a PDF as follows:

fΣ(σ) =

[
exp

(
− β1 + β2 −

√
(β1 + β2)2 − 4β1β2(1− ρ)
2β1β2(1− ρ)

· σ

)

− exp
(
− β1 + β2 +

√
(β1 + β2)2 − 4β1β2(1− ρ)
2β1β2(1− ρ)

· σ

)]

×
(√

(β1 + β2)2 − 4β1β2(1− ρ)
)−1

· H(σ). (4.16)

Proof: Insert values for b and c from Eq. (4.15) in Eq. (4.10), and collect
terms.

Of course, the previous corollary also applies to the uncorrelated case by
inserting corresponding values for b and c (from Eq. (4.8)) in Eq. (4.10), or
by inserting ρ = 0 in Eq. (4.16).

4.3.2 Difference Between Two Correlated Gamma RVs

Theorem 6 (Difference Between Two Correlated Gamma RVs)
Let X1, X2 ∼ G(α, β1, β2, ρ). The difference ∆ = X1 − X2 follows the PDF
given by

f∆(δ) =
|δ|α−1/2

Γ(α)
√

π
√

β1β2(1− ρ)

(
1

(β1 + β2)2 − 4β1β2ρ

) 2α−1
4

× exp
(

δ/2
1− ρ

( 1
β2

− 1
β1

))
× Kα−1/2

(
|δ|
√

(β1 + β2)2 − 4β1β2ρ

2β1β2(1− ρ)

)
, for δ 6= 0. (4.17a)

When α > 1/2, there exists an expression for the special case δ = 0:

f∆(0) =
Γ(α− 1

2 )
√

πΓ(α)

(
4β1β2(1− ρ)

)α−1(
(β1 + β2)2 − 4β1β2ρ

)α−1/2 . (4.17b)

Proof: See Appendix D.5.
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Corollary 7 (Relation to McKay’s Distribution Function)
The difference between two correlated gamma RVs is distributed accord-
ing to the type II McKay distribution with parameters:

a = α− 1/2,

b =
2β1β2(1− ρ)√

(β1 − β2)2 + 4β1β2(1− ρ)
,

c = − β1 − β2√
(β1 − β2)2 + 4β1β2(1− ρ)

,

(4.18)

where the conditions b > 0 and |c| < 1 are met, as long as ρ < 1.

Proof: Can be readily seen by inserting the parameters a, b, and c from
Eq. (4.18) in Eq. (4.2).

Corollary 8 (Difference Between Two Correlated Exponential RVs)
This corollary is a counterpart to Corollary 6.

Let X1, X2 ∼ G(1, β1, β2, ρ). The difference ∆ = X1 − X2 has a PDF as
follows:

f∆(δ) =
exp

(
δ · (β1 − β2)− |δ| ·

√
(β1 − β2)2 + 4β1β2(1− ρ)

2β1β2(1− ρ)

)
√

(β1 − β2)2 + 4β1β2(1− ρ)
(4.19)

Proof: Insert values for b and c from Eq. (4.18) in Eq. (4.11), and collect
terms.

This implies, of course, that an expression for the CDF of the difference
between two exponentially distributed RVs can be expressed similarly to
Eq. (4.14), with values for b and c from Eq. (4.18) inserted.

4.3.3 Numerical Validation

Monte Carlo simulation is well suited for checking the results derived in
the previous section. Correlated gamma-distributed random variables can
be generated as described by Ko and Alouini or by Tellambura and Jayalath
(2000). We used the algorithm described by Ko and Alouini to generate
10 000 pairs {X1, X2} ∼ G(α, β1, β2, ρ) and computed the difference. A nor-
malized histogram of this difference was plotted and is shown in Fig. 4.1
for the special case of α = 2, β1 = 20, β2 = 10, and ρ = 0.5. As can be
seen from this figure the analytical and the simulation results are in perfect
agreement.

63



4. SUM AND DIFFERENCE OF TWO CORRELATED GAMMA-DISTRIBUTED RVS

−50 0 50 100
0

0.005

0.01

0.015

0.02

0.025

0.03
Analytical
Simulation

f ∆
(δ

)

δ

FIGURE 4.1: Comparison between the analytical PDF and the PDF ob-
tained via Monte Carlo simulation, for α = 2, β1 = 20, β2 = 10, and
ρ = 0.5.

4.4 Application to Outage Probability with
Self-Interference

4.4.1 System Model

When transmitting in a multipath fading environment, one will receive re-
flections that appear as delayed, in average down-scaled, and correlated
versions of the desired signal. If the reflections are not handled properly,
they will degrade the quality of the decoded signal because of the self-
interference, as pointed out by Ligeti (2000) for multicarrier systems. A
measure for the effect of interference and noise is the signal-to-interference-
and-noise ratio (SINR).

We consider a single carrier system where there is one self-interfering
signal and define the SINR as follows:

Definition 6 (SINR)
Let SD be the instantaneous power of the desired signal, SI the instanta-
neous power of the reflected signal, and N the additive noise variance. We
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define the SINR as

γ = SINR =
SD

SI + N
.

4.4.2 Outage Probability

If the SINR falls below a predetermined protection ratio γth, an outage is
declared. Denoting the outage probability by Pout, we have

Pout = Pr{γ ≤ γth} = Pr
{ SD

SI + N
≤ γth

}
= Pr{∆ ≤ Nγth},

where we have defined ∆ = SD − γthSI .
In a Nakagami fading environment with Nakagami parameter m, SD

will be gamma-distributed, SD ∼ G(m, S̄D
m ) where S̄D is the short-term

average of the desired faded signal power. The self-interfering signal SI

is also gamma distributed, i.e., SI ∼ G(m, S̄I
m ). The desired and inter-

fering signals SD, SI are correlated with correlation coefficient ρ so that
the pair {SD, SI} ∼ G(m, S̄D

m , S̄I
m , ρ). Multiplication of a gamma RV with

a constant results in a new gamma RV with mean scaled by the multi-
plication factor, so SD and γthSI are correlated with correlation coefficient
ρ′ = Cov(SD ,γthSI)√

Var(SD) Var(γthSI)
= ρ and the pair of signals SD and γthSI are conse-

quently gamma-distributed, {SD, γthSI} ∼ G(m, S̄D
m , γth S̄I

m , ρ). The random
variable ∆ is the difference of two correlated gamma-distributed RVs, and
it follows the distribution f∆(δ) given in Eq. (4.17). The outage probability
can then be expressed as the CDF of ∆ evaluated at Nγth:

Pout = F∆(Nγth) =
∫ Nγth

−∞
f∆(δ) dδ = 1−

∫ ∞

Nγth

f∆(δ) dδ. (4.20)

In the general case of Nakagami fading, we are not able to find a closed-
form solution for this integral, but because of the smooth tails, numerical
integration over the PDF as given in Eq. (4.20) can be easily performed with
standard mathematical software such as Matlab or Mathematica. However,
the CDF can be found in closed-form for the following two special cases.

Rayleigh Fading Case

For the special case of Rayleigh fading, (i.e., m = 1), there exists a closed-
form expression for the CDF of ∆—and hence the outage probability—
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namely Eq. (4.14) with the parameters b and c defined as follows:

b =
2S̄DS̄Iγth(1− ρ)√

(S̄D − S̄Iγth)2 + 4S̄DS̄Iγth(1− ρ)
,

c = − S̄D − S̄Iγth√
(S̄D − S̄Iγth)2 + 4S̄DS̄Iγth(1− ρ)

.
(4.21)

Note that Nγth is positive, so the second line of Eq. (4.14) should be used.

Interference Limited Case

In the case of interference-limited transmission the noise is negligible and
the noise variance is approximated by zero. In this case a solution to the in-
tegral in Eq. (4.20) can be found in terms of Gaussian hypergeometric func-
tions (by means of Gradshteyn and Ryzhik, 2000, Eq. 6.621-3). After some
manipulations and with the help of some transformations (Eqs. (15.3.7),
(15.3.3), and (6.6.8) from Abramowitz and Stegun, 1972), it can be shown
that the outage probability can be put in the following compact closed-
form:

Pout = Ix(m, m), (4.22)

where x = 1
1+ 1−c

1+c
(with c given in Eq. (4.21)) and Ix(·, ·) is the normalized in-

complete Beta function (defined in Abramowitz and Stegun, 1972, Eq. 6.6.2
and tabulated by Pearson, 1932). In the case that the correlation ρ = 0,
1−c
1+c = S̄D

S̄I γth
. Once substituted in (4.22), this leads to a result which is in

agreement with the results of Abu-Dayya and Beaulieu (1991, Eq. 6a) and
Yao and Sheikh (1992, Eq. 13) for the outage probability of cellular systems
when the number of co-channel interferers in the latter equations is set to
one. In the case of m integer, it can be shown that Eq. (4.22) reduces to the
following finite sum

Pout =
(

1 +
1− c
1 + c

)1−2m m−1

∑
k=0

(
2m− 1

k

)(
1− c
1 + c

)k

. (4.23)

4.4.3 Numerical Examples

The outage probability depends on a number of factors; γth, S̄D, S̄I , N, ρ,
and m. When S̄I is more than approximately three orders of magnitude
larger than N, it turns out that Pout basically only depends on S̄D

(S̄I+N)γth
, ρ,

and m. However, when the magnitude of S̄I decreases in comparison to N,
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FIGURE 4.2: Outage probability as a function of S̄D
(S̄I+N)γth

for m = 2 and
for ρ = 0.1, 0.3, 0.5, 0.7, and 0.9.

the effect of ρ on the outage probability diminishes. We will focus in our
numerical examples on the former case.

The outage probability was calculated from the formula in Eq. (4.20) by
using numerical integration, for various values of the parameters; plots of
Pout as a function of S̄D

(S̄I+N)γth
are shown in Figs. 4.2–4.3 and as a function

of ρ in Figs. 4.4–4.5. Note that, for S̄D
(S̄I+N)γth

> 0 dB, Pout decreases as ρ

increases. Also; for S̄D
(S̄I+N)γth

= 0 dB, Pout ≈ 0.5, regardless of the value of
the other parameters.

4.5 Conclusions

This chapter offered general formulas for the PDF of the sum and the dif-
ference of two correlated not necessarily identically distributed squared
Nakagami RVs and established connections between these PDFs and the
McKay “Bessel function” distributions. Additional formulas for the mo-
ments of these distributions in terms of the Gauss’ hypergeometric function
were derived. As an illustration of the mathematical formalism, an applica-
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FIGURE 4.3: Outage probability as a function of S̄D
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tion of these new results relevant to the calculation of outage probability in
presence of self-interference was presented and some numerical examples
were provided and discussed.
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Chapter 5

CSNR Estimation Error in
Rayleigh Fading Channels

This chapter is based on a paper presented at the conference NORSIG
(Holm, 2001).

5.1 Introduction

In mobile and wireless communication, the channel is frequently perturbed
by fading, which leads to varying channel signal-to-noise ratio (CSNR). In
order to compensate for the fading, several schemes have been proposed—
among them is fast power control (Hashem and Sousa, 1997), pilot sym-
bol assisted modulation (Tang et al., 1999) and adaptive (coded) modula-
tion (Alouini and Goldsmith, 2000; Hole et al., 2000). In all these methods,
knowledge of the instantaneous channel quality, the CSNR, is essential for
good performance. An inaccurate CSNR estimate will degrade the per-
formance of adaptive modulation and coding systems. For instance, the
rate-adaptive scheme of Hole et al. (2000) employs a set of channel codes,
each designed for a specific CSNR. Updated information on the channel
state enables the transmitter to frequently change the code, thus using the
code best suited for the instantaneous CSNR. A too low estimate will cause
the rate to be less than what the channel actually is able to convey under
the bit error rate (BER) requirements, while a too high estimate will cause
the BER to be larger than required.

In order to gain control over the BER, to calculate bounds for the proba-
bility of failure, and to maximize the spectral efficiency, it is advantageous
to know the statistical properties of the estimation error. The purpose of
this chapter is to describe the characteristics of the error when using pi-
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lot symbol assisted channel estimation on a Rayleigh fading channel. We
denote the true CSNR by γ and its estimate by γ̂. The error can then be
defined as the difference ∆ = γ̂ − γ between the CSNR estimate and the
true CSNR in natural units. In the previous chapter, we provided gen-
eral expressions for the statistical properties of the difference between two
gamma-distributed random variables (RVs) and related the expressions to
McKay’s Bessel function distribution (McKay, 1932). In this chapter, we
utilize those expressions to find closed-form expressions for the probabil-
ity density function (PDF) and the cumulative distribution function (CDF)
of the natural unit error measure. It is also desirable to investigate the dif-
ference in decibel ∆dB = γ̂dB − γdB (Wong and Cox, 1999). Expressions for
the PDF and CDF of the dB estimation error measure are provided in this
chapter.

The McKay distribution was defined in Section 4.2. For convenience,
the definition is recited in Section 5.2. The Rayleigh fading model is given
in Section 5.3, followed by Section 5.4 where the pilot symbol technique
which is used for CSNR estimation is described. Closed-form expressions
for the PDF and CDF of the natural units difference error ∆ are derived in
Section 5.5. In this section, a general expression for the nth moment of the
PDF is also computed, and the PDF is verified by simulation. Section 5.6 is
devoted to finding the PDF of the error in decibel, and conclusions follow
in Section 5.7.

5.2 The McKay Distributions

McKay (1932) defines the following “Bessel Function Distribution”:

Definition 7 (McKay Distributions)
X follows the McKay distribution with parameters a > − 1

2 , b > 0, and c,
when the PDF of X is given by

fX(x) =
|1− c2|a+1/2 |x|ae−x c

b
√

π2aba+1Γ(a + 1/2)
×

πIa
( |x|

b
)

H(x) Type I—for c > 1,

Ka
( |x|

b
)

Type II—for |c| < 1,
(5.1)

where Ia(·) and Ka(·) are the Modified Bessel functions of the first and
second kind, respectively, (both of order a) and H(·) is the Heaviside (unit
step) function.

The value of c decides the one that should be used of the two forms of the
distribution. Note that, for convenience, we have defined the first form for
positive x only. However—if the parameter c is negative (c < −1), the first
form will be defined for negative, instead of positive x.
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It is known that the sum and difference of two independent gamma-
distributed RVs follow the McKay distribution—see (Johnson et al., 1994,
Sect. 12-4.4). However, it is shown in Chapter 4 that also the sum and dif-
ference of correlated gamma-distributed RVs are described by the McKay
distribution.

5.2.1 Special case for a = 1/2

It is shown in Chapter 4 that the sum or difference of gamma-distributed
random variables with shape factor m is McKay-distributed with the pa-
rameter a = m− 1

2 . Note also that the square of a Rayleigh-distributed ran-
dom variable is distributed according to a gamma distribution with shape
factor 1. The gamma distribution with shape factor 1 is equivalent to the
exponential distribution. Considering the sum or difference of the power
(or square) of two Rayleigh-distributed RVs, it can be concluded that this
sum or difference will be distributed according to the McKay distribution.
In this important special case, the expression for the McKay Distribution
reduces to the following one:

fX(x) =
|1− c2|

2b
×

{
(e−

x
b (c−1) − e−

x
b (c+1))H(x) Type I,

e−
1
b (xc+|x|) Type II.

(5.2)

involving no special functions.

5.3 System Model

We assume a frequency nonselective Rayleigh fading channel—also de-
noted as a flat fading channel. When using a QAM modulation technique,
the transmitted signal can be viewed as a complex signal. In this man-
ner, the channel can be modeled as attenuation of the transmitted signal
with a complex zero-mean Gaussian random variable z(k) = α(k)ejθ(k) with
amplitude α(k) and phase θ(k) followed by addition of complex Gaussian
noise n(k). This means that when the information-bearing signal is x(k),
the received symbol at time instant k is y(k) = z(k)x(k) + n(k). The channel
model is illustrated in Fig. 5.1.

The noise variance is σ2
n = N0B where N0 is the spectral density of the

noise and B is the bandwidth of the signal. We assume coherent detection,
such that the phase θ is detected and corrected in the receiver. Thus, only
the fading envelope will contribute to the CSNR. If we denote the average
transmit power by P, the instantaneous CSNR is γ = α2 P

N0B where the
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x(k) y(k)

α(k)ejθ(k) n(k)

FIGURE 5.1: Flat fading.

time index k is omitted. For notational simplicity, the time index will be
suppressed in the rest of the chapter.

As the CSNR is the square of a Rayleigh-distributed random variable,
it is distributed according to an exponential distribution with mean E[γ] =
γ̄, or, equivalently, to a gamma distribution with shape factor 1 and scale
factor γ̄.

5.4 Fading Envelope and CSNR Estimation

PSAM estimation of the fading envelope is discussed by Tang et al. (1999),
where the α̂ is a linear combination of preceding and subsequent known pi-
lot symbols. Clearly, such an estimator can only be used for post-processing
of received symbols. In the case of adaptive modulation, which requires
feedback of channel state information (Alouini and Goldsmith, 2000; Hole
et al., 2000), a predictor would be used. For simplicity, we consider the
special case of Tang et al. (1999) where the α̂ is based on one pilot symbol
only, and we also only consider the instant of reception of the pilot symbol.
The analysis can be readily extended to the more general case of a longer-
memory linear estimator or predictor.

The information-bearing signal is grouped in clusters, and L − 1 sym-
bols plus a pilot symbol ap of known phase and with power P0 constitute a
frame. From here on, it is assumed that the pilot symbol power is the av-
erage transmission power P. At the time the pilot symbol plus the channel
perturbation is received, the fading can be estimated by dividing with the
known ap:

ẑ =
y
ap

= z +
n
ap

. (5.3)

An estimate of the envelope at the time the pilot symbol arrives is then α̂ =
|ẑ|, and in the simplified case where only one pilot symbol is considered,
an apparent estimator for γ is γ̂ = α̂2 P

N0B . It must be emphasized that this
estimator is very simple and not a very good one; for instance, it is biased.
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However, we choose to use it for the sake of simplicity, since the results are
easily generalized to more advanced linear estimators.

Since ẑ is a sum of zero-mean complex Gaussian random variables, it
will itself be a zero-mean complex Gaussian random variable. The esti-
mate of the CSNR will accordingly be exponentially distributed with mean
E[γ̂] = ¯̂γ. Naturally, γ and γ̂ will be correlated, and they are as such de-
scribed by a bivariate gamma distribution with shape factor 1. Thus,

fγ,γ̂(γ, γ̂) =
1

(1− ρ)γ̄ ¯̂γ
I0

(
2√ρ

(1− ρ)

√
γγ̂

γ̄ ¯̂γ

)
exp

(
− 1

1− ρ

(γ

γ̄
+

γ̂
¯̂γ

))
(5.4)

where I0(·) is the modified Bessel function of the first kind and zeroth order
and the term

ρ =
Cov(γ, γ̂)√

Var(γ) Var(γ̂)
, 0 ≤ ρ < 1, (5.5)

is the power correlation coefficient.
The parameters ¯̂γ and ρ can both be expressed in terms of γ, by noting

that

¯̂γ =
P

N0B
E[|ẑ|2] = E[γ] +

P
N0B

E[|n/ap|2] = γ̄ + 1. (5.6)

Note also that, since E[γ̂] 6= E[γ], γ̂ is a biased estimator. For the case of the
correlation factor, observe that

Var(γ) = γ̄2, (5.7)

Var(γ̂) = ¯̂γ2 = (γ̄ + 1)2 (5.8)

and

Cov(γ, γ̂) = E[γγ̂]− γ̄ ¯̂γ

= E[γ2] + E[γ]
P

N0B
E[|n/ap|2]− γ̄ ¯̂γ

= 2γ̄2 + γ̄− γ̄(γ̄ + 1)

= γ̄2. (5.9)

Thus,

ρ =
γ̄2

γ̄ ¯̂γ
=

γ̄

1 + γ̄
. (5.10)
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5.5 PDF of the Error ∆ = γ̂− γ

As shown in Chapter 4, the difference ∆ between two correlated gamma-
distributed random variables is described by the type I McKay distribu-
tion (McKay, 1932). A particularly simple special case arises when the two
variables are exponentially distributed; then, the PDF of the difference is
expressed as in Eq. (5.2)—recited here for convenience:

f∆(δ) =
1− c2

2b
e−

1
b (δc+|δ|), (5.11)

where b and c are given in terms of the scale factors β1, β2, and the correla-
tion coefficient ρ of the random variables:

b =
2β1β2(1− ρ)√

(β1 − β2)2 + 4β1β2(1− ρ)
,

c = − β1 − β2√
(β1 − β2)2 + 4β1β2(1− ρ)

,
(5.12)

where β1 = ¯̂γ and β2 = γ̄. For the simple estimator defined in Section 5.4,
we found that ¯̂γ = γ̄ + 1 and ρ = γ̄

1+γ̄ , so that b and c reduces to

b =
2γ̄√

4γ̄ + 1
, c =

−1√
4γ̄ + 1

, (5.13)

and Eq. (5.11) consequently becomes:

f∆(δ) = exp

(
δ− |δ| ·

√
4γ̄ + 1

2γ̄

)/√
4γ̄ + 1 (5.14)

A histogram of the estimation error has been obtained by Monte-Carlo
simulation of the channel. The result, compared with plots of Eq. (5.14) for
different values of γ̄, is shown in Fig. 5.2.

5.5.1 CDF of ∆

The CDF of the McKay distribution can be calculated in closed-form in the
special case (as shown in Section 4.2.3):

F∆(δ) =


1+c

2 exp
( 1−c

b δ
)
, for δ < 0

1− 1−c
2 exp

(
− 1+c

b δ
)
, for δ ≥ 0.

(5.15)

76



PDF OF THE ERROR

−6 −4 −2 0 2 4 6 8 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

γ̄ = 1

γ̄ = 5

γ̄ = 10

γ̄ = 20

γ̄ = 2

Simulation
Analytical

Estimation error ∆

PD
F

f ∆
(∆

)

FIGURE 5.2: Monte-Carlo Simulation of the Estimation Error ∆ for γ̄ =
1, along with plots of the PDF of ∆ from Eq. (5.14) for γ̄ = 1, 2, 5, 10 and
20. Comparison of the simulation results and the closed-form expression
of the PDF indicate that the expression is valid.

As before, b and c are inserted from Eq. (5.13),

F∆(δ) =


√

4γ̄+1−1

2
√

4γ̄+1
exp

(√4γ̄+1+1
2γ̄ δ

)
, δ < 0

1−
√

4γ̄+1+1

2
√

4γ̄+1
exp

(
−
√

4γ̄+1−1
2γ̄ δ

)
, δ ≥ 0.

(5.16)

5.5.2 Moments

In Chapter 4, an expression for the moments of a McKay-distributed ran-
dom variable is also provided. In the special case that applies to the dif-
ference between exponentially distributed random variables, the moments
(of any order) are:

E[∆n] =
n!
2

bn

(c2 − 1)n

(
(c + 1)n+1 − (c− 1)n+1) (5.17)
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and by inserting b and c from Eq. (5.13) and collecting terms, we arrive at
the following expression for the moments of the estimation error δ:

E[∆n] =
n!

2n+1
√

4γ̄ + 1

(
(1 +

√
4γ̄ + 1)n+1 − (1−

√
4γ̄ + 1)n+1

)
(5.18)

From Eq. (5.18) we calculate E[∆] = 1 and E[∆2] = 2γ̄ + 2 which leads
to Var(∆) = 2γ̄ + 1. This result is supported by Fig. 5.2 in which plots of
the PDF of ∆ for several values of γ̄ indicate that the variance increases as
the mean CSNR γ̄ increases.

5.6 PDF of the Error in Decibel ∆dB = γ̂dB − γdB

We define Φ = γ̂/γ. The PDF of the ratio of two correlated gamma-distribu-
ted random variables is provided by Nakagami (1960, Eq. 145). Nakagami’s
formula includes, as a special case, exponentially distributed random vari-
ables. Accordingly, by using the simplifications in Eqs. (5.6) and (5.10), we
find the PDF of Φ:

fΦ(φ) =
1
γ̄

(
φ + 1+γ̄

γ̄

)
((

φ + 1+γ̄
γ̄

)2 − 4φ
)3/2 H(φ). (5.19)

By change of variables (since ∆dB = 10 log10 Φ,) the PDF of the difference in
decibel can be derived as follows,

f∆dB(δdB) =
1
γ̄

ln 10
10

10
δdB
10
(
10

δdB
10 + 1+γ̄

γ̄

)
((

10
δdB
10 + 1+γ̄

γ̄

)2 − 4 · 10
δdB
10

)3/2 . (5.20)

Eq. (5.20) is plotted for several values of γ̄, along with a Monte-Carlo Simu-
lation in Fig. 5.3. The plots indicate that the main lobe of f∆dB(δdB) becomes
narrower and approaches 0 dB as the mean CSNR γ̄ increases. However,
closed-form expressions for E[∆dB] and Var(∆dB) have not been found.

5.6.1 CDF of ∆dB

By integrating Eq. (5.19) from 0 to φ, the CDF of Φ can be found and ex-
pressed as follows:

FΦ(φ) =
1
2

φ− γ̄+1
γ̄√(

φ + γ̄+1
γ̄

)2 − 4φ
+

1
2

. (5.21)
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FIGURE 5.3: Monte-Carlo Simulation of the Estimation Error ∆dB for
γ̄ = 1, along with plots of the PDF of ∆dB from Eq. (5.20) for γ̄ = 1, 2, 5,
10 and 20 (0, 3, 7, 10 and 13 dB, respectively.)

Thus, the CDF of ∆dB can be found as:

F∆dB(δdB) = FΦ(10
δdB
10 ) =

1
2

10
δdB
10 − γ̄+1

γ̄√(
10

δdB
10 + γ̄+1

γ̄

)2 − 4 · 10
δdB
10

+
1
2

. (5.22)

5.7 Conclusions

We have found closed-form expressions for the PDF and CDF of two dif-
ferent measures for the estimation error when using a pilot tone fading
estimation system on a Rayleigh channel. The two error measures are the
error defined as the difference ∆ = γ̂ − γ between the CSNR estimate and
the true CSNR measured in natural units, and the error ∆dB = γ̂dB − γdB
when the true CSNR and the estimate is given in decibel. The expressions
have been verified by Monte-Carlo simulations.

For the natural units difference, a closed-form expression for the mo-
ments of the distribution has also been derived. The expression indicates
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that the variance of ∆ increases linearly as the mean CSNR increases. This
somewhat surprising result can be explained by considering that, since the
instantaneous CSNR γ and γ̂ are exponentially distributed, the variance of
both increase with the square of γ̄. It is reasonable that the variance of the
difference γ̂− γ also increases, even if they are correlated.

For the difference in decibel values, the mean and variance have not
been found. However, plots of the f∆dB(δdB) for several values of γ̄ indicate
that the main lobe becomes narrower and that it tends towards 0 dB as γ̄
increases.

The estimator considered in this chapter is a very simple one, based on
the currently received pilot symbol only. A natural and simple extension
of this work would be to incorporate a more general estimator, where ẑ
is a linear combination of several pilot symbols, as explained for instance
by Tang et al. (1999). Specifically, incorporating the predictor described in
Chapter 3 would yield results that are more applicable to a system that
could be implemented.
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Chapter 6

Conclusions

In order to give an outline of the major achievements described in this dis-
sertation, the next section will state the main contributions. The chapter
will end with some suggestions for further research.

Main Contributions of the Thesis

• A method for assessing performance merits of an adaptive coded
modulation (ACM) system was developed by Hole, Holm, and Øien
(2000) as an extension to an earlier method which applies to uncoded
systems only. The new method has in Chapter 2 been employed to
evaluate the average spectral efficiency of a coding scheme utilizing
any set of multi-dimensional trellis codes originally designed for ad-
ditive white Gaussian noise channels.

• A system based on the set of codes discussed in Chapter 2 has been
extended to take into consideration the effect of feedback delay and
inaccurate estimation of channel state information (CSI).

• Use of linear prediction based on pilot symbols has been proposed as
a technique for combating the harmful effects of feedback delay, and a
predictor which is optimal in the maximum a posteriori (MAP) sense
has been considered. The advantage of employing a MAP optimal
predictor in the previously discussed system has been assessed.

• McKay’s probability distribution (McKay, 1932) has been scrutinized,
obtaining expressions for the moments of the distribution.
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• The relation between the McKay distribution and the distribution of
sum and difference of gamma-distributed random variables (RVs)
has been stated.

• For an important special case of the McKay distribution, related to
Rayleigh fading, closed-form expressions have been found for the
moments and also for the cumulative distribution function.

• A new expression for the probability density function (PDF) of the
difference between two correlated gamma-distributed RVs has been
found. Nakagami (1960) provides a toolbox, from which the PDF of
the product, ratio, and sum of correlated gamma-distributed RVs can
be deduced. However, the expression for the PDF of the difference
between two such RVs is—to the best of the author’s knowledge—
previously unknown. The PDF is shown to be on the form of McKay’s
distribution.

• It is also shown that the sum of correlated gamma-distributed RVs is
described by a PDF (originally provided by Nakagami and Nishio,
1955; Nakagami, 1960) is in fact on the McKay form.

• An application of the new result, relevant to outage probability cal-
culation, is investigated. The new PDF enables calculation of the
outage probability in an environment with self-interference. For the
interference-limited case (when the Gaussian noise is negligible) a
closed-form expression is found.

• The new result has also been shown to have significance in assessing
the quality of certain channel estimators.

• Nakagami’s (1960) expression for the PDF of the ratio between two
gamma-distributed RVs has been utilized to find the PDF of the dif-
ference in decibel of two gamma-distributed RVs.

Suggestions for Further Research

The research presented in this dissertation has been concentrated on single-
user systems. A natural extension is to examine ACM schemes in multi-
user access systems, for instance cellular systems. Also, the fading has
been assumed to be flat, i.e., the considerations are restricted to narrow-
band transmission. The use of multicarrier/orthogonal frequency division
multiplexing (OFDM) systems could be investigated in order to extend the
methods to wideband transmission. “Bandwidth-Efficient and Adaptive
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Transmission Schemes for Wireless Multimedia Communications” (BEATS)
is a project which is financed by the Research Council of Norway. One of
the subtopics considered by this project is rate-adaptive OFDM; ACM in
cellular networks is another.

In the chapter concerned with linear prediction, the pilot symbols are
assumed to be transmitted with the same average power as the informa-
tion symbols. It is not known whether this is optimal. Adapting the pilot
symbol power to the channel quality is a possibility for increasing the per-
formance of a pilot symbol assisted ACM system. In addition, the spacing
between the pilot symbols has been assumed to be constant. Adapting the
pilot symbol spacing might also contribute to a more efficient and reliable
system.

In order to perform thorough simulation of an ACM system in a Nak-
agami fading environment, it is necessary to generate a set of Nakagami-
distributed RVs with arbitrary correlation. Although a method has been
devised for generating pairs of such RVs (Tellambura and Jayalath, 2000),
this method is not readily extendable to generation of a bigger set. Gen-
eration of an arbitrarily large set of such RVs is another subject for further
research.

The Jakes Doppler spectrum with corresponding autocorrelation func-
tion is a model for the autocorrelation of a signal under the influence of
flat fading (Stüber, 2001). The model (also known as Clarke’s 2-D isotropic
scattering model) is while widely used in analysis of systems perturbed by
flat fading (see for instance Meyr et al., 1998; Tang et al., 1999). However,
the model is restricted to the case of isotropic scattering and is possibly not
very well suited for the case when the received signal has a line-of-sight
component. Hence, there is a need for studying candidates for more realis-
tic scattering models.

An ACM system will suffer from low throughput during periods of
small CSNR, and a buffer is therefore required at the transmitter. The ap-
propriate size of this buffer is a subject for further research.
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Appendix A

Average Energy of QAM
Constellations

We calculate the average energy of QAM signal constellations with size
M = 2k, k ≥ 2. For even k, the constellation is square, while for odd k, the
constellation is cross-shaped. Examples of such constellations are shown
in Fig. 2.1, where the distance between two adjacent symbols is denoted by
d0.

Sterian (1997) has determined exact expressions for the average energy
for d0 = 2. We provide an alternative derivation of the expressions for
arbitrary value of d0.

The first quadrant of a general constellation is as shown in Fig. A.1. A
square constellation consists of the crosses in the middle, while the cross
constellation also contains the circles. The number P is associated with the

1

P
P + 1

1 P

3
2 P

d0

B1

A B2

Q

3
2 P I

FIGURE A.1: First quadrant of a square/cross constellation.
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number of symbols along each quadrature component. It is defined slightly
differently for square and cross constellations,

P =

{√
M/4 for k even√
M′/4 =

√
M/8 for k odd

(A.1)

where we have defined M′ = M/2 as the size of the largest square constel-
lation contained in the cross constellation.

A.1 Square Constellations

We first determine the average energy for even k ≥ 2, i.e., for square con-
stellations. Due to symmetry, the average energy of the whole constellation
is equal to the average energy of one of the quadrants.

The number of symbols in each quadrant is M/4. For each symbol i,
the energy Ei is given in terms of its first and second coordinates (xi, yi),
Ei = x2

i + y2
i . The average energy Esq is given by

Esq =
1

M/4

M/4

∑
i=1

Ei =
1

M/4

M/4

∑
i=1

(
x2

i + y2
i
)

(A.2)

As indicated in Eq. (A.1), the number of symbols in each of the quadrature
components is P =

√
M/4. The symbols have coordinates (xi, yi) where

{xi} = {yi} = { 1
2 d0, 3

2 d0, 5
2 d0, . . . , 2P−1

2 d0}, and Esq is thus given by

Esq =
1

P2

P

∑
m=1

P

∑
n=1

{( d0
2 (2m− 1)

)2 +
( d0

2 (2n− 1)
)2
}

=
d2

0
4P2

{
P

P

∑
m=1

(2m− 1)2 + P
P

∑
n=1

(2n− 1)2
}

=
d2

0
2P

P

∑
n=1

(2n− 1)2. (A.3)

There exist a closed-form expression for the sum in Eq. (A.3); to calculate it,
we use the following formulas (Gradshteyn and Ryzhik, 2000, Eq. 0.121):

P

∑
n=1

n =
P(P + 1)

2
P

∑
n=1

n2 =
P(P + 1)(2P + 1)

6
.

(A.4)
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Thus,

P

∑
n=1

(2n− 1)2 =
P

∑
n=1

(4n2 − 4n + 1)

= 4
P

∑
n=1

n2 − 4
P

∑
n=1

n +
P

∑
n=1

1

= 4
P(P + 1)(2P + 1)

6
− 4

P(P + 1)
2

+ P

= 1
3 P(4P2 − 1).

(A.5)

Using Eq. (A.5) in Eq. (A.3), and inserting P =
√

M/4, we obtain

Esq = 1
6 d2

0(4P2 − 1)

= 1
6 d2

0(M− 1).
(A.6)

A.2 Cross Constellations

For the cross constellations, when k ≥ 5 is odd, each of the quadrants con-
sists of 3 regions denoted by A, B1, and B2, as indicated in Fig. A.1, with
average energies EA, EB1 , and EB2 , respectively. Regions B1 and B2 are mir-
ror images of each other, thus EB1 = EB2 .

When calculating the total average energy, the contribution from both
B1 and B2 must be counted. But each of them consists of half as many
symbols as A, hence

Ecr = 1
2 EA + 1

4 EB1 + 1
4 EB2 = 1

2 (EA + EB1). (A.7)

A.2.1 Region A

The square region A consists of P× P = M/8 symbols, and is actually the
first quadrant of the squared constellation of size M′ = M/2. Thus, the
average energy is

EA = Esq
∣∣

M=M′

= 1
6 d2

0(M′ − 1)

= 1
6 d2

0(M/2− 1). (A.8)
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A.2.2 Regions B1 and B2

The B1 region consists of P/2× P = M′/8 = M/16 symbols (see Fig. A.1).
As for the square constellation, we calculate the average energy

EB1 =
1

M/16

M/16

∑
i=1

(
x2

i + y2
i
)
. (A.9)

The points in the B1 region have the following coordinates:

{xi} = {1
2

d0,
3
2

d0, . . . ,
2P− 1

2
d0} (A.10a)

{yi} = {2P + 1
2

d0,
2P + 3

2
d0, . . . ,

3P− 1
2

d0} (A.10b)

Thus,

EB1 =
2

P2

P

∑
m=1

3
2 P

∑
n=P+1

{( d0
2 (2m− 1)

)2 +
( d0

2 (2n− 1)
)2
}

=
d2

0
2P2

{
P

3
2 P

∑
n=P+1

(2n− 1)2 +
P
2

P

∑
m=1

(2m− 1)2
}

=
d2

0
2P

{ 3
2 P

∑
n=1

(2n− 1)2 −
P

∑
n=1

(2n− 1)2 + 1
2

P

∑
m=1

(2m− 1)2
}

=
d2

0
2P

{ 3
2 P

∑
n=1

(2n− 1)2 − 1
2

P

∑
m=1

(2m− 1)2
}

=
d2

0
2P

{
1
3 ( 3

2 P)
(
4( 3

2 P)2 − 1
)
− 1

2 ·
1
3 P(4P2 − 1)

}
. (A.11)

Gathering the last terms, we obtain

EB1 = 1
6 d2

0(
23
2 P2 − 1)

= 1
6 d2

0(
23
16 M− 1).

(A.12)

We insert Eq. (A.8) and Eq. (A.12) into Eq. (A.7) to obtain

Ecr = 1
2 (EA + EB1) = 1

6 d2
0(

31
32 M− 1). (A.13)
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Q

I

d0

FIGURE A.2: Illustration of the 8-cross constellation

A.2.3 8-cross Constellation

For k = 3, we cannot obtain a constellation of the form in Fig. A.1. Instead, a
constellation formed as indicated in Fig. 2.1 is employed. This constellation
is called 8-cross; an enlarged view of it is shown in Fig. A.2.

Again, due to symmetry, the average energy will be equal to the average
energy in the first quadrant. It is readily seen that this is

E8-cross = 1
2

((
( d0

2 )2 + ( d0
2 )2)+

(
(3 d0

2 )2 + ( d0
2 )2))

= 3
2 d2

0

= 1
6 d2

0(
40
32 M− 1). (A.14)

The average energy is written on the form (A.14) to correspond with the
expressions for average energy of the larger constellations.

To summarize, we have found that the energy of QAM-constellations
are,

Eavg =


1
6 d2

0(M− 1) for even k ≥ 2

1
6 d2

0
( 40

32 M− 1
)

for k = 3

1
6 d2

0
( 31

32 M− 1
)

for odd k ≥ 5

(A.15)

where the size of the constellation is M = 2k. Even k corresponds to square
constellations, k = 3 corresponds to the special 8-cross constellation while
odd k ≥ 5 corresponds to the larger cross constellations.
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Appendix B

Statistical Properties of the
Predicted Fading Amplitude

Tang et al. (1999) derive general formulas for the expectation of the square
of a linear, non-causal estimate of the fading amplitude, and for the power
correlation coefficient between the estimate and the true fading amplitude.
It is here demonstrated that the formulas also apply to the case of linear
prediction.

B.1 Expectation of α̂2

Ω̂ = E[α̂2] = E[|ẑh|2] = E[|fH
j z̃h|

2] = fH
j E[z̃hz̃H

h ]fj

= fH
j

(
E[zhzH

h ] +
1
a2

p
E[nhnH

h ]

)
fj (B.1)

where nh is the noise accompanying the fading zh. Since the noise is as-
sumed to be white, its covariance matrix is simply the K×K identity matrix
multiplied by the noise variance N0B. Thus,

Ω̂ = ΩfH
j Rfj +

N0B
a2

p
‖fj‖2 (B.2)

Defining r as the ratio of the Ω̂ to the Ω, and assuming that ap =
√

P where
P is the average transmit power, we obtain

r =
Ω̂
Ω

= fH
j Rfj +

‖fj‖2

γ̄h
. (B.3)
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B.2 Correlation Coefficient

In calculating an expression for the correlation coefficient ρ = E[α̂2
hα2

h ]−Ω2r
Ω2r

between the predicted and the true value of the CSNR at time index (n + j),
it is advantageous to concentrate on the correlation between α̂2

h and α2
h:

E[α̂2
hα2

h] = E[|fH
j z̃h|

2 · |zh(n + j)|2]

= fH
j E[(zh +

1
ap

n)(zH
h +

1
ap

nH) · |zh(n + j)|2]fj (B.4)

and since noise and fading are statistically independent and both zero-
mean,

E[α̂2
hα2

h] = fH
j E[zhzH

h · |zh(n + j)|2 +
1
a2

p
nnH · |zh(n + j)|2]fj

= fH
j E[zhzH

h · |zh(n + j)|2]fj + Ω
N0B
a2

p
‖fj‖2 (B.5)

still assuming that ap =
√

P, using γ̄h = Ω·P
N0B , and introducing zr,h = Re(zh)

(and similarly for the scalar zh(n + j)), where Re(·) indicates the real part
(in-phase or I-component) of a complex baseband symbol.

E[α̂2
hα2

h] = 2fH
j E[zr,hzT

r,h · z2
r,h(n + j)]fj

+ 2fH
j E[zr,hzT

r,h]E[z2
r,h(n + j)]fj +

Ω2

γ̄h
‖fj‖2. (B.6)

Since E[zhzH
h ] = E[zr,hzT

r,h] + E[zi,hzT
i,h] = ΩR, and E[zr,hzT

r,h] = E[zi,hzT
i,h],

E[zr,hzT
r,h] =

Ω
2

R, (B.7a)

and it turns out that similar expressions exist for the scalar variance/cross-
correlation expressions, namely,

E[zr,hzr,h(n + j)] =
Ω
2

rj and E[z2
r,h(n + j)] =

Ω
2

. (B.7b)

Thus it can be concluded that,

E[α̂2
hα2

h] = 2fH
j E[zr,hzT

r,h · z2
r,h(n + j)]fj +

1
2

Ω2fH
j Rfj +

Ω2

γ̄h
‖fj‖2 (B.8)

This equation contains a fourth-order moment, and in order to complete
the solution, the following Lemma will be utilized:
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Lemma 1 (Fourth order moment of a Gaussian process)
It is known (see for instance Papoulis, 1991, Sec. 8-2) that, for zero-mean,
real, Gaussian RVs a, b, c, and d, the following formula can be used to find
the fourth-order moment:

E[abcd] = E[ab]E[cd] + E[ac]E[bd] + E[ad]E[bc]. (B.9)

The above formula may also be used when two of the RVs are vectors, as
can be demonstrated by letting c = [x y]T and d = [w z]T:

E[abcdT] = E
[

ab
[

x
y

] [
w z

]]
=
[

E[abxw] E[abxz]
E[abyw] E[abyz]

]

=


E[ab]E[xw] + E[ax]E[bw] + E[aw]E[bx]

E[ab]E[xz] + E[ax]E[bz] + E[az]E[bx]

E[ab]E[yw] + E[ay]E[bw] + E[aw]E[by]
E[ab]E[yz] + E[ay]E[bz] + E[az]E[by]


= E[ab]

[
E[xw] E[xz]
E[yw] E[yz]

]
+
[

E[ax]
E[ay]

] [
E[bw] E[bz]

]
+
[

E[bx]
E[by]

] [
E[aw] E[az]

]
= E[ab]E

[[
x
y

] [
w z

]]
+ E

[
a ·
[

x
y

]]
E
[
b ·
[
w z

]]
+ E

[
b ·
[

x
y

]]
E
[
a ·
[
w z

]]
(B.10)

and it is concluded that

E[abcdT] = E[ab]E[cdT] + E[ac]E[bdT] + E[bc]E[adT]. (B.11)

With Lemma 1 in mind, and utilizing the expression for r from Eq. (B.3),

E[α̂2
hα2

h] = 2fH
j

(
E[zr,hzT

r,h]E[z2
r,h(n + j)] + 2E[zr,hzr,h(n + j)]E[zT

r,hzr,h(n + j)]
)

fj

+
1
2

Ω2fH
j Rfj +

Ω2

γ̄h
‖fj‖2

= 4fH
j

(Ω
2

rj
Ω
2

rT
j

)
fj + Ω2fH

j Rfj +
Ω2

γ̄h
‖fj‖2

= Ω2|fH
j rj|2 + Ω2r (B.12)

By inserting Eq. (B.12) in Eq. (3.21), the final expression for the correlation
coefficient is obtained as follows:

ρ =
|fH

j rj|2

r
=

|fH
j rj|2

fH
j Rfj + 1

γ̄h
‖fj‖2

(B.13)
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Appendix C

Derivation of BERn

C.1 Useful Formulas

We now provide a useful integral related to the incomplete gamma func-
tion.

Lemma 2 (Integration rule: Incomplete gamma function)
From the definition of the normalized incomplete gamma function (Defi-
nition 1, Section 3.4) and from Gradshteyn and Ryzhik (2000, Eq. 3.381-3),
the following integration formula is deduced:∫ y

x
ta−1e−t·µdt =

Γ(a)
µa [Q(a, xµ)− Q(a, yµ)] (C.1)

Lemma 3 (The Nuttall function)
We have the following relationship involving the Nuttall function (Nut-
tall, 1974), AKA the generalized Marcum Q-function, AKA the non-central
chi-square distribution (Temme, 1996, Sec. 11.4)1 QH(·, ·):∫ ∞

y
u

H−1
2 e−uα IH−1

(√
u2β

)
du =

βH−1

αH · e
β2
α · QH

(
β2

α
, yα

)
(C.2)

This can be seen by making the substitution z = uα and using x = β2

α ,
and then applying the definition of the generalized Marcum Q-function
as provided by Temme (1996, Eq. 11.63).

A different definition of the Nuttall function is in terms of the fol-
lowing series of normalized incomplete gamma functions (Temme, 1996,
Eq. 11.61):

Qµ(x, y) = e−x
∞

∑
n=0

xn

n!
Q(µ + n, y) (C.3)

1Note that Temme and Nuttall utilize slightly different definitions of this function.
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It follows from Eq. (3.22) that Q(z, 0) = 1 so that Qµ(x, 0) = 1. An integra-
tion rule, slightly different from Eq. (C.2), follows:∫ y

0
u

H−1
2 e−uα IH−1

(√
u2β

)
du =

βH−1

αH · e
β2
α ·
(

1− QH

(
β2

α
, yα

))
(C.4)

The following formula is a series definition analogous to Eq. (C.3):

1− Qµ(x, y) = e−x
∞

∑
n=0

xn

n!
(1− Q(µ + n, y)) (C.5)

C.2 Calculations

We want to calculate the following integral:

BERn =
∫ γn+1

γm

∫ ∞

0
BERn(γ | γ̂) fγ,γ̂(γ, γ̂) dγ dγ̂ (C.6)

Here, we use the approximation

BERn(γ | γ̂) =

an(γ̂) exp
(
− bn(γ̂)γ

Mn(γ̂)

)
, γ ≥ γl

n(γ̂)

1/2, γ < γl
n(γ̂)

(C.7)

for γl
n = ln(2an)Mn/bn, and γ, γ̂ ∼ G(H, γ̄h, ¯̂γh, ρ) are jointly gamma-

distributed RVs. The index n is dependent on γ̂. However, in the integral
kernel—when the boundaries γm, γn+1 are given—n is a constant. Thus,
an(γ̂) = an, bn(γ̂) = bn, and Mn(γ̂) = Mn.

We now define the following integrals,

J 1(n, γ̂) =
∫ ∞

0
an exp

(
−bnγ

Mn

)
fγ,γ̂(γ, γ̂) dγ (C.8)

J 2(n, γ̂) =
∫ γl

n

0

(
an exp

(
−bnγ

Mn

)
− 1

2

)
fγ,γ̂(γ, γ̂) dγ. (C.9)

The J 2 integral can be split up even further,

J 21(n, γ̂) =
∫ γl

n

0
an exp

(
−bnγ

Mn

)
fγ,γ̂(γ, γ̂) dγ (C.10)

J 22(n, γ̂) =
1
2

∫ γl
n

0
fγ,γ̂(γ, γ̂) dγ. (C.11)
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Thus, the integral BERn splits into three parts

BERn =
∫ γn+1

γm

J 1(n, γ̂)−J 2(n, γ̂) dγ̂

=
∫ γn+1

γm

J 1(n, γ̂)− (J 21(n, γ̂)−J 22(n, γ̂)) dγ̂

= I1(n)− (I21(n)− I22(n)) (C.12)

where I1(n), I21(n), and I22(n) are the integrals of J 1(n, γ̂), J 21(n, γ̂),
and J 22(n, γ̂), respectively.

BothJ 1(n, γ̂) andJ 22(n, γ̂) can be viewed as special cases ofJ 21(n, γ̂).
We therefore proceed to solve the integral in Eq. (C.10).

C.2.1 Calculation of J 21(n, γ̂)

By inserting the definition of fγ,γ̂(γ, γ̂),

J 21(n, γ̂) = an
γ̂

H−1
2

Γ(H)γ̄H+1
h r

H+1
2 (1− ρ)ρ

H−1
2

e−
γ̂

(1−ρ)rγ̄h

×
∫ γl

n

0
γ

H−1
2 e−γ( bn

Mn + 1
(1−ρ)γ̄h

) IH−1

(
√

γ
2

(1− ρ)γ̄h

√
ργ̂

r

)
dγ,

(C.13)

were the parameter r = ¯̂γh/γ̄h, the ratio between the mean of the estimated
and the mean of the the actual CSNR, has been employed.

Using the correspondences α = bn
Mn

+ 1
(1−ρ)γ̄h

and β = 1
(1−ρ)γ̄h

√
ργ̂
r in

Eq. (C.4) and collecting terms, we get

J 21(n, γ̂) =
an

Γ(H)

(
1

γ̄hr
· 1

(1− ρ) bnγ̄h
Mn

+ 1

)H

γ̂H−1

× exp
(
−γ̂ · 1

γ̄hr
·

bnγ̄h
Mn

+ 1

(1− ρ) bnγ̄h
Mn

+ 1

)

×

[
1− QH

(
γ̂ · ρ

(1− ρ)
· 1

γ̄hr
· 1

(1− ρ) bnγ̄h
Mn

+ 1
, γl

n

(
bn

Mn
+

1
(1− ρ)γ̄h

))]
(C.14)

Since J 21(n, γ̂) will be used in an integration kernel, it is advantageous
to express the formula using as simple functions as possible. Therefore, we
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utilize the series representation of the Nuttall function from Eq. (C.5) and
collect terms to obtain the final expression:

J 21(n, γ̂) =
an

Γ(H)
γ̂H−1e−

γ̂
(1−ρ)γ̄hr

×
∞

∑
k=0

γ̂k

k!

(
ρ

1− ρ

)k( 1
γ̄hr

· 1

(1− ρ) bnγ̄h
Mn

+ 1

)k+H

×
[

1− Q
(

k + H, γl
n

( bn

Mn
+

1
(1− ρ)γ̄h

))]
(C.15)

C.2.2 Calculation of I21(n)

We now calculate the integral I21(n). In turn, I22(n) can be found as a spe-
cial case. By inserting the expression for J 21(n, γ̂) from Eq. (C.15), chang-
ing the order of integration and summation and then collecting terms, we
get:

I21(n) =
∫ γn+1

γn

J 21(n, γ̂) dγ̂

Change order of integration and summation

=
an

Γ(H)

∞

∑
k=0

1
k!

(
ρ

1− ρ

)k ( 1
γ̄hr

· 1

(1− ρ) bnγ̄h
Mn

+ 1

)k+H

×
[

1− Q
(

k + H, γl
n

( bn

Mn
+

1
(1− ρ)γ̄h

))]
×
∫ γn+1

γn

γ̂k+H−1e−
γ̂

(1−ρ)γ̄hr dγ̂

Use Eq. (C.1) and collect terms

I21(n) = an

∞

∑
k=0

Γ(k + H)
Γ(k + 1)Γ(H)

(
ρ

1− ρ

)k ( 1
bnγ̄h
Mn

+ 1
1−ρ

)k+H

×
[

1− Q
(

k + H, γl
n

( bn

Mn
+

1
(1− ρ)γ̄h

))]
×
[

Q
(

k + H,
γn

(1− ρ)γ̄hr

)
− Q

(
k + H,

γn+1

(1− ρ)γ̄hr

)]
(C.16)

98



CALCULATIONS

C.2.3 Calculation of I22(n)

I22(n) follows as a special case of I21(n), namely, I22(n) = I21(n)|an= 1
2 ,bn=0.

Thus,

I22(n) =
1
2

∞

∑
k=0

Γ(k + H)
Γ(k + 1)Γ(H)

ρk (1− ρ)H

×
[

1− Q
(

k + H,
γl

n
(1− ρ)γ̄h

)]
×
[

Q
(

k + H,
γn

(1− ρ)γ̄hr

)
− Q

(
k + H,

γn+1

(1− ρ)γ̄hr

)]
(C.17)

C.2.4 Calculation of J 1(n, γ̂)

I1(n) could have been found directly from Eq. (C.16) by letting γl
n → ∞

and noting that QH(x, y)|y→∞ = 0. However, it is substantially easier to
first find J 1(n, γ̂) from Eq. (C.14). Since γl

n → ∞, the parenthesis contain-
ing the Nuttall function (making Eq. (C.14) unsuitable for integration) will
disappear.

J 1(n, γ̂) =
an

Γ(H)

(
1

γ̄hr
· 1

(1− ρ) bnγ̄h
Mn

+ 1

)H

× γ̂H−1 exp
(
− γ̂

γ̄hr
·

bnγ̄h
Mn

+ 1

(1− ρ) bnγ̄h
Mn

+ 1

)
(C.18)
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C.2.5 Calculation of I1(n)

Now I1(n) is found by once more employing Eq. (C.1) to integrateJ 1(n, γ̂):

I1(n) =
an

Γ(H)

(
1

γ̄hr
· 1

(1− ρ) bnγ̄h
Mn

+ 1

)H

×
∫ γn+1

γn

γ̂H−1 exp
(
− γ̂

γ̄hr
·

bnγ̄h
Mn

+ 1

(1− ρ) bnγ̄h
Mn

+ 1

)
dγ̂

= an

(
1

bnγ̄h
Mn

+ 1

)H

×

[
Q
(

H,
γn

γ̄hr
·

bnγ̄h
Mn

+ 1

(1− ρ) bnγ̄h
Mn

+ 1

)
− Q

(
H,

γn+1

γ̄hr
·

bnγ̄h
Mn

+ 1

(1− ρ) bnγ̄h
Mn

+ 1

)]
(C.19)

Now, Eqs. (C.19), (C.16), and (C.17) can be combined in Eq. (C.12) to
provide BERn.
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Appendix D

Proofs of the Theorems in Ch. 4

D.1 Moments of McKay’s Type I Distribution

In this appendix a proof of Theorem 1 is given. Let Σ be distributed accord-
ing to the PDF stated in Definition 2. The moments of Σ are given by:

E[Σn] =
∫ ∞

−∞
σn fΣ(σ) dσ

= E0π ·
∫ ∞

0
σa+ne−σ c

b Ia

(σ

b

)
dσ, (D.1)

assigning E0 = |1−c2|a+1/2
√

π2aba+1Γ(a+1/2) . We employ the identity∫ ∞

0
xµ−1e−ηx Jν(ψx) dx

=

(
ψ
2η

)ν
Γ(ν + µ)

ηµ Γ(ν + 1) 2F1

(
ν + µ

2
,

ν + µ + 1
2

; ν + 1;−ψ2

η2

)
(D.2)

(Gradshteyn and Ryzhik, 2000, Eq. 6.621-1) and utilize

Iν(z) = (−j)ν Jν(jz) (D.3)

where Jν(·) is the Bessel function of the first kind and order ν (Abramowitz
and Stegun, 1972, Eq. 9.6.3). Letting z = −jψx = βx in Eq. (D.3), the fol-
lowing formula can be deduced:∫ ∞

0
xµ−1e−ηx Iν(βx) dx

=
βν

2νηµ+ν

Γ(µ + ν)
Γ(ν + 1) 2F1

(
µ + ν

2
,

µ + ν + 1
2

; ν + 1;
β2

η2

)
(D.4)
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valid for β > 0, η > 0, and β < η. Let

µ = n + a + 1,
ν = a,
β = 1/b,
η = c/b,

(D.5)

(noting that c > 1 so that the requirements for Eq. (D.4) are fulfilled,) and
utilize the “doubling formula” (Gradshteyn and Ryzhik, 2000, Eq. 8.335-1:√

πΓ(2x) = 22x−1Γ(x)Γ(x + 1
2 )) to arrive at the following expression:

E[Σn] =
(c2 − 1)a+ 1

2 bn

c2a+n+1
Γ(2a + n + 1)

Γ(2a + 1)

× 2F1

(2a + n + 1
2

,
2a + n + 2

2
; a + 1;

1
c2

)
, (D.6)

where 2F1(·, ·; ·; ·) is Gauss’ hypergeometric function (quoted for instance
by Gradshteyn and Ryzhik, 2000, Section 9.1). This concludes the proof of
Theorem 1.

D.2 Moments of McKay’s Type II Distribution

In this appendix we give a proof of Theorem 2. Let ∆ be distributed accord-
ing to the PDF stated in Definition 3. We find the moments of ∆ as given
by:

E[∆n] =
∫ ∞

−∞
δn f∆(δ) dδ

= E0 ·
∫ ∞

−∞
δn|δ|ae−δ c

b Ka

( |δ|
b

)
dδ

= E0 ·
∫ ∞

0
δn+a((−1)neδ c

b + e−δ c
b
)
Ka

(δ

b

)
dδ, (D.7)

where E0 is as defined in Appendix D.1. The integral can be solved in terms
of Gauss’ Hypergeometric function 2F1(·, ·; ·; ·) with the aid of (Gradshteyn
and Ryzhik, 2000, Eq. 6.621-3), cited here for convenience:∫ ∞

0
xµ−1e−ηxKν(βx) dx

=
√

π(2β)ν

(η + β)µ+ν

Γ(µ + ν)Γ(µ− ν)
Γ(µ + 1/2) 2F1

(
µ + ν, ν + 1

2 ; µ + 1
2 ;

η − β

η + β

)
, (D.8)
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where it is required that µ > |ν| and η + β > 0. Employ the same pa-
rameters µ, ν, β as in Eq. (D.5), and η = ± c

b , noting that |c| < 1 so the
requirements are fulfilled. After some algebraic manipulations, we arrive
at the desired expression:

E[∆n] =
bn

(1− c2)a+n+ 1
2

Γ(2a + n + 1)Γ(n + 1)
Γ(a + n + 3

2 )Γ(a + 1
2 )

×
[
(−1)n(1 + c)2a+n+1

2F1

(
2a + n + 1, a + 1

2 ; a + n + 3
2 ;−1 + c

1− c

)
+ (1− c)2a+n+1

2F1

(
2a + n + 1, a + 1

2 ; a + n + 3
2 ;−1− c

1 + c

)]
, (D.9)

which ends the proof of Theorem 2.

D.3 Moments of the McKay Distributions (Special
Case)

In the special case that arises when a is restricted to a = 1/2, the formula
for the moments becomes particularly simple. In the following, this will be
shown with the aid of two lemmas.

First, the expression for the moments of a type I McKay distribution is
investigated:

Lemma 4 (Moments, Type I, a = 1/2)
In Eq. (4.4), let a = 1/2. By using the formula 2F1

( n+2
2 , n+2

2 + 1
2 ; 3

2 ; 1
c2

)
=

cn+2

2(n+1) ((
1

c−1 )n+1− ( 1
c+1 )n+1), (deduced from Abramowitz and Stegun, 1972,

Eq. 15.1.10), we get the following expression:

E[Σn] =
(c2 − 1)bn

cn+2
Γ(n + 2)

Γ(2) 2F1

(n + 2
2

,
n + 3

2
;

3
2

;
1
c2

)
=

bn(c2 − 1)Γ(n + 2)
2(n + 1)

( 1
(c− 1)n+1 −

1
(c + 1)n+1

)
=

n!
2

bn(c2 − 1)
( 1

(c− 1)n+1 −
1

(c + 1)n+1

)
=

n!bn

2(c2 − 1)n

(
(c + 1)n+1 − (c− 1)n+1) (D.10)

Note that n ∈ Z+ so that the Γ function can be replaced by the factorial.

Next, we turn to the expression for the type II McKay distribution:
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Lemma 5 (Moments, Type II, a = 1/2)
In Eq. (4.5), let a = 1/2. Next, employ that 2F1(a, b; c; z) = 2F1(b, a; c; z)
by the series representation of the 2F1 function (Gradshteyn and Ryzhik,
2000, Eq. 9.100) and that 2F1(b, a; a;−z) = (1 + z)−b (which follows from
Gradshteyn and Ryzhik, 2000, Eq. 9.121-1). Then the expression for the
moments reduces to the following formula:

E[∆n] =
bn

(1− c2)n+1
Γ(n + 2)Γ(n + 1)

Γ(n + 2)Γ(1)

×
[
(−1)n(1 + c)n+2

2F1

(
n + 2, 1; n + 2;−1 + c

1− c

)
+ (1− c)n+2

2F1

(
n + 2, 1; n + 2;−1− c

1 + c

)]
=

bnΓ(n + 1)
(1− c2)n+1

[
(−1)n (1 + c)n+2

1 + 1+c
1−c

+
(1− c)n+2

1 + 1−c
1+c

]
=

n!bn

2(1− c2)n

[
(−1)n(1 + c)n+1 + (1− c)n+1]

=
n!bn

2(c2 − 1)n

[
(c + 1)n+1 − (c− 1)n+1] (D.11)

This shows that the expressions for the moments of the two McKay dis-
tributions are in fact identical, for the special case of a = 1

2 .

D.4 Sum of Two Correlated Gamma RVs

Let X1, X2 ∼ G(α, β1, β2, ρ). Nakagami and Nishio (1955, Eq. 43) and (Nak-
agami, 1960, Eq. 142) provide the PDF of the square root R of the sum of
the squares of two correlated Nakagami-distributed RVs. This is equiva-
lent to the square root of the sum of two gamma-distributed RVs, i.e., R =√

X1 + X2. The expression is as follows:

fR(r) =
2r
√

π

(β1β2(1− ρ))αΓ(α)
e−

(β1+β2)r2

2β1β2(1−ρ)
( r2

2β̃

)α−1/2
Iα−1/2(β̃r2) (D.12)

where

β̃2 =
(β1 − β2)2 + 4β1β2ρ

4β1β2(1− ρ)2 . (D.13)

By using a standard transformation of variables, it can be shown that Σ =
R2 follows the distribution described by

fΣ(σ) =
√

π

(β1β2(1− ρ))αΓ(α)
e−

(β1+β2)σ

2β1β2(1−ρ)
( σ

2β̃

)α−1/2
Iα−1/2(β̃σ)H(σ) (D.14)
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By inserting a, b, and c from Eq. (4.15) into Eq. (4.1) and comparing the
result with Eq. (D.14), we see that Nakagami’s result is indeed on the form
of McKay’s distribution.

D.5 Difference Between Two Correlated Gamma RVs

In this appendix, we give a direct proof of Theorem 6 1. Let X1, X2 ∼
G(α, β1, β2, ρ) and let their difference ∆ = X1 − X2.

Since ∆ can be viewed as a function of X1, ∆ = g(X1) = X1 − X2, we
can use transformation of variables and find

fX1∆(x1, δ) =
fX1X2(x1, x2)
|dg/dx2|

∣∣∣
x2=g−1(δ)

= fX1X2(x1, x1 − δ). (D.15)

The PDF of ∆ can be found by integrating Eq. (D.15) over the support of
X1. Since X1, X2 are gamma RVs, x1, x2 are always positive and therefore
δ ≤ x1. Consequently, when δ > 0, x1 ≥ δ whereas when δ ≤ 0, x1 ≥ 0. The
lower limit of integration is thus x0 = max(0, δ) and hence

f∆(δ) =
∫ ∞

x0

fX1X2(x1, x1 − δ) dx1

=
e

δ
(1−ρ)β2

Γ(α)(β1β2)(α+1)/2(1− ρ)ρ(α−1)/2

×
∫ ∞

x0

e
x1

1−ρ

(
1

β1
− 1

β2

)(
x1(x1 − δ)

)(α−1)/2 Iα−1

(
2√ρ

√
x1(x1 − δ)

(1− ρ)
√

β1β2

)
dx1.

(D.16)

Eq. (D.16) must be treated separately for the cases δ = 0 and for δ 6= 0.
For δ = 0, we have

f∆(0) =
1

Γ(α)(β1β2)(α+1)/2(1− ρ)ρ(α−1)/2

×
∫ ∞

0
e

x1
1−ρ

(
1

β1
− 1

β2

)
xα−1

1 Iα−1

(
2√ρ · x1

(1− ρ)
√

β1β2

)
dx1, (D.17)

1By direct proof, we mean that we are providing in this Appendix a proof that start
from the bivariate gamma distribution. Alternatively, this theorem can be proved by first
using a linear transformation of random variables to convert two correlated gamma RVs
into independent ones and then by using the result of Theorem 4.
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which can be viewed as a Laplace transform, and to which a closed-form
solution can be found (Gradshteyn and Ryzhik, 2000, Eq. 17.13-110) as

f∆(0) =
1

Γ(α)(β1β2)(α+1)/2(1− ρ)ρ(α−1)/2

× 2α−1π− 1
2 Γ(α− 1

2 )
( 2√ρ

(1− ρ)
√

β1β2

)α−1

×
(( 1

1− ρ

( 1
β1

+
1
β2

))2
−
( 2√ρ

(1− ρ)
√

β1β2

)2
)−(α− 1

2 )

,

which can be further simplified by combining terms to

f∆(0) =
Γ(α− 1

2 )
√

πΓ(α)

(
4β1β2(1− ρ)

)α−1(
(β1 + β2)2 − 4β1β2ρ

)α− 1
2

. (D.18)

The previous expression is valid for α > 1/2.
For δ 6= 0, we rely on the series expansion for the Bessel function Iν(z) =

∑∞
k=0

1
k!Γ(ν+k+1) (

z
2 )ν+2k (Gradshteyn and Ryzhik, 2000, Eq. 8.445) to solve the

integral in Eq. (D.16). In particular, using the series expansion, chang-
ing the order of integration and summation, and then combining terms,
Eq. (D.16) can be rewritten as

f∆(δ) =
e

δ
(1−ρ)β2

Γ(α)(β1β2)(α+1)/2(1− ρ)ρ(α−1)/2

×
∞

∑
k=0

{
1

k!Γ(α + k)

( √
ρ

(1− ρ)
√

β1β2

)2k+α−1

×
∫ ∞

x0

(
x1(x1 − δ)

)k+α−1e−
1

1−ρ

(
1

β1
+ 1

β2

)
x1 dx1

}
. (D.19)

To solve the integral in Eq. (D.19), we use the following lemma:

Lemma 6 (A Useful Integral)
We combine two results from Gradshteyn and Ryzhik (2000, Eqs. (3.383-3)
and (3.383-8), respectively),∫ ∞

β
xν−1(x − β)ν−1e−µxdx =

1√
π

( β

µ

)ν−1/2
e−

βµ
2 Γ(ν)Kν−1/2

( βµ

2

)
,

[Re µβ > 0, Re ν > 0], (D.20)
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∫ ∞

0
xν−1(x + β)ν−1e−µxdx =

1√
π

( β

µ

)ν−1/2
e

βµ
2 Γ(ν)Kν−1/2

( βµ

2

)
,

[| arg β| < π, Re µ > 0, Re ν > 0]. (D.21)

Eq. (D.20) can apply to the case of positive δ, and thus we set β = δ—
which means that β > 0. Likewise, Eq. (D.21) can apply to the case where
δ is negative, if we set β = −δ. This still means that β > 0 so that the re-
quirements for the identities are fulfilled. Together, they give the identity∫ ∞

max(0,δ)

(
x(x − δ)

)ν−1e−µxdx =
1√
π

( |δ|
µ

)ν−1/2
e

δµ
2 Γ(ν)Kν−1/2

(
|δ|µ

2

)
,

[Re δ 6= 0, Re µ > 0, Re ν > 0]. (D.22)

Since the integral in Eq. (D.19) is in the form of Eq. (D.22) and µ = 1
1−ρ

( 1
β1

+
1
β2

)
> 0, ν = k + α > 0, and remembering that x0 = max(0, δ), the condi-

tions of Eq. (D.22) are met. In particular, inserting Eq. (D.22) in Eq. (D.19)
and collecting similar terms leads to

f∆(δ) =
|δ|α−1/2
√

πΓ(α)
1

(β1 + β2)α−1/2
√

(1− ρ)β1β2

× exp
(

1
1− ρ

( ρ

β2
− δ

2β1
− δ

2β2

))
×

∞

∑
k=0

1
k!

(
|δ| ρ

(1− ρ)(β1 + β2)

)k

× Kk+α−1/2

( |δ|
2

β1 + β2

(1− ρ)β1β2

)
. (D.23)

The sum can be solved by the aid of the multiplication theorem for Bessel
functions:

Lemma 7 (Multiplication Theorem for Bessel Functions)
The Multiplication Theorem for modified Bessel functions states (quoted
by Abramowitz and Stegun, 1972, Eq. 9.6.51):

Zν(λz) = λν
∞

∑
k=0

(λ2 − 1)k( 1
2 z)k

k!
Zν+k(z), [|λ2 − 1| < 1],

where for the modified Bessel function of the second kind, Zν represents
eνπiKν. Thus Zν+k = (−1)keνπiKν+k, and we have the following formula:

λ−νKν(λz) =
∞

∑
k=0

1
k!

(
(1− λ2)

z
2

)k
Kk+ν(z), [|λ2 − 1| < 1]. (D.24)
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Since the sum in Eq. (D.23) is on the form of Eq. (D.24) with ν = α − 1/2,

z = |δ|
2

β1+β2
(1−ρ)β1β2

, and λ =
√

1− 4ρβ1β2
(β1+β2)2 , we are able to solve the sum in

Eq. (D.23) in closed-form.2

After using Eq. (D.24) in Eq. (D.23) and collecting terms, we arrive at
the final desired result given by

f∆(δ) =
|δ|α−1/2

Γ(α)
√

π
√

β1β2(1− ρ)

×
( 1

(β1 + β2)2 − 4ρβ1β2

) 2α−1
4

× exp
(

δ/2
1− ρ

( 1
β2
− 1

β1

))
× Kα−1/2

(
|δ|
√

(β1 + β2)2 − 4ρβ1β2

2(1− ρ)β1β2

)
, (D.25)

which proves Theorem 6. Note that the Eq. (D.18), the special case for the
limit when δ → 0, can also be found by using the formula devised in Propo-
sition 1.

2It can be shown that 4ρβ1 β2
(β1+β2)2 < 1 except when ρ = 1 and β1 = β2. The latter case is the

trivial one when X1 = X2 ⇒ ∆ = 0 and is thus not particularly interesting. The condition
in Eq. (D.24), |λ2 − 1| < 1, is therefore met so that Lemma (7) can safely be used to simplify
Eq. (D.23).
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