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Abstract

In this thesis, transmission of images over a flat fading channel using joint
source-channel coding (JSCC) is considered. Through the use of nonlinear
dimensional changing mappings, the system becomes robust. The system
will not experience a clear breakdown, but have a graceful degradation
which is visually pleasant. It is shown how multiple ways of adapting the
source to the channel, and using the knowledge about the channel, results
in a performance comparable to state-of-the-art systems but with less com-
plexity. By relying on the robustness, reduction in channel information
does not mean a large loss in performance.

The proposed system has low computational complexity as there are no
separate source and channel coders. Compression and generation of chan-
nel symbols are done in one operation. By using nonlinear dimensional
changing mappings, the dependency between the channel symbols are low.
This leads to a system where the received image can be progressively de-
coded, and where the received information is still usable if the transmission
stops unexpectedly.

By allowing a small variation around target time and transmission
power constraints, the variation of the quality of the received image is
kept small. This is done through planning and on-the-fly adaptation of
the transmission. The planning depends on the distribution of the channel
quality, and makes sure the channel is used bandwidth efficiently.

Through the results, the impact and importance of the design of some
of the system parameters are analyzed and discussed.

By using theoretical models, it is shown how practical limitations of
the system contributes to loss in performance. Similar techniques are also
used to analyze where in the system effort should be made to improve the
system.

The proposed system has a framework that can be easily extended to
other scenarios.
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Chapter 1

Introduction

Wireless devices are used in an increasingly larger part of our everyday
life. In more and more areas habits are shifting from stationary to mobile.
Currently there are more portable than stationary computers being sold,
but maybe the area that has gone through the largest change is telecommu-
nications. In relatively few years the mobile phone has been transformed
from a rather big contraption confined to the car, to a small device.

From being a thing for the few, it has grown to be something you have to
be rather unusual not to have. From an steadily younger age, most people
get their own mobile phone, they rely on being available at all times. Being
unavailable is a thing of the past. The traditional fixed phone is even losing
ground at home, being replaced by the mobile phone.

The mobile phone industry is also one of the busiest industries world
wide, with rapid changes over very few years. Both the telephony ser-
vice providers and the mobile phone manufacturers invest huge amounts
of money in attracting costumers to their products. As an illustration on
how much is at stake, the auctions for the licenses to use the frequency
spectrum assigned to the third-generation mobile technology (3G) system
in Europe ended up at about $ 100 billion, (1011), American dollars [Gold-
smith, 2005]. So naturally the companies getting these licences would like
to get the most out of their spectrum. The 3G case has shown how much
spectrum is perceived to be worth these days, maybe making the hunt for
bandwidth efficient systems even more important than it has ever been.

Even though making phone calls still is the most important function
of a mobile phone, other functions are increasing in popularity. At the
time of writing, cameras on mobile phones are used actively for taking still
pictures, and even videos are catching on. Listening to music and the use
of miscellaneous Internet services are also functions that are being used
increasingly by mobile phone owners.

1
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One of the largest problems with many of these functions is that they
use power. Typically, the more complex a function is, the more power it
uses. At the same time, as long as wireless devices are wireless, they rely
on batteries. So to avoid having to charge batteries to often, the different
functions need to use as little power as possible.

When transmitting data from one place to another it is wise to consider
the content of the data. Data can be divided into two groups. On the one
hand there is information that is digital in nature, such as documents, text
files or computer programs. On the other hand, there is data that is analog
in nature, e.g. sound/speech and images. The first group is very sensitive to
errors. Even a few errors can make a text document unreadable or prevent
a program from running. The correctness of these data is so essential that it
might be a good strategy to retransmit the data if errors are found. For the
second group the data is more robust towards errors, meaning that it can
tolerate more errors yet be meaningful for the receiver. Often there are also
other quality of service (QoS) constraints on the transmission. In the case
of video there is usually at least a time constraint on the transmission; the
viewer would notice the delay exceeding this constraint in the stream even
if every frame is received error free. As long as the mobile device is wireless
there will also, as mentioned above, be a power constraint. So the principle
of practical data transmission is not just minimizing the errors. How the
receiver perceives the data should also be taken into consideration. As an
example Figure 1.1 shows four examples of the same image transmitted
with errors using four different approaches. Since each image is coded and
transmitted with a different approach, the errors will appear differently for
each image.

1.1 Source and channel coding

From the above discussion it is easy to see that channel bandwidth is ex-
pensive, and it is highly desired to use as little as possible. To be able
to transmit an information signal over a channel, compression is needed,
either in terms of bandwidth or equivalently, data-rate. As the general
communication channel is noisy the transmitted data has to be protected
in some sense.

A general communication system can be modeled as in Figure 1.2. The
transmitter encodes the information, and the receiver decodes the infor-
mation. Traditionally these coding operations are split further into two
separate operations in a tandem structure, as shown in Figure 1.3. The
purpose of source coding is to remove any redundancies, and describe the
information source in an efficient manner. The channel encoder on the
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(a) JPEG (b) JPEG2000

(c) WTSOM (d) Proposed

Figure 1.1: Example of errors effects that appear in images for four different
strategies. Images (a), (b) and (c) reprinted from [Boeglen and Chatellier,
2006] with permission.
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other hand, introduces redundancy whose purpose is to provide protec-
tion against channel noise. Claude Shannon proved through the separation
principle that the source coder and channel coder can be optimized sep-
arately and still achieve a jointly optimal system [Shannon, 1948a, 1959].
The lowest rate a source can be coded with for a given fidelity, is given
by the rate distortion function R(D). The channel capacity C, gives the
maximum amount of information that can be transmitted error free over
a given channel. So as long as R(D) < C, information can in principle be
transmitted reliably from a transmitter to a receiver.

In the following the ideas of separate source coding and channel coding
will be further presented. After that the motivation and principle for joint
source-channel coding (JSCC) will be given.

Encoder Channel Decoder

Figure 1.2: General communication system

Source
encoder

Channel
encoder

Channel
decoder

Source
decoderChannel

Figure 1.3: Communication system with separately designed
source/channel coders

1.1.1 Source coding

The process of representing an information source is denoted source coding.
For all practical scenarios this will be to represent the information with as
little resources as possible for a given fidelity. For most schemes resources
are given in terms of bits, but in general other ideas might be used as well.

All information sources such as images, sound, speech and such, will
have samples which are correlated, one sample contains some of the same
information as others. This redundancy can be removed without affecting
the information content. For efficient coding some sort of decorrelation
mechanism must thus be present. This can be done through some sort of
whitening process, either in the time domain by predicting future samples,
e.g. differential pulse code modulation (DPCM) [Gersho and M. Gray,



1.1 Source and channel coding 5

1992], or in the frequency domain by using a filter bank 1 or transform,
such as in joint photographic experts group (JPEG) [ISO/IEC, 1991] or
JPEG2000 [ISO/IEC, 2000].

Since the human senses are not perfect, some distortion of the signal can
be tolerated as it will not be noticed. Such distortion is denoted irrelevancy.

The process of removing redundancy and irrelevancy is not enough if
the needed compression of the signal is high. As long as the original signal
is analog, the coding has to be lossy. Some information is lost in the coding
process, and the representation is a distorted version of the original. This
process is usually done through quantization [Gersho and M. Gray, 1992].

1.1.2 Channel coding

All practical channels are noisy. This means that to transmit information
over a channel, the information will have to be protected against trans-
mission errors. The purpose of the channel codes is to protect the source
from the noise on the channel by adding redundancy in a clever way that
matches a given channel. The receiver is then better equipped to detect
the transmitted symbols, after they have been altered by noise.

There are many different channel models used, both for wired and wire-
less channels. For the case of wired transmission, the channel is usually
considered to have a fixed quality for a given connection, so the need for
adaptation is relatively low. Wireless channels on the other hand, change
conditions relatively often for mobile connections. To be able to deal with
such a channel, one possibility is to construct very robust channel codes,
capable of dealing with the varying conditions. Another possibility is to
adapt to the channel as it changes, using codes optimized for different
channel conditions, and in this way being able to transmit more data on
average.

1.1.3 Regarding tandem coding

Designing source and channel codes separately has many advantages. Some
of them are listed below.

• When designing the source code, it is possible to ignore the channel.
The same applies for the design of the channel code, focus can be
kept on one thing at the time.

• Separate design makes a portable system, since the source can be
coded separately of the channel, the source can be coded once, and

1The term filterbank is a very wide term, including more specific designs such as the
wavelet transform [Vaidyanathan, 1993]
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be transmitted over different channels by changing the channel code.

• It is proven that an optimal system can be achieved by separate design
of source and channel code [Shannon, 1948b].

There are however a few drawbacks with these points. The optimality of the
separate design is for systems allowing infinite complexity and infinite delay.
Higher complexity implies higher power consumption, which further implies
higher need for battery. The delay considerations are most important for
real-time systems.

Example of good channel codes, are the low-density parity-check (LDPC)
codes [Gallager, 1963], which in the later years have been gaining popularity
since they were rediscovered in [MacKay and Neal, 1996]. It was demon-
strated in [Chung et al., 2001] that one can come only 0.04 decibel (dB) away
from the theoretical capacity limit for a small bit error rate (BER) (10−6)
on a binary input additive white Gaussian noise (AWGN) channel by using
LDPC codes. This is however at the cost of a block length of 107, where the
block length refers to the number of bits transmitted on the channel that
are dependent of each other. For such long block lengths the delay can be
quite significant. Other popular channel codes, e.g. the turbo codes [Berrou
et al., 1993], also rely on long block-lengths and high computational cost.

These concerns about separate source and channel coder design, make
it appealing to also consider a joint approach.

1.2 Related work on JSCC

The use of the term joint source-channel coding (JSCC) is very wide. In
the literature, any system involving cooperative interaction of information
considering the source and channel can be called a JSCC scheme. There is
a plethora of solutions on how this is done in practice, some of which will
be considered in the following sections. Ways of classifying these different
schemes are almost as many as there are schemes, but in this thesis, different
JSCC schemes are classified into three categories, to be explained further
in the following.

Digital systems

The first category is fully digital systems, where the source and channel
code are designed using information about each other. Some of the earliest
work on JSCC belongs to this category. In [Fine, 1964], a communica-
tion system with a discrete noisy channel was considered, and a framework
for optimizing encoders and decoders was presented. Later a scalar quan-
tizer was optimized for noisy channels in [Kurtenbach and Wintz, 1969],
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where the quantizer design includes channel noise. This work was im-
proved in [Farvardin and Vaishampayan, 1987], and extended to vector
quantization in [Farvardin, 1990; Farvardin and Vaishampayan, 1991], de-
noted channel optimized vector quantizer (COVQ). This work was then
extended to include power constraints in [Fuldseth and Ramstad, 1997;
Fuldseth, 1997].

Most conventional source coders generate a bit stream where some bits
have greater impact on the decoded source than others. An intuitive idea
is to apply stronger protection on the important bits. This technique of
varying the channel code depending on the importance of the bit stream
is commonly referred to as unequal error protection (UEP). The authors
of [Modestino and Daut, 1979] had an early treatment of UEP, but came to
the conclusion that more flexible code rates were needed for JSCC design.
Later work picked up this thread, and rate compatible punctured convolution
(RCPC) codes [Hagenauer, 1988] gave such a possibility and became a
popular channel code for UEP schemes. RCPC channel codes provide an
easy way of changing the protection through puncturing, and has been used
in [Tanabe and Farvardin, 1992], where a RCPC code was matched to a
subband source coder. The optimal bit allocation and channel code rate
was found through an exhaustive search. In [Goldsmith and Effros, 1998]
an iterative approach was used to find the best choice of COVQ and RCPC
code design for an AWGN channel by minimizing the average end-to-end
distortion. This work was extended to a fading channel in [Tie et al., 1998].
Later work has included RCPC codes in connection with cyclic redundancy
check (CRC) [Sun and Xiong, 2006].

Another related approach for JSCC was presented in [Kozintsev and
Ramchandran, 1998] and [Zheng and Liu, 1999], where the concept of
multi-resolution modulation was used. By using sub-constellations within
a constellation, it is possible to place important information on the main
constellation, and less important information on the sub-constellations.

Hybrid Digital Analog

Traditional tandem systems use a channel code that is designed for a worst
case channel signal-to-noise ratio (CSNR) where it can guarantee an error
rate below a certain level. A source coder is then matched to the bit
rate the channel code is designed for, resulting in a certain distortion for
the transmitted source. If the true CSNR level on the physical channel
is exactly the same as the CSNR the system is designed for, everything
is fine. However, if there is a mismatch, there are two scenarios. If the
true CSNR is larger than the CSNR the system is designed for, the system
suffers from what is called the leveling-off effect. As the true CSNR rises,



8 Chapter 1: Introduction

the rate the channel supports increases, but the performance of the system
remains constant after a certain threshold. This is due to the lossy part of
the source coder. The design of the quantizer sets a certain distortion-level
which yields the target rate of the channel code. It is not possible to track
the increase of the rate on the channel without redesigning the source coder.
Should the true CSNR be lower than the design-CSNR, the system would
instead experience what is called the threshold effect. This is due to error
correcting capabilities of the channel code breaking down very fast if the
channel noise is larger than expected. For traditional source coders, this
would then lead to a huge error, due to the nonlinearities in the quantizers.

The leveling-off effect is targeted in hybrid digital-analog (HDA) sys-
tems. By keeping an analog component the system can track the improved
channel condition. Whereas digital systems have discrete jumps for differ-
ent designs, the analog part will ensure graceful improvement. Examples of
such systems is given in [Mittal and Phamdo, 2002; Coward and Ramstad,
2000c; Skoglund et al., 2002; Wang et al., 2005; Skoglund et al., 2006].

Fully analog systems

HDA systems target the leveling-off effect, but there is still the problem
of the threshold effect. One of the characteristics of frequency modulation
(FM)-radio, is that it has graceful degradation; as the channel quality is
lowered, the reception becomes poorer and poorer, but it is still possible
to get information through. A fully digital system, does not behave in the
same manner. In a digital audio broadcasting system, e.g. digital audio
broadcasting (DAB) [DAB, 1997], the audio quality will be very good as
long as the reception is good enough. If the channel quality drops below a
certain level, the sound drops out, it is all or nothing. The robustness is
greater for an analog system than for a digital one. The problem with FM,
is that it is much less bandwidth efficient than a digital system e.g. DAB.

In his paper [Shannon, 1949], Shannon suggested the use of nonlinear
source-channel mappings by looking at the problem of transmitting source
samples on a channel in a geometrical perspective. Each point in the source
space correspond to a point in the channel space. The mapping is a trans-
lation between these two spaces. These mappings can be used for both
bandwidth compression and expansion, depending on the target fidelity of
the source. Independently of Shannon, Kotel’nikov developed theory for a
similar kind of system, with focus on bandwidth expansion [Kotel’nikov,
1959]. Due to the analog nature of a system using such mappings, they will
be robust towards channel variations, both with regard to the threshold
effect, and the leveling-off effect. Such mappings were discussed further for
bandwidth expansion in [McRae, 1971; Thomas et al., 1975].
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After Shannon and Kotel’nikov many similar mappings have been devel-
oped. The mappings developed in [Fuldseth and Ramstad, 1997; Fuldseth,
1997; Coward, 2001] still contained a discrete part, but lead to later devel-
opment of fully analog continuous mappings for both bandwidth expansion
and compression [Floor and Ramstad, 2006b,a,c], and a thorough analysis
of one particular bandwidth compression mapping in [Hekland et al., 2005].
Analysis on how such a mapping could connect with the backbone network
is done in [Hekland and Ramstad, 2006b,a].

1.3 Outline of the thesis

The remainder of the thesis is organized as follows

Chapter 2 The theoretical models needed in the proposed system are pre-
sented. Parameters needed in later chapters are also defined here.

Chapter 3 The proposed image transmission system is presented. The
structure and different parts of the system are described.

Chapter 4 A model to estimate the theoretical limit of the proposed sys-
tem is presented. A framework to analyze the theoretical improve-
ment possible for the proposed system by developing extra nonlinear
dimensional changing mappings is also presented.

Chapter 5 Simulations and discussion of the results are done for the pro-
posed system for a Rayleigh flat fading channel. Comparison with
reference systems is also done.

Chapter 6 Conclusions are drawn from the results and discussions of the
previous chapters. The main contributions of the thesis are presented.
Ideas for future research topics are given.

In addition to the main chapters, there are five appendixes. Appendix A
gives a small proof on the optimal allocation of source-blocks to chan-
nel states. In Appendix B the channel gain mismatch receiver filters are
found. Appendix C presents issues with numerical optimization regarding
the channel regions and representation points. Appendix D have plots of
the used regions and representation points when the CSNR range is split
in M = 1 and M = 2 regions. In Appendix E the original images used in
the simulations in the thesis are given as a reference.





Chapter 2

Theoretical aspects of Joint

Source-Channel coding

In this chapter, most of the theoretical background needed in the thesis
is presented. In Section 2.1 the framework concerning the source is pre-
sented, and some theoretical limits are given. Section 2.2 presents theory
concerning the transmission medium, the channel, for two different mod-
els. The AWGN channel is presented in Section 2.2.1, and properties and
capacity of a fading channel are presented in Section 2.2.2. In Section 2.3,
the theoretical limits for channel and source are combined.

2.1 Describing the source

Rate-distortion theory is the theory covering the minimum resources needed
to describe an amplitude-continuous source X with known distribution, for
a given distortion, σ2

D . For most distributions this is unfortunately not
known, but for Gaussian sources this is known. The variance of a source
X is found by

σ2
X = E(X2), (2.1)

when the mean value is zero, and where E is the expectation operator. The
rate distortion function for a white Gaussian source with variance σ2

X , is
given by [Berger, 1971],

R =







1
2 log2

(

σ2
X

σ2
D

)

, if 0 ≤ σ2
D ≤ σ2

X

0, if σ2
D > σ2

X ,

(2.2)
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measured in bits/source sample, where the block distortion σ2
D is found by

the mean square error (MSE)

σ2
D = E[(X − X̂)2], (2.3)

where X̂ is the decoded estimation of the source X. In practice, the source
variance is estimated by

σ2
X =

1

L

L
∑

l=1

x2(l), (2.4)

and the distortion is estimated by

σ2
D =

1

L

L
∑

l=1

(x(l)− x̂(l))2, (2.5)

where L is the length of the source sequence, x, and x̂ is the decoded source
sequence. This is correct for ergodic sources when L→∞.

In the case of multiple independent and identically distributed (i.i.d.)
white Gaussian sources with variances σ2

X1
, . . . , σ2

XN
, the average rate is

given by [Berger, 1971]

R =
1

N

N−1
∑

n=0

1

2
log2

(

σ2
Xn

σ2
Dn

)

bits/source sample, (2.6)

where

σ2
Dn = min(µ, σ2

Xn), (2.7)

and µ is the distortion-level for sources with σ2
X ≥ µ. This implies that

only the sources with variance larger than µ is represented. Sources with
σ2
X ≥ µ, all get an equal distortion σ2

D = µ, leading to what is called reverse
water filling [Cover and Thomas, 1991].

The signal-to-noise ratio (SNR) for one source is given in dB by

SNR = 10 log10

(

σ2
X

σ2
D

)

. (2.8)

A composite source can be decomposed into multiple sub-sources. If this
is done by a filterbank, and if the overall impulse response of the synthesis
filters is one, the additive white noise will appear as additive noise of the
same variance on the output. If the passbands are relatively flat, the noise



2.2 Channel description 13

will be approximately white. Assuming i.i.d. sub-sources, a total SNR in
dB can be defined by

SNR = 10 log10

(

∑N−1
n=0 σ2

Xn
∑N−1

n=0 σ2
Dn

)

. (2.9)

So for a given SNR, it is possible to find the corresponding distortion-level
µ. So in a setting with multiple i.i.d. sub-sources it is possible to set a given
SNR value, and find the corresponding distortion-level µ.

2.2 Channel description

A medium used to transmit information from a transmitter to a receiver
is called the channel. Depending on the physical channel, the transmitted
signal will be perturbed differently from channel to channel, so different
models are used to be able to analyze a given system. Two models for
a wireless channel are the AWGN channel and the fading channel1. The
capacity of a channel is defined as the mutual information maximized over
all input distributions.

C = max
f(s)

I(S; Y ), (2.10)

where the mutual information for amplitude-continuous variables is defined
as

I(S; Y ) =

∫ ∫

f(s, y) log2

f(s, y)

f(s), f(y)
dsdy, (2.11)

where S is the transmitted random variable, Y is the received random
variable, f(s) is the probability density function (pdf) of s, and f(s, y) is
the joint pdf [Cover and Thomas, 1991].

Shannon’s theory [Shannon, 1948a, 1949] have shown that a code exists,
that can achieve a data rate Rc, close to the capacity C with error probabil-
ity going towards zero. On the other hand, any code with error probability
going towards zero must have data rate smaller than the channel capacity.
In other words, this means that there exists a code that can transmit C
bits/channel symbol, with arbitrary small probability of error over a given
channel.

2.2.1 AWGN channel model

In an AWGN channel model, the received signal y(k) can be written as

y(k) = s(k) + n(k), (2.12)

1There are many models for fading channels, but for now a general fading model is
assumed.
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where s(k) is the transmitted signal and n(k) is a white (uncorrelated)
random noise process with a Gaussian distribution. The capacity is given
by the well-known formula given by Shannon in [Shannon, 1948a]

C =
1

2
log2(1 + γ) bits/channel symbol, (2.13)

and γ is the CSNR given by

γ =
σ2
S

σ2
N

, (2.14)

where σ2
S is the power of the received signal, and σ2

N is the noise power
within the transmitted bandwidth.

2.2.2 Fading channels

When transmitting signals over a wireless channel, an AWGN model is often
not sufficient. Electromagnetic waves will experience reflection, scattering
and diffraction due to obstacles they may encounter such as buildings,
terrain or other objects. These objects may then create additional copies
of the signal known as multipath components which can be attenuated,
delayed and shifted in phase with respect to the original transmitted signal.
In this thesis the focus will be on fluctuations in the received power due
to constructive and destructive multipath components. The result of this
in the received signal is known as fading 2. Determining these effects by
calculating the path of each component would be to complex in practice.
Hence, statistical modelling is used instead [Goldsmith, 2005].

In addition to the natural time variation of a channel on its own, the
channel will vary depending on the relative motion between the mobile and
the base station, or the motion of objects in the channel. When moving,
the received signal at either the base station or mobile will experience a
broadening of the frequency spectrum called Doppler spread. The time
dual to this phenomenon is called coherence time. If the coherence time
is greater than the channel symbol period, it means that the channel vari-
ations are slower than the baseband signal variations, and slow fading is
occurring [Rappaport, 1996]. In other words, the channel will not change
during the transmission of a channel symbol. Throughout this thesis a slow
fading channel will be assumed. The impact of the speed of the mobile is
expressed through the maximum Doppler shift, or maximum Doppler fre-
quency fm. The Doppler shift can be found through the well known relation

fm =
vfc
c

Hz, (2.15)

2More correct small scale fading for the scenario in this thesis.
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where v is the relative speed of the mobile and base station, fc is the carrier
frequency, and c is the speed of light (3 · 108 m/s).

If a system has signal bandwidth much smaller than the inverse delay
spread, i.e. the coherence bandwidth, it is called narrowband. Being nar-
rowband means that all the frequency components are attenuated equally
within the signals bandwidth, giving flat fading.

Consider a frequency-flat slow fading channel where it is assumed that
the received signal y(k) can be written as

y(k) =
√

α(k)s(k) + n(k), (2.16)

where
√

α(k) is the ergodic and stationary channel gain, s(k) is the sent
signal and n(k) is AWGN. The channel power gain, α(k), will be assumed
to be independent of the channel input and have an expected value of unity.

Let σ̄2
Se

denote the long term average transmission power and σ2
N be the

power of the in-band noise on the channel. Assuming no power allocation,
the instantaneous pre-adapted CSNR, γ(k), is defined as

γ(k) =
σ̄2
Se

α(k)

σ2
N

. (2.17)

The expected value of the CSNR, γ̄e, is then

γ̄e =
σ̄2
Se

σ2
N

. (2.18)

Looking at equation (2.17) it can be seen that the gain α(k) and CSNR
γ(k) are connected through a multiplicative constant. Hence, γ(k) is dis-
tributed with the same distribution as α(k). In the case that

√

α(k) fol-
lows a Rayleigh distribution, α(k) will follow an exponential distribution
and γ(k) will also be distributed with an exponential distribution [Stüber,
2001]

f(γ) =
1

γ̄e
exp

−
γ
γ̄e . (2.19)

Assuming a specific time instance, k, the instantaneous channel capacity
is given by

C(k) =
1

2
log2 (1 + γ(k)) , (2.20)

which for simplicity will be written without the time reference k for the
remainder of the thesis

C(γ) =
1

2
log2 (1 + γ) . (2.21)



16 Chapter 2: Theoretical aspects of Joint Source-Channel coding

By rewriting (2.17), an expression for α for a given pre-adaptation
CSNR value is given by

α =
σ2
Nγ

σ̄2
S

. (2.22)

2.2.3 Channel model

Traditionally a complex baseband model is assumed. This indicate that
a complex multilevel quadrature amplitude modulation (M-QAM) signal is
transmitted. In this thesis real pulse amplitude modulation (PAM) sig-
nals will be used, indicating that the phase carries no information. In the
model for Rayleigh fading, the in-phase and quadrature component can, by
the use of the central limit theorem, be approximated by two independent
white Gaussian processes. The envelope of the sum of the in-phase and
quadrature component will then be Rayleigh distributed, e.g [Rappaport,
1996; Goldsmith, 2005]. In this thesis it will be assumed that the transmit-
ted signal still experiences Rayleigh fading, even though the transmitted
signal is real. For a PAM signal there is no information in the quadrature
component, but the carrier will still have a phase, contributing to Rayleigh
distribution of the envelope. Assuming that the receiver has full channel
information, the phase-error will be compensated for, denoted coherent de-
tection, avoiding a shift of sign in the decoded signal that might happen if
the phase-error is large enough. The noise can be complex with indepen-
dent in-phase and quadrature component, but since the receiver has full
channel knowledge, only the in-phase component distorts the information
signal.

2.2.3.1 Capacity

The capacity of a fading channel is dependent on the amount of information
at the receiver and transmitter. In this thesis two different scenarios will
be looked at. For both cases it is assumed that both the receiver and
transmitter know the distribution of the CSNR, f(γ). But both do not
necessarily know the instantaneous value of the CSNR of the channel, γ, at
all times. This information is called the channel state information (CSI).
For a practical system, the CSI has to be estimated by the receiver and
can be transmitted back to the transmitter through a return-channel. For
simplicity the return-channel is assumed to be delay- and error free.

All the systems in this thesis are assumed to only have one transmitting
antenna and one receiving antenna, so no diversity techniques are used.

Assuming that the transmitter does not have any CSI means that the
transmitter can not adapt to the channel as it varies. The data rate that
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can be transmitted over the channel is constant with value depending on the
power available. For a traditional channel coding system, this means that
the channel code has to be long enough to be able to cope with the deep
fades encountered. Due to the capacity being found through averaging over
the pdf of γ, it is also denoted the ergodic capacity, and is given in [Caire
and Shamai, 1999], from results in [McEliece and Stark, 1984] as

C =
1

2

∫

∞

0
log2(1 + γ)f(γ)dγ. (2.23)

As can be seen from the integration limits, this system will transmit all the
time, and hence has no outage, i.e. periods where no data are received. It
will be up to the receiver to combat the problems occurring from a deep
fade.

By letting the transmitter have information about the channel condi-
tions, it can adapt to the channel by using power and rate adaptation, and
choose not to transmit if the channel gets too bad, thus saving power for
better channel conditions. Under a power constraint given by

∫

∞

0
σ2
S(γ)f(γ)dγ ≤ σ̄2

Se , (2.24)

the capacity can be found by maximizing

C =
1

2

∫

∞

0
log2(1 +

σ2
S(γ)

σ̄2
Se

γ)f(γ)dγ, (2.25)

with respect to σ2
S(γ) [Goldsmith and Varaiya, 1997]. The optimal power

adaptation is given by

σ2
S(γ)

σ̄2
Se

=

{

1
γ0
− 1

γ , if γ ≥ γ0

0, if γ < γ0.
(2.26)

The solution leads to a water-filling in time as the γ level varies. When the
channel conditions are good, it is beneficial to use more power than when
the channel conditions are poor. In equation (2.26) there is however still
one unknown. The optimal outage level γ0 has to be found numerically,
which can be done by changing the inequality in equation (2.24) to an
equality and inserting equation (2.26) into it, giving that the optimal γ0

has to satisfy
∫

∞

γ0

(

1

γ0
− 1

γ

)

f(γ)dγ = 1. (2.27)

The resulting expression for the capacity can then be found by substituting
equation (2.26) into equation (2.25),

C =
1

2

∫

∞

γ0

log2

(

γ

γ0

)

f(γ)dγ. (2.28)
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When not adapting the channel power, it was shown in [Goldsmith and
Varaiya, 1997] that the capacity for a fading channel with CSI at both
transmitter and receiver is equal to the capacity for a fading channel with
only CSI at the receiver, (given by (2.23)). The difference between the
capacity of a channel with CSI at the receiver only, and the capacity of a
channel having CSI at both receiver and transmitter, given in Figure 2.1,
is only due to power adaptation. For most practical considerations, this
gap is insignificant, but to the best of the authors knowledge, there are
currently no good code designs that achieve rates close to the capacity
given by (2.23) [Alouini and Goldsmith, 2000].
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Figure 2.1: Comparison between capacity of an AWGN channel, and dif-
ferent channel capacities for a Rayleigh fading channel.

2.2.3.2 Channel adaptation techniques

Design of practical systems that approach the capacity of fading channels
will make use of techniques indicated above. No-outage systems will have
to use robustness, often including long codewords. For correlated channels,
an interleaver is often used to spread the impact of deep fades over multiple
symbols.

For systems with CSI, there are several cases possible. The transmission
rate can be adapted, the power can be adapted, or both.

A common technique to increase the average spectral efficiency (ASE)
for a fading channel, is to split the CSNR range into multiple regions, and
to use different settings of the transmitter within each region. An example
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of this is given in Figure 2.2. Each region {Rm}Mm=0, is defined to be the
pre-adapted CSNR range of [γTm−1

, γTm), see equation (2.17). {γTm}Mm=0

will be denoted threshold values throughout the thesis. R0 is the region
where the system is in outage, γ = [0, γT0

). For convenience γTM = ∞.
For traditional channel transmission systems, it is possible to use adaptive
coded modulation (ACM), where the channel codes, modulation, or both, is
changed depending on the region the channel is in. Either for a given BER
in the case of a set of channel codes, modulation constellations and trans-
mitted power [Goldsmith and Chua, 1997; Hole et al., 2000; Vishwanath
and Goldsmith, 2000, 2003], when using a fixed number of capacity achiev-
ing channel codes with fixed power [Holm et al., 2003], or variable transmit
power [Gjendemsjø et al., 2005; Lin et al., 2006]. Common for these systems
is that they use codes that require a certain CSNR level γCm , to transmit
reliably. If the received CSNR is lower than γCm , the channel codes will
break down. When using power adaptation, γCm can be increased within
each region through

γCm =
σ2
S(γ)

γ̄e
γ. (2.29)

γCm will be denoted as the representation point of the m’th channel region.

In practical systems, it is not possible to continuously adjust the trans-
mission power, but in [EIA/TIA-95, 1989] the transmission power can be
adjusted in 1 dB intervals over a dynamic range of 60 dB, which makes the
flexibility of the power adjustment high.

Outage
*

. . .
* * * *

γCM
γTM−1

γCM−1
γC3

γT2

γC2
γT1

γC1
γT0

Figure 2.2: CSNR range divided into regions with thresholds γTm ,m =
0, . . . ,M − 1 (γTM = ∞) , with corresponding coded CSNR,γCm ,m =
1, . . . ,M .

2.3 Optimal systems

When designing communication systems, the optimal performance is very
interesting, if it is known. By comparing with the optimal system, the
strengths and weaknesses of different practical systems can be seen, or even
what parts of a given system that contribute the most towards achieving a
limit-approaching system.
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Figure 2.3: Channel transmission rate, Rc, of system in [Gjendemsjø et al.,
2005] with four channel regions and infinite power level adaptation com-
pared with channel capacity for Rayleigh fading channel with Tx and Rx
CSI.

2.3.1 Optimal performance theoretical attainable

The optimal performance theoretically attainable (OPTA) is the theoretical
limit for any practical communication system transmitting a given source
over a given channel with respect to given fidelity criterion [Berger and
Tufts, 1967]. In essence OPTA is a combination of the rate distortion
function of a source, and the channel capacity of a channel. It can be given
for an arbitrary bandwidth change, ravg, between source and channel, or
the ratio between the number of source samples and channel samples.

OPTA can be generally expressed by

ravg =
R(SNR)

C(CSNR)
channel samples/source samples, (2.30)

where C(CSNR) is the channel capacity, and R(SNR) is the rate distortion
function for a given source.

OPTA can be written in many ways. One is as the upper bound of the
SNR resulting from transmitting a source over a channel, as a function of
the CSNR of a given channel under a bandwidth change ravg. A second
case looks at the CSNR as a function of the SNR for a given bandwidth
change ravg, and gives the lower bound for the CSNR needed to be able to
transmit a given source with a certain SNR through the channel. A third
variant is the bandwidth change needed for a given SNR and CSNR.

For the case of a white Gaussian source transmitted over an AWGN
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channel, the three different versions of OPTA are given by combining equa-
tion (2.30) with (2.13) and (2.2),

ravg(γ, σ2
X/σ2

D) =
log2(

σ2
X

σ2
D

)

log2(1 + γ)
(2.31)

σ2
X

σ2
D

(γ, ravg) = (1 + γ)ravg , (2.32)

or

γ(σ2
X/σ2

D , ravg) = (
σ2
X

σ2
D

)1/ravg − 1. (2.33)
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Figure 2.4: OPTA for a white Gaussian source transmitted over an
AWGN channel, for different values of ravg. From below: ravg =
{1/4, 1/2, 2/3, 1, 2}.

2.3.2 Linear vs nonlinear systems

An optimal transmission system with very low complexity and delay was
suggested in [Goblick, 1965]. This system transmits a white Gaussian
source over an AWGN channel by scaling the source signal by a constant
ξ, and scaling with a different factor β in the receiver using continuous
amplitude PAM symbols on the channel. If ξ and β are defined by

ξ =
σS
σN

(2.34)
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and
β =

σXσS
σ2
N + σ2

Y

, (2.35)

where s(k) is the transmitted signal and x(k) is the original signal, the
transmitted signal is given by

s(k) = ξx(k) =
σS
σN

x(k). (2.36)

The received signal will be

y(k) = s(k) + n(k). (2.37)

After the decoding, the reconstructed signal is given by

x̂(k) = βy(k) = β(s(k) + n(k)) = β

(

σS
σN

x(k) + n(k)

)

, (2.38)

and the MSE (distortion,σ2
D) is then given by

σ2
D = E[(x(k) − x̂(k))2] =

σ2
Xσ2

N

σ2
S + σ2

N

= σ2
X

(

1 +
σ2
S

σ2
N

)−1

. (2.39)

Which is the same as equation (2.32) when γ = σ2
S/σ2

N and ravg = 1.
This system will be revisited in Section 3.2.2.3. The system structure

is seen in Figure 2.5.
Lee and Petersen [Lee and Petersen, 1976], derived an optimum linear

transform to transmit a vector source over a vector channel with AWGN.
Later this system was named block pulse amplitude modulation (BPAM) [Vaisham-
payan, 1989]. The transmitter is simply a constant matrix, and the receiver
is another constant matrix. When bandwidth reduction is wanted, the
transmitter removes some samples altogether, and when bandwidth expan-
sion is wanted, zeros are added. For the case of no bandwidth change, this
system is the same as in [Goblick, 1965].

In [Berger and Tufts, 1967] it was pointed out that a linear PAM sys-
tem can be made optimal for the case when there is no bandwidth change
between source and channel when transmitting on AWGN channels. When
there is bandwidth change between the source and channel, a linear system
cannot be made optimal. An non-linear code was also suggested to combat
this.

BPAM is also implemented for an image transmission system, i.e. in [Kafedziski,
1998] the design technique from [Lee and Petersen, 1976] is used for image
transmission over fading channels when using a finite state channel model.
This system is only considered for low CSNR values as the BPAM becomes
increasingly suboptimal as the CSNR value increases.
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Shannon pointed out in [Shannon, 1949], that to expand or compress
bandwidth, there has to be a nonlinear connection between the source and
channel space. This was confirmed in [Ramstad, 2006], where it was shown
how a colored Gaussian source can be transmitted over a colored additive
Gaussian channel by using bandwidth matching functions (BMF). These
functions map a source-signal frequency range from the source spectrum
to a frequency range in the channel spectrum. It turns out that in general
these functions need to be nonlinear to achieve an optimal system. In this
system the exception is again the case where the bandwidth of the source
is equal to the bandwidth of the channel.

x(k)

N (0, σ2

N
)

βξ
s(k) y(k) x̂(k)

Figure 2.5: Optimal linear system for AWGN channel





Chapter 3

Image coder

Most of the image coders that are designed, are designed for error free
channels. For a fading channel, a low complexity, robust and spectral effi-
cient system is generally hard to design. This chapter presents a complete
JSCC image transmission system for fading channels. Through the use of
rate and power adaptation and by the means of nonlinear mappings, the
system is very robust even with low complexity. By tracking the channel
variations the system can be bandwidth efficient, and can be progressively
decoded with little dependency between the channel symbols. By relying
on the robustness of nonlinear mappings, the system gives a “as good as it
gets” performance. The coder presented here is based on work presented
in [Lervik, 1996], [Fuldseth, 1997] and [Coward, 2001].

The chapter is organized as follows. In Section 3.1 some previous image
transmission systems using JSCC are presented. Section 3.2 presents the
structure and properties of the different parts of the image coder system.
Section 3.3 presents how a traditional tandem source and channel system
can be used as a reference system without going through the notion of bits.

This chapter is partly based on [H̊akonsen and Ramstad, 2005, 2006a;
H̊akonsen et al., 2006]

3.1 Previous work

One of the earliest image transmission schemes using JSCC was devel-
oped in [Modestino and Daut, 1979], for the case of DPCM they traded
off rate for source and channel coding and used UEP for resulting symbols.
Later they extended this for discrete cosine transform (DCT) in [Modestino
et al., 1981]. [Kozintsev and Ramchandran, 1998; Zheng and Liu, 1999] pro-
posed systems using multi-resolution modulation resulting in UEP through
allocating important information to coarse constellation clouds, and less

25
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important information to points within each cloud.

Another field that has received much attention is progressive image cod-
ing. The ability to start the decoding of an image before all the information
is received is attractable in wireless communication. If the transmission
stops unexpectedly, the previous received information can still be used. It
is a “go with what we have” approach, which for most cases is much better
than nothing. Based on the set partitioning in hierarchical trees (SPIHT)
coder [Shapiro, 1993; Said and Pearlman, 1996], a progressive image JSCC
transmission system using an inner RCPC code in concatenation with an
outer CRC code was presented in [Sherwood and Zeger, 1997a,b] By chang-
ing the number of bits for the channel and source coder, the system can
operate on different channel qualities. Later a general method to achieve
the best trade-off between source and channel coding of video and images
by using universal distortion rate characteristics was proposed [Bystrom
and Modestino, 1998]. They showed the optimal rate allocation scheme
as a function of channel statistics. One of the key feature of this progres-
sive bit-stream is that it ceases to be useful past the first unrecoverable
error [Nosratinia et al., 2003]. So the schemes based on the SPIHT coder
will stop decoding after the first error is found. Different channels and
channel codes are tried in [Nosratinia et al., 2003] (RCPC and CRC over
binary symmetric channel (BSC)), [Thomos et al., 2005] (turbo coded and
Reed-Solomon (RS) over fading channels) and [Pan et al., 2006] (LDPC
over fading channels).

Other schemes are for example [Zhang et al., 2004a,b] where image
transmission over Rayleigh fading channels is done by using adaptive coded
modulation in connection with LDPC. The modulation is changed accord-
ing to the state of the channel, and choosing channel regions is done by
using performance curves of schemes used in each channel region for a
given BER. [Boeglen and Chatellier, 2006] presented a JSCC scheme for
image transmission over a flat Rayleigh fading channel. They use a wavelet
transform together with a self organizing map wavelet transform self orga-
nizing map (WTSOM). To get added protection and correction they can
choose to use an RS code, and an interleaver.

In the case of a robust quantization there has been work on index as-
signment in [Farvardin, 1990] and when using a COVQ [Farvardin and
Vaishampayan, 1991]. This was later picked up to include power constraints
in [Lervik and Fischer, 1997a; Lervik, 1996]. In [Coward and Ramstad,
2000b; Coward, 2001] this was extended to include a HDA part [Coward
and Ramstad, 2000a]. The systems in [Lervik, 1996; Coward, 2001] were
optimized for an AWGN channel. In this chapter a similar system is devel-
oped for a fading channel based on the same framework.
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3.2 Coder structure
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Figure 3.1: Proposed JSCC system

The structure of the proposed system is given in Figure 3.1. Through
the use of CSI, the system can adapt to a time varying channel. The level
of adaptation depends on the level of complexity and CSI. Two constraints
are used. The first is the long term average transmission power σ̄2

Se
. The

second is the ratio ravg, which is given by

ravg =
K

L
, (3.1)

where K is the total number of transmitted samples on the channel, and L
is the number of source samples(pixels).

First the image is decorrelated through an analysis filter bank, before
the filtered image is split into a set of N source-blocks. To be able to decode
the received signal, the variance of the source-blocks needs to be sent to
the receiver as side-information. Since the transmission order is based on
the side-information, it has to be received fully before transmission of the
main image information can start. An error in the side-information will
then lead to a complete breakdown of the system. It is assumed that the
side-information is decoded correctly throughout the thesis. The source-
blocks are preallocated to one out of J nonlinear mappings, and to one
out of M transmission states the channel can be in. This preallocation is
done based on the long term statistics of the channel, and is done to be
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able to plan power consumption and the number of channel samples. The
level of CSI will play a factor in how the power consumption is planned.
During transmission, the source-blocks will be mapped with a mapping
and transmitted according to the preallocation-plan, but since the channel
will not behave according to the long term statistics for a finite number of
channel symbols, the transmitter will have to adapt blocks to new mappings
and channel states on the go as well. This will lead to a slight variation from
the preallocated parameters, but will on average be correct for multiple
transmissions. At transmission, power can be used to adapt better to the
channel. The channel will distort the signal by a time varying channel
gain, and an AWGN component. From the side-information, the receiver
can find the transmission order, by assuming that the receiver has the same
information about the long term statistics as the transmitter. Since it is
the receiver that estimates the CSI, it will know at all times know the
information the transmitter has. As it is assumed that the receiver has
full CSI at all times, it can try and compensate for the lack of CSI at
the receiver. It is assumed that there are no synchronization problems at
the receiver. After the receive-filter, the symbols are demapped according
to the mapping used to map them in the transmitter. The demapped
symbols are then filtered through a synthesis filter bank, and the image is
reconstructed.

The following sections will describe each part of the system in more
detail.

3.2.1 Decorrelation

Natural images are all highly correlated, which is the reason why most im-
age coders use some sort of decorrelation of the image before further coding.
In the proposed scheme, a pair of filter banks designed by Balasingham in
[Balasingham, 1998] denoted “system K” is used to decorrelate the image.

Two different filter banks are used, an analysis filter bank, and a syn-
thesis filter bank, where the analysis filter bank decorrelates the signal, and
the synthesis filter bank reconstructs the signal [Vaidyanathan, 1993].

The filter banks consists of an eight band uniform filter bank, and
three different two-band filter banks, which are used in a tree structure
so each filter is applied to the lowpass-lowpass band of the previous stage,
called dyadic splitting. The overall filter bank makes what is called a tree-
structured filter bank. Since an image is a two-dimensional signal it needs
to be decorrelated in both dimensions. A common way of dealing with this
is by using a separable filter bank, which means that the image is filtered
by the same filter twice, once for each direction.

The resulting sub-bands are organized as shown in Figure 3.2, where
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the low frequency bands are placed top left. The reason why the lowpass-
lowpass band is further filtered can be seen in Figure 3.3, where the sub-
bands after the uniform filtering is shown. Natural images have more power
at low frequencies than at high frequencies, so if only the uniform filter-
bank where to be used, the lowpass-lowpass band would still be highly
correlated [Taubman and Marcellin, 2001]. After each filtering stage the
signal is decimated. The filter banks used here are maximally decimated
which keeps the number of pixels equal before and after filtering.

The lowpass-lowpass band is the only band with expected mean different
from zero, so to reduce the power of the image signal, the mean is subtracted
from this band and sent as side-information.

In the case where an analysis and synthesis filter bank are connected
directly together, and only generates a delay of the original signal, the
overall filter-bank is said to have perfect reconstruction (PR). The 8 × 8
uniform filter bank used here is almost PR, and the effect of this can only
be measured for very good image qualities, and is not a problem for any
practical scenarios.

The analysis and synthesis filter banks used here are the same as used
in [Coward, 2001].

To cope with the local statistical differences within each band, the sub-
band filtered image is split into N blocks of B ×B sub-band pixels. To be
able to decode the transmitted signal the receiver needs knowledge about
the variances of all the source blocks. This information is sent as side in-
formation. By using small blocks, the local statistics are captured better,
but then the number of blocks will be larger, resulting in larger side infor-
mation. Taking practical considerations into account, 8×8 sub-band pixels
has been found to be a suitable block-size. The variance σ2

Xn
of each block

is estimated using the root mean squared (RMS) value.

The variance of each block will then reflect the activity within a block.
A block with large variance has much activity and is hence important for
the image quality. This can also be seen from rate distortion theory. In
Section 2.1 it was said that for a given distortion, a source with large
variance needs to be described with more bits than a source with small
variance. In a more general sense, it can be said that more resources are
needed to get the same distortion for a block of large variance compared to
a block of smaller variance.

3.2.2 Dimensional changing mappings

Traditional communication systems are based on the idea that discrete
time, discrete amplitude source symbols are transmitted over a channel
under the protection of a channel code. The source encoder has to reduce
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Figure 3.2: Organization of sub-bands

Figure 3.3: Example of sub-band decomposed image using eight band uni-
form filterbank.



3.2 Coder structure 31

the quality of the source to match the amount of information the channel
can support with an acceptable number of errors.

Y

X
2

X1

Figure 3.4: Mapping similar to Shannon’s original suggested mapping.

Using Shannon-Kotel’nikov mappings will, however, allow some distor-
tion being added by the channel. The channel is not assumed to be error-
free any more. Discrete time, but amplitude continuous source symbols are
being mapped into the channel space by nonlinear mappings, and trans-
mitted as discrete time, continuous amplitude PAM symbols. The map-
pings work by taking Lj source samples and represent these samples by Kj

channel samples, where Lj and Kj are integers such that r̂ = Kj/Lj . The
resulting ratio r̂, will from now on be denoted as the rate of the mapping.
An example can be that a mapping of r̂ = 2, represents each source sample
as 2 channel samples, thus adding redundancy to protect each sample. Dif-
ferent mapping-rates can be split into three different categories. The first
is when a mapping produces fewer channel samples than the number of
source samples (compression). Secondly there is the case when the number
of channel symbols after the mapping process is the same as the number
of source symbols (amplification), and the third case is when a mapping
produces more channel symbols than the number of source symbols going
in (expansion).

Explaining how compression and expansion can be achieved, is prob-
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ably easiest done by looking at Figure 3.5 first for the case of r̂ = 1/2.
Compression is achieved by representing two source samples by one chan-
nel sample. A 2D vector composed of two source samples is represented
by (*). This point is then mapped to the closest point on the spiral, repre-
sented by (o). The mapped point will then be transmitted as a continuous
amplitude PAM symbol. Points on the dotted line can be represented by
negative channel symbols, while points on the solid line can be represented
by positive channel symbols. Channel noise will move this point so that
the received point will have a different value, represented by (♦). The
total distortion in the reconstructed sample will be due to the approxima-
tion noise and channel noise. In this specific example, the distortion will
be distributed over 2 source samples, thus reducing the impact of noise
for each sample. Further, it can be seen that designing good compres-
sion mappings, is a trade-off between approximation noise (quantization)
and channel noise. By letting the spiral arms be denser, the approxima-
tion noise will go down, but to achieve the same transmission power, the
transmitted signal must be downscaled. Scaling the signal up again in the
receiver will then also amplify the channel noise. A thorough study of this
for the r̂ = 1/2 case has been done by in [Hekland et al., 2005].
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Figure 3.5: Example of mapping with rj = 1
2 . 2D input vector marked

by (*) is mapped to the closest point (o) in the channel space (the spiral).
The channel noise will move the point along the spiral (♦).

Figure 3.5 can also be used to explain a mapping of r̂ = 2. Letting
the spiral represent the source space, a source sample, represented by (♦),
can take any value along the spiral. By representing this sample as a 2D
vector, the value of each coordinate can be transmitted as a continuous
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amplitude PAM symbol. After noise is added, the resulting 2D vector has
been moved in the noise-space, represented by (*). The receiver knows that
the original point has to be on the spiral, and maps it into the closest point
along the spiral, represented by (o). From this it can be pointed out a
problem with expanding mappings. If the noise power is so strong that the
received point (*) is not closest to the dashed line any more, but will be
decoded to the solid line instead, it would result approximately in a shift of
sign for the source symbol. The resulting distortion will then be very large,
compared to the regular noise moving the source point in an area which is
close to the original source point. This property of expanding mappings,
leads to a relatively fast breakdown of the performance for the mapping
when the channel quality is lower than expected.

From these examples it is seen how optimizing mappings is a trade-off
between approximation noise and channel noise. To deal with this, the
mappings are optimized for a given CSNR value, γC . The configuration of
a mapping is optimized for a channel noise power σ2

N , such that the signal
power of the mapped symbols is σ2

G . Throughout this thesis, such a CSNR
value will be denoted as a representation point, and give the CSNR value
the source symbols are coded for

γC =
σ2
G

σ2
N

. (3.2)

The robustness of a mapping is the ability to perform outside the opti-
mized CSNR level. If the noise power is larger than assumed, the mapping
should give graceful degradation. If the noise power is lower than assumed,
the mapping should not suffer from the leveling-off effect.

Making a good mapping for a general dimension change is in general
quite hard, and there is still work going on with these mappings, so for
simplicity, the mappings already used in [Coward, 2001], which were based
on mappings designed in [Lervik, 1996] and [Fuldseth, 1997], will be used.
The scope of this thesis is not to optimize each mapping, but to show how
these mappings can be used in a larger communication system.

The distribution of samples within a block can be modeled very closely
with a Gaussian distribution. However, when grouping several blocks with
different variances, the resulting distribution is closer to a Laplacian dis-
tribution [Joshi and Fischer, 1995; Lervik and Ramstad, 1996]. Since each
of the mappings used here will be used for many blocks, each mapping is
optimized for a Laplacian source.

To make the mappings work for several block-variances, each block is
downscaled by its variance before being mapped. Thus the mappings can
be optimized for a unit variance source. In the receiver the samples in a
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block are scaled up again with the block variance. The distortion of a block
can then be given by

σ2
D = σ2

XD(σ2
Gj

, rj), (3.3)

where D is the resulting optimized distortion for a mapping of rate rj, with
resulting output power σ2

Gj
.

3.2.2.1 Choosing a set of mappings

A good performing mapping might need high dimensional vectors as input,
and output, but designing good mappings for large dimension changes is
increasingly more difficult as the dimensionality goes up, due to the high
number of parameters that need to be optimized, similar to vector quantizer
(VQ) [Gersho and M. Gray, 1992]. Finding a mapping of arbitrary rate is
generally hard, so due to this, the mappings that are implemented in the
proposed coder all have rates from a ratio of integers of relatively low value.

r̂j ∈ {0,
1

4
,

1

2
,
2

3
, 1, 2}, j = 0, . . . , 5. (3.4)

Throughout the thesis, r̂j means that the rate is picked from one in the set
in equation 3.4, while r can be any real number.

3.2.2.2 PCCOVQ mappings

Fuldseth [Fuldseth and Ramstad, 1997; Fuldseth, 1997] proposed a way of
designing bandwidth compression mappings by using a VQ followed by a
modulation mapping, optimized under a power constraint. The resulting
scheme was called power constrained channel optimized vector quantizer
(PCCOVQ). The optimization of the codebook is done by minimizing the
total distortion of the decoded symbols for a given source distribution. The
spacing of the representation points in the codebook is nonuniform, but are
transmitted as an equal space multiple level PAM signal. An example of
a reconstruction codebook for a Laplacian source over an AWGN channel
is given in Figure 3.6. Neighbouring points along the line in the figure
are transmitted as neighbouring points on the channel. This will, as the
example given in Figure 3.5, give a robust mapping. In the proposed system
three mappings designed by this method is used, r̂ = {1/4, 1/2, 2/3}. The
robustness of the different PCCOVQ mappings can be seen in Figure 3.7,
together with the best performance of the mappings and the OPTA curves
for the different mapping rates. The rate distortion function for Laplacian
sources can not been found analytically, so it has to be estimated using
the Blahut algorithm, [Blahut, 1972]. The performance of these mappings
will be very similar to that of an analog mapping, e.g. the mapping given
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in Figure 3.5. Using a finite number of PAM symbols will not influence
the performance until a relatively high CSNR where the mappings will
saturate. Figure 3.7(a), 3.7(b) and 3.7(c) show how the different PCCOVQ
mappings saturate as the CSNR increases. The codebook size is 256 for the
mappings of rate r̂1 = 1/4 and r̂2 = 1/2, which gives a saturation at about
50 dB CSNR. For the mapping of rate r̂3 = 2/3 the performance saturates
at about 30 dB, even though the codebook size is 1024. The explanation
can be found when considering the fact that this mapping has a channel
dimension of two, which means that there are only

√
1024 = 32 code points

in each dimension. To get the same performance, this mapping would then
need a codebook of size 2562 = 65536 which would give to high complexity
for the optimization of the mappings.

Each mapping is characterized by the reconstruction codebook, parti-
tions, the minimum distance between channel symbols, ∆, and a Lagrange
multiplier λ to deal with the power constraint. The PCCOVQ mappings
are optimized for CSNR values with a spacing of about 1 dB. To be able
to choose transmit power outside these points, the codebook correspond-
ing to the closest optimized CSNR is chosen and the ∆ and λ parameters
are found through linear estimation from the neighboring optimized pa-
rameters. Due to the nature of the optimization process, the shape of the
codebook might be too different for an interpolation. It is not possible to
guarantee that an interpolated codebook would give good performance.
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Figure 3.6: Reconstruction codebook for PCCOVQ mapping of rate 2 : 1
optimized for a memoryless unit variance Laplacian source at CSNR = 25.1
dB.
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(a) r̂1 = 1/4, L = 1024
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(b) r̂2 = 1/2, L = 256
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(c) r̂3 = 2/3, L = 256

Figure 3.7: Performance (solid) and robustness (dash-dotted) compared
to OPTA (dashed) for the PCCOVQ mappings for a Laplacian source.
Robustness shown for mappings optimized for γC = {10, 20, 30} dB.
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3.2.2.3 Direct PAM mapping

For a rate r̂4 = 1, the optimal system is found for a Gaussian memoryless
source, transmitted over an AWGN channel in section 2.3.2. It is a con-
tinuous amplitude PAM system. For a Laplacian source, the mapping will
not be optimal any more, as OPTA is slightly higher for a Laplacian source
compared to a Gaussian source, but will perform equal to the Gaussian
source case.

This linear mapping is very robust due to the linear connection to the
noise. So the performance of the direct PAM mapping will always follow
the performance curve in Figure 3.8 as the noise power varies.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

CSNR (dB)

S
N

R
(d

B
)

Figure 3.8: r̂4 = 1. Performance (solid) compared to OPTA (dashed) for
the direct PAM mapping optimized for a Laplacian source. CSNR channel
mismatch will follow the same performance curve.

3.2.2.4 HSQLC mapping

For bandwidth expansion the mapping called hybrid scalar quantizer-linear
coder (HSQLC) designed by Coward and presented in [Coward and Ram-
stad, 1999, 2000a,c; Coward, 2001] is used. It is possible to design expanding
mappings using the same methods as done for the PCCOVQ mappings, but
the complexity will make it impractical due to the high number of points
needed in the codebook [Fuldseth, 1997].

The HSQLC works by transmitting an uncoded scalar quantized sym-
bol together with the quantization error. Hence increasing the number of
channel symbols by a factor of two, giving the HSQLC system a rate of
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r̂5 = 2. By keeping an analog part in the system, the mapping will avoid
the leveling off effect, but the quantized part will lead to a faster breakdown
when the channel is worse than expected. The performance and robustness
of the HSQLC mapping can be seen in Figure 3.9 together with the OPTA
for r̂5 = 2. Good dimensional expanding mappings are generally harder to
find than dimensional reducing mappings, and it is seen from Figure 3.9
that the distance to OPTA is much larger than for the PCCOVQ map-
pings. As mentioned previously in Section 3.2.2, it is possible to design
a bandwidth expanding mapping by using fully analog amplitude system.
An example of this is presented in [Floor and Ramstad, 2006b,a] where it
can be seen that such a system has about the same performance, and the
same properties as the HSQLC system.
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Figure 3.9: r̂1 = 2. Performance (solid) and robustness (dash-dotted) com-
pared to OPTA (dashed) for the HSQLC mapping for a Laplacian source.
Robustness shown when mappings optimized for CSNR = {10, 20, 30} dB.

3.2.2.5 Finding mappings to use

In Section 2.1 it was said that a general source can be described by its rate
distortion function, unfortunately this is generally not known, but in the
case of a white Gaussian source, this is known, and given by equation (2.2),
measured in bits/source sample.

For many channels the capacity is known and can be given in bits/channel
sample. In Section 2.2 a few of them were mentioned.

By looking at the ratio between the rate distortion function of a source,
and the channel capacity, the ratio measured in channel samples/source
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samples, is obtained. In the case of a white Gaussian source with signal
variance σ2

X , distortion σ2
D where σ2

D = min(µ, σ2
X), and an AWGN channel

with CSNR γ, this ratio is given by

r =
log2

(

σ2
X

σ2
D

)

log2 (1 + γ)
channel/source samples. (3.5)

This ratio is the bandwidth change needed, to be able to transmit a Gaus-
sian source signal X, over an AWGN channel with CSNR= γ, resulting
in distortion σ2

D . The dimensions-changing properties of the mappings
mentioned earlier are also given in channel samples/source samples. Equa-
tion (3.5) then gives the rate of the mapping needed.

Looking at equation (3.5), it can be seen that r can in theory take
any value, but using a continuous set of dimensional changing mappings is,
however, highly impractical, so in practice r has to be approximated to the
closest match amongst the available set of mappings given by (3.4). Since
the mappings are not ideal, the actual performance of each mapping has
to be considered. This can be done by using the distortion as parameter
to choose mapping from. Since the different mappings are optimized for
different CSNR values, the distortion for a given CSNR value is known.
By using this value to find the closest match of µ, the actual performance
of each mapping can be included in the choice of mapping. The mapping
with distortion closest to µ for a given CSNR value is chosen. µ is set on
the basis of a target image quality.

The CSNR value for fading channels is proportional to the channel
gain, α. Ideally this would mean that the transmitter should continuously
choose mapping parameter setting as the channel changes. This is, however,
complex and impractical, so a simpler strategy has to be used. For fading
channels a common used technique to combat fading is to split the CSNR
range into a set of regions, as mentioned in section 2.2.3.2. For channel-
region m, a CSNR value γCm is chosen to be the value the information in
that region is coded for. γCm is usually chosen conservatively to avoid that
the CSNR value on the channel drops below this value, and the channel
coder breaks down. Assuming that a channel is AWGN, the instantaneous
channel capacity for channel-region m is then given by

Cm =
1

2
log2(1 + γCm). (3.6)

A source n with variance σ2
Xn

, transmitted over channel state m, will need
a mapping of rate r given by

rn,m =

log2

(

σ2
Xn

σ2
D

)

log2 (1 + γCm)
channel/source samples, (3.7)
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to be able to achieve distortion µ. This framework will help to find the
best suited mapping for any given source transmitted over a channel with
a given CSNR.

When a block is allocated to a specific mapping, the rate of block n is
denoted r̂n, where r̂ is chosen from equation 3.4.

3.2.3 Finding channel regions and representation points

So far the mappings that are best fitted for a certain source-block variance
and channel representation CSNR have been discussed. How these regions
and representation points are chosen, have, however, not yet been discussed.
In section 2.2.3.2 a few examples were briefly mentioned for the case of
BER for codes and constellations. Using waterfall curves, the CSNR for
a given BER were found directly, giving the regions in where different
constellations should be used. A similar approach would not work in the
case of mappings, as all the mappings can be used for any CSNR value.
Ideally an object function should be found that would give the optimal
regions and γCm values, capturing the characteristics of the system. The
best setting would be the one that minimizes the distortion σ2

D , for an
image given a

• power constraint σ̄2
Se

,

• rate constraint ravg,

• fixed set of mappings J .

For a set of M regions where symbols are being transmitted, assuming that
the mappings used have optimal performance, the distortion can be written
as

D =

N−1
∑

n=0

σ2
Dn =

M
∑

m=1

∑

n∈Im

σ2
Xn (1 + γCm)−r̂n . (3.8)

The number of blocks in a region is given by the probability for that region,
but also through the mapping-rate of the block, since each mapping yields
different number of samples. The mapping-rate depends on the represen-
tation points γCm and block variance σ2

Xn
. In addition, the mapping-rate

needed might not be available, leading to an extra distortion. An attempt
to capture this in an optimization problem is done in the system presented
in [H̊akonsen et al., 2006]. Due to non-continuities introduced by the source-
blocks, and the general complexity, the overall optimal system is, however,
hard to find.

Instead of optimizing the system with source and channel information
together, an approach of finding the channel related parameters first, then
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the source related parameters, will be tried. To understand the prob-
lem better, two approaches will be tried when finding the channel regions
{γTm}M−1

m=0 , and representation points {γCm}Mm=1. Both will maximize the
channel rate, but with different complexity.

Before going closer into the different optimization approaches, the pos-
sible levels of adaptation to the channel will be presented.

In this thesis, the different levels of adaptation can be summarized as
follows

• The level of protection of the source signal can be adapted by setting
the mapping-rate differently depending on the channel states.

• The level of protection provided by a mapping might not be exactly
the needed. This can be compensated for by changing the transmis-
sion power for each source block, coding each block with mappings
optimized for different CSNR values.

• The transmit power can also be used to compensate for the channel
gain on the channel by scaling the transmitted symbols.

Traditional transmission schemes using digital channel codes, need to
make sure the CSNR is above a certain threshold to be able to guarantee a
certain BER. As seen previously, the mappings described in Section 3.2.2
are robust in nature. So a scheme using these mappings, does not neces-
sarily have to be limited to a fixed received CSNR, but can achieve a good
performance by relying on the robustness of the mappings.

The different mappings are optimized for a CSNR level, γC . In practice
this means that a given setting for a mapping will give the best performance
for a certain noise power, σ2

N , through

γC =
σ2
G

σ2
N

, (3.9)

where σ2
G is the power of the signal after being mapped. The optimization

of a mapping is done with respect to minimization of the sum distortion of
the approximation noise and additive channel noise. For a fading channel
there will be a gain α distorting the information signal, which means that
the mappings will not work optimally if the channel gain is not considered.
Even if the noise power is equal to the one the mapping was designed for,
the channel gain will move the received CSNR away from the CSNR the
mapping was designed for. Due to this it would be beneficial to try and
compensate for the gain both in the transmitter and receiver. A given way
of dealing with this will be denoted as a channel adaptation strategy (CAS).
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As explained in section 2.2.2, a fading channel is often characterized
by its pdf. From equation (2.17) the instantaneous CSNR, written γ for
short, is given as a function of the long term average transmit power, σ̄2

Se
,

noise power, σ2
N , and channel gain, α. By allowing the transmit power,

σ2
S(γ), to vary as a function of the channel condition, an expression for

the post-adapted channel capacity C, in bits/channel symbol, was found
in[Goldsmith and Varaiya, 1997] as

C = max
P :

R

γ σ
2
S(γ)f(γ)dγ=σ̄2

Se

1

2

∫

γ
log2

(

1 +
σ2
S(γ)

σ̄2
Se

γ

)

f(γ)dγ, (3.10)

under power constraint
∫

γ
σ2
S(γ)f(γ)dγ ≤ σ̄2

Se , (3.11)

where the optimum is found when using water-filling in time, see sec-
tion 2.2.3.1. For M + 1 channel states with outage for m = 0, 0 ≤ γ < γT0

,
the maximum number of bits/channel symbol Rc, is given by

Rc = max
σ2
Sm

:
P

m

R

m
σ2
Sm

(γ)f(γ)dγ=σ̄2
Se

1

2

M
∑

m=1

∫ γTm

γTm−1

log2

(

1 +
σ2
Sm(γ)

σ̄2
Se

γ

)

f(γ)dγ,

(3.12)
under power constraint

M
∑

m=1

∫ γTm

γTm−1

σ2
Sm(γ)f(γ)dγ ≤ σ̄2

Se . (3.13)

The power constraint can also be written in a normalized version

M
∑

m=1

∫ γTm

γTm−1

σ2
Sm(γ)

σ̄2
Se

f(γ)dγ ≤ 1. (3.14)

Adapting the information signal to the channel to make sure a specific
CSNR is received, can be done by scaling down the signal by the channel
gain. The transmitted power will then depend on the gain the transmitter
pre-scales with. Scaling the transmitted signal down with channel gain α
before transmission, will give a transmitted power given by

σ2
Sm(γ) =

σ2
Gm

α
=

σ2
Gm

σ̄2
Se

γσ2
N

= γCm
σ̄2
Se

γ
. (3.15)

Where equation (2.22) has been used in the second step.
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In the sub-sections 3.2.3.2 to 3.2.3.4 three different strategies for adapt-
ing to the channel gain based on the CSI will be presented. The two first
strategies require knowledge about which CSNR region the channel is in,
whereas the last require full channel knowledge at all times. The latter can
be seen as an upper limit as it is not practical due to the need for an infinite
amount of CSI. These three strategies will be used throughout the thesis.
Expressions for the planned power consumption and theoretical channel
rate will be found for these three strategies. For each strategy, the expres-
sions are used to find a setting for the channel regions and representation
points.

3.2.3.1 Practical considerations

Before going further into the details of the different CAS ideas, a few prac-
tical considerations will be presented. To maximize equation (3.12) under
the constraint given by equation (3.13), numerical methods will be used.
The maximization is done with respect to the channel region thresholds
{γTm}M−1

m=0 and representation points {γCm}Mm=1. Two approaches will be
tried in this thesis. The first is a computationally expensive algorithm, max-
imizing equation (3.12) under a power constraint given by equation (3.13).
This procedure will be denoted complex in the following. For practical
systems, this operation might be too computational expensive, so a sim-
pler approach might be desirable. In this thesis an approach described in
further detail in Appendix C is used. In short the procedure is as follows:

• Fix γT0
= 21, set channel regions {Rm}Mm=1 such that each region has

equal probability.

• In each region, set the representation points {γCm}Mm=1 equal to the
centroid of the region.

• Scale the representation points by an equal factor for all regions such
that the power equals the constraint.

• Run maximizing of equation (3.12) with the method described in
Appendix C to a local maximum.

Below γ̄ = 14 dB, this approach has to be initialized by preset values to
converge, as it is not possible to fulfill the power constraint with equal

1This is done to simplify computation. The level is set from the basis that for a
theoretical system, the outage level will never be larger than one for a Rayleigh fading
channel, [Alouini and Goldsmith, 1999]. For practical systems this will be larger. A very
low CSNR value would also mean that a mapping with higher dimensionality than the
largest available should be used.
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probability. These points have been found through trial and error for low γ̄
values and interpolated to γ̄ = 14 dB. It is not claimed that this approach
is optimal in any way, but is used as an example of a simple approach.
In the following, this approach will be denoted simple. By comparing this
approach with the approach when using the regions and representation
points using complex for optimization, it will give an indication on how
sensitive the system is towards choice of regions and representation points.
The results should also give an indication of the different factors regarding
regions and representation points that give good system performance.

Both algorithms are constrained to keep the m’th representation point
within region m, and to keep the thresholds in the right order.

3.2.3.2 No pre-scaling of channel symbols

What if the amount of CSI the transmitter has is low, so it can not track
the channel changes continuously, but only the state the channel is in?
A straight forward approach is to optimize the mappings for M different
states, transmit with constant power, and let the receiver try to compen-
sate for the gain mismatch on the channel. For the remainder of the thesis
this channel adaptation strategy (CAS) will be denoted N for none, re-
flecting that no pre-scaling of the transmitted channel symbols is done to
compensate for the channel gain. The transmit power is then given by

σ2
Sm(γ) = σ2

Gm
, (3.16)

resulting in channel rate Rc in bits/channel samples, given by

Rc = max
σ2
Sm

:
P

m

R

m
σ2
Sm

(γ)f(γ)dγ=σ̄2
Se

1

2

M
∑

m=1

∫ γTm

γTm−1

log2

(

1 +
σ2
Gm

σ̄2
Se

γ

)

f(γ)dγ,

(3.17)
with power constraint given by

M
∑

m=1

σ2
Gm

∫ γTm

γTm−1

f(γ)dγ ≤ σ̄2
Se , (3.18)

which can be written as

M
∑

m=1

σ2
Gm

σ̄2
Se

∫ γTm

γTm−1

f(γ)dγ ≤ 1. (3.19)

From equation (3.17) it can be seen that for each region m, the output-
power will be a fixed value, making the post-adapted CSNR change with
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the channel. A changing CSNR will mean that the transmission rate is a
continuous variable. For M = 1 this was shown in [Goldsmith and Varaiya,
1997] to come very close to the capacity. The effect of this, can be seen in
Figure 3.10 where the distance in bits/sample, to the channel capacity for
a Rayleigh fading channel is plotted for different values of M , both for the
simple algorithm and the complex algorithm. The optimal channel rate can
only increase as the number of channel regions increases, since more degrees
of freedom are introduced. The possible gain is, however, small when look-
ing at Figure 3.10. For the optimization, finding the optimal parameters
becomes harder as the number of channel regions increases. This is clearly
reflected in values found for {γCm}4m=1, {γTm}3m=0, and region probability
{pm}4m=1, plotted in Figure 3.11(a),3.11(c) and 3.11(e) for the simple algo-
rithm, and Figure 3.11(b), 3.11(d) and 3.11(f) for the complex algorithm.
Even though the values of {γCm}4m=1 and {γTm}3m=0 for the simple algo-
rithm seem to behave better, the simpler nature of the algorithm makes
the channel-rate, Rc decrease as M increases. For the complex algorithm
the channel-rate, Rc increases as M increases, but some regions seems to
collapse. The region probabilities are accumulated, so the upper curve will
give the probability of transmission. For the case of M = 2 and M = 1,
the representation points, thresholds and region probability, are plotted in
Figures D.1 and D.4.
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Figure 3.10: Distance to the channel capacity for a Rayleigh fading channel
for M = {1, 2, 4} number of channel regions, CAS set to N .

Since the transmission power is constant within each region, the CSNR
will vary as the channel gain varies. So when assuming that the receiver has
full channel information, it will be up to the receiver to try to compensate
for the channel gain mismatch. This can be done due to the robustness
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of the mappings. An initial thought could be to invert the channel gain.
The problem with this is that the noise could actually be enhanced. To
minimize the overall perturbation by the channel, a strategy can be to
keep the difference between the mapped signal g(k) and the signal being
demapped ĝ(k) as small as possible. Taking both the channel gain and
additive noise into consideration, a simple channel gain mismatch receiver
filter is given by

wm(k) =

√

α(k)

α(k) +
σ2
N

σ2
Sm

(γ)

. (3.20)

Since there is no scaling of the signal before transmission in this case,
σ2
Sm(γ) = σ2

Gm
. The full calculation can be found in Appendix B.1.

3.2.3.3 Fixed channel gain within a region

For N the transmitter knew the channel state, so it could adapt the map-
ping rates accordingly, but the transmitter did not do any pre-scaling of the
channel symbols before transmisson to compensate for the channel gain. If
it is assumed that the amount of CSI is the same, another option could
the be to pre-scale the channel symbols using one gain value as a represen-
tation for the whole region. For the remainder of the thesis this channel
adaptation strategy (CAS) will be denoted S for single, reflecting a single
scalar used for each channel region. The transmitted power for each region
is then expressed as

σ2
Sm(γ) =

σ2
Gm

αAm
=

σ2
Gm

σ̄2
Se

γAmσ2
N

= γCm
σ̄2
Se

γAm
(3.21)

where γAm is the assumed pre-adapted scaling-CSNR. To make the error
between the assumed gain and the exact as small as possible, the distribu-
tion of the gain has to be taken into consideration, or the distribution of
γ, f(γ). The average error introduced by choosing a fixed gain value can
be expressed, when using a squared error metric, as

Ψ =
M
∑

m=1

∫ γTm

γTm−1

(γ − γAm)2 f(γ)dγ. (3.22)

From the optimization of a scalar quantizer in [Gersho and M. Gray, 1992],
it is known that the γAm values that minimize Ψ, are the centroids in each
region, given by

γAm =

∫ γTm
γTm−1

γf(γ)dγ
∫ γTm
γTm−1

f(γ)dγ
. (3.23)
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Figure 3.11: Representation points, γCm , thresholds, γTm for CAS set to N ,
and accumulated region probability pm. Found by simple algorithm (left
column), complex algorithm (right column), M = 4.
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Inserting equation (3.21) into equation (3.12), yields

Rc = max
σ2
Sm

:
P

m

R

m
σ2
Sm

(γ)f(γ)dγ=σ̄2
Se

1

2

M
∑

m=1

∫ γTm

γTm−1

log2

(

1 +
γCm
γAm

γ

)

f(γ)dγ,

(3.24)
with power constraint

M
∑

m=1

∫ γTm

γTm−1

σ2
Sm(γ)f(γ)dγ =

M
∑

m=1

γCm σ̄2
Se

γAm

∫ γTm

γTm−1

f(γ)dγ ≤ σ̄2
Se , (3.25)

which can be simplified to

M
∑

m=1

γCm
γAm

∫ γTm

γTm

f(γ)dγ ≤ 1. (3.26)

It is assumed that the transmitter only knows the channel state, and not
the exact channel gain at all times. However, assuming that the receiver
knows the exact channel gain at all times, the receiver can use a channel
gain mismatch equalizer. The full calculation to find this expression is
shown in Appendix B.2. When using the centroid γAm as a scaling factor,
the optimal channel gain mismatch received filter will be given by

wm(k) =

√

α(k)
√

αAm

α(k) +
σ2
N

σ2
Sm

(γ)

. (3.27)

As in the case of not adapting to the channel gain, using one value to
represent a channel region leads to near optimal channel rate. Optimizing
Equation (3.24) will give very similar results whether the optimization is
done with the complex algorithm or the simple algorithm. For comparison
the distance from the channel capacity for M = {1, 2, 4}, is given in Fig-
ure 3.12(a) for simple, and in Figure 3.12(b) for complex. Looking at the
representation points {γCm}4m=1, region thresholds {γTm}3m=0, and region
probabilities {pm}4m=1 in Figure 3.13, is is seen that the optimized param-
eters are smoother for the complex algorithm compared to the case of CAS
being set to N . For the case of M = 2 and M = 1, the representation
points, thresholds and region probability, are plotted in Figures D.2 and
D.4.

3.2.3.4 Perfect channel information

By getting perfect CSI with no delay, the transmitter can adapt contin-
uously to the channel. This means that it is possible to scale down with
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Figure 3.12: Theoretical channel rate for a Rayleigh fading channel for
M = {1, 2, 4} number of channel regions, CAS set to S, compared to the
capacity.

the channel gain for each sample, and the post-adapted CSNR is fixed
to {γCm}Mm=1 for the M different channel states. Scaling down with the
channel gain for each channel sample leads to a channel inversion for each
channel state. Extra power is used when the instantaneous CSNR is lower
than γCm , and power is saved if the instantaneous CSNR is larger than γCm .
For the remainder of the thesis this channel adaptation strategy (CAS) will
be denoted C for continuous. The transmitted power will then be given by
equation (3.15), and the maximum number of bits/channel symbol can be
found by maximizing the expression found by inserting equation (3.15) into
equation (3.12), resulting in

Rc = max
σ2
Sm

:
P

m

R

m
σ2
Sm

(γ)f(γ)dγ=σ̄2
Se

1

2

M
∑

m=1

∫ γTm

γTm−1

log2 (1 + γCm) f(γ)dγ (3.28)

= max
σ2
Sm

:
P

m

R

m
σ2
Sm

(γ)f(γ)dγ=σ̄2
Se

1

2

M
∑

m=1

log2 (1 + γCm)

∫ γTm

γTm−1

f(γ)dγ, (3.29)

with power constraint given by inserting equation (3.15) into equation (3.13)
resulting in

σ̄2
Se ≥

M
∑

m=1

γCm σ̄2
Se

∫ γTm

γTm−1

1

γ
f(γ)dγ, (3.30)
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Figure 3.13: Representation points, γCm , and thresholds, γTm for CAS set
to S. Found by simple algorithm (left column), simple algorithm (right
column), M = 4.
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which can be simplified to

1 ≥
M
∑

m=1

γCm

∫ γTm

γTm−1

1

γ
f(γ)dγ. (3.31)

Equation (3.29) is maximized with respect to {γCm}Mm=1, and {γTm}M−1
m=1 for

simple, and {γCm}Mm=1, and {γTm}M−1
m=0 for complex. The channel rates, Rc,

resulting from solving equation (3.29) numerically for a Rayleigh fading
channel, is plotted in Figure 3.14(a) for simple and Figure 3.14(b) for
complex , for different number of channel regions M . The channel capacity
is plotted as a reference. It should be mentioned that for a Rayleigh fading
channel, a system with no outage using this approach would lead to Rc = 0.
For both cases the channel rate Rc approaches the capacity as the number of
regions increases. The biggest difference can be seen for the case of M = 4
and M = 1. For M = 1 the only difference is due to the outage level
γT0

. The resulting {γCm}4m=1, {γTm}4m=1 and {pm}4m=1 values are plotted
in Figure 3.15. It can clearly be seen how the simple algorithm converges to
a local optimum compared to the complex algorithm, but it is interesting
how the curves for the channel rate, Rc, still is very smooth as seen in
Figure 3.14(a). For the case of M = 2 and M = 1, the representation
points, thresholds and region probability, are plotted in Figures D.3 and
D.4.
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Figure 3.14: Theoretical channel rate for a Rayleigh fading channel for
M = {1, 2, 4} number of channel regions, CAS set to C, compared to the
capacity.
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Figure 3.15: Representation points, γCm , and thresholds, γTm for CAS set
to C. Found by simple algorithm (left column), complex algorithm (right
column), M = 4.



3.2 Coder structure 53

3.2.4 Preallocation

When transmitting information efficiently and reliably on a fading channel
is it essential to have a plan for combating the varying conditions. To
be able to plan the transmitted power, or the time it takes to transmit a
certain amount of information ahead of transmission, the decisions must be
based on the statistics of the channel. For this thesis, it has been decided to
preallocate the source-blocks to different channel-states according to certain
wanted properties.

After the filterbank decomposition, the image is decorrelated and ar-
ranged according to the frequency content. The source-block variance,
σ2
Xn

, will indicate the level of activity within a block, and hence show
the importance of a given block. The CSNR range is split into different
channel-regions with a given channel quality γCm representing each region.
A problem arising then, is to decide what source-block to transmit on what
channel-region. There are however a few desired properties that can help
us:

• There is only a limited set of mappings, and the largest mapping-rate
is 2.

• The overall number of channel samples should be as small as possible.

To avoid the need of high dimensional expanding mappings, it can be seen
from equation (3.7) that to minimize r for a given source block variance
σ2
Xn

and distortion, µ, the CSNR value to code for, γCm , should be as large
as possible. So the largest block variances should be sent on the channel-
region with the highest CSNR. To minimize the overall number of channel
samples, the average mapping-rate needed for the different blocks, given by

ravg =
1

N

M
∑

m=1

∑

n∈Im

rn,m =
1

N

M
∑

m=1

∑

n∈Im

log2

(

σ2
Xn

σ2
D

)

log2 (1 + γCm)
, (3.32)

where Im is the set of source blocks preallocated to channel state m, can
be minimized.

To minimize equation (3.32), the source blocks with largest variance
should be sent on the channel-state with largest γC . The source blocks
should then be preallocated in a descending order to the channel states
until the source block with the smallest variance is preallocated to the
poorest channel-state. Proof is given in Appendix A.

The number of blocks that can be allocated to a given channel-state, will
depend on the probability of the channel-state, and the mapping a block
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uses. Since a block may need different mapping-rates on different channel-
states, the preallocation needs to be done in a way so that the probability
of a given channel-state, matches the theoretical state-probability as closely
as possible. An exact match will not always be possible as it is desirable
to avoid splitting a block up on several states, and the number of channel
samples a block produces, depends greatly on the mapping used. A block
coded with the mapping of rate 2 will for example produce eight times as
many samples as a block coded with a mapping of rate 1/4.

For a given target ravg, the total number of channel samples K can be
expressed by

K = Lravg, (3.33)

where L is the total number of pixels in an image. The theoretical state
probability pm, has to be translated into a number of channel samples when
allocating blocks to different regions. For the m’th region, the probability
given from the number of blocks allocated to it, is given by

p̂m =
B2
∑

n∈Im
r̂n

K
, (3.34)

where B2 is the number of pixels in each block. Normalizing with respect
to the block-size, the expression for the probability becomes

p̂m =

∑

n∈Im
r̂n

Nravg
, (3.35)

where N is the total number of source blocks.
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The number of source-blocks that will be transmitted, is decided by the
distortion-level µ. Large values of µ imply that some of the source blocks
are discarded according to rate distortion theory [Berger, 1971]. This is
expressed through equations (2.2) and (2.7).

By using equation (2.9), it is possible to find the value of µ that yields
a target SNR. This can be the scenario if the receiver needs a certain
quality in the received image. Another scenario is when there is a real time
requirement where the transmission has to be finished within a certain time.
This will put a rate constraint on (3.32), and the corresponding µ for this
rate needs to be found.

To make sure the preallocated rate is as close to the target rate ravg as
desired, iteration is done over the distortion value µ, with linear approxi-
mation between each iteration. The number of blocks that fulfill σ2

Xn
≤ µ

will be preallocated for transmission. This will also mean that the allocated
probabilities, {p̂m}Mm=0, are iterated over to make sure they are as close to
the theoretical probabilities, {pm}Mm=0 as wanted. For the experimental re-
sults in this thesis, an accumulated error of the preallocated probability of
0.01 has been used. As long as the region probability is independent of the
image, an adapted version of the rate allocation algorithm in [Westerink
et al., 1988a] could have been used instead.

3.2.5 Mapping rate mismatch compensation

The mapping-rate, r̂n, for each block, does in general not match the needed
rate rn,m exactly. Since the mappings are found by the closest match
in distortion, it means that the protection a mapping gives is sometimes
better than needed, and sometimes worse than needed. This leads to a
variation in the resulting distortion that is not necessarily optimal. By
coding each block for different CSNR values, i.e., each block is coded with
mappings optimized for separate CSNR values γCn , it is partly possible to
compensate for this. The optimal power distribution after the source blocks
have been preallocated to a channel state and mapping-rate, can be found
by minimizing the total distortion given by

D =

N−1
∑

n=0

σ2
XnDn(γCn) (3.36)

where, for practical mappings, Dn(γCn) is the tabulated distortion of the
mapping the n’th block is given, designed for CSNR γCn . The normalized
power constraint will be used, and is given by equation (3.14). This results
in a problem that can be solved using Lagrange multipliers, with an object
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function

L =

N−1
∑

n=0

σ2
XnDn(γCn) + λ

M
∑

m=1

∫ γTm

γTm−1

σ2
Sm(γ)

σ̄2
S

f(γ)dγ, (3.37)

where λ is the Lagrange multiplier.

To find the optimal power distribution under an overall power con-
straint, (3.37) is differentiated with respect to γCn and set to zero. As seen
in Sections 3.2.3.2 to 3.2.3.4, the expression for power σ2

Sm(γ), will depend
on the choice of CAS, and will be found on a per block basis in the following
sections.

For theoretical mappings following OPTA, the distortion as a function
of the power is a convex function. The derivative for the distortion with
respect to the power of a theoretical mapping will then be negative and
increasing as the power increases. For practical mappings, the distortion
is not necessarily convex as a function of the power, but for any reason-
able choice of mapping, the derivative will go towards zero as the power
increases.

Since D(γC) is tabulated, the derivative does not exist, and it has to
be estimated. This is done by differentiating the quadratic spline estimates
between the optimized CSNR points, resulting in a derivative consisting
of straight line segments. For practical mappings, there is no guarantee
that the distortion results in a convex estimate, or even a non-increasing
estimate. To compensate for this, a full search has to be made to find the
optimal parameter. The parameter resulting in the smallest Lagrangian is
chosen. This has to be done for all blocks that are going to be transmitted.

The power for each block has the additional physical constraint that
it has to be positive, which can be solved by the Karush-Kuhn-Tucker
conditions, [Nocedal and Wright, 1999], but due to the simplicity of the
problem, the power for these blocks will simply be set to zero.

Finding the optimal λ value is a task that has to be done through a
search. For the optimal λ, the optimal γ∗

Cn
values satisfy the total power

in
M
∑

m=1

∫ γTm

γTm−1

σ2
S
∗

m(γ)

σ̄2
Se

f(γ)dγ = 1. (3.38)

To find the total average transmission power when each block can be
coded for a special CSNR level, the average transmission power σ̄2

Gm
for

each channel region has to be found since the symbols in each region might
be treated differently. Due to the blocks being allocated to different rates
r̂n, each source block will result in different number of channel samples,
resulting in different relative energy consumption for each block. This
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means that the rate for each blocks has to be included in the calculation.
The average mapping output power σ̄2

Gm
for region m, can be expressed as

σ̄2
Gm

=

∑

n∈Im
r̂nσ

2
Gn

∑

n∈Im
r̂n

, (3.39)

where σ2
Gn

is the output power of the mapping r̂n, source block n is allocated
to.

For the remainder of the thesis the scenarios where mapping-rate mis-
match compensation is enabled will be denoted as B, for block -basis. NB will
be used to represent the cases when mapping-rate mismatch is not used.

As mentioned above, the derivative of the distortion for practical map-
pings does not exist. In the following sub-sections, expressions that the
estimated derivative has to match is found for the different CAS variants.

3.2.5.1 No pre-scaling of channel symbols

When choosing not to adapt to the varying channel gain at the transmitter,
the transmitter can still choose to compensate for inaccurate mapping-rate
for each block. The transmit power for a given channel state for N is
generally given by equation (3.16). Setting equation (3.39) in for σ2

Gm
in

equation (3.16) results in

σ2
Sm(σ2

G) =

∑

n∈Im
r̂nσ

2
Gn

∑

n∈Im
r̂n

. (3.40)

The total normalized power can then be found as a function of γ by replac-
ing σ2

G = γCσ2
N resulting in

σ2
Sm(γ)

σ̄2
Se

=
σ2
N

∑

n∈Im
r̂nγCn

σ̄2
Se

∑

n∈Im
r̂n

. (3.41)

This expression can be inserted into equation (3.37) resulting in an object
function

L =
N−1
∑

n=0

σ2
XnDn(γCn) + λ

M
∑

m=1

σ2
N

∑

n∈Im
r̂nγCn

σ̄2
Se

∑

n∈Im
r̂n

∫ γTm

γTm−1

f(γ)dγ. (3.42)

Differentiating equation (3.42) with respect to γCη results in

∂L
∂γCη

= σ2
XηD

′

η(γCη ) + λ
σ2
N r̂η

σ̄2
Se

∑

n∈Im
r̂n

∫ γTm

γTm−1

f(γ)dγ. (3.43)

Setting the derivative equal to zero yields

−D′

η(γCη) = λ
σ2
N r̂η

σ2
Xη

σ̄2
Se

∑

n∈Im
r̂n

∫ γTm

γTm−1

f(γ)dγ. (3.44)
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3.2.5.2 Fixed channel gain within a region

Using a single factor {γAm}Mm=1, to compensate in the transmitter for the
channel gain per region, it was found in section 3.2.3.3 that the optimal
value for γAm is the centroid in each region. Inserting σ2

Gm
in equation (3.39)

into equation (3.21) results in the transmitted power in region m

σ2
Sm(γ) =

σ̄2
Se

σ̄2
Gm

γAmσ2
N

=
σ̄2
Se

∑

n∈Im
r̂nγCn

γAm
∑

n∈Im
r̂n

. (3.45)

Normalizing the power, results in

σ2
Sm(γ)

σ̄2
Se

=

∑

n∈Im
r̂nγCn

γAm
∑

n∈Im
r̂n

. (3.46)

Inserting equation (3.46) into equation (3.37), the object function is ob-
tained

L =

N−1
∑

n=0

σ2
XnDn(γCn) + λ

M
∑

m=1

∑

n∈Im
r̂nγCn

γAm
∑

n∈Im
r̂n

∫ γTm

γTm−1

f(γ)dγ. (3.47)

Differentiating (3.47) with respect to γCη , leads to

∂L
∂γCη

= σ2
XηD

′

η(γCη ) + λ
r̂η

γAm
∑

n∈Im
r̂n

∫ γTm

γTm−1

f(γ)dγ (3.48)

setting equal to zero

−D′

η(γCη ) = λ
r̂η

σ2
Xη

γAm
∑

n∈Im
r̂n

∫ γTm

γTm−1

f(γ)dγ. (3.49)

3.2.5.3 Perfect channel information

With perfect channel knowledge, the scaling factor is continuously tracked,
so the transmission power in channel region m is given by equation (3.15).
Setting equation (3.39) in for σ2

Gm
gives the transmitted power for region

m as

σ2
Sm(γ) =

σ̄2
Gm

σ̄2
Se

γσ2
N

=
σ̄2
Se

∑

n∈Im
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=
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. (3.50)

Normalizing the power results in

σ2
Sm(γ)

σ̄2
Se

=

∑

n∈Im
r̂nγCn

γ
∑

n∈Im
r̂n

. (3.51)
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Inserting equation (3.51) into equation (3.37) results in

L =

N−1
∑

n=0

σ2
XnDn(γCn) + λ

M
∑

m=1

∑

n∈Im
r̂nγCn

γ
∑

n∈Im
r̂n

∫ γTm

γTm−1

f(γ)dγ. (3.52)

Differentiating equation (3.52) with respect to γCη leads to

∂L
∂γCη

= σ2
XηD

′

η(γCη) + λ
r̂η
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n∈Im
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1

γ
f(γ)dγ (3.53)

setting equal to zero

−D′

η(γCη ) = λ
r̂η

σ2
Xη

∑

n∈Im
r̂n

∫ γTm

γTm−1

1

γ
f(γ)dγ. (3.54)

3.2.6 Transmission

Above it has been shown how the source-blocks are preallocated both with
respect to channel state m, and corresponding mapping. This is based
upon the statistics of an ergodic channel, which in practice may not be
fully ergodic for a limited number of channel samples. Especially if the
image is compressed hard, when ravg is low, there is a high probability
that there will be a mismatch between the long term channel statistics,
and the channel the transmitter will see when transmitting a single image.
So the actual channel state probability will not necessarily be the same as
assumed. To deal with this, the transmitter will need to have a strategy
for channel statistics mismatch.

Since the source blocks are normalized, it is possible to combine pixels
from different blocks for the same mapping as long as they are preallocated
to the same channel state and mapping. In case there are no more blocks
preallocated to the same mapping, or no more blocks are preallocated to
a given state, the transmitter pads the input vector to the mappings with
source dimension larger than one with zeros. Since it is assumed that the
transmitter has instantaneous information about the channel, the transmit-
ter will stop the coding of a given block in case the channel state changes.
Since there is a maximum number of two channel symbols that are strictly
dependent, the transmitter can change block to pick samples from in the
middle of a block.

When the transmitter runs out of preallocated blocks for a given chan-
nel state, blocks preallocated to channel states with larger γCm are chosen.
When transmitting a source-block on a channel state that is worse than the
one it is preallocated for, it means that the block might need to be trans-
mitted with a mapping of higher rate to be able to get the same distortion.
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Which will lead to an ravg that is larger than assumed. The reason for still
doing it this way, is that in the case of a tight time constraint, the receiver
might have to stop receiving after a while, and then it is important to have
the most important source-blocks received first. A similar argument can
be made for a progressive image transmission-system, where the image is
decoded as the information is received. It is in the interest of the receiver to
have a good image quality as early as possible in the transmission process.

Transmission algorithm

1. Choose regions and representation points from pdf and average trans-
mission power.

2. Preallocate source blocks to different channel regions such that the
probabilities for each region match the theoretical as closely as wanted.

3. If rate-mismatch compensation on a block level is wanted, calculate
optimal λ that minimizes distortion.

4. Start transmitting

(a) Check channel state.

(b) Are there more preallocated blocks for given channel state? If
not, check if there are more blocks preallocated for channel states
with higher CSNR. If not, check states for lower CSNR.

(c) Pick samples from blocks preallocated to channel state. If the
block was preallocated for a different channel state than the cur-
rent, find new mapping suitable for new channel state. Encode
samples with chosen mapping.

(d) Scale output according to chosen CAS.

(e) As long as there are more blocks left. Goto 4a. Else stop.

3.3 Reference systems

There are quite a few joint source channel coding systems for fading chan-
nels published, [Liu and Daut, 2005; Srinivasan and Chellappa, 1997; Tho-
mos et al., 2005; Pan et al., 2006; Zhang et al., 2004b], to mention a few.
The far most common schemes are however tandem schemes. As it is easier
to compare the proposed system with tandem systems, two slightly different
reference tandem systems will be used as comparison in this thesis.

As a source coder, the baseline JPEG2000 [Taubman and Marcellin,
2001; ISO/IEC, 2000] has been chosen. This is a well defined standard,
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and can certainly be called state-of-the-art. For channel transmission, two
different schemes are used, the first scheme employs an ACM consisting
of M transmission rates (bits/channel symbol), each assumed to achieve
AWGN capacity for a given CSNR. To further maximize the ASE, contin-
uous power adaptation is used within each CSNR region [Gjendemsjø et al.,
2005]. This scheme performs very close to the capacity for a Rayleigh fading
channel, and the parameter settings are comparable to the proposed sys-
tem when using CAS set to C for M = 4. The second scheme uses adaptive
turbo-coded modulation (TuCM) to combat a flat fading channel. By vary-
ing the transmit power, constellation size and the turbo code, the scheme
comes within 3 dB CSNR of the Rayleigh fading capacity when using per-
fect CSI. The target BER is set to be 10−6 [Vishwanath and Goldsmith,
2000, 2003]. Even though it was only shown that the TuCM scheme comes
within 3 dB γ̄ of the Rayleigh fading capacity for a average CSNR range of
0−10 dB, it is assumed in the comparisons that the performance is valid for
any CSNR value. The TuCM scheme uses M = 3, three different settings
of the turbo encoder and constellation, plus an outage region.

The examples of the proposed coder are given for a certain average
CSNR, (γ̄), and an overall target compression-rate, ravg (channel sam-
ples/pixel). To be able to compare with the reference systems, a bit-rate
in bits/channel sample, Rc, is found for a given γ̄ for the channel transmis-
sion reference scheme, and the resulting source bit-rate, Rs, in bits/pixel is
found and given as a parameter to the reference image coder through

Rs = ravgRc. (3.55)

Through equation (3.55) the source rate Rs is found for a given average
rate change ravg. This rate (bits/pixels) is then fed to the JPEG2000
encoder, and the peak signal-to-noise ratio (PSNR) value is found. In the
case of the TuCM scheme, the average CSNR value is shifted 3 dB compared
to the channel capacity.

The PSNR is defined as the ratio between the squared maximum pixel
value, and the MSE on a pixel basis for the whole image, in dB

PSNR = 10 log 10





(xmax − xmin)2

1
SxSy

∑Sx−1
i=0

∑Sy−1
j=0 (x(i, j) − x̂(i, j))2



 (3.56)

where Sx and Sy are the horizontal and vertical image sizes. x(i, j) is
the pixel value at position (i, j) in the original image, and x̂(i, j) is the
pixel value at position (i, j) in the decoded image. xmax and xmin is the
maximum and minimum possible pixel value. So for an image with 8 bits
per pixel,(xmax − xmin)2 = 255.





Chapter 4

Theoretical JSCC systems

When considering practical implementation of communication systems, there
will always be trade-offs:

• Where should the resources(bits) be used? Under a bit constraint,
could the overall performance of the system be improved by using
more bits in the channel coding, or in the source coding?

• During construction of a system, where in the system would an extra
effort with respect to optimization contribute to the largest perfor-
mance gain?

• Is extra complexity when implementing the system worth the effort?

Common for most source coders is the use of some sort of decorrelation
as one of the first parts of the encoder.

There are many different schemes for compressing an decomposed im-
age signal. Some schemes do not assume that the sub-bands are fully
decomposed, and use relatively complex techniques such as vector quanti-
zation [Ramamurthi and Gersho, 1986; Westerink et al., 1988b] and trellis
coded quantization [Jafarkhani et al., 1994; Kleider and Abousleman, 2000].
Most of the signal correlation should however be removed by the signal de-
composition, and the decomposed signal is often modeled as memoryless,
leaving room for simpler scalar quantization. The most successfull image
coding standard, JPEG [ISO/IEC, 1991], uses a zig-zag scan of the cosine
transform coefficients before quantization to achieve runs of similar coded
symbols.

In subband coding, a solution can be to quantize each subband indepen-
dently with a scalar quantizer [Tanabe and Farvardin, 1992; Taubman and
Marcellin, 2001]. Other schemes might also exploit the inter sub-band en-
ergy dependencies by zero-tree coding [Shapiro, 1993; Said and Pearlman,
1996].

63
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This chapter presents a method to approximate an upper bound for
the performance of an image coder system, based on the use of source-
splitting [Kang et al., 1994]. There it is assumed that an image can be
decomposed into independent sub-sources {σ2

Xn
}N−1
n=0 . Other systems have

tried similar ideas, e.g. in [Vaishampayan and Farvardin, 1990] a Gauss-
Markov image model was used to estimate the rate distortion function of
an image. In [Ruf and Modestino, 1999] they found the operational rate
distortion performance of an image coder using a wavelet transform with
separate coding of each subband.

The chapter is organized as follows: In Section 4.1 a scheme to es-
timate the theoretical limit for the system in Chapter 3 is presented. In
Section 4.2 a system allowing arbitrary number of mappings with any given
performance is presented.

This chapter is partly based on [H̊akonsen and Ramstad, 2006b].

4.1 Estimating ideal image transmission system

For the scenario in this thesis, an image is decomposed by using a filter
bank, and the image will be represented by a set of sub-bands, where each
subband contains the information in a certain frequency band of the image.
Due to the non-whiteness of the image, the statistics in different subbands
will be different. In addition there will be local statistics within each sub-
band. To capture these local variations, blocks of B ×B subband samples
are used to represent a sub-source of the image. In natural images, there
are no discrete frequency components other than at zero. The mean of
the lowpass-lowpass band is removed and coded seperately. The variance
of each block can be estimated by using the mean squared value of the
samples within a block given by equation (2.1). It has been indicated that
the distribution of the samples within each such block can be modeled as
Gaussian [Lervik and Ramstad, 1996]. As long as the blocks are smaller
than a given subband, and a subband is sufficiently narrow, they can also
be assumed to be white. Further, for a filterbank with ideally separated
bands, the sub-band samples can also be assumed to be independent. By
using these assumptions the rate distortion function for an image can be es-
timated by equation (2.6). The mismatch introduced by these assumptions
is not considered, as it will be the same for both the proposed practical im-
age transmission scheme, and for the theoretical scheme presented in this
chapter. The same filter-bank, and blocks are used in the simulation of
both cases.

For a given channel with known capacity, it is then possible to find the
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average compression1, ravg, in channel samples/source samples, by com-
bining equation (2.6) with the channel capacity, C, in a way given by
equation (2.30), resulting in

ravg =

1
N

∑N−1
n=0

1
2 log2

(

σ2
Xn

σ2
Dn

)

C(CSNR)
channel samples/source samples. (4.1)

From equation (4.1) it is seen that the channel capacity will have an
impact on the performance of the theoretical system. An example is given
in Figure 4.1 for the comparison of an AWGN channel, and a Rayleigh
fading channel with and without CSI at the transmitter.
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Figure 4.1: Estimated optimal performance for the “Lena” image with
block-size 8× 8. Transmitted over an AWGN channel (dashed) (2.13), and
Rayleigh fading channel with Tx and Rx CSI (solid) equation (2.25), with
only Rx CSI (dash-dotted) equation (2.23). Compression is at ratio 1 : 2,
meaning that ravg = 0.5.

Measuring image quality

For a white Gaussian source σ2
X , the distortion distribution that achieves

the rate distortion function is the Gaussian [Cover and Thomas, 1991].
To simulate the performance of a theoretical system for an actual image,
AWGN with variance σ2

D , is added to the source-blocks where µ < σ2
Xn

.
This way the image can be reconstructed through the synthesis filter-bank

1Instead of compression, bandwidth change could also be used.
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after distortion is added. The reasoning behind this is that it gives the
opportunity of calculating the PSNR value of the received image.

Block-size

The block-size B×B sets the level of how well it is possible to capture the
local statistics in an image. In a practical system, the gain from reducing
the block-size must be compared to the increased side-information. If the
decoder is going to be able to decode such a system, the block variances
and the mean of the lowpass-lowpass band would have to be known, thus
giving a trade-off between the amount of side-information and the accuracy
in capturing the local statistics. To avoid comparing on different premises,
the block-size should then be kept equal for the theoretical estimator and
the practical system.

Examples of different images simulated transmitted over an AWGN
channel for three different block-sizes are given in Figure 4.2. Due to the
different content in an image, the performance will be different for each
image. For the “Lena” and the “Bridge” image there is about 8 dB dif-
ference in system performance. This shows that to be able to compare a
practical image transmission system, the comparisons should be done on a
per picture basis, to avoid the differences in performance due to the image
statistics. It can also be seen that the block-sizes also play a vital role
in the performance. As said above, the smaller the blocks are, the more
accurate the statistics can be tracked, which can also be seen in Figure 4.2.
One thing that has to considered is the number of blocks. For an image
of size 512 × 512 this results in (512/2)2 = 65536 number of blocks for the
2 × 2 block-size case, and (512/8)2 = 4096 number of blocks for the 8 × 8
block-size case.

The difference in PSNR value for the “Lena”, “Bridge” and “Goldhill”
images seen in Figure 4.2 is due to the different frequency content of the
images. By calculating an estimation of the spectral flatness measure based
on the block variances, the difference can be found. The estimated spectral
flatness Γ2

X , is found from the ratio between the geometrical mean and
arithmetical mean of the source-block variances

Γ2
X =

N

√

∏N−1
n=0 σ2

Xn

1
N

∑N−1
n=0 σ2

Xn

. (4.2)

Since the spectral flatness is a number less than one, the dB value of the
inverse of Γ2

X is given in Table 4.1 for the different images. The difference
in value between the different images corresponds well with the differences
for the PSNR values seen in Figure 4.2.
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Figure 4.2: Estimated optimal performance for the “Lena” (dash-dotted),
“Goldhill” (solid) and “Bridge” (dashed) images transmitted over an
AWGN channel. Block-sizes are 2 × 2 (×), 4 × 4 (o) and 8 × 8 (none).
ravg = 0.5

Lena Goldhill Bridge

1/Γ2
X (dB) 20.0 17.6 12.3

Table 4.1: The inverse of spectral flatness for the different images in dB
using 8× 8 blocks.
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The dB values of the source block variances sorted in decreasing order
are given for comparison in Figure 4.3 for the different images.
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Figure 4.3: Sorted image block-variances in dB for 8 × 8 blocks for the
“Lena” (dash-dotted), “Goldhill” (solid) and “Bridge” (dashed) images.

4.2 Nonlinear mappings

Using bandwidth changing mappings introduces the problem of finding the
actual need for a given mapping-rate. Earlier systems using such map-
pings, e.g. [Lervik and Fischer, 1997b; Fuldseth, 1997; Coward and Ram-
stad, 2000b], first designed a mapping, then implemented it in a system
to see the improvement in performance. Designing good mappings can be
both hard and tedious. It would therefore be beneficial to be able to get an
indication on the increased performance of a system if a mapping of a cer-
tain rate and performance is included in the available set, before actually
designing the mapping.

The method presented in section 4.1 estimated an ideal system with-
out considering implementation issues. In the case of dimensional changing
mappings, this could be interpreted as a system having an infinite set of
perfect mappings. For every arbitrary rate, there is a perfect mapping. In
practice this would of course be impossible, not only because they are hard
to design, but also because the system would be infinitely complex. So in
practical systems, the design will lead to a suboptimal system. But by how
much? To answer this it is possible to look at OPTA again. In section 2.3.1
the theoretical bounds for one given source transmitted over a given channel
was presented. OPTA curves were also presented in Figure 2.4 for some di-
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mensional changing rates. Inspired by the source-splitting aforementioned,
it is then possible to look at each sub-source as a source on its own, and use
the OPTA expressions to find the performance of a given sub-source being
transmitted over a given channel. Combining expressions for all the dif-
ferent sub-sources would then give the performance of such a system when
removing the sub-optimality factor of a given mapping. However, it would
not be able to find the actual mapping-rate a block should be given, as this
is a very complex task. The help such a system would give, is to able to
examine the performance of a given block-to-mapping allocation. Finding
the best block-mapping allocation was discussed in chapter 3.2.2.5. For
now, it is assumed that each block already has been allocated to a mapping
with rate r̂n.

The actual simulation of the transmission of each block would then work
the same way as the simulation of the whole system. As each block is as-
sumed to be i.i.d. white Gaussian, the optimal distortion is white Gaussian,
with variance found by rewriting equation (2.32) slightly to

σ2
Dn = σ2

Xn(1 + γ)−r̂n , (4.3)

where r̂n is the mapping-rate block n is allocated. By adding this distortion
to sub-source n, optimal transmission on a block basis is simulated. An
example of this is given in Figure 4.4, for the image “Lena” transmitted
over an AWGN channel. The blocks where the different mappings are used,
can be clearly seen in a staircase pattern, where the SNR value of each step
corresponds to the SNR for each mapping at γ̄ = 24 dB in Figure 2.4.

To see how good a mapping is, it is either possible to look at the dif-
ference in SNR for a given CSNR value, or it is possible to look at the
difference in CSNR for a given SNR value. When simulating imperfect
mappings, either a distance in SNR or CSNR compared to OPTA can be
used. Looking at the performance of real mappings, the distance to OPTA
in SNR is usually lower for low γ values than for high γ values. By using a
fixed CSNR distance from OPTA when simulating mapping performance,
this property is captured, as the slope of OPTA decreases for decreasing
CSNR values. An example of this is given in Figure 4.5.

To find the distortion of a mapping with a penalty in CSNR equa-
tion (4.3) can be rewritten as

σ2
Dn = σ2

Xn

(

1 + 10

“ γCndB
−νr̂ndB
10

”)−r̂n

, (4.4)

where γCndB is the representation value of the n’th block in dB, and νr̂ndB

is the CSNR penalty in dB for the mapping the n’th block is allocated to.
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Figure 4.4: SNR of sorted blocks from the image “Lena”, using ideal map-
pings. Optimal performance (solid), constant transmission power (dash
dotted). r̂avg = 0.5, AWGN channel, γ̄ = 24 dB. Mapping rates used
r̂j ∈ {0, 1/4, 1/2, 2/3, 1, 2}
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Figure 4.5: Performance of mappings of rate r̂ = {1/2, 3/2, 3} from below.
OPTA(solid), penalty of γ = 3.5 dB(dashed).
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Equation (4.4) can be rewritten as

σ2
Dn = σ2

Xn

(

1 +
γCn
νr̂n

)

−r̂n

. (4.5)

So by using equation (4.5) to find the distortion, an arbitrary CSNR
penalty can be added to the OPTA function for any value of r̂n. By using
the presented ideas, a system with arbitrary many mappings with any given
performance can be simulated, thus helping towards analyzing how much
performance gain can be obtained by adding a certain mapping.

Preallocation when using theoretical mappings

To be able to compare on equal terms for theoretical mappings and im-
plemented mappings, the same region thresholds and representation points
will be used for theoretical mappings as for the implemented mappings.
The difference in this chapter compared to Chapter 3, is that when finding
the mapping a block should be coded with, the theoretical distortion is
considered and not the distortion of the implemented mapping. This way a
block might be coded with a mapping of lower rate due to increased perfor-
mance. The optimization of the compensation for mapping rate-mismatch
was previously done by estimating the derivative of the different mappings.
In the following section, the same expressions will be found, but since the-
oretical mappings are used, expressions exists, and closed form solutions
can be found.

4.2.1 Mapping rate-mismatch for simulated mappings

Through equation (4.5) it is now possible to set up an expression for the
total distortion for a set of blocks by rewriting equation (3.36),

D =
N−1
∑

n=0

σ2
Dn =

N−1
∑

n=0

σ2
Xn

(

1 +
γCn
νr̂n

)

−r̂n

. (4.6)

Following the same lines as equation (3.37), a general Lagrangian can
be set up,

L =

N−1
∑

n=0

σ2
Xn

(

1 +
γCn
νr̂n

)

−r̂n

+ λ

M
∑

m=1

∫ γTm

γTm−1

σ2
Sm(γ)

σ̄2
S

f(γ)dγ, (4.7)

where σ2
Sm(γ)/σ̄2

S depends on the CAS.
If the transmitter has perfect channel information the CSNR value each

block will be coded for, will also be the CSNR value the receiver sees. For
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any other CAS this will not be the case. An extra distortion will be added
due to mismatch on each block. The amount of distortion for each CAS
is hard to estimate, so when simulating the performance of a theoretical
estimate of the system performance, each block will get the distortion as if
the CSNR level at the receiver is correct. For this reason a CAS that work
poorer in the practical system, might perform better for the theoretical
case. The exception is when the transmitter has full channel information,
and C is used as CAS.

4.2.1.1 No pre-scaling of channel symbols

When not scaling the output power to adapt to the channel state, the ex-
pression for the normalized transmission power per channel state σ2

Sm(γ)/σ̄2
S ,

is given equation (3.41). Inserting this into equation (4.7) results in

L =
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(4.8)
Differentiation with respect to γCη yields

∂L
∂γCη

=
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Xη
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(4.9)

Setting the derivative equal to zero results in

σ2
Xη

νr̂η
(1 +

γCη
νr̂η

)(−r̂η−1) = λ
σ2
N

σ̄2
S

∑

n∈Im
r̂n

∫ γTm

γTm−1

f(γ)dγ. (4.10)

Isolating γCη yields the expression for the optimal CSNR γ∗

Cη
. This is the

CSNR which the mapping source-block η is allocated to should be designed
for. The result is

γ∗
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=
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
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νr̂η , (4.11)

where λ is such that γ∗

Cη
fulfills the power constraint given by

σ2
N

σ̄2
S

M
∑
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∑

n∈Im
r̂nγ

∗

Cn
∑

n∈Im
r̂n

∫ γTm

γTm−1

f(γ)dγ ≤ 1. (4.12)
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4.2.1.2 Fixed channel gain within a region

When adapting to the channel on a state basis alone, the normalized trans-
mission power per channel state, σ2

Sm(γ)/σ̄2
S , is given equation (3.46). In-

serting this into equation (4.7) yields

L =
N−1
∑

n=0

σ2
Xn

(

1 +
γCn
νr̂n

)

−r̂n

+ λ
M
∑

m=1

∑

n∈Im
r̂nγCn
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f(γ)dγ. (4.13)

Differentiation with respect to γCη yields
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Setting the derivative equal to zero,
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and isolating γCη to find the expression for the optimal value yields
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where λ is such that γ∗

Cη
fulfills the normalized power constraint given by
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r̂n
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f(γ)dγ ≤ 1. (4.17)

4.2.1.3 Perfect channel information

For the case of perfect channel information, the object function is found by
inserting the equation for the normalized transmission power per channel
region σ2

Sm(γ)/σ̄2
S , given by equation (3.51), into equation (4.7) giving
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Differentiating with respect to γCη yields
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Setting the derivative equal to zero results in
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Isolating γCη to find the optimal value
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is found. To find the optimal value of λ, this expression for γ∗

Cη
has to

satisfy the expression for the normalized power constraint, given by

M
∑

m=1

∑

n∈Im
r̂nγ

∗

Cn
∑

n∈Im
r̂n

∫ γTm

γTm−1

1

γ
f(γ)dγ ≤ 1. (4.22)

4.2.2 Effect of mapping-rate mismatch for ideal system

An example of the effect when adding mapping-rate mismatch compensa-
tion for ideal mappings for the case of transmitting “Lena” over an AWGN
channel is given in Figure 4.6. The figure shows how the mapping-rate
mismatch compensation tries to approximate the optimal performance by
shifting power for the different mappings.
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Figure 4.6: SNR of sorted blocks from the image “Lena”, using
ideal mappings. Optimal performance(solid), constant transmission
power, NB (dash dotted), mapping-rate mismatch compensation(dashed).
r̂avg = 0.5, AWGN channel, γ̄ = 24 dB. Mapping rates used r̂j ∈
{0, 1/4, 1/2, 2/3, 1, 2}





Chapter 5

Simulations

In this chapter, simulation results for the proposed system is presented for
three different images. The original images are printed in Appendix E. The
channel is simulated by multiplying the transmitted symbols with a corre-
lated Rayleigh distributed random sequence, before adding white Gaussian
noise. This means that it is assumed that the fading is constant within one
transmitted channel symbol. The channel is simulated according to the
Jakes correlation model [Jakes, 1974]. As a reference, comparisons with
the ideal system in Chapter 4 are also included.

In Section 2.2.2, the expected CSNR, γ̄e, was given by equation 2.18.
This was based on the long term transmission power, σ̄2

Se
. During all cal-

culations done for the preallocation of source-blocks with respect to power
and rate, σ̄2

Se
was used. For the transmission of a single image, there will

be a finite number of transmitted channel symbols. The channel will in
such a case not be seen as ergodic, i.e. it will not follow its pdf exactly. A
consequence of this, is that when the transmitter has CSI, the true trans-
mitted power, σ̄2

St
, will not be exactly equal to the long term transmitted

power σ̄2
Se

. Transmitting the same image for several channel realisations
will result in a different value of σ̄2

St
for each transmission. To show the

spread of transmission power the transmitter experiences, the true CSNR
for a transmission, γ̄t, will be defined as

γ̄t =
σ̄2
St

σ2
N

. (5.1)

As a reference, the average of γ̄t over D transmissions will be given by

γ̄ =
1

D

D−1
∑

d=0

γ̄td . (5.2)
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Since the expected value of the channel gain is unity, γ̄ will converge to γ̄ e
for increasing sample size D. In addition to changing the true transmission
power, the PSNR value of the received image will change depending on the
channel. The PSNR value from the transmission of one image will be given
by PSNRt. For most of the results presented, the average value of PSNRt

over D simulations will be used. The last parameter which will change
depending on the channel is the ratio of the number of channel symbols
and source symbols ravg. For one transmission of an image, the resulting
ratio will be given by ravgt. Most of the results will however be given for a
target ratio ravg. In this thesis, the performance of the system for a given
image for a set of parameters, are found by plotting the average PSNR
values found from Monte Carlo simulation. The average PSNR values are
plotted as a function of γ̄.

In this chapter, results of simulations done with the framework pre-
sented in Chapter 3 and Chapter 4 will be presented. The main focus
will be on performance and analysis of the system, and comparison with
the given reference systems. Special emphasis will be given to the differ-
ent ways of adapting to the channel gain. Either through a given channel
adaptation strategy (CAS), which can be not to adapt the transmitted sig-
nal at the output, N , adapting with a single factor for each channel state,
S, or continuously scaling of the output with full channel state informa-
tion (CSI) at the transmitter, C. The differences when compensating for
rate mismatch due to a finite set of mappings through power allocation on
a block basis, B, and not, NB, will also be analyzed.

The chapter is organized as follows. In Section 5.1 the results and im-
portance of the different levels of adaptation are given. Section 5.2 presents
the impact of the Doppler shift on the system. In Section 5.3 the proposed
system is compared with different ideal scenarios, and two reference sys-
tems. A discussion of the results is provided on Section 5.4.

Transmission parameters

Unless said otherwise, the parameter values used in the simulations are
given by Table 5.1.

5.1 Effect of using CSNR regions

5.1.1 One CSNR region

Assume that the transmitter only knows the pdf of the channel. Then the
adaptation will depend on the receiver. If it is assumed that the receiver has
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Parameter Symbol Value

Carrier frequency fc 2.0 GHz
Symbol duration Ts 4 µs

Doppler shift fm 100 Hz
Statistical sample size D 2000

Mobile velocity v 15 m/s

Table 5.1: Simulation parameters

perfect CSI, the receiver can partly compensate for the channel variations.
At the other extreme case, the receiver does not have any CSI either. For
a practical scenario the situation is likely to be somewhere in between. As
the CSI has to be estimated, it will not be possible to do this perfectly,
whether this is done through the use of pilots or some other method1.

5.1.1.1 Blind broadcast: No Tx or Rx CSI

Although the assumed model using PAM symbols over a fading channel
presented in Section 2.2.3 does not hold when the receiver does not have full
channel information, an example is included to demonstrate the inherent
robustness of the system.

In a broadcast situation where neither the transmitter nor the receiver
have knowledge about a time varying channel, a transmission system will
have to rely on robustness to deliver the information. For the image coder
used here, it means that the CSNR will be relatively far away from the
value the mappings were optimized for. Due to the robustness of the map-
pings it is, however, still possible to see the content of the image. One
consequence of the lack of adaptation to the channel, is that the channel
will be different during the transmission of an image from time to time. So
for each transmitted image, the source samples will be distorted differently.
The effect of this can be seen in Figure 5.1, where two examples are given
for the same transmission parameters. Even though the PSNR values are
similar, the two images are quite different. The most striking difference is
that Figure 5.1(a) has more contrast than Figure 5.1(b), indicating that
the intensity of the pixel values have been reduced in Figure 5.1(b). To
compensate for this, one might think of a scheme where the contrast of
an image is captured by some parameter and sent as side-information. It
might also be an idea to allocate the source-blocks to a higher mapping-

1It is possible to consider a scheme where the transmit power is constant, and the
receiver compensates for channel gain by estimating received power over some time win-
dow.
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(a) PSNR = 17.1 dB (b) PSNR = 17.5 dB

Figure 5.1: Two examples of the received “Lena” image for the case of
γ̄ = 14.8 dB, ravg= 0.5. No CSI knowledge at transmitter and receiver.

rate than usually to increase the robustness of the system. This way rate
is traded off for robustness.

5.1.1.2 No Tx CSI(no outage), perfect Rx CSI

If the receiver has perfect CSI, it is possible for the receiver to try and
compensate for the perturbation done by the channel. One option is simply
to invert the channel gain

√
α, but by doing so the additive noise will also

be enhanced as mentioned in Section 3.2.3.2. A better solution is to find a
trade-off between the channel gain and additive noise by using a filter given
by equation (3.20). By inverting the channel gain, the noise is enhanced
for symbols resulting in distinct distorted areas in the images as seen in an
example in Figure 5.2(a). Above the brim of the hat, a checkered pattern is
clearly visible. For the case when the filter is used, these areas are smoother,
giving a more pleasant image to look at, even though the PSNR value is
smaller, as seen in Figure 5.2(b).

In the case of no outage, the transmission power is equal for each simula-
tion, as the transmitter does not adapt to the channel during transmission.
Since the statistics for the source-blocks are slightly different for different
images, γ̄t will not be exactly equal to the target value γ̄e. The statistics of
the source-blocks will not be exactly equal to the ones used in the design
of the mappings. For the “Lena” image this will, for instance, result in
γ̄t = 13.8 dB, when aiming for γ̄e = 14 dB. For other images this might be
slightly above, e.g. “Bridge”.
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(a) PSNR = 29.3 dB (b) PSNR = 28.5 dB

Figure 5.2: Example of received image with inversion of channel gain (left)
and when using channel gain mismatch filter (right), for the “Lena” image.
γ̄ = 13.8 dB, ravg= 0.5. No CSI at Tx.
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Figure 5.3: Estimated pdf of received image quality. “Lena” image. γ̄ =
13.8 dB, ravg = 0.5, NB (dash-dotted), B (solid). No CSI at Tx, full CSI
at Rx.
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(a) PSNR = 16.0 dB (b) PSNR = 28.5 dB (c) PSNR = 33.9 dB

(d) PSNR = 20.5 dB (e) PSNR = 32.5 dB (f) PSNR = 36.9 dB

Figure 5.4: Image comparison for the received “Lena” image. γ̄ = 13.8
dB, ravg= 0.5. Lower part of estimated pdf (left), mean (middle) and
high (right). NB (upper row), B (lower row) No CSI at Tx. Full CSI at
Rx.



5.1 Effect of using CSNR regions 83

The spread in the quality of the received image can be shown as an
estimated pdf. In this thesis, such a pdf is estimated by a normalized
histogram2.

So far the results have been given for the case when all source-blocks
are coded for a common CSNR level γC1

. In Figure 5.3 an estimated pdf
is plotted when using mapping-rate mismatch compensation B, and with-
out (NB). Compensating for the mapping-rate mismatch is done through
shifting power from blocks that are over-protected to the blocks that are
under-protected. So that each block is coded with a mapping optimized
for different CSNR values. In Figure 5.4 examples of images representing
the extreme and mean values in Figure 5.3 are shown. It can be seen how
compensating for mapping-rate mismatch can give an overall better average
quality.
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Figure 5.5: Performance with no Tx CSI, full Rx CSI for the “Lena” image,
with block rate compensation (solid), and equal power for all blocks (dash-
dotted). Estimated optimal system for no Tx CSI (solid*). For ravg =
0.5 (upper group) and ravg = 0.1 (lower group).

The performance for the “Lena” image is plotted in Figure 5.5 for two
different ravg values. As a reference, a theoretical ideal system3 transmit-
ting at channel capacity, equation (2.23), is plotted. The PSNR values
given in the figure, are the average values of the different PSNRt values

280 regions are used, where the regions are equally spaced from the lowest to the
highest PSNR value in the statistical data set for a given parameter setting.

3This system is discussed in Section 4.1 and simulate a system using an infinite number
of mappings performing according to OPTA.
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from D simulations for a target γ̄e value. As mentioned above, when the
transmitter has no CSI, the transmission power will not change for different
transmissions. For this reason, the average CSNR value, γ̄, in Figure 5.5
will be equal to the true CSNR value γ̄ t.

In Figure 5.5 there are a few things worth mentioning. The first is
that the performance is further away from the ideal system for the case
were ravg = 0.5 than when ravg = 0.1. The reason for this is that there
are more source-blocks being transmitted when ravg is higher. Or in other
words, there are fewer blocks coded with a mapping of rate r̂j = 0. This
mapping performs according to OPTA, so for the case where ravg = 0,
the system would be performing optimally, this case is however of very
little practical interest. This behaviour can be seen throughout the thesis.
Another interesting thing in Figure 5.5, is that if the transmission power is
above a certain threshold, it does not pay off to compensate for mapping-
rate mismatch. The reason for this can be found in the perturbation from
the channel. When the transmitter has no CSI, the reduced distortion
when compensating for rate-mismatch, is lost in the perturbation from the
channel. This can be seen in Figure 5.6, where the SNR of the first 350
blocks are plotted at 10 dB and 30 dB. Since there is no CSI, the blocks
with largest variance are transmitted first. In Figure 5.6(a) the blocks with
the highest variance should ideally be coded with a mapping with rate
higher than r̂ = 2, but since it is the highest mapping-rate available, more
power is allocated to these blocks to reduce the distortion. When power
allocation for each block is enabled, extra power leads in addition to extra
robustness towards the channel fades for these blocks. In Figure 5.6(b),
the average power is high enough so that the blocks with high variance
do not need the full protection that the mapping of rate r̂ = 2 provides.
The power for these blocks are then reduced, but at the cost of poorer
robustness towards deep channel fades.

In Figure 5.7, the estimated PSNR distribution is plotted for target
γ̄e = {10, 30} dB for ravg = 0.5. Through Figure 5.7(a) it can be seen how
using power to compensate for mapping-rate mismatch will help to narrow
the distribution of the received PSNR. As the average CSNR increases,
the PSNR distribution will also be narrower when not compensating for
mapping rate-mismatch as shown in Figure 5.7(b).

5.1.1.3 Tx and Rx CSI

When the transmitter has CSI, there is an added possibility of choosing
not to transmit if the channel condition is too poor. Outage is declared
and the transmitter chooses not to transmit. With CSI the transmitter can
also start adapting the information to the channel in a more sophisticated
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(a) γ̄ = 9.7 dB. NB: PSNR = 29.1 dB.
B: PSNR = 32.3 dB
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(b) γ̄ = 29.9 dB NB: PSNR = 42.8 dB.
B: PSNR = 42.1 dB

Figure 5.6: Example of SNR values in dB for the first 350 transmitted blocks
for the “Lena” image. No Tx CSI, full Rx CSI. ravg = 0.5. NB (solid),
B (dashed).
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(b) γ̄ = 29.9 dB

Figure 5.7: Estimated pdf for the received PSNR values for the “Lena”
image. No Tx CSI, full Rx CSI. ravg = 0.5. NB (dash-dotted), B (solid).
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way. Up till now, all the results have been given for the case when the
transmitted symbols are not adapted to the channel gain. Now the option
of adapting to the channel gain will be used. Assume that the CSI only
has two states: transmit mode and outage, meaning that M = 1. The
amount of CSI will in that case be small, but it will also reduce the CAS
to either N or S. Allowing continuous CSI will give the additional option
of C. Of these different techniques C will naturally give the best PSNR
value for a given average CSNR. With C as CAS, the performance for
“Lena” is given in Figure 5.8 with and without mapping-rate mismatch
compensation. The figure shows that allowing compensation for mapping-
rate mismatch can give a significant gain for low CSNR values, and that
this gain reduces as the average CSNR increases. Allowing the transmitter
to have full information about the channel at all times, will remove the
crossing of the B and NB curves, as seen in Figure 5.5. The reason why this
does not happen when using C is that the need for robustness is removed.
The received signal will always have the CSNR value the mappings were
designed for. One interesting thing to notice is the threshold that seems to
be at γ̄ = 10 dB. This threshold is due to the outage level γT0

. For M = 1
there is only one representation point γC1

that the different source-blocks
are coded for. Since no power is used in the case of outage, increasing the
outage threshold γT0

will increase the CSNR value γC1
for which the blocks

can be coded. Even though an increased γT0
will mean less time to transmit,

it will also mean that the rate of a mapping can be decreased, leading to
fewer channel samples per source-block. Fixing γT0

for M = 1 means that
there are actually no parameters to adjust, as γC1

will be determined by
the choice of CAS, and power constraint. As mentioned before, the optimal
γT0

level will not be found. Due to the simplicity of M = 1, a few examples
showing how important the outage level seems to be for low average CSNR
values when M = 1, is however included in Figure 5.9. It is not until
there are multiple representation points there is a need for a more complex
algorithm, so for now all results for M = 1 are plotted when using the
simple algorithm to find the representation point γC1

. Figure 5.9(a) show
that significant gain can be achieved by adjusting the outage level. This
should be investigated more in future research.

In Figure 5.10 the performance for “Lena” of the system when using
no adaptation (N ), and a single scaling factor (S) as CAS is shown. Fig-
ure 5.10(a) show that the performance with less CSI will give poorer perfor-
mance than full CSI, especially in the case when mapping-rate mismatch
compensation is used. For ravg = 0.5 the system seems to loose perfor-
mance due to poor choice of outage level, as shown in Figure 5.9(a). For
the case when mapping-rate mismatch is not used, the loss is not quite as
much compared to C when comparing the curves in Figure 5.10(b).
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Figure 5.8: Comparison between using B (solid), NB (dash-dotted) and
estimated optimal system (solid*). For ravg = 0.5 (upper curves) and
ravg = 0.1 (lower curves). CAS is C. “Lena” image. M = 1.
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Figure 5.9: Performance and transmission probability of system for differ-
ent γT0

values. For the case when M = 1, CAS is C, and for NB. The
performance when B is used, and γT0

= 2 is included as a reference (Map-
ping rate compensation).
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Figure 5.10: Comparison for different channel adaptation strategies,
C (solid-blue), N (dash-dotted-red) and S (dashed-green). ravg = 0.5 (up-
per curves) and ravg = 0.1 (lower curves) “Lena” image. M = 1.

5.1.2 Multiple channel regions with transmission

Allowing M > 1 will give the transmitter multiple channel regions so that
it is possible to adjust power and rate more accurate to the channel state.
For N and S multiple γCm values will give a smaller mismatch between
the CSNR value that a block is coded for, and the CSNR seen at the
receiver. In addition, the protection given by the mappings can be more
accurately set according to the target distortion-level µ. The effect of this
will be addressed later, but first the impact of the different channel region
optimization methods presented in Section 3.2.3 will be addressed.

5.1.2.1 Effect of optimization method

In Section 3.2.3.1 some problems regarding the optimization of the chan-
nel region representation points {γCm}Mm=1, and channel region thresholds
{γTm}M−1

m=1 were mentioned. The different approaches were:

• The use of a complex numerical optimization to find optimum, de-
noted complex.

• Using a simpler optimization algorithm, initialized from equiprobable
regions, denoted simple.

The different approaches will give different results, but how different will
they be?

Figure 5.11 shows the comparison between the complex and simple al-
gorithms for the “Lena”, “Goldhill” and “Bridge” images. It is seen that for
all cases, except for high γ̄ values when CAS is set to C, the simple algorithm
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Figure 5.11: Image comparison for the received “Lena” (top row), “Gold-
hill” (middle row), and “Bridge” (bottom row) images for M = 4, ravg =
0.5. N (left), S (middle) and C (right). NB, simple algorithm (dash-dot),
complex algorithm (solid), estimated optimum (solid*).
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outperforms the complex algorithm. There are, however, some interesting
features that should be explained further. In Figures 5.11(a) to 5.11(c) it
is seen how the performance is different depending on the CAS. A natural
question to ask is: why is the difference in performance so large? For the
simple algorithm, there is a difference of about 2 dB for low average CSNR
values between the N and S scenarios. For the complex algorithm, the per-
formance is comparable for the N and S scenarios, but C is approximately
3 dB better. To find the explanation for the differences, it is possible to
look at the representation values {γCm}Mm=1. In Figures 3.11(a), 3.13(a)
and 3.15(a), these values are given for the simple algorithm. It is seen how
both N and C has γC4

≈ 15 dB, while S has γC4
≈ 12.5 dB for γ̄ = 6 dB.

The effect of this can be seen in Figure 5.12, where examples for the SNR
value of each block is plotted. The blocks are sorted decreasingly according
to their variance, to make the effect of the γCm values easier to see. From
looking at Figure 5.12(b), it is seen how the blocks with largest variance
have approximately 20 dB SNR. For γC = 12.5 dB, the performance is
20 dB SNR for the mapping with r̂5 = 2, see Figure 3.9. Compared to
the SNR for each block for the case when the distortion is equal to the
distortion-level µ used in the simulation. It is seen that even though the
blocks with large variance are coded with the highest dimensional mapping,
the loss compared to the distortion-level µ is large. The blocks with large
variance will have large distortion, contributing to a large loss as seen in
Figure 5.11(b). Looking at Figure 5.11(a), the performance is much better
for the simple algorithm. The reason why this is happening can be found
from Figure 5.12(a), and Figure 5.13(a). In the latter of the two figures,
it is shown how the source-blocks are preallocated, both to mapping rate
and representation value γCm . Figure 5.13(a), shows that the blocks with
largest variance are allocated to γC4

= 15.3 dB, and r̂5 = 2. The result is
clearly seen in Figure 5.12(a): the blocks preallocated to the best channel
region get an SNR value around 30 dB, which is clearly better than for the
case of S. One thing that is strange with this, is that from Figure 3.9, a
mapping of r̂5 = 2 optimized for 15 dB should give an SNR value at around
24 dB. To find the 6 dB missing, the channel-gain mismatch filter in the
receiver has to be considered as well. For N , this filter is given by equa-
tion (3.20). When transmitting in the best channel state, the gain of the
channel is large. In the case of N , simple, γ̄ = 3.98(6 dB), using the lower
threshold, γT3

= 11.48, (10.59 dB), as γ, for R4, and assuming σ2
N = 1, the
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resulting scaling factor in the receiver is given by

w4 =

√

α(k)

α(k) +
σ2
N

σ2
Sm

(γ)

=

√

γ/γ̄

γ/γ̄ + 1/σ2
Sm(γ)

=

√

11.48/3.98

11.48/3.98 + 1/33.96
= 0.58,

(5.3)

which means that the AWGN noise power, σ2
N , will be reduced by at least

a factor of 1/0.582 = 2.97 in R4. The nature of the mappings will then give
an improved performance compared to the CSNR level they are designed
for, since they do not suffer from the leveling-off effect. The full analysis
will have to be done when considering the effect the receiver-filter has on
the information signal as well. Relating the scaling factor, wm, to a SNR,
is, however, difficult due to the nonlinearities of the mappings. Further
analysis of the effect of the different receiver filters should be done in the
future, as this has a big impact on performance. So why is the same
performance gain not appearing for the S case? Since the transmitter
scales the transmitted signal with the expected gain of the channel, the
mismatch is smaller, and the noise-reduction will be less dramatic. For the
case of C, this gain is not visible at all, so from Figure 5.12(c) and 5.13(c)
the performance given by Figure 3.9, is followed.

In Figure 5.13 it is also interesting to see that when a given channel
state m is fully occupied with source-blocks, the following blocks might
need to use a mapping with higher rate to compensate for the lower γC
value.

In Figure 5.11, it is shown how the CSNR regions and representation
points found by the complex algorithm, result in a system performance
that is outperformed by the system performance when using the simple al-
gorithm. Because of this, and for being a simpler approach, only the sim-
ple algorithm will be used in the remainder of the thesis.

In addition to the differences in performance for transmission of the
same image for different choice of CAS, it is seen in Figure 5.11, that the
performance of the proposed system compared to the theoretical perfor-
mance is different for different images. The performance for the “Bridge”
image is closer to the theoretical performance, compared to the “Lena”
image. Since the representation points and CSNR regions are chosen in-
dependently of the image for a given CAS, the difference in performance
has to be due to differences in image statistics. In Figure 5.14, an example
of the SNR values for the different source-blocks for the “Bridge” image
is given. Comparing with the same parameters for the “Lena” image in
Figure 5.12, shows that for the same mapping r̂j , and same representation
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Figure 5.12: Example of SNR for each block (solid), block variance sorted
descending. SNR for block with target distortion-level µ (dashed). ravg =
0.5, NB, M = 4, simple, “Lena”.
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Figure 5.13: Preallocation of sorted source-blocks to channel region repre-
sentation point {γCm}4m=1 (solid, left axis), and mapping-rate r̂j (dashed,
right axis). NB, simple, “Lena”.
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value γCm , the SNR value for a block is similar. The use of the mappings
are not equal, though. In Figure 5.15(a) the mapping of rate r̂5 = 2 is
preallocated to fewer blocks than in Figure 5.13(a). The reason for this lies
in the source-block variances. In Figure 4.3, the dB values for the variance
of the source-blocks for the different images are shown. It is seen that the
variance of the source-blocks for the “Lena” image is smaller than for the
“Bridge” image4. There is more activity in the “Bridge” image: it is not as
lowpass as the “Lena” image. For this reason, the “Lena” image is easier
to code. For the same parameters, transmission power and ravg, “Lena”
will have better quality as shown in Figure 4.2. Since the variance of the
source-blocks for “Lena” drops faster than the “Bridge” image, many of the
source-blocks can be coded with a mapping of low r̂j , which then means
that the distortion-level µ can be set low to include enough rate. Low
distortion level will then lead to high SNR for each block, a mapping with
high rate, r̂j. So for being easier to code, a lower distortion-level can be set,
resulting in the need for higher dimensional mappings for the blocks with
highest variance. Since there are no mappings with rate higher than r̂5 = 2,
the actual distortion will be larger than expected when preallocating.

0 400 800 1200
0

10

20

30

40

50

Sorted blocknumber

S
N

R
(d

B
)

(a) N , γ̄= 6.14 dB

0 400 800 1200 1600
0

10

20

30

40

50

Sorted blocknumber

S
N

R
(d

B
)

(b) S, γ̄= 5.99 dB

0 400 800 1200 1600
0

10

20

30

40

50

Sorted blocknumber

S
N

R
(d

B
)

(c) C, γ̄= 5.99 dB

Figure 5.14: Example of SNR for each block (solid), block variance sorted
descending. SNR for block with target distortion-level µ (dashed). ravg =
0.5, NB, M = 4, simple, “Bridge”.

5.1.2.2 Effect of B, mapping-rate mismatch compensation

As shown previously, the mismatch of mapping-rate can lead to a great
loss of performance. For S, there was a need for a mapping with rate
larger than r̂5 = 2, which was the largest available. In Figure 5.16 the
average PSNR values are plotted for the “Lena”, “Goldhill” and “Bridge”
images, with and without mapping-rate mismatch compensation for each
block. When using N , the average PSNR is lifted about one dB regardless

4Except the 9 blocks with largest variance where they are similar.
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(b) S, γ̄= 5.99 dB
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Figure 5.15: Preallocation of sorted source-blocks to channel region repre-
sentation point {γCm}4m=1 (solid, left axis), and mapping-rate r̂j (dashed,
right axis). NB, simple, “Bridge”.

of γ̄ value. For S it is seen in Figure 5.16(b), 5.16(e) and 5.16(h) how
the lack of a high dimensional mapping for low γ̄, has been compensated
for by distributing the power differently for each block. As the need for
such a mapping reduces when γ̄ increases, the gain of using mapping-rate
compensation is reduced. Since S compensates for the channel gain more
accurately compared to N , the performance is better.

As seen earlier in Figure 5.3 for the no-outage case, using B will make
the spread of the PSNR values narrower. This is also seen in Figure 5.17,
where the estimated pdf is plotted for the “Lena” image with and without
mapping-rate mismatch compensation for γ̄ = 6 when M = 4.

The effect of B for the SNR of each block is shown in Figure 5.18 for
the “Lena” image. It is seen that the distortion σ2

Dn
for each block becomes

more equal, resulting in an SNR for each block similar to the case when the
distortion is µ for all blocks. The preallocation of the blocks for different
power levels is shown in Figure 5.19.

5.1.2.3 Spread of parameters

As mentioned earlier, the channel will not be fully ergodic for the transmis-
sion of a single image due to a limited number of channel samples. The true
transmission power σ̄2

St
, true source symbol/channel symbol ratio ravgt, and

true PSNRt value, will then vary around an average value. In Figure 5.20,
ravgt and PSNRt are plotted as functions of γ̄t for the “Goldhill” image for
different CASs when M = 1. Figure 5.20(a) and 5.20(b) shows how ravgt
are directly connected with γ̄t for N and S for M = 1. This is due to
the fact that the transmission power is either constantly on or off, and the
switching depends on the outage. So when the channel is in outage less
than expected, the power during transmission will be larger than expected,
and ravgt will be smaller, as the time the channel is in outage is included in
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Figure 5.16: PSNR comparison for the received “Lena” (top row), “Gold-
hill” (middle row), and “Bridge” (bottom row) images. ravg = 0.5, M = 4.
N (left column), S (middle column) and C (right column). NB (dash-dot),
B (solid), estimated optimum (solid*).
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Figure 5.17: Estimated pdf for PSNR values for the “Lena” image, γ̄e = 6
dB, ravg = 0.5, M = 4. B (solid), NB (dashed).
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Figure 5.18: Example of SNR for each block (solid), block variance sorted
descending. SNR for block with target distortion-level µ (dashed). γ̄e = 6
dB, ravg = 0.5, B, M = 4, “Lena”.
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Figure 5.19: Preallocation of sorted source-blocks to channel region repre-
sentation point {γCn}N

n=1 (solid, left axis), and mapping-rate r̂j (dashed,
right axis). B, “Lena”, γ̄e = 6 dB, M = 4.
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the calculation of ravg. As γ̄e increases, the probability of being in outage
decreases, and the variation of ravgt and γ̄t will decrease. When using C,
the situation is not so simple. For low γ̄, ravgt still vary around the target
value, but ravgt and γ̄t are not connected one-to-one anymore. Depend-
ing on the state of the channel through the transmission, the transmission
power will vary as the transmitter will invert the channel at all times. As
the probability of being in outage decreases, the variation of ravgt goes to
zero, but the variation of the transmission power will increase. The reason
for this, is that the transmission power will change over a larger region as
γ̄e increases. As the number of symbols will increase, this variation will
also converge to the target value. These variations for C can be seen in
Figure 5.20(c). In Figure 5.20(f), it can be seen that the variation of γ̄ t
decreases as ravgt increases. Comparing Figure 5.20(f) with Figure 5.20(d)
and Figure 5.20(e), the effect of inverting the channel can be seen. The
spreading of the PSNR values for the case of N and S is larger than for
C. For N and S, PSNRt is dependent on the channel during transmission,
even the state of the channel when the transmission starts, as that is when
the most important image information is transmitted. This is the reason
why ravgt and PSNRt is independent for the case of M = 1, as seen in
figure 5.20(d), and 5.20(e).

In Figure 5.21 the variations of ravgt, PSNRt and γ̄t for the case when
M = 4 are plotted. For N when M = 1, the variations of ravgt is purely
dependent of the outage, but when multiple transmission power levels are
used, the state of the channel during transmission will also influence both
ravgt and γ̄t when M = 4, as seen in Figure 5.21(a). The combination of
outage probability and transmission power will give the same trends as in
Figure 5.20(a), but where the spread over γ̄t is larger. The same is valid
for Figure 5.21(b), the spread of ravgt is equal to the M = 1 case, but
the spread of γ̄t is less compared to Figure 5.21(a). The reason for this
is that for S, the range of the transmission power is smaller than for N .
For S, the mapped symbols are normalized by the region centroid before
transmission, which leads to a down-scaling when the channel is good, and
an up-scaling when the channel is poor, resulting in a tighter distribution
of the power levels. Figure 5.21(c) shows that for C, the spread of γ̄ t has
become tighter compared to when M = 1. This is due to the fact that the
CSNR range of each region is smaller when M = 4. The power variation is
smaller within a region. As for the PSNR, Figure 5.21(d) shows that the
spread of the PSNRt values is reduced since the most important blocks are
being transmitted on a good channel state. From the figure it is also seen
that the spread of PSNRt is smaller when γ̄t is larger than the targeted γ̄e
as well. The reason for this is that when the channel is in a good channel
state more often than expected, blocks allocated for a poor channel state
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are reallocated to a better channel state and sent with a higher power.
The needed mapping-rate is then reduced, so the overall ravg is smaller,
as seen in Figure 5.20(a). If the channel is less often in a good channel
state than expected, some blocks pre-allocated for a good channel state,
needs to be transmitted at a worse channel state, and a mapping of higher
rate r̂j is needed. This can be seen in Figure 5.22, where the probabilities
of the different channel states seen by the transmitter are plotted. The
best state with the best channel condition is given in Figure 5.22(d). It
can be seen that the cases for which the PSNR value is low is when the
best state shows a lower probability than the theoretical. R3 shows similar
trends in Figure 5.22(c). When using S, the spread of PSNRt is shown in
Figure 5.21(e). The spread of PSNRt is not similar to the N , as was the
case for M = 1. This is, however, mostly due to the low representation
value for the best channel region as explained earlier, especially for low γ̄
values. For higher γ̄ values, the loss from low representation values is gone,
and the spread of PSNRt and γ̄t is low. The low difference in transmission
power for the different channel states, results in low spread of γ̄ t. The pre-
scaling does in addition give a low spread of the PSNR values. For C the
spread of PSNRt is low, but results in a large spread for γ̄t for high γ̄, as
seen in Figure 5.21(f). For low γ̄, the spread of γ̄ t is due to the outage.
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Figure 5.22: Estimated pdfs of the probabilities an image transmission
for each channel region Rm. Instances where the PSNR is greater than
average (dashed), lower than average (solid), normalized with the total
number of instances. Theoretical probability for region is given by solid
line. γ̄ = 6.06 dB, “Goldhill”, NB, N .

5.1.2.4 Performance gain by increasing the number of regions

In Figure 5.23, the performance of the system is given for NB and B,
for M = {1, 2, 4}. For NB, the performance is steadily increasing as M
increases. In the case of N , it is seen that for M = 2 and M = 4, the
performance curves comes together. This shows that adapting in one sense
without thinking about other sources of inaccuracies does not help. By
adding a bit more sophisticated channel adaptation for the channel symbols
as done in the case of S, there will be an extra gain by increasing M . For
M = 1 there is a big gain by using B. In Figure 5.9 it was shown that
by adjusting the level of outage, the difference between B and NB can be
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reduced by a large factor. Based on that observation, one can say that
it is likely that the gap between B and NB can be reduced for the other
values of M as well by adjusting the outage-level, regions and representation
points. Thus giving only a small gain through the extra complexity added
by using B.
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Figure 5.23: Average PSNR for the “Lena” image, ravg = 0.5 NB (dashed-
dotted), B (solid), M = 1 (x-red), M = 2 (o-green) and M = 4 (blue).
Estimated upper limit (solid*-black).

5.2 Impact of Doppler shift

The impact of the Doppler shift fm is that the channel will change faster.
Since it is assumed that the transmitter instantly knows when the channel
moves to another state among the M+1 different possible, the Doppler shift
will not have a big impact on the whole system. In Figure 5.24 the PSNR
performance of the system is plotted for the case when fm = [100, 300, 500]
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Hertz (Hz) for the case of N . For low γ̄ values, the difference between
fm = 100 Hz and fm = 500 Hz, is at most 0.2 dB for ravg = 0.5. This
might seem strange, but for the system proposed in this thesis, a higher
fm means that the channel stays a shorter time in one CSNR region than
for lower fm values. This leads to a channel that is more ergodic, and the
spread of PSNRt becomes smaller than for fm = 100 Hz. A bigger gain can
be seen for the case when ravg = 0.1, since the number of channel symbols
is smaller, a more ergodic channel will tighten the spread of PSNRt more.
A gain of most 0.4 dB is achieved at low γ̄ values.
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Figure 5.24: Performance for different Doppler-shift fm, fm = 100 (dash-
dotted-blue), fm = 300 (dashed-red) and fm = 500 (dashed-x-green). The
results for fm = 300 and fm = 500 are very similar. For the case when
M = 4, “Lena”, N , NB. Estimated upper limit (solid*-black).

5.3 Comparison to reference systems

5.3.1 Theoretical system

5.3.1.1 Estimating system performance

In Section 4.2 the estimation of the performance for nonlinear mappings
was discussed. In the estimation it is assumed that the mappings always
operate at the CSNR level they are designed for, which for N and S is not
the case. In Figure 5.25 the estimated performance for the “Lena” image
is compared to the average PSNR values of the implemented system. It is
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seen in Figure 5.25(c) that for C the estimation comes close, but as seen in
Figure 5.25(a) and 5.25(b), N and S will give an inaccurate approximation.
Figure 5.25(a) confirms what was discussed earlier in Section 5.1.2.1, that
for low γ̄ values, the mappings will operate on γC levels giving lower dis-
tortion on average compared to only operating on the CSNR level they are
designed for. The effect of pre-scaling the transmitted signal with the ex-
pected gain in each region for S, can be seen by comparing Figures 5.25(a)
and 5.25(b) for high γ̄ values. The mappings will operate in a smaller re-
gion around the designed γCm level in the S case, and hence come closer to
the estimated performance. For the above mentioned reasons, only C will
be considered for theoretical estimation.
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Figure 5.25: Comparison of performance for proposed coder (dash-dotted)
and theoretical system estimating distortion for each block (solid), using
distortion from implemented mappings for theoretical system. NB, “Lena”,
M = 4, ravg = 0.5.

5.3.1.2 Loss due to imperfect mappings

None of the implemented mappings, except the mapping of rate r̂4 = 1,
will perform according to the optimal limit. To see the loss due to this, the
simulated system-performance when assuming perfect mappings, and the
system-performance when using the implemented mappings, are plotted in
Figure 5.26 for the “Lena” image. It is seen that the loss due to imperfect
mappings is in the range 0.5−1.5 dB when using B. For the NB case, it can
be seen how the performance of the implemented r̂5 = 2 mapping makes
the overall performance poor. By using perfect mappings the performance
is increased by almost 2 dB for low γ̄ values. It can further be seen that
the performance for the implemented system drops off at high γ̄ values
compared to the theoretical system. The reason for this can be found in
Figure 3.7. The performance of these mappings drops off gradually as the γ̄
increases. Especially the mapping with r̂3 = 2/3 contributes as it saturates
around γ̄ = 30 dB.
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Figure 5.26: Performance in PSNR for proposed system with B (solid-
blue), NB (dash-dotted-green) compared to theoretical system using per-
fect mappings with B (dashed-x-cyan), NB (dashed-o-red), M = 4, C,
“Lena”, ravg = {0.1, 0.5} from below. The theoretical optimum is included
for reference (solid*-black).

5.3.1.3 Extra mappings

Since it was shown that the imperfectness of the mappings available con-
tributes to a significant loss in some cases, it could be interesting to see how
much the performance could increase by adding another mapping. In Fig-
ure 5.27 the performance for the proposed system is shown when a mapping
of rate r̂ = 3 is added. This is shown both for the case when the extra map-
ping performs according to the theoretical optimum, and when the extra
mapping has a CSNR loss of 3.5 dB from the optimum. 3.5 dB is assumed
to be a reasonable estimate for the performance. For high γ values, a 3.5
dB shift leads to a performance approximately 10 dB SNR below the op-
timum. Figure 5.27 shows that adding a mapping of rate r̂ = 3, will lead
to a performance for the system when using NB that is comparable to the
case when using B for the implemented system. A loss of 3.5 dB CSNR
does not contribute significantly to the performance-loss of the system, in
the presented case, a loss of max 0.3 dB PSNR is found.

In Figure 5.28 a mapping of rate r̂ = 3/2 is added. The systems per-
formance is given both for the case when the performance of the mapping
with rate r̂ = 3/2 is optimal, and when there is a loss of 3.5 dB CSNR. It is
seen in Figure 5.28 that adding a mapping of rate r̂ = 3/2 will not help at
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Figure 5.27: Estimated performance when introducing extra mapping of
rate r̂ = 3 with optimal performance (dashed-x-green), and with a 3.5 dB
CSNR loss (dashed-o-red) for NB. The performance of the implemented
system is given for NB (dash-dotted-cyan) and B (solid-blue). “Lena”,
M = 4, C, ravg = {0.1, 0.5} from below. The theoretical optimum is in-
cluded for reference (solid*-black).
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low γ̄ values, but will help at most 0.5 dB PSNR at high γ̄ values. It might
seem strange that systems performance is actually poorer with the extra
mapping for low γ̄ values. This is due to the way the different mappings
are being chosen. In the implemented coder, the mapping with distortion
closest to the target distortion-level µ is chosen. In a real system, the rate
of the mapping will have to be included in the selection.
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Figure 5.28: Estimated performance when introducing extra mapping of
rate r̂ = 3/2 with optimal performance (dashed-x-green), and with a 3.5
dB CSNR loss (dashed-o-red) for NB. The performance of the imple-
mented system is given for NB (dash-dotted-cyan) and B (solid-blue).
“Lena”, M = 4, C, ravg = {0.1, 0.5} from below. The theoretical optimum
is included for reference (solid*-black).

The increased performance of the proposed system by adding an extra
mapping does not, as shown, in the case of a fading channel with several
regions, give a huge gain. As long as there is a representation point γCm
which has large value, the need for a high dimensional mapping is reduced.
In the case of a AWGN channel, the potential gain is much higher, as all
mappings are designed for the average CSNR. An example of this is given
in Figure 5.29 for an extra mapping of r̂ = 3. It is seen that the impact of
B is larger compared to the fading case. The impact of an extra mapping
is larger as well. By adding an extra mapping, the blocks with largest
variance can get a much lower distortion, thus increasing the total image
quality by a large amount.
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Figure 5.29: Performance of proposed system with B (solid-squares-blue),
and NB (dashed-squares-blue). Simulated performance of system with
mapping of rate r̂ = 3 with ideal performance (solid-red), and a 3.5 dB
CSNR loss (dashed-red). ravg = 0.5, “Lena”. The theoretical optimum for
an AWGN channel is included for reference (solid*-black).

5.3.2 Comparison to practical schemes

In Figure 5.30 the performance of the proposed system is compared to
two reference systems described in Section 3.3. Both uses JPEG2000 as
source coder, but uses different channel transmission schemes. The first
denoted ACM, uses a set transmission rates achieving the capacity for an
AWGN channel with CSNR {γCm}Mm=1. The other scheme denoted TuCM,
varies turbo-code, constellation and power to combat fading. The ACM
scheme is a theoretical model, and comes very close to the channel ca-
pacity. The TuCM scheme is a more practical scheme, and is assumed to
follow the channel capacity with a shift of 3 dB in γ̄. This shift can be
seen in Figure 5.30 as the performance for the ACM and TuCM scheme is
approximately parallel with a γ̄ separation of 3 dB.

For the “Lena” image, the proposed system has poorer performance
than the ACM system, but better performance than the TuCM system,
as seen in Figure 5.30(a). For the “Goldhill” and “Bridge” images, in
Figures 5.30(b) and 5.30(c), the proposed coder is comparable with the
ACM system, and performs better than the TuCM system for γ̄ values
shown.

Regardless of the specific image coded, there are a couple of charac-
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teristics that are typical for the proposed coder. For low γ̄ values, the
performance drops off as there is a need for higher dimensional mappings
than the ones available. For high γ̄ values, the proposed system perfor-
mance drops of since the performance of the mappings used drops off with
respect to the optimal performance.

For visual comparison, examples of the images from the different schemes
are given in Figures 5.31, 5.32 and 5.33. Since both the ACM and TuCM
scheme use JPEG2000, the image artifacts seen for these cases are similar.
The difference for these two schemes is the bit-rate the image is coded for.
Comparing Figure 5.31(a) with Figure 5.31(b) it can be seen that the skin
of “Lena” is smoother in the case of the JPEG2000 images, which gives a
more pleasant image to look at, but this is the same as In the case of the
“’Goldhill’ image in Figure 5.32, the same tendency can be seen in the roof
tiles. For the JPEG2000 coded images, the details are more smeared out
compared to the image coded with the proposed system. Some artifacts
appear due to high compression, these can be clearly seen in Figure 5.33(c)
for the “Bridge” image.

When comparing the images, it should be taken into consideration that
for the image quality for the proposed system is an average. So the received
image quality would differ depending on the channel. If the channel is
good, the image quality is good, and if the channel is poor, the quality
will be poorer. The system performance tracks the channel changes, which
indicates a certain robustness. So if the CSI at the transmitter is not
perfect, e.g. it might be delayed and give an inaccurate estimate, the
receiver would still receive an image containing information. In the case of
the reference systems, a breakdown will occur in the system if the channel
is poorer than expected.

5.4 Discussion

The proposed coder has shown good performance compared to the reference
systems. This is quite interesting when it is taken into consideration that
JPEG2000 is an advanced standard, developed by hundreds of researchers.
For the channel transmission part of the reference systems, one theoretical
scheme was used, which would in practice require a complex channel coder
to work. The other channel transmission scheme does not show the same
performance as the ACM scheme. The use of turbo codes together with
adaptive modulation makes it more practical than the ACM scheme. It
is assumed that the TuCM scheme comes within 3 dB γ̄ of the channel
capacity. This is however at γ̄ = 6 dB, and at γ̄ = 14 dB the system is
almost 4 dB away from the capacity [Vishwanath and Goldsmith, 2003].
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Figure 5.30: Comparison of proposed system (solid-blue), system us-
ing ACM (dashed-red) and TuCM (dashed-o-green). Estimated upper
limit (solid*-black). Proposed system uses B, M = 4, C.
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(a) PSNR = 31.1 dB (b) PSNR = 31.5 dB, ACM

(c) PSNR = 30.4 dB, TuCM

Figure 5.31: Image comparison between proposed coder, ACM and TuCM.
Extract from “Lena” for ravg = 0.1, γ̄e = 10 dB. Target rate in bits/pixels
is 0.1468 for ACM and 0.1131 for TuCM. PSNR value calculated for whole
image.
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(a) PSNR = 29.1 dB (b) PSNR = 28.8 dB, ACM

(c) PSNR = 27.9 dB, TuCM

Figure 5.32: Image comparison between proposed coder, ACM and TuCM.
Extract from “Goldhill” for ravg = 0.1, γ̄e = 10 dB. Target rate in
bits/pixels is 0.1468 for ACM and 0.1131 for TuCM. PSNR value cal-
culated for whole image.
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(a) PSNR = 24.0 dB (b) PSNR = 23.7 dB, ACM

(c) PSNR = 23.1 dB, TuCM

Figure 5.33: Image comparison between proposed coder, ACM and TuCM.
Extract from “Bridge” for ravg = 0.1, γ̄e = 10 dB. Target rate in bits/pixels
is 0.1468 for ACM and 0.1131 for TuCM. PSNR value calculated for whole
image.
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In the TuCM scheme a set of 4 regions, included outage, is used leading to
M = 3.

The proposed system uses M = 2 and M = 4, so an accurate com-
parison is not possible. Considering the difference in performance for the
proposed system between M = 2 and M = 4 for C and B, shown in Fig-
ure 5.23(c) for the “Lena” image, it is seen that the loss is about 0.5 dB
CSNR, which is valid for the other images as well. Another issue for the
TuCM scheme is the fact that the block lengths used by the turbo coder
are constrained by the time the channel spends in each region. Since it
is not possible to stop transmission in the middle of a codeword, a higher
Doppler shift fm will lead to shorter codewords, hence poorer protection.
The proposed system will on the other hand have a maximum of 2 consec-
utive channel symbols that are dependent on each other. Few consecutive
dependent channel symbols means that the transmitter can adapt fast to a
changing channel. A faster change between channel regions results in the
need for more CSI, but no other change.

The delay of the turbo-coded system might also be a constraining fac-
tor. Long block lengths will lead to a large delay, but by reducing the
block lengths, protection is lost. For the proposed system there is also a
delay, but here the largest delay comes from the analysis of the image and
transmission of the side information. Since the decoder needs to know the
side-information to be able to decode the main information, transmission
can not start until the side information is correctly received.

It should be noted that JPEG2000 was not only designed for image
quality. There are also other features in the JPEG2000 standard, progres-
sive transmission, region of interest (ROI) and the possibility of lossless
coding, to mention a few. Through the use of source-blocks, the proposed
coder also has the possibility of progressive decoding. All the source blocks
do not have to be received before the received image can be shown. The
proposed system was, however, not designed with this in mind, it is more
a side-effect of the system architecture.

The choice of optimization algorithm used to find the representation
points and thresholds did not seem to be very important. The choice of
regions and representation points did, however, show to be very important.
Especially the representation point for the best channel region. From the
results found, it looks like there could be a gain by including the source
statistics when finding the regions and representation points. The results
showed that correct representation of the most important source-blocks
is crucial for the total image quality. For low γ̄, this is important since
high dimensional mappings are needed, but not available. An optimization
problem for finding the best representation points and thresholds should
take this mapping mismatch into account. As a simpler approach, one can



5.4 Discussion 115

think that it is possible to assume a general image-model. By designing
the representation points from such a model, the computational load on
the receiver can be reduced. To reduce the amount of side-information, a
general image-model can also be used for the source-blocks. The different
source-block variances can be quantized to a smaller set. This could be a
topic for further research.

Compensating for the mapping-rate mismatch showed to give a large
improvement, about 5 dB PSNR for low γ̄ values for M = 4. On the
other side, the complexity is increased, both with respect to design, and
transmission. Using a different setting for the mappings for each block,
requires extra computational power at the transmitter. It is also beneficial
to keep the dynamic range of the power amplifier at the transmitter as
small as possible, to avoid saturating the power amplifiers. Both N and
S when using NB have a limited range over which an amplifier needs
to work. S even moves the possible transmission powers closer together
during pre-scaling of the symbols. Such pre-scaling showed to be beneficial
for high γ̄ values, but at low γ̄ values the performance gain given by the
noise-reduction in the filter in the receiver for the N case, seemed to give
greater gain. To find the dynamics behind this is a strong candidate for
future research. Using the robustness of the mappings can be used to get
good performance.

The difference in performance from C and S can not be said to be dra-
matic. As S is a quantization of C, it is possible to picture a system between
S and C. By allowing more CSI, the pre-scaling could be done for several
levels within each channel region. Considering that the performance for
M = 2 and M = 4 when using B is quite similar, the amount of CSI
needed is already very low. By using the robustness of the mappings, the
amount of CSI can be low, and still have a good performing system. For a
low Doppler shift, the channel variations will be slow and thus reducing the
need for CSI. The amount of CSI needed is another very interesting topic
for further research. A traditional way of estimating CSI is through the
use of pilots, see e.g. [Cavers, 1991]. Special pilot symbols are multiplexed
into the data-stream, which the receiver uses to estimate the channel. Few
information channel symbols between each pilot will result in a good es-
timate, but the pilots do not contain any information, so it is desirable
to keep the number of pilots as low as possible. By using the robustness
of the proposed system, the density of pilots could most probably be kept
smaller than a traditional ACM system. For a broadcasting scenario, one
might think of a scheme where, since the transmitter uses constant power
at all times, the receiver uses a sliding window to estimate the channel from
the power of the received symbols. This information may then be used to
compensate for the channel fades.
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Setting the outage level in an optimal way should also, from the indi-
cation of the results for M = 1, give a large gain. The results for M > 1
have shown that when using a limited set of mappings, it is crucial for
the image quality that the most important blocks are coded with correct
mapping-rate. For low values of M , this can be compensated through the
use of outage.

Traditional systems use discrete amplitude channel symbols. In doing
so, the receiver can use an eye-diagram to find the optimal timing of sam-
pling the received signal. For a system using continuous amplitude channel
symbols, as the proposed system, such synchronization techniques are not
possible. To synchronize in the case of continuous amplitude systems, one
might think of special synchronization symbols sent in a frequent manner.
For a fading channel, such symbols must however also compensate for the
fading. This is an open problem, and needs to be solved to make a practical
system.

5.4.1 Extending the system to other scenarios

In the thesis, a framework for transmitting an image over a fading channel
has been presented. The results have been shown for a Rayleigh flat fading
channel, but can be extended to another flat fading distributions without
significant changes. In the following, a brief discussion not necessarily lim-
ited to fading channel is given.

5.4.1.1 Received image quality

For the results shown in Chapter 5, a time constraint5, ravg, has been put
on the transmission. It might seem strange to use a time constraint on still
image transmission as for most image transmission scenarios, a constraint
on the image quality is used. The reason why a time constraint is used
in this thesis, is to demonstrate the robustness of the system. The full
advantages of robustness in such a system would be apparent if the system
is extended to a video scenario. When streaming a video sequence to a
mobile device, keeping the transmission delay below a certain threshold,
yet at the same time getting graceful degradation and improvement, is
essential. For two way live communication, the delay would be even more
critical.

The amount of modification needed in the proposed system for a sce-
nario where a target image quality is wanted, is relatively small. Through
the distortion level µ, the transmitter can set the target distortion in the

5A constraint for the number of channel symbols can be translated into a time con-
straint through the duration of the channel symbols.
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received image. Focusing more on the image quality than the transmission
delay, would mean that there should be put a larger emphasis on making
sure that each block is mapped with a mapping with a correct rate r̂j. This
might include not transmitting the blocks preallocated for the best channel
state on poorer channel states even if this means not transmitting for a pe-
riod of time. If a mapping with sufficient rate is not available, it has been
shown that the impact on image quality is substantial. This could, how-
ever, be compensated for by using more power, either on a block basis, or
by shifting the representation point for the best channel state high enough.
If a certain PSNR value is targeted, it might even be a possibility to add the
theoretical distortion for each block and test the image PSNR by decoding
a test image in the transmitter. By doing so the right distortion-level can
be found for a given image and PSNR value. This would, however, increase
the computational load on the transmitter.

5.4.1.2 OFDM channel

The system in this thesis was demonstrated for a flat fading channel. An-
other possible scenario is when using orthogonal frequency division multi-
plex (OFDM). Assume that the OFDM sub-channels are time invariant,
and that each sub-channel can be assumed to be an AWGN channel. In
the combination of image transmission using nonlinear source-channel map-
pings with OFDM transmission, the different sub-channels might be seen
as different channel states used in this thesis. The different sub-channels
would then have different probabilities, but it would be beneficial to uti-
lize each sub-channel as much as possible to minimize overall transmission
time. A possible strategy for transmission might be to start by distributing
power for the different sub-channels according to the water filling principle
to maximize channel transmission rate [Cover and Thomas, 1991]. The
source blocks can then be allocated to the sub-channels according to the
same principle as used in this thesis. Source blocks with the largest vari-
ance is allocated to the sub-channel with best CSNR to reduce the need
for mapping with higher dimension than the ones implemented. Power can
be reallocated after blocks have been allocated to sub-channels to minimize
distortion. Special care might, in the sense of power, also be taken of the
source blocks with largest variance in case a large enough mapping-rate is
not available.

In the case that each of the OFDM sub-channels are time invariant,
a different strategy is needed. Since the sub-channels are time invariant,
preallocation needs to be done. For multiple sub-channels the preallocation
has to be done across the available channels.





Chapter 6

Conclusion and Further

research

In this thesis a framework for image transmission over flat fading channels
using nonlinear dimensional changing mappings has been presented.

The nonlinear mappings offer the possibility of different level of pro-
tection that is matched to the channel condition and source importance.
Through the inherent robustness of these mappings, the overall system be-
comes robust. For traditional channel codes, the channel gain is inverted to
achieve a fixed CSNR level at the receiver. Using the robustness of the sys-
tem, new schemes for adapting to the channel variations has been proposed.
These schemes require less CSI, at the cost of only a small performance loss.

Through the use of the distribution of the channel condition, prealloca-
tion was done to be able to utilize the channel in an efficient manner, and
to adjust the transmitted power and plan the transmission time.

The proposed system was not designed with the goal of achieving pro-
gressive decoding, but due to the small dependencies between the channel
symbols, and the fact that the most important channel symbols are planned
to be transmitted first, progressive decoding becomes possible.

Through simulations, it was shown how the system adapts on the fly
to the channel seen, and that the true used time and power might not be
exactly equal to the assumed for each transmission, but will be right on
average.

As a reference, a theoretical optimum was estimated. This reference
is equal to the proposed system with an infinite number of perfect nonlin-
ear dimensional changing mappings. Since previous systems have designed
mappings without knowing the possible gain, a scheme to test a mapping
of arbitrarily rate and performance was proposed. Through this scheme it
was found that a dimensional expanding mapping of rate r̂ = 3 would be
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beneficial for low γ̄.

Since the system is robust, it means that the quality of the received
image will vary around a mean value. For the case of video, this would
give a gradual change from frame to frame similar to analog film. One
traditional way of dealing with detected bit-errors in a video stream, is to
freeze the current frame. For a poor channel, that leads to a noncontinuous
video stream which might feel tiring for the user, as the human visual
system is very good at detecting changes. A gradual degradation might,
on the other hand, yield a smoother stream.

6.1 Contributions of the thesis

The main contribution of this thesis is the proposed an image transmission
system for flat fading channels using nonlinear dimensional changing map-
pings. Through this work, other contributions have been made, and are
summarized in the following.

• Preallocation was used to be able to use the channel in an efficient
manner, and to able to plan the average transmitted power and trans-
mission time. Efficient utilization of the channel comes at the cost of
deviations from the set transmission power and transmission time.

• It was shown how the transmitted signal can be adapted to the chan-
nel variations on multiple levels. The first is through the known
technique of splitting the CSNR range into separate regions, and use
different settings for each region. In connection with this a known
technique of inverting the channel within each region to get constant
received CSNR was used. In addition to this, two ideas requiring
less channel feedback was shown to work due to the robustness of
the mappings. One where no scaling of the mapped signal was done,
and one where the expected channel gain within a channel region was
used.

• Two simple receive filters were developed to compensate for the chan-
nel gain mismatch assumed in the transmitter.

• Deeper understanding of the role of the mapping-rate in a system
using nonlinear Shannon mappings was obtained through analysis of
the results. This includes the effect of compensating mapping-rate
mismatch through power allocation.

• A theoretical system was proposed. An estimation of an upper limit
for a given image, average rate and transmission power was found.
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• A theoretical system was developed to see the potential benefits of
introducing new mappings with an arbitrarily performance.

6.2 Future research, ideas and thoughts

In the following list, some ideas and thoughts for future research are given.

• It has been shown that the probability of outage has a big impact on
performance for the case when the CSNR range is split into an outage
region and one region with transmission. This has, however, not been
fully analyzed. For few CSNR regions, setting the correct outage level
should increase the performance. The results further indicate that the
number of channel regions could be kept low, M ≤ 2, and still get
good performance. The difference between the M = 4 and M = 2
will probably be smaller by setting the outage level optimally.

• What is the performance of the reference systems with less CSI?
Should be compared with the proposed system for S and N .

• An algorithm for finding the optimal representation points and re-
gion thresholds including the distortion of rate mismatch, should be
developed. The results in this thesis have shown that a mismatch
in mapping-rate for the source-blocks with largest variance has a big
impact for the image quality for low γ̄ values.

• The amount of side-information should be studied further. What is
the loss in performance for different images when using a general im-
age source-block distribution? Using such a general distribution may
reduce the amount of side-information drastically. Another scenario
is to quantize the different source-block variances into a discrete set
of values. The increased rate for protection of the side-information
should also be studied.

• The results show that the effect of the channel gain mismatch filter in
the receiver has a large impact on performance. It was also shown that
it was actually beneficial not to pre-scale the mapped signal to the
channel gain in a given region, as the receive filter would reduce the
power of the noise. This effect should be looked further into, maybe a
combination of pre-scaling and no pre-scaling within a region should
be used, or maybe different strategies for different regions?

• The proposed system can be extended to video transmission. In video
transmission the robustness of the system can be fully utilized. It
might be beneficial to allow preallocation over several frames, which
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results in the need for a buffer in the receiver. The problem with
correlation in time in video should then be further studied as well.
A solution might be to use 3D filter banks, that is, however, a huge
research topic.

• The system should be extended to OFDM channels, both time varying
and time constant.

• The channel estimation has been assumed to be perfect in this thesis.
In practice that is not the case, so the impact of inaccurate chan-
nel estimation at the receiver, and delayed CSI at the transmitter
should be studied further. For a OFDM system with time varying
sub-channels, such estimation must be done in frequency as well.

• As most of the transmitted symbols have continuous amplitude, it can
be a problem to synchronize the receiver as there is no eye-diagram to
use. This is an fundamental problem with this type of transmission
that needs to be solved for an implemented system.



Appendix A

Allocating source-blocks to

channel states

This appendix gives the proof of the combination of source-block and chan-
nel state.

Looking at equation (3.7) and noticing that σ2
Xn

/µ ≥ 1, and that γCm >
0 for all practical situations, equation (3.7) can be rewritten into

rn,m =
an
bm

, for an, bm ∈ [0,∞) (A.1)

where an = log2

(

σ2
Xn

/µ
)

and bm = log2 (1 + γCm). This is possible since
log2(x) is an increasing function for positive values of x.

Without loss of generality bm can be ordered so that a set with N
elements where,

b1 ≥ b2 ≥ . . . ≥ bN , (A.2)

is obtained. Denote ak as a random permutation

ak = {ak1 , ak2 , . . . , akN }. (A.3)

The goal is to find the permutation k that minimizes

N
∑

n=1

akn
bn

. (A.4)

The solution to this, is the permutation where

a1 ≥ a2 ≥ . . . ≥ aN . (A.5)

The proof for N = 2 will be given first.
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Proof. Let b1 ≥ b2, and assume that

a1

b1
+

a2

b2
≤ a2

b1
+

a1

b2
. (A.6)

Rearranging the terms yields

a1 − a2

b1
<

a1 − a2

b2
(A.7)

which is only true if and only if a1 ≥ a2. �

General case

Proof. Let a set b with N elements be organized as

b1 ≥ b2 ≥ . . . ≥ bN . (A.8)

Take another set ak with N elements in a random order and combine it
with set b in the following way

S(k) =
ak1

b1
+

ak2

b2
+ · · · + akN

bN
(A.9)

By finding the largest element akn and swapping it with ak1 , a new permu-
tation of a with only two elements different than ak is found. Let this new
permutation be denoted ak+1. From the proof for the case when N = 2, it
is clear that

S(k) ≥ S(k + 1) =
ak+11

b1
+

ak+12

b2
+ · · · + ak+1N

bN
(A.10)

The next step is to find the second largest element in ak+1 and swap it
with ak+12

generating ak+2, where S(k +1) ≥ S(k +2). Continuing this for
N steps, results in all the elements in ak+N being sorted in a descending
order. �



Appendix B

Channel gain mismatch filter

To minimize the perturbation of the channel, the difference between the
mapped signal g(k), and the signal, ĝ(k), going into the demapper, should
be minimized. In this thesis this is done through a single tap channel gain
mismatch filter wm(k). The difference between g(k) and ĝ(k) is minimized
by using the MSE, and the difference, ε, is given by

ε = E
[

(ĝ(k)− g(k))2
]

. (B.1)

ε is minimized over w(k), where w(k) is such that ĝ(k) is given by

ĝ(k) = w(k)y(k) = w(k)
(

s(k)
√

α(k) + n(k)
)

. (B.2)

B.1 No pre-scaling of channel symbols

Not scaling the output before transmission means that the mapped signal
g(k) is the same as the transmitted signal s(k)

g(k) = s(k). (B.3)

ĝ(k) is given by

ĝ(k) = w(k)
(

g(k)
√

α(k) + n(k)
)

. (B.4)

An optimal one tap equalizer is found through the minimization of

ε = E

[

((

s(k)
√

α(k) + n(k)
)

w(k) − s(k)
)2
]

(B.5)
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over w(k). Writing this out yields

ε =E

[

(

s(k)
√

α(k)w(k) + n(k)w(k) − g(k)
)2
]

(B.6)

=E
[

s2(k)α(k)w2(k) + n2(k)w2(k) + s2(k)

+ 2s(k)
√

α(k)w2(k)n(k) − 2s2(k)
√

α(k)w(k)

− 2n(k)w(k)s(k)
]

(B.7)

Assuming that the transmitted signal s(k) and the noise n(k) are indepen-
dent, (B.7) can be simplified as

ε = σ2
Sα(k)w2(k) + w2(k)σ2

N + σ2
S − 2σ2

S

√

α(k)w(k) (B.8)

Differentiating ε with respect to filter tap w(k), and setting equal to zero

dε

dw(k)
= 2σ2

Sα(k)w(k) + 2w(k)σ2
N − 2σ2

X

√

α(k) (B.9)

dε

dw(k)
= 0

⇓

w(k)
(

α(k)σ2
S + σ2

N

)

=
√

α(k)σ2
S (B.10)

w(k) =

√

α(k)

α(k) +
σ2
N

σ2
S

. (B.11)

The transmitted power is dependent on the power in the mapped signal
g(k). The setting of a mapping can either be chosen from a channel state
m, or for a specific power level for a given block n, when using mapping-
rate mismatch compensation. The channel gain mismatch factor will then
be given by

wm(k) =

√

α(k)

α(k) +
σ2
N

σ2
Sm

, (B.12)

for NB, And

wn(k) =

√

α(k)

α(k) +
σ2
N

σ2
Sn

, (B.13)

for B.
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B.2 Using state centroid as scaling factor

The transmitter scales the mapped signal g(k) down with the channel gain
αAm corresponding to the centroid CSNR value in a region. The transmit-
ted signal s(k) is then given by

s(k) =
g(k)√
αAm

. (B.14)

Resulting in an expression for g(k) given by

g(k) = s(k)
√

αAm . (B.15)

An optimal one tap equalizer w(k) is found by minimizing ε with respect
to w(k). The expression for ε is found through inserting equation (B.15)
and (B.2) into equation (B.1), giving

ε = E

[

((

s(k)
√

α(k) + n(k)
)

w(k)− s(k)
√

αAm

)2
]

. (B.16)

Writing this out results in

ε =E
[ (

s(k)
√

α(k)w(k) + n(k)w(k) − s(k)
√

αAm

)2 ]

(B.17)

=E
[

s2(k)α(k)w2(k) + n2(k)w2(k) + s2(k)αAm

+ 2s(k)
√

α(k)w2(k)n(k) − 2s2(k)
√

α(k)w(k)
√

αAm

− 2n(k)wm(k)s(k)
√

αAm

]

(B.18)

Assuming that the transmitted signal s(k) and the noise n(k) are inde-
pendent, (B.18) can be simplified as

ε = α(k)w2(k)σ2
S + w2(k)σ2

N + αAmσ2
S − 2

√

α(k)
√

αAmw(k)σ2
S (B.19)

Differentiating with respect to the filter tap w(k), yields

dε

dw(k)
= 2α(k)w(k)σ2

S + 2w(k)σ2
N − 2

√

α(k)
√

αAmσ2
S (B.20)

dε

dw(k)
= 0

⇓

w(k)
(

α(k)σ2
S + σ2

N

)

=
√

α(k)
√

αAmσ2
S (B.21)
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w(k) =

√

α(k)
√

αAm

α(k) +
σ2
N

σ2
S

(B.22)

For channel region m, the channel mismatch filter is given by

wm(k) =

√

α(k)
√

αAm

α(k) +
σ2
N

σ2
Sm

. (B.23)

And when using mapping-rate mismatch compensation, the channel mis-
match filter is given by

wn(k) =

√

α(k)
√

αAm

α(k) +
σ2
N

σ2
Sn

. (B.24)



Appendix C

Finding channel regions

using the simple algorithm

Maximizing the channel transmission rate Rc, when assuming a fixed re-
ceived CSNR, is done by maximizing

Rc = max
σ2
Sm

:
P

m

R

m
σ2
Sm

(γ)fγ (γ)dγ=σ̄2
S

1

2

M
∑

m=1

∫ γTm

γTm−1

log2

(

1 +
σ2
Sm(γ)

σ̄2
S

γ

)

fγ(γ)dγ,

(C.1)
under power constraint

M
∑

m=1

∫ γTm

γTm−1

σ2
Sm(γ)fγ(γ)dγ ≤ σ̄2

S . (C.2)

In this thesis, the GNU scientific library (GSL) [Galassi et al., 2006] is used
for optimization. The numerical optimization done there does not support
constraints, so these have to be included in the object function. To optimize
this without using constrained optimization, quadratic penalty terms for the
power constraint must be used, and logarithmic barrier functions [Nocedal
and Wright, 1999] for the non-negative constraints of the variables. Since
the GSL methods used minimize a given function, the final expression to
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minimize is given by

B(γC , γT , µ) =− 1

2

M
∑

m=1

log2

(

1 +
σ2
Sm(γ)

σ̄2
S

γ

)

f(γ)dγ

+
1

2κ

(

M
∑

m=1

σ2
Sm(γ)

σ̄2
S

∫ γTm

γTm−1

1

γ
f(γ)dγ − 1

)2

− κ

M
∑

m=1

log(γTm − γCm)− κ

M
∑

m=1

log(γCm − γTm−1
),

(C.3)

where κ < 1 is the barrier parameter. The second term is to make sure
the power is correct, and the third and fourth terms are to make sure the
representation points stay between the region thresholds.

Using GSL will not guarantee the global minimum, but will most likely
end up in a local minimum.



Appendix D

Regions and representation

points

In Section 3.2.3 the thresholds {γTm}M−1
m=0 , representation points {γCm}Mm=1

and region probabilities was shown for the simple algortithm and com-
plex algorithm, for M = 4. In this appendix the thresholds and represen-
tation points are given for M = {1, 2}.
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Figure D.1: Representation points, γCm , thresholds, γTm for CAS set to N ,
and accumulated region probability pm. Found by simple algorithm(left
column), complex algorithm(right column), M = 2.
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Figure D.2: Representation points, γCm , thresholds, γTm for CAS set to S,
and accumulated region probability pm. Found by simple algorithm(left
column), complex algorithm(right column), M = 2.



134 Appendix D: Regions and representation points

10 15 20 25 30
0

5

10

15

20

25

30

35

Average CSNR, γ̄e (dB)

R
ep

re
se

n
ta

ti
o
n

p
o
in

ts
,
γ
C
m

(d
B

)

(a) {γCm}2
m=1 (dB)

10 15 20 25 30
0

5

10

15

20

25

30

35

Average CSNR, γ̄e (dB)

R
ep

re
se

n
ta

ti
o
n

p
o
in

ts
,
γ
C
m

(d
B

)

(b) {γCm}2
m=1 (dB)

10 15 20 25 30
0

5

10

15

20

25

30

35

Average CSNR, γ̄e (dB)

T
h
re

sh
o
ld

s,
γ
T
m

(d
B

)

(c) {γTm}1
m=0 (dB)

10 15 20 25 30
0

5

10

15

20

25

30

35

Average CSNR, γ̄e (dB)

T
h
re

sh
o
ld

s,
γ
T
m

(d
B

)

(d) {γTm}1
m=0 (dB)

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Average CSNR, γ̄e (dB)

P
ro

b
a
b
il

it
y,
p
m

(e) {pm}2
m=1

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Average CSNR, γ̄e (dB)

P
ro

b
a
b
il

it
y,
p
m

(f) {pm}2
m=1

Figure D.3: Representation points, γCm , thresholds, γTm for CAS set to C,
and accumulated region probability pm. Found by simple algorithm(left
column), complex algorithm(right column), M = 2.
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Figure D.4: Representation points, γCm , thresholds, γTm for CAS set to
N (dash-dotted), S(dashed) and C(solid), and accumulated region probabil-
ity pm. Found by simple algorithm(left column), complex algorithm(right
column), M = 1.



136 Appendix D: Regions and representation points



Appendix E

Original images

Three images where used during the simulations. The original 512 × 512
images are presented in Figure E.1, Figure E.2 and Figure E.3.
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138 Appendix E: Original images

Figure E.1: Original image “Lena”
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Figure E.2: Original image “Goldhill”



140 Appendix E: Original images

Figure E.3: Original image “Bridge”
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