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Abstract

The present dissertation consists of a collection of six papers preceded by
an introduction. The papers investigate the design and performance anal-
ysis of communication systems operating over wireless fading channels.

Wireless communication systems carry great expectations for future ser-
vices. They are expected to give users both reliable high data rate transmis-
sion and the freedom of mobility. However, due to the limited available
spectral resources and the random nature of the wireless channel, these
systems also constitute formidable challenges to the designer. This thesis
explores some modern analysis and design tools that can help overcome
these challenges to meet the great expectations.

Specifically, the thesis is concerned with adaptive transmission schemes
for both single link and multi-link communication systems. Key adaptive
techniques investigated are those of: i) Adaptive modulation, increasing the
spectral efficiency by adapting the signal constellation to the channel state,
ii) power control, providing a flexible tool for exploiting the degrees of free-
dom offered by the wireless channel, e.g., by throughput enhancing power
allocation for single-link transmission, or to provide battery savings at the
mobile unit and interference management for multi-link scenarios, and iii)
(adaptive) diversity combining, improving and stabilizing link quality by uti-
lizing multiple independent signal paths for communication.
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Dr. Sébastien de la Kethulle de Ryhove, Rodrigo de Miguel de Juan for
both scientific discussions and social events, and Prof. Nils Holte for some
very interesting lunch room discussions. Dr. Vegard Hassel is thanked for
reviewing the introduction of this thesis, and for, together with his wife
Tove Irene, creating a very nice household in 19, Rue de Rivoli during the
autumn of 2005.

I would also like to express my gratitude to my parents Åse and Tom,
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Introduction1

The announced convergence between mobile and data access internet-
based services, initiated in systems such as WiMAX [2; 3] and 3G-LTE [4],
poses extraordinary challenges to the designers of future generation wire-
less networks who must cope with the scarcity of the spectral resource in
areas with heavy user demand. It is widely admitted that, at the heart of
this challenge, lies the ability to exploit the available resources as efficiently
as possible in all dimensions allowed, e.g., time, frequencies, codes, power,
and beams.

Traditionally, resource planning for wireless communication systems
has been based on the philosophy of voice-centric networks. That is, a tra-
ditional design is aimed at allowing the users to operate under a common
received signal quality level, compatible with the receiver’s sensitivity or
operating point. This point represents the level of signal quality needed
to operate on the link, below which the call may be dropped, at the access
points and the user terminals. Consequently, most communication control
algorithms are designed to reach a link quality target simultaneously for
all user terminals. This approach ensures a performance necessary for con-
nection oriented voice calls [5–8].

The concept of a modem’s operating point is however becoming by far
less relevant in modern networks designed for data-dominated traffic, as
these networks typically feature adaptive coding and modulation proto-
cols capable of adjusting the transmission rate to a wide range of channel
conditions. Even if the number of coding rates remains limited in practice
due to memory and complexity constraints, the strategy of optimizing the
spectral resource for a desired worst case scenario and relying on advanced
modem design alone for optimizing performance under this channel state
level, is losing some relevance. This in turn shows the limitation of the
traditional approach when it comes to network wide optimization of per-
formance. For best-effort data access (e.g., e-mail, web browsing, multi-
media messaging) the network capacity, defined as the sum of simultaneous

1The first few paragraphs and Section 5 of this Introduction are in part based on [1].
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transmit-receive link capacities, appears as a more meaningful metric, al-
though additional constraints may be needed to include specific scenarios
with quality of service (QoS)-driven traffic data (e.g., voice over IP) into the
resource optimization problem.

Now, focusing on designing high-capacity wireless systems, be it a
point-to-point or multiple-link system, an obvious question is at what max-
imum (sum) rate communication can occur, and information still be re-
covered with an arbitrary low probability of error. This maximum rate is
known from information theory as the channel capacity [9], and the problem
of deriving this capacity for various channels have received significant in-
terest over the last 40-50 years; see e.g., [10] and the references therein. The
knowledge of the theoretical capacity, i.e., the upper performance bounds,
can be of great help during the design process. One major benefit is be-
ing able to give an upper bound on the achievable performance, yielding
a benchmark against which the performance of a proposed system can be
evaluated.

The upper bounds on the achievable network performance are derived
with little or no concern for complexity and implementation issues. A clas-
sical example is Shannon’s formula for the channel capacity of an additive
white Gaussian noise (AWGN) channel under an average power constraint,
which is derived assuming infinitely long codewords [11]. However, in
practice theoretical constructions such as infinitely long codewords, zero
delay, or perfect channel state information can not be applied, and then an
interesting line of work is to do performance analysis under the constraint
that one or more transmission system components can be realized in prac-
tice.

As an example, in resource allocation for wireless networks, certain
quantities entering the problem may be continuous-valued, e.g., the trans-
mit power levels [12; 13], or the beamforming coefficients if multiple an-
tennas are used [14]. Then, a potentially interesting tool in modifying the
system design consists of discretizing the optimization space so as to re-
duce the number of potential solutions to search over, and also to reduce
the feedback rate needed to communicate overhead data between network
nodes. In the case of power control, discretization can be carried out prior
to optimization, as a way to greatly simplify the power level search pro-
cedure. Remarkably, as will be shown in this thesis, the discretization of
power control, even to its extreme of binary on/off control, can be shown to
yield optimal results in a number of cases. As such it constitutes a promis-
ing tool in designing future multi-link networks.

In most cases however, the promised theoretically optimal performance
can not be achieved using practical techniques. The key question is then,

4



LINK ADAPTATION

how much of the original performance can be achieved under a less com-
plex system design. One illustration of this is using adaptive coded mod-
ulation over a single link channel, for which the channel capacity using
continuous power control and infinitely many code rates under perfect
channel state information was derived in the classic paper by Goldsmith
and Varaiya [15]. This paper sparked a significant interest in the field of
adaptive transmission techniques, and several authors have investigated
the effect of relaxing idealized assumptions. One example is considering
the impact of imperfect channel state information, e.g., obtained by means
of channel prediction [16–18]. A large portion of this thesis is dedicated
to performance analysis of wireless communication systems under one or
more practical constraints, one particular example being pursuing the work
of [15] by considering the impact of limiting the number of transmission
rates to be finite.

The main theme of this thesis is adaptive techniques, collectively re-
ferred to as link adaptation and adaptive (dynamic) resource allocation,
specifically those of adaptive modulation, dynamic power control and
adaptive diversity combining. Based on a collection of six papers, in this
thesis adaptive schemes for both single-link and multiple link-scenarios are
proposed and analyzed. In the following, we will give a short introduction
to link adaptation (and dynamic resource allocation), succeeded by a pre-
sentation of the underpinning ideas and techniques of which the papers in
this thesis are based on. This is followed by a summary of the included
papers and their contributions, and a brief description of three additional
papers to which the author also contributed, but which are not formally
included in this thesis. Finally, some suggestions for further research are
given.

1 Link Adaptation

Link adaptation, where the basic idea is to track and take advantage of
the time-varying characteristics of the wireless channel, is a promising
design principle for achieving a high throughput in communication sys-
tems [19; 20]. Indeed, today adaptive schemes are already implemented
in wireless systems such as Digital Video Broadcasting - Satellite Version 2
(DVB-S2) [21; 22].

According to the channel conditions, it is possible to vary e.g., the
modulation constellation size and the channel coding scheme (rate), en-
abling a rate-adaptive transmission scheme termed adaptive coded modula-
tion (ACM) [15; 23–26]. ACM schemes increase the average spectral efficiency

5



(ASE) measured in information bits/s/Hz, while still conserving link reli-
ability, by transmitting with as high as possible information rate when the
channel quality is good, and with lower rates as the channel quality is re-
duced. Furthermore, if the number of constellations are finite, additional
throughput gains can be achieved by introducing power control [27].

Throughout this thesis we will frequently make the assumption that the
wireless channel under consideration is a slowly-varying and frequency-
flat fading channel. That is, the channel coherence time Tc is larger than
the symbol duration time Ts, and the transmitted signal bandwidth is sig-
nificantly smaller than the coherence bandwidth [28]. (This can also model
e.g., an orthogonal frequency division multiplexing (OFDM) subchannel in
a wideband system.) Under these assumptions we will find it convenient
to use a block-fading channel model, where the fading is flat, constant on
each block, and independent, identically distributed (iid) across blocks [29].
Then, the channel can subsequently be approximated by an AWGN chan-
nel within the length of a codeword [30; 31]. Hence, an adaptive system
can be designed by using codes that guarantee desired QoS requirements
(e.g., bit error rate) within a range of signal-to-noise-ratios (SNRs) on an
AWGN channel. Based on a prediction of the channel, the highest spectral
efficiency (SE) code satisfying the QoS constraints is always selected.

Equipped with N different signal constellations, adaptive modulation
schemes are designed typically by partitioning the range [0, ∞) of SNRs γ
into N + 1 nonoverlapping regions which are defined by the constellation
switching thresholds {γTn}N

n=1, as illustrated in Fig. 12. Signal constella-
tion n, with spectral efficiency Rn, is selected whenever γ is in the interval
[γTn , γTn+1), where we have defined γTN+1 = ∞ for convenience. When
γ ∈ [0, γT1) no transmission occurs and the data are buffered.

Then, by defining Pn as the probability that constellation n is employed
at any time, where fγ(γ) is the probability density function (pdf) of the
SNR, the average spectral efficiency η of the adaptive modulation system
is given as

η =
N

∑
n=1

RnPn. (1)

The average spectral efficiency (1) is a measure of the amount of in-
formation that can be transmitted over a given bandwidth for a specific
system [32]. Given the fundamental issue of limited available frequency
spectrum in wireless communications, and the ever-increasing demand for

2Note that γ is in linear scale.

6



DIVERSITY COMBINING

data
Buffer
 TN T1 T2 T3R1 R2 RN

Figure 1: The range of γ is partitioned into SNR regions where the γTn ’s are
the switching thresholds.

higher data rates, the ASE is an intuitively good performance criterion, as
it measures how efficiently the spectrum is utilized.

Before we proceed, note that other partitions of the SNR range are also
possible [33; 34], and in Paper B we compare two such partitions and the
corresponding link adaptation strategies.

2 Diversity Combining

Uncertainty is a main characteristic of wireless communications, manifest-
ing itself through randomness: the channel state is random, the number of
users and their location are random, the interference from co-existing users
and systems is random, and so on. Diversity is a vigorous technique that
can, at relatively low cost, provide wireless link improvements by exploit-
ing this random nature of the wireless communication system, by creating
and utilizing independent or strongly uncorrelated signal paths for com-
munication [28].

The promised gains of diversity can be explained as follows [35]: with-
out diversity the system performance depends on the strength of a single
signal path, and whenever this path exhibits a deep fade the system will
suffer from poor performance. By facilitating information transmission
over multiple independent signal paths, reliable communication can be es-
tablished provided that at least one signal path is strong. Indeed, diversity
can be defined as “the method of conveying information through multi-
ple independent instantiations of the random signal attenuations” [36], and
can significantly improve the performance in fading environments, by in-
herently stabilizing the quality of the wireless channel.

Diversity can be achieved in several ways, examples being

• Time diversity, obtained by averaging the fading state of the channel
over time.

• Frequency diversity, in which carrier frequencies with a separation of
one or more coherence bandwidths are used.

• Space diversity, by equipping the receiver with two or more antennas

7



sufficiently separated in space to experience independent fading, as
depicted in Fig. 2

In this thesis we will be concerned with space diversity, and it is worth
pointing out that this form of diversity can be realized without using ex-
tra bandwidth or transmit power [37]. Specifically, consider a generic re-
ceive diversity system with L available diversity branches, and denote by
γl (l = 1, 2, · · · , L) the SNR of the lth iid diversity branch. Then, the
idea is to combine the different branches containing replicas of the same
information-bearing signal to obtain a resultant signal for the demodula-
tor. Combining the different branches can be done in many ways, three of
which are briefly described below. As will be seen, the choice of a combin-
ing algorithm represents a complexity versus performance trade-off.

A well-known technique for reception diversity combining is maxi-
mum ratio combining (MRC), in which the combined signal is an optimally
weighted sum of all the available branches, yielding a received SNR γMRC
as the sum of the individual branch SNRs [38], i.e.,

γMRC =
L

∑
l=1

γl . (2)

MRC is the optimal combining technique in terms of maximum com-
bined SNR, but also comes with the highest complexity, both in terms of
the required channel state knowledge and in terms the number of active
branches. Specifically, a separate receiver chain is needed for each avail-
able branch, adding to the overall receiver complexity.

As a complexity and performance counterpart to MRC, selection combin-
ing (SC) is a popular alternative due to its simplicity [39]. In SC, only one of
the diversity branches needs to be processed, specifically the SC combiner
chooses the branch with the highest SNR, i.e.,

γSC = max
1≤l≤L

γl . (3)

Selection combining avoids the need for multiple active receiver chains
and the corresponding coherent summation of individual branches. In
terms of SNR, it increases with L, but not linearly, as would be the case
for MRC, assuming iid branches.

The complexity of MRC may be too high, whereas for the case of SC,
the potential diversity gain Gd offered by the channel is not exploited fully,
where Gd is defined as the slope of the error probability Pe versus SNR
curve [38; 40]:

lim
γ→∞

log Pe(γ)
log γ

= −Gd. (4)
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Figure 2: Receive diversity with L = 3 available branches.

As a tradeoff to bridge the gap between the two extremes, consider that due
to hardware complexity and other relevant constraints, only Lc branches
can be combined (Lc ≤ L). With generalized selection combining (GSC), the
receiver then applies MRC to the Lc strongest diversity paths of the total
available ones, where Lc is usually much smaller than L [41; 42]. Denoting
the L instantaneous branch SNRs in descending order as γ1:L > γ2:L >
· · · > γL:L, then GSC will combine the Lc best branches only, using MRC
weights, yielding a combined SNR of

γGSC =
Lc

∑
l=1

γl:L. (5)

Since only Lc paths need to be processed in the fashion of MRC, GSC
has a lower hardware complexity than traditional MRC. Associated with
combining multiple branches is a diminishing return characteristic [43; 44],
i.e., the largest improvement in combined SNR is obtained by going from
one to two branches, while the gain decreases as the number of combined
branches increases. From this perspective, the GSC approach of combining
only the Lc best branches is intuitively satisfying. Additional benefits are
increased robustness to channel estimation errors due to the fact that the
weakest (and hence most exposed to estimation errors) SNR branches are
omitted from the combining process [38].

3 Power Control

In wireless communication systems, power control is applied to dynami-
cally adjust the transmitted power according to some chosen criterion. It
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represents a flexible tool for exploiting the degrees of freedom offered by
the wireless channel. There are a variety of motivations behind the use of
power control, including maintaining communication quality in the pres-
ence of fading and user mobility [45; 7]. In CDMA systems it is typically
used for the purpose of suppressing multiuser interference, e.g., to mitigate
the “near-far problem” [46; 28]. Another reason for implementing power
control is that of maximizing the spectral efficiency over a transmission link
by allocating the power according to a waterfilling strategy [47; 48] (or sim-
ilar), i.e., by using more power when the channel is good and less when the
channel is bad.

Associated with power control are always one or more power con-
straints, the two most common being average and peak power constraints.
Under an average power constraint S, the average transmitted power is
required to be below S, i.e., typically the system adjusts its power level
according to the channel state, with no constraint on instantaneous signal
power, as long as the system, averaged over all time, does not transmit with
a higher power than S. Obviously, in many cases, it is however also im-
portant that the instantaneous transmit power be limited by a peak power
constraint. Peak constraints could be imposed for several reasons:

• to control the power radiation to limit the interference to other users
and systems.

• to control the emitted power to avoid harm to humans and animals.
• from a practical perspective, since many components in a communi-

cation system are peak power limited, e.g., the power amplifier [49].

Independent of whether an average or a peak power constraint is en-
forced, it also important to discuss constraints on the power adaptation
flexibility. That is, how capable is the power control unit? Can it adjust the
power on a continuous scale, over a set of discrete levels, or simply to a
single non-zero transmit power level? In Fig. 3, we have illustrated these
three different schemes. Using continuous power control (Fig. 3a) the system
is able to fully track the channel state and thus has the largest potential for
achieving the desired performance measure, be it maximizing the spectral
efficiency or providing an identical signal quality to all the users in the sys-
tem. However, continuous power control is not realistic as it would require
an infinite capacity feedback channel. In addition, it is not likely that the
transmitter is able to transmit at a very large (infinite) number of power
levels. For practical scenarios the resolution of power control will be lim-
ited: as an example, for the Universal Mobile Telecommunications System
(UMTS), power control step sizes on the order of 1 dB are proposed [50; 51].

Discrete-power schemes (Fig. 3b) solve these problems by using only a
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Figure 3: Power control schemes

finite set of power levels, requiring less feedback. Finally, simplifying the
power control even more, when only a single non-zero transmission power
is used in addition to the zero level (Fig. 3c), we adopt the term constant-
power transmission scheme3 [52]. In this thesis, we shall consider both
average and peak power constraints, and all the three power adaptation
schemes.

4 Single Link Communications

Now, consider jointly applying the concepts of adaptive modulation and
power control to single link communications. Common for both techniques
is that they enable the transmitter to adapt to the channel state. Thus, in the
design and analysis of such systems, a channel model is obviously needed.
Therefore, before we proceed further, we take a small detour explaining
some basic concepts of radio wave propagation.

In wireless communications, information is transmitted using modula-
tion of electromagnetic waves. These waves propagate from the transmitter
to the receiver following Maxwell’s laws [28; 53]. In theory, the electromag-
netic field equations, taking into account the physical parameters of the
propagation space, could be solved to find the exact channel model. How-
ever, since these equations in general are very complicated and require a
large number of parameters expressing the physical signal path obstruc-
tions, a common practice is to resort to statistical modelling of the channel.

The variation in signal power at the receiver can be attributed to three
main factors: path loss caused by signal attenuation due to transmitter-
receiver separation, shadowing caused by signal energy absorption in obsta-
cles such as buildings, and finally, multipath fading which results in rapid

3Also termed on-off power transmission, see e.g., [19].
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Figure 4: Variation of received signal power as a function of distance due
to path loss, shadowing, and fading effects.

signal fluctuations, and is caused by constructive and destructive summa-
tion of multiple signal components, in turn causing random phase varia-
tions in the received signal. In Fig. 4, we have illustrated the combined
impact of path loss, shadowing and multipath fading on the received sig-
nal power as a function of distance. As seen from the figure, path-loss and
shadowing occur over large distances, and are referred to as large-scale
propagation effects, while fading takes place over short distances and is
termed small-scale propagation effects [37]. The channel state depends on
all these signal attenuation factors. For most problems treated in this thesis
however, the main effect considered is multipath fading, which we con-
sider next.

There are various stochastic models used to describe the envelope of
multipath fading depending on the scenario considered. A common model
for scenarios without a direct line-of-sight component is the Rayleigh dis-
tribution, which is the distribution of the envelope of the complex sum of
two quadrature Gaussian processes [28]. The distribution of the channel
fading amplitude α is then described by the pdf

f (α) =
2α

Ω
exp

(
−α2

Ω

)
, (6)

where Ω = E{α2} is the expected value of α2.
In our performance analysis, we will find it convenient to work with

the signal-to-noise ratio γ rather than the fading amplitude α. Thus we
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follow [38], and define

γ = α2 Es

N0
, (7)

where Es is the energy per symbol and N0 is the one-sided power spectral
density of the additive white Gaussian noise. Then, using the Rayleigh
fading model, the SNR is exponentially distributed and given as

f (γ) =
1
γ

exp
(
−γ

γ

)
, (8)

where γ is the average SNR. Throughout this thesis we will make extensive
use of this distribution, both because it models well the multipath effect in
urban areas, and because it in many cases allows for relatively easy mathe-
matical manipulations.

Equipped with a statistical model of the channel, we can now return
to adaptive modulation and power adaptation for single link communica-
tions. The average spectral efficiency from (1) can now be written as

η =
N

∑
n=1

RnPn =
N

∑
n=1

Rn

∫ γTn+1

γTn

f (γ) dγ, (9)

where given a power control function S(γ), we can state the average power
constraint as

E{S(γ)} =
∫ ∞

0
S(γ) fγ(γ) dγ ≤ S. (10)

Though seemingly simple, (9) and (10) open up for a large number of
interesting research questions, with a close link to practical applications.
For example, i) what is the maximum achievable average spectral efficiency
that can be obtained, under an average transmit power constraint, if we
assume that capacity-achieving codes are available for any SNR, and ii)
what is the corresponding optimal power control? These are among the
questions we address in this thesis.

5 Multiple Link Communications

In a shared wireless environment concurrent transmissions may incur un-
desired interference to the transmitted signal, adding another dimension
compared to the single-link problem, further increasing the challenge of
creating a reliable high-performance communication system. Also, in the
multi-link context the previously discussed techniques of adaptive mod-
ulation and power control can be applied, opening a door to multi-link
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resource allocation. In this setting power control becomes particularly in-
teresting, as it can be used both to aid battery savings and for interference
management.

As already mentioned, traditional power control for wireless networks
is primarily designed for voice traffic, and aims at providing a target signal-
to-noise-and-interference level for all users [5; 6; 8]. In modern networks
data traffic is however more dominating, and throughput maximization
becomes a more relevant metric. The conventional approach for dealing
with resource allocation over multiple links has been a divide and conquer
one, as outlined in the following, where we, for the purpose of exposition,
adopt a cellular network terminology:

Divide: First, network frequency (or, more generally, resource) planning
is used to allow the fragmentation of the network area into smaller zones,
isolated from each other from a radio point of view. Within a cluster of
neighboring links, the spectral resource is not reused at all (such as e.g. in
GSM [54]), or reused only partially (e.g. CDMA networks, where each cell
limits the number of assigned codes to only a fraction of the theoretical
limit defined by the spreading factor) [28]. In ad-hoc networks, isolation of
transmit-receive pairs from each other is also sought, via an interference-
avoidance medium access control (MAC), typically by means of carrier-
sense based protocols [55; 56]. The need for high efficiency figures however
leads the system designer towards a planning featuring even more aggres-
sive spectral reuse, for instance in the cellular case from a cluster size of
5 to 7 in early GSM deployments, down to close to 1 in today’s available
networks such as WiMAX [2]. Power control techniques and per-cell dy-
namic resource allocation (e.g., frequency hopping) methods help alleviate
the problem of out-of-cell interference, but in practice aggressive resource
reuse will still inevitably lead to an increased level of interference in the
network, which undermines the link-level performance.

Conquer: In turn this loss (due to interference) of link efficiency for a
given cell or for a local transmit-receive pair may be compensated, via a
careful design of the radio air interface. The latter may exploit advanced
processing such as efficient forward error correction (FEC) coding [57], fast
link adaptation protocols, multiple-antenna transceivers [37], and more re-
cently channel aware scheduling techniques [58]. In the multiuser diver-
sity approach, the scheduling protocol is designed towards a better utiliza-
tion of the spectrum inside each cell, by encouraging channel access for
data-access users temporarily experiencing better propagation conditions,
giving rise to the socalled multi-user diversity gain [59]. It is worth noting
that this gain can be realized only if link adaptation techniques are avail-
able to take advantage of the improvement in channel conditions. Clearly,
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Figure 5: A multicell system, consisting of base stations (BS) and user ter-
minals (UT), managed by a centralized resource controller. This controller
processes all network information jointly.

multi-user diversity is also gained at the expense of (at least short term)
throughput fairness, which may however be at least partially restored by
modifying or constraining the scheduling criteria in one of several possible
manners [60].

Instead of the traditional approach based on decoupling the multicell
resource allocation from the optimization of the single cell capacity, one
may naturally think that a joint optimization of resources in all cells simul-
taneously will give better system performance, as illustrated in Fig. 5 using
a centralized controller. When doing so, the type of optimization proposed
previously on a per-cell basis, involving e.g., code assignment, power con-
trol, multiple antenna beam design, is now expanded to take into account
the dimension offered by the multiple links of the network.

Evidently, such a joint multicell resource allocation offers an enormous
number of degrees of freedom (governed by the number of cells, times the
number of users, times the number of possible scheduling slots, codes,
power levels etc.) that can be exploited to optimize the network perfor-
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mance at all times. As a key instance of such an optimization problem, we
will in this thesis be considering the problem of joint power allocation over
multiple cells, for the purpose of maximizing the sum network capacity
under an ideal link adaptation protocol.

The potential in coordinated resource allocation across cells also comes
with several practical challenges. This includes among other things, the
need for slot level synchronization over large network areas. However,
this problem may be partly alleviated by clustering the optimization. Other
challenges are the increasing complexity of centralized resource allocation,
i.e., the centralized controller in Fig. 5 has to search over a large feasible set
spanned by the large number of degrees of freedom, and the overhead sig-
nalling incurred by traffic and channel quality parameters by all network
nodes to a central unit. In this thesis, we contribute to this problem by
demonstrating some promising methods for how multi-link coordination
gains may be realized with limited complexity.

6 Practical Schemes

In 1965 Intel co-founder Gordon E. Moore forecasted that the number tran-
sistors on an integrated circuit for minimum component cost doubles every
24 months [61]. This has led the computer component industry to focus an
immense energy towards the aim of achieving this specified increase in
processing power, presuming it be possible. Since 1965, history has indeed
shown the law to be largely true, as evidenced for example by the dramatic
increase in CPU perfomance. However, for the mobile units we consider,
there is a significant challenge in the fact that more transistors for the same
price is great for computers, but terrible for batteries. Indeed, up to the
present day, Moore’s law has not at all been applicable to battery capacity.
Hence, for battery powered mobile units it is of paramount importance to
also focus on what is possible when the signal processing capabilities of
the unit is limited. Thus, in the final parts of the thesis we try to combine
the adaptive schemes of the earlier parts taking into account the specific
challenges faced by limited battery and complexity constraints.

Facing implementation issues and restricted battery capacity, we turn
our attention to the design of practical schemes and apply M-ary quadra-
ture amplitude modulation (M-QAM) constellations, power control, and
adaptive diversity techniques. In [27], adaptive modulation schemes us-
ing M-QAM constellations and power control are proposed. The schemes
are designed with a bit error rate (BER) constraint in mind, and hence the
constellations and power control are selected such that the system oper-
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ates at a BER less than or equal to the constraint BER0. In terms of power
control, the main focus is on continuous power control; however for prac-
tical implementation this is not feasible due to hardware complexity and
feedback load. Extending [27], in [45] a fully discrete-rate discrete-power
adaptive M-QAM scheme is introduced, jointly optimizing the constella-
tion switching thresholds and the discrete power levels, showing that a
practical scheme can a achieve a good trade-off between spectral efficiency
and feedback load.

Turning to diversity combining, we look for an adaptive approach that
minimizes the processing power at the receiver, while still providing con-
siderable performance improvements. In particular, an approach in which
the receiver adaptively combines as many diversity paths as necessary, and
no more, would be ideal. What is considered “necessary” will vary from
application to application, as discussed below.

A power saving implementation of the generalized selection combining
scheme termed minimum selection GSC (MS-GSC) was recently proposed by
Kim et al. [62]. With MS-GSC, the receiver combines the least number of
best diversity paths such that the combined SNR is above a certain thresh-
old. Thus, while requiring the same hardware complexity as a conven-
tional GSC scheme, MS-GSC can save considerable amount of processing
power by keeping less MRC branches active on average [63]. Mathemat-
ically speaking, given a threshold γT , and MS-GSC receiver combines the
minimum number of branches L′ ∈ {1, 2, . . . , Lc}, such that the condition

γMS-GSC =
L′

∑
l=1

γl:L ≥ γT , (11)

is satisfied [63], where, as before, Lc ≤ L is the maximum number of com-
bined branches, and γl:L is an ordered SNR.

Then, in a very recent contribution, Yang et al. pointed out that both the
adaptive modulation and adaptive diversity combining concepts are based
on using predetermined thresholds in their operations. Following this ob-
servation, the two techniques can be jointly designed and analyzed [64].
Specifically, employing constant power transmission with M-QAM con-
stellations and MS-GSC diversity combining, [64] introduces joint adaptive
modulation and diversity combining schemes. The underlying idea is to
adapt both the combiner structure and constellation based on the channel
state and the bit error rate constraint.

By using the adaptive modulation switching thresholds as inputs to the
MS-GSC combiner, the system can be designed according to different ob-
jectives. For example, by using the lowest constellation threshold γT1 as
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γT in (11) we obtain a system that tries to combine the minimum number
of branches needed to achieve the smallest signal constellation. I.e., the
main purpose of design is the receiver processing power measured by the
number of combined branches. The combining of branches yields discrete
steps in SNR when the number of branches increases. Hence, the combiner
might, at a given instance, provide a non-zero SNR margin such that the
system are able to support a higher constellation than the smallest. Thus,
this scheme will still benefit from the availability of higher rates should the
channel be in a good enough state.

Another obvious candidate for the MS-GSC threshold is the minimum
SNR required for the highest constellation, that is letting γT = γTN in (11).
Then, an average spectral efficiency maximizing scheme is obtained, while
still achieving a lower average number of combined branches compared to
GSC or MRC.

Now, some questions naturally arise. For example, what is the effect of
power control in the framework of joint adaptive modulation and diversity
combining? And perhaps more interesting, how can this framework be
extended to the case of multiple interfering links? In this dissertation we
address these questions, and more.
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OVERVIEW OF THE INCLUDED PAPERS

7 Overview of the Included Papers

This thesis consists of six papers, which are numbered by the capital letters
A to F. Below, a short summary of the included papers is given.

Paper A

Anders Gjendemsjø, Geir E. Øien, Henrik Holm, Mohamed-Slim Alouini,
David Gesbert, Kjell J. Hole, and Pål Orten, “Capacity-Optimal Rate and
Power Allocation for Discrete-Rate Link Adaptation,” revised for possible
publication in the EURASIP Journal on Wireless Communications and Net-
working, October 2007.

The results are also partially published in Proc. IEEE Global Communica-
tions Conference (GLOBECOM’05), St. Louis, MO, USA, Nov.-Dec. 2005, and
in Proc. IEEE International Conference on Communications (ICC’06), Istanbul,
Turkey, June 2006.

In Paper A, link adaptation schemes with a finite number of transmis-
sion rates are studied. Using the zero information outage approach of
buffering data at poor channel state levels, and assuming that the wireless
channel can be approximated by an AWGN channel within the length of a
codeword, constant, discrete and, continuous-power adaptation schemes
are proposed. Employing the average spectral efficiency as a measure
of system performance, as described in Section 1, and enforcing an aver-
age transmit power constraint, the rate switching thresholds and power
adaptation policies are optimized for a given fading distribution. The con-
strained optimization problems are simplified using classical results on wa-
terfilling [9].

The main contribution of this paper consists of deriving optimal power
allocation policies for adaptive transmission systems equipped with only a
finite number of transmission rates. Through numerical results it is shown
that the proposed schemes can achieve a throughput performance ap-
proaching the theoretical upper bound of continuous-rate and continuous-
power bound, denoted COPRA, on spectral efficiency [15] using only a small
number of codes. Specifically, using a fully discrete scheme with just four
codes, each associated with four power levels, a spectral efficiency within
1 dB of COPRA can be achieved.

Paper B

Anders Gjendemsjø, Sébastien de la Kethulle de Ryhove, and Geir E. Øien,
“A Cross-Layer Comparison of Two Design Philosophies for Discrete-Rate
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Adaptive Transmission,” submitted for possible publication in Proc. IEEE
Wireless Communications and Networking Conference (WCNC’08), Las Vegas,
NV, USA, March-April 2008.

As mentioned in Section 1, in the literature at least two different ap-
proaches to the design of throughput maximizing adaptive transmission
systems can be identified [15; 27; 23; 24; 26; 33; 25; 34].

In the framework of slowly-varying flat-fading wireless channels, we
analyze two such approaches using a finite number of transmission rates
and power levels, under an average power constraint. The contrasted
methods are the maximum average spectral efficiency for adaptive coded
modulation (MASA) scheme, and the average reliable throughput (ART)
maximizing scheme. Both schemes utilize capacity-achieving codes for
AWGN channels, and one power level per code. However, the schemes dif-
fer in their design objectives, and how they deal with information outage.
The MASA scheme maximizes the ASE, given a fixed and finite number
(N) of available rates, and by design has zero outage. On the other hand,
the ART scheme starts from a fixed and finite number (L) of available SNR
quantization regions, and then maximizes the ASE. As opposed to MASA,
the ART approach thus allows for a non-zero information outage. To facil-
itate reliable communications, we extend the traditional ART scheme in a
cross layer fashion, to include a retransmission option.

A main contribution of Paper B is to provide a rigorous comparison of
two widely used design approaches, and through this comparison chal-
lenge some previous conclusions on the relative performance of these
schemes. The claim that the “artificial constraint of zero outage leads to
a big performance penalty” [33] is shown to be debatable. In particular,
the results of Paper B discover scenarios where the MASA scheme offers
both the highest spectral efficiency and the lowest feedback load (in terms
of feedback source entropy).

Paper C

Anders Gjendemsjø, Hong-Chuan Yang, Mohamed-Slim Alouini, and Geir
E. Øien, “Joint Adaptive Transmission and Combining with Optimized
Rate and Power Allocation”, in Proc. IEEE International Workshop on Sig-
nal Processing Advances for Wireless Communications (SPAWC’06), Cannes,
France, July 2006.

In this paper we combine the framework developed in Paper A with
the framework of diversity combining. Specifically, we consider a system
operating over a flat-fading slowly-varying wireless channel, using a fi-
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nite number of capacity-achieving channel codes and discrete-level power
control. Further, the receiver is assumed to be equipped with a diversity
combining capability.

Capitalizing on previous results on both generalized selection combin-
ing (GSC) and minimum selection GSC, as discussed in Sections 2 and 6, we
tackle the problem of maximizing the average spectral efficiency by finding
optimal transmission rates and power control schemes for adaptive diver-
sity combining over Rayleigh fading channels. The results obtained show
that contrary to previous work on power control for discrete rate link adap-
tation, when jointly optimized with adaptive combining, power control
does not significantly increase the average spectral efficiency. However,
it does significantly decrease the probability of no transmission (due to in-
creased diversity order), which is important for applications with real-time
or low-latency requirements.

Paper D

Anders Gjendemsjø, David Gesbert, Geir E. Øien and Saad G. Kiani, “Bi-
nary Power Control for Sum Rate Maximization over Multiple Interfering
Links,” to appear in the IEEE Transactions on Wireless Communications.

The results are also partially published in Proc. International Sympo-
sium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks
(WiOpt’06), Boston, MA, USA, April 2006, and in Proc. IEEE Interna-
tional Workshop on Signal Processing Advances for Wireless Communications
(SPAWC’07), Helsinki, Finland, June 2007.

In Paper D we leave point-to-point communications and turn to the
analysis of multi-link systems, as introduced in Section 5. The applica-
tion we have in mind is a wireless data network with best-effort type of
quality of service, and the total aggregate throughput (sum rate) across the
network is the figure of merit. The system is assumed to be enabled with a
perfect link adaptation protocol, so the user rate is adapted instantaneously
as a function of the user’s signal to noise and interference ratio. We con-
sider a wireless network featuring a number of transmitters and receivers,
of which there are N active pairs selected for transmission by a scheduling
(MAC) protocol. Allowing for centralized control, our aim is to investigate
transmit power allocation under full frequency reuse.

The main contribution of this paper lies in deriving simple power allo-
cation schemes. In particular, under short term minimum and maximum
power constraints, we show that in the two-link case, the optimal power al-
location then has a remarkably simple nature termed binary power control:
Depending on the noise and channel gains, assign full power to one link
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and minimum to the other, or full power on both. Further, when the sum
network throughput can be approximated either by a geometric-arithmetic
means inequality or by a low signal-to-noise-and-interference ratio (SNIR)
assumption, the optimality of binary power control is established. In the
general case when N > 2, it is demonstrated by extensive computer simula-
tions that a restriction to binary power levels yields only a negligible capac-
ity loss. Discretizing the optimization space to binary values is highly ben-
eficial: the feedback rate needed to communicate between network nodes
is reduced and the transmitter design is simplified.

To reduce the complexity of exhaustively searching for the optimal bi-
nary power allocation for large networks, simple algorithms based on clus-
tering and greedy approaches are derived, and shown to achieve up to 99%
of the capacity promised by an exhaustive search. Finally, limiting the po-
tential solutions to search over better facilitates distributed resource alloca-
tion, and the results in this paper have been used to approach this problem
in [65; 66].

Paper E

Anders Gjendemsjø, Hong-Chuan Yang, Geir E. Øien, and Mohamed-
Slim Alouini, “Joint Adaptive Modulation and Diversity Combining with
Downlink Power Control,” to appear in the IEEE Transactions on Vehicular
Technology.

The results are also partially published in Proc. IEEE Wireless Commu-
nications and Networking Conference (WCNC’07), Hong Kong, China, March
2007.

We consider the problem of finding practical low-complexity,
bandwidth-efficient, and processing-power efficient transmission schemes
for a downlink scenario under the framework of diversity combining.

Specifically, following the discussion of Section 6, we consider joint
adaptive modulation, using practical M-QAM constellations, and MS-GSC
diversity combining for downlink transmission, where it is of interest to
have low processing costs at the battery powered mobile unit (hence, to
combine the fewest number of branches). Additionally, reducing the trans-
mitted power from the base stations is beneficial, as this will introduce less
interference to other users and systems. Depending on the key purpose of
the design, we arrive at either a processing-power efficient or a bandwidth-
efficient scheme.

Based on a rigorous mathematical analysis the statistics of the combined
SNR after power control are derived, and both schemes are evaluated in
terms of spectral efficiency, combiner complexity and bit error rate. For
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both the processing-power and bandwidth efficient schemes, a reduction
of transmitted power on the order of 30− 50% is feasible over a large SNR
range, thus significantly decreasing the level of interference to co-existing
systems/users, making them ideal in a multi-link scenario, while uphold-
ing high spectral efficiency, maintaining low diversity combining complex-
ity, and satisfying the BER constraints.

Paper F

Anders Gjendemsjø, Hong-Chuan Yang, Mohamed-Slim Alouini, and Geir
E. Øien, “Joint Adaptive Modulation, Diversity Combining, and Power
Control in Two-cell Wireless Networks,” under revision for possible publi-
cation in the IEEE Transactions on Wireless Communications.

The paper will be presented in part at the IEEE International Sympo-
sium on Wireless Communication Systems (ISWCS’07), Trondheim, Nor-
way, October 2007, and at the Asilomar Conference on Signals, Systems,
and Computers (Asilomar ’07), Pacific Grove, CA, USA, November 2007.

In Paper F, we extend the framework of Paper E to perform the joint
application of a centralized power control, adaptive modulation, and di-
versity combining in a two-cell wireless network, by explicitly taking in-
terference into account. The goal is to derive practical low-complexity,
bandwidth-efficient, and battery-power-efficient transmission schemes ad-
dressing the challenges of uplink and downlink transmission in a multi-
link scenario.

To address the particular challenges faced in up- and downlink trans-
mission, this paper contributes by proposing and analyzing two different
practical adaptive modulation and diversity combining schemes targeted
at two-cell networks. In this scenario, coordinated transmit power levels
are used to i) reduce the transmitted power to extend the battery lifetime
of the mobile user (uplink), ii) increase the spectral efficiency (downlink),
and iii) minimize the interference to co-existing systems and cells.

It is observed in this paper that there is a tradeoff between the combiner
complexity, transmit power, and spectral efficiency. Comparing to selected
reference schemes, we demonstrate that the novel uplink scheme yields a
significant reduction in average transmit power, thus extending the battery
lifetime, and decreasing the level of interference to co-existing systems and
cells, while upholding spectral efficiency. Taking into account the power
consumption from diversity combining, the proposed downlink transmis-
sion scheme uses power control to provide a significant increase of spectral
efficiency compared to a reference scheme, while achieving a low combiner
complexity. For systems of more than two cells, we can apply the results
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presented in this paper by clustering groups of two cells, over which opti-
mization would be effected.

8 Suggestions for Further Research

In the following list, we briefly discuss some ideas for further research that
might be of interest.

• Consider the application of a finite number of capacity-achieving
codes in an uplink transmission scenario, where transmit power is
limited. Further, assume diversity combining at the receiver, then an
interesting problem would be to investigate policies minimizing the
average transmit power, subject to an average rate constraint. Per-
haps it is possible to exploit some results from Papers A and C in
terms of duality?

• Paper D identifies several scenarios for which the optimal power con-
trol for sum throughput maximization in a multi-link system is bi-
nary. I.e., in these scenarios, under minimum and peak short term
power constraints, each transmitter can without loss of optimality
restrict the transmit power level to be either the minimum or maxi-
mum allowed. It is interesting to note that the optimality of binary
adaptation also surfaces in other scenarios, e.g., in power allocation
for relay channels [67], in the uplink of single-cell systems [68], and
for QoS-constrained CDMA systems [69]. It would be very interest-
ing to understand better why binary power control performs so well,
and ideally identify a general framework for which the optimality
of binary power allocation can be shown. The work of Prof. Holger
Boche on general interference functions seems interesting in this re-
spect [70–72].

• In Papers D and F a centralized power control is used for interference
management in multi-link systems. An interesting direction of re-
search would be to search for distributed algorithms realizing some
or all of the coordination gains without the need for centralized con-
trol. A potential application of distributed versions of the schemes
presented in Papers D and F (with suitable additional constraints)
would be in cognitive radio [73; 74].

• In the system model used for both Papers D and F it is assumed
that the receivers are not equipped with an interference cancellation
mechanism [75], and hence the interference is treated as noise. Inves-
tigating the effect of (partial) interference cancellation for the prob-
lems considered in Papers D and F could be a topic for future work.
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PAPERS NOT INCLUDED IN THE THESIS

Introducing a cancellation ability is expected to increase the overall
system capacity at the cost of increased complexity, and the corre-
sponding trade-off between performance improvements and com-
plexity could also by analyzed.

• The adaptive power algorithms presented in this thesis assume that
the radio frequency (RF) power amplifier is operated in the linear
region, implying a higher power consumption. For devices with lim-
ited battery capacity it is apparent that there will be a tradeoff be-
tween efficiency and linearity. This can be a topic for further research.

9 Papers Not Included in the Thesis

In addition to the Papers A-F, the author has participated in the writing of
the following papers, listed here for completeness, during the period of his
PhD studies.

Paper 1

David Gesbert, Saad G. Kiani, Anders Gjendemsjø, and Geir E.
Øien, “Adaptation, coordination and distributed resource allocation in
interference-limited wireless networks,” to appear in the Proc. of the IEEE,
Special Issue on Adaptive Transmission, (Invited paper), December 2007.

A sensible design of wireless networks involves striking a good bal-
ance between an aggressive reuse of the spectral resource throughout the
network and managing the resulting co-channel interference. Traditionally
this problem has been tackled using a “divide and conquer” approach. The
latter consists in deploying the network with a static or semi-dynamic pat-
tern of resource reutilization. The chosen reuse factor, while sacrificing a
substantial amount of efficiency, brings the interference to a tolerable level.
The resource can then be managed in each cell so as to optimize the per cell
capacity using an advanced air interface design.

In this paper, using the overall network capacity as a measure of system
performance, the problem of resource allocation and adaptive transmission
in multicell scenarios is considered. As a key instance, the problem of joint
scheduling and power control simultaneously in multiple transmit-receive
links, which employ capacity-achieving adaptive codes, is studied. In prin-
ciple, the solution of such an optimization hinges on tough issues such as
the computational complexity and the requirement for heavy receiver-to-
transmitter feedback and, for cellular networks, cell-to-cell channel state in-
formation signaling. Asymptotic properties pertaining to rate-maximizing
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power control and scheduling in multicell networks are presented. Finally,
some promising leads for substantial complexity and signaling reduction
via the use of newly developed distributed and game theoretic techniques
are discussed.

Paper 2

Greg H. Håkonsen, Tor A. Ramstad, and Anders Gjendemsjø, “Image
Transmission with Adaptive Power and Rate Allocation over Flat Fading
Channels using Joint Source Channel Coding,” in Proc. International Con-
ference on Wireless Information Networks and Systems (WINSYS ’06), Setubal,
Portugal, August 2006.

A revised version of the paper will be published by Springer in an
ICETE-SIGMAP 2006 best papers book, 2007.

A joint source channel coder for image transmission over flat fading
channels is presented. By letting the transmitter have information about
the channel, and by letting the code-rate vary slightly around a target
code-rate, it is shown how a robust image coder is obtained by using time-
discrete amplitude-continuous symbols generated through the use of non-
linear dimension changing mappings. Due to their robustness these map-
pings are well suited for the changing conditions on a fading channel.

Paper 3

Saad G. Kiani, David Gesbert, Jan E. Kirkebø, Anders Gjendemsjø, and
Geir E. Øien, “A Simple Greedy Scheme for Multicell Capacity Maximiza-
tion,” in Proc. IEEE International Telecommunications Symposium (ITS ’06),
Fortaleza, Brazil, September 2006.

This paper studies the joint optimization of transmit power and
scheduling in a multicell wireless network. Despite promising significant
gains, this problem is known to be NP-hard and thus difficult to tackle in
practice. However, it is shown that this problem lends itself to analysis for
large wireless networks which allows simpler modeling of inter-cell inter-
ference, and a low complexity greedy algorithm that is efficient for large
networks is introduced. As the number of users per cell increases, the so-
lution converges to all cells being active and employing maximum SNIR
scheduling, which can be implemented in a distributed manner. By using
simulation parameters equivalent to those used in realistic wireless net-
works, the scheme, though simple, is shown to exhibit substantial gains
over existing resource allocation schemes.
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Abstract

Link adaptation, in particular adaptive coded modulation (ACM),
is a promising tool for bandwidth-efficient transmission in a fading
environment. The main motivation behind employing ACM schemes
is to improve the spectral efficiency of wireless communication sys-
tems. In this paper, using a finite number of capacity achieving com-
ponent codes, we propose new transmission schemes employing con-
stant power transmission, as well as discrete and continuous power
adaptation, for slowly varying flat-fading channels.

We show that the proposed transmission schemes can achieve
throughputs close to the Shannon limits of flat-fading channels us-
ing only a small number of codes. Specifically, using a fully discrete
scheme with just four codes, each associated with four power lev-
els, we achieve a spectral efficiency within 1 dB of the continuous-rate
continuous-power Shannon capacity. Furthermore, when restricted
to a fixed number of codes, the introduction of power adaptation has
significant gains with respect to average spectral efficiency and prob-
ability of no transmission compared to a constant power scheme.
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INTRODUCTION

1 Introduction

In wireless communications bandwidth is a scarce resource. By employ-
ing link adaptation, in particular adaptive coded modulation (ACM), we
can achieve bandwidth-efficient transmission schemes. Today, adaptive
schemes are already being implemented in wireless systems such as Digi-
tal Video Broadcasting - Satellite Version 2 (DVB-S2) [1], WiMAX [2], and
3GPP [3]. A generic ACM system [4–12] is illustrated in Fig. A.1. Such
a system adapts to the channel variations by utilizing a set of component
channel codes and modulation constellations with different spectral effi-
ciencies (SEs).

We consider a wireless channel with additive white Gaussian noise
(AWGN) and fading. Under the assumption of slow, frequency-flat fad-
ing, a block-fading model can be used to approximate the wireless fading
channel by an AWGN channel within the length of a codeword [13; 14].
Hence, the system may use codes which typically guarantee a certain spec-
tral efficiency within a range of signal-to-noise ratios (SNRs) on an AWGN
channel. At specific time instants, a prediction of the instantaneous SNR is
utilized to decide the highest-SE code that can be used. The system thus
compensates for periods with low SNR by transmitting at a low SE, while
transmitting at a high SE when the SNR is favorable. In this way, a sig-
nificant overall gain in average spectral efficiency (ASE)—measured in infor-
mation bits/s/Hz—can be achieved compared to fixed rate transmission
systems. This translates directly into a throughput gain, since the average
throughput in bits/s is simply the ASE multiplied by the bandwidth.

In the current literature we can identify two main approaches to the de-
sign of adaptive systems with a finite number of transmission rates [4; 15–
20]. One key point is the starting point for the design. In [18–20] the prob-
lem can be stated as follows: Given that the system quantizes any channel
state to one of L levels, what is the maximum spectral efficiency that can be
obtained using discrete rate signalling? On the other hand, in [4; 15–17] the
question is: Given that the system can utilize N transmission rates, what is
the maximum spectral efficiency? Another key difference is that in [4; 15–
17] the system is designed to maximize the average spectral efficiency ac-
cording to a zero information outage principle, such that at poor channel con-
ditions transmission is disabled, and data buffered. However, in [18–20],
data are allowed to be transmitted at all time instants, and an information
outage occurs when the mutual information offered by the channel is lower
than the transmitted rate. While seemingly similar, these approaches actu-
ally lead to different designs as will be demonstrated. Though allowing for
a non-zero outage can offer more flexibility in the design, it also comes with
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A. RATE AND POWER ALLOCATION FOR DISCRETE-RATE LINK ADAPTATION
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Figure A.1: Adaptive coded modulation system.

the drawbacks of losing data and wasting system resources (e.g., power).
Furthermore, in [18–20] the important issues of how often data are lost
due to an information outage, and how to deal with it are not discussed,
e.g., many applications would then require the communication system to
be equipped with a retransmission capability. These differences render a
fair comparison between the approaches difficult; however we provide a
numerical example later to illustrate the key points above.

In [18–20] adaptive transmission with a finite number of capacity-
achieving codes, and a single power level per code are considered. How-
ever, from previous work by Chung and Goldsmith [8] we know that the
spectral efficiency of such a restricted adaptive system increases if more de-
grees of freedom are allowed. In particular, for a finite number of transmis-
sion rates, power control is expected to have a significant positive impact
on the system performance, and hence in this paper we propose and ana-
lyze more flexible power control schemes, for which the single power level
per code scheme of [18–20] can be seen as a special case.

In this paper we focus on data communications which, as emphasized
in [21], cannot “tolerate any loss”. For such applications it thus seems
more reasonable to follow the zero information outage design philosophy
of [4; 15–17]. This choice is also supported by the work done in the design
of adaptive coding and modulation for real-life systems, e.g., in DVB-S2 [1].
Based on this philosophy we derive transmission schemes that are optimal
with regard to maximal ASE for a given fading distribution. By the as-
suming codes to be operating at AWGN channel capacity, we formulate
constrained ASE maximization problems and proceed to find the optimal
switching thresholds and power control schemes as their solutions. Con-
sidering both constant power transmission as well as discrete and continu-
ous power adaptation, we show that the introduction of power adaptation
provides a substantial average spectral efficiency increase and a significant
reduction in the probability of no transmission, when the number of rates
is finite. Specifically, spectral efficiencies within 1 dB of the continuous-rate
continuous-power Shannon capacity are obtained using a completely dis-
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Buffer

data TN;KT1;2T1;1 T2;1T1;K Tn;k 

Figure A.2: The pre-adaptation SNR range is partitioned into regions where
γTn,k are the switching thresholds.

crete transmission scheme with only four codes and four power levels per
code.

The remainder of the present paper is organized as follows. We intro-
duce the wireless model under investigation and describe the problem un-
der study in Section 2. Optimal transmission schemes for link adaptation
are derived and analyzed in Section 3. Numerical examples and plots are
presented in Section 4. Finally, conclusions and discussions are given in
Section 5.

2 System Model and Problem Formulation

2.1 System Model

We consider the single-link wireless system depicted in Fig. C.1. The
discrete-time channel is a stationary fading channel with time-varying gain.
The fading is assumed to be slowly varying and frequency-flat. Assuming,
as in [4; 22], that the transmitter receives perfect channel predictions we can
adapt the transmit power instantaneously at time i according to a power
adaptation scheme S(·). Then, denote the instantaneous pre-adaptation re-
ceived signal-to-noise ratio (SNR) by γ[i], and the average pre-adaptation
received SNR by γ. These are the SNRs that would be experienced using
signal constellations of average power S without power control [6]. Adapt-
ing the transmit power based on the channel state γ[i], the received SNR
after power control, termed post-adaptation SNR, at time i is then given by
γ[i]S(γ[i])/S. By virtue of the stationarity assumption, the distribution of
γ[i] is independent of i, and is denoted by fγ(γ). To simplify the notation
we omit the time reference i from now on.

Following [23; 4], we partition the range of γ into NK + 1 pre-
adaptation SNR regions, which are defined by the switching thresholds
{γTn,k}

N,K
n,k=1,1, as illustrated in Fig. A.2. Code n, with spectral efficiency

Rn, is selected whenever γ is in the interval [γTn,1 , γTn+1,1), n = 1, · · · , N.
Within this interval the transmission rate is constant, however the system
can adapt the transmitted power to one of K levels (per code) according to

43



A. RATE AND POWER ALLOCATION FOR DISCRETE-RATE LINK ADAPTATION

the channel conditions, in order to maximize the ASE, subject to an av-
erage power constraint of S. I.e., for a given code n, a transmit power
level indexed by k = 1, · · · , K is selected for γ ∈ [γTn,k , γTn,k+1), where
γTn,K+1 , γTn+1,1 . If the pre-adaptation SNR is below γT1,1 , data are buffered.
For convenience, we let γT0,1 = 0 and γTN+1,1 = ∞.

2.2 Problem Formulation

The capacity of an AWGN channel is well known to be C(γ) = log2

(
1 +

S(γ)
S

γ
)

information bits/s/Hz, where S(γ)
S

γ is the received SNR. This
means that there exist codes that can transmit with arbitrarily small error
rate at all spectral efficiencies up to C(γ) bits/s/Hz, provided that the re-
ceived SNR is (at least) S(γ)

S
γ1. Our goal is now to find an optimal set of

capacity-achieving transmission rates, switching levels, and power adap-
tation schemes in order to maximize the average spectral efficiency for a
given fading distribution.

Using the results of [18], an information outage can only occur for a set
of channel states within the first interval, which in our setup corresponds
to that data should only be buffered for channel states in the first interval.
Whereas in the other SNR regions, the assigned rate supports the worst
channel state of that region. The average spectral efficiency of the system
(in information bit per channel use) can then be written as

R =
N

∑
n=1

RnPn, (A.1)

where Pn which is the probability that code n is used:

Pn =
∫ γTn+1,1

γTn,1

fγ(γ) dγ. (A.2)

3 Optimal Design for Maximum Average Spectral
Efficiency

Based on the above setup, we now proceed to design spectral efficiency
maximizing schemes. Recall that the pre-adaptation SNR range is divided
into regions lower bounded by γTn,1 , for n = 0, 1, · · · , N. Thus, we let

1The existence of such codes is guaranteed by Shannon’s channel coding theorem [24].
However, we do not address the important problem of constructing such codes, which is a
research problem in itself.

44



OPTIMAL DESIGN FOR MAXIMUM AVERAGE SPECTRAL EFFICIENCY

Rn = Cn, where Cn = log2

(
1 +

S(γTn,1 )

S
γTn,1

)
is shown below to be the high-

est spectral efficiency that can be supported within the range [γTn,1 , γTn+1,1)
for 1 ≤ n ≤ N, after transmit power adaptation. Note that the fading is
nonergodic within each codeword, so that the results of [25, Section IV] do
not apply.

An upper bound on the ASE of the ACM scheme—for a given set of
codes/switching levels—is therefore the maximum ASE for ACM (MASA),
defined as

MASA =
N

∑
n=1

CnPn =
N

∑
n=1

log2

(
1 +

S(γTn,1)
S

γTn,1

) ∫ γTn+1,1

γTn,1

fγ(γ) dγ, (A.3)

subject to the average power constraint,

N

∑
n=0

∫ γTn+1,1

γTn,1

S(γ) fγ(γ) dγ ≤ S, (A.4)

where S denotes the average transmit power. (A.3) is basically a discrete-
sum approximation of the integral expressing the Shannon capacity in [22,
Eq. (4)]. If arbitrarily long codewords can be used, the bound can be ap-
proached from below with arbitrary precision for an arbitrarily low error
rate. Using N distinct codes we analyze the MASA for constant, discrete,
and continuous transmit power adaptation schemes, deriving the opti-
mal rate and power adaptation for maximizing the average spectral effi-
ciency. We shall assume that the fading is so slow that capacity-achieving
codes for AWGN channels can be employed, giving tight bounds on the
MASA [26; 27]. In the remainder of this document, we shall use the term
MASA both for the ASE-maximizing transmission scheme and for the ASEs
obtained after optimizing the switching thresholds and power levels, re-
spectively.

3.1 Continuous-Power Transmission Scheme

In an ideal adaptive power control scheme, the transmitted power can be
varied to entirely track the channel variations. Then, for the N regions
where we transmit, we show that the optimal continuous power adaptation
scheme is piecewise channel inversion2 to keep the received SNR constant
within each region, much like the bit error rate is kept constant in optimal

2The results of this section were in part presented in [28]. Similar results on continuous
power adaptation, when allowing for information outage (loss of data), were also later
independently reported in [29].
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adaptation for constellation restrictions in [4]. For each rate region we use
a capacity-achieving code which ensures an arbitrarily low probability of
error for any AWGN channel with a received SNR greater than or equal to
S(γTn,1 )

S
γTn,1 , κn. The optimality of this strategy is formally proven below.

Lemma A.1
For the N + 1 SNR regions the optimal continuous power control scheme is of the
form

S(γ)
S

=

{
κn
γ , if γTn,1 ≤ γ < γTn+1,1 , 1 ≤ n ≤ N,

0, if γ < γT1,1 ,
(A.5)

where {κn, γTn,1}N
n=1 are parameters to be optimized.

Proof: Assume for the purpose of contradiction that the power scheme
given in (A.5) is not optimal, i.e., it uses too much power for a given rate.
Then, by assumption, there exists at least one point in the set

N⋃
n=1

{γ : γTn,1 ≤ γ < γTn+1,1} (A.6)

where it is possible to use less power; denote this point by γ′. Fix any
ε > 0 and let S(γ′)

S
= κn

γ′ − ε. This yields a received SNR of κn − εγ′ <

κn, but is less than the minimum required SNR for a rate of log2(1 + κn).
Hence, it does not exist any point where the proposed power scheme can
be improved, and the assumption is contradicted.

Using (A.5), the received SNR, after power adaptation, is then for n =
1, 2, · · · , N given as:

S(γ)
S

γ =

{
κn, if γTn,1 ≤ γ < γTn+1,1 ,
0, if γ < γT1,1 ,

(A.7)

i.e., we have a constant received SNR of κn within each region, supporting

a maximum spectral efficiency of log2(1 +
S(γTn,1 )

S
γTn,1) = log2(1 + κn).

Introducing the continuous power adaptation scheme (A.5)
in (A.3), (A.4), and changing the average power inequality to an equality
for maximization, we arrive at a scheme we denote MASAN×∞

3, posing
the following optimization problem with variables {κn, γTn,1}N

n=1:4

3The notation N × ∞ reflects the fact that the scheme can employ N codes combined
with continuous power control, i.e., infinitely many power levels are allowed per code.

4Strictly speaking, we should add the constraints 0 ≤ γT1,1 ≤ · · · ≤ γTN,1 , and κn ≥
0, ∀n. However, we instead verify that the solutions we find satisfy these constraints.
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maximize MASAN×∞ =
N

∑
n=1

log2(1 + κn)Pn (A.8a)

s.t
N

∑
n=1

κndn = 1, (A.8b)

where we have introduced the notation dn =
∫ γTn+1,1

γTn,1

1
γ fγ(γ) dγ, and Pn is

given in (A.2). Note that for N = 1, (A.8) reduces to the truncated channel
inversion Shannon capacity scheme given in [22, Eq. 12]. Inspecting (A.8),
we see that for any given set of {γTn,1}, the problem is a standard convex
optimization problem in {κn}, with a waterfilling solution given as [30]

κn =
Pn

λdn
− 1, n = 1, · · · , N, (A.9)

where λ is a Lagrange multiplier to satisfy the average power constraint,
which from (A.8b) can be expressed as a function of the switching thresh-
olds:

λ =
1− Fγ(γT1,1)
1 + ∑N

n=1 dn
, (A.10)

where Fγ(·) denotes the cumulative distribution function (cdf) of γ. Thus,
using (A.9) and (A.10), (A.8) simplifies to an optimization problem in
{γTn,1}, reducing the problem size from 2N to N variables:

maximize MASAN×∞ =
N

∑
n=1

log2(
Pn

λdn
)Pn. (A.11)

Finally, the optimal values of {γTn,1}, can be found by: i) equating the
gradient of MASAN×∞ to zero, i.e., ∇MASAN×∞ = 0, and solving the re-
sulting set of equations by means of a numerical routine such as “fzero”
in Matlab, or ii) directly feeding (A.11) to a numerical optimization routine
such as “fmincon” in the Matlab Optimization Toolbox. Numerical results
for the resulting adaptive power policy and the corresponding spectral ef-
ficiencies are presented in Section 4.

3.2 Discrete-Power Transmission Scheme

For practical scenarios the resolution of power control will be limited, e.g.,
for the Universal Mobile Telecommunications System (UMTS) power con-
trol step sizes on the order of 1 dB are proposed [31]. We thus extend the
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MASA analysis by considering discrete power adaptation. Specifically, we
introduce the MASAN×K scheme where we allow for K ≥ 1 power re-
gions within each of the N rate regions. For each rate region we again
use a capacity-achieving code for any AWGN channel with a received SNR

greater than or equal to
S(γTn,1 )

S
γTn,1 = κn. The optimal discrete power adap-

tation is discretized piecewise channel inversion, closely related to the dis-
crete power scheme in [16].

Lemma A.2
The optimal discrete-power adaptation scheme is of the form

S(γ)
S

=

{
κn

γTn,k
, if γTn,k ≤ γ < γTn,k+1 , 1 ≤ n ≤ N, 1 ≤ k ≤ K

0, if γ < γT1,1 ,
(A.12)

{κn}N
n=1 and {γTn,k}

N,K
n,k=1,1 are the parameters to be optimized.

Proof: To ensure reliable transmission in each rate region 1 ≤ n ≤ N, we
require S(γ)

S
γ ≥ κn, assuming γ ∈ [γTn,1 , γTn+1,1). Thus, following the proof

of Lemma A.1, since the rate is restricted to be constant in each region, it is
obviously optimal from a capacity maximization perspective to reduce the
transmitted power, when the channel conditions are more favorable. (A.12)
is then obtained by reducing the power in a stepwise manner (K− 1 steps),

and at each step obtaining a received SNR of κn, i.e.,
S(γTn,k

)

S
γTn,k = κn, thus

using the least possible power, while still ensuring transmission with an
arbitrarily low error rate.

Compared to the continuous-power transmission scheme (A.5),
discrete-level power control (A.12) will be suboptimal. As seen from the
proof of Lemma A.2, this is due to fact that (A.12) is only optimal at K
points (γTn,1 , · · · , γTn,K ) within each pre-adaptation SNR region n, at all
other points the transmitted power is greater than what is required for reli-
able transmission at log2(1 + κn) bits/s/Hz. Clearly, increasing the number
of power levels per code K gives a better approximation to the continuous
power control (A.5), resulting in a higher average spectral efficiency. How-
ever, as we will see from the numerical results in Section 4, using only a
few power levels per code will yield spectral efficiencies close to the upper
bound of continuous power adaptation.

Using (A.12) in (A.3), (A.4), we arrive at the following optimization
problem:
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maximize
N

∑
n=1

log2(1 + κn)Pn (A.13a)

s.t.
N

∑
n=1

κnen = 1, (A.13b)

where we have introduced en = ∑K
k=1

1
γTn,k

∫ γTn,k+1
γTn,k

fγ(γ) dγ. As in the case

of continuous-power transmission, for fixed {γTn,k}, (A.13) is a standard
convex optimization problem in {κn}, yielding optimal values according
to waterfilling as

κn =
Pn

λen
− 1, n = 1, · · · , N, (A.14)

where again λ is a Lagrange multiplier for the power constraint, and
from (A.13b) expressed as

λ =
1− Fγ(γT1,1)
1 + ∑N

n=1 en
(A.15)

Then, using (A.14) and (A.15) the optimal switching thresholds
{γTn,k}

N,K
n=1,k=1 are found as the solution to the following simplified opti-

mization problem:

maximize MASAN×K =
N

∑
n=1

log2(
Pn

λen
)Pn, (A.16)

which, analogously to the previously discussed case of continuous power
adaptation, can be approached by either solving the set of equations
∇MASAN×K = 0, or feeding (A.16) to a numerical optimization routine.

3.3 Constant-Power Transmission Scheme

When a single transmission power is used for all codes, we adopt the term
constant-power transmission scheme5 [15]. The optimal constant power policy
is then to save power when γ < γT1,1 , i.e., when there is no transmission,
while transmitting at a constant power level S for γ ≥ γT1,1 , such that the
average power constraint (A.4) is satisfied with an equality. Mathemati-
cally, from (A.4),

N

∑
n=0

∫ γTn+1,1

γTn,1

S(γ) fγ(γ) dγ = 0
∫ γT1,1

0
fγ(γ) dγ + S

∫ ∞

γT1,1

fγ(γ) dγ

= S
(
1− Fγ(γT1,1)

)
= S.

(A.17)

5Also termed on-off power transmission, see e.g., [8].
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Then, we arrive at the following transmit power adaptation scheme:

S(γ)
S

=

{ 1
1−Fγ(γT1,1 ) , if γTn,1 ≤ γ < γTn+1,1 , 1 ≤ n ≤ N,

0, if γ < γT1,1 .
(A.18)

From (A.18) we see that the post-adaptation SNR monotonically increases

within [γTn,1 , γTn+1,1), for 1 ≤ n ≤ N. Hence, log2

(
1 +

S(γTn,1 )

S
γTn,1

)
is the

highest possible spectral efficiency that can be supported over the whole
of region n. Introducing (A.18) in (A.3) we obtain a new expression for the
MASA, denoted by MASAN :

MASAN =
N

∑
n=1

log2

(
1 +

γTn,1

1− Fγ(γT1,1)

) ∫ γTn+1,1

γTn,1

fγ(γ) dγ. (A.19)

In order to find the optimal set of switching levels {γTn,1}N
n=1, we first cal-

culate the gradient of the MASAN—as defined by (A.19)—with respect to
the switching levels. The gradient is then set to zero, and we attempt to
solve the resulting set of equations with respect to {γTn,1}N

n=1:

∇MASAN =


∂MASAN

∂γT1,1
...

∂MASAN
∂γTN,1

 = 0. (A.20)

For n = 2, · · · , N the partial derivatives in (A.20) can be expressed as
follows:

∂MASAN

∂γTn,1

=

log2(e)
( ∫ γTn+1,1

γTn,1 fγ(γ) dγ

1− Fγ(γT1,1) + γTn,1

− ln
(

1− Fγ(γT1,1) + γTn,1

1− Fγ(γT1,1) + γTn−1,1

)
fγ(γTn,1)

)
,

(A.21)

where ln(·) is the natural logarithm. The integral in (A.21) is recognized
as the difference between the cdf of γ, Fγ(·), evaluated at the two points
γTn+1,1 and γTn,1 . Setting ∂MASAN

∂γTn,1
for 2 ≤ n ≤ N equal to zero then yields a

set of N − 1 equations, each with a similar form to the one shown here:

Fγ(γTn+1,1)− Fγ(γTn,1)− (1− Fγ(γT1,1) + γTn,1)×

ln
(

1− Fγ(γT1,1) + γTn,1

1− Fγ(γT1,1) + γTn−1,1

)
fγ(γTn,1) = 0, for n = 2, · · · , N. (A.22)
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Noting that γTn+1,1 appears only in one place in this equation, it is trivial to
rearrange the N − 2 first equations into a recursive set of equations where
γTn+1,1 is written as a function of γTn,1 , γTn−1,1 , and γT1,1 for n = 2, . . . , N − 1:

γTn+1,1 =

F−1
γ

[
Fγ(γTn,1) + (1− Fγ(γT1,1) + γTn,1) ln

(
1− Fγ(γT1,1) + γTn,1

1− Fγ(γT1,1) + γTn−1,1

)
fγ(γTn,1)

]
(A.23)

where F−1
γ [·] is the inverse cdf, whose existence can be guaranteed under

the assumption that fγ(γ) is non-zero except at isolated points [32].
For N ≥ 3, (A.23) can be expanded in order to yield a set γT3,1 , · · · , γTN,1

which is optimal for given γT1,1 and γT2,1 . The MASA can then be expressed
as a function of γT1,1 and γT2,1 only. We have now used N − 2 equations
from the set in (A.20), and the two remaining equations could be used in
order to reduce the problem to one equation of one unknown. However,
both because of the recursion and the complicated expression for ∂MASAN

∂γT1,1
,

the resulting equation would become prohibitively involved. The final op-
timization is done by numerical maximization of MASAN(γT1,1 , γT2,1), thus
reducing the N-dimensional optimization problem to 2 dimensions. After
solving the reduced problem γT3,1 , · · · , γTN,1 are found via (A.23).

Before we proceed, note that in a practical system, given a γ-range of
interest, the switching thresholds and corresponding power levels could be
computed offline for each relevant γ and stored as lookup tables in the sys-
tem. The correct thresholds, power levels, and associated coding schemes
could then be selected by table look-up based on an estimate of γ.

4 Numerical Results

One important outcome of the research presented here is the opportunity
the results provide for assessing the relative significance of the number of
codes and power levels used. It is in many ways desirable to use as few
codes and power levels as possible in link adaptation schemes, as this may
help overcome several problems, e.g., relating to implementation complex-
ity, and adaptation with faulty channel state information (CSI). Thus, if we
can come close to the maximum MASA (i.e., the channel capacity) with
small values of N and K by choosing our link adaptation schemes opti-
mally, this is potentially of great practical interest.

The constant and discrete schemes offer several advantages considering
implementation [33]. In these schemes the transmitter adapts its power and
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Figure A.3: Switching thresholds {γTn,1}N
n=1 as a function of average pre-

adaptation SNR. For each data series, the lowermost curve shows γT1,1 ,
while the uppermost shows γTN,1 .

rate from a limited set of values, thus the receiver only needs to feed back
an indexed rate and power pair for each fading block. Obviously, com-
pared to the feedback of continuous channel state information, this results
in reduced requirements of the feedback channel bandwidth and transmit-
ter design. Further, completely discrete schemes are more resilient towards
errors in channel estimation and prediction.

Two performance merits will be taken into account: The MASA, repre-
senting an approachable upper bound on the throughput when the scheme
is under the restriction of a certain number of codes and power adaptation
flexibility, and the probability of no transmission, Pno tr., representing the
probability that data must be buffered. For the system designer, this prob-
ability is an important quantity as it influences e.g. the system’s ability to
operate under delay requirements. For the following numerical results, a
Rayleigh fading channel model has been assumed.

4.1 Switching Levels and Power Adaptation Schemes

Fig. A.3 shows the set of optimal switching levels {γTn,1}N
n=1 for selected

MASA schemes and for 0 dB < γ < 30 dB. (For the MASA2×2 and

52



NUMERICAL RESULTS

Table A.1: Rate and Power Adaptation for Four Regions, γ = 10 dB

MASA4 MASA4×4 MASA4×∞

γT1,1 , · · · , γT4,1 (dB) 4.4, 7.3, 9.8, 12.4 2.5, 6.3, 9.4, 12.3 1.4, 5.5, 8.9, 12.3

κ1, · · · , κ4 - 2.4, 6.6, 13.9, 29.0 2.0, 6.0, 13.8, 31.3

SE1, · · · ,SE4 1.9, 2.7, 3.4, 4.2 1.8, 2.9, 3.9, 4.9 1.6, 2.8, 3.9, 5.0

MASA4×4 schemes the internal switching thresholds {γTn,k}
N,K
n=1,k=2 are not

shown in Fig. A.3 due to clarity reasons). Table A.1 shows numerical val-
ues, correct to the first decimal place, for designing optimal systems with
N = 4 at γ = 10 dB. Fig. A.3 and Table A.1 should be interpreted as fol-
lows: With the mean pre-adaptation SNR γ, the number of codes N and a
power adaptation scheme in mind, find the set of switching levels and the
corresponding maximal spectral efficiencies, given by

SEn =

log2(1 +
γTn,1

1−F(γT1,1 ) ) for MASAN ,

log2(1 + κn) for MASAN×K and MASAN×∞.
(A.24)

Then design optimal codes for these spectral efficiencies, for each γ of in-
terest.

Examples of optimized power adaptation schemes are shown in
Fig. A.4, illustrating the piecewise channel inversion power adaptation
schemes of the MASAN×K and MASAN×∞ schemes. For γ ≤ 15 dB the
discrete-power scheme of MASA4×4 closely follows the continuous power
adaptation scheme of MASA4×∞. Fig. A.4 also depicts the optimal power
allocation (denoted COPRA) for continuous-rate adaptation [22, Eq. 5]. At
γ = 10 dB, two discrete-rate MASA schemes allocate more power to codes
with higher spectral efficiency, following the water-filling nature of COPRA.
In the analysis of Section 3 no stringent peak power constraint has been im-
posed, and it is interesting to note the limited range of S(γ) that still occurs
for both MASA4×4 and MASA4×∞.

4.2 Comparison of MASA Schemes

Under the average power constraint of (A.4) the average spectral efficien-
cies corresponding to MASAN , MASAN×K, and MASAN×∞ are plotted in
Figs. A.5 and A.6. From Fig. A.5a we see that the average spectral efficiency
increases with the number of codes, while Fig. A.6 shows that the ASE also
increases with flexibility of power adaptation.
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Figure A.4: Power adaptation schemes for MASA4×∞ and MASA4×4 as
a function of pre-adaptation SNR, plotted for an average pre-adaptation
SNR γ = 10 dB. Optimal power adaptation for continuous-rate adaptation
COPRA as reference.

Fig. A.5b compares four MASA schemes with the product N × K = 8,
showing that number of codes has a slightly larger impact on the spectral
efficiency than the number of power levels. However, we see that the three
schemes with N ≥ 2 have almost similar performance, indicating that the
number of rates and power levels can be traded against each other, while
still achieving approximately the same ASE. From an implementation point
of view this is valuable as it gives more freedom to design the system.

Finally, as mentioned in the introduction, there are at least two distinct
design philosophies for link adaptation systems, depending on whether
the number of regions in the partition of the pre-adaptation range γ or the
number of rates is the starting point of the design, and correspondingly on
whether information outage can be tolerated. Now, a direct comparison is
not possible, but to highlight the differences between the two philosophies
we provide a numerical example.

Example 1 Consider designing a simple rate-adaptive system with two regions,
where the goal is to maximize the expected rate using a single power level per
region. Assuming the average pre-adaptation SNR on the channel to be 5 dB and
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Figure A.5: Average spectral efficiency of different MASA schemes.

following the setup of [18–20], we find the maximum average reliable throughput
(ART), defined as the “average data rate assuming zero rate when the channel is
in outage”[18] that can be achieved to be 1.2444 bits/s/Hz, and that the probability
of information outage, or equivalent the probability that an arbitrary transmission
will be corrupted, is 0.3098. Thus, without retransmissions, the system is likely to
be useless for many applications.

Now, turning to the MASA schemes discussed in this paper, using two regions,
but only one constellation and power level, i.e., MASA1, we see from Fig. A.5a that
this scheme achieves a spectral efficiency of 1.2263 bits/s/Hz at γ = 5 dB without
outage. This is only marginally less than the scheme from [18–20] when using two
constellations and allowing for a non-zero outage.

4.3 Comparison of MASA schemes with Shannon Capacities

Assume that the channel state information γ is known to the transmitter
and the receiver. Then, given an average transmit power constraint the
channel capacity of a Rayleigh fading channel with optimal continuous rate
adaptation and constant transmit power, CORA, is given in [22; 34] as

CORA = log2(e)e
1
γ E1

( 1
γ

)
, (A.25)

where E1(·) is the exponential integral of first order [35, p. xxxv]. Fur-
thermore, if we include continuous power adaptation, the channel capacity,
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COPRA, becomes [22; 34]

COPRA = log2(e)
( e

−γcut
γ

γcut
γ

− γ
)

, (A.26)

where the “cutoff” value γcut can be found by solving∫ ∞

γcut

( 1
γcut

− 1
γ

)
fγ(γ) dγ = 1. (A.27)

Thus, MASAN is compared to CORA, while MASAN×K and MASAN×∞ are
measured against COPRA.

The capacity in (A.26) can be achieved in the case that a continuum
of capacity-achieving codes for AWGN channels, and corresponding opti-
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mal power levels, are available. That is, for each SNR there exists an op-
timal code and power level. Alternatively, if the fading is ergodic within
each codeword, as opposed to the assumptions in this paper, COPRA can
be obtained by a fixed rate transmission system using a single Gaussian
code [25; 36].

As the number of codes (switching thresholds) goes to infinity, MASAN
will reach the CORA capacity, while MASAN×K will reach the COPRA capac-
ity when N, K → ∞. Of course this is not a practically feasible approach;
however, as illustrated in Figs. A.5a and A.6, a small number of optimally
designed codes, and possibly power adaptation levels, will indeed yield a
performance that is close to the theoretical upper bounds, CORA and COPRA,
for any given γ.

From Fig. A.6 we see that the power adapted MASA schemes perform
close to the theoretical upper bound (COPRA) using only four codes. Specifi-
cally, restricting our adaptive policy to just four rates and four power levels
per rate results in a spectral efficiency that is within 1 dB of the efficiency
obtained with continuous-rate and continuous-power (A.26), demonstrat-
ing the remarkable impact of power adaptation. This is in contrast to the
case of continuous rate adaptation, where introducing power adaptation
gives negligible gain [22].

4.4 Probability of no transmission

When the pre-adaptation SNR falls below γT1,1 no data are sent. The prob-
ability of no transmission Pno tr. for the Rayleigh fading case can then be
calculated as follows,

Pno tr. =
∫ γT1,1

0
fγ(γ) dγ = 1− e−

γT1,1
γ . (A.28)

When the number of codes is increased, the SNR range will be partitioned
into a larger number of regions. As shown in Fig. A.3, the lowest switching
level γT1,1 will then become smaller. Pno tr. will therefore decrease, as illus-
trated in Fig. A.7. Similarly, as seen from Fig. A.3, γT1,1 also decreases with
an increasing number of power levels, when N is constant. Thus, both rate
and power adaptation flexibility reduce the probability of no transmission.

For applications with low delay requirements, it could be beneficial to
enforce a constraint that Pno tr. should not exceed a prescribed maximal
value. Then, we may simply—using (A.28)—compute γT1,1 to be the high-
est SNR value which ensures that this constraint is fulfilled. The MASA
schemes are then optimized to obtain the highest possible ASE under the
given constraint on no transmission, i.e., optimization with γT1,1 as a pre-

57



A. RATE AND POWER ALLOCATION FOR DISCRETE-RATE LINK ADAPTATION

0 5 10 15 20 25 30

10
−2

10
−1

10
0

Average pre−adaptation SNR (dB)

P
ro

ba
bi

lit
y 

of
 n

o 
tr

an
sm

is
si

on

 

 

MASA
4x∞

MASA
4

MASA
2x2

MASA
2

MASA
1

Figure A.7: The probability of no transmission Pno tr. as a function of aver-
age pre-adaptation SNR.

determined parameter. As an example, in Fig. A.8, the obtainable average
spectral efficiency for the MASAN scheme with the additional constraint
that Pno tr. ≤ 10−3 (dashed lines) is compared to the case without a con-
straint on no transmission probability (solid lines). We see that for N = 2
the constraint has a severe influence on the ASE, while for N = 8 the con-
straint can be fulfilled without significant losses in spectral efficiency.

5 Conclusions and Discussions

Using a zero information outage approach, and assuming that capacity-
achieving component codes are available, we have devised spectral effi-
ciency maximizing link adaptation schemes for flat block-fading wireless
communication channels. Constant, discrete, and continuous-power adap-
tation schemes are proposed and analyzed. Switching levels and power
adaptation policies are optimized in order to maximize the average spec-
tral efficiency for a given fading distribution.

We have shown that a performance close to the Shannon limits can be
achieved with all schemes using only a small number of codes. However,
utilizing power adaptation is shown to give significant average spectral
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Figure A.8: MASAN as a function of γ, with a constraint on the probability
of no transmission (solid lines) and without (dashed lines). Plotted for N =
2 (lowermost curve for both series), 4, and 8 (uppermost curve for both
series ).

efficiency and probability of no transmission gains over the constant trans-
mission power scheme. In particular, using a fully discrete scheme with
just four codes, each associated with four power levels, we achieve a spec-
tral efficiency within 1 dB of the Shannon capacity for continuous rate and
power adaptation. Additionally, constant and discrete-power adaptation
schemes render the system more robust against imperfect channel estima-
tion and prediction, reduce the feedback load and resolve implementation
issues, compared to continuous power adaptation.

We have also seen that the number of rates N can be traded against the
number of power levels K. This flexibility is of practical importance since it
may be easier to implement the proposed power adaptation schemes than
to design capacity-achieving codes for a large number of rates. The analy-
sis can be augmented to encompass more practical scenarios, e.g., by tak-
ing imperfect CSI [37] and SNR margins due to various implementation
losses, into account. Finally, we note that the adaptive power algorithms
presented in this paper require that the radio frequency (RF) power ampli-
fier is operated in the linear region, implying a higher power consumption.
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For devices with limited battery capacity it is apparent that there will be
a tradeoff between efficiency and linearity. This can be a topic for further
research.
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Abstract

We analyze two different approaches found in the literature for
throughput maximization of an adaptive transmission system oper-
ating over a slowly-varying flat-fading wireless channel with limited
channel state information at the transmitter. While both approaches
employ a finite number of transmission power levels and capacity-
achieving codes, they differ in the number of quantization levels for
the channel state, and whether or not information outage is allowed.
Focusing on reliable data communications, we extend earlier works
in a cross-layered fashion by adding an ARQ protocol, such that data
received during such an outage can be retransmitted.

We accurately analyze and compare the performance of the two
approaches in terms of average spectral efficiency, probability of out-
age, and average feedback load, here defined in terms of the entropy
of the feedback source. Numerical results show that, in general, there
is a trade-off between the two approaches in terms of spectral effi-
ciency and feedback load. However, scenarios in which one of the
schemes can achieve a higher throughput at a lower feedback load
are also identified.
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INTRODUCTION

1 Introduction

Link adaptation, in particular adaptive coded modulation (ACM), is a
promising technique to increase throughput in wireless communication
systems affected by fading. Today, adaptive schemes are already being im-
plemented in wireless systems such as Digital Video Broadcasting - Satel-
lite Version 2 (DVB-S2) [1]. ACM has the ability to adapt to a time-varying
channel through variation of channel codes, modulation constellations, and
transmitted power [2–10].

In the current literature, we can identify at least two different ap-
proaches to the design of such adaptive systems using a finite number of
transmission rates and power levels, under an average transmit power con-
straint [3; 11–14; 7; 9]. One key point is the manner in which the design
problem is posed. In [7; 9] the problem can be stated as follows: Given that
the system quantizes any channel signal-to-noise ratio (SNR) to L levels,
what is the maximum spectral efficiency that can be obtained using dis-
crete rate signalling? On the other hand, in [3; 11–13] the question that is
asked is: Given that the system can utilize N transmission rates, what is the
maximum spectral efficiency that can be attained? While seemingly simi-
lar, these two starting points give differing designs, as will be discussed in
more detail.

Another key difference is that in [3; 11–14] the system is designed to
maximize the average spectral efficiency (ASE) under the constraint of zero
information outage. In the event of an information outage, the transmitted
data will be corrupted, and thus when the code with the lowest spectral
efficiency can not be supported by the channel, transmission is disabled,
and data buffered. Following the terminology of [14], we will refer to
such schemes as maximum ASE for ACM (MASA) schemes. In the family
of schemes from [7; 9], data are transmitted at all time instants, and an in-
formation outage occurs when the mutual information offered by the channel
is lower than the transmitted rate. The data transmitted during outage are
then ignored, and the performance is characterized by the concept of av-
erage reliable throughput (ART), assuming zero rate when the channel is in
outage [7]. Henceforth, we shall refer to such schemes as ART schemes.

Although allowing for a non-zero outage can offer more flexibility in the
design, and has been suggested in the literature to be the better choice [7; 9],
it also comes with the drawbacks of data loss and the spilling of system
resources (e.g., power). In [7; 9] the important issues of how often data
are lost due to an information outage, and how to deal with it, are not dis-
cussed. Moreover it is clear that the if the information outage is large, many
applications would require the communication system to be equipped with
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Figure B.1: Adaptive coded modulation system.

a retransmission capability. This is not discussed in [7; 9].
In this paper we compare the MASA and ART approaches in a scenario

where the integrity of the information bits to be transmitted must be pre-
served. We therefore extend the ART scheme with an ARQ protocol for
retransmitting bits that are received during an information outage. This
strategy fits well applications in data communications which “cannot tol-
erate any loss, so packets that are corrupted or lost in the end-to-end trans-
mission must be retransmitted” [15, p. 553]. By performing a mathemati-
cal analysis of the two approaches and looking at numerical examples, we
show that there in general is a compromise between spectral efficiency and
feedback load. Changing from one scheme to another in general allows to
trade spectral efficiency for feedback load. However, in some scenarios, the
MASA scheme can offer a higher throughput at a lower feedback cost. This
is in contrast to conclusions found in the literature [7; 9].

The remainder of the present paper is organized as follows. In Section 2
the system model is presented, outlining the MASA and ART schemes.
The two schemes are then analyzed in terms of average spectral efficiency,
outage probability, and feedback load in Section 3. Numerical results are
shown in Section 4, and finally we conclude in Section 5.

2 System Model

Consider the single-link wireless system depicted in Fig. B.1. The discrete-
time channel is a stationary fading channel with time-varying gain. Un-
der the assumption of frequency-flat fading, we will use an independent,
identically distributed (iid) block-fading model, i.e., we approximate the
wireless fading channel by an AWGN channel within the length of one co-
herence time (data burst) [16]. Following the setup of [7; 9; 14], the receiver
is assumed to have perfect channel state information (CSIR), whereas the
transmitter exploits partial CSIT, in the form of quantized SNR, to select a
transmit rate and power pair.
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We denote the instantaneous pre-adaptation received signal-to-noise ra-
tio (SNR) at time i by γ[i], and the average pre-adaptation received SNR
by γ. These are the SNRs that would be experienced using signal constel-
lations of average power S without power control [4]. Given a channel
fading state γ[i], and a transmit power of κ(γ[i]), the received SNR af-
ter power control, termed post-adaptation SNR, at time i is then given by
γ[i]κ(γ[i])/S. Associated with the transmit power control is an average
power constraint1:

E{κ(γ)} ≤ S. (B.1)

By virtue of the iid block-fading assumption, the distribution of γ[i] is in-
dependent of i, and is denoted by fγ(γ). To simplify the notation we omit
the time reference i from now on.

We will compare the adaptive transmission design philosophies of
MASA and ART in this setup, and, based on this comparison challenge
some previous conclusions on the relative performance of these schemes.
Following the zero information outage approach, denote by MASAN×1 the
MASA scheme that utilizes N power and rate pairs, and also has the op-
tion of buffering data at poor channel conditions. Thus, as illustrated in
Fig. B.2a the pre-adaptation SNR range is partitioned into N + 1 regions,
which are defined by the code switching thresholds {γTn}N

n=1. Specifically,
whenever γ is in the interval [γTn , γTn+1), n = 1, · · · , N, code n, with spec-
tral efficiency Rn, and transmit power κn is used. If the pre-adaptation
SNR is below γT1,1 , data are buffered. For convenience, we let γT0 = 0 and
γTN+1 = ∞.

Turning to the design philosophy allowing for information outage, we
define ARTL to be the ART scheme where channel state feedback is quan-
tized to L levels. With ARTL, data are potentially transmitted at every point
in time. The rationale behind this is to attempt to increase the spectral ef-
ficiency by supporting transmission also when γ < γT1 [7; 9]. Specifically,
the pair of code l and transmit power κl is selected whenever γ is in the
interval [γTl , γTl+1), l = 0, · · · , L− 1, as depicted in Fig. B.2b.

We re-emphasize that the key difference between the two schemes is
that in the ART scheme, for γ ∈ [0, γT1), data are always transmitted at a
rate R0, requiring a pre-adaptation SNR of γ∗0 for the transmission to be re-
liable. I.e., for all γ < γ∗0 , the instantaneous mutual information is less than
the operating rate. An outage hence occurs, and the transmitted data are
corrupted and must be ignored by the receiver. Due to the assumption of
perfect CSIR, the receiver knows whether the received data are transmitted
in outage, and can thus disregard unreliable data. Focusing on reliable data

1Termed long-term power constraint in [9].
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Figure B.2: Pre-adaptation SNR range partitioning for the MASAN×1 and
ARTL schemes.

communications, we extend the ideas of [7; 9] in a cross-layered fashion by
adding to the ARTL scheme an ARQ protocol, allowing to retransmit data
that are corrupted during information outages.

3 Performance Analysis

Based on the above setup, we now proceed to analyze and compare the
MASAN×1 and ARTL schemes in terms of average spectral efficiency, out-
age probability, and feedback load.

3.1 Average Spectral Efficiency

First, following [14], we consider the MASAN×1 scheme, using N distinct
rate and power pairs (Rn, κn), where for γ ∈ [γTn , γTn+1), Rn is the high-
est spectral efficiency rate that can be supported using a transmit power
level of κ(γ)

S
= κn, i.e., Rn = log2(1 + κnγTn). The average spectral ef-

ficiency maximization problem can then be formulated as follows, where
{κn, γTn}N

n=1 are the optimization variables:

MASAN×1 = max.
N

∑
n=1

log2(1 + κnγTn)
∫ γTn+1

γTn

fγ(γ) dγ, (B.2a)

s.t.
N

∑
n=1

κn

∫ γTn+1

γTn

fγ(γ) dγ = 1, (B.2b)

κn ≥ 0, γTn+1 − γTn ≥ 0. (B.2c)
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where we have changed the inequality in (B.1) to an equality for maximiza-
tion purposes [7, Lemma 2]. Problem (B.2) can be solved using the proce-
dure outlined in [14].

Proceeding to the ARTL scheme, L distinct rate and power pairs are
used, and the spectral efficiency performance is characterized by the aver-
age reliable throughput, (i.e., the spectral efficiency is taken to be zero when
the channel is in outage). As for the MASA scheme above, in the L− 1 up-
per intervals, a power κl is used and a rate of Rl = log2(1 + κlγTl ) can be
supported. As depicted in B.2b, for the lowermost pre-adaptation SNR re-
gion, transmission occurs at a power κ0 and a rate of R0 = log2(1 + κ0γ∗0),
however this rate can only be supported for γ ∈ [γ∗0 , γT1). Thus, for
γ ∈ [0, γ∗0) the system is in outage. Then, the spectral efficiency maxi-
mization problem with variables γ∗0 , κ0, {κl , γTl}

L−1
l=1 is given as:

ARTL = max. log2(1 + κ0γ∗0)
∫ γT1

γ∗0

fγ(γ) dγ+

L−1

∑
l=1

log2(1 + κlγTl )
∫ γTl+1

γTl

fγ(γ) dγ,
(B.3a)

s.t.
L−1

∑
l=0

κl

∫ γTl+1

γTl

fγ(γ) dγ = 1, (B.3b)

κl ≥ 0, γ∗0 ≥ 0, γTl+1 − γTl ≥ 0. (B.3c)

where the contribution from R0 = log2(1 + κ0γ∗0) is taken to be zero when
the channel is in outage, as reflected by the integration limits. The solution
to (B.3) can be found using the procedure described in [7; 9].

In the remainder of this document, we shall use the terms MASAN×1
and ARTL both for the transmission schemes and for the ASEs obtained
by solving (B.2) and (B.3), respectively. When comparing the two different
design philosophies, an obvious question is the relative spectral efficiency
performance. To this end, we give the following general result:

Proposition 1 The average spectral efficiencies of the MASAN×1 and ARTL
schemes satisfy:

a) MASAN×1 > ARTL, ∀N = L ≥ 1.
b) MASAN×1 > ARTL ≥ MASA(N−1)×1, ∀N = L ≥ 2.

Proof: In the solution to the ARTL optimization problem (B.3), κ0 can be
either positive or zero [7], and we consider the two cases separately. First,
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recall that N = L, and rewrite the ARTL power constraint (B.3c) as

N−1

∑
n=0

κn

∫ γTn+1

γTn

fγ(γ) dγ

= κ0

∫ γ∗0

0
fγ(γ) dγ︸ ︷︷ ︸

Power waste

+κ0

∫ γT1

γ∗0

fγ(γ) dγ +
N−1

∑
n=1

κn

∫ γTn+1

γTn

fγ(γ) dγ.
(B.4)

For κ0 > 0, this shows that power is wasted for γ ∈ [0, γ∗0), ∀N ≥ 1. Com-
paring (B.2) to (B.3), we thus see that the ARTL optimization problem is
equivalent to the MASAN×1 optimization problem, but with a more restric-
tive average power constraint, and hence

MASAN×1 > ARTL, κ0 > 0. (B.5)

Note that for N = 1, we always have κ0 > 0. For N ≥ 2, it is also possible
that κ0 = 0, and in this case we see from (B.4), (B.2) that

ARTL = MASA(N−1)×1. (B.6)

Now, trivially, MASAN×1 > MASA(N−1)×1, and combining (B.5) and (B.6)
we obtain a). Finally, κ0 is only positive if there is a gain in spectral ef-
ficiency by supporting the rate log2(1 + κ0γ∗0) over not doing so, hence
ARTL > MASA(N−1)×1 for κ0 > 0, N ≥ 2. This combined with (B.6) es-
tablishes b).

3.2 Probability of Outage

As previously mentioned, the ARTL scheme allows for information outage,
and when the system is in outage, the data that are transmitted will be lost.
A central measure to evaluate the performance of the scheme in a practi-
cal scenario is then the probability of information outage, Pout. This was
not explicitly quantified (numerically) in [7; 9]. Pout quantifies the average
fraction of transmissions that will be corrupted, and can be calculated as

Pout =
∫ γ∗0

0
fγ(γ) dγ. (B.7)

3.3 Feedback Load

Now, consider the minimum average feedback load (AFL) of the two
schemes in question. The AFL — measured in average number of infor-
mation bits per feedback symbol — will be calculated using the entropy
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of the feedback source. This is a natural measure, since it represents the
lower limit of achievable compression of the feedback source, assuming
the source is memoryless. Note that this notion of feedback load differs
from [7; 9], where the feedback load was simply taken to be the number of
regions.

Let us first consider the MASAN×1 scheme. For each fading block, an
index pointing to one of N + 1 (rate, power) pairs (including the zero-rate
zero-power pair) is fed back. Due to the iid block fading assumption, the
feedback indices can be considered as the outcomes of a discrete memory-
less XMASAN×1 source with an alphabet of cardinality N + 1, and associated
symbol probabilities

Pn =
∫ γTn+1

γTn

fγ(γ) dγ, n = 0, 1, . . . , N. (B.8)

Thus, according the Shannon’s source coding theorem [17], the minimum
average feedback load AFLMASAN×1 can be found by calculating the entropy
as follows:

AFLMASAN×1 = H{XMASAN×1} = −
N

∑
n=0

Pn log2(Pn), (B.9)

where H{X} denotes the entropy of the source X .
When employing the ARTL scheme for data communications, it is re-

quired that all data be reliably conveyed from the transmitter to the re-
ceiver. This implies that data that are lost during outage must be retrans-
mitted, making the feedback load calculation slightly more involved. That
is, for the current block, we need to consider two cases: i) transmission in
the previous block occurred with rate R > R0 and outage is not possible or
ii) the previous transmission used a rate R = R0 and outage can occur.

In the first case, the transmitter knows that the previous transmission
was successful, and then it suffices to feed back the SNR region index
only. Following the steps used above, the feedback is then given by a
source XARTL,No out., with symbol probabilities Pl =

∫ γTl+1
γTl

fγ(γ) dγ, l =
0, 1, . . . , L− 1, yielding an entropy of

H{XARTL,No out.} = −
L−1

∑
l=0

Pl log2 Pl . (B.10)

In the event that an outage might have occurred in the previous trans-
mission, the transmitter needs to be informed whether or not a retrans-
mission is required. We introduce a simple ACK/NACK scheme to this
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end. Specifically, an ACK or NACK has to be given in addition to the pre-
adaptation SNR region for the next transmission. The alphabet for the feed-
back source XARTL+ACK/NACK , given that transmission occurred with R0 in the
previous block, is that obtained by pairing the rates R0, · · · , RL−1 with ACK
and NACK symbols, yielding 2L entries. By virtue of the iid block fading
assumption, the probability of the entries in the alphabet are found to be:

Pr (Rl , ACK) = Pl
(P0 − Pout)

P0
, l = 0, . . . L− 1 (B.11a)

Pr (Rl , NACK) = Pl
Pout

P0
, l = 0, . . . L− 1. (B.11b)

In the case that the optimization problem (B.3) yields a κ0 > 0, we
can calculate the average feedback load of the ARTL scheme using (B.10)
and (B.11) as

AFLARTL = H{XARTL+ACK/NACK}P0 +H{XARTL,No out.}(1− P0)

=

[
−

L−1

∑
l=0

Pl
P0 − Pout

P0
log2

(
Pl

P0 − Pout

P0

)

−
L−1

∑
l=0

Pl
Pout

P0
log2

(
Pl

Pout

P0

)]
P0

−
(

L−1

∑
l=0

Pl log2 Pl

)
(1− P0)

i)
=
[
−P0 − Pout

P0
log2

(
P0 − Pout

P0

)
− Pout

P0
log2

(
Pout

P0

)]
P0

−
L−1

∑
l=0

Pl log2 Pl ,

(B.12)

where i) follows from routine rearrangements and the fact that ∑L−1
l=0 Pl = 1.

Inspecting (B.12), we see that it can be rewritten as

AFLARTL = H{XARTL,No out.}+ P0H{XACK/NACK}, (B.13)

where we have defined XACK/NACK as a source with binary alphabet and
symbol probabilities

PACK =
P0 − Pout

P0
, PNACK =

Pout

P0
. (B.14)
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That is, the total feedback load is given as the sum of the entropy of
an ARTL scheme performing without outage and the entropy of a binary
(ACK/NACK) source weighted by P0, i.e., the probability of having to give
ACK/NACK.

In the case of κ0 = 0, outage is not possible, and the feedback load of
the ARTL scheme is simply given by (B.10). To summarize, we have that

AFLARTL =

{
H{XARTL,No out.}+ P0H{XACK/NACK}, κ0 > 0,
H{XARTL,No out.}, κ0 = 0.

(B.15)

Following the ASE discussion in Section 3.1, from (B.15) and (B.9) it is clear
that in the case of κ0 = 0, AFLARTL = AFLMASA(N−1)×1

, due to equivalent
optimization problems (B.2) and (B.3).

4 Numerical Results

For the following numerical results, a Rayleigh fading channel model is
assumed.

4.1 Probability of Outage and Average Spectral Efficiency

Fig. B.3 shows the probability of outage for the ARTL scheme as a func-
tion of the average pre-adaptation SNR γ (dB). We see that ART1 scheme
has, as expected, a non-zero probability of outage for all values of γ. At
low pre-adaptation SNRs, for L ≥ 2, the probability of outage is zero, or
equivalently κ0 = 0. For larger γ, a non-zero outage probability can not be
avoided. As an example, for ART2, Pout = 0.3098 at γ = 5 dB, implying
that more than 30% of the transmissions will be corrupted, thus for many
applications there is a need for a retransmission capability. Somewhat sur-
prisingly this is not discussed in [7; 9].

In Fig. B.4, we have plotted the average spectral efficiency of the two
schemes versus the average pre-adaptation SNR γ. The plots confirm the
results from Proposition 1, namely that for N = L, MASAN×1 achieves a
higher ASE than ARTL. Also, for low values of γ, when κ0 = 0, we see that
ARTL = MASA(N−1)×1 for N = L ≥ 2.

4.2 Feedback Load

In Fig. B.5, we have plotted the minimum average feedback load of each
of the two schemes (given in (B.9) and (B.15)). Comparing Fig. B.4 and
Fig. B.5 the general picture is, as expected, that there is a trade-off be-
tween average spectral efficiency and feedback load. Also, when κ0 = 0,
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Figure B.3: Probability of outage for the ART schemes.

AFLARTL = AFLMASA(N−1)×1
, see for example the feedback load of MASA3

and ART4 for γ = 0-8 dB in Fig. B.5b. However, it is very interesting to note
that at some points the MASAN×1 scheme offers a higher spectral efficiency
at a lower feedback load. This contrasts previous claims that the “artificial
constraint of zero outage leads to a big performance penalty” [7]. For ex-
ample, consider ART2 from Fig. B.5a in the range of γ between 3 − 7 dB,
then the feedback load is higher than that of MASA2×1, while from Propo-
sition 1, and as seen in Fig. B.4a, MASA2×1 has a higher spectral efficiency.

5 Conclusions

We have studied two different design philosophies for adaptive transmis-
sion over slowly-varying flat-fading wireless channels with limited channel
state information at the transmitter. The contrasted methods are the max-
imum average spectral efficiency for adaptive coded modulation (MASA)
scheme, and the average reliable throughput (ART) maximizing scheme.
Both schemes utilize capacity-achieving codes for AWGN channels, and
one power level per code. However, the schemes differ in their design
objectives, and how they deal with information outage. The MASAN×1
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scheme maximizes the ASE, given a fixed and finite number (N) of avail-
able rates, and by design has zero outage. On the other hand, the ARTL
scheme starts from a fixed and finite number (L) of available SNR quantiza-
tion regions, and then maximizes the ASE. As opposed to MASA, the ART
approach thus allows for a non-zero information outage. To facilitate reli-
able communications, we extended the traditional ART scheme in a cross
layer fashion, to include a retransmission option.

Through a mathematical analysis both schemes are evaluated in terms
of average spectral efficiency and average feedback load. In addition,
for the ARTL scheme, the probability of outage is also quantified numer-
ically. Comparing the two approaches, our results show that for N = L,
MASAN×1 achieves the highest spectral efficiency, whereas in general the
ARTL scheme has the lowest feedback load, and hence there is a trade-off.
However, we also identify some settings for which the MASAN×1 scheme
offers both the highest spectral efficiency and the lowest feedback load for
a given average SNR. This is a consequence of our cross-layered approach
and our feedback load metric, and is in contrast to conclusions previously
found in the literature.
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Figure B.4: Average spectral efficiency versus average pre-adaptation SNR.
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Figure B.5: Feedback load versus average pre-adaptation SNR.
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Abstract

We consider the problem of finding optimal transmission rates
and power allocation under the framework of diversity combining.
Capitalizing on recent results for both link adaptation schemes and
adaptive combining, we design and analyze two joint link adaptation
and diversity combining schemes. Based on the channel fading, the
proposed schemes adaptively select both the signal constellation and
diversity combiner structure. We show that the novel schemes pro-
vide significant throughput gains compared to existing joint adaptive
QAM and diversity schemes. Further, contrary to previous results on
power control for discrete rate link adaptation, power control does not
give significant average spectral efficiency gains in this jointly adap-
tive setting. However, power control yields significant probability of
no transmission gains over the constant power schemes.

Compared to the published version, we have made minor modifications to this paper
in order to be consistent, over the papers included in this thesis, with respect to use of the
terms outage, information outage and probability of no transmission.
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INTRODUCTION

1 Introduction

The need for ever higher spectrum efficiency motivates the search for opti-
mization of the wireless resources. Resource management in wireless com-
munications is a difficult task due to user mobility and highly time-variant
propagation environments, thus implying adaptive solutions. Key adap-
tive techniques are those of adaptive modulation [1; 2], power control [3; 4],
and adaptive combining [5–8].

In [6; 5] new jointly adaptive modulation and combining schemes based
on a multiple threshold idea are introduced. [6; 5] evaluate the proposed
schemes by adopting a constant-power variable-rate uncoded M-QAM
scheme. Given a target bit error rate (BER), the adaptive modulator thresh-
olds are then predetermined. Since the thresholds are predetermined, the
scheme will not be able to fully take advantage of the time-varying nature
of the fading channel, in terms of spectral and power efficiency. It is then
natural to seek optimal thresholds based on the fading statistics. Further,
by utilizing the framework of [4] power control can be introduced.

In this paper we tackle the problem of maximizing the average spectral
efficiency (ASE) by finding optimal transmission rates and power control
schemes for adaptive diversity combining over Rayleigh fading channels.
We show that the proposed schemes offer large ASE gains over the previous
QAM schemes discussed in [6; 5], by better taking advantage of the time-
varying nature of the wireless channel. Introducing power control gives
a significant reduction in probability of no transmission. However, as op-
posed to previous results on power control for discrete rate link adaptation,
power control does not give significant ASE gains in this jointly adaptive
setting [4].

The remainder of the present paper is organized as follows. In Sec-
tion 2, we introduce the diversity model and review results on QAM-based
adaptation. Optimal transmission schemes are derived and analyzed in
Section 3. Numerical examples and plots are presented in Section 4. Fi-
nally, conclusions are given in Section 5.

2 Diversity System and QAM Adaptation

2.1 GSC Diversity

We assume a generic diversity system with L available diversity branches,
as shown in Fig. C.1. The received signal on each diversity branch is
assumed to experience independent identically distributed (iid) Rayleigh
fading. Due to hardware complexity and power considerations, a maxi-
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mum of Lc branches can be combined at the receiver side (Lc ≤ L).
By estimating and ranking the L instantaneous branch SNRs in de-

scending order, i.e., γ1:L > γ2:L > · · · > γL:L, then GSC will combine
the Lc best branches only, using MRC weights, yielding a combined SNR of
γGSC = ∑Lc

l=1 γl:L.
Let γ denote the common average SNR on each branch. Then, the prob-

ability density function of the received SNR at the output of a GSC com-
biner is given by [9, Eq. (16)]:

f (L/Lc)
γGSC (γc) =

(
L
Lc

) [
γc

Lc−1e−γc/γ

γcLc(Lc − 1)!
+

1
γ

×
L−Lc

∑
l=1

(−1)Lc+l−1
(

L− Lc
l

)(Lc

l

)Lc−1
e−γc/γ

×
(

e−lγc/Lcγ −
Lc−2

∑
m=0

1
m!

(
−lγc

Lcγ

)m)]
.

(C.1)

Now, by integrating (C.1) we find the cumulative density function of the
received SNR as [9, Eq. (24)]

F(L/Lc)
γGSC (γc) =

(
L
Lc

) [
1− e−γc/γ

Lc−1

∑
l=0

(γc
γ )l

l!

+
L−Lc

∑
l=1

(−1)Lc+l−1
(

L− Lc
l

)(Lc

l

)Lc−1

× 1− e−(1+(l/Lc))(γc/γ)

1 + l
Lc

−
Lc−2

∑
m=0

(
−l
Lc

)m

×
(

1− e−γc/γ
m

∑
k=0

(γc
γ )k

k!

))]
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(C.2)

The average number of combined branches will quantify the process-
ing power consumed by the diversity combining [5]. We denote by Bc and
γT1,1 the number of combined branches and the minimum required com-
bined SNR for transmission, respectively. Then, Lc branches are combined
when γGSC ≥ γT1,1 , and 0 branches otherwise, i.e., the system gives up on
the channel and buffers the data. The average number of GSC-combined
branches is then given as

Bc = Lc(1− F(L/Lc)
γGSC (γT1,1)). (C.3)

In Section 3, to simplify the notation we write F(L/Lc)
γGSC (·) and f (L/Lc)

γGSC (·)
as Fγc(·) and fγc(·), respectively.
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Figure C.1: Transmission system block diagram.

2.2 M-QAM Based Link Adaptation

As the baseline case we consider the constant power M-ary QAM scheme
studied in [6; 5]. This scheme, denoted by ηN , consists of N signal constel-
lations of size M = 2n, where 1 ≤ n ≤ N. Given a target bit error rate
BER0, the switching threshold corresponding to constellation n is given as
follows[6, Eq. (4)]

γTn,1 = −2
3

ln(5BER0)(2n − 1). (C.4)

The average spectral efficiency ηN of this M-QAM scheme is then found
as [5, Eq. (15)]

ηN = N −
N

∑
n=1

F(L/Lc)
γGSC (γTn,1). (C.5)

2.3 Bandwidth Efficient Scheme with MS-GSC

In MS-GSC, the minimum number of branches is combined with MRC
weights, such that the output of the combiner is larger than or equal to a
given threshold γT. Thus, if Bc denotes the number of branches selected out
of L available branches, then Bc is the minimum number ∈ {1, 2, · · · , Lc},
for which ∑Bc

l=1 γl:L ≥ γT is satisfied [7].
Our objective is to design bandwidth efficient schemes, so to maximize

the spectral efficiency we employ the bandwidth efficient versions of the
link adaptation and diversity schemes presented in [5]. As a consequence,
the receiver tries to combine a minimum number of branches to support
the highest transmission rate. When MS-GSC is combined with link adap-
tation in a bandwidth efficient mode, its spectral efficiency is equal to that
of GSC combining [6], but at the same time MS-GSC offers a reduction in
the average number of combined branches, and thus processing power sav-
ings. Therefore, we derive the optimal switching thresholds and power lev-
els based on the GSC receiver and evaluate the power savings by utilizing
these values in a MS-GSC system.
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For MS-GSC, Bc can be found by generalizing [5, Eq.(14)], in which Bc is
derived only for the case of Lc = L. To obtain Bc for Lc ≤ L, we modify1 [5,
Eq. (14)], yielding

Bc = 1 +
Lc−1

∑
l=1

FL/l
γGSC(γTN,1)− LcFL/Lc

γGSC(γT1,1). (C.6)

3 Optimal Schemes for GSC-Based Systems

3.1 System Model

We consider a wireless channel with additive white gaussian noise
(AWGN) and fading. Under the assumption of slow, frequency-flat fad-
ing, we may use a block-fading model to approximate the wireless fading
channel by an AWGN channel within the length of a codeword [10]. Thus,
the system may use codes which typically guarantee a certain target spec-
tral efficiency within a range of SNRs on an AWGN channel.

We denote the instantaneous pre-adaptation combined SNR by γc[i]. This
is the SNR that would be experienced using signal constellations of average
power S without power control [2]. Assuming, as in [1], that the transmitter
receives perfect channel predictions, sent over a zero-error feedback chan-
nel, we can adapt the transmit power instantaneously at time i according
to a power adaptation scheme S(γc[i]), as shown in Fig. C.1. The received
post-adaptation SNR at time i is then given by γc[i]

S(γc[i])
S

. By virtue of a
stationarity assumption, the distribution of γc[i] is independent of i, and is
denoted by fγc(γc). To simplify the notation we omit the time reference i
from now on.

The transmission scheme is to be based on a set of N codes, each asso-
ciated with K power levels. The choice of code and power level is at any
time based on the fading channel state. Following [1; 4], we partition the
range of the combined SNR γc into NK + 1 pre-adaptation regions, which
are defined by the switching thresholds {γTn,k}, as illustrated in Fig. C.2.
Code n, with spectral efficiency Rn, is selected whenever γc is in the inter-
val [γTn,1 , γTn+1,1). Within this interval the transmission rate is constant, but
the system can adapt the transmitted power to the channel conditions in
order to maximize the average spectral efficiency. When γc < γT1,1 data is
buffered. For convenience, we let γT0,1 = 0 and γTN+1,1 = ∞.

1The upper summation limit of [5, Eq. (14)] is changed from L − 1 to Lc − 1, and the
combining scheme in the last term is changed from L branch MRC to L/Lc GSC.
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data TN;KT1;2T1;1 T2;1T1;K Tn;k 

Figure C.2: The pre-adaptation SNR range is partitioned into regions where
γTn,k are the switching thresholds.

3.2 Spectral Efficiency Analysis

Using N distinct codes we analyze the obtainable spectral efficiencies of
the L/Lc-GSC schemes, under discrete and constant transmit power adap-
tation. We shall assume that the fading is so slow that Shannon capacity-
achieving codes for AWGN channels can be employed 2.

Now, recall that the pre-adaptation combined SNR range is divided into
regions lower bounded by γTn,1 , 1 ≤ n ≤ N. Thus, we let Rn = Cn, where

Cn = log2

(
1 +

S(γTn,1 )

S
γTn,1

)
is the highest spectral efficiency that can be

supported within the range [γTn,1 , γTn+1,1) for 1 ≤ n ≤ N, after transmit
power adaptation [4]. Each SNR region’s contribution to the ASE of the
scheme is the spectral efficiency of the nth code, times the probability Pn =∫ γTn+1,1

γTn,1
fγc(γc) dγc that it is employed. An upper bound ψ on the ASE —for

a given set of codes/switching levels—is therefore given as

ψ =
N

∑
n=1

log2

(
1 +

S(γTn,1)
S

γTn,1

) ∫ γTn+1,1

γTn,1

fγc(γc) dγc, (C.7)

subject to the average power constraint,

N

∑
n=1

∫ γTn+1,1

γTn,1

S(γc) fγc(γc) dγc ≤ S, (C.8)

where S denotes the average transmit power.
If arbitrarily long codewords can be used, the bound can be approached

from below with arbitrary precision for an arbitrarily low BER. Our goal
is now to find optimal switching levels and power adaptation schemes in
order to maximize the ASE in a GSC diversity environment.

2The existence of such codes is guaranteed by Shannon’s channel coding theorem.
However, we do not address the important problem of constructing such codes, which is a
research problem in itself.
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3.3 Discrete-Power Transmission Scheme

For practical scenarios the resolution of power control will be limited, e.g.,
for the Universal Mobile Telecommunications System (UMTS) power con-
trol step sizes on the order of 1 dB are proposed [11]. Further, continuous
power control is not feasible as it would require an infinite capacity feed-
back channel. We thus analyze discrete power adaptation, by considering
the ψN×K scheme where we allow for K ≥ 1 power regions within each of
the N rate regions.

The optimal discrete-level power control was shown in [4] to be dis-

cretized piecewise channel inversion. Now, by defining3 βn ,
S(γTn,1 )

S
γTn,1 ,

the ASE maximization problem can be formulated as follows [4]. Find
{βn, γTn,k} to maximize

ψN×K =
N

∑
n=1

log2(1 + βn)
∫ γTn+1,1

γTn,1

fγc(γc) dγc, (C.9)

such that
N

∑
n=1

βn

K

∑
k=1

1
γTn,k

∫ γTn,k+1

γTn,k

fγc(γc) dγc ≤ 1, (C.10)

where γTn,K+1 , γTn+1,1 . The solution is found by using constrained numer-
ical optimization, cf. [4].

3.4 Constant-Power Transmission Scheme

When a single transmission power is used for all codes, the term constant
power transmission scheme is used. From [4] the expression to optimize is
then given by

ψN =
N

∑
n=1

log2

(
1 +

γTn,1

1− Fγc(γT1,1)

) ∫ γTn+1,1

γTn,1

fγc(γc) dγc. (C.11)

Now, by differentiation of (C.11), we can reduce the N-dimensional opti-
mization to a 2-dimensional one [4], and the optimal switching thresholds
follow by solving the reduced problem.

4 Numerical Results

In the following we have used L = 7, Lc = 4 and N = 4.

3βn corresponds to the minimum post-adaptation combined SNR in the region
[γTn,1 , γTn+1,1 ).
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Table C.1: Switching thresholds {γTn,1}4
n=1 (dB)

γ η4 ψ4 ψ4×4

5 dB 5.5, 10.3, 13.9, 17.2 8.6, 10.7, 12.1, 13.5 7.2, 10.5, 12.2, 13.7

15 dB 5.5, 10.3, 13.9, 17.2 17.5, 20.2, 21.9, 23.3 16.0, 20.4, 22.3, 24.1

4.1 Switching Levels and Average Spectral Efficiencies

Table C.1 shows the optimal switching levels {γTn,1} of the η4, ψ4, and ψ4×4
schemes for γ = {5, 15}dB. For the η4 scheme the switching levels are
independent of γ, while the ψ schemes are adapted to the channel statistics,
yielding increasing {γTn,1} with increasing γ, to maximize the ASE.

Fig. C.3 depicts an ASE comparison of the optimized discrete power
and constant power schemes (C.9), (C.11), and the QAM scheme (C.5) op-
erating at a target bit error rate of BER0 = 10−3. The ASE obtained by ψ4×8
can be seen as an approximation to the case of variable-rate continuous-
power transmission scheme [4, Section III-A]. Then it is clear from the fig-
ure that optimal power adaptation seems to yield insignificant gains over
the constant power transmission schemes, contrary to the findings for a
SISO link in [4].

Further, from 0 ≤ γ dB ≤ 10, the four ψ schemes give an increase in
spectral efficiency of approximately 2 bps/Hz over the QAM scheme. As
γ increases the QAM scheme saturates at 4 bps/Hz, corresponding to uti-
lizing 16−QAM with a probability close to 1. The large gap between the
QAM and the optimized schemes indicates that significant spectral effi-
ciency gains are possible by clever system design.

4.2 Probability of No Transmission

When γc is less than the smallest signal constellation threshold γT1,1 no data
is sent. The probability of no transmission Pno tr. can then be calculated as

Pno tr. = Pr (γc < γT1,1) = F(L/Lc)
γGSC (γT1,1). (C.12)

In Fig. C.4 we have plotted Pno tr. as a function of γ. As expected from Ta-
ble C.1, for the ψ schemes the probability of no transmission decreases both
as power adaptation is introduced, as well as with increasing γ. For the
QAM scheme Pno tr. decreases much faster than for the ψ schemes, which
is due to the fact that γT1,1 for the QAM scheme is fixed and independent
of γ, whereas for the other schemes it is adapted to the underlying fading
distribution for every value of γ.
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Figure C.3: Link adaptation average spectral efficiency.

It is not necessarily a disadvantage that the probability of no transmis-
sion is high. For data-centric services, the most important thing from a
quality-of-service point of view is probably the total time of data down-
loading experienced by a user. For large data sets, this time will be min-
imized independently of the value Pno tr., as long as the average spectral
efficiency is maximized. However, for multimedia services with delay re-
quirements, the probability of no transmission can be important. Thus it is
interesting to see that Pno tr. is considerably reduced when power adapta-
tion is used.

4.3 Processing Power

For terminals with limited battery, receiver processing power is of high im-
portance. By keeping fewer branches active, the power consumption in
the receiver can be reduced [5]. Fig. C.5 shows the average number of com-
bined branches as a function of γ, for GSC and MS-GSC implementations of
the ψ4 and η4 schemes. It is seen that MS-GSC reduces the average number
of combined branches for both schemes over the entire SNR range. Com-
pared to the M-QAM scheme, the optimal schemes show less reduction
from an MS-GSC implementation, which is a direct consequence of the fact

96



CONCLUSIONS

0 1 2 3 4 5 6 7 8 9 10
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Average branch pre−adaptation SNR

P
ro

ba
bi

lit
y 

of
 n

o 
tr

an
sm

is
si

on

 

 

ψ
4x8

ψ
4x4

ψ
4x2

ψ
4

η
4

Figure C.4: Probability of no transmission as a function of average branch
pre-adaptation SNR.

that the ψ schemes use the increased combined SNR at higher γ to facilitate
higher spectral efficiencies, while the QAM saturates and will on average
need to combine fewer branches.

5 Conclusions

We have analyzed optimal rate and power allocation for a joint link adapta-
tion and adaptive combining system, under an average spectral efficiency
maximization criterion and both average power and diversity combining
constraints. Given the channel fading condition information the proposed
schemes maximizes the obtainable channel spectral efficiency.

Compared to joint adaptive M-QAM schemes, our proposed schemes
give significant ASE gains. Contrary to previous work on power control
for discrete rate link adaptation, we have shown that when jointly opti-
mized with adaptive combining, power control does not significantly in-
crease the average spectral efficiency. However, it does significantly de-
crease the probability of no transmission, which is important for some mul-
timedia networks which not only offer high-rate data-based services, but
also low-rate services with real-time or low-latency requirements.
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Abstract

We consider allocating the transmit powers for a wireless multi-
link (N-link) system, in order to maximize the total system through-
put under interference and noise impairments, and short term power
constraints. Employing dynamic spectral reuse, we allow for central-
ized control. In the two-link case, the optimal power allocation then
has a remarkably simple nature termed binary power control: De-
pending on the noise and channel gains, assign full power to one link
and minimum to the other, or full power on both.

Binary power control (BPC) has the advantage of leading towards
simpler or even distributed power control algorithms. For N > 2
we propose a strategy based on checking the corners of the domain
resulting from the power constraints to perform BPC. We identify
scenarios in which binary power allocation can be proven optimal
also for arbitrary N. Furthermore, in the general setting for N > 2,
simulations demonstrate that a throughput performance with negli-
gible loss, compared to the best non-binary scheme found by geo-
metric programming, can be obtained by BPC. Finally, to reduce the
complexity of optimal binary power allocation for large networks, we
provide simple algorithms achieving 99% of the capacity promised by
exhaustive binary search.
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INTRODUCTION

1 Introduction

The need for ever higher spectrum efficiency motivates the search for
system-wide optimization of the wireless resources. A key example of
multi-link resource allocation is that of power control, which serves as
means for both battery savings at the mobile, and for interference man-
agement. Traditional power control solutions are designed for voice-
centric networks, hence aiming at guaranteeing a target signal-to-noise-
and-interference ratio (SNIR) level to the users [1–3]. In modern wireless
data networks, adaptive coding and modulation with power control [4; 5]
is or will be implemented, and throughput maximization becomes a more
relevant metric.

The simultaneous optimization of transmission rates and power with
the aim of maximizing the multi-link sum capacity is a difficult problem,
which perhaps explains why the problem has received relatively little at-
tention in the past, although now it is clearly gaining interest [6; 7]. Con-
sidering the problem of optimally allocating the transmit power for N con-
current communication links, a common approach is to use a high SNIR ap-
proximation to establish convexity in the sum-throughput objective func-
tion [6; 7]. However, this approximation by construction prohibits com-
pletely turning off the power of any link at any time. This extra constraint
may in fact cause the resulting power vector to steer away from the op-
timum solution in certain cases. Indeed one of the major points empha-
sized in the present work is that in the context of multi-link capacity max-
imization, the ability of shutting down one or more links (or transmitting
at minimum allowed power > 0) in certain slots can be instrumental in
approaching maximum network throughput.

By restricting the scenario to interference limited systems, i.e., neglect-
ing noise sources, in [7] the high SNIR assumption is modified so that links
contributing less than a fixed amount to the total throughput are dropped.
For the remaining links the high SNIR approximation is still used. Al-
though improvements over the schemes are presented in [6], “the proposed
method is still inferior to maximization of the actual aggregate throughput”
according to [7]. In [8], specializing to the case of uplink single-cell CDMA,
i.e., N transmission links with a common receiver, and enforcing quality of
service constraints, results on simplifying the power control search space
are derived. However, in this paper we shall consider a more general sys-
tem model, for which the uplink single-cell CDMA setting can be seen as
a special case. Thus the results and conclusions from [8] are not in general
applicable to our model.

Under a sum power constraint, the authors of [9] neglect noise sources
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and use waterfilling to maximize the network capacity, while in [10], under
the assumption of symmetric interference, a two-user power allocation that
depends on the level of interference is derived. Due to the sum power con-
straint, the neglection of noise, and the symmetry-of-interference assump-
tion these results are not applicable to our cellular system power allocation
analysis. In our opinion, it is more reasonable to instead assume individ-
ual power constraints at every link, and that the received interference in
general will be different for different users. Further, in [11], game-theoretic
approaches are used to analyze a symmetric one-dimensional two-cell net-
work, assuming the received power to be a function of the transmitter-
receiver distance only. However, here we model any geometric setup, as
well as allowing for arbitrary signal degradation, e.g., caused by path loss,
multipath fading, or shadowing.

When modelling the transmission rate as a linear function of the re-
ceived power, [12] shows that a link when active should transmit at maxi-
mum power for optimality. This result has the merit of showing potential
benefits of an on/off power control, but in general, the assumed linear re-
lationship between rate and power is however unfortunately far from the
truth since the rate is known to have a log(·) behavior. The proof does not
extend to arbitrarily increasing rate-power relations, and the results will
not in general yield throughput-optimal power allocation. Nevertheless,
here we show that when using a low SNIR approximation, the linear relation
in [12] is indeed obtained, and thus the conclusions from that paper holds
in this case, and can be extended to include a minimum power constraint
at each base station.

In this paper we tackle the problem of sum rate maximizing power al-
location in multi-link networks with orthogonal MAC protocols without
resorting to the previously described restricting assumptions of high SNIR,
interference-limited systems, or interference symmetry. The application we
have in mind is a wireless data access network with best-effort type of qual-
ity of service, and the total aggregate throughput (sum rate) across the net-
work is the figure of merit. The system is assumed to be enabled with a per-
fect link adaptation protocol, so the user rate is adapted instantaneously as
a function of the user’s signal to noise and interference ratio, thus always
achieving Shannon capacity in any resource slot. Extending [13], our con-
tributions are as follows: In the two-link case, the optimal power allocation
is analytically shown to be remarkably simple; transmit at full power at link
1, minimum at link 2, vice versa, or at full power at both links. Next, we
consider the N > 2 case, and show that when either a geometric-arithmetic
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mean or low-SNIR approximation is applicable, binary power control1 is
still optimal (as is always true for any SNIR in the N = 2 case). In the gen-
eral case for N > 2, we utilize the mathematical framework of geometric
programming [14] (GP) in order to establish a sum capacity benchmark, to
compare our proposed binary power allocation with, through exhaustive
simulations. Empirically, we demonstrate that the loss associated with re-
striction to binary power levels is negligible. On the other hand, discretiz-
ing the optimization space is highly beneficial: the feedback rate needed
to communicate between network nodes is reduced, transmitter design is
simplified, and finally, limiting the potential solutions to search over better
facilitates distributed resource allocation [15].

For networks with a large number of links, we consider clustering
groups of links as a way of lowering the power control complexity, as well
as reducing the required channel knowledge. Through clustering signifi-
cant complexity reduction is possible, at the cost of only a small reduction
in network capacity. Finally, we propose a simple greedy approach to bi-
nary power control, and demonstrate that its throughput performance in a
wide range of communication environments is virtually indistinguishable
from that of exhaustive binary power search.

The remainder of the present paper is organized as follows. We intro-
duce the wireless system model under investigation in Section 2. In Sec-
tion 3 we derive optimal power control schemes that maximizes the sum
throughput. Algorithms for reducing the complexity of binary power con-
trol by clustering and greedy approaches are presented in Section 4. In
Section 5 numerical results are presented, and finally conclusions are given
in Section 6.

2 System Model

We consider a wireless network featuring a number of transmitters and re-
ceivers, of which there are N active pairs selected for transmission by a
scheduling (MAC) protocol. In order to focus solely on power control, we
do not explicitly consider scheduling or MAC protocols here. However,
note that the results presented in this paper are valid for any scheduling
algorithm, as the effect of one such algorithm over another is simply to
induce different channel statistics for the selected links [16]. We also em-
phasize that our analysis is valid for any geometry, even for non-cellular
systems such as ad-hoc networks, as long as the sum of link capacities is

1On/off power control and binary power control are equivalent if the minimum trans-
mit power is zero.
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Figure D.1: N-cell wireless system model, where N = 7. Base stations
are shown as solid squares. For the user (shown as a circle) in the top
cell, the desired communication link is shown as a solid line, whereas the
interference links are shown as dashed lines.

a relevant performance metric. To facilitate exposition, we shall however
adopt a cellular terminology from here on; see Fig. D.1.

In the network considered, the spectral resource slots are shared by all
cells, leading in general to an interference and noise impaired system. The
communication links are considered to be downlink, but the results can
also be generalized to an uplink scenario. The data destined for user un
is transmitted with power Pn. Each base station is in general assumed to
operate under both minimum and peak short term (per-slot) power con-
straints,

Pmin,n ≤ Pn ≤ Pmax,n, n = 1, 2, . . . , N. (D.1)

Letting Pmin,n > 0 might be necessary in some scenarios to ensure that a
user un receive a minimum transmission, such as control information or pi-
lot symbols. Further, the different cells can be given priorities by assigning
individual values of Pmax,n.

Now, denote by Gni(m) the channel power gain to the selected mobile
user un(m) in cell n from the cell i base station, in resource slot m. We will
suppress the slot index from now on, concentrating on one arbitrary slot.
The channel gains are assumed to be constant over each such resource slot,
i.e., we have a block fading scenario. Note that the gains Gnn correspond
to the desired communication links, whereas the Gni for n 6= i correspond
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to the unwanted interference links. Assuming the transmitted symbols to
be independent random variables with zero mean and a variance of Pn, the
signal to noise-plus-interference ratio (SNIR) for each user is given by

SNIRun =
PnGnn

σ2
n + ∑j 6=n PjGnj

, (D.2)

where σ2
n is the variance of the independent zero-mean AWGN in cell n.

Under the assumption of Gaussian distributed signal transmission in all
cells, the interference terms will be Gaussian, also after being weighted
by the (constant) interference gains in the current block and subsequently
summed. Then channel experienced by each user within a given time slot is
AWGN, and thus the capacity for each user is given by the AWGN Shannon
capacity, i.e., the achievable rate (in information bits/s/Hz) for user un is
given by

Run = log2(1 + SNIRun). (D.3)

From (D.2) and (D.3) the total achievable throughput (sum rate) R =
∑N

n=1 Run is then found as

R =
N

∑
n=1

log2

(
1 +

PnGnn

σ2
n + ∑j 6=n PjGnj

)
. (D.4)

Finally, we note that our system model with (possibly different) noise
levels {σ2

n}N
n=1 also accommodates the modeling of additional interfering

sources disturbing the users differently, contrary to previous works. As will
be discussed later, one important application of this is when, for complex-
ity reduction, joint multi-cell power allocation is undertaken over a subnet
(cluster) of neighboring cells only. In this case σ2

i represents the combined
effect of noise and interference received from out-of-cluster cells by the ith

user.

3 Transmit Power Analysis

This section presents the general optimal power allocation scheme P∗ =
(P∗1 , . . . , P∗N), which has as inputs the channel gains {Gni > 0}, and the
AWGN variances {σ2

n > 0}. We search for the optimal power allocation by
approaching the following optimization problem,

P∗ = arg max
P∈ΩN

R, (D.5)

where ΩN = {P| Pmin,n ≤ Pn ≤ Pmax,n, n = 1, . . . , N} is the feasible set and
R is given in (D.4). Since ΩN is a closed and bounded set and R : ΩN → R
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is continuous, (D.5) has a solution [17, Theorem 0.3]. Before we proceed,
we note the following lemma.

Lemma D.1
The optimal transmit power vector will have at least one component equal to Pmax,n.

Proof: From (D.4) we have that, for β > 1 and P ∈ ΩN :

R(βP) = log2

( N

∏
n=1

(
1 +

PnGnn
σ2

n
β + ∑j 6=n PjGnj

))
> R(P). (D.6)

Thus, we can increase the sum throughput R, by increasing all components
of P by a factor β, until one component hits the boundary Pmax,n. Hence,
the solution of (D.5) will have at least one component equal to Pmax,n. The
interpretation of (D.6) is that increasing all the transmit powers by a factor
β, is equivalent to reducing the noise in each cell by the same factor.
Note that for one or more Pmin,n = 0, ΩN admits solutions where some
base stations shut down the power completely. Since one or more of the
N base stations may then be turned off in a resource slot, from a cellular
engineering point of view this scheme can be interpreted as a form of dy-
namic channel reuse. Allowing the network to completely turn off base
stations will be sum-throughput optimal, but this optimality comes at the
expense of fairness between the users in the various cells. Fairness can be
restored by increasing Pmin,n, achieving full fairness at Pmin,n = Pmax,n, ∀n,
analogously to the time horizon parameter in proportional fair schedul-
ing [18]. Additionally, fairness can be targeted through introducing appro-
priate scheduling criteria [16].

3.1 Trivial Solutions

By inspection of (D.4) we can identify some trivial (not necessarily unique)
solutions of (D.5). Firstly, if the system is noise limited, i.e., the interference
can be neglected, then P∗ = (Pmax,1, . . . , Pmax,N). Secondly, for the case of
an interference limited system (noise set to zero), we see that R → ∞ if any
one of the base stations is turned on with any power Pmin,n ≤ Pn ≤ Pmax,n.
However, in our analysis we will assume that noise is present, as in all
practical systems.

3.2 The 2-Cell Case

We shall deal with the 2-cell case separately, as it allows us to derive ana-
lytically the optimal power allocation. By Lemma D.1, the optimal power
allocation is found among the following alternatives:
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• Extremal points on the boundaries of Ω2: I.e., for P2 = Pmax,2, P1’s
corresponding to ∂R(P1,Pmax,2)

∂P1
= 0, or for P1 = Pmax, P2’s such that

∂R(Pmax,1,P2)
∂P2

= 0.
• Corner points of Ω2: (Pmax,1, Pmin,2), or (Pmin,1, Pmax,2), or

(Pmax,1, Pmax,2).
Since the logarithm is a monotonically increasing function, we can look for
extreme points on the boundary by considering the function J(P1, P2) ,
(1 + SNIRu1)(1 + SNIRu2), i.e.,

J(P1, P2) =
(
1 +

P1G11

σ2
1 + P2G12

)(
1 +

P2G22

σ2
2 + P1G21

)
. (D.7)

Now, by differentiating J(P1, Pmax,2) with respect to P1 we find

∂J
∂P1

=
CP2

1 + 2DP1 + E
F

, (D.8)

where

C = G11G2
21 > 0, D = G11G21σ2

2 > 0, (D.9a)

E = −Pmax,2G21G22(σ2
1 + Pmax,2G12) + G11σ2

2 (σ2
2 + Pmax,2G22), (D.9b)

F = (σ2
1 + Pmax,2G12)(σ2

2 + P1G21)2 > 0. (D.9c)

Since F is always strictly positive, a P1 such that ∂J
∂P1

= 0 can be found
as the solution to CP2

1 + 2DP1 + E = 0. Now, since also C, D > 0, this
quadratic equation either has no zero for P1 ∈ [Pmin,1, Pmax,1], or has one
zero there, and changes sign from − to +. In either case it is clear that
the maximum is attained at a boundary point Pmin,1 or Pmax,1. Due to
symmetry, the above analysis also hold for P2. Thus, we can conclude
that (P∗1 , P∗2 ) is found in the set of corner points of the feasible domain,
∆Ω2 = {(Pmax,1, Pmin,2), (Pmin,1, Pmax,2), (Pmax,1, Pmax,2).}. Hence, we have
the following theorem.

Theorem D.1
For the two-cell case, the sum throughput maximizing power allocation is binary2.
Mathematically,

arg max
(P1,P2)∈∆Ω2

R(P1, P2) = arg max
(P1,P2)∈Ω2

R(P1, P2). (D.10)

2For the case of Pmin,n = 0, ∀n, this result was independently reported both by the
authors in [13], and in [19; 20].
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Proof: See above.
Inspecting (D.10) we see that, for zero minimum powers, of the two

users in question, the user with the highest signal to noise ratio (SNR),
defined as Pmax,nGnn

σ2
n

, will always receive transmission at full power Pmax,n.
For (P1, P2) = (Pmax,1, Pmax,2) this is trivially true. Furthermore, from (D.4),
the decision of (P1, P2) = (Pmax,1, 0) or (0, Pmax,2) is decided by each user’s
SNR alone, since there will be no interference for these power allocations.

3.3 Binary Power Control in the N-Cell Case

For N > 2, analytical treatment of the optimization problem (D.5) proves
to be challenging, because of the lack of convexity and the fact that the
above analysis from the two-cell case does not generalize to N cells. How-
ever, motivated by the optimality of binary power allocation for the two-
cell case, reduced feedback requirements, and as well as by its potential as
the key simplification in design of simple or even distributed algorithms,
we will investigate the properties of binary power control also in the N-cell
case.

Binary power control for N cells is done by evaluating R(P) at the cor-
ners of ΩN , and picking the maximum value. Mathematically formulated,

Pbin = arg max
P∈∆ΩN

R(P), (D.11)

where ∆ΩN is the set of 2N − 1 corner points of Ω, excluding the all-Pmin,n
point.

Unfortunately, a seemingly pessimistic theoretical result is obtained
there: It can be shown that binary power allocation is no longer optimal
for N > 2. However, as we shall see it appears to still be very well ap-
proximating the capacity obtained by the optimal solution resulting from
continuous power control, as indicated by the example below.

Example 2 We simulated a N = 3 cell network with the following parameters.
Common peak and minimum power constraints of Pmax = 10−3, and Pmin = 0,
respectively, assuming identical noise figures for the different receivers, the AWGN
power is found as kT0B, where k is Boltzmann’s constant, T0 = 290 Kelvin is the
ambient temperature, and B = 1 MHz is the equivalent noise bandwidth, i.e.,
σ2

1 = σ2
2 = σ2

3 = 4.0039 × 10−15. As an example of the randomly generated
channel gain matrix, based on path loss, shadowing and multipath effects we have

G = 10−9 ×

0.0432 0.0106 0.0012
0.0004 0.2770 0.0043
0.0045 0.0137 0.1050

 .
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Then, by the best binary power allocation (P1, P2, P3) = (1, 1, 1)Pmax, a sum
throughput of 9.4555 bits/s/Hz is obtained, while by assigning the optimal pow-
ers (P1, P2, P3) = (1, 0.8595, 1)Pmax we get a throughput of 9.4590 bits/s/Hz.
As we will see later, this example is quite typical in the sense that binary power
control, though suboptimal, very often yields a throughput close to that obtained
by optimally allocating the powers. While achieving only marginally higher sum
throughput under the given power constraints, optimal continuous control can
however offer some savings in terms of sum transmit power.

We shall now consider binary power control for N cells in three cases,
1) approximation by the arithmetic-geometric means inequality, 2) the low-
SNIR regime, and 3) the general case.

3.3.1 Arithmetic mean-geometric mean approximation

From the arithmetic - geometric means inequality we have, for positive num-
bers x1, · · · , xN [21],

GN =

(
N

∏
n=1

xn

) 1
N

≤ 1
N

N

∑
n=1

xn = AN , (D.12)

where GN and AN are the geometric mean (GM) and arithmetic mean (AM)
of x1, · · · , xN , respectively. Equality in (D.12) can be obtained if and only
if x1 = · · · = xN . Writing (D.4) as a log of products, and letting xn =
(1 + SNIRn), we can apply the above inequality to obtain

R(P) = log2

(
N

∏
n=1

1 +
PnGnn

σ2
n + ∑j 6=n PjGnj

)

≤ N log2

(
1 +

1
N

N

∑
n=1

PnGnn

σ2
n + ∑j 6=n PjGnj

)
.

(D.13)

Now, in scenarios where the right hand side of the above in-
equality can be used as an approximation of R(P), i.e., R(P) ≈
N log2

(
1 + 1

N ∑N
n=1

PnGnn
σ2

n+∑j 6=n PjGnj

)
, the optimization problem (D.5) simpli-

fies to

P∗ = arg max
P∈ΩN

N log2

(
1 +

1
N

N

∑
n=1

PnGnn

σ2
n + ∑j 6=n PjGnj

)
, (D.14)

and we can analytically find a closed form solution. As is always true in the
two-cell case, the optimal power control in the N-cell case is binary when
the AM-GM approximation is accurate.
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Theorem D.2
The solution P∗ from (D.14) is binary, i.e., P∗ ∈ ∆ΩN .

Proof: Due to the monotonicity of the log-function, we establish the result
by showing that the argument of the logarithm in the cost function of (D.14)
is convex in each variable Pk.

∂2

∂P2
k

(
1 +

1
N

N

∑
n=1

PnGnn

σ2
n + ∑j 6=n PjGnj

)
=

1
N ∑

n 6=k

2PnGnnG2
nk

(σ2
n + ∑j 6=n PjGnj)3 ≥ 0.

(D.15)
Now, for any P where at least one of its components is not an endpoint of
its interval, there is another point P′ with R(P′) ≥ R(P) such that one more
component is at an endpoint of its interval.

An obvious question is for which scenarios the sum throughput is well
approximated using the AM-GM inequality. The quality of the approxima-
tion can in general be quantified by inspecting the difference between the
right hand and left hand side of (D.13), which can be written as

N log2

(
1 +

1
N

N

∑
n=1

PnGnn

σ2
n + ∑j 6=n PjGnj

)
− log2

(
N

∏
n=1

1 +
PnGnn

σ2
n + ∑j 6=n PjGnj

)

= N log2

(
AN

GN

)
.

(D.16)

From (D.12), log2

(
AN
GN

)
≥ 0, and using Specht’s ratio S(h) [22] we find

AN

GN
≤ S(h) ,

(h− 1)h
1

h−1

e ln h
, (D.17)

where h , max1≤j,k≤N
xk
xj

. Using these bounds together we have the follow-
ing result:

0 ≤ log2

(
AN

GN

)
≤ log2

(
(h− 1)h

1
h−1

e ln h

)
. (D.18)

Inspecting (D.18), we see that the quality of the approximation largely
depends on the spread of the xn values; indeed the more concentrated the
(1 + SNIRn) factors are, the better the approximation is, reaching equality
between the arithmetic and geometric mean with all SNIRs equal. As an
example application, consider the case of low SNIR. Then, by default the
SNIR is low in all cells, providing concentrated values of {xn}N

n=1, and the
optimal power control in this scenario is binary.
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3.3.2 Low-SNIR regime

The optimality of binary power control in the low-SNIR case can also
be derived using another argument as we now investigate. In the low-
SNIR regime we can apply an approximation of the achievable rate of
each user, thus simplifying the problem. Specifically, when the SNIR is
low, the following approximation obtained by Taylor expansion holds [23]:
log2(1 + SNIR) ≈ SNIR

ln 2 . Thus, we have

R(P) =
N

∑
n=1

log2(1 + SNIRun) ≈
1

ln 2

N

∑
n=1

PnGnn

σ2
n + ∑j 6=n PjGnj

, (D.19)

and again find that binary power control is optimal, which is easily seen
from the proof of Theorem D.23. In fact, the objective function obtained
by both the low-SNIR approximation and the arithmetic-geometric means
approximation is maximized by the same binary power values.

In the low-SNIR case the binary power allocation is also optimal for a
weighted sum rate criterion, Rw = ∑N

n=1 wnRn, wn ≥ 0, which we state as a
corollary.

Corollary 1 In the low-SNIR regime, for a weighted sum rate criterion, the sum
throughput maximizing power control is binary.

Proof: The result follows by the rules of differentiation.

3.3.3 General case

In general, when none of the above approximations hold, unfortunately
we have not found mathematical relations establishing the performance of
binary power control, and hence we resort to exhaustive numerical simula-
tions, trying to cover typical settings for cellular networks. To evaluate the
performance of our proposed binary power control against a non-binary
benchmark we capitalize on recent developments in geometric program-
ming [14; 24], as discussed in the next subsection.

Independent of whether any of the above approximations hold, we still
have to solve the discrete maximization (D.11), which has a worst-case
complexity of O(2N) for exhaustive search. For small to moderate values
of N, the globally optimal solution to (D.11) can easily be found by simply

3For the case of Pmin,n = 0, ∀n, and identical peak power constraints, this was indepen-
dently reported also by the authors in [19; 20]. Further, in [12], also with Pmin,n = 0, ∀n,
the optimization problem (D.5) with R as a linear function of the received power, similar
to (D.19), is considered and an alternative proof for on/off power control is given.
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checking the corner points. For large N, since the cost function is non-linear
and the optimization search space is spanned by binary variables, (D.11)
may be approached using 0− 1 nonlinear programming [25], clustering, or
greedy approaches. We discuss clustering and greedy approaches in Sec-
tion 4.

Currently, there is also ongoing research on finding simple, distributed
solutions to the present power control problem (also including schedul-
ing) [15]. Finally, we note that the previously mentioned and more general
case where the objective function to be maximized is a sum of weighted
rates is also an interesting problem, but this is a subject for future research4.

3.4 Geometric Programming Power Control for N Cells

As mentioned above, to evaluate the performance of binary power con-
trol, we will use power control by geometric programming as the yard-
stick5. First, we therefore provide a brief background on geometric pro-
gramming [14]. A monomial is a function f : Rn

++ → R: g(P) =
cPa(1)

1 Pa(2)

2 · · · Pa(n)

n , where Rn
++ is the strictly positive quadrant of Rn, c > 0

is a constant, and a(i) ∈ R, i = 1, . . . , n. A sum of monomials is called a
posynomial:

f (P) =
K

∑
k=1

ckPa(1)
k

1 Pa(2)
k

2 · · · Pa(n)
k

n . (D.20)

Then, a geometric program (GP) in standard form is written as:

minimize f0(P),
subject to fi(P) ≤ 1, i = 1, . . . , I

gm(P) = 1, m = 1, . . . , M,
(D.21)

where fi, i = 0, . . . , I are posynomials and gm, m = 1 . . . M are monomials.
Using the results in [24], the optimization problem in (D.5) can be writ-

4The weighted sum solution presented in [24] is only valid in the high-SNIR regime.
5The content in this section is largely based on [26; 24], where geometric power control

for wireless networks is given a formal mathematical treatment.
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ten as follows6:

minimize
N

∏
n=1

1
1 + SNIRun

,

subject to
Pn

Pmax,n
≤ 1, n = 1, . . . , N,

Pmin,n

Pn
≤ 1, n = 1, . . . , N.

(D.22)

Inspecting (D.22), we see that the constraints are monomials (and hence
posynomials), but the objective function is a ratio of posynomials, as shown
by

N

∏
n=1

1
1 + SNIRun

=
N

∏
n=1

σ2
n + ∑j 6=n GnjPj

σ2
n + ∑N

j=1 GnjPj
, (D.23)

and the fact that posynomials are closed under multiplication.
Hence, (D.22) is not a GP in standard form, but a signomial program-
ming (SP) problem [14]. Following the iterative procedure from [24], (D.22)
is solved by constructing a series of GPs, each of which can easily be
solved. The GP in iteration l of the series is constructed by approximating
the denominator posynomial (D.23) by a monomial, using the value of P
from the previous iteration, while the series is initialized by any feasible P.
Specifically, denote the denominator posynomial of (D.23) as g(P). Since a
posynomial is a sum of monomials, write g(P) = ∑i ui(P) where ui(P) is a
monomial. Then, in iteration l, g(P) is approximated by a monomial g̃l(P)
as follows [24]:

g(P) ≥ g̃l(P) = ∏
i

(ui(P)
αl

i

)αl
i
, (D.24)

where αl
i = ui(Pl−1)/g(Pl−1), and Pl is the value of P in iteration l. By

using (D.24), (D.23) is now a ratio of a posynomial and a monomial. This
ratio is again a posynomial, and hence (D.22) is approximated and trans-
formed to standard form, and can be solved using GP techniques. The iter-
ation is terminated at the l’th loop if ||Pl − Pl−1|| < ε, where ε is the error
tolerance. This procedure is provably convergent and empirically almost
always computes the optimal power allocation [24], and thus represents
an upper bound against which we can measure the performance of binary
power control.

6For Pmin,n = 0, in theory the strictly positive quadrant assumption can be violated.
However, numerically this is not a problem in practice as the geometric programs are solved
using interior-point methods, searching inside the feasible domain [26].

117



D. BINARY POWER CONTROL FOR SUM RATE MAXIMIZATION OVER MULTIPLE
INTERFERING LINKS

4 Low-complexity Power Control Algorithms

Despite the promise of binary power control in terms of near throughput
optimality and key implementation simplifications, solving the exhaustive
binary power allocation problem (D.11) for large networks presents the sys-
tem designer with an exponentially complex task. In this section we study
two approaches towards reducing the search complexity.

The underlying idea behind lowering the complexity in both ap-
proaches is to split the original problem into smaller subproblems, each
of which can easily be solved. However, since the problem does not exhibit
an optimal substructure property, i.e., an optimal solution to the problem does
not contain within it optimal solutions to subproblems [27], in general, we
will not be able to derive simple algorithms for finding the globally opti-
mal binary solution. As such, our algorithms seek to a achieve a good per-
formance versus complexity compromise, rather than obtaining a global
performance optimum.

4.1 Grouping Clusters of Cells

We now investigate a setting where the total number of N cells in the net-
work are clustered into groups of K << N cells, and each cell either trans-
mits with full or minimum power. For a given cluster Q, the interference
from the remaining N−K cells will simply contribute as noise, i.e. the sum
throughput of the cells in Q is given as

Rcluster, Q = ∑
q∈Q

log2

(
1 +

PqGqq

σ2
q + σ2

Iq
+ ∑ j∈Q

j 6=q
PjGqj

)
, (D.25)

where σ2
Iq

= ∑j/∈Q PjGqj is the interference from cells in the network which
are not part of the cluster. Assuming that this interference term can be esti-
mated or averaged from the knowledge of the power activity in other clus-
ters, the idea is to do power control only locally within each cluster. Hence,
the following problem is solved for each cluster Q,

PQ = arg max
P∈∆ΩK

Rcluster, Q. (D.26)

To solve the cluster based maximization problem, we have to investigate N
K

subproblems each with maximally 2K evaluations, hence yielding a com-
plexity in N and K of O(N 2K), while keeping K fixed, the complexity is
O(N). Also, since we only need to know the sum of the out-of-cluster in-
terference, not its terms, compared to the exhaustive binary search prob-
lem (D.11), the required channel knowledge is reduced.
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Algorithm 1: Greedy power control
1: P0 = Pmin, R0 = R(P0), S = ∅
2: for l = 1 to N do
3: Pl = Pl−1
4: n∗ = arg max

n/∈S
R
(
(Pl)n = Pmax,n, (Pl)j 6=n = (Pl)j

)
5: (Pl)n∗ = Pmax,n
6: S = S + {n∗}
7: Rl = R(Pl)
8: end for
9: P∗ = Parg max Rl

1≤l≤N

4.2 A Greedy Approach to Power Control

Now, consider approaching the binary power control problem by a greedy
method, i.e., we are looking for a simple and efficient algorithm which in
each step makes the choice that appears best at the moment. This greedy
algorithm belongs to the class of “local search” methods, popular due to
its wide range of applications in non-linear integer programming prob-
lems [25], an example being allocating traffic channels in OFDMA sys-
tems [28].

A key point in a greedy algorithm is the selection function which chooses
the best candidate to be added to the solution. Here, we start with all cells
assigned minimum power Pmin,n, and look for candidate cells which should
have maximum power Pmax,n. Inspecting (D.4), and denoting the set of cells
assigned maximum power as S, we note that at each stage, in deciding
whether a cell n /∈ S should be operated at maximum power, an obvious
selection function is the capacity that would be obtained by letting cell n
transmit at maximum power Pmax,n, while keeping the transmit powers ob-
tained in the previous stages fixed. Summarizing, we arrive at Algorithm 1
looping once over N cells, where Rl and (Pl)j respectively denote the sum
throughput and the j’th component of the power allocation vector Pl , at
step l. After traversing the N cells, the power allocation vector is found by
inspecting at which step the sum rate achieved its maximum.

Complexitywise, the proposed greedy algorithm makes N choices, and
needs to solve the optimization problem in line 4, with complexity O(N).
Thus, it runs in O(N2) time, achieving a significant reduction compared to
the exhaustive search.
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Table D.1: Cellular System Parameters

Parameter Suburban Macro Urban Macro Urban Micro LOS

Cell layout Hexagonal Hexagonal Hexagonal

Carrier frequency 1900 MHz 1900 MHz 1900 MHz

Pmax,n, ∀n 10 W 10W 1 W

Pmin,n, ∀n 0 W 0 W 0 W

BS to BS distance 3000 m 3000 m 1000 m

Exclusion disc radius 35 m 35 m 20 m

Operating temperature 290 Kelvin 290 Kelvin 290 Kelvin

Shadowing st. dev. 8 dB 8 dB 4 dB

Equiv. noise BW 1 MHz 1 MHz 1 MHz

5 Numerical Results

In this section we present numerical results on the achievable sum network
capacities for an N-cell wireless system utilizing the various schemes of
power control we have analyzed.

5.1 Simulation Model

Based on the system model described in Section 2, we will now evaluate a
cellular system through Monte Carlo simulations, assuming that the user
distribution is uniform in each cell. To most accurately model a typical cel-
lular system we follow the spatial channel models for use in system level
simulations developed by the 3GPP-3GPP2 working group [29]. Specifi-
cally the following environments are considered: the suburban macrocell,
the urban macrocell, and the urban microcell line of sight (LOS). In the
macrocell environments the base station antennas are above rooftop height,
while for the urban microcell setting it is at rooftop height. Depending on
the model, BS-to-user distances should exceed 20− 35 meters, thus we ex-
clude users from being located in a circular disk of radius 20− 35 m around
each base station. Further simulation details can be found in Table D.1.

5.2 Description of Transmission Schemes

We consider two link adaptation schemes; adaptive coded modulation us-
ing capacity-achieving codes with, and without, power control. Without
power control, the power at all base stations is held constant at Pmax,n, ∀n.
Based on the current received SNIR level the modulation and coding rates
are then selected. Allowing for power control, adaptive coded modulation
is used to transmit at power levels that are optimized respectively accord-

120



NUMERICAL RESULTS

Table D.2: Network capacity statistics

Average pr. cell capacity R
N (bits/s/Hz/cell)

shown in (GP, Binary, Full) triplets

Number of cells (N) Suburban Macro Urban Macro Urban Micro

1 (6.02, 6.02, 6.02) (5.13, 5.13, 5.13) (11.96, 11.96, 11.96)
2 (4.93, 4.93, 4.74) (4.40, 4.40, 4.27) (6.64, 6.64, 4.54)
3 (4.41, 4.40, 4.02) (4.03, 4.03, 3.75) (6.03, 6.03, 3.39)
4 (4.03, 4.01, 3.53) (3.70, 3.69, 3.33) (4.66, 4.65, 2.91)
5 (3.98, 3.95, 3.45) (3.68, 3.67, 3.28) (3.88, 3.85, 2.75)
6 (3.81, 3.78, 3.25) (3.54, 3.53, 3.11) (3.41, 3.36, 2.58)
7 (3.67, 3.64, 3.08) (3.42, 3.41, 2.97) (3.06, 3.00, 2.40)

ing to GP power control (D.5), binary power control (D.11), the clustering
approach (D.26), and greedy power control.

5.3 Network Capacity Statistics

To obtain the system throughput statistics for an average user in each cell,
we ran 10000 independent trials, in each trial drawing user locations and
path gain matrices from their corresponding distributions. Table D.2 de-
picts the average per-cell capacity, defined as R

N , for the three simulation
settings, in bits/s/Hz versus the number of cells. It is clear that introduc-
ing power control improves the throughput performance for N ≥ 2, in
particular for the urban microcell environment. However, note the only
marginal improvement in going from binary power control to optimal GP
power control based on geometric programming. As seen from the table,
the average per cell capacity decreases as the number of cells increase. This
is to be expected since all cells share the same spectral resources. As an ex-
ample of how instrumental it is to be able to operate some cells at minimum
power, we see that the system capacity in the urban microcell environment is
less for two cells than for one cell when using full power. However, using
binary and GP power control, we observe an increase in system capacity
when going from one to two cells, due to better management of interfer-
ence.

In Fig. D.2 we have plotted the frequency of optimality of binary power
control, i.e., the percentage of simulations where binary power control is
still optimal. It is seen that for one and two cells, binary power control is
indeed always optimal, while for more than two cells it is optimal only in
a certain fraction of the cases. When the number of cells increases, binary
power allocation is more seldom optimal. However, as shown in Table D.2,

121



D. BINARY POWER CONTROL FOR SUM RATE MAXIMIZATION OVER MULTIPLE
INTERFERING LINKS

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Number of cells, N

F
re

qu
en

cy
 o

f o
pt

im
al

ity
 o

f b
in

ar
y 

po
w

. a
llo

c.

 

 

Suburban Macro
Urban Macro
Urban Micro

Figure D.2: Frequency of optimality of binary power allocation, relative to
optimal (GP) power allocation, plotted versus the number of cells N for all
three simulation environments.

the gap between the optimal (GP) power control and the suboptimal bi-
nary power control is still marginal. This demonstrated near-optimality of
binary power control has several potential implications in the design and
analysis of wireless networks. Firstly, the complexity of the transmitter de-
sign is reduced, since only a two-level power control is required. Secondly,
binary power control provides a key simplification of the problem by en-
abling distributed control of the power allocation [15].

5.4 Average transmit power

To improve further our understanding of the power control problem, in
Fig. D.3 we have plotted the average transmit power for the suburban
macrocell and the urban microcell environments, as a function of the num-
ber of cells. In the macrocell setup, we see that the average transmit power
of binary and GP power allocation are approximately the same, and that on
average for a 7-cell network, 4 cells should be on. On the other hand, for
the LOS microcell setup, significantly fewer cells should be turned on. This
is due to the fact that the cells are much smaller, combined with a lower
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Figure D.3: Average sum transmit power for macro and microcell setups
versus the number of cells N.

path loss due to a line of sight environment, hence the interference caused
by turning on a cell dominate more. Also, we note that for increasing N,
the GP power control uses less transmit power than binary control. Hence,
even though there are no significant throughput gains in using continuous
power control in these settings, it is possible to reduce the average transmit
power, while achieving the same network capacity.

5.5 Reducing Complexity by Clustering Cells and Greedy Power
Control

Now, we consider the results obtained by grouping the total number of cells
in a large system into smaller clusters of neighboring cells7. In Table D.3 the
normalized capacity from (D.26), i.e., the capacity obtained by using binary
power allocation in clusters of size K relative to a binary exhaustive search
over the total network of 19 cells, is plotted versus the number of cells in
the clusters. It is seen that even with small clusters of 3 cells more than
90% of the capacity can be achieved. Increasing the cluster size K yields
improvements in sum throughput. Although not shown here, it is clear
that as K → N, the clustering scheme will be identical to that of the binary
exhaustive search.

7Clustering by grouping neighboring cells is not claimed to be optimal; indeed optimal
clustering is a research problem in itself, beyond the scope of this paper.
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Table D.3: Network Capacity Statistics for Complexity Reduced Schemes,
N = 19

Normalized capacity relative to binary exhaustive search

Clusters of K cells Binary

1 2 3 4 5 6 7
Greedy

exhaustive

Suburb. Macro 0.82 0.88 0.91 0.93 0.95 0.96 0.95 0.997 1

Urban Macro 0.84 0.89 0.92 0.94 0.95 0.96 0.96 0.998 1

Urban Micro 0.84 0.87 0.9 0.92 0.93 0.95 0.94 0.994 1

Table D.4: Average Number of Cells Turned On for Complexity Reduced
Schemes, N = 19

Average number of cells turned on

Clusters of K cells Binary

1 2 3 4 5 6 7
Greedy

exhaustive

Suburb. Macro 19 16.88 15.19 14.55 13.99 13.47 13.5 11.3 11.3

Urban Macro 19 16.98 15.38 14.79 14.21 13.75 13.75 11.7 11.7

Urban Micro 19 17.93 16.45 15.72 15.1 14.23 14.26 10.7 10.5

Finally, we evaluate the results of the greedy power control scheme. As
seen from Table D.3, the greedy scheme performs extremely well, achieving
more than 99% of the capacity from binary exhaustive search in all simu-
lation environments. Using the previously derived running time expres-
sions, we see that the complexity is reduced by a factor of N2

2N = 192

219 , or
equivalently 99.99% complexity reduction, while sacrificing less than 1%
of the network capacity. Comparing the clustering approach to the greedy
approach, it is clear the greedy algorithm yields better results, which is to
be expected, and can be explained as follows. While the greedy approach
is a fully centralized scheme, the clustering based power control operates
locally in clusters using an interference average from the other clusters, and
has also for a fixed cluster size lower complexity. Also, from Table D.4 we
see the average number of cells turned on by the clustering, greedy, and
binary exhaustive schemes. We see as the number of cells in a cluster K in-
creases, the fraction of cells turned on decreases. For the greedy and binary
exhaustive search less cells are on, which helps explain their strong perfor-
mance. Nonetheless, we see that the promised benefits of discretizing the
power levels can be achieved at a low complexity.
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6 Conclusions

We have analyzed transmit power allocation for an N-cell wireless sys-
tem under a sum-capacity maximization criterion and minimum and peak
power constraints at each base station. Assuming perfect channel gain in-
formation to be available, we have investigated the system capacity with-
out power control, with binary power control, and with GP-based power
control. We show that the optimal power control is binary for two cells,
as well as when the network throughput can be approximated either by a
geometric-arithmetic means inequality or by a low-SNIR assumption. In
the general case when N > 2, it was demonstrated by extensive computer
simulations that a restriction to binary power levels yields only a negligible
capacity loss.

To reduce the complexity of exhaustively searching for the optimal bi-
nary power allocation for large networks, simple algorithms based on clus-
tering and greedy approaches were derived. Using these algorithms a sig-
nificant complexity reduction is possible at only a small penalty in network
capacity. For practical systems, these results are of importance since the
transmitter design is simplified, overhead feedback signalling is reduced,
and the search for distributed algorithms becomes more manageable. Fi-
nally, we note that power control should complemented with scheduling
to further improve the performance of the system. In certain scenarios this
has previously been explored in [15; 30].
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Abstract

We consider the problem of finding low-complexity, bandwidth-
efficient, and processing-power efficient transmission schemes for a
downlink scenario under the framework of diversity combining. Cap-
italizing on recent results for joint adaptive modulation and diver-
sity combining schemes (AMDC), we design and analyze two AMDC
schemes that utilize power control to reduce the radiated power,
and thus the potential interference to other systems/users. Based
on knowledge of the channel fading, the proposed schemes adap-
tively select the signal constellation, diversity combiner structure, and
transmit power level. We show that the novel schemes also pro-
vide significant average transmit power gains compared to existing
joint adaptive QAM and diversity schemes. In particular, over a
large signal to noise ratio range, the transmitted power is reduced
by 30 − 50%, yielding a substantial decrease in interference to co-
existing systems/users, while maintaining high average spectral effi-
ciency, low combining complexity, and compliance with bit error rate
constraints.
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INTRODUCTION

1 Introduction

The need for ever higher spectrum efficiency for power limited mobile
users motivates further optimization of the use of wireless resources. Re-
source management in wireless communications is a difficult task due to
user mobility and highly time-variant propagation environments, thus im-
plying adaptive solutions. Key adaptive techniques are those of adaptive
modulation [1], power control [2], and adaptive combining [3–6].

In [7; 8] novel jointly adaptive modulation and combining schemes are
introduced. As the schemes utilize a constant-power variable-rate setup,
for a finite number of rates, these schemes transmit with a higher average
power than what is necessary to fulfill the bit error rate (BER) constraint.
Specifically, for a multi-link (e.g., in cellular or ad-hoc networks) communi-
cations environment, higher transmit power implies higher interference to
co-existing links, which in turn can impose significant network capacity re-
ductions. Further, in [9], adaptive combining and power control were stud-
ied for constant-rate transmission. Hence, for the purpose of interference
reduction in variable-rate systems, we extend the schemes of [7; 8], by in-
troducing power control, and [9; 10], by introducing adaptive modulation.
The transmission schemes we consider here are directed towards imple-
mentation, contrasting the more theoretical work in [11], where capacity-
achieving codes were used for spectral efficiency maximization.

There is a rich literature on diversity combining schemes, e.g., [12; 4; 3;
5; 13]. In generalized selection combining (GSC), the receiver will combine
a fixed number of the resolvable paths with the highest signal-to-noise ra-
tio (SNR), reducing the complexity relative to the optimal maximum ratio
combining (MRC) scheme. However, both the GSC and MRC combining
schemes always combine the maximum number of allowed branches, even
if combining fewer branches would satisfy the transmission requirements.
Proposed in [5], the minimum selection GSC (MS-GSC) attempts to solve this
by combining the smallest possible number of highest-SNR branches such
that the combined SNR is above a given threshold. On the average MS-
GSC combines less branches, and hence uses less processing power than
GSC [4; 3; 6], making it ideal for a downlink scenario where the mobile
unit is power and size limited.

In this paper, we consider joint adaptive modulation and diversity com-
bining (AMDC) for downlink transmission, where it is of interest to have
low processing costs at the battery powered mobile unit (hence, to combine
the fewest number of branches). Additionally, reducing the transmitted
power from the base stations is beneficial, as this will introduce less inter-
ference to other users and systems, and as such increase the overall system
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Figure E.1: Transmission system block diagram.

capacity. Depending on the key purpose of the design, we arrive at either
a processing-power efficient or a bandwidth-efficient scheme. Based on
a mathematical analysis, we evaluate the average spectral efficiency, BER,
diversity combining complexity, and transmit power gain performance of
these schemes. We show that the new power controlled AMDC schemes
simultaneously achieve low processing complexity and reduced radiated
power, as well as high average spectral efficiency (ASE) and compliance
with BER constraints. Specifically, over a large SNR range the transmitted
power is reduced by 30− 50%.

The remainder of the present correspondence is organized as follows.
In Section 2, we introduce the system model and describe the joint adap-
tive transmission schemes. Performance analysis of the proposed schemes
is carried out in Section 3. Numerical examples and plots are given in Sec-
tion 4. Finally, we conclude in Section 5.

2 Models and Mode of Operation

2.1 System And Channel Model

We study a generic diversity system as shown in Fig. E.1, assuming that
there are L available diversity branches. While the proposed schemes and
corresponding analytical framework are in general applicable to generic
fading distributions, we limit ourselves to an independent identically
distributed (iid) Rayleigh fading scenario to obtain closed-form results.
Hence, we assume that the received signal on each diversity branch ex-
periences iid Rayleigh fading. Additionally, the wireless channel is af-
fected by additive white gaussian noise (AWGN). Under the assumption
of frequency-flat fading, we may use a block-fading model to approximate
the wireless fading channel by an AWGN channel within the length of one
coherence time [14]. Further, as in [1], we assume that there is a reliable
feedback path between the receiver and the transmitter. Within a guard
period in the transmitted signal, the receiver is able to perform path esti-
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Figure E.2: Mode of operation for the proposed joint adaptive schemes. To
the left the processing-power efficient scheme is shown, and to the right is
the bandwidth efficient scheme.

mation, decide on a diversity structure and signal constellation, and finally
select the power to be used for transmission. Once the settings are found,
the transmitter and receiver will use them for the subsequent data burst,
lasting up to one fading block.

2.2 M-QAM Based Link Adaptation

We consider the constant power M-ary adaptive QAM scheme studied
in [7; 8]. This scheme consists of N signal constellations of size M = 2n,
where 1 ≤ n ≤ N. Mode selection is based on a partitioning of the com-
bined SNR range into N + 1 regions, defined by the switching thresholds
{γTn}N

n=1, defining γT0 = 0 and γTN+1 = ∞ for convenience. Constellation n
is used for transmission if the combined SNR is in the interval [γTn , γTn+1).
The BER of 2n-QAM constellations over an AWGN channel with SNR γ can
be well approximated by [1]

BERn(γ) =
1
5

exp
(

−3γ

2(2n − 1)

)
, n = 1, . . . , N. (E.1)
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Now, given a target bit error rate BER0, the switching thresholds {γTn} are
found from (E.1) as:

γTn = −2
3

ln(5 BER0)(2n − 1), n = 1, . . . , N. (E.2)

2.3 Processing-Power Efficient AMDC Scheme

The idea of the processing-power efficient AMDC scheme (PES) is to com-
bine the fewest branches possible, while achieving the required SNR for the
lowest signal constellation, and still benefiting from rate adaptivity. The
left flowchart in Fig. E.2 shows the mode of operation for the PES AMDC
scheme. For each data burst, the base station initially transmits a training
sequence using the highest available power level. The mobile subsequently
tries to increase the output SNR above the threshold for the lowest constel-
lation size by performing MS-GSC1 with γT1 as output threshold. When the
combined output SNR γc is above γT1 , the mobile stops and determines the
highest feasible constellation index n for the given γc. This index might be
larger than the lowest rate index 1, since the combining procedure yields
discrete steps in SNR when the number of combined branches increases.
Next, the mobile asks the base station to i) reduce its power level maxi-
mally such that this constellation is still usable and, ii) transmit with the
chosen constellation. Hence, this scheme can still benefit from the avail-
ability of higher rates should the channel be in a good enough state. This
feature is especially desirable for the transmission of multimedia streams.
If the combined SNR is still smaller than γT1 after combining all L paths,
the base station buffers the data, and will not transmit for the next time
interval.

For the PES, the probability density function (pdf) of the received SNR
using the highest power level is[8]

fγc(γc) = f
MSC(γT1 )
γc (γc)u(γc − γT1) + F

MSC(γT1 )
γc (γT1)δ(γc), (E.3)

where u(·), δ(·), F(·) are respectively, the unit step function, the delta func-

tion, and the cumulative distribution function (cdf). f
MSC(γT1 )
γc denotes the

pdf of the combined SNR with L-branch MS-GSC combining, using γT1 as
the output threshold, and is given for the iid Rayleigh fading case as [6, Eq.

1For a detailed explanation and analysis of MS-GSC, please see [6].
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(34)]:

f MSC(γ)
γc =



L
γ

(
1− e−

γ
γ

)L−1
e−

γ
γ + ∑L

i=2

{
L!

(L−i)!(i−1)!i!γ e−
γ
γ

(
iγT1−(i−1)γ

γ

)i−1

+ ∑L−i
j=1

L!(−1)j−i+1

(L−i−j)!i!j!γ

(
i
j

)i−1

×
[

1− e−
j((i−1)γ−iγT1

)
iγ ∑i−2

k=0
1
k!

(
j((i−1)γ−iγT1 )

iγ

)]}
×
(
u(γ− γT1)− u(γ− i

i−1 γT1)
)

, γ ≥ γT1 ,

e−
γ
γ

(
γL−1

γL(L−1)!

)
, 0 ≤ γ < γT1 .

(E.4)
Inspecting (E.4), we see that for 0 ≤ γ < γT1 , the pdf is equivalent to the
well known pdf for maximum ratio combining [12, Eq. (17)], while for
γ ≥ γT1 , the pdf carefully takes into account that only the minimum num-
ber of branches required to reach the threshold γT1 should be combined.
Similarly, FMSC(·)

γc is found in [6, Eq. (24)].

2.4 Bandwidth-Efficient AMDC Scheme

Whereas the previous scheme strives to minimize the number of combined
branches for a minimum rate requirement, the bandwidth-efficient scheme
(BES) is primarily designed to maximize the spectral efficiency. In this
scheme the receiver thus performs diversity combining aiming for the high-
est signal constellation, however with a side look to transmit power reduc-
tion. As illustrated to the right in Fig. E.2, the mobile tries to facilitate the
highest constellation by performing MS-GSC with γTN as output threshold.
Whenever the output SNR goes above γTN , the mobile asks the base station
to transmit using the lowest possible power level such that the highest con-
stellation is still usable. If the combined SNR is still smaller than γTN , even
after combining all L paths, the mobile will determine the highest feasible
constellation size. Next, the mobile asks the base station to i) reduce its
power level such that this constellation is still usable, and ii) transmit with
the chosen constellation. If even the lowest constellation size is not feasible,
data is buffered, and there is no transmission for the next time interval.

For the BES, the pdf of the received SNR using the highest power level
is [8]

fγc(γc) = f
MSC(γTN )
γc (γc)u(γc − γT1) + F

MSC(γTN )
γc (γT1)δ(γc). (E.5)
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2.5 Power Control

In an ideal adaptive power control scheme, the transmitted power can be
varied continuously to follow the channel variations, establishing an upper
bound on the transmit power gain. However, continuous power control is
not realistic as it would require an infinite capacity feedback channel. In
addition, it is not likely that the transmitter is able to transmit at a very large
(infinite) number of power levels. For practical scenarios the resolution
of power control is limited, e.g., in UMTS power control steps are on the
order of 1 dB [15]. Thus, we analyze both continuous and discrete power
adaptation.

For a combined SNR of γc, we denote the post-adaptation SNR by γc
′ =

γc
β , where β is the power control parameter. Specifically, for continuous

power control, β ∈ [1, ∞), while for the discrete level power control, the
system can choose between M power parameters, {β1 = 1 < β2 < · · · <
βM}. The range of the power control must be limited such that once a
signal constellation n has been chosen, the BER constraint is not violated.
For continuous power control this implies that the SNR is reduced to γTn ,
while for discrete control we enforce

βM ≤ min
1≤n≤N

γTn+1

γTn

. (E.6)

Using discretized power levels, the mobile is only required to feed back an
indexed rate and power pair for each fading block. Indexing N + 1 SNR
regions and M power levels requires at most log2(N + 1 + M) bits, thus
implying a manageable feedback load.

Before we proceed, note that both the BES and PES schemes can be ap-
plied directly to uplink transmission. However, in an uplink setting, the
processing power cost of diversity combining is likely to be less important,
and hence GSC should be used in place of MS-GSC.

3 Performance Analysis

3.1 Transmit Power Gains

Let us assume that, using full transmit power and MS-GSC diversity com-
bining, the system has obtained a combined SNR of γc, and decides to oper-
ate with constellation n. Now, the constellation n requires a SNR of at least
γTn to operate within the BER requirement. Thus, there is an SNR surplus
of γc

γTn
.
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3.1.1 Continuous Power Control

Using continuous power control we are able to reduce the SNR surplus
maximally, i.e. to zero, hence maximally reducing the interference. For
γTn ≤ γc < γTn+1 , the power gain is thus given by γc

γTn
, yielding an average

transmit power gain in decibels of

GdB =
N

∑
n=1

∫ γTn+1

γTn

10 log10

(
γc

γTn

)
fγc(γc) dγc

=
N

∑
n=1

∫ γTn+1

γTn

10 log10(γc) fγc(γc) dγc

−
N

∑
n=1

10 log10(γTn)
(

Fγc(γTn+1)− Fγc(γTn)
)
.

(E.7)

3.1.2 Discrete Power Control

For discrete level power control, the choice of the power parameter β will
quantify the transmit power gain, and can be summarized as follows. For
γTn ≤ γc < γTn+1 , n ≥ 1,

β = βM iff
γc

γTn

≥ βM,

β = βM−1 iff
γc

γTn

≥ βM−1 and
γc

γTn

< βM,

...

β = β2 iff
γc

γTn

≥ β2 and
γc

γTn

< β3,

β = 1, iff
γc

γTn

< β2.

(E.8)

Introducing the power level switching thresholds γTn,m , which for m 6=
M + 1 are given as γTn,m = γTn βm, while γTn,M+1 = γTn+1 , we can calculate
the average transmit power gain from (E.8) as

GdB =
N

∑
n=1

∫ γTn+1

γTn

10 log10

(
γc

γc/β

)
fγc(γc) dγc

=
N

∑
n=1

∫ γTn+1

γTn

10 log10(β) fγc(γc) dγc

=
N

∑
n=1

M

∑
m=2

10 log10(βm)
(

Fγc(γTn,m+1)− Fγc(γTn,m)
)
.

(E.9)
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3.2 Average Spectral Efficiency and Number of Combined
Branches

Based on the results of [8], we can evaluate the average spectral efficiency,
denoted by η, for both schemes as:

η =

N −∑N
n=1 F

MSC(γT1 )
γc (γTn), PES,

N −∑N
n=1 F

MSC(γTN )
γc (γTn), BES.

(E.10)

Next, the average number of combined branches (Bc) is found as [8]:

Bc =

{
1 + ∑L−1

i=1 FL/i−GSC
γc

(γT1)− LFL−MRC
γc

(γT1), PES,
1 + ∑L−1

i=1 FL/i−GSC
γc

(γTN )− LFL−MRC
γc

(γT1), BES,
(E.11)

where FL−MRC
γc

(·) is the cdf of the combined SNR using L-branch MRC com-
bining [12, Eq. (29)].

3.3 Statistics of The Combined SNR After Power Control

To analyze the BER performance of the proposed schemes, we need a sta-
tistical characterization of the combined SNR after power control, which
we now derive based on the mode of operation described in Section 2.

3.3.1 Continuous Power Control

The continuous power control allows the system to use the smallest power
possible, after a signal constellation has been chosen. The pdf of the com-
bined SNR after power control, γc

′, is then simply given as

fγc ′(γc
′) =

(
Fγc(γTn+1)− Fγc(γTn)

)
δ(γc

′ − γTn), 0 ≤ n ≤ N, (E.12)

The cumulative distribution function is then found, for 0 ≤ n ≤ N, as

Fγc ′(γc
′) =

{
0, γc

′ < 0,
Fγc(γTn+1), γTn ≤ γc

′ < γTn+1 .
(E.13)

3.3.2 Discrete Power Control

Utilizing discrete-level power control we will, for a fixed constellation n,
obtain a combined SNR in the range [γTn , max{γTn β2, γTn+1 /βM}). In the
following derivation we assume that all the power control steps are of equal
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length (in dB)2, i.e., βp+1
βp

= ∆β, 1 ≤ p ≤ M− 1. Depending on the length of
the interval [γTn , γTn+1 ] and the power parameter βM, the post-adaptation
SNR can be in one of two regions. Specifically, if γTn βMβ2 ≥ γTn+1 , the
combined SNR after power adaptation will be in [γTn , γTn β2), while if this
condition is not satisfied, it is also possible to have a post-adaptation SNR
in the region [γTn β2, γTn+1 /βM). Thus, for γTn ≤ y < γTn β2, n ≥ 1,

Pr (γc
′ ≤ y) = Pr (γc ≤ y)

+ Pr (γTn β2 ≤ γc < y∆β) + · · ·+ Pr (γTn βM ≤ γc < min {y∆β, γTn+1}).
(E.14)

Now, if γTn βM∆β < γTn+1 , we have for γTn β2 ≤ y < γTn+1 /βM,

Pr (γc
′ ≤ y) = Pr (γTn βM∆β ≤ γc < yβM) + Pr (γc

′ ≤ γTn β2). (E.15)

Finally, for max{γTn β2, γTn+1 /βM} ≤ y < γTn+1 :

Pr (γc
′ ≤ y) = Pr (γc

′ ≤ max{γTn β2, γTn+1 /βM}). (E.16)

Then, by differentiation we obtain the pdf as follows:

fγc ′(γc
′) =



fγc(γc
′) + ∑M

j=2 β j fγc(γc
′β j), γTn ≤ γc

′ < γTn β2,
& γc

′βM ≤ γTn+1 ,
fγc(γc

′) + ∑M−1
j=2 β j fγc(γc

′β j), γTn ≤ γc
′ < γTn β2,

& γc
′βM > γTn+1 ,

βM fγc(γc
′βM), γTn β2 ≤ γc

′ <
γTn+1

βM
,

& γTn βM∆β ≤ γTn+1 ,
0, otherwise.

(E.17)

3.4 Bit Error Rate

The average bit error rate for the proposed schemes can be calculated as [1]

BER =
1
η

N

∑
n=1

nBERn, (E.18)

where BERn is the average bit error rate for constellation n, found by utiliz-
ing (E.1) as:

BERn =
∫ γTn+1

γTn

BERn(γc
′) fγc ′(γc

′) dγc
′, n = 1, . . . , N. (E.19)

2This is not claimed to be optimal, but accurately reflects practical power control set-
tings used in e.g. UMTS [15].
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Hence, using the probability distributions derived in the previous sub-
sections, we can calculate the bit error rate performance of the proposed
schemes as follows:

BER =
∑N

n=1 n
∫ γTn+1

γTn
BERn(γc

′) fγc ′(γc
′) dγc

′

η
. (E.20)

Using continuous power allocation, we have from the analysis above:

BER =
1

N −∑N
n=1 FMSC(γT )

γc (γTn)

N

∑
n=1

n
∫ γTn+1

γTn

1
5

exp
(

−3γc
′

2(2n − 1)

)
×
(

FMSC(γT )
γc (γTn+1)− FMSC(γT )

γc (γTn)
)

δ(γc
′ − γTn) dγc

′

a)
= BER0

∑N
n=1 n

(
FMSC(γT )

γc (γTn+1)− FMSC(γT )
γc (γTn)

)
N −∑N

n=1 FMSC(γT )
γc (γTn)

= BER0,

(E.21)

where γT = γT1 or γT = γTN , and a) follows from using the sifting property
of the Delta function [16] and (E.2). Thus, from (E.21), we see that for both
schemes the average bit error rate using continuous power control is, as
expected, equal to the bit error rate constraint, independent of the (average)
SNR per branch.

Finally, in the case of very large average branch SNR and discrete level
power control, the proposed schemes will always use the largest constella-
tion size with the lowest transmit power level. Therefore, the average BER
performance of the proposed schemes asymptotically approaches that of a
2N-QAM constellation with transmit power scaled down by a factor of βM
from the maximum power level when SNR becomes large. If the size of
the largest constellation N also increases, the proposed schemes will enjoy
even higher spectral efficiency but with a non-diminishing average BER.

4 Numerical Results

In this section, we set the number of available diversity branches L = 3, the
number of signal constellations N = 4, and the bit error rate constraint as
BER0 = 10−3.

4.1 Average Spectral Efficiency and Number of Combined
Branches

Using Eqs. (E.10), (E.11) we plot the average spectral efficiency and the
number of combined branches, as shown in Fig. E.3. The average num-
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Figure E.3: Average spectral efficiency and combining complexity versus
the average SNR per branch.

ber of combined branches is roughly proportional to the receiver process-
ing power, since every branch need a separate processing chain. For av-
erage branch SNRs between 5 − 20 dB, there is a clear trade-off between
processing power and spectral efficiency. For branch SNRs above 20 dB,
one branch is enough to utilize the highest signal constellation (16-QAM),
and the two schemes are for all practical purposes equivalent.

4.2 Transmit Power Gains

In Figs. E.4 and E.5 we depict the average transmit power gains (E.7), (E.9)
for the proposed schemes. Although both figures exhibit a non-monotonic
behavior, it is clear that introducing power control significantly reduces the
average radiated power. Figs. E.4 and E.5 can be explained as follows. The
power gains are due to a surplus of SNR relative to the selected constella-
tion. From Fig. E.3a, at very low SNR data is buffered, hence no transmit
power gain is possible. Increasing the branch SNR, we observe a steady
increase in transmit power gain. In the intermediate range we see a slight
decrease in the power gain, due to a combination of that i) the increased
branch SNRs are used to facilitate larger constellations, and ii) the two in-
termediate intervals for constellations n = 2, 3 are shorter than the interval
for n = 1, as seen from

{γdB
T1

, γdB
T2

, γdB
T3

, γdB
T4
} = {5.48, 10.25, 13.93, 17.24}. (E.22)

Now, recall that the maximum reduction for discrete level trans-
mit power control is limited by the shortest interval according to (E.6).
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Figure E.4: Average transmit power gain for the processing-power efficient
AMDC scheme versus the average SNR per branch.

From (E.6) and (E.22), the potential for power reduction using discrete level
control is 3.31 dB. Thus, as expected when increasing the branch SNRs fur-
ther, the average transmit power gain saturates at 3 dB for the step sizes
∆βdB = {1, 1/2}dB, while using step sizes of ∆βdB = {1/4, 1/8}dB al-
lows for further increasing the average transmit power gain. Finally, the
transmit power gain using continuous power control is unbounded, since
there is no limitation on the maximum reduction in this case.

4.3 BER Performance

The bit error rate performance of the proposed schemes are shown in
Fig. E.6. In the low-SNR range, the bandwidth-efficient scheme has slightly
better error performance than the processing-power efficient scheme, due
to combining more branches, as seen in Fig. E.3b. For reference, we also
have included the BER performances of the two schemes using constant
full power and continuous power control (E.21). As expected, the schemes
using full power have better error performance, showing the tradeoff be-
tween transmit power gain and BER.
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Figure E.5: Average transmit power gain for the bandwidth-efficient
AMDC scheme versus the average SNR per branch.

−5 0 5 10 15 20 25 30
10

−5

10
−4

10
−3

Average SNR per branch (dB)

A
ve

ra
ge

 b
it 

er
ro

r 
ra

te

 

 

Contin. power (both schemes)
Proc. pow eff., 1 dB stepsize
Bandwidth eff., 1 dB stepsize
Proc. pow. eff., full power
Bandwidth eff., full power

Figure E.6: Average bit error rate versus average SNR per branch. (BER
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5 Conclusions

We have investigated joint adaptive modulation and diversity combining
for a downlink scenario. Specifically, we have introduced and analyzed a
processing-power efficient scheme and a bandwidth-efficient scheme, both
of which jointly determine the signal constellation and diversity combiner
structure based on the channel fading condition and a bit error rate require-
ment. Furthermore, to reduce the interference to co-existing systems and
users, transmit power control is applied. The statistics of the combined
SNR after power control are derived, and both schemes are analyzed in
terms of spectral efficiency, combiner complexity and bit error rate. For
both schemes, a reduction of transmitted power on the order of 30− 50%
is feasible over a large SNR range, thus significantly decreasing the level
of interference to co-existing systems/users, making them ideal in a multi-
link scenario, while upholding high spectral efficiency, maintaining low
diversity combining complexity, and satisfying the BER constraints.
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Abstract

We consider the joint application of power control, adaptive mod-
ulation, and diversity combining in a two-cell wireless network. The
goal is to derive practical low-complexity, bandwidth-efficient, and
battery-power-efficient transmission schemes addressing the chal-
lenges of uplink and downlink transmission. Employing dynamic
spectral reuse, we allow for coordination of the transmit power lev-
els, thus managing interference to co-existing systems and cells. For
uplink transmission, we minimize the sum transmit power in order
to save valuable battery lifetime, and in the downlink setting we in-
vestigate spectral efficiency improving power control, taking into ac-
count the limited processing power of a mobile unit. The proposed
schemes are evaluated by analyzing the spectral efficiency, transmit
power, and diversity combiner complexity. Under a bit error rate con-
straint, we show that the novel transmission schemes significantly re-
duce the transmit power (uplink), and increase the spectral efficiency
while achieving a low combining complexity (downlink), compared
to reference schemes.
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INTRODUCTION

1 Introduction

The demand for high system efficiency with limited available spectral and
power resources presents the cellular system designer with tough chal-
lenges. Resource management in wireless communications is a difficult
task due to user mobility and highly time-variant propagation environ-
ments, thus implying adaptive solutions. Key adaptive techniques are
those of: i) Adaptive modulation increasing the spectral efficiency by adapt-
ing the signal constellation to the fading state [1; 2], ii) power control provid-
ing battery savings at the mobile unit and interference management [3; 4],
and iii) (adaptive) diversity combining improving link quality by utilizing
multiple signal paths for communication [5–7].

Recently, diversity combining and power control were studied for con-
stant rate transmission in [8; 9] and for adaptive modulation in [10], how-
ever in both cases restricted to the single link case. Generalizing the system
to multiple links adds the problem of inter-link interference. Hence, for
the purpose of battery lifetime maximization, improved interference man-
agement, and increased spectral efficiency in variable-rate cellular systems,
we extend the schemes of [8–10], by considering both uplink and down-
link transmission in a two-cell network with a dynamic frequency reuse.
A practical use of this two-cell setup to larger systems, would be to cluster
the cells into (carefully chosen) groups of two cells over which the proposed
scheme is employed.

The transmission between a mobile user and a base station in a cellular
system is characterized by distinctive features. First, the mobile user has
a very limited battery capacity. This battery limitation imposes important
challenges; in the uplink the transmit power should be minimized subject
to fulfilling the relevant quality of service constraints. In the downlink,
when the mobile user is equipped with a receiver for diversity combining,
the combining complexity is a significant source of power use, and should
also be optimized. Second, the limited available radio spectrum inevitably
leads to a high frequency reuse, and thus co-channel interference, which
for both uplink and downlink can be managed by power control.

There is a rich literature on diversity combining schemes, e.g., [11; 5; 6;
12–15]. In generalized selection combining (GSC), the receiver will adaptively
combine a fixed number of the resolvable paths with the highest signal-to-
noise ratio (SNR)1, reducing the complexity relative to the optimal maxi-
mum ratio combining (MRC) scheme. Further, since GSC receivers exclude
the weakest branches from the combining process, they are more robust to-

1In the case of cellular systems, signal-to-noise-and-interference ratio (SNIR).

155



F. JOINT ADAPTIVE MODULATION, DIVERSITY COMBINING, AND POWER CONTROL IN
TWO-CELL WIRELESS NETWORKS

ward channel estimation errors. However, both the GSC and MRC combin-
ing schemes always combine the maximum number of allowed branches,
even if combining fewer branches would also satisfy the transmission re-
quirements. Proposed in [12], the minimum selection GSC (MS-GSC) at-
tempts to solve this by combining the smallest possible number of highest-
SNR branches such that the combined SNR is above a given threshold. On
the average MS-GSC combines less branches, and hence uses less process-
ing power than GSC [13–15], making it ideal for a downlink scenario where
the mobile unit is power and size limited. Optimum diversity combining
techniques from the perspective of a single cell experiencing co-channel in-
terference were derived in [11]; however power control and adaptive mod-
ulation were not considered.

To address the particular challenges faced in up- and downlink trans-
mission, in this paper we propose and analyze two different practical adap-
tive modulation and diversity combining schemes targeted at two-cell net-
works. In this scenario, and assuming dynamic frequency spectrum reuse,
coordinated transmit power levels are used to i) reduce the transmitted
power to extend the battery lifetime of the mobile user (uplink), ii) in-
crease the spectral efficiency (downlink), and iii) minimize the interference
to co-existing systems and cells. The proposed schemes are evaluated in
terms of average spectral efficiency, transmit power, and number of com-
bined branches, all based on a mathematical analysis. We show that the
novel schemes achieve significant reductions in sum transmitted power
compared to two benchmarking schemes (uplink), as well as high aver-
age spectral efficiency (ASE) and low combining complexity (downlink),
as well as compliance with the bit error rate (BER) constraints.

The remainder of the present paper is organized as follows. In Section 2,
we introduce the cellular, diversity combining, and adaptive modulation
models. The novel schemes for uplink and downlink transmission are de-
scribed and mathematically analyzed in Sections 3 and 4, respectively. Nu-
merical examples and plots are given in Section 5. Finally, we conclude and
discuss directions for future work in Section 6.

2 System Model

2.1 Cellular Setup

We consider both uplink and downlink transmission between mobile ter-
minals and base stations in two neighboring cells, as depicted in Fig. F.1.
We assume an orthogonal intra-cell multiple access scheme, such that in
any given spectral resource slot (where resource slots can be time or fre-
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Cell 1

Cell 2

G22

G12

G11

G21

Figure F.1: Two-cell wireless system model (exemplified with hexagonal
and perfectly aligned cells). Base stations (BS) are shown as solid squares
and users as circles. For each link the associated channel gain Gji is shown,
where j corresponds to the BS index and i to the user index.

quency slots in TDMA/FDMA, or codes in orthogonal CDMA) two users
are selected for transmission by a medium access control (MAC) protocol.
The spectral resource slots are shared by both cells, leading in general to an
interference and noise impaired system. Scheduling policies can, in prin-
ciple, also be incorporated by suitably modifying the users’ channel statis-
tics [16]. However, in order to focus solely on the problem of joint adaptive
modulation, power control, and diversity combining, we do not explic-
itly consider scheduling or MAC protocols here. Furthermore, although
a hexagonal cell layout is shown for illustrational purposes in Fig. F.1, we
emphasize that our analysis is valid for any pair of interfering links, even
for non-cellular systems such as ad-hoc networks. However, to facilitate
exposition a cellular terminology is adopted.

2.2 Diversity Model

In each receiver, we consider a generic diversity combiner where there
are L available diversity branches, and assume that the received signal on
each diversity branch experiences independent identically distributed (iid)
Rayleigh fading. We assume that due to hardware complexity consider-
ations, a maximum of Lc branches can be combined at the receiver side
(Lc ≤ L). Additionally, the wireless channel is affected by additive white
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Gaussian noise (AWGN).
Denote by Gji(m) > 0 the channel power gain between the mobile user

uj(m) in cell j and the cell i base station, in resource slot m, after diversity
combining. We will suppress the slot index from now on, concentrating
on one arbitrary slot. Note that the gains Gjj correspond to the desired
communication links, whereas the Gji for j 6= i correspond to the unwanted
interference links. The channel gains are assumed to be independent across
cells.

Assuming that the transmitters are enabled with a power control facil-
ity, we denote the pre-adaptation combined signal to noise-plus-interference
ratio (SNIR) in cell j by γc

j , j = 1, 2. These are the SNIRs that would be ex-
perienced using signal constellations of power Pmax in both cells. Adapting
the transmitted power based on the channel state information, the SNIR af-
ter power control, termed post-adaptation SNIR and denoted by γ

pc
j , j = 1, 2,

are given by:

Uplink: γ
pc
1 =

P1G11

σ2
1 + P2G21

, γ
pc
2 =

P2G22

σ2
2 + P1G12

, (F.1a)

Downlink: γ
pc
1 =

P1G11

σ2
1 + P2G12

, γ
pc
2 =

P2G22

σ2
2 + P1G21

, (F.1b)

where Pj and σ2
j are, respectively, the transmit powers and the variance

of the independent zero-mean AWGN in cell j. It is seen from (F.1) that
γc

j = γ
pc
j |P1=P2=Pmax .

Assuming that the receivers have no explicit interference cancellation
ability, the interference can be considered as noise, and in a Rayleigh fading
environment this noise has a Gaussian distribution [11]. In this paper, the
increase of noise power due to interference will be assumed to be the same
across the branches and to be proportional to the transmitted power of the
interferer. Hence in cell j, there is AWGN with a variance of σ2

j + PiGji, j 6= i
for downlink, and similarly σ2

j + PiGij, j 6= i for uplink. In this setting,
combining as per the rules of MRC is optimal [11].

Finally, we note that our system model with (possibly different) noise
levels σ2

1 , σ2
2 also accommodates the modeling of additional interfering

sources disturbing the users differently. One important application of this
is when, for complexity reduction, joint multi-cell power allocation is un-
dertaken over a subnet (cluster) of two neighboring cells only. In this case
σ2

j represents the combined effect of noise and interference received from
the remaining out-of-cluster cells by the jth user.
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2.3 M-QAM Based Link Adaptation

We consider an adaptive QAM scheme consisting of N signal constellations
of size 2n, where 1 ≤ n ≤ N. The mode selection is based on the channel
state and the bit error rate requirement. Using the results of [1], the BER of
2n-QAM constellations over an AWGN channel with a SNIR of γ, assuming
coherent detection, can be well approximated by

BERn(γ) =
1
5

exp
(

−3γ

2(2n − 1)

)
, n = 1, . . . , N. (F.2)

Now, given a target bit error rate BER0, the minimum SNIR threshold for
utilizing constellation n is found by inverting (F.2):

γTn = −2
3

ln(5 BER0)(2n − 1), n = 1, . . . , N. (F.3)

(F.3) represents a partition of the SNIR range into N + 1 regions, defined by
the switching thresholds {γTn}N

n=1. Constellation n is selected for transmis-
sion if the SNIR is in the interval [γTn , γTn+1).

3 Uplink Transmission

3.1 Mode of Operation

The flowchart in Fig. F.2 shows the mode of operation for the proposed
scheme. During a guard period, for each data burst, both mobiles transmit
a training sequence using the highest available power level Pmax, permit-
ting the channel power gains to be estimated at the base stations. The base
station in cell j subsequently perform GSC diversity combining to achieve a
pre-adaptation combined SNIR of γc

j . After combining, the receiver checks
whether the combined SNIR is greater than γT1 . If so, the highest feasible
constellation index for the given γc

j is determined. Following this, i) a cen-
tralized power control is invoked to minimize the sum transmit power of
both cells, subject to the constraint that both constellations are still usable
under the BER constraints, ii) the mobile is informed about the power level
and constellation, and finally, iii) transmission occurs with the chosen con-
stellation. If the combined SNIR is smaller than γT1 , the data are buffered
and there will be no transmission in cell j in the next time interval.

Treating the interference as noise, and extending the results of [17] to
GSC, the pdf of the pre-adaptation SNIR in cell j is found as:

fγc
j
(γc

j ) = f L/Lc−GSC
γc

j
(γc

j )u(γc
j − γT1) + FL/Lc−GSC

γc
j

(γT1)δ(γc
j ), (F.4)
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Bu�er data
Determine highestconstellation size n Determine highestconstellation size k

Transmit withpower P �2constellation k,constellation n,Transmit withpower P �1

Start

P �2 = 0

Start
Yes Noc2 � T1GSCNo Yes

P �1 = 0
c1 � T1

Bu�er data Centralized power control
GSC P2 = PmaxP1 = Pmax

Figure F.2: Mode of operation for the uplink two-cell adaptive modulation,
diversity combining and power control scheme.

where u(·), δ(·), F(·) are, respectively, the unit step function, the delta func-
tion, and the cumulative density function (cdf). f L/Lc−GSC

γc
j

(·) denotes the

pdf of the combined SNIR with an L/Lc-GSC combining scheme, and is
given in closed form for the iid Rayleigh fading case in [6, Eq. (16)]. Simi-
larly, FL/Lc−GSC

γc
j

(·) is found in [6, Eq. (24)].

3.2 Transmit Power Control

Following the mode of operation outlined above, after diversity combin-
ing, the centralized power control will minimize the sum transmit power
subject to the constraint that the selected constellations are still usable. To
establish upper bounds on the performance of the considered scheme, we
consider the use of continuous power control. In general, we have pre-
adaptation combined SNIRs of γTn ≤ γc

1 < γTn+1 and γTk ≤ γc
2 < γTk+1 ,

and the power control proceeds by finding powers P∗1 , P∗2 , minimizing the
sum transmit power, as the solution to the following constrained optimiza-
tion problem2:

2Note that the problem can easily be extended to a weighted sum minimization.
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minimize P1 + P2,

subject to γ
pc
1 ≥ γTn , γ

pc
2 ≥ γTk

0 ≤ P1, P2 ≤ Pmax.

(F.5)

Writing out the constraints from (F.5) we find:

P1G11 − γTn(σ2
1 + P2G21) ≥ 0, (F.6a)

P2G22 − γTk(σ2
2 + P1G12) ≥ 0, (F.6b)

0 ≤ P1, P2 ≤ Pmax. (F.6c)

Clearly, when considering continuous power control this is a convex opti-
mization problem, and as such it has a global minimum. In fact the problem
is a linear programming problem, which can be solved analytically. From
the constraints in (F.6) and the mode of operation described in Section 3.1,
we can identify four different events that might occur.

• Event A: Both cells achieve a pre-adaptation SNIR greater than
or equal to the minimum threshold for communication γT1 , i.e.,
γc

1, γc
2 ≥ γT1 . In this case, the thresholds of the selected constella-

tions, γTn , γTk > 0. Now, defining

b1 =
γTn G21

G11
, b2 =

γTk G12

G22
, c1 =

γTn σ2
1

G11
, c2 =

γTk σ2
2

G22
, (F.7)

and inspecting the feasible domain spanned by the con-
straints (F.6a), (F.6b), (F.6c) the solution to (F.5) is obtained as
follows:

P∗1 =
b1c2 + c1

1− b1b2
, P∗2 = c2 + b2P∗1 , (F.8)

where it can be shown that 0 < b1b2 < 1.
• Event B: Cell 1 achieves a sufficient pre-adaptation SNIR for trans-

mission, and selects constellation n. However, cell 2 cannot satisfy
the transmission requirements. Hence, cell 2 is shut down, and the
user in cell 1 will not experience any interference. Then P∗1 is found as
the minimum power required to transmit using constellation n with-
out interference, i.e.,

P∗1 =
γTn σ2

1
G11

, P∗2 = 0. (F.9)

• Event C: Similar to Event B, just change all indices 1 → 2, and n → k.
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• Event D: Neither of the cells can achieve transmission, i.e., both
γc

1, γc
2 < γT1 . Hence, both cells are turned off and we have

P∗1 = 0, P∗2 = 0. (F.10)

The power control above admits solutions where a mobile user shuts
down completely. Since one or more of the mobile users may then be
turned off in a resource slot, from a cellular engineering point of view this
scheme can be interpreted as a form of dynamic spectrum reuse.

3.3 Average Transmit Power

Starting with initial powers Pmax at both mobiles, after power control the
powers are reduced to P∗1 and P∗2 . Now, based on the (mutually exclusive)
events described in Section 3.2, we can derive the average per-cell transmit
power P for the proposed scheme as follows:

P =
1
2

(
E{P∗1 + P∗2 , A}+ E{P∗1 + P∗2 , B}+ E{P∗1 + P∗2 , C}+ E{P∗1 + P∗2 , D}

)
.

(F.11)
To calculate the expectations we need the joint probability density function
of γc

1, γc
2, which by the independence assumption in Section 2.1 is given

as the product of the two marginal pdfs fγc
1
(·) and fγc

2
(·). Then, for given

values of G12 and G21,

E{P∗1 + P∗2 , A} =
1
2

N

∑
n=1

K

∑
k=1

∫ γTn+1

γTn

∫ γTk+1

γTk

(P∗1 + P∗2 ) fγc
1
(γc

1) fγc
2
(γc

2) dγc
1 dγc

2,

(F.12)
where P∗1 , P∗2 are given in (F.8). Next, using P∗1 from (F.9) we arrive at

E{P∗1 + P∗2 , B} =
1
2

N

∑
n=1

∫ γTn+1

γTn

P∗1 fγc
1
(γc

1) dγc
1

∫ γT1

0
fγc

2
(γc

2) dγc
2

=
Fγc

2
(γT1)
2

N

∑
n=1

∫ γTn+1

γTn

P∗1 fγc
1
(γc

1) dγc
1,

(F.13)

and similarly for E{P∗1 + P∗2 , C}, while E{P∗1 + P∗2 , D} is obviously zero.

3.4 Average Spectral Efficiency

The average per-cell spectral efficiency, denoted by η, is given by

η =
1
2

(
N

∑
n=1

np1,n +
N

∑
k=1

kp2,k

)
, (F.14)

162



DOWNLINK TRANSMISSION

where p1,n is the probability that the nth constellation is used for transmis-
sion in cell 1, and similarly p2,k for constellation k in cell 2. Extending the
single cell framework from [17] to a two-cell network, (F.14) can be evalu-
ated as

η = N − 1
2

N

∑
n=1

(
FL/Lc−GSC

γc
1

(γTn) + FL/Lc−GSC
γc

2
(γTn)

)
. (F.15)

4 Downlink Transmission

Whereas the previous scheme targets minimization of transmit power for
uplink transmission, we now consider a bandwidth-efficient scheme, pri-
marily designed for high spectral efficiency downlink transmission. For
battery powered mobile units, the combining complexity, measured as the
(average) number of combined branches, is also an important issue. Hence,
in this scheme the receiver thus performs MS-GSC3 diversity combining
aiming for the highest signal constellation, combined with a centralized
power control seeking to increase the spectral efficiency.

4.1 Mode of Operation

As illustrated in Fig. F.3, in the bandwidth efficient downlink scheme, both
base stations transmit a training sequence using the highest power level.
Then, the mobile receivers estimate the channel power gains, and try to fa-
cilitate reception of the highest available constellation by performing MS-
GSC with γTN as output threshold. Following this, the channel power gains
and the pre-adaptation constellations sizes are fed back the base stations,
allowing for a centralized control. Now, if both mobiles can receive the
highest constellation, the base stations use transmit power coordination to
transmit using the lowest possible sum power such that the highest con-
stellations are still usable. Otherwise, if the combined SNIR in one or both
cells is still smaller than γTN , even after combining all Lc paths, the cen-
tralized power control tries to increase the spectral efficiency (constellation
size), subject to the BER constraints. After power control, the mobiles are
informed about the chosen constellations and data transmission starts. If,
for a given cell, even the lowest constellation size is not feasible, data are
buffered, and there is no transmission for the next time interval.

Using MS-GSC, the number of combined branches is adapted to both
the channel conditions and the target SNIR. And again, as in the uplink

3For a detailed explanation and analysis of MS-GSC, please see [15].
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MS-GSC (TN ) MS-GSC (TN )Determine highestconstellation size n Determine highestconstellation size k

Transmit withpower P �2constellation k�,constellation n�,Transmit withpower P �1
P �1 > 0 YesNo

Start StartP2 = PmaxP1 = Pmax
Centralized power control

P �2 > 0Yes NoBu�er dataP �1 = 0 Bu�er dataP �2 = 0
Figure F.3: Mode of operation for the downlink two-cell adaptive modula-
tion, diversity combining and power control scheme.

case, when the interference is treated as noise, by means of [17] the pdf of
the pre-adaptation SNIR in cell j using the bandwidth efficient scheme is
found as

fγc
j
(γc

j ) = f
MSC(γTN )
γc

j
(γc

j )u(γc
j − γT1) + F

MSC(γTN )
γc

j
(γT1)δ(γc

j ), (F.16)

where f MSC(γT )
γc denotes the pdf of the combined SNIR with Lc/L-branch

MS-GSC combining, using γT as the output threshold, and is given for the
iid Rayleigh fading case in [15, Eq. (34)]. Similarly, FMSC(·)

γc is found in [15,
Eq. (24)].

4.2 Power Control Strategy

Following the mode of operation outlined above, the power control we
propose minimizes the transmit power should both mobiles achieve a pre-
adaptation SNIR ≥ γTN . If not, the coordinated power control tries to in-
crease the constellation sizes n and k to n∗ and k∗, respectively.
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As a starting point for the design of a practical spectral efficiency in-
creasing power control scheme, we use the following result.

Lemma F.1
Starting with the maximum transmit power Pmax in both cells, no power control
strategy can be increase the SNIR in both cells simultaneously.

Proof: The idea of the proof is to show that no matter how we reduce
powers P1 and P2 from their maximum values, at least one cell will decrease

its SNIR level. Denote by 0 ≤ α = P1
Pmax

, β = P2
Pmax

≤ 1, σ2
j′ =

σ2
j

Pmax
. Then, the

post-adaptation SNIR in cell 1 can be written as

γc
1 =

αG11

σ2
1′ + βG12

. (F.17)

Lowering the transmit power in only one cell will obviously not increase
the SNIRs of both cells, thus consider reducing the transmit powers such
that 0 ≤ α ≤ β < 1, we obtain a SNIR in cell 1 as

αG11

σ2
1′ + βG12

≤ βG11

σ2
1′ + βG12

<
G11

σ2
1′ + G12

= γc
1, (F.18)

where the far right hand side γc
1 is the SNIR obtained by α = β = 1, i.e.,

full power in both cells. Then, by symmetry, the same arguments hold for
cell 2.

Equipped with Lemma F.1, we cannot increase the constellation sizes
of both cells simultaneously, and thus in the case of n 6= k, we give prefer-
ence to the cell with the lowest constellation, i.e., reduce the power in the
cell having the largest constellation, thus decreasing the interference to the
other cell, and hence increasing the SNIR-level in the other cell. For the case
of n = k < N, preference is given to the cell with the largest SNIR level,
hoping to achieve a higher constellation. Summarizing, we have listed in
Table F.1 the relevant cases we need to consider in order to analyze the pro-
posed scheme. Due to symmetry, we only detail the analysis for events E,
F, H, and J.

First, for event E, the two cells achieve γc
1, γc

2 ≥ γTN , and, similar to
the uplink scheme, power control is carried out by finding powers P∗1 , P∗2 ,
minimizing the sum transmit power, as the solution to the following con-
strained optimization problem:

minimize P1 + P2,

subject to γ
pc
1 ≥ γTN , γ

pc
2 ≥ γTN

0 ≤ P1, P2 ≤ Pmax.

(F.19)
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Table F.1: Events, Downlink Transmission

Event Pre-adaptation Post-adap.
Constellations SNIR Constellations

E N,N γc
1, γc

2 N, N
F n > k γc

1 ≥ γc
2 n∗ = n, k∗ ≥ k

G k > n γc
2 ≥ γc

1 n∗ ≥ n, k∗ = k
H 1 ≤ n = k < N γc

2 ≥ γc
1 n∗ = n, k∗ ≥ k

I 1 ≤ n = k < N γc
1 ≥ γc

2 n∗ ≥ n, k∗ = k
J n = k = 0 γc

2 ≥ γc
1 n∗ = n, k∗ ≥ k

K n = k = 0 γc
1 ≥ γc

2 n∗ ≥ n, k∗ = k

Following (F.7) and (F.8), the solution to (F.19), can be obtained as follows:

P∗1 =
c4b3 + c3

1− b3b4
, P∗2 = c4 + b4P∗1 , (F.20)

where we have defined

b3 =
γTN G12

G11
, b4 =

γTN G21

G22
, c3 =

γTN σ2
1

G11
, c4 =

γTN σ2
2

G22
. (F.21)

Next, for both events F and H, we want to reduce the power maximally
in cell 1 in order to aid a spectral efficiency increase in cell 2, under the
constraint that the constellation n can still be used for cell 1. I.e., we enforce
γ

pc
1 = γTn , yielding

P∗1 =
γTn

G11

(
σ2

1 + P2G12
)

. (F.22)

Then, P∗2 is found as the power level that maximizes γ
pc
2 subject to the peak

power constraint. Using (F.22), we have

γ
pc
2 =

P2G22

σ2
2 + γTn

G11

(
σ2

1 + P2G12
)

G21
. (F.23)

By differentiation of (F.23), we find

d γ
pc
2

d P2
=

G22G11(σ2
2 G11 + γTn σ2

1 )
(σ2

2 G11 + γTn σ2
1 + γTn P2G12)2

> 0, (F.24)

i.e., γ
pc
2 is a strictly increasing function of P2, and hence over the range of

0 ≤ P2 ≤ Pmax the SNIR in cell 2 is maximized by letting P2 = Pmax. Thus,
we have the following power levels for events F and H:

P∗1 =
γTn(σ2

1 + PmaxG12)
G11

, P∗2 = Pmax. (F.25)
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Finally, for event J cell 1 shuts down, i.e., P∗1 = 0, and there is no inter-
ference. Cell 2 will then operate at maximum power if any constellation can
be achieved and turned off otherwise, hence the power allocation is given
as

P∗1 = 0, P∗2 =

Pmax
PmaxG22

σ2
2

≥ γT1 ,

0 PmaxG22
σ2

2
< γT1 .

(F.26)

Events G, I, K, which are not explicitly discussed above follow easily by
symmetry.

4.3 Average Transmit Power

Starting with initial powers Pmax at both base stations, after power control
the power is reduced to P∗1 and P∗2 . Now, based on the above analysis and
the events listed in Table F.1, we can derive the average per-cell transmit
power P as follows:

P =
1
2 ∑

event∈{E,...,K}
E{P∗1 + P∗2 , event}. (F.27)

Starting with event E, where both cells achieve a pre-adaption SNIR ≥ γTN ,
we have

E{P∗1 + P∗2 , E} =
∫ ∞

γTN

∫ ∞

γTN

(P∗1 + P∗2 ) fγc
1
(γc

1) fγc
2
(γc

2) dγc
1 dγc

2, (F.28)

where P∗1 , P∗2 are given in (F.20). Proceeding to events F and H, and using
P∗1 and P∗2 from (F.25), we find

E{P∗1 + P∗2 , F} =
N

∑
n=1

Pmax(γTn+1 + 1)
∫ γTn+1

γTn

∫ γTn

0

1
γc

1
fγc

1
(γc

1) fγc
2
(γc

2) dγc
1 dγc

2

=
N

∑
n=1

Pmax(γTn+1 + 1)Fγc
2
(γTn)

∫ γTn+1

γTn

1
γc

1
fγc

1
(γc

1) dγc
1.

(F.29)

E{P∗1 + P∗2 , H} =
N

∑
n=1

Pmax(γTn+1 + 1)
∫ γTn+1

γTn

∫ γTn+1

γc
1

1
γc

1
fγc

1
(γc

1) fγc
2
(γc

2) dγc
1 dγc

2

=
N

∑
n=1

Pmax(γTn+1 + 1)
∫ γTn+1

γTn

1
γc

1

(
Fγc

2
(γTn+1)− Fγc

2
(γc

1)
)

fγc
1
(γc

1) dγc
1.

(F.30)
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Finally, for event J, using the power levels of (F.31),

E{P∗1 + P∗2 , J} = Pmax

∫ γT1
γT1

σ2
2

σ2
2 +PmaxG21

∫ γc
2

0
fγc

1
(γc

1) fγc
2
(γc

2) dγc
1 dγc

2

= Pmax

∫ γT1
γT1

σ2
2

σ2
2 +PmaxG21

Fγc
1
(γc

2) fγc
2
(γc

2) dγc
2.

(F.31)

4.4 Average Spectral Efficiency

Based on the mode of operation of the proposed downlink scheme and
the events described in Table F.1, we are now ready to analyze the per-
cell average spectral efficiency η. Recalling that the obtained constellations
after power control in cell 1 and 2 are denoted by n∗ and k∗, respectively,
we have:

η =
1
2 ∑

event∈{E,...,K}
E{n∗ + k∗, event}. (F.32)

As in the previous subsection, we analyze the events separately, and find

E{n∗ + k∗, E} = 2N
∫ ∞

γTN

fγc
1
(γc

1) dγc
1

∫ ∞

γTN

fγc
2
(γc

2) dγc
2

= 2N
(

1− Fγc
1
(γTN )

) (
1− Fγc

2
(γTN

)
.

(F.33)

Next, for events F and H, we use γ
pc
2 obtained by inserting P2 = Pmax

in (F.23), to find

E{n∗ + k∗, F} =
N

∑
n∗=1

N

∑
k∗=0

(n∗ + k∗)IF
n∗,k∗ (F.34)

where

IF
n∗,k∗ = Pr {γTn∗ ≤ γc

1 < γTn∗+1
, γc

2 < γTn , γTk∗ ≤ γ
pc
2 < γTk∗+1

}

=

{∫ γTn∗+1
γTn∗

fγc
1
(γc

1)
(

Fγc
2
(min{w, γTn})− Fγc

2
(v)
)

dγc
1, v ≤ min{w, γTn},

0, otherwise,
(F.35)

and

v = γTk∗

σ2
2 +

γTn∗ G21Pmax

γc
1

σ2
2 + PmaxG21

, w = γTk∗+1

σ2
2 +

γTn∗ G21Pmax

γc
1

σ2
2 + PmaxG21

. (F.36)
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Proceeding to event H we obtain

E{n∗ + k∗, H} =
N−1

∑
n∗=1

N

∑
k∗=1

(n∗ + k∗)IH
n∗,k∗ , (F.37)

where

IH
n∗,k∗ = Pr {γTn∗ ≤ γc

1 < γTn∗+1
, γc

1 ≤ γc
2 < γTn+1 , γTk∗ ≤ γ

pc
2 < γTk∗+1

}

=


∫ γTn∗+1

γTn∗
fγc

1
(γc

1)
(

Fγc
2
(min{w, γTn+1})− Fγc

2
(max{v, γc

1})
)

dγc
1,

max{v, γc
1} ≤ min{w, γTn+1},

0, otherwise,
(F.38)

with v, w again being found from (F.36).
Finally, for case J, we have

E{n∗ + k∗, J} =
N

∑
k∗=1

k∗I J
k∗ , (F.39)

and

I J
n∗,k∗ = Pr {γc

2 < γT1 , γc
1 ≤ γc

2, γTk∗ ≤ γ
pc
2 < γTk∗+1

}

=


∫ γT1

0 fγc
1
(γc

1)
(

Fγc
2
(min{y, γT1})− Fγc

2
(max{x, γc

1})
)

dγc
1,

max{x, γc
1} ≤ min{y, γT1},

0, otherwise
(F.40)

where

x =
γTk∗ σ2

2

σ2
2 + PmaxG21

, y =
γTk∗+1

σ2
2

σ2
2 + PmaxG21

. (F.41)

4.5 Average Number of Combined Branches

By building on the single link results from [17], we can find the average
per-cell number of combined branches Bc in the downlink when using MS-
GSC with a threshold of γTN . Denote by FL/i−GSC

γc (·) the cdf of the combined
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pre-adaptation SNIR obtained with a L/i GSC scheme. Then;

Bc = 1 +
1
2

Lc−1

∑
i=1

(
FL/i−GSC

γc
1

(γTN ) + FL/i−GSC
γc

2
(γTN )

)
− Lc

2

(
FL/Lc−GSC

γc
1

(γT1) + FL/Lc−GSC
γc

2
(γT1)

−
N

∑
n=1

(Jn,1 + Jn,2)− (K1 +K2)

)
,

(F.42)

where

Jn,1 =

{∫ γTn+1
γTn

fγc
1
(γc

1)
∫ γT1

v|k∗=1
fγc

2
(γc

2), dγc
2 dγc

1, v|k∗=1 ≤ γT1 ,

0, otherwise,
(F.43)

K1 =

{∫ γT1
0 fγc

1
(γc

1)
∫ γT1

max{x|k∗=1,γc
1}

fγc
2
(γc

2) dγc
2 dγc

1, max{x|k∗=1, γc
1} ≤ γT1

0, otherwise,
(F.44)

and v, x are given in (F.36) and (F.41), respectively. Note that Jn,1 repre-
sents the probability that in the downlink of cell 2 a pre-adaptation SNIR
below γT1 is achieved, and where the power control leads to an inreased
SNIR in cell 2 such that transmission with a constellation k∗ ≥ 1 is possible,
while the mobile in cell 1 can receive a constellation of size n. Similarly, for
pre-adaptation SNIRs γc

1 ≤ γc
2 < γT1 , K1 is the probabilty that the power

control makes it feasible for the base station in cell 2 to transmit using con-
stellation k∗ ≥ 1. The corresponding expressions for Jn,2 and K2 are easily
derived by symmetry.

Before we proceed we note that the power control applied for uplink
transmission can be applied a posteriori also in the downlink setting to
facilitate less sum transmitted power. And finally, that even though the
schemes are presented in, and primarily motivated for, either a downlink
or uplink scenario, they are interchangeable, e.g., the spectral efficiency
increasing downlink scheme may well be applied also for uplink.

5 Numerical results

To accurately model an interference-dominated cellular system we follow
the spatial channel model for use in system level simulations developed
by the 3GPP-3GPP2 working group [18], using the parameters listed in Ta-
ble F.2, and taking the pre-adaptation SNIR to be identically distributed
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Table F.2: Cellular System Parameters

Scenario Urban Microcell

Cell layout Hexagonal

Carrier frequency 1900 MHz

Pmax 1 W

BS to BS distance 1000 m

Operating temperature 290 Kelvin

Equiv. noise BW 100 KHz

across cells. To better evaluate the proposed schemes, we will benchmark
them against some reference schemes. These are briefly explained Sec-
tions 5.1 and 5.2 below, with the necessary mathematical details provided
in the Appendix.

In the following numerical examples, for the downlink scenario, we
set the number of available diversity branches L = 3, and the maximum
number of combined branches Lc = 2. For uplink transmission, we as-
sume L = 5 and Lc = 4. Common for both up- and downlink is that the
number of signal constellations N = 4, i.e., the signal constellations are
2-QAM (BPSK), 4-QAM, 8-QAM, and 16-QAM, and finally a bit error rate
constraint of BER0 = 10−3.

5.1 Average Spectral Efficiency and Number of Combined
Branches

By means of (F.15) and (F.32), we plot the average spectral efficiency as a
function of the average pre-adaptation SNIR, as shown in Fig. F.4. As ex-
pected the ASE increases with the average pre-adaptation SNIR, and satu-
rates at 4 bits/s/Hz/cell, corresponding to utilizing, in each cell, 16-QAM
with a probability close to 1. In Fig. F.4b, we have also plotted the ASE of
a reference scheme (F.45), employing MS-GSC, but without a spectral effi-
ciency increasing power control. It is seen that introducing power control
improves the spectral efficiency over the entire pre-adaptation SNIR range.
The ASE gain is most pronounced for low SNIRs, which is due to the fact
that when none of the cells can achieve a pre-adaptation SNIR above γT1 ,
the power control considers the possibility of having only one cell on.

Turning to the average number of combined branches, from Fig. F.5 the
proposed uplink scheme using GSC always combines Lc = 4 branches,
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Figure F.4: Average spectral efficiency per cell versus the average pre-
adaptation SNIR per branch.

while the downlink scheme benefits from the MS-GSC combining. Com-
paring the proposed downlink scheme to the reference scheme we see that
the increased spectral efficiency comes at a price of a higher number of com-
bined branches at low SNIR. Since every branch need a separate processing
chain, the average number of combined branches is roughly proportional
to the receiver processing power, and thus there is a spectral efficiency ver-
sus processing power trade-off.

5.2 Average Transmit Power

Fig. F.6 depicts the average normalized per-cell transmit power, P
Pmax

, ver-
sus the average SNIR per branch. For both uplink and downlink, we will
compare the transmit power consumption to two benchmark schemes: i)
the on/off scheme (F.47), which transmits with full power in a cell as long
as the pre-adaptation SNIR level is above γT1 , and ii) the extended single-cell
scheme (F.49), denoted Ex. s-c in Fig. F.6, which is an extended version of
the single-cell continuous power control scheme developed and analyzed
in [10], where the extension is to use the scheme in each cell without cen-
tralized coordination.

In the uplink scenario, from Fig. F.6a, we see that compared to both the
proposed scheme and extended single-cell, the coordinated scheme pro-
posed in the present paper provides an extensive reduction of transmitted
power. Further, it is clear that when allowing for coordinated power con-
trol, we obtain an additional significant reduction over the non-coordinated
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Figure F.5: Average per cell number of combined branches versus the aver-
age pre-adaptation SNIR per branch.

scheme. These gains can be explained as follows: The non-coordinated
scheme must always assume worst case interference from both cells, and
adjust its power levels to facilitate the chosen constellations under such
conditions; on the other hand for the coordinated scheme, power control
can be done in collaboration, thus opening a door to further savings.

For low pre-adaptation SNIRs in a downlink transmission setting, the
situation is different. Indeed, Fig. F.6b shows that the proposed downlink
scheme uses more transmitted power than both reference schemes, thus ex-
plaining the spectral efficiency gains already seen in Fig F.4b. In this SNIR
range, the normalized per-cell average transmit power P

Pmax
≈ 1

2 , corre-
sponding to operating one out of two cells at a maximum power Pmax, in
agreement with (F.26). As the channel state improved, i.e., in the medium
to high-SNIR range, the proposed downlink scheme uses significantly less
transmit power than both reference schemes, while still providing a higher
spectral efficiency.

In both up- and downlink scenarios, it should be noted that the dif-
ference between the coordinated scheme over the non-coordinated is due
to the presence of co-channel interference; without such interference both
schemes would perform identically.
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Figure F.6: Normalized average transmit power for the proposed scheme
using coordination (Cord.) versus average pre-adaptation SNIR. The cases
of on/off power control and the continuous power control without coordi-
nation are shown for reference.

6 Conclusions

We have investigated joint adaptive modulation, diversity combining, and
power control in a dynamic frequency reuse two-cell network. Specifically,
we have introduced and analyzed two practical bandwidth and battery-
power efficient schemes that attack the challenges faced in up- and down-
link transmission, respectively. The schemes jointly determine the signal
constellation, diversity combining structure, and power levels based on co-
ordination between the transmitters, and on the channel state. For both
schemes, we detailed the mode of operation, and through a mathematical
analysis we quantified the key performance indicators: spectral efficiency,
transmit power and number of combined branches.

Our results show that there is a tradeoff between the combiner com-
plexity, transmit power and the spectral efficiency. Comparing to reference
schemes, we demonstrated that the novel uplink scheme yields a signifi-
cant reduction in average transmit power, thus extending the battery life-
time, and decreasing the level of interference to co-existing systems and
cells, while upholding spectral efficiency. Taking into account the power
consumption from diversity combining, the proposed downlink transmis-
sion scheme uses power control to provide a significant increase of spectral
efficiency compared to a reference scheme, while achieving a low combiner
complexity.

For systems of more than two cells, we can apply the results presented
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in this paper by clustering groups of two cells, over which optimization
would be effected. An interesting direction of research would also be to
search for distributed algorithms realizing some or all of the coordination
gains without the need for centralized control.

Appendix - Reference Schemes

In this appendix we provide the describing equations of some reference
schemes used for benchmarking the proposed up- and downlink schemes.

6.1 Average Spectral Efficiency and Number of Combined
Branches

Consider a two-cell scenario with downlink transmission and MS-GSC di-
versity combining, allowing to combine a maximum of Lc from L available
branches, but without power control. Then, extending the results of [17],
we find that the average spectral efficiency is given by

η = N − 1
2

N

∑
n=1

(
F

MSC(γTN )
γc

1
(γTn) + F

MSC(γTN )
γc

2
(γTn)

)
. (F.45)

Similarly, the average per-cell number of combined branches is found as

Bc = 1 +
1
2

Lc−1

∑
i=1

(
FL/i−GSC

γc
1

(γTN ) + FL/i−GSC
γc

2
(γTN )

)
− Lc

2

(
FL/Lc−GSC

γc
1

(γT1) + FL/Lc−GSC
γc

2
(γT1)

)
.

(F.46)

6.2 Transmit Power

To evaluate the transmit power consumption of the proposed schemes, we
will find the following two reference schemes useful. First, the on/off power
control scheme which transmits with full power in a cell as long as the pre-
adaptation SNIR level is above γT1 , yielding an average per-cell transmit
power POn/off of

POn/off =
Pmax

2

(∫ ∞

γT1

fγc
1
(γc

1) dγc
1 +

∫ ∞

γT1

fγc
2
(γc

2) dγc
2

)
. (F.47)

Second, we will compare the proposed scheme to an extended version
of the single-cell continuous power control scheme given in [10], where the
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extension is to use the scheme in each cell without centralized coordination.
Given pre-adaptation SNIRs above γT1 , constellations n, k are selected, and
by using power control the following power level are obtained

P∗1 =
γTn(σ2

1 + PmaxG21)
G11

, P∗2 =
γTk(σ2

2 + PmaxG12)
G22

. (F.48)

Using (F.48), we can then derive the average transmit power PEx. s-c as fol-
lows:

PEx. s-c =
1
2

N

∑
n=1

(∫ γTn+1

γTn

P∗1 fγc
1
(γc

1) dγc
1 +

∫ γTn+1

γTn

P∗2 fγc
2
(γc

2) dγc
2

)
. (F.49)
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