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Summary

The work describes useful approaches to applying the Internet in
electrical metrology and calibration.

The work comprises several approaches to Internet-enabled metrology,
including running remote measurements and remotely operating
instruments. The author proposes new ways of developing Internet-
enabled instrumentation systems, focusing on increasing the availability
while preserving the security.
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Abbreviations

AC Alternating Current
ACI AC Current
ACV AC Voltage
DC Direct Current
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DCV DC Voltage
DLL Dynamic Linking Library
DMM Digital Multimeter
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RS-232 Recommended Standard 232
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Definitions

Metrology ”the science of measurement - set of operations having the object
of determining a value of a quantity”[1]

Calibration ”set of operations that establish, under specified conditions,
the relationship between values of quantities indicated by a
measuring instrument or measuring system, or values represented
by a material measure or a reference material, and the
corresponding values realized by standards”[1]

Traceability ”property of the result of a measurement or the value of a
standard whereby it can be related to stated references, usually
national or international standards, through an unbroken chain
of comparisons all having stated uncertainties”[1]
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Chapter 1

Introduction

1.1 Present work

1.1.1 Background

Every day, thousands of electrical instruments are transported between labora-
tories across the world. Some of these instruments are transported to calibration
laboratories to be calibrated, which means checking their measuring capabilities
against high-precision standards. This process has several disadvantages. First,
the instruments are calibrated in an environment different from their normal
conditions, which means it is difficult to tell how they perform when returned
to the owner. Second, the instruments are often influenced by transport in a
non-predicting way, resulting in increased uncertainty in the calibration result.
Third, the instrument is often out of operation for several weeks, which could be
very expensive for the owner.

The metrology community has therefore started to look at ways of
disseminating calibration values from the calibration laboratories to the
instruments, so that the latter could be calibrated directly in the owners’
laboratories. Since most instrumentation today is computer-based, it is a natural
extension to include the Internet in the instrumentation systems. If developing
computer systems that could control and run calibration processes from remote,
it would allow accredited operators to perform calibrations from their own office.
This work will discuss new ways of utilizing the Internet to achieve this . There
are several challenges, concerned with security, accessibility, dissemination of
calibration values, user trust and user training.

The main goal of this work has been to look for new ways of utilizing the
Internet in the metrology community. The world is getting more connected, and

1
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it is important that the community try and utilize new technologies to increase
the quality of their work. As will be seen, there is a potential to allow for higher-
precision calibrations than are available today, by including the Internet in the
process.

In 2002 the University Graduate Center at Kjeller (UniK) [2] and Juster-
vesenet (JV) [3] agreed to engage in a joint research project regarding applying the
Internet to electrical metrology and calibration. Justervesenet was just starting to
investigate the possibilities of integrating the Internet in electrical measurements,
and they needed partners with knowledge in the area. UniK, experienced in the
Internet-enabled metrology field [4],[5],[6],[7],[8],[9],[10],[11],[12],[13], was looking
for partners to co-fund Ph.D. scholarships for their students. The working title
of the current project was ”Applying the Internet to Electrical Metrology and
Calibration”.

1.1.2 Motivation

As the author of this work it is appropriate to state the reasons for choosing
the current subject for my Ph.D. thesis. I have a background in physics and
information technology, and I am greatly interested in how the Internet can be
utilized to solve everyday tasks in new and practical ways. Through the Ph.D.
scholarship above, I was given the opportunity to explore how the Internet may
be utilized in the metrology community. This was a great way of combining my
background with my interests in the Internet. I also find the interface between
the physical and virtual reality very interesting.

Justervesenet wanted to look at effective and secure ways to integrate the
Internet in electrical metrology and calibration. Being a National Metrology
Institute (NMI), Justervesenet is the leading and highest-level measurement and
calibration authority in Norway, and they perform a number of calibrations each
year. There is potential to reduce the costs and increase the measurement quality
by utilizing the Internet in this process.

Each of Justervesenet’s customers need to calibrate different kinds of electrical
devices on a regular basis. This process requires the transport of these devices
from the customers to Justervesenet, where the calibration process is performed.
This way of doing measurements and calibrations introduces uncertainties at
several levels. The benefits of integrating the Internet in the process can be seen
in the list on page 16.

There is a growing trend to integrate the Internet in the metrology field all
over the world. Justervesenet wanted to look at a more general approach to
Internet-enabled metrology as well, not limited to Internet-enabled calibration.
Different solutions were considered with regard to general remote instrument
operation.
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1.1.3 Summary

The current work has focused on implementing experimental instrumentation
systems, which could solve different metrology tasks. Three instrumentation
systems have been developed, comprising different functional parts. The systems
have been compared with existing systems. Different means of communicating
via the Internet have been investigated. The work also includes several solutions
for instrument operation, either directly, or indirectly via measurements.

A lot of the work has been experimental, and much time has been put into
implementing or modifying different system requirements. The focus has been
on developing practical and smart guidelines that may be used by other NMIs
when integrating the Internet into the instrumentation systems.

The output of the work has been a new way of performing Internet-enabled
calibrations, which has a lot of potential if a well-suited way of disseminating
calibration values is found. Compared to other similar systems, the current
work has focused on availability, scalability and security. Nearly all laboratory
computers may be used with the system, as long as an Internet-connection is
available.

iMet v.1.0

The first system, iMet v.1.0, was developed with Internet-enabled calibration in
mind. It allows an operator at Justervesenet to control a calibration process
directly at one of its customers, as described in Fig. 1.13.

Traditional Internet-supported measurement systems are not able to solve this
task, because they do not allow outside-personnel to communicate with electrical
equipment protected by firewalls or proxy servers in a general way. New ways
of bi-directional Internet-communication through computer network protection
systems have been investigated.

Some firewalls and dedicated proxy servers only allow clients on the inside to
communicate over the Internet using the HTTP protocol. The HTTP protocol is
by nature asymmetric, and it is traditionally used in a request-response scenario,
e.g. for requesting a web page from a server. Using Microsoft .NET, a new
communication channel was set up, allowing bi-directional HTTP traffic. This
allowed two LAN computers, separated by the Internet, to communicate via a
public web server, and solved many of the challenges concerned with controlling
a calibration process remotely in a general way.

The iMet system v.1.0 is presented in chapter 2.
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Comparison with other systems

The first version of the iMet system, was compared with NPL’s system for
Internet-enabled calibration. A comparison study was performed at NPL in
Teddington, England, in December 2004. The two systems were tested and
compared using the list in 1.7, which in large was created during the comparison.
The results of the comparison revealed both differences, e.g. in area of use and
role of the operator, and similarities, e.g. hardware interface support.

The comparative study is presented in chapter 3.

iMet v.2.0

The second version of the iMet system was developed with the comparison study
in mind. Some weaknesses of the system needed attention, and several areas for
potential improvement had been identified. The new system was increasingly
focusing on a dynamic approach to performing calibrations and measurements.
Measurements no longer had to be preinstalled, but could be downloaded from a
dedicated database server. This made the system increasingly more scalable, as
new measurements could be added to the system without the need for a system
recompilation or restart.

This system is presented in chapter 4.

Joint project with NPL

The latest system is the result of a joint effort by Justervesenet and NPL to
develop a highly adaptable instrumentation system, which automatically adjusts
to the equipment in use. As for iMet v.2.0, new measurement procedures are
added to a database. The main difference is that support for new equipment
may be added to the database as well. This means that the system may be used
to run any measurement or calibration routine using any PC-connected device.

There was a need to develop a system that could communicate with
instruments over non-standard hardware interfaces. The software, linking the
control application and the hardware interface drivers, has been made available
from a dedicated database server. This allows the control application to add
support for new and non-standard hardware interfaces at runtime, with no prior
knowledge of the hardware, and the system is thus very scalable.

This system is presented in chapter 5.

Presentations and articles

The systems above and the comparative study have been presented at several
workshops and conferences:
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• Workshop on Internet-Supported Measurements - Future Solutions, Kjeller,
Norway, 21 April 2004

• Workshop on Middleware Development, Norwegian Defence Research
Establishment (FFI), 4 June 2004

• Conference on Precision Electromagnetic Measurements, London, UK, 27
June - 2 July 2004 [14]

• International Workshop: From Data Acquisition to Data Processing and
Retrieval, Ljubljana, Slovenia, 13-15 September 2004 [15]

• NMIJ-BIPM Workshop on the Impact of IT in Metrology, Tsukuba, Japan,
16-20 May 2005, [16]

• VII Advanced Mathematical and Computational Tools in Metrology
(AMCTM 2005) Conference, Caparica, Portugal, 27-29 June 2005, [17]

• 2006 IEEE International Conference on Virtual Environments, Human-
Computer Interfaces and Measurement Systems, La Coruña, Spain, 10-12
July 2006, [18]

The following articles have been published of accepted for publication:

• IMet - A Secure and Flexible Approach to Internet-Enabled Calibration at
Justervesenet [19]

• A Dynamic Instrumentation Framework for Remote Operation of PC-
Connected Devices [20]

• A Secure Approach to Distributed Internet-Enabled Metrology [21]

• Internet-Enabled Calibration: An Analysis of Different Topologies and a
Comparison of Two Different Approaches [22]

1.1.4 European survey on ICT tools usage

In 2005, a survey was conducted to find the current status of ICT tools usage in
European National Metrology Institutes under the iMERA project [23] funded
by the European Commission. The results will be used to decide where to put
efforts in order to increase the degree of ICT compatibility between the NMIs.
In the future, it will be important for the different NMIs to communicate and
collaborate in a seamless way via the Internet. It is also necessary for the NMIs
to coordinate their research work.

Parts of the survey are presented in Appendix A.
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1.2 Previous work

Several NMIs and calibration laboratories have worked in the area of Internet-
enabled metrology. The following is a list of historical and ongoing projects for
some of the largest NMIs in the world (the list can also be found in [24]):

• National Physical Laboratory (NPL[25]):

– iPIMMS: Radio frequency (RF) impedance measurement system
for calibration vector network analyzers against primary standard
artifacts [26]

– iVR: Voltage and resistance measurement system for calibrating
secondary standard voltage sources and resistors against the Fluke
4950 multi-function calibrator, used as a highly characterized transfer
standard [27]

– iCOLOUR: Visible spectrum reflectance/color measurement system
for calibrating spectrophotometer color measuring systems against
standard tiles of known reflectance [28]

– iOTDR: Optical time-domain reflectometer (OTDR) measurement
system for calibrating OTDR devices against standard optical fiber
artifacts [29]

• National Institute of Standards and Technology (NIST[30]):

– SIMnet: the use of Internet-enabled Metrology in inter-laboratory
comparisons in the Inter-American Metrology System (SIM) [31]

– MeasureNet: The same technology used in SIMnet has also been
used in MeasureNet since 2000 to support training and collaboration
between NIST and State weights and measures laboratories [32]

– Electrical calibration: Also since 2000, the Internet-enabled calibra-
tion capability used in SIMnet has been used to provide a remote
calibration service to a few of NIST’s customers, specifically for on-site
calibration of multi-function calibrators using traveling digital multi-
meters (DMMs) [33]

– Dosimetry calibration services: In the e-calibration service, the user
logs into the NIST-supplied program resident on their PC. This local
program sends a request to the NIST server for authorization. The
local program gets approval from the server then provides the user
with instructions and stores data as acquired. Upon conclusion of
the session, an encrypted log of the calibration data is transferred
to the NIST server and a provisional certificate is sent to the user.
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Calibration session spectra and data are evaluated by NIST staff; and
a final certificate is prepared, signed and sent electronically to the user
[34]

• Physikalisch-Technische Bundesanstalt (PTB[35]):

– Coordinate measuring machine calibration and monitoring [36]

– Electrical calibration [37]

– Collaboration with NPL on AC Josephson voltage standard [38]

– Tele-calibration for the Primary High-Pressure Natural Gas Standard

– Potential collaboration with NMIJ

– Audio and video communication

– Web-based data acquisition, storage and access

– Internet security

• Nederlands Meetinstituut (NMi[39]):

– Internet-enabled maintenance of a self-calibrating electrical calibrator

• National Metrology Institute of Japan (NMIJ[40]):

– Josephson standard

– Time and frequency

– Optical frequency

– Length

– AC-DC difference

– Radioactivity

– Coordinate measuring machines

– Temperature

– Pressure

– Flow
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1.3 Historical background

1.3.1 Personal Computers in Metrology

Early instrumentation systems required the operators to manually operate
the instruments, and the measurement process was often tedious and error
prone due to human interaction when setting up the equipment, entering data
input, reading data output and handling errors. In the mid 1970s, a few
companies started developing specialized hardware interfaces and equipment,
which enabled scientists to connect electrical laboratory equipment to regular
personal computers (PCs) as seen in Fig. 1.1. The instrument operators no
longer had to use the physical knobs and displays on the physical instruments,
but could utilize the computing power and display capabilities of PCs.

Fig. 1.1: The introduction of personal computers in the metrology field. From operating
each instrument manually, the operator now could operate many instruments via one
PC.

Hewlett-Packard[41] developed the Hewlett-Packard Instrument Bus (HPIB)
card, later named the General Purpose Interface Bus (GPIB[42]) card, which
has become the world-leading bus1 in the instrumentation field. In the following
years many PC-based instrumentation solutions were developed, including new
instrumentation buses, hardware cards and instruments. The trend today is to
use a PC as an instrument controller, and to standardize the interface between the
instruments and the PC. New stand-alone instruments quite often also support
standard PC buses like Universal Serial Bus (USB[43]) or Ethernet[44], which are
common buses on most regular PCs.

1An instrumentation bus is a collection of wires, that connects a computer to peripheral
instruments or interconnects modular instruments.
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Bridge technology also enables e.g. GPIB instruments to be connected via
standard USB. An instrumentation bridge acts as a relay between different
instrument buses, so that they may be connected to the same, common PC bus.
This process is shown in Fig. 1.2.

Fig. 1.2: Bridge technology enables instruments with different instrument buses to
connect to the same, common PC bus.

1.3.2 Instrument bus technologies

For more than twenty years, the measurement community has regarded the
GPIB bus as the leading instrument bus, due to its robustness and simplicity.
However, it is not integrated in new PCs, and costly hardware cards are needed
to be able to communicate using this interface, if not using some kind of
hardware bridge (which can also be costly). Although the number of stand-
alone instruments using GPIB is quite large, newer equipment quite often comes
with an alternative interface, like USB, IEEE 1394 (Firewire[45]) or Ethernet.
Other types of instruments, so-called modular instruments, use integrated buses
like VME Extension for Instrumentation (VXI[46]), which is based on the Versa
Module Eurocard (VME) bus, and PCI Extension for Instrumentation (PXI[47]),
which is based on the Peripheral Component Interconnect (PCI) bus. These
buses are integrated into a rack of instruments, which enables fast and reliable
inter-instrument communication.

The following is a summary of the most common buses for stand-alone
instruments:

• IEEE 488
This bus was initially called the Hewlett-Packard Instrument Bus. It is a
digital 8-bit parallel communications interface with data transfer rates up
to 1 MB/s. Up to 15 instruments and a controller, usually a PC, may use
one GPIB bus. The GPIB bus specification has been extended three times
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Fig. 1.3: The structure of the GPIB standards. IEEE 488.1 was the first specification,
describing technical bus features. IEEE 488.1 addressed problems that had arisen in
the original IEEE standard, and standardized the instrument communication protocol.
SCPI further standardized the IEEE 488.2 command set.

as seen in Fig. 1.3. GPIB cables and connectors can be fully screened and
may be used in most environments.

• RS232[48]
RS-232 is a standard for serial binary data exchange, and was originally
developed to interconnect a data terminal with a modem. Though gradually
replaced by the more popular USB bus, the standard is still quite common
in the instrumentation field.

• USB
This is a fast serial bus integrated in most new computers and laptops, in
contrast to IEEE 488 and RS232. USB 1.1 has a transfer rate of up to
1.5 MB/s, while the newer USB 2.0 has a maximum transfer rate of 60
MB/s. USB cables are generally not screened, and are not suited for all
environments.

• IEEE 1394
This is a high-performance serial bus, supporting transfer rates of up to
800 Mbps. It is not as often integrated in new PCs as USB, and the cables
are not screened. IEEE 1394 differs from USB in that there is an existing
protocol defined for controlling instruments over the IEEE 1394 bus.

• Ethernet
Recently, instrument manufacturers have started to include Ethernet
connections in their stand-alone equipment. Ethernet connections are found
in most PCs, and the maximum transfer rate is 1 Gbps. Due to the existence
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of Ethernet networks in most instrumentation companies, this means that
Ethernet equipment could easily be integrated, though security measures
must be taken.

The most common buses for modular instruments can be summarized as
follows:

• VXI
VXI was the first attempt to standardize instrumentation systems for use
in the industry. Its goals were among others increased interchangeability
and system throughput, and decreased size and costs.

• PXI
PXI is a rugged, high-performance, and inexpensive deployment platform,
based on the PCI bus, for measurement and automation systems. It is used
for integrating modular instruments from different vendors and integrate
them in one PXI system, with integrated timing and synchronization
resources.

1.3.3 Virtual instrumentation

When PCs entered the instrumentation field, the measurement processes could be
set to run automatically without human interaction. This reduced the error rate
concerned with data input and output, and traditionally tedious measurement
processes could be run more rapidly. Virtual instrumentation is a joint description
for software used to control and communicate with physical devices and to handle
the data acquired from them. Data handling includes acquiring, performing
calculations on, presenting and storing the data. As the PCs became more
common, the so-called virtual instruments were introduced.

A virtual instrument is a piece of software running on a PC, which acts
on behalf of a real physical instrument, and the user of the virtual instrument
may use it as if it were the real instrument. The virtual instrument handles all
communication between the user and the physical device. The concept is shown
in Fig. 1.4. Virtual instruments may also emulate the behavior of physical
instruments.

Early challenges

From the beginning, virtual instrumentation introduced a few technical chal-
lenges:

• Proprietary and non-standardized hardware interfaces required users to
install hardware cards in the PC for each instruments to operate
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Fig. 1.4: The concept of a virtual instrument. The instrument operator may use the
virtual software instrument as if it was the real instrument. The communication with
the real instrument is hidden from the operator, and is handled by the underlying
software.

• Professional programmers were needed to develop the virtual instruments

• Great variety of instrument command sets prevented code reuse

Today most PC-connected instruments can be set to communicate over standard
PC interfaces, either directly or by using bridge technology, though there still
are some older instruments using proprietary hardware interfaces. The use of
standard PC interfaces simplifies the process of connecting new equipment to a
PC without the need to open its cover to insert a hardware card. It also permits
laptops to be used, which often have little room for additional hardware cards.

A lot of work has been done in the software development tool area, with special
focus on usability and functionality. The programming of virtual instruments
may be done using graphical programming tools, like National Instruments’[49]
LabVIEW[50], which means that scientists, without special programming skills,
may create quite complex virtual instruments relatively quickly. An example is
shown in Fig. 1.5. There are also good solutions for people who are more used to
textual and object-oriented programming languages. An example using Microsoft
C#[51] (pronounced ”C Sharp”) is shown in Fig. 1.6.

As to the great variety of instruments command sets, there is a trend
towards trying to match similar functionality with similar commands. The
SCPI Consortium[52] has developed the Standard Commands for Programmable
Instrumentation (SCPI[53]), which is a standardization of common instrument
commands. An example is the string ”*IDN?” for acquiring instrument
identification.
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Fig. 1.5: The LabVIEW programming language. Programming flow is represented by
lines (left to right).

Fig. 1.6: The C# programming language. Programming flow is represented by text
lines (top to bottom).

Virtual Instrumentation Software Architecture

A common problem with traditional control applications is that low-level
driver communication happens directly in the control application. This
becomes a problem when adding new hardware interfaces to the system, which
requires the control application to be rewritten. The Virtual Instrumentation
Software Architecture (VISA[54]) solves this problem, as it takes care of
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the bus communication. That is, it provides a programming interface
between the hardware and several development environments like LabVIEW[50],
LabWindows/CVI[55], Measurement Studio[56], Microsoft Visual Studio[57],
and Sun’s Java[58]. This process is shown in Fig. 1.7. VISA comprises
GPIB, VXI[46], PXI[47], RS232, Ethernet, and USB interfaces. Using VISA,
a programmer may choose between several programming languages, develop the
control application, and then operate instruments without ever knowing how the
bus driver works.

Fig. 1.7: The Virtual Instrumentation Software Architecture enables a control
application to communicate over several instrument buses. The user develops the control
application and high-level device drivers.

1.3.4 The introduction of the Internet

The introduction of the Internet during the 1990s enabled people to communicate
digitally over long physical distances. This communication can be done in a fast
and secure way, and today a lot of services are available to the public. These
include text chat, video conferencing, IP telephony, document collaboration and
online gaming. When including the Internet in metrology, several benefits are
obtained compared to traditional metrology:

• fast transfer of measurement results and control signals over long physical
distances

• physical separation of expertise and equipment

• online availability of measurement results

• online availability of measurement procedures
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• sharing and reuse of resources (equipment, expertise)

• consistent measurement procedures

1.4 Metrology and calibration

Calibration within the metrology field deals with determining the correctness of
measured values. To be used in real measurements, an electrical instrument
periodically needs to be calibrated against known standards. The values
measured or generated by the instrument must be traceable to values with known
uncertainties, which means determining how much the instrument reading is
in error by checking it against a measurement standard of known error. The
calibration gives information about the error of the equipment with respect
to the accepted reference value. Usually the instrument is sent to a National
Measurement Institute (NMI) or a calibration laboratory, where the instrument
is calibrated.

A calibration performed at an NMI is of the highest level of accuracy. Usually,
calibration laboratories calibrate their equipment at an NMI.

The calibration uncertainties make up a hierarchical tree, as seen in Fig. 1.8,
with the uncertainty increasing downwards.

Fig. 1.8: Traceability. The values measured or generated at the customer are traceable
to the calibration laboratory’s values, which again are traceable to the NMI’s standards.
The uncertainties increase toward the customer.
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1.5 Internet-enabled metrology and calibration

The traditional way of performing calibrations is to send the Device Under Test
(DUT) to a calibration laboratory where the calibration takes place. This is
shown in Fig. 1.9. In recent years the international metrology community
has started to explore the possibilities of remotely monitoring and controlling
measurements and calibrations via the Internet [59, 60, 61, 62].

When performing remote calibrations, a calibrated transfer standard is first
transported to the DUT as shown in Fig. 1.10. Both the standard and the DUT
are then connected to a PC, which again connects to the Internet. The calibration
process may be controlled or monitored in many ways. The operator may either
be co-localized with the instruments, or separated from them by a network.

The advantages of running calibrations in such a way are many:

• The DUT is calibrated in its working environment, thus lowering the total
calibration uncertainty

• The DUT is out of operation for a much shorter period than for traditional
calibrations, which is often critical for the owner of the DUT

• The effects of transporting the transfer standard are often much better
understood than the effects of transporting the DUT

• If a suitable transfer standard is found, a much better cost to accuracy ratio
is obtained

• The DUT owners usually get more involved in the calibration process, which
may be a benefit for their normal laboratory work
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Fig. 1.9: Traditional Calibration. A DUT is sent from each customer to the NMI (or
calibration laboratory). The calibration process is then controlled by NMI personnel.
When the process is finished, the DUT is returned to the customer.

Fig. 1.10: Internet-Enabled Calibration. A transfer standard is sent from the NMI
(or calibration laboratory) to a customer. The calibration process is then controlled
by NMI personnel via the Internet or by skilled personnel at the customer. When the
process is finished, the transfer standard may be sent to another customer or returned
to the NMI for recalibration.
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1.6 System architectures and network topologies

There are normally three different system architectures that can be used for
instrument operation and remote calibration:

1. The operator and instruments are located at the same local area network
(LAN) computer connected to the Internet. The measurement control
application may be downloaded from a public server or it may be
preinstalled on the instrument computer. Measurements may sometimes be
downloaded in the form of software routines from the same public server.
See Fig. 1.11.

2. The operator uses a LAN computer while the instruments are connected to
a public web server or a computer with easy access to a public web server.
This architecture is quite useful when setting up online laboratories. See
Fig. 1.12.

3. The operator and the instruments are located at different LAN computers
separated by the Internet. Instrument control commands and measure-
ments may be sent from the operator to the instruments via a dedicated
relay server. Architecture 2 and 3 are similar in that the operator and
instruments are separated by the Internet. The latter architecture is more
complex due to the instrument-side firewall or proxy server, which only
support outbound connections. See Fig. 1.13.

The architectures mentioned have different advantages and disadvantages.
Most of todays Internet-enabled measurement or calibration systems belong

to the first two architectures. The third architecture, which is the focus of this
work, is not so common, due to the challenges associated with accessibility and
security.

Some systems exist for the third architecture, but often some network
configuration is needed, like adding new firewall rules, adjusting proxy
server settings or changing Network Address Translation (NAT) configurations
(effectively changing it to a architecture 2 system). For more information about
network security components, see Appendix B. Few companies are interested in
opening up firewalls, or configuring proxy servers or NATs, to enable the use of
Internet in metrology.

The reason why some network configuration is necessary is that most firewalls,
proxy servers and NATs only support outbound network connections. This means
that two computers behind different firewalls are unable to communicate directly.
Often proxy servers limit which communication protocols are allowed to be used,
thus making the inter-communication even more challenging.
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1.6.1 Architecture 1 - LAN A to LAN A

Type 1 architecture is quite robust to unstable network connections since the
instrument communication is done locally. The instrument communication is
also very fast. However, this architecture requires the operator to travel to the
instruments to control them.

Many Internet-enabled calibration systems use this architecture type [26], [29],
[34]. An application is either downloaded from a dedicated server, or individual
measurement procedures are downloaded to a preinstalled control application.

The security of the system is dependent on the ability to securely authenticate
the database server and the customer, secure the data traffic between them, and
to validate the data downloaded from and uploaded to the database server.

Fig. 1.11: Architecture 1. The operator sits at the LAN computer where the
instruments are connected. A database server can be accessed in order to download
measurement procedures and historical data or to upload measurement results.
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1.6.2 Architecture 2 - LAN A to server

Type 2 architecture promotes the use of very thin clients (often a regular web
browser is enough on the client side), thus little needs to be installed on the client
computer before using the system. Since the instruments need to be connected
to a dedicated web server, this architecture is not suitable for general instrument
operation (most instruments are connected to regular LAN computers behind
strict firewalls). For direct instrument control the communication is dependent
on the available bandwidth.

The security challenges for this system is quite similar to architecture 1. In
addition, the instrument server needs to be authenticated. The instrument server
also needs extra security routines to limit access to the connected instruments.

Fig. 1.12: Architecture 2. The operator sits at a LAN computer while the instruments
are connected to a dedicated instrument server. A database server can be accessed
in order to download measurement procedures and historical data or to upload
measurement results.
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1.6.3 Architecture 3 - LAN A to LAN B

Type 3 architecture enables users to remotely operate instruments anywhere,
as long as the instruments are connected to a computer connected to the
Internet. There is also no need for the operator to travel to the instruments
to control them, thus third-party experts could easily take part in the control
process. However, this architecture can be sensitive to unstable network traffic
and network congestions, since persistent connections are often needed when
doing direct instrument control. Direct instrument control is dependent on the
bandwidth available, and the occurrence of long delay times may distract the
operator.

The security challenges of the system is quite similar to architecture 2. In
addition, the instrument computer must be able to authenticate the operator
and vice versa.

Fig. 1.13: Architecture 3. The operator sits at one LAN computer while the
instruments are connected to another LAN computer. The LAN computers are
separated by the Internet, and generally located behind several network security entities
like firewalls and proxy servers with network address translators (NATs). A database
server can be used to store measurement procedures, measurement results and historical
data. The relay server is used to enable the instrument computer and the operator’s
computer to communicate.
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Of the three architecture types presented, only types 1 and 3 seem suitable
for Internet-enabled calibration, since type 2 requires the setting up and
configuration of a dedicated server for each instrument to be calibrated.

The database server, accessible to all users of the systems, enables the
operators to work from anywhere. It is also responsible for the consistency of
the system.

1.7 Planning a system

Before developing systems used for Internet-enabled calibration, several areas
need to be addressed by a national metrology institute (NMI) or a calibration
laboratory.

Important parts of an Internet-enabled calibration system include the involved
companies, the system users, the system maintainers, the electronic data
transferred across the Internet, and the physical system components.

Regarding the users, its important to identify who will use the system and
where they will be located. This will affect several aspects of the whole system,
including usability, configuration capabilities, communication complexity, and
security.

If the system will be further developed and improved in the future, e.g. adding
support for new measurement procedures, it should be designed for maintenance.
The people responsible for maintaining the system should be equipped with easy-
to-use development tools.

The sensitivity of the data transferred across the Internet, such as personal
information, calibration data or measurement procedures, will affect the level
of security required, like choice of communication protocols, cryptographic
techniques, key lengths and security policy.

It is also necessary to decide upon what kind of hardware resources, e.g.
computers and instruments, will be involved, so that sufficient security and
protection procedures are built into the system. When expensive equipment
is used, potential hackers could be more attracted to compromising the security
of the system.

The following is a list based on experience from work done by JV and NPL
when comparing their systems, iGen and iMet. This comparison is presented in
chapter 3. More work could be put into systematizing the list in the future, to
enable more general comparisons of Internet-enabled instrumentation systems,
perhaps using Common Criteria to specify security requirements. As for the JV-
NPL comparison, the list seemed good enough to compare the two systems in
question.
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1. The operator
A decision needs to be made about who should be the operator: in-house
experts, third-party experts, or maybe the customer?

2. Operator localization
This means choosing between one of the three architectures previously
discussed. For Internet-enabled calibration this usually means type 1 or
3, as explained in 1.6.3.

3. Usability
The usability of the system is dependent on who should be the operator.
Should anyone be able to use the system, or will user training be needed?
Should it be a system for experts? What is the level of complexity?

4. Operator interaction
What degree of user interaction is required by the system? Should the
operator always initiate and be in control of a process, or could the system
be self-driven?

5. Configuration
Often, addresses on the Internet change, and sometimes new communication
protocols are needed. Will the system be developed with some kind of
configuration possibilities? Can the system be configured using text files,
or will the configuration be hard-coded in the assembly (need to recompile
for every change made)?

6. Data handling
Should data produced in the measurements be analyzed right away, or
should it just be stored for future analysis? Should the analysis be done
manually or automatically?

7. Security
The system owner must have a clear understanding of who should be
authorized to use the system. If the data generated by the system is
sensitive, it should be encrypted.

8. Availability
Should the system always be up-and-running, or will there be downtimes?
The system functionality often depends on the stability of the network
conditions. Does the system work from all LANs, or is involvement from
network administrators necessary? On which type of software platform
should the system be able to run? (E.g. Windows, Linux or Mac)
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9. Development
Will it be easy to develop and test new calibration routines, or are software
experts needed? Should the system be static, or will it be necessary to add
extra functionality to the system?

10. Scalability
Will new calibration routines be added to the system? Will this be done
while the system is running, or must the system be shut down? A decision
needs to be made about which hardware interfaces should be supported
and what equipment will be connected. Will it be necessary to add
new hardware interfaces or equipment? Must the system support several
concurrent users?

The answers to these questions may be used to describe the system
requirements. Where available, standardized solutions should be used. It is
important to involve different people in the process, like managers, users, IT
administrators and the people responsible for maintenance. This way, different
perspectives of the same issues can be used to ensure and optimize the qualities
of services offered to the customers.



Chapter 2

The iMet system v.1.0

This chapter presents the first version of the iMet system. A
secure and firewall-friendly communication channel has been
utilized to enable bidirectional communication between two hosts
separated by the Internet. While the instruments are connected to
only one of them, measurement procedures may be implemented
and run on both hosts.

2.1 Background

Many solutions for remote operation of instruments exist today. Common to
most of them is that the instruments are connected to a server [59], [60],
[61], [62], [63], [64], [9], [10]. As will be seen in chapter 3, some systems co-
locate the operator and the instruments on a LAN computer, while instrument
information, procedures and measurement data are exchanged with a dedicated
server [26], [65]. Few systems exist that allow the operator and instruments
be to be separated, without one of them being located at a dedicated web
server. The exceptions found, e.g. [66], use symmetrical protocols, like TCP,
thus enabling full-duplex channels between operator and instruments. Direct
TCP communication is often not allowed through some firewalls or dedicated
proxy servers.

2.2 Introduction

The first version of the iMet system is illustrated in Fig. 2.1. It was designed to
allow a person to remotely operate and monitor instruments at remote locations,
e.g. another LAN. To the operator, the instruments seemed locally connected.

25
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A viable application is Internet-enabled calibration, as described in 1.5 using
the architecture given in 1.6.3, where skilled personnel at an NMI control and
monitor the calibration process directly at a customer’s laboratory.

The calibration procedures were implemented to run locally at the customer’s
computer, but the NMI personnel were also allowed to send individual instrument
commands to operate the instruments directly.

Fig. 2.1: The architecture of the iMet system v.1.0. Personnel at an NMI (JV) may
operate instruments and control calibration processes remotely at the customer’s site.
The Internet Information Services (IIS) Web Server is responsible for relaying the inter-
client communication. The database is used to store historical data, measurement
configuration data, customer information, and, potentially, certificates of calibration.

2.2.1 Security issues

Responsive, bidirectional and secure communication between two PCs, located
on different LANs separated by the Internet, is challenging. The Internet is an
open network, which allows general insight into all the traffic flowing between the
connected computers. When dealing with Internet communication, it is therefore
important to have focus on security.

A lot of work has been done on Internet security in recent years, and
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several security recommendations have been proposed for dealing with Internet-
connected systems. Common Criteria [67], Misuse Cases [68] and Attack Trees
[69] are different approaches to testing the security and specifying the security
requirements of IT systems. The iMet system is currently being tested using the
latter.

Traditionally there have been three basic security services: confidentiality,
integrity, and availability. X.800 [70] is a security recommendation, which
adds: authentication, access control, data confidentiality, data integrity, and non-
repudiation.

An explanation of each service is given below.

• Confidentiality
Make information non-interpretable to unauthorized users

• Integrity
Prevent unauthorized altering of information, and provide detection
mechanisms.

• Availability
Prevent unauthorized blocking of information, e.g. Denial-of-Service (DoS)
attacks

• Authentication
The receiver and the sender of data can both prove their identity.

• Access control
Protect against unauthorized use of resources (communication resources,
information resources, processing resources) or all accesses to a resource.

• Non-repudiation
The recipient of data is provided with proof of the origin of data, while the
sender of data is provided with proof of delivery of data.

The security services mentioned only define what needs to be addressed to
increase the security of the system. The following list describes concrete tools
which can be used to obtain the security services.

• Encipherment
Provides confidentiality of traffic flow. There are two types of reversible
(encryption/decryption) encipherment, also shown in Fig. 2.2:

– Symmetric or secret key encipherment
Sender and receiver share a secret key used for encipherment and
decipherment
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– Asymmetric or public key encipherment
Two different keys (private and public) are used for encipherment and
decipherment

• Digital signature mechanisms

– Signing a data unit

– Verifying a signed data unit

• Access control mechanisms

– Use of authenticated identity of an entity to determine access rights

– Use of access control databases to maintain entity access rights

– Access rights based on time of access, route of access and duration of
access

• Data integrity mechanisms

– Sender generates a cryptographic check-value associated with the data,
and the receiver regenerates the check-value and compare them when
receiving the data

– Use of sequence numbering, time stamping and secret keys to prevent
misordering, losing, replaying, inserting or modifying data

• Authentication exchange mechanisms

– Use of username and password

– Use of cryptographic techniques

– Use of digital signatures

– Use of characteristics of the entity

• Traffic padding mechanisms

– Provide protection against traffic analysis

• Routing control mechanisms

– Route data based on content, labels, sender or receiver

• Notarization mechanisms

– Use of third-party notary, trusted by all parties, to ensure integrity,
origin, time and destination of data
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Fig. 2.2: a) Symmetric and b) asymmetric encryption. Symmetric encryption is used
to gain confidentiality and integrity. Asymmetric encryption can be used to obtain
confidentiality and integrity, when encrypting with the public key, and authentication
and non-repudiation, when encrypting with the private key.

Confidentiality and integrity are obtained by encrypting the data exchanged.
Authentication and non-repudiation are obtained by using digital signatures or
credentials like username and password. As we shall see later, authentication
of persons is somewhat standardized, as opposed to equipment authentication,
which can be quite difficult. Access control is applied after an authentication
process, to establish the authorization level of the authenticated person. By
using standard, firewall-friendly communication protocols and standard ports,
thus allowing authorized users to access the system, even behind strict firewalls,
the availability of the system may be increased. Preventing DoS attacks is beyond
the scope of this work and will not be treated here.

Probably the most crucial aspect of the system security, is providing
information and education to all system users about using cryptographic services
and especially handling cryptographic keys. It is important that all users are
aware of which procedures to follow when using the system.
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2.3 Middleware

2.3.1 Object-oriented middleware

The current work has focused on finding efficient and secure software solutions
to the third architecture described in 1.6.3. This means allowing two Internet-
separated LAN computers to inter-communicate in a fast and secure way.
To provide direct method invocation between network-separated application
domains, the use of so-called middleware simplifies the process of transferring
information about the method call over the network. Object-Oriented
Middleware (OOM) is a communication technology, which enables data objects
to communicate across networks.

There are several OOM technologies available, including among others
CORBA [71], Java Remote Method Invocation (RMI) [72], and Microsoft .NET
Remoting [73]. These technologies use interface-based method invocation over
Transmission Control Protocol/Internet Protocol (TCP/IP) networks. They act
as black boxes to the users, and handle all network-related issues involved in the
method invocation process. Fig. 2.3 shows a general OOM architecture.

For all three OOM technologies mentioned, the following applies. After
setting up a connection to a remote server, the client has access to a local
proxy representation of the remote server object. This object proxy has the
same interface as the real server object. When calling a method on the object
proxy, the method call is automatically transferred across the Internet by the
underlying middleware layer to the real server object. This way the client may
use the remote server object as if it was local, as shown in Fig. 2.3. When two
clients are connected to the same remote server object, inter-client communication
is possible.

2.3.2 Two-way method invocation

Direct communication between two Internet-separated LAN computers is often
prohibited due to intermediate firewalls and proxy servers. Firewalls often only
allow out-bound connections from internal LAN clients, and they often restrict
the external addresses and ports to connect to. Application-level firewalls may
also restrict the protocol in use, e.g. only HTTP connections on external port
80 (HTTP) or 443 (HTTPS). Proxy servers act on behalf of the internal clients,
so that no direct connection can be made from an internal client to an external
server. Instead the proxy server connects to the server on behalf of the client.
This process is shown in Fig. 2.4.

A client’s choice for connecting to the Internet may sometimes be restricted to
using HTTP on external port 80 or 443 via a proxy server. This means, the client
is invisible to external parties (they can only see the proxy server or firewall).
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Fig. 2.3: General object-oriented middleware architecture. The communication process
is made transparent to the interacting objects by the underlying middleware. The server
object and the server object proxy implement the same software interface. The same
applies to the client object and the client object proxy.

It also means that the client only can communicate with remote web servers,
or applications that can act as web servers (handle HTTP traffic). For two
such clients to inter-communicate, without reconfiguring intermediate firewalls
or proxy servers, it would require them to set up connections to an external
web server, which would relay the communication signals between them. In the
following discussion, clients which can only connect to the Internet using HTTP
on external port 80 or 443 via a proxy server will be referred to as restricted
clients.

The three OOM technologies all support using HTTP on external port
80 or 443. This is called HTTP tunneling, which means wrapping the real
communication protocol inside HTTP packets. Looking at Fig. 2.3, the
middleware layer is responsible for this HTTP tunneling, which is transparent
to the client object and the server object. Though both TCP and HTTP
communication is supported for CORBA, Java RMI and .NET Remoting, the
communication is only one-way (or simplex). When used outside the middleware
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Fig. 2.4: The figure shows the function of a proxy server. Instead of setting up a TCP
connection to an external server directly, an internal client sets up a TCP connection
to a proxy server, which then sets up a separate TCP connection to the remote server
on behalf of the requesting client.

frameworks, TCP is full-duplex. This simplex-restriction means that a client may
call methods on a remote server object and receive method replies using TCP
or HTTP, but it is difficult for the server object to call methods on the client
object. The latter would be possible, if the server opened a new TCP or HTTP
connection to the client (which is efficiently stopped by the client-side firewall).

When implementing architecture 3, described in 1.6.3, the relay server object
needs to be able to call methods directly at the connected client objects to avoid
inefficient client polling. As seen before, the server can only send data to the
clients as method replies or by setting up new connections. It is possible to
configure CORBA, Java RMI and .NET Remoting, so that the server object can
send a method call reusing an existent connection. This only applies to direct
TCP connections, and would prevent restricted clients from using the system.

To include restricted clients, one solution would be to develop a full-duplex
HTTP channel, which would support transferring method calls in both directions
using HTTP. This has been done for .NET Remoting by GenuineChannels [74].
Instead of forcing the server object to open a new HTTP connection to the client
object, the server object can reuse an existing HTTP connection (set up by the
client object). This process will be described in 2.3.4. This functionality is
difficult to implement in CORBA or Java RMI in an efficient way, and was one
of the reasons why .NET Remoting was chosen in the current work.

To provide this functionality, some restrictions will dictate the choice of
platform. Software developed for .NET may only be run on computers with
the .NET Framework installed. Traditionally, this means that the computers
involved must run the Windows platform. Platform-independent versions of the
.NET Framework are under development, e.g. the Mono project [75] and the
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DotGNU project [76], but these have yet to be tested for the present system.
If, or when, CORBA or Java RMI add support for bidirectional, full-duplex

HTTP channels, the system could be ported to use these technologies as well.
Here we will just demonstrate the principle of the channel, which is only
dependent on the HTTP functionality, and could, in principle, be implemented
on any platform, e.g. Linux. A short presentation of CORBA and Java RMI
is given in the two following sections, while a more thorough description of the
.NET Framework and .NET Remoting is given in 2.3.3 and 2.3.4.

CORBA

CORBA is an acronym for Common Object Request Broker Architecture. It
enables heterogeneous applications, written in a number of different programming
languages, to inter-operate by defining all aspects of the inter-communication
process. These include the interfaces to be used when communicating with
remote objects, the protocols to be used in the communication process and
a standardized way to describe objects and services. The result is platform
and location transparency for sharing well-defined objects among distributed
applications. The CORBA architecture follows the architecture described in Fig.
2.3. The server first binds the remote object to a naming service accessible to the
clients. The clients may then use the naming service to locate and get a reference
to the remote object.

To let heterogeneous applications inter-operate, CORBA first wraps a
specialized interface around each application. The application with the interface
is called a CORBA object. The interface describes the application inside and
how other CORBA objects may communicate with it. CORBA uses the Object
Management Group (OMG) [77] Interface Definition Language (OMG IDL) [78]
to describe the interfaces of all CORBA objects.

CORBA is able to map IDL to several programming languages, including C,
C++, Java, COBOL, Ada, Lisp, Python and Smalltalk, which means that two
functionally equal applications, written in different programming languages, look
the same when looking at the IDL interface descriptions. The Remoting.Corba
project [79] tries to add C# and Visual Basic to this list.

Java Remote Method Invocation

Java Remote Method Invocation (Java RMI) is a middleware framework, where
Java objects may communicate seamlessly across networks, e.g. the Internet.
The RMI architecture also follows the architecture described in Fig. 2.3.

RMI applications often comprises three separate components, a server, a client
and a public registry. The server application usually creates one or more remote
objects, binds them to a public registry and then lets clients invoke methods
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on these objects. The client application gets a reference to one or more remote
objects from the RMI registry, and then invokes methods on them directly at the
server. It is also possible to pass object references in method calls or replies.

The underlying Java RMI middleware takes care of the communication
between the client, server and the RMI registry. To the client it seems as if
the remote objects are parts of the client application.

2.3.3 Microsoft .NET Framework

.NET [80] is Microsoft’s strategy for connecting people, systems, computers,
and devices. All software written for .NET needs to be run within the .NET
Framework [81].

This framework is a common platform on which to run software written in
programming languages [82] supporting the Common Language Infrastructure
(CLI) [83], approved by the international standardization organization ECMA
[84]. The software is executed in the Common Language Runtime [85]. The
compilation of the code is a two-stepped process. First the source code is
transformed into Common Intermediate Language (CIL), which is something
between source code and CPU-specific code. When this CIL code is executed,
the code is compiled Just-In-Time (JIT) into CPU-specific code.

This is quite similar to Java. Java applications are developed using one
language, Java, and may be run on any platform supporting the Java Runtime
Environment (JRE). .NET applications can be written in any language, following
the CLI standard, and the applications can be run on any platform supporting the
CLR. The JRE is much more widespread than the CLR, though there are projects
working to spread the latter, as can be seen in 2.3.5. A structural comparison of
CLR and JRE can be seen in Fig. 2.5.

2.3.4 Microsoft .NET Remoting

Microsoft .NET Remoting is a relatively new OOM middleware technology, which
enables applications in different application domains to communicate as described
in 2.3.1.

Full-duplex HTTP channel

As seen in 2.3.2, a full-duplex HTTP channel is available for .NET Remoting.
Such a channel allows restricted clients to use systems of architecture 3. As
will be seen, this HTTP channel follows the HTTP 1.1 standard [86], utilizing
the keep-alive property which keeps an HTTP connection open during a session.
Each client sets up two keep-alive HTTP connections to the server, sender and
listener, where the former is used by the client and the latter by the server. This
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Fig. 2.5: Similarities and differences between a) the Common Language Runtime and
b) the Java Runtime Environment. There are many programming languages conforming
to the CIL standard, but not so many platforms supporting the CLR. Java is the only
programming language for the JRE, but the JRE is supported by many platforms.

way, full-duplex communication over HTTP is achieved. The reason why two
connections are needed, is the asymmetrical request-respond design of the HTTP
protocol (the server can only send data in an HTTP response packet after the
client has sent an HTTP request). Since the solution is based on reusing HTTP
connections set up by the clients, the solution will work with any firewall or proxy
server (as long as HTTP connections on external port 80 or 443 to the remote
server are allowed, which is usually true). The client always has an ”unanswered”
or pending HTTP request on the listener connection, which the server may use to
send data or method calls in an HTTP response. The pending HTTP request has
a well-defined timeout value, typically set to about 1-2 minutes, after which the
request is canceled and a new request is initiated. This will happen every time
the server does not send data within 1-2 minutes. The underlying middleware is
responsible for this utilization of the HTTP protocol, which is an efficient form
of client polling. Since the communication is handled by the middleware, and
thus hidden from the overlying application, the instrumentation system as such
is not affected.

Fig 2.6 and 2.7 explains the client-to-server and server-to-client method
invocations. When combining the two, we may obtain client-to-client method
invocation, as shown in Fig. 2.6. The latter describes a situation where a client
needs to call a remote method on another client connected to the same server
object. The following three sections also describe the client-to-server, server-to-
client, and client-to-client method invocation.
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Fig. 2.6: Client-to-server method invocation. a) The client sets up two HTTP
connections, sender and listener, to port 443 at the server. b) The client sends an
empty HTTP request on the listener connection. This can then be used by the server
to send method calls. c) The client sends a method call in an HTTP request on the
sender connection. d) The method is handled by the server, and a method reply is sent
back in an HTTP response on the listener connection. e) The client receives the method
reply, and instantly sends a new empty HTTP request on the listener connection.

Client-to-server method invocation

When the client calls a method on the local proxy server object, the underlying
.NET Remoting system wraps the method call in a message and sends it in an
HTTP request to the server using the sender connection. On the server, the .NET
Remoting system unwraps the method call and calls the correct method on the
server object. It then sends the method reply back on the listener connection in
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Fig. 2.7: Server-to-client method invocation. a) The client sets up two HTTP
connections, sender and listener, to port 443 at the server. b) The client sends an
empty HTTP request on the listener connection. This can then be used by the server
to send method calls. c) The server sends a method call in an HTTP response on
the listener connection. d) The client instantly sends an empty HTTP request on the
listener connection. The method call is then handled by the client, and a method reply
is sent back in an HTTP request on the sender connection.

an HTTP response.

Server-to-client method invocation

When the server calls a method on the local proxy client object, it wraps
the method call in a message and uses the client’s pending HTTP request to
send an HTTP response, containing the message object, on the client’s listener
connection. After the client receives this HTTP response, the underlying .NET
Remoting system unwraps the message and calls the correct method at the
client. It then sends back the method reply in an HTTP request on the
sender connection. Thus, bi-directional method invocation is obtained, without
inefficient client polling, and standard security protocols, like HTTPS, can still
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Fig. 2.8: Client-to-client method invocation. a) Two clients set up two HTTP
connections each, sender and listener, to port 443 at the server. b) The clients then
send an empty HTTP request on the listener connections. This can then be used by the
server to send method calls. c) One of the clients then send a method call in a HTTP
request on the sender connection. When received, the server forwards the method call
in an HTTP response on the other client’s listener connection. d) The second client
instantly sends an empty HTTP request on the listener connection. The method call
is then handled, and a method reply is sent back in an HTTP request on the sender
connection. On retrieval, the server forwards the method reply in an HTTP response
on the first client’s listener connection. e) When receiving the method reply, the first
client sends an empty HTTP request on the listener connection.

be used.

Client-to-client method invocation

When combining the client-to-server and the server-to-client method calls, it is
possible to let two clients call methods directly at each other. First the call is
transferred on the sending client’s sender connection to the server. The server
then forwards the call onto the receiving client’s listener connection. On receiving
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the method call, the receiving client calls the local method. The method reply
is returned on the receiving client’s sender connection. On receiving the method
reply, the server then forwards the method reply onto the sending client’s listener
connection. Thus, a client-to-client method call is obtained even when both
clients are behind different firewalls or proxy servers.

There is apparently no need to limit the usage of the system to device
operation. In addition to communicating with external devices, the system
might perform many other operations as well. If e.g. the customer’s computer is
powerful, the operator may utilize this extra power to perform heavy calculations.
This is, however, beyond the scope of this work, and the following discussion will
focus on instrument control and performing remote measurements.

Channel security

Microsoft’s web server, Internet Information Services (IIS), hosts the remote
server object, and all security features of the IIS architecture are available. The
full-duplex HTTP channel, described in this section, supports the default security
services of IIS, and encryption and compression for faster transfer of data. To
set up the two connections, the clients must be able to connect to the remote
server on port 443 SSL/TLS, which most firewalls and proxy servers support.
The security of the whole system will be discussed in 2.4.

2.3.5 Porting the .NET Framework to other platforms

There are projects concerned with porting the .NET Framework to platforms like
Linux, Mac OS X, Solaris and BSD. Below is a description of two of them, the
Mono Project and the DotGNU Project.

The Mono project

The Mono Project is a software development project sponsored by Novell [87].
The project’s main task is to port the Microsoft .Net Framework to several
platforms like Linux, BSD, Solaris, Microsoft, and Mac OS X. The result will
be that .NET client and server applications may run on most platforms, just
like Java applications may run on any platform supported by the Java Runtime
Environment.

The project includes:

• a compiler

• a class library

• a Common Language Infrastructure (CLI) runtime engine



40 CHAPTER 2. THE IMET SYSTEM V.1.0

The DotGNU project

The DotGNU Project is, like the Mono Project, trying to port the .NET
Framework to other platforms, like GNU/Linux, Cygwin/Mingw32, Mac OS X,
Solaris, and AIX. Currently there are three subprojects:

• DotGNU Portable.NET, an implementation of the Common Language
Infrastructure (CLI)

• phpGroupWare, a multi-user web-based GroupWare suite, which also serves
to provide a collection of web service components

• The DGEE web service server

2.4 Security

When using the Internet for general instrument control, and especially when
offering callback methods from the server object directly to the connected clients,
several security concerns arise. If unwanted intruders could gain access to the
remote object and fake the identity of a reference laboratory authority or replay
old method calls, serious damage could be done at the customer-side. The
customers must therefore be absolutely confident that they are communicating
with a real authority. The authority must also be confident about the customer’s
identity, e.g. when Internet-enabled calibration is performed. The information
sent across the network should be impossible to alter or replay, at least not
without detection. It would also be critical if a hacker could emulate the behavior
of the remote object, and make customers or calibration authorities connect to
it.

The .NET Remoting architecture has no default security features, but it is
prepared for custom security implementations. By hosting the remote object in
Microsoft IIS, the system can leverage all security features provided by the IIS
architecture.

The following discussion of the implemented system’s security model is based
on the services described in 2.2.1.

2.4.1 Confidentiality

To obtain confidentiality the iMet system v.1.0 uses Hypertext Transfer Text
Protocol (HTTP) over Secure Sockets Layer (SSL), or HTTPS. HTTPS uses
Public Key Infrastructure (PKI) to exchange a secret key when initializing
a session between a client and a server. A secret key is used in symmetric
encryption, while a private and public key pair is used in PKI (asymmetric



2.4. SECURITY 41

encryption). During the client-server session all communication signals are
encrypted according to the SSL standard. Any hackers listening to the
communication, would not be able to decrypt the encrypted data in an easy
way. The security is not so much dependent on the security protocol as on the
handling of the private and secret keys. If private or secret keys are lost, the
security of the system would be compromised.

Initializing an SSL session, or performing the SSL Handshake, includes several
steps:

1. Client and server negotiate which encryption algorithm to use

2. Authentication is done using certificates (when server and client must be
authenticated)

3. A shared key is agreed upon

4. Symmetric encryption is used with the shared key

The iMet system v.1.0 operates over HTTPS with both server and client
authentication, using x.509 certificates. Each client certificate is signed by the
server, and the server certificate will be signed by a trusted certificate authority
(CA). When using certificates in the authentication process, it is extremely
difficult to fake the identity of a customer computer, authority computer or the
server.

Before engaging in an Internet-enabled calibration process, each client needs
to request JV for a server-signed X.509 certificate. This certificate is used to
authenticate the client’s computer when connecting to the server, as described in
Fig. 2.9. The number of authorized users are thereby held at a minimum, thus
lowering the risk of compromising the system.

2.4.2 Integrity

SSL also ensures the integrity of the data exchanged between the client and
the server. As can be seen in Fig. 2.10, the application data is split into
fragments, which are then concatenated with a Message Authentication Code
(MAC), before being encrypted. The fragments may also be compressed before
being concatenated, which results in faster transfer of data.

The MAC is simply a small hash value, created from the original data fragment
and some shared, secret MAC key. The hash value is a unique fingerprint of the
fragment, generated by a one-way hash function. It is virtually impossible to find
two fragments which give the same hash value, and it is impossible to find the
fragment from the hash value.

After encrypting the fragment and the MAC, the client sends the packet to
the server. On receiving the packet, the server decrypts it, creates a new MAC
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Fig. 2.9: The SSL Handshake with server and client authentication. During
the initializations, the client and server agree upon encryption algorithms, perform
certificate-based authentication, and create a shared symmetric key.

from the contained fragment, and compares it with the contained MAC. If these
match, the server can be sure that the packet has not been tampered with during
transportation. After encrypting the data and MAC, it is virtually impossible to
change the data without corrupting the MAC.

Fig. 2.10: The SSL Record Protocol. Application data is fragmented, and each
fragment is then compressed. A MAC is created from each compressed fragment, and
the compressed fragment and the MAC is concatenated and encrypted.
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2.4.3 Authentication

In SSL, digital certificates are used to authenticate specific entities, such as
companies, specific computers and specific user accounts on a computer. The
private key, associated with a certificate, or client certificate, is stored on the
computer where the certificate is installed. It is important that this private key
is stored in a secure way. On Windows systems, the private key is encrypted using
a key based on the logged-in user’s Windows password. If an unwanted intruder
could gain access to the computer and the correct user account’s password, the
security of the system would be compromised.

In the iMet system v.1.0 additional steps are performed in order to
authenticate the specific person authorized to connect to the server. After
authenticating the computer and user account to the server, the user needs to
supply the server with a username and password. In failing to do so, the user can
not use the remote object’s methods. As long as the private key, iMet username
and iMet password are not lost or given away, the authentication process is quite
secure. This is how the authentication process is performed in e.g. some online
banking services. The client certificates must be distributed to the customers
and authority in a secure fashion. If laptops are sent out to the customers in
advance, the certificates should be installed before sending. The customers must
be thoroughly educated in how certificates should be handled and stored.

In addition to authenticating persons, each connected instrument also needs
to be authenticated. When performing remote calibrations, it is important to be
sure of the identity of the instruments involved. As we shall see, this identity is
quite complicated to obtain securely, and will be discussed in 2.5.

2.4.4 Non-repudiation

SSL enables secure communication between a client and a server. The data
exchanged is kept secret (confidentiality) and possible tampering is detected
(integrity). The server and the client may be authenticated using digital
certificates and usernames/passwords (authentication).

SSL only provides a secure channel, and it does not cover the area of non-
repudiation. As data is sent through the channel, and looked at on the other side,
there is no linkage to the original sender. Non-repudiation would be obtained with
digital signing of the data. If the data received is stored with the sender’s digital
signature of the same data, the receiver could at a later time prove that the data
was actually sent by the sender at a specific time.

This digital signing of data would need to be implemented on top of the SSL
architecture, usually in the application. For the iMet system v.1.0 the focus
has been on securing the channel between the NMI and the customer. Non-
repudiation could be implemented at a later stage using digital signatures. This
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could require each user to use two digital certificates; one for authentication and
one for signing data. Not all data would need to be signed. When performing
remote calibrations, potential data to be signed might be measurement results
and measurement configuration data.

2.4.5 Access control

The users of the system are believed to be located behind their own company
firewall, proxy server or NAT. The system server is also behind a firewall, with
port 443 open for incoming HTTPS connections. This firewall will be configured
only to allow certain IP address ranges to connect, so that only computers
belonging to known customer may connect to the server.

In the SSL handshake process, the server requests a client certificate from
each connecting client. If a client fails to provide a certificate, the connection
is closed. If a certificate is provided, the secure channel is established. The
connecting client is then required to log in with a username and password. The
username and password are checked against a database, containing authorization
information. There are two types of user roles: customer and authority. Each
logged in client is associated with one of these roles, based on the credentials
provided, and the roles are associated with different authority levels. E.g. only
authority clients are allowed to operate other clients’ instruments remotely or run
remote measurements.

The use of digital certificates requires that procedures must be established
concerning the handling of certificates. Should each person have their own
certificate, or should each customer company have a certificate? For how long
time should each certificate be valid? For the iMet system v.1.0 a certificate was
issued to a specific logged-in user on a specific computer for one year (might be
changed in the future).

A hacker could attack the system in several ways. The hacker could request
JV for a valid certificate and credentials. This would allow him to connect
to the server object. Procedures need to be developed in order to prevent
this. He could also try to steal a valid certificate from a customer of JV. He
would then need to connect from a customer’s LAN (due to firewall rules) and
provide a valid username and password. The username and password of a regular
customer, would only give customer access rights. All customers need to have
clear procedures on how to store and use digital certificates.

JV is responsible for creating passwords for each user. Strong and long
passwords should always be used, containing capital letter, numbers and special
characters. This would make it difficult to guess the correct password, even when
having a valid username.
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2.4.6 Availability

The Internet is a highly insecure network, and firewalls and proxy servers are
required to separate a LAN from exposure to unwanted intruders. Firewalls
and proxy servers usually prohibit external hosts to initialize connections to
internal hosts, and often put restrictions on which network protocols are allowed.
There is also a shortage of public Internet Protocol (IP) addresses, which for
some businesses require the installation of Source Network Address Translators
(SNATs). A SNAT maps internal LAN addresses to external Internet addresses,
such that data packets originating from different internal hosts appear to come
from the same public host. This make internal hosts unreachable and invisible to
the general public, and all connections between a LAN PC and the outside of the
firewall/proxy server/SNAT therefore need to be initialized from the LAN PC.

Several hardware and software components are used to secure a LAN from
the Internet. A condensed presentation of commonly used components is given
in Appendix B.

To establish reliable communication between two PCs in different LANs,
the iMet system sets up persistent connections from both PCs to a public
server, which binds the two PCs together in a so-called Meet-in-Middle (MiM)
configuration. All communication signals between the two LAN PCs pass through
this server. This type of communication is used by many Instant Messaging (IM)
services, of which a general description can be found in [88].

To improve the availability of the system, one approach could be to let
dedicated servers, e.g. Kerberos, take care of the authentication process, to avoid
overloading the application server. This will also make the system more resistant
to Denial of Service (DoS) attacks. In an Internet-enabled calibration system,
there would be very few users at any given time and the application server would
then have free resources to handle unwanted connection attempts.

2.4.7 Organizational and human security policies

So far the security discussion of the iMet system has focused on the technical
aspects. Whenever human interaction is required, it is also important to look at
how the security could be breached by intentional or unintentional misuse, and
weak security policies. Although unintentional misuse may be a usability issue
and a result of poor design, it will also affect the security of the system, and
needs to be addressed in a security context as well.

The customer

Three issues need to be addressed at the customer side

1. Weak or non-existent security policy
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2. Unintentional misuse of the system

3. Intentional misuse of the system

Up to this point in the security discussion, the customer, once authenticated,
has been trusted. To further secure the system, it should be required by the
customer to have an active security policy, with up-to-date firewalls and virus
protection. In addition, the security policy should be communicated to all
customer personnel.

Before using the iMet system, a customer should receive adequate user
training and system documentation describing how to use the system. Usability
issues should be addressed when designing the system, such that the risk of
unintentional misuse would be minimized.

It is difficult to prevent intentional misuse, but measures has been added to
reduce the effects. Because the customer logs on with the customer role, the
possible actions to misuse the system are kept at a minimum. E.g. as a customer
it is only possible to communicate with your own instruments. Additional
measures could include the certification of specific persons and extensive logging
of every action made by users.

The NMI

It is of utmost importance that the NMI has an adequate security policy, since
the customers depend on the software and the dedicated servers provided by the
NMI.

JV is currently working on an extensive security analysis of the iMet system,
based on the attack tree methodology [69]. This will reveal places in the system
where potential attacks might occur. The analysis could also be used as a guide
as to where extra resources may be added.

The operators, responsible for performing Internet-enabled calibrations at
customers, should receive extensive user education, thus reducing the rate of user
mistakes. User mistakes done by operators, often linked to the usability of the
system, may strongly compromise the security of the system. Contracts should be
made beforehand so that everyone has a clear understanding of who is responsible
if discrepancies occur.

2.5 Equipment authentication

When integrating the Internet in electrical metrology and calibration, it becomes
increasingly important to be able to securely authenticate the equipment in use.
This differs from operating the equipment locally, where the operator can inspect
the equipment directly. When calibrating an instrument via the Internet, it is
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of utmost importance to authenticate the instrument beforehand, so that the
operator can be sure that the correct instrument is being calibrated.

2.5.1 Traditional authentication

There are numerous ways to authenticate electrical PC-connected equipment via
the Internet:

Obtaining information from trusted local personnel

The remote operator can be told which equipment is connected by a local
person, sitting by the equipment. This requires the operator to trust that local
person. Instead of personally authenticating the equipment, the operator bases
the authenticity of the equipment on the information provided by the trusted
local person.

Inspecting external identification tag visually

By looking at the equipment via a web camera and reading some external
identification tag, shown in Fig. 2.11, it is possible to tell the identity of the
equipment. This identification tag can comprise manufacturer name, model name
and a serial number.

Fig. 2.11: Traditional ways of authenticating electrical PC-connected equipment. The
external or internal identification tags are obtained either via trusted local personnel or
via a web camera and software.

Using software to obtain internal identification tag

Some instruments have an internal software identification tag, also shown in Fig.
2.11, which may be read using the connected computer. This tag can be used
to establish the identity of the equipment. Often the internal identification tag
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comprises a manufacturer name, a model name, a serial number and sometimes
the version number of the installed software.

There are weaknesses related to each of the methods above. Local personnel
may be falsely trusted, external tags of equipment may be tampered with, and
internal identification tags may be overwritten.

2.5.2 Authentication based on historical data

Another approach for authentication of PC-connected devices is to make use of
historical measurement data, an example of which can be seen in Fig. 2.12.
After calibrating an instrument a number of times, the accumulated data, or the
historical data, may be used to predict the future behavior of the instrument.
All instruments drift, which means that they change behavior over time, and a
model of the instrument may be developed based on the drift or the historical
data e.g. using Bayesian methods. JV is currently working to test this approach.

This methodology can be used to build a dynamic finger print of the
equipment. Looking at several relative measurement values (the measured value
divided by the nominal value), potential fingerprints of the physical properties of
the device can be constructed. E.g. some electrical multifunction calibrators
contains fixed resistors, with unique drift behaviors, which could be used to
construct unique fingerprints. By using the historical data, and choosing a few key
measurement points, the new finger print is predicted each time the instrument
is to be calibrated. The selected key measurement points are then read from
the instrument, and the predicted finger print is compared to the measured
finger print. The finger print would be associated with an uncertainty, and the
comparison process leads to a calculation of the degree of authenticity. E.g. it
may be possible to calculate a 99% certainty of authenticity for an equipment,
meaning that we are 99% sure that we are using the correct equipment.

This method may have potential, but needs to be further investigated. There
are a few problems or challenges that must be addressed

• Instruments of the same type or model tend to drift in a similar way

• Instruments of the same type or model often have similar calibration
characteristics

• Instruments often change characteristics due to repair or accidents. This
will introduce problems in the described process, in that the instruments
no longer can be authenticated.

All of the above methods could be used to obtain the best possible degree of
authenticity.
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Fig. 2.12: The use of historical key measurement data to predict the behavior of
electrical PC-connected equipment. The five first points are historical values, and they
are used to predict the future value (the sixth point). In the figure, linear regression is
used to model the drift, which is often a good approximation on shorter time intervals.

Protecting the reference values

To use historical measurement data to authenticate electrical PC-connected
equipment, the reference values need to be protected. To obtain a reliable
measurement value from the equipment to be authenticated, it is required that
the reference value is traceable to a known standard value.

Physikalisch-Technische Bundesanstalt (PTB) in Germany is currently in-
volved in a project concerning secure transfer and authentication of measurement
data from household electricity meters. The project, named SELMA [89], has
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looked at installing small hardware chips in the meter to be used in the data
authentication process. Before transfer the measurement data is signed by the
meter, which ensures integrity while linking the data to a specific meter. This
could be a potential solution for future transfer standards.

2.6 Instrument operation

2.6.1 Customer computer

The implemented system uses the Virtual Instrumentation Software Architecture
(VISA [54]) for instrument operation, through a preinstalled dynamic linking
library (DLL) file, visa32.dll. VISA is a standardized interface operating between
the control application and the instruments. It makes the appropriate driver
calls depending on the type of instrument used. The visa32.dll library contains
several methods for communicating with hardware over the hardware interfaces
mentioned in 1.3.3. In the iMet system v.1.0 only support for GPIB connections
have been implemented.

A small .NET component, called the GPIB Communicator, was developed to
load this VISA library at startup. The component contains four methods:

• FindResources
Scans the client-side instrument bus for connected instruments

• Read
Receives data from a connected instrument

• Write
Sends data to a connected instrument

• Query
Combines the Read and Write operations into one bulk operation

The installed .NET customer application loads this component at startup, and
may then call the contained methods as needed. This way, all implementation
concerning the measurement setup and measurement logic is done in the .NET
environment. The customer software architecture is shown in Fig. 2.13.

All exported methods at the instrument computer are available to external
authorities, and the methods communicate with the physical instrument via the
GPIB Communicator object. This object has access to the Virtual Instrument
Repository, where software representations of all connected instrument are found.
These virtual instruments contain instrument-specific commands and state-
information for each instrument. The instrument-specific commands are used to
obtain consistent instrument communication. The state-information can be used
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Fig. 2.13: The Customer Software Architecture. An external operator may call either
one of the exported methods. Direct instrument operation happens through the four
methods FindResources, Read, Write, and Query. The operator may also call more
complex measurement procedures, preinstalled on the instrument computer.

to obtain cache-functionality, e.g when querying the instrument, it is often more
efficient to query the virtual instrument than communicating with the physical
equipment.

Initially, each customer instrument was represented as a remote object
accessible to the server. This meant that the server had a proxy version of each
of the instruments connected to the customer. Because there is only one GPIB
controller at the customer side, managing the communication over the GPIB bus,
this was changed to make synchronization, access control and security easier. Now
the instruments are accessed via the customer’s Read, Write and Query methods
using an instrument identification string. This change can be seen in Fig. 2.14
and 2.15.

The authority may still use the instruments as if they were connected locally,
but in stead of using proxy instruments, it is necessary to use the Read, Write
and Query methods with an instrument identification string as input.
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Fig. 2.14: Initial architecture. The server generates proxy versions of each customer
instrument. The proxy instruments communicate directly with the corresponding
instrument via the Internet.

Fig. 2.15: Present architecture. The server only use the customer’s Read, Write and
Query methods to communicate with the instruments. An instrument identification
string is used as input to the methods in order to route the method call to the correct
instrument.
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2.6.2 Server computer

The server computer implements both interfaces describing the authority and
customer applications, in addition to a specific server interface.

To the authority the server looks like a customer, while it looks like an
authority to the customer. This implementation of customer and authority
interfaces, allows the server to act as a transparent proxy service between a
customer and an authority. In addition to relaying data between the two,
it can provide cache-functionality and security and consistency checks. This
transparency can be seen in Fig. 2.16.

Fig. 2.16: The system server implements both the interfaces of the authority and the
customer. To the authority the server looks like a customer, and to the customer it
looks like an authority.

2.6.3 Authority computer

If the middleware system is running as described in 2.3.4, it is quite straight-
forward for an NMI authority to control a customer’s instruments. The
middleware system is transparent to both clients, and to the controlling authority
it appears as if the customer’s instruments are connected locally. The real and
virtual communication paths are shown in Fig. 2.17 and Fig. 2.18.

In the system presented, the operator may either send individual instrument
commands, by calling the client-side FindResources, Read, Write or Query
methods, or he may call the measurement procedures, as shown in Fig. 2.13.

The NMI authority has access to the software interface implemented by
the customer application. This interface describes how to call the customer’s
exported methods. Similarly, the customer knows the interface implemented
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Fig. 2.17: Real Communication Path. The communication signals from the authority
computer travels via the server to the customer’s computer and the physical instruments.

Fig. 2.18: Virtual Communication Path. To the authority the communication signals
seem to travel directly to the physical instruments.

by the authority application, which enables it to call remote methods at the
authority.

2.6.4 Interconnection

When a customer connects to the server, the customer’s instrument bus is scanned
and for each instrument found an instrument software object is added to the
virtual instrument repository at the customer and on the server (and on the
authority, if one is connected).

Measurement and calibration procedures, preinstalled on the instrument
client, make use of the Read, Write, and Query methods to communicate
with the physical instrument. These three methods are specified by the
InstrumentCommunicator interface. The authority, server, and customer
applications all implement this interface. They are interconnected such that
calling e.g. the Write method on a host, using a specific instrument identification
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string, will send the command to the correct instrument. This interconnection is
shown in Fig. 2.19.

Fig. 2.19: The iMet system v.1.0 communication architecture. By implementing the
InstrumentCommunicator interface correctly, an application may operate a customer’s
instruments using the Read, Write, and Query methods or run calibration procedures.

This means that the calibration procedures may run on any host implementing
the InstrumentCommunicator interface. In the iMet system v.1.0, only a few
measurement procedures were implemented, in the customer’s application. These
calibration procedures were defined in the interface implemented by the customer,
and the authority could call them via the server as explained before.

2.6.5 Example

In an Internet-enabled calibration scenario, an authority chooses a specific
calibration procedure, based on which instruments are in the virtual instrument
repository associated with the specific customer. The measurement parameters
used in the calibration are stored in the database as extensible markup
language (XML). The calibration procedure is then called, and the measurement
parameters are used as input to the procedure. When returned, the results are
shown to the operator in a custom graph area, and stored in a text file as XML.

Another scenario would be to let a third-party expert, perhaps with
extensive knowledge about a certain instrument type, gain access to a customer’s
instruments in order to guide in the measurement process or to bring his or her
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expertise to help with problems or errors with the instruments. The expert would
not need to sit by the instrument, but could be located wherever an access to
Internet is available.

2.7 System test

A system test was performed were an operator at JV set up and controlled a
measurement via a public web server at UniK. The instruments were located in
a laboratory at JV, thus belonging to the same LAN as the operator. The setup
is shown in Fig. 2.20.

Fig. 2.20: System test of the iMet system v.1.0. The operator and instruments are
connected to the same LAN at JV, but they communicate via a public web server placed
at UniK.

This is equally challenging as if the operator and the instruments were at
different LANs, because the communication signals travel via the server, which
is on the outside of the firewall.

There were two instruments in use, an electrical calibrator and a digital
multimeter. The measurement consisted of several steps:

1. Initialize instruments
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2. Iteration process

(a) Configure instruments
(b) Generate signal with calibrator
(c) Read signal with DMM
(d) Store result

3. Return data to operator

On receiving the results, the measurement data was stored in a text file at
the operator for future processing. The data was also shown in a graph.

The system test was quite satisfying. The measurements, even when set to
run for half an hour, ran smoothly and returned data correctly to the operator.
The process was fully asynchronous, so that the operator could spend time on
other tasks, when the measurements were running on the instrument computer.
The measurement results were returned to the authority by calling a specific
authority method concerned with receiving measurement data.

2.8 Conclusions

The iMet system v.1.0 worked as planned. It allowed JV personnel to run
measurements remotely, directly at a customer site, without the need to travel
to the instruments involved. Tests showed that the system may be suited for
Internet-enabled calibration as described in chapter 2.

The security of the system has been analyzed, as described in 2.4, and
standardized security measures were used (SSL over HTTP with both certificate
and client X.509 certificates, and password protection). It might be desirable to
implement new or additional security measures in the future, because e.g. the
field of non-repudiation was not treated. In the future digital signatures should
be used to further ensure the validity of measurement configuration data and
measurement results. The system is currently being tested using the attack tree
methodology, and the results of the test may be used in future systems.

The measurement procedures were implemented directly in the customer
application, which means that the system needs to be recompiled and
redistributed when adding new measurement procedures. This is a quite tedious
task, and it is therefore best to add all the measurement procedures needed before
distributing the system. Later versions of the iMet system deals with this, by
allowing custom measurement procedures to be downloaded from a database and
run at runtime.

The system has not been tested on real customers, which could have produced
important feedback regarding user experience. This was done in the next version
of the system, which is described in chapter 4.
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Chapter 3

A comparison of two
different approaches

This chapter presents an extensive comparison between NPL’s
iGen system and JV’s iMet system. The comparison parameters
were agreed upon during the work, and advantages and
disadvantages were found for both systems. Areas of improvement
were investigated and implemented in the next system version.

3.1 Background

In 2004 it was decided to compare NPL’s and JV’s approaches to Internet-enabled
calibration. Their approaches differed significantly, and the two institutes felt it
would be advantageous to explore these differences.

The two systems involved were NPL’s iGen, based on the iOTDR [90]
system, and used for optical fiber measurements with Optical Time Domain
Reflectometers (OTDR) and JV’s iMet [19], used for remote calibration of
electrical instruments via the Internet.

NPL have done a lot of work in the Internet-enabled calibration area, and
in the last years several systems, like iPIMMS, iOTDR, iVR and iCOLOUR
[24], have been developed. These systems all belong to the type 1 architecture,
described in 1.6.1. The iGen system evolved from the iOTDR system, and thus
inherited its type 1 architecture.

JV had done little work in the area before 2002, and had to choose one of the
three architectures. The type 3 architecture, described in 1.6.3, seemed the better
choice, since it was decided that the calibration process should be controlled by

59



60 CHAPTER 3. A COMPARISON OF TWO DIFFERENT APPROACHES

personnel at JV without the need for traveling to the DUT. The iMet system
was therefore of type 3.

The institutes’ motivation for performing this comparison has been to show
which possibilities each of the systems provide, and how they may solve the same
challenges in different ways (e.g. two different ways to perform Internet-enabled
calibrations). At the same time, it was important to see how the systems differ
to enable the readers of the comparison report to decide which may be better for
their own needs. The comparison also showed areas of improvement for each of
the systems.

The work consisted of describing each system in equal terms, identifying
comparison points, and then perform a thorough comparison based on these
points.

The list in 1.7 was identified as the key properties on which the comparison
was based, and sufficient to describe and compare the iGen and iMet systems.

3.2 iGen

3.2.1 System structure

The system architecture is shown in Fig. 3.1. The software is composed of a
client, written in Microsoft Visual Basic (VB) [91], which runs on a computer
located at the customer’s site, and a server program, written in PHP [92], which
runs on a server computer at the calibration laboratory.

The iGen server uses a MySQL database [93] for storage, which contains
instrument information, calibration history data and measurement procedures.

3.2.2 System functionality

In the client, a Visual Basic control called INET [94] is used to handle
communications with the server. The control calls a function ”execute” to
send messages to the server. This function takes the address of the server
and the message to be sent, in Extensible Markup Language (XML) format,
as parameters. The protocol in use, XML-RPC [95], uses HTTPS as transport,
and is thus quite firewall-friendly. The XML-RPC protocol enables structurally
complex and binary data to be exchanged.

When performing a calibration, the server controls the calibration process,
while the client, using instructions received from the server (in the form of
VB Script [96]), controls the equipment and interacts with the operator. Data
collected from the instruments are transmitted back to the server for processing,
and the results are stored in a database.
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Fig. 3.1: iGen architecture.

Although the server software dictates how the calibration is conducted,
the client software is in control throughout the process, and initiates all
communication. The client sends a message to the server and waits for a reply.
Upon receipt of each message, the server acts and then issues a reply.

A calibration is performed by executing a sequence of procedures on the server.
Effectively, the server is state driven. Each message sent from the client includes
the name of the function that the server is to execute, this name having been
sent from the server to the client in the previous message. The first message from
the client names the ”loginpage” function that the server uses to log the user on
to the system. The server returns an HTML page to the client enabling the user
to enter the login name and password. It also returns the name of the function
that must be called next, to start the calibration sequence. The client responds
with a new communication that reactivates the server. The message includes the
login name and the password, and the name of the function to be executed.

The client software has the capability to talk to up to four RS232 ports and
as many IEEE488 [42] addresses as the National Instruments card can handle.
A Visual Basic control is included for running VBScript. VBScript is a subset
of Visual Basic, and it can be sent down from the server as an ASCII string to
be run on the client. The VBScript can include calls to Visual Basic functions
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on the client that read data from or write instructions to the hardware. These
function calls can be embedded in loops.

3.2.3 Demonstration

The complete calibration of an OTDR consists of four different calibrations: the
wavelength, the distance scale, the linearity and the loss scale factor. The iGen
system has been used to perform two of these calibrations over the Internet,
namely the distance scale and linearity. The customer is guided through each
of these calibrations over the Internet including the set up of the instruments.
The reference standard used is a calibrated fiber. Fig. 3.1 shows the instrument
setup for calibration of linearity of the OTDR. Once the instruments are correctly
set up the calibration is completely automatic (using a VBScript), with checks
to see whether instruments are correctly set up, automatic adjustment of the
instruments, loops to wait for instruments to complete their measurements and
measurements of key environmental factors like temperature.

3.3 iMet

3.3.1 System structure

The system architecture is shown in Fig. 3.2. The system consists of a LAN
computer with some connected instruments, an operator’s LAN computer and
a public Microsoft IIS Web Server. The operator could be co-located with
the instruments, and then only one LAN computer is needed. The instrument
computer runs a specific .NET Remoting [73] client application, which handles
communication with the server and the locally connected instruments. The
operator’s computer also runs a .NET Remoting client application, which handles
communication with the server. The latter application is built to control the
former, so that the operator may access the remote instruments as if they were
connected locally. The client applications communicate via a software object
hosted on the server. Both the clients and the object are written in Microsoft
C# [51].

The server utilizes data stored in an SQL Server database [97], which contains
instrument information, calibration history data and measurement configuration
data.

3.3.2 System functionality

Both clients set up a full-duplex Hypertext Transfer Protocol over Secure Sockets
Layer (HTTPS) channel to the server, before logging on. This enables data to
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Fig. 3.2: iMet architecture.

be sent back and forth without inefficient client polling. The solution is based
on the code provided by GenuineChannels [74]. The channel basically consists of
two regular HTTPS connections, where one is in a pending HTTP request mode,
enabling the server to contact a client instantly.

After logging in, the clients may communicate seamlessly via the server,
without configuring local firewalls, proxy servers or Network Address Translators
(NAT). This is due to the firewall-friendly nature of HTTPS. To the clients, the
server is transparent, and it seems to them that the inter-client communication
happens directly.

A calibration is performed by calling a preinstalled calibration procedure at
the instrument computer. The operator has access to this procedure via the
interface implemented by the client application at the instrument computer. The
procedure may run for hours, and when finished the results are returned to the
operator. The process is asynchronous, and the operator may perform other tasks
while waiting.

There is no limitation as to where the operator may sit, as long as there is an
Internet connection available.

The system may also be used for remote instrument control, where an operator
sends individual instrument commands to the remote instruments. To the
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operator, the remote instruments seem locally connected, except for possible
network delays. Tests have shown typical delay times of up to two seconds back
and forth. It is difficult to say if delay times of this order are acceptable or not,
but there is a trade-off between this added functionality and the delay times.
Allowing trusted experts to operate an instrument remotely (e.g. to try to find
the source of odd behavior), one might have to accept delay times of some degree.

The .NET application at the instrument computer communicates with the
connected instruments via the Virtual Instrumentation Software Architecture
(VISA) interface [54]. The VISA interface makes it possible to communicate over
several hardware interfaces, e.g. RS232 or IEEE488, without the need to change
the control application.

3.3.3 Demonstration

As described in 2.7, Justervesenet tested the system in a realistic setup with two
connected client computers, located at Justervesenet, and the web server located
at UniK. Although the client computers were connected to the same LAN, they
communicated via the server, and the complexity of the type 3 architecture was
still preserved.

The structure of the procedure described in 2.7 allowed the system to perform
calibrations, where one instrument was used as reference and the other was the
Device-Under-Test (DUT). On calling the measurement procedure, the operator
provided additional measurement configuration data from the database located
at the server. This configuration data contained information about the iteration
process, such as how many iterations to perform per data point, which data points
to generate and measure, and the period of time to stabilize the signals.

3.4 Comparison

3.4.1 The Operator

The system design depends on who is supposed to initialize the measurement
procedures or operate the instruments. The complexity of use depends on the
operator’s skill.

iGen

The iGen system is supposed to be operated by a customer. Because the customer
often has little technical background, the system is intuitive to use, and provides
step-by-step instructions. The system uses standard web pages to guide the user,
which makes it possible to apply standard web design rules [98].

The system could also be used by expert users.
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iMet

The iMet system is supposed to be operated by expert users at JV, which means
that the system may require some education of users.

The system is more rigid with regard to giving feedback to the operator.

Conclusion

The iGen system seems easier to use than the iMet system, because the latter
requires more user training. Because the iMet system is operated by certified
NMI personnel, the system might be easier to accredit, which means being able
to document that the system can perform certain actions, e.g. be used in Internet-
enabled calibrations.

3.4.2 Operator localization

The localization of the operator is important for the design of the system. This
can be seen from the three architecture designs given in 1.6.1, 1.6.2, and 1.6.3.
When moving from type 1 to type 3, the complexity of the web communication
increases along with added functionality.

iGen

The operator sits with the instruments when using the iGen system. This means
that complex distributed communication solutions are not required, but the
operator has to travel to the instruments.

The system was designed to be used by the customers, so the operator would
normally be with the instrument.

If external expertise is needed, the expert must travel to the instruments.

iMet

When using the iMet system, the operator may sit wherever an Internet-
connection is available. This means that an expert does not need to travel to
the customer’s instruments to perform an Internet-enabled calibration, but may
remain in his or her own office.

This does not prevent an NMI customer from using the system. A customer
may connect to the server using a specific customer role, which gives him or her
access to control his or her own instruments.

The separation of the localization of the instruments and operators also means
that it is easier to utilize external expertise. E.g. it is possible to let instrument
experts on other continents help in the remote measurement process.
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Conclusions

The two systems differ in architecture due to the choice of operator localization.
The iGen system will be operated by the customers directly, while the iMet
system can be operated by NMI personnel as well. If help from external expertize
is required, the iMet system is more flexible in that the expert does not need to
travel to the instrument.

3.4.3 Operator interaction

The error rate of the system partially depends on the degree of user interaction
needed to operate the instruments or run measurements. When lengthy
operations are performed it would be beneficial if the system could operate
autonomously.

iGen

The iGen system is designed in such a way that the operator initiates each step
in the calibration process. Lengthy measurements could be set to run for hours,
without user interaction.

iMet

The iMet system is designed to have different degrees of user interaction.
The system could be used like the iGen system, where the operator initiates

each step in the calibration process. There is only one calibration procedure, but
the measurement could be configured to run for several hours.

The system could also be used for direct instrument operation. This means
that the system autonomy is reduced to access control and error checking, while
the operator is in charge of the high-level system operation.

Conclusions

Both systems may be configured to be self-operating, which means that they may
run measurements for an extensive period of time with no user interaction. This
may potentially reduce the error rate.

In addition, the iMet system is designed for full user control, which means
that direct instrument operation is possible.

3.4.4 Data handling

The way data is handled and presented to the operator is important when
analyzing the data and making decisions based on the results. When handling
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calibration data it should be possible to tie it to a specific time, place, instrument,
customer and operator.

iGen

The iGen system uses regular web pages to present the data. This means that
the data could be presented as text in tables, or using dynamically generated
graph images. At present the results are shown as text.

After performing a calibration, the calibration results are stored in text files.
The system is likely to be rewritten so that the results can be stored directly in
a database instead.

The data is not signed digitally or stored with a Message Authentication Code
(MAC), which means that it is not possible to prove the integrity of the data.

iMet

When the operator receives measurement data, it is presented in a custom graph
field. The graph field is developed in such a way that data sets of varying sizes
can be shown. The somewhat rigid measurement procedure at the customer side,
results in a somewhat rigid data presentation at the operator side.

The data is stored in a text file. As for the iGen system, it would not be
challenging to store the data in a database at the server.

As for the iGen system, the data is not signed digitally or stored with a MAC,
which means that the integrity of the data is not preserved.

Conclusions

The iGen system is potentially more flexible as to how measurement data is
presented to the operator. This might be important when making decisions
based on the measurement results.

The systems should add support for digitally signing measurement data or
using MACs, so that the integrity of the data could be preserved. This would be
especially important when performing Internet-enabled calibrations, where the
calibration data must be available and verifiable for a long time. Using digital
signing, the data could be bound to a specific instrument and customer at a
specific point of time.

3.4.5 Security

When including the Internet in a measurement system, it is crucial to focus on
security. If the security of a system is breached, damage control mechanisms
should exist to reduce the effects of the breach.
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iGen

The iGen uses a secure channel between the customer and the server, according
to the HTTPS standard. The system uses certificates to authenticate the server
to the customer, and the customer provides a username and a password to
authenticate himself or herself to the server.

The server firewall may be set to only allow certain IP addresses to connect
to it.

iMet

The iMet system also secures the communication using HTTPS. In addition
to using server-certificates when authenticating the server to the instrument
computer and operator computer, the system uses client-certificates, signed by
the server, in the authentication of clients to the server. The clients also need to
provide a username and password to fulfill the authentication process.

A user may log in to the system as operator or customer. Most customers are
of the latter type, and have reduced access rights and privileges.

As for the iGen system, the server firewall could be configured to only allow
certain IP addresses.

Conclusions

The two systems both secure the communication between the client and the
server, although the iGen system is more vulnerable to lost usernames and
passwords, due to the lack of certificate-based client-authentication.

3.4.6 Availability

Internet-enabled instrumentation systems should be accessible to all NMI
customers, meaning that they should use firewall-friendly protocols and data
formats. The services should be available to authorized users whenever a
measurement is to be performed. The systems should be as robust as possible
concerning changing network conditions.

iGen

Because the communication is done over HTTP, the system is quite firewall-
friendly. When behind a non-transparent proxy server, as described in B.2.2 and
B.2.3, the clients may not connect to the server.

Due to the choice of software, the clients must be run on the Windows
platform.
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The iGen server could be set to run continuously, so that it is always accessible
to authorized users.

The system is quite robust to changing network conditions, since the
instrument communication happens locally.

iMet

The system works with most firewalls, due to the choice of HTTP for
communication. The system also works behind most types of proxy servers,
because the clients may be configured with proxy authentication information.

The system must be run within the .NET Framework, which traditionally
means that it is bound to the Windows platform. As seen in 2.3.5, solutions exist
to port the framework to other platforms. The system has not been tested on
other platforms, and it is not known how much work would be required to port
the client applications.

The iMet server could also be set to run continuously, and it would thus
always be accessible to customers and NMI operators.

The system can be quite robust with regard to changing network conditions,
when running calibration procedures on the instrument computer. If operating
instruments via the remote Read, Write, and Query methods, or implementing
procedures on the operator’s computer, the effects of changing network conditions
can be severe.

Conclusions

Both systems are quite available on demand, though only the iMet system seems
to works behind non-transparent proxies.

The iMet system is more sensitive to changing network conditions, especially
when operating instruments directly.

Both systems are bound to the Windows platform, and solutions should be
sought to broaden the platform support.

3.4.7 Scalability

An important feature of distributed software systems is how well they adapt to
handling many users concurrently. For instrumentation systems its important to
be able to add new measurement procedures and support for new instruments.

iGen

New measurement routines may be added as source code to the server database,
while the system is running.
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The system supports IEEE 488 and RS232, and may communicate with most
instruments over these buses.

The server can handle several simultaneous users, because the it does not
store much state information about each connected client.

iMet

New measurement routines may be added to the customer application only by
rewriting and recompiling the application. The system was developed with a
specific calibration in mind, involving a reference instrument and a DUT, with
focus on configuration of the calibration routine. This configuration includes
setting the reference and DUT, data points, signal durations, and waiting periods.

The system is only tested with IEEE 488, although it may potentially
communicate with any hardware interface supported by the VISA standard.

Compared to the iGen system, the server stores more state information about
each connected client. This is partially due to security reasons, but it is also
necessary for the bidirectional inter-client communication. Thus, the server does
not scale as well as the iGen server.

Conclusions

The iGen system is more scalable with regard to handling many users and adding
new measurements.

The iMet system has an advantage when adding new instruments, because it
works over VISA.

3.4.8 Development

The difficulty of further developing the systems or fix software bugs, depends
on the choice of programming language, the development platform available and
system documentation.

iGen

The iGen is developed using Visual Basic, VB Script, PHP and SQL, but lacks
a good development platform. This, due to the heterogeneity of the software,
makes debugging quite challenging, and error messages are often too general.

iMet

The iMet system is developed using C# and SQL, and good development
platforms (Microsoft Visual Studio or SharpDevelop [99]) are available. Due to
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C#’s object-oriented nature and it’s exception handling capabilities, it is easier
to create and maintain more complex systems.

The system also supports auto-generation of code documentation, a built-in
feature of the Visual Studio development platform.

Conclusions

The iMet is easier to develop and maintain, because of the chosen programming
language and development platform. The system also support auto-generation of
source documentation.

Common to both systems is that only software experts may add new
measurements or support for new instruments. The systems could be
provided with management software enabling non-experts to construct and add
measurements. This would require the development of well-designed and reusable
components.

3.4.9 Configuration

The ability to configure parts of a system, without rewriting it, can sometimes be
important. IP addresses or TCP ports may be changed, and new protocols may
be introduced, which requires the systems to be changed. Security settings could
also be made configurable. The configuration options could be hard-coded into
the source code, it could be done using configuration files, or the configuration
could happen in runtime with user input.

iGen

The iGen system uses XML-based configuration files to set up ports, addresses,
and the protocol in use. The user provides login information at runtime.

iMet

As for the iGen system, the iMet system also uses XML-based configuration files
to set up ports, addresses, and protocols in use. Login information is provided
by the users at runtime.

Conclusions

Both systems use configuration files to set up the system, which make both
systems quite flexible with regard to changing environments. They could add
support for flexible layout configuration, so that users with special requirements
could change font sizes, colors, or line thicknesses.
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3.4.10 Usability

Usability means how easy it is to use a system for new users, and elements like
guidance and feedback are important factors.

iGen

The user is guided through the use of web pages. These web pages may look
different for different measurements, and standard web design techniques may
be applied to make the pages more readable. User interaction involves picking
elements from drop-down lists, reading text and pushing buttons, which most
users are familiar with through the use of GUI OS’s like Microsoft Windows,
Linux or MAC.

When lengthy processes are performed, the user is told to wait through the
use of progress bars.

iMet

The user can use the system in two ways, either for remote instrument operation,
or for running remote measurements.

When operating instruments remotely, the operator has access to the
instruments as software objects. Through these objects the operator can use
instrument-specific commands. The commands are accessible from a drop-down
list, and there are also free-text fields to enter custom instrument commands.
Results from the instrument communication is shown in text boxes. For direct
instrument operation, the usability of the system is somewhat low for first-time
users.

Running remote measurements, the operator chooses the measurement from a
list, the elements of which depend on the instruments connected to the customer.
Lengthy operations are visualized through the use of progress bars. The
operator is also notified by progress messages, which describe the measurement
progress. When running remote measurements, the usability of the system may
be compared to that of the iGen system.

Since the system is supposed to be used by skilled NMI personnel, the users
will be trained before using the system.

Conclusions

For first-time users, the iGen system is easier to use than the iMet system. The
systems should both focus on using standardized design techniques to enhance
the system usability, thus reducing the error rate.
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3.5 Conclusions

Two different approaches to Internet-enabled calibration have been analyzed and
compared, NPL’s iGen system and Justervesenet’s iMet system.

There are pros and cons associated with both systems, and these may be
used as guidelines for developing new systems. NMIs planning to develop an
Internet-enabled measurement service must decide upon a few key points

• Who should be the operator?

• Where should the operator be located?

• Should the service be accredited?

The reason to focus on these points, is that they are crucial to the system
and difficult to change after the system has been developed.

Looking at the two systems described, the most important difference appear
to be the structure. For iGen, the customer is supposed to be the operator,
and the system is constructed in such a way that the operator and equipment
are placed together. For iMet, an NMI person is supposed to be the operator,
and the system is constructed such that the operator and the equipment may be
separated by the Internet. An iMet operator may remotely control the calibration
process without the need to travel to the equipment under test. This adds to
the complexity of the communication software, or the middleware, in use. This
complexity makes the system more sensitive to changing network conditions, like
response times, network speed and data transfer. It is important to program
the system to act in predicted ways, when special situations arise, e.g. broken
connections, timeouts, and software exceptions.

The difference in operator role also reflects the usability of the system. The
iGen system is believed to be easier to use for new users, due to the flexibility and
feedback capabilities of HTML. Detailed instructions are given to the operator
by server-generated web pages. For the iMet system, the guidance of the user is
not as flexible, and more user education is needed before using the system.

The development environment for iGen is more heterogeneous than the .NET
facilities available to iMet, due to the use of multiple software languages. The
complexity of a distributed software system often dictates the choice of software.
It is easier to use one or a few programming languages to program a system,
than to use many languages and depend on inter-language communication. It is
also important to have a reliable development platform, on which to develop the
major part of the program. This makes it easier to discover software bugs and
to test the system.

If developing an accredited calibration service, the security of the system must
be well-documented and follow standard recommendations. The security and
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quality of the calibration should be as good as if the calibration was performed
directly in an NMI laboratory. Both systems described are potential candidates
for accreditation, but certain things need to be included or changed

• The NMI needs to be sure, when including customers in the calibration
process, that enough user education is provided. Some kind of certificate
should be issued to ”accredited” customers.

• Equipment involved in the measurement process needs to be authenticated
in a satisfactory way. As seen in 2.5, this can be quite challenging.

• The data collected in a measurement should maintain integrity during
production, transportation and storage. This could be solved using digital
signatures.



Chapter 4

The iMet system v.2.0

This chapter presents the second and improved version of the
iMet system. In addition to utilizing the secure communication
channel found in the first version, new measurement procedures
may now be added in a consistent way and run when needed. The
results from the comparison, described in chapter 3, suggested
that measurement procedures should not be hard-coded in the
control application, but in stead be available for download from a
dedicated database server.

4.1 Introduction

The second version of the iMet system was developed with the comparison
described in chapter 3 in mind. This comparison showed that the iMet system,
though flexible with regard to the location of the operator, was not very
scalable in adding support for new measurements. The system only supported
one calibration procedure, preinstalled in the customer application. Although
this procedure could be configured to work with a variety of instruments and
different data points, it was desirable to allow authorized users to add custom
measurement procedures, at runtime without recompilation, which could work
with an indefinite number of instruments.

By running measurements installed at the customer, the operator also gained
less insight into the measurement process than had it been run locally at the
operator’s computer. It was therefore important to check if it was practical to let
the measurements run on the operator’s computer, and which effects this had on
the running time, network traffic and security. Luckily the original iMet system
had been developed with this in mind, and by using the Read, Write, and Query
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method, described in 2.6.1, a measurement procedure could be run on any host
correctly implementing the InstrumentCommunicator interface. This process is
described in 2.6.4.

It was also decided that the new system should be tested in a real calibration,
in collaboration with one of Justervesenet’s customers. The reasons were twofold.
First, it was important to test the system on real customers to discover possible
weaknesses in design and functionality from a real user’s point of view. Second,
it was a good opportunity to test which instruments could potentially be used
as transfer standards. The transfer standards were to be sent by mail using the
regular postal service.

4.2 iMet overview

Like the first version, the second version of the system consists of multiple client
computers and one public web server. The clients may communicate seamlessly
with each other via the server over secure, full-duplex channels, using the
hypertext transfer protocol over secure sockets (HTTPS). As described in 2.3.4,
potential problems concerning traversing firewalls, proxy servers and network
address translators (NATs) are bypassed, because the HTTP packets are allowed
through as long as the connections are initialized from the inside. Moreover, all
clients are authenticated to the server with server-signed X.509 client certificates
and a username and password. The server authenticates itself to the clients using
an X.509 server certificate signed by a trusted third-party certificate authority.

After connecting to the server, a client may offer his or her instruments as
services to an external operator. That means the operator may use the client’s
instruments as if they were connected locally to the operator’s computer. The
system architecture is shown in Fig. 4.1.

What differs in the second system version, is the ability to add measurements
procedures to the system during runtime, without restarting or recompiling the
system. The procedures are stored in a public database, and may be downloaded
and run by authorized users whenever needed. The measurement procedures may
either be run on the operator’s computer or at the customer’s computer. The
procedures may potentially be run directly on the public relay server as well,
though this was not tested.

4.3 Measurement and calibration procedures

One important feature of the C# programming language, used to program most of
the system, is the capability of compiling source code in memory during runtime.
A running C# object may take a piece of source code, describing another C#
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Fig. 4.1: The iMet v.2.0 architecture. The operator may operate instruments remotely
via the public web server. The instruments seem locally connected to the operator’s
computer.

object, and compile and instantiate it. The new object becomes an effective part
of the running object, and may be used as if it was compiled beforehand.

By utilizing this feature, the iMet system v.2.0 is able to download and
dynamically compile and run measurement procedures available as source code.
This means that the system could support an indefinite number of measurement
procedures, as long as they are accessible from a database.

Instead of installing a procedure in the customer application, as was done
in the first system version, the customer application now contains means to
download and compile procedure source code and a container for running the
compiled procedures. This is shown in Fig. 4.2.

Fig. 4.2: The architecture of the new customer application. Instead of being hard-
coded into the application, the measurement procedures are now downloaded as source
code in runtime, and compiled and run.
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The well-tested measurement procedure implemented in the previous cus-
tomer application version, was stored as source code in the system database and
used to do initial testing on the system. This was done to eliminate potential
errors associated with the procedure. Instead, the focus was on the dynamic
source code retrieval and runtime compilation.

The iMet system could still be used as a general instrument control system,
where an operator operates an instrument remotely using single instrument
commands and the Read, Write, and Query methods. More efficiently,
one could construct more complex measurement or calibration procedures for
automatically performing lengthy and complicated measurements, and store them
in a database. The procedures may be downloaded, compiled in memory and
run on request, and they may be run on any of the computers implementing
the InstrumentCommunicator interface. This means that new procedures may
be added to the database, without the need for recompilation of all system
components. The procedures operate on instrument interfaces, thus allowing
the same procedure to be used for different instruments implementing the same
interface. This interconnection process, including downloading source code from
the database, is visualized in Fig. 4.3.

Fig. 4.3: The iMet system v.2.0 communication architecture. By implementing the
InstrumentCommunicator interface correctly, an application may operate a customer’s
instruments using the Read, Write, and Query methods or run calibration procedures.
The calibration procedures may be downloaded from a database and run at runtime,
without system restart or manual recompilation.
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4.4 Security

Most of the security discussion in 2.4 also applies to the iMet system v.2.0.
There is, however, one important difference, associated with the dynamic,

in-memory compilation of downloaded source code. If malicious code could be
inserted into the database by hackers, the result could be severe damage at the
client side as the code is compiled and run, e.g. the deletion of system files.
It is therefore important to check the validity of the code before compiling and
running it.

Although not implemented in the system, the code could be signed by a
trusted party before inserting it into the database. Practically, what would be
signed is a small hash value, generated from the code. This way, the client who
downloads the code could first check the signature against the public certificate
of the trusted party. If the signature is valid, the client knows that the code is
safe to run. More importantly, if the verification process fails, the code will not
be run.

Clear agreements should be made beforehand, so that all clients have an
understanding of who is responsible if some code is not running as expected.

4.5 Measurement scenarios

There are different ways the iMet system could be utilized. The operator may sit
at any computer with an Internet connection, and he may control any number of
instruments or measurement processes at the same time. The operator’s location
is completely independent of the location of the instruments.

4.5.1 Operator and instruments on the same computer

Inexperienced customer

For inexperienced customers, the system could be used as guidance when
performing measurements and operating instruments. The system helps to
chose from available experiments, with detailed descriptions of configuration
possibilities, and it provides standard commands for operating connected
instruments. This way, the operator do not need to know the details of the
instrument communication, but could utilize higher-level tools.

Experienced customer

Experienced users could also benefit from using the system, as it provides
consistency in the measurement process. Instead of writing their own
measurement procedures or instrument commands, they may utilize the system’s
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well-tested measurement procedures and standard instrument commands. This
way, the confidence of the measurement results is increased.

If all personnel in a company use the system, it would result in increased
consistency and effectiveness.

4.5.2 Operator and instruments on different computers

Experienced customer

By using the system, experienced users could keep track of their ongoing
measurements or configure and initiate measurements from remote (e.g. their
own home).

Before leaving work, the measurement is started, and the measurement
progress could then be monitored from home. The measurement could also be
started from home, but the Internet connection would still need to be set up
beforehand, due to availability issues discussed in 2.4.6.

NMI personnel

The original motivation for developing the iMet systems, was to allow NMI
personnel to perform Internet-enabled calibrations directly at a customer.

By using the system, the operator may control and monitor the calibration
process from his or her own office, instead of traveling to the customer. The
benefits of doing calibrations this way was mentioned in 1.5.

External expert

Inexperienced customers may outsource entire experiments to be controlled by
external experts. These experts could be located anywhere in the world. The
experts could also be consulted when experiencing instrument problems, such
that the experts have direct access to the instruments and can do the relevant
error checking.

4.6 Time delays

When instruments are physically connected to an operator’s computer, the
instrument communication is instantaneous. Things change when including the
Internet in the measurement process. Operating instruments via the Internet, one
will always experience some time delays, usually in the area of a few seconds. This
can feel quite unnatural to the operator, but there are a few ways to compensate
for it.
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Configuration 03× 2s = 06s
10 readings 10× 2s = 20s
Total delay 26s

Tab. 4.1: The accumulated network delay.

Configuring two instruments ≈ 03s
Stabilizing readings 120− 600s
Make ten readings 10× (5− 15s) = 50− 150s

Total measurement time 173− 753s

Tab. 4.2: The measurement time.

Generally, time could be saved by bundling commands together before
sending. Instead of sending multiple commands one after the other, with network
delays before and after each command, the operator could send all commands in
one bulk. This would only add time delays before and after the whole operation,
but would make the system act more like a ”black box” to the operator.

4.6.1 Example

A typical example would be to operate a digital multimeter (DMM) remotely
to do 10 high-resolution DCV readings from an electrical calibrator. The
measurement procedure could run locally at the operator’s computer.

Three bundled commands would be needed to set up the instruments, two
for configuring each instrument and one for putting the calibrator in running
mode. The instruments then need some time to stabilize. The multimeter might
use a few seconds integration time per reading. Typically, the time delay is
approximately one second each way on average, or two seconds per command
sent. That means, it will take two seconds to send a command and receive
confirmation when the command action has been performed. The total time for
the delay and the measurement can be seen in Tab. 4.1 and 4.2.

If looking at single readings only, the worst case scenario is to use the minimum
integration time of five seconds. Then the network delay would amount to about
2/(2+5)=28.6% of the total time, that is, the time to make one reading including
delay.

If using the maximum integration time of fifteen seconds, the delay would be
about 2/(2+15)=11.8% of the total time.
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The formula for finding the delay-total time ratio is

Delay

Delay + Measurement
=

t1 × n1 + t1 × n2

(t1 × n1 + t1 × n2) + (t2 + t3 + t4 × n2)
(4.1)

where t1=time delay of sending one command, n1=number of configuration
commands, n2=number of reading commands, t2=total configuration time,
t3=stabilizing time (120-600 seconds), and t4=integration time (5-15 seconds).

For the described measurement, the delay-total time ratio would lie in the
range 3.3-13.1%.

When increasing the number of readings, the delay time will asymptotically
converge to somewhere between the worst-case and best-case scenario when
making one reading.

lim
n2→∞

t1 × n1 + t1 × n2

(t1 × n1 + t1 × n2) + (t2 + t3 + t4 × n2)
=

t1
t1 + t4

= 11.8%−28.6% (4.2)

Typically, the stabilization time will count for a substantial fraction of the
total measurement time, so the effective impact of the delay time will be lower
than these limits.

It is important to notice that for direct instrument operation, the time to
perform a single command could be in the area of milliseconds. Then the delay
time would make up almost 100% of the total time.

4.6.2 Delay compensation

Utilizing waiting time

If there is some waiting time, Twait, between each reading, it is possible to
compensate for the delay times, as shown in Fig. 4.4, thus reducing the effect to
almost zero.

If we look at Fig. 4.4 we see that

∆1 = t2 − t1 (4.3)

and
∆2 = t4 − t3 (4.4)

The total delay can be expressed as

∆1 + ∆2 = (t2 − t1) + (t4 − t3) (4.5)

or
∆1 + ∆2 = t4 − t1 − Tint (4.6)
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Fig. 4.4: Measurement time delay. t1 = command sent from operator to instrument.
t2 = command received at instrument. t3 = reply sent from instrument to operator.
t4 = reply received at operator. t5 = new command sent from operator to instrument.
Tint = integration time per reading.

The advantage of doing the latter calculation compared to the former, is that,
given Tint, only one computer clock is involved.

As long as
Twait ≥ ∆2 + ∆3 (4.7)

the time delay can be compensated for by sending the next reading command
at t5 such that the command arrives Twait seconds after the last reading. Due
to varying network conditions, this is quite challenging. To simplify, we assume
that ∆1 = ∆2 = ∆3 = ∆, so that

∆ ≈ t4 − t1 − Tint

2
(4.8)

which leads to
t5 − t4 ≈ Twait − 2∆ (4.9)

or
t5 ≈ t4 + Twait − 2× t4 − t1 − Tint

2
= t1 + Twait + Tint (4.10)

So for each reading the operator needs to calculate ∆ (or average ∆ based
on the last delay calculations) and check to see if Twait ≥ 2∆. If it is, the next
reading command is sent at t5, according to Eq. 4.10. If not, the command is
sent straight away.

Block readings

It is also possible to make block readings on some multimeters, where a number of
readings are made consecutively and stored inside the instrument before returned



84 CHAPTER 4. THE IMET SYSTEM V.2.0

to the caller, and thereby effectively reducing the delay effect to almost zero. But
this reduces the visibility of the process to the operator; the operator initiates
the block reading, but he cannot see the details of the measurements before the
block is finished.

Remote execution

One could also download the calibration procedure, or parts of it, to the computer
connected to the instruments, and compile and run it there. This would also
reduce the influence of delay to almost zero. The operator might then gain
insight to the measurement process if the instrument computer sent him update
information. The process would go as follows

1. The operator tells the instrument computer to download, compile and run
a specified measurement procedure

2. For each command performed, the instrument computer notifies the
operator (this could be done in separate threads, so that the performance
of the measurement is not affected)

3. The operator may abort the measurement at any point (it is important to
design the measurement procedures to handle such scenarios)

Due to the remote measurement execution, the operator has less control if an
unpredicted exception occurs in the procedure code or in the data connections,
and potential reading data could be lost.
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4.7 System test

In June 2005, Justervesenet performed an extensive Internet-enabled calibration
test in collaboration with one of it’s customers in Stavanger, Norway. Two
DMMs, DMM1 and DMM2, were calibrated and sent to the customer’s
laboratory, as seen in Fig. 4.5, where they were used to do comparative
measurements of a multifunction calibrator. The process was initiated and
controlled directly from JV.

Fig. 4.5: Image of the instrument setup. Two multimeters were transported from
Kjeller to Stavanger, then used to calibrate an electrical calibrator, after which they
were returned to Kjeller for recalibration.

Five types of calibrations were performed, DCV, DCI, ACV, ACI and
resistance. The same calibration procedure could be used for both multimeters,
because they implemented the same instrument interface, as explained before.
Only one procedure was used for all calibrations, and the logical structure of
the procedure was as follows. The calibrator and the multimeter were set up
to generate and measure the correct signal for each calibration point. A certain
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amount of time was added between each point (for stabilization) and the readings
were made equally spaced in time. The whole process was controlled directly from
a laptop computer at Justervesenet. The operator first did some initial testing
on the instruments to verify correct behavior. He then downloaded the correct
calibration procedure, compiled it in memory and ran the procedure locally.
The operator at Justervesenet and the customer used a phone to communicate
verbally. The customer handled all instruments and needed guidance on how to
connect them to each other and to the computer.

4.7.1 The results

The results were analyzed for all five types of calibration. The focus was on
the behavior of the multimeters, before and after transport. The quality of the
remote calibration at the customer is strongly dependent on the stability of the
multimeters.

The communication between the operator and the instruments worked
satisfactory. No significant time delays were observed when running the
calibration procedure locally at Justervesenet. Because the procedures and the
calibration points were stored in a database, it was easy to modify them without
the need to restart the applications.

When the DMMs were returned to Justervesenet and recalibrated, the
results showed that there were slight changes in their calibration values. From
the analysis so far, it is difficult to say if this was due to natural drift or
transportation. More analysis and experience with the DMMs is needed.

ACV

Before and after being used in the measurements at the customer, both multi-
meters were calibrated against a calibrated multifunction electrical calibrator.

Some changes were observed in both multimeters, as can be seen in Tab. 4.3
and 4.4. The changes can not be explained entirely from a drift only perspective.
The voltages used in the calibration were 0.3V, 3V, 30V and 300V. These values
are somewhat unfit for the voltage ranges of the two instruments, which were
2V, 200V and 1kV for DMM1 and 1V, 10V, 100V and 1kV for DMM2. This
influences the uncertainties and measured values.
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A B C D E F G H I
( V ) ( Hz ) ( µV

V ) ( µV
V ) ( µV

V ) ( % ) ( µV
V ) ( % ) ( % )

0.3 1000 -85 -136 -51 -56 90 30 170
3 45 58 -6 -64 -116 100 40 160
3 1000 145 100 -45 -87 55 28 160
3 100000 -159 -172 -13 -8 155 2 590

30 1000 67 16 -51 -98 70 34 150
300 1000 -61 -93 -32 -43 75 20 160

Tab. 4.3: Change in DMM1 before and after transport. A = nominal voltage, B
= frequency, C = relative aberration before transport, D = relative aberration after
transport, E = Value difference (before-after), F = Difference relative to the uncertainty,
G = JV uncertainty, H = change relative to the DUT specifications, I = DUT 90 days
specification.

A B C D E F G H I
( V ) ( Hz ) ( µV

V ) ( µV
V ) ( µV

V ) ( % ) ( µV
V ) ( % ) ( % )

0.3 1000 24 13 11 13 90 7 170
3 45 12 -12 24 44 65 15 160
3 1000 37 11 26 51 62 17 160
3 100000 -456 -501 45 29 155 8 590

30 1000 12 -14 25 49 70 17 150
300 1000 -41 -86 45 60 80 28 160

Tab. 4.4: Change in DMM2 before and after transport. A = nominal voltage, B
= frequency, C = relative aberration before transport, D = relative aberration after
transport, E = Value difference (before-after), F = Difference relative to the uncertainty,
G = JV uncertainty, H = change relative to the DUT specifications, I = DUT 90 days
specification.

The result of measuring the output signals from the DUT with the associated
uncertainties are shown in Tab. 4.5.

The AC voltage results showed that the measured values were within the
specifications of the calibrator. The AC voltage measurements compared to the
90 days specifications of the calibrator are shown in Fig. 4.6. The multimeters
had changed too much to verify the specifications with a good margin. One of the
calibration points (3V/45Hz) in the figure also have non-overlapping uncertainties
for the two multimeters. Further work is needed to find the causes of the changes.



88 CHAPTER 4. THE IMET SYSTEM V.2.0

Set point DMM1 DMM2
Voltage Frequency Meas. value Uncert. Meas. value Uncert.

( V ) ( Hz) ( V ) ( V ) ( V ) ( V )
0.3 1000 0.300019 0.000027 0.300026 0.000027

3 45 2.99962 0.00030 3.00027 0.00020
3 1000 3.00005 0.00017 3.00026 0.00019
3 100000 3.00061 0.00047 3.00069 0.00047

30 1000 30.0006 0.0021 30.0028 0.0021
300 1000 300.000 0.023 300.029 0.024

Tab. 4.5: AC voltage calibration results for the DUT with uncertainties.

To perform better in Internet-enabled calibrations, the uncertainties of the
multimeters (transfer standards) need to be improved. The influence of transport
and drift must be investigated, thus allowing lower uncertainties.

Fig. 4.6: Relative deviation with uncertainty for AC voltage measurements compared
to the 90 days specifications for the calibrator.
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ACI

As for AC voltage calibration, the two multimeters were calibrated against a
reference standard, before and after being used in AC current calibrations at the
customer. The values before and after are given in Tab. 4.6, and the AC current
calibration results for the calibrator, using DMM2, is shown in Tab. 4.7. DMM2
showed better stability for AC current during transportation than DMM1. This
can be seen in Fig. 4.7.

Set point DMM2 DMM1
Current Frequency Change Change

(mA) (Hz) (mA) (mA)
3.29 45 -0.000150 -0.000100
3.29 1000 -0.000150 -0.000120
3.29 10000 -0.000190 -0.000120
0.19 1000 -0.000009 -0.000002

190.00 1000 -0.005700 -0.001600
1000.00 1000 -0.064000 -0.016000

Tab. 4.6: Change of ACI calibration values for DMM2 and DMM1 after transport.

Current Frequency Meas. value Corr. value Total uncert.
Nominal (DMM2) k = 2

(mA) (Hz) (mA) (mA) (mA)
3.29 45 3.2901 3.2895 0.005
3.29 1000 3.2906 3.2903 0.005
3.29 10000 3.2906 3.2911 0.008
0.19 1000 0.1901 0.1902 0.00005
190 1000 190.0564 190.0999 0.05

1000 1000 1000.0582 1000.2022 0.5

Tab. 4.7: AC current calibration results for the DUT with extended uncertainty.

It is difficult to say anything about the transport uncertainties, due to lack
of historical data for the two multimeters. But results could show that the
multimeters are potential candidates as transfer standards for ACI. The changes
in the multimeters are shown in Fig. 4.7.
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Fig. 4.7: AC current changes, for 3.29mA, before and after transportation. a) DMM1,
b) DMM2.
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DCV

The changes in the calibration values is given in Tab. 4.8. DMM2 showed greater
change than DMM1, and the latter thus appears better suited for being used as
a transfer standard for DCV. More work is needed before concluding finally.

The results from the remote DC voltage calibration of the DUT are shown in
Tab. 4.9.

Voltage DMM2 DMM1 DUT
Nominal Change Rel. change Change Rel. change 90 days

DUT spec. DUT spec. spec.
( V ) ( ppm ) ( % ) ( ppm ) ( % ) ( ppm )

1 1.49 14 1.02 9 11
-1 1.23 11 0.22 2 11
10 1.12 9 0.32 3 12

-10 1.30 11 0.41 3 12
1020 3.13 20 -0.03 0 16

-1020 3.00 19 0.06 0 16

Tab. 4.8: Change in DC voltage for DMM2 and DMM1 after transport.

Range Nominal voltage Measured value Total uncertainty
k = 2

( V ) ( V ) ( V ) ( V )
1 1 0.9999943 4.0µ
1 -1 -0.9999942 4.0µ
3 3 2.999983 12µ
3 -3 -2.999980 12µ

1020 1020 1019.9980 5.1m
1020 -1020 -1019.9979 5.1m

Tab. 4.9: DC voltage calibration results for the DUT with extended uncertainty.
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DCI

The changes in the calibration values is given in Tab. 4.10. DMM2 showed much
greater change than DMM1. DMM1 might therefore be a better candidate for
being used as a transfer standard. More work is needed before concluding finally.

The results from the remote DC current calibration of the DUT is shown in
Tab. 4.11.

Current DMM2 DMM1 DUT
Nominal Change Rel. change Change Rel. change 90 days

DUT spec. DUT spec. spec.
( A ) ( ppm ) ( % ) ( ppm ) ( % ) ( ppm )

3.29m -6.58 -7 3.34 4 95
-3.29m -13.61 -14 -1.89 -2 95
32.9m -47.51 -54 -0.18 0 88

-32.9m -53.20 -60 0.49 1 88
1.09 -12.02 -6 -3.82 -2 200

-1.09 -13.95 -7 -1.75 -1 200

Tab. 4.10: Change in DC current for DMM2 and DMM1 after transport.

Range Nominal current Measured value Total uncertainty
k = 2

( A ) ( A ) ( A ) ( A )
3.29m 3.29m 3.289952m 66n
3.29m -3.29m -3.289932m 66n
32.9m 32.9m 32.89993m 0.66µ
32.9m -32.9m -32.89971m 0.66µ

1 1 0.999980 25µ
1 -1 -1.000027 25µ

Tab. 4.11: DC current calibration results for the DUT with extended uncertainty.



4.7. SYSTEM TEST 93

Resistance

Before and after being used in comparative resistance measurements, the two
multimeters were calibrated against JV’s resistance standards. The changes in
the calibration values for the multimeters are shown in Tab. 4.12.

DMM2 showed some instabilities for 100 Ω at the customer, and exceeded the
90 days specification for the DUT.

The calibration results when using DMM1 are shown in Tab. 4.13. It looks
like DMM1 is better suited to be used in Internet-enabled calibration, but more
tests are needed.

Resistance DMM2 DMM1 DUT
Nominal Change Rel. change Change Rel. change 90 days

DUT spec. DUT spec. spec.
( Ω ) ( ppm ) ( % ) ( ppm ) ( % ) ( ppm )

3.29m -6.58 -7 3.34 4 95
-3.29m -13.61 -14 -1.89 -2 95
32.9m -47.51 -54 -0.18 0 88

-32.9m -53.20 -60 0.49 1 88
1.09 -12.02 -6 -3.82 -2 200

-1.09 -13.95 -7 -1.75 -1 200

Tab. 4.12: Change in resistance for DMM2 and DMM1 after transport.

Range Nominal resistance Measured value Total uncertainty
k = 2

( Ω ) ( Ω ) ( Ω ) ( Ω )
3.29m 3.29m 3.289952m 66n
3.29m -3.29m -3.289932m 66n
32.9m 32.9m 32.89993m 0.66µ
32.9m -32.9m -32.89971m 0.66µ

1 1 0.999980 25µ
1 -1 -1.000027 25µ

Tab. 4.13: Resistance calibration results for the DUT with extended uncertainty.
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4.8 Conclusions

The iMet system v.2.0 was developed with the comparative study, described
in chapter 3, in mind. The new system differs from version 1.0, in that custom
measurement procedures may be added to the system at runtime. The procedures
are stored in a database as source code, and can be downloaded and compiled
when needed. The compilation happens in memory, without the need for manual
interaction. This makes the system very flexible and scalable.

The system also allows the operators to run measurement procedures locally,
such that only individual instrument commands are sent across the Internet to the
customers. This increases the operators’ visibility of the measurement process,
thus reducing the risk of errors. Tests showed that if the rate of commands or
bundled commands sent to the instruments are moderate, the procedure is suited
to be run locally at the operator’s computer. If the rate is moderate to high, the
procedure should be run at the instrument computer.

Analysis showed that the network time delay will increase the total time of
a typical measurement by 10-30%, when run locally at an operator’s computer.
Several methods have been investigated to neutralize the effects of the network
time delay. When doing direct instrument operation, network time delay will
always have a certain effect.

A real calibration was performed to test the system. Two multimeters were
sent to a customer to calibrate an electrical calibrator. Two instruments were
used to test which were the better suited as transfer standard. Both multimeters
were calibrated before and after, and the results indicate that the multimeters
had changed too much during transport to be used in a high-precision calibration.
Internet-enabled calibration requires detailed knowledge of the properties of the
transfer standard used. If the properties of the transfer standard are known,
it is possible, to some extent, to predict the behavior. This is important when
calculating transport uncertainties.

The iMet system v.2.0 seems well suited for Internet-enabled metrology
and for operating instruments remotely via the Internet. If using the system
for Internet-enabled calibration, more work is needed to find suitable transfer
standards.



Chapter 5

A generic instrumentation
system

This chapter presents the joint efforts of NPL and JV to create a
highly adaptable instrumentation system, which supports remote
operation of potentially any device from anywhere using any
measurement procedure. New middleware software was utilized
to make the system more platform-independent. Information
associated with measurement procedures and hardware was made
available from a dedicated database server, accessible to all hosts.

5.1 Introduction

5.1.1 Background

In 2005, NPL and Justervesenet decided to engage in a joint effort to develop
a generic instrumentation system, which would allow to dynamically add new
measurement procedures and support for new hardware during runtime.

The operator should be able to communicate with potentially any device from
anywhere, using either native commands or complex measurement procedures.

5.1.2 Motivation

A deficiency had been observed in some existing instrumentation systems. They
only supported a limited number of hardware buses and hardware devices, and
the cost of adding support for new hardware was relatively high.

95
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It was also known that some instruments were delivered with manufacturer-
specific control software, e.g. [100], [101], and [102], resulting in different
control applications to operate different instruments. These instruments, and
some others, were delivered with specific instrument drivers or application
programming interfaces (API), with which the control application interfaced.

It was thus desirable to look into ways to dynamically add hardware and
measurement procedures to a system during runtime. This would make it more
scalable and it would reduce the number of control applications to one, by
seamless integration of different manufacturer-specific instrument drivers into
one custom-designed instrumentation system.

5.1.3 Approaches

Hardware scalability

Most PC-based instrument control applications are bound to specific hardware
buses, like the GPIB and the RS232 bus, and they often only work with a limited
number of physical devices. If these instrument control applications were to add
support for more buses and devices, they would need to be rewritten, manually
recompiled and redistributed (if used by many). This is a tedious, costly and error
prone operation, and most instrumentation systems therefore remain limited to
a few hardware buses and devices.

The VISA specification, described in 1.3.3, maintained by the IVI Foundation
[103], solves part of this problem as it acts as a bridge between the control
application and the hardware. It enables operation over several hardware buses
without the need for changing the control application. VISA does not, however,
support all hardware buses, and provides no high-level device drivers.

Sometimes the devices are delivered with their own application programming
interface (API), which provides high-level device communication procedures.
These procedures are mostly used by manufacturer-specific control software, but
could also be utilized by custom control applications.

This chapter describes an instrumentation system, which obtains hardware
communication information dynamically during runtime. It has the potential to
communicate with all devices, either by using high-level device APIs, VISA, or
native hardware drivers.

The information needed about the hardware is automatically added during
runtime without the need for manual recompilation. The information is accessible
from a dedicated database server. As all parties download this information at
runtime, the consistency of the system is more easily maintained and there is
no need to distribute the correct version to all users before activation. When
downloaded by a user, the code is compiled in memory and instantiated, as
described in 4.3.
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The instrument control application only needs to add support for the currently
connected devices, and therefore remains reasonably small during runtime.

Development is focused on code reuse, such that the same code may be used
for several devices. Many devices perform the same actions, and there is often
no need to write separate software wrappers for each one of them.

Support for new hardware may be developed and added after the system
has been taken into use. The code should be tested extensively before making
it available, and this may be done without closing down or restarting the
system. Existing code could also be upgraded. There is no need to manually
redistribute software to users, because the user applications remains static (the
user applications only download, compile and run code that changes).

Measurement scalability

Similarly to the iMet system v.2.0, described in chapter 4, the presented system
supports adding new measurement procedures during runtime, without system
restart or recompilation. The measurement procedures are added to a database,
and downloaded when needed.

The current system only supports running measurement procedures at the
customer’s computer. As seen in 4, it is also possible, and sometimes preferable,
to run the procedures at the operator’s computer. This would be fairly easy to
implement later. The current system was developed to test the dynamic runtime-
addition of hardware support.

Internet support

The ability to add support for new devices and measurement procedures
during runtime may be important, especially when controlling instruments via
Internet. More and more instrumentation systems also use Internet to transfer
device control signals and measurement results. When the operator and the
instruments are separated by Internet, it is convenient if the hardware support
and measurement procedures could be added during runtime. Then the operator
would not need to travel to the instruments and install them manually. The
diversity of instruments is large among NMI customers, and it is not easy, nor
desirable, to add support for all hardware interfaces or drivers beforehand.

As described in 2.3, specialized middleware software is needed to handle
the network communication between clients. XmlBlaster [104] was used as
middleware in this work. This technology will be presented in 5.3.

The ongoing joint project between NPL and JV aims to solve several issues
with this approach.

To test the framework presented in this chapter, an Optical Time Domain
Reflectometer (OTDR) [90] with an API was used.
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5.2 System overview

NPL and JV propose a framework for a PC-based instrumentation system, which
is able to load hardware-specific information during runtime, when needed. The
solution utilizes some programming languages’ ability to generate assembly-code
from source-code during runtime, as explained in 4.3. Possible languages include
Microsoft Visual C# [51] and Sun’s Java [58]. Software source-code, describing
different devices and measurements, are stored at a dedicated database server.
When needed, these software proxies are downloaded, compiled, and instantiated
during runtime.

5.2.1 System components

The system is split into four parts, as shown in Fig. 5.1.

Fig. 5.1: Generic System Architecture. The generic client and the generic server
communicate via a communication server, which relays the communication signals back
and forth. Instrument and measurement software wrappers may be downloaded from
the database server.

1. A generic device server (GDS) application, responsible for communicating
with the devices and for providing services to control them.
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2. A generic device client (GDC) application, acting as the device operator.

3. A database server, containing all device-related information and measure-
ment procedures

4. A relay server, handling the GDS-GDC communication

The operator and the customer both run the same application, as it contains
methods to instantiate both GDS and GDC objects. This is shown in Fig. 5.2.
Only one GDS per computer is allowed, while there is no limitation to how
many GDCs can be run on a single computer, since these often operate remote
GDSs. When a GDC operates a GDS on the same computer, the communication
happens between processes, as opposed to a GDC operating a remote GDS which
uses TCP/IP communication.

Fig. 5.2: The same application is run both by operators and customers. One instance
of the GDS may be run on each computer, while there is no limitation to the number
of GDCs.

The Generic Device Server

The GDS is shown in Fig. 5.3. It provides certain services to one or more GDCs,
and consists of a service manager, which handles all client connections, and a
control manager, which handles the device communication. The control manager
may communicate with a device directly via a specific device object, or indirectly
via measurement objects. A measurement object contains methods to perform a
measurement involving one or more instruments connected to the server.

The GDS has no prior knowledge of the devices connected to the computer
on which it is running. When setting up communication to a device it first needs
to download this information from the database, in the form of source code, and
compile and instantiate it at runtime. The remote database is effectively a part
of the instrument control application, and enables a dynamic system that can
adapt to changing environments.
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Fig. 5.3: Generic Device Server Architecture. The server communicates with the
devices either directly or via a measurement object. All communication is interface
based, as used in OO languages, which means that the server contains no prior
implementation of the measurement and device objects.

The GDS implements a GDS interface containing several methods. The most
important methods include

• activateInstrument( ... )
Activates and registers a specific instrument. This includes downloading
hardware information, compiling the source code and providing a service
to communicate with the instrument.

• deActivateInstrument( ... )
Deactivates and unregisters a specific instrument. This means closing the
instrument connection and removing the service to communicate with the
instrument. The compiled code is not removed, so that the instrument
could be reloaded at a later stage without any recompilation.

• runMeasurement( ... )
Compiles and runs a specific measurement procedure. The procedure source
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code is received from the calling operator (with measurement configuration
data and measurement points).

The Generic Device Client

The GDC is shown in Fig. 5.4. It is used to operate devices connected to a
GDS. The GDC may use inter-process communication, when run on the same
machine as the GDS, or TCP/IP communication, when run on a different LAN
computer. The GDC may control remote devices directly by using runtime-
compiled device-specific graphical user interface (GUI) components, or indirectly
using runtime-compiled measurement objects.

The UML use case diagrams for the GDC when running measurements and
operating instruments directly are shown in Fig. 5.5 and 5.6. A UML use case
diagram presents the primary elements and processes of a system. The elements
are called actors, while the processes are called use cases. UML use case diagrams
can be used to describe specific functionality of a system.

Fig. 5.4: Generic Device Client Architecture. The client may communicate with a
generic server using several channels (Internet, WAN, LAN or locally). It may generate
device-specific GUI controls to control a remote/local device directly.
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Fig. 5.5: The use case diagram shows the required actions for the GDC when running
measurements.

5.2.2 Choice of technology

Microsoft Visual C# was used to program most of the system. Java could also
have been used, but then an extra software layer would need to be added, as
will be explained in 5.6. To run C# applications, .NET Framework needs to be
installed on the computer, as was explained in 2.3.3.
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Fig. 5.6: The use case diagram shows the required actions for the GDC when operating
instruments directly.

Although the operator and the devices may be co-located, the focus of the
work presented has been on separating the operator and the devices using the
Internet as a communication channel, as shown in Fig. 5.1.

As seen in 2.3, the GDS and the GDC generally cannot communicate directly
when separated by the Internet, due to network protection components like
firewalls and proxy servers. In the current work, XmlBlaster [104] was used
to obtain bidirectional communication (though only tested for bidirectional TCP
communication). The XmlBlaster project is still under development, and further
testing is needed. The reason for choosing XmlBlaster was that this technology
enables different programming languages to communicate (not just C#). If
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implemented in Java, both the GDC and GDS could be run on any platform
implementing the Java Runtime Environment, though an extra software layer
would be needed, as will be explained in 5.6.

The system could also use .NET Remoting, as described in chapter 2. This
would require few architectural changes to the existing system, as XmlBlaster
and .NET Remoting could be set up to run in much the same way.

5.3 XmlBlaster

XmlBlaster is a message-oriented middleware (MOM), which exchanges messages
between communicating computers, e.g. a client and a server. A message
is described with XML-encoded meta information, and it may contain several
objects, e.g. GIF images, Java objects, Python scripts, XML data, a word
document, or plain text.

An XmlBlaster message consists of three components

1. Header
XML-descriptions of the message content

2. Content
The actual binary content, e.g. a picture, or a data object

3. Quality of Service
Information regarding how XmlBlaster should handle the message, e.g.
addressing information, and message expiration date

The XmlBlaster server is developed in Java, while the connecting clients may
be developed in a variety of software languages, including PHP, Perl, Python, C,
C++, C#, Visual Basic.net, Flash, J2ME, and Java.

The system supports several communication protocols, like direct socket,
CORBA (using JacORB [105]), Java RMI, XmlRpc, HTTP, or email.

5.4 System operation

There are two ways of using the system. Either the GDC may operate
local/remote devices directly using device-specific control GUIs or it may perform
local/remote measurements.

5.4.1 Direct instrument operation

In direct instrument operation, the GDC downloads a device-specific GUI
component from the database server. This GUI component is then compiled
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in runtime and instantiated. The GUI component contains controls to operate
the device directly, e.g. configuring a digital multimeter. The control signals are
serialized into byte streams and sent to the remote GDS via the communication
server. The GDS deserializes the byte stream, and sends the method call to
the correct device software wrapper. This software wrapper is responsible for
converting the method call into a viable device driver call. Measurement results
are returned from the generic server to the client in much the same way.

Thus, for each device there are two software components, namely a GDC-side
GUI control component and a GDS-side high-level device driver component. The
operator does not need to know the details of the latter component, because it
is handled by the GUI component (which is compiled and instantiated during
runtime). When adding support for direct operation of a new device, both
components need to be added to the database. If only used in measurements, the
GUI component could be omitted or added at a later stage.

5.4.2 Indirect instrument operation

When using the system for remote measurements, the GDC does not need to know
anything about the functionality of the devices involved. Instead it downloads
the correct measurement description object from the database server, which
contains methods to configure the measurement and add measurement points,
in addition to the actual source code of the measurement procedure. After
configuring the measurement, the GDC serializes it and sends it to the generic
server. When received, the generic server deserializes the measurement byte
stream, compiles the measurement source code, configures it, and runs it with
the correct measurement points. If told to do so, the generic server notifies the
operating client of the measurement progress during the measurement. When
finished, the measurement results are sent to the client for further processing.

Measurements work on device interfaces, such that the same measurements
could be used with different devices, if implementing the same interface. E.g.
multimeters able to measure DC voltage, could both implement a method
”measureDCV( double voltage )”, which would allow different multimeters to
be used in the same DC voltage measurement.

5.4.3 Preparations

When remotely operating devices connected to a computer, there are some actions
that need to be done beforehand on that computer:

• The native hardware bus driver needs to be installed on the device computer

• If the device came with an installation CD containing a device driver and
API, they need to be installed on the device computer
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• Sometimes a little manual work needs to be done by a local human operator
(simple shell commands) on the device computer

• A local human operator needs to start the GDS application, and connect
it to the public communication server (when operating remotely)

5.5 Software drivers

Software drivers, or device drivers, are small extensions to an operating system
(OS), which typically enable the OS to communicate with external, physical
devices. These devices comprise both hardware buses, like GPIB, RS232 and
USB, and specific devices connected to the buses, like digital cameras and
printers. The drivers are often organized in a stack, such that a USB bus device
driver makes use of the USB bus driver.

Drivers that communicate with hardware, need to run with privileges
extending those for the traditional user software. Normal software, developed
by regular users, usually run with user mode privilege, which among others
prevents it from accessing memory directly. Hardware drivers, on the other hand,
need to access memory directly, and therefore are usually set to run with kernel
mode privilege. The user - kernel mode intercommunication is quite complicated,
and most often the hardware drivers are delivered with a user mode interface.
Normal software may access a driver through this interface, without knowledge
of the underlying interrupt-based driver communication. The overview of the
communication process is shown in Fig. 5.7.

Fig. 5.7: The relation between user mode software and kernel mode software. The user
mode application needs to communicate via a kernel mode driver to communicate with
external hardware.
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5.6 Platform independency

The system presented is dependent on the .NET Framework, which, traditionally,
means using the Microsoft platform. The system could also be implemented using
Java, which would make the system more available on different platforms. By
implementing the GDC and GDS in Java, and using XmlBlaster as middleware,
the system could be ported to any platform supporting the JRE.

The platform-independent nature of Java, makes hardware communication
somewhat more challenging compared to using C# on the Microsoft platform.
The standard Java class library does not support the platform-dependent
features, like hardware access, and native driver communication, needed by the
GDS. When using Java to access hardware, an extra software layer needs to
be added between the Java application and the hardware driver, to handle the
driver communication. This layer is usually programmed using C/C++, and it
needs to be installed on the computer before running the Java application. The
hardware communication architecture on the Microsoft platform using Java and
C# is shown in Fig. 5.8.

Fig. 5.8: Hardware communication using C# and Java on the Microsoft platform. As
can be seen, it is easier to access hardware using C#, due to the extra software layer
needed when using Java.

When a Java application must communicate with a platform-dependent
component (like a native driver), the Java Native Interface (JNI [106]) is used to
write native methods. These native methods handle the driver communication.
Due to porting problems, this extra software layer would sometimes need to be
compiled manually on the computer where it should be running. It is also often
quite complicated to write (due to e.g. marshaling of custom types). Due to this
extra manual work, and because most PC-based instrumentation is done on the
Microsoft platform, C# was chosen as the main programming language for this
implementation.
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5.7 Results

A system test was performed in January 2005 using an OTDR. An OTDR is an
optoelectronic instrument specifically designed for optical fibre testing. To test
an optical fibre, a series of optical pulses is sent into one end and the reflected
pulses are measured and analyzed. From the reflected pulses several attributes
may be extracted, such as fibre attenuation, dispersion, non-uniformity, splice
loss, fractures, and length. The instrument setup is shown in Fig. 5.9.

Fig. 5.9: OTDR Architecture. The fibre under test is connected to the OTDR, and a
series of optical pulses is injected with a laser. The reflected pulses are measured with
an optical detector.

In the experiment, an OTDR located at NPL in England was remotely
operated from JV in Norway. Both computers were behind firewalls, and only
outbound connections were allowed. Beforehand, a public web server was set
up at NPL, and all communication signals between the operator and the OTDR
were relayed through this.

The operator first queried the database server for a high-level OTDR driver,
based on manufacturer name and model, which was then downloaded by the NPL
computer, and instantly compiled and loaded. When loaded, the driver tested
the communication with the physical OTDR. After this test was successfully
completed, the operator queried the database server for all experiments involving
a single OTDR, again based on manufacturer name and model. After finding
the correct measurement, he downloaded a custom measurement object. Such
measurement objects contain measures to configure the contained experiment and
add measurement points. In the experiment described, the operator configured
the measurement such that the pulse series lasted for 3 seconds, and each pulse
consisted of laser light with a wavelength of 1310 nm.

The measurement results, in the form of reflected and acquired data, are
shown in Fig. 5.10.
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Fig. 5.10: Results from the data acquisition. The OTDR used laser pulses with a
wavelength of 1310 nanometers. The length of the fibre was 1 kilometer.

Most of this data is noise, and only the far left-hand side of the graph is
interesting. A cropped and magnified version of the upper left corner of Fig.
5.10 is shown in Fig. 5.11.

The focus of the experiment was to test the dynamic driver loading, and the
measurement data is thus not interesting in this perspective. In a real OTDR
measurement, several attributes may be drawn from the data (e.g. by looking at
the gradient angle of the line in Fig. 5.11).

5.8 Conclusions

A dynamic instrumentation system has been developed, which may potentially
operate any PC-connected device.

The system is designed such that all hardware-specific information is
downloaded from a database and compiled during runtime. This makes the
system very scalable, and hardware information may be changed or added to
the central database even when the system is running.

The devices can be operated locally or remotely, depending on the location of
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Fig. 5.11: Detail from the original results graph in Fig. 5.10

the operator. This means that third-party experts may be involved in the control
process without the need for them to travel to the instruments. This requires
the use of specialized middleware which handles the communication between the
operator and the instruments, e.g. .NET Remoting or XmlBlaster.

The system also promotes consistent results as all measurements, controlled
by different users, are done using the exact same measurement code downloaded
at runtime. New measurements can be developed and tested, and then instantly
be made available to all users of the system.

As only one system is needed to control all devices, it is very versatile and
cost-effective. Training is only needed for new users, though in-depth knowledge
of the physical devices is still needed. The users can focus on operating the
devices instead of learning the application.

The security of the system depends on which middleware is used. Internet-
traffic should be encrypted when sending sensitive data, and the use of MACs
and digital signing of source code and data results is necessary to obtain data
integrity. All users and computers should also be authenticated to reduce the
risk of misuse.

As more and more measurements are done using a computer, the presented
system could provide an cost-effective and scalable solution. This could result in
large savings for companies that use many different instruments.



Chapter 6

Discussion and conclusions

In this chapter a thorough discussion of important areas regarding
integrating the Internet into the metrology area will be given,
after which will follow some recommendations for future work
and some thoughts for the way forward. At last a short summary
of the most important conclusions from the previous chapters is
presented.

6.1 Introduction to discussion

Since the first IT-tools became available, the metrology community has utilized
them in their everyday work, from writing reports to running experiments in their
laboratories.

The interest to integrate the Internet in the metrology area is growing. Many
NMIs across the world have done work in this field, but few or none have taken
a broader approach of seamless integration of the Internet into their work.

The growing interest in Internet, has come as a result of the progress and
development of ICT technologies, enabling secure and seamless communication
over long distances at reduced costs. The ubiquity of Internet, combined with
PC-based instrumentation, opens up new possibilities in the metrology area.

In this context, important questions arise regarding Internet-enabled instru-
mentation systems

• Can the Internet have a role in real calibrations?

• What is required to accredit Internet-enabled calibration systems?

• Are there suitable transfer standards that may be used in Internet-enabled
calibrations?

111
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• Can the operator and the instruments be separated in a secure and practical
way?

• Which constraints do security requirements put on the functionality of an
Internet-enabled instrumentation system?

• How can Internet-enabled instrumentation systems be designed to minimize
the possibilities for errors?

• How does the architecture of an Internet-enabled instrumentation system
influence the network dependability?

• What are the challenges for the instrument manufacturers in the future?

• How can Internet-enabled instrumentation systems be developed both with
the present and the future in mind?

• To what degree will the Internet influence metrology in the long run?

Finding good answers to these questions will influence the future development
of Internet-enabled instrumentation systems. Internet-enabled instrumentation is
a relatively new field, and collaboration should be sought to develop standards to
be used by NMIs, calibration laboratories and instrument manufacturers. Well-
designed standard solutions would simplify the transition from ICT-supported
instrumentation to ICT-based instrumentation.

6.2 Discussion

6.2.1 Can the Internet have a role in real calibrations?

Judging from all the work done up to now, both internationally and here,
Internet seems to have the potential of becoming an important part in the
future calibration and metrology area. Some of the challenges to be dealt with
are security, availability, device authentication and dissemination of traceable
calibration data. These challenges solved, real calibrations could be performed
using the Internet as transport medium for control signals, calibration procedures
and measurement results. It would also enable an instrument to be made
available, as a service, to trusted parties across the world in a safe way. Instead of
moving the physical instruments to the operators, the instrument buses would be
virtually extended to the operators, as seen in Fig. 6.1. This would be important
when dealing with direct instrument operation or when running more complex
calibration procedures at the operator.
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Fig. 6.1: Using ICT tools, an instrument bus may be extended across the Internet to
a trusted party.

The results from the preceding chapters indicate that the software challenges
with Internet-enabled instrumentation systems, can be dealt with. Authentica-
tion of devices, on the other hand, seems more tricky, as was discussed in 2.5.
The availability of suitable transfer standards also presents a challenge, when
working at an NMI-level.

Performing calibrations via Internet, traceable measurement values need to
be disseminated to the DUT. The dissemination proceeds through the transfer of
primary standards or more complex electrical instruments. When testing the iMet
system v.2.0, the results (presented in 4.7) showed that the transfer standards
in use had changed significantly during transport. The calibration process as
such worked as planned. This suggests that the challenges might not lie in the
software but in the hardware. To perform Internet-enabled calibrations at the
level of an NMI, the biggest challenges could be to find and maintain a suitable
transfer standard, in addition to sufficiently authenticating the devices in use.

In traditional calibrations, where the DUT is transported, the transport
uncertainty is difficult to calculate. When ”reversing” the calibration process,
where the calibration values are disseminated to the DUT and the transfer
standard is calibrated before and after transport, the transport uncertainty can
be calculated more reliably. This means that, if suitable transfer standards are
found, more precise calibrations than those available today may be performed.

Failing to find a suitable transfer standard would affect the level of calibration
precision possible. The uncertainty introduced by the transfer of calibration
values would influence the total calibration uncertainty. Internet-enabled
calibration would thus only be suitable for low and medium-precision calibrations.
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6.2.2 What is required to accredit Internet-enabled cali-
bration systems

To answer this question, it is important to look at how such systems differ from
traditional calibration systems (described in 1.4). Four important factors must
be dealt with:

• Network communication
Which security challenges are introduced by the Internet?

• Device authentication
Can the devices involved be authenticated in a satisfactory manner?

• Calibration data dissemination
Can a suitable transfer standard be found?

• Customer trust and education
Can the NMI customer be trusted to handle the instruments and in
performing small software tasks? Can the NMI customer be trusted not
to intentionally misuse the system?

The technical challenges can be overcome. Technically, a system can be
made as secure as needed. Using cryptographic techniques, control signals
and measurement results can be secured during transport and users can be
authenticated. Regarding availability, systems may be developed using firewall-
friendly protocols, making them highly accessible to most user. Sometimes there
is a choice between sufficient security and needed functionality, e.g. the need for
speed. This may be solved through increased bandwidth and faster processing
units.

Utilizing the Internet, a system can be based on at least three different
architectures, as described in 1.6. Either the operator and the instruments may
be co-located, or they may be separated by Internet, where the instruments are
connected either to a public server or to a regular LAN computer.

Architecture 1 is used to obtain consistency, in that all users run the same
downloaded code at runtime and exchange calibration data and measurement
results with a shared dedicated server. If the operator is from an accredited
calibration laboratory or an NMI and involved in every step of the process,
most challenges concerned with customer trust and device authentication become
irrelevant. NPL’s iPIMMS system utilizes the Internet to obtain traceability for
high precision measurements using microwave network analyzers (ANA). This
accredited system is of architecture 1.

Architecture 2 can be used to set up online laboratories, where a public server
gives access to a group of instruments and measurements. This architecture is
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not suitable for Internet-enabled calibration, as described here, because it would
require each customer to either set up their own dedicated web server or to open
certain ports in their firewall. From an educational perspective, it is a well-
suited architecture for letting users operate instruments and run measurements
for practice. This could be a part of the user education needed when accrediting
NMI customers. UniK’s Lab-on-Web is a system used by students to run real
and simulated experiments. It belongs to architecture 2.

Architecture 3 provides means to build general instrumentation systems,
which enable remote operation of traditionally unavailable devices. This
architecture eliminates the need for the operator to travel to the devices, and
trusted experts can easily get involved directly in the measurement process. The
systems described in chapter 2, 4 and 5 belong to architecture 3.

Whichever architecture is used, introducing human customers and operators
opens up possibilities for breaches in the system security and reliability.
Intentionally or unintentionally, the customer may perform actions which could
make the system behave in a non-predictable way. Unintentional misuse should be
prevented by sufficient testing before launching the systems. Intentional misuse
could be much more difficult to prevent. To avoid this, a trusted relationship
should be developed over time. Users of an accredited system could be provided
with a special certificate, proving that they are trusted and accredited users. This
could be combined with a contractual liability of misuse.

6.2.3 Are there suitable transfer standards that may be
used in Internet-enabled calibrations?

Suitable transfer standards could be any high-precision device with well-known
transport behaviors. The instruments tested here, two high-precision digital
multimeters, showed considerable changes after transport. These changes could
not be directly related to transport, because the drift behavior was not well-
enough known.

Therefore, sufficient knowledge of the primary standard or complex instru-
ment is needed before using them as transfer standards. Historical data is needed
to be able to model the drift of the calibration values. When such models are
available, with uncertainties, it is easier to identify the influence of transport.

To reduce the influence of transport, custom containers should be provided
to ensure stability in temperature and humidity and to protect against impacts
(during transport). Additionally, the containers should be equipped with sensors
monitoring temperature, humidity and shock.

The Fluke 4950 Multifunction Transfer Standards System, previously
available, was such a system. The Fluke 4950 was a digital multimeter, used in
high-precision calibrations, and claimed to be suitable as a transfer standard. It
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was used with a special transit case, including sensors for temperature, humidity
and shock monitors. The Fluke 4950 was not tested in this work, because it was
no longer available.

More work is needed to identify suitable transfer standards. It would be
convenient if high-precision multifunction instruments could be used. Then
several calibration values could be disseminated using one instrument, allowing
calibrations to be performed effectively.

A potential candidate might be the Josephson Array Voltage Standard
(JAVS), which could be used in combination with GPS. A JAVS can convert
microwave radiation into DC voltage, and is often used to realize high-accuracy
voltage values (the uncertainty is only dependent on the uncertainty of the
microwave signal frequency). If each customer has their own JAVS, traceability
could be obtained without using a transfer standard. A JAVS at the customer
and a JAVS at the NMI could be used to measure the GPS signal simultaneously,
and the signals would then be compared. This would effectively calibrate the
customer’s JAVS since the same GPS signal was used. The customer’s JAVS
could then be used to calibrate other devices at the customer. Another approach
is to develop a transfer standard based on a JAVS, which would be less influenced
by transport.

Programmable JAVS are normally used to generate DC voltage, but they can
also be used to synthesize AC voltage signals [107], [108], and AC power [109].
Other candidates could be standards, where the measurement values are rooted
in natural phenomena like Quantum Hall effects.

Time and frequency are two properties which can be calibrated directly
without using a transfer standard. If these properties could be used to generate
other physical properties, based on some physical phenomena, Internet-enabled
calibration could be done without using transfer standards.

6.2.4 Can the operator and the instruments be separated
in a secure and practical way?

There are several reasons why separating the operator and the instrument
sometimes may be preferable. First, the operator saves time and costs, which
is important in an increasingly competitive industry. Second, it enables the
involvement of trusted experts in the measurement process, even if they are far
away. Third, sometimes the conditions under which the instruments are working
might not be suitable for the operator.

This work has shown that such separation could be obtained using specialized
middleware software. One possibility is to use .NET Remoting, used in both iMet
systems described in chapter 2 and 4. As seen in chapter 5, XmlBlaster was also
tested, though with less focus on accessibility and security.
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Due to security mechanisms like firewalls, proxy servers and NATs, a general
approach is to let the operator and the remote instruments communicate via
a public web server, an architecture supported both by .NET Remoting and
XmlBlaster.

To further increase a system’s scalability, it should be possible to add new
measurement procedures and support for new hardware during runtime. This
was tested successfully using the generic instrumentation system described in
chapter 5.

6.2.5 Which constraints do security requirements put on
the functionality of an Internet-enabled instrumen-
tation system?

Normally, the more complex a system becomes, the more vulnerable it gets. When
including the Internet into an instrumentation system, every Internet-connected
PC becomes an entry gate for potentially misusing the system.

It is useful to list the most important effects of different security requirements

• Including the Internet into the instrumentation system increases the risks
of unwanted intrusion.

• Separating the operator and the instruments increases the risks of identity
forgery (either by the instrument owner or the operator).

• Often there is a trade-off between security requirements and the need for
speed and availability.

• Allowing NMI customers to be more involved in the calibration process
requires satisfactory training beforehand.

The technical aspects, concerning software, can in most cases be dealt with.
User and device authentication, on the other hand, must to a large degree be
built on trust. That is, it is possible to build a secure system, which allows only
trusted customers access. However, it is impossible to prevent falsely trusted
customers access. Logging mechanisms should be utilized to monitor user actions,
to discover misuse and initiate counteractions.

Providing users with sufficient training before using the system, contributes
to lowering the error rate associated with user actions. It would be convenient
if the system security policy coincides with the company security policy of the
customer.

When performing measurements where extensive amounts of data are
communicated or precision timing requirements are needed, tests showed that the
procedure must be run on the instrument computer, thus lowering the system’s
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feedback to the operator (if using architecture 2 or 3). There are few ways around
this, other than increasing the available bandwidth and upgrading hardware.

6.2.6 How can Internet-enabled instrumentation systems
be designed to minimize the possibilities for errors?

As mentioned, it is important to give users sufficient training before using the
system. This would reduce error rates concerned with normal use. Well-trained
people make fewer errors.

Through well-designed systems, using established object-oriented techniques,
the error rate may also be lowered. Users should only have access to relevant
information, and should only be allowed to perform actions according to their
trust and authorization level. The fewer choices a user has, the less are the
chances of making mistakes.

As described in chapter 5, it is possible to create single systems that can
handle potentially all hardware and measurement procedures. By unifying and
standardizing the design of GUI controls, used to operate different devices, users
may grow accustomed to using the system, even when operating unfamiliar
devices. This would reduce the error rate significantly.

It would be beneficial to integrate a web camera to monitor the remote
location. This would be sent out with the transfer standard. It could be treated
just as a normal device, where a software proxy gets downloaded and compiled
when needed.

Easy-to-understand setup pictures should be provided to make the task of
connecting the instruments easier and less error prone. Additionally, fixed plug
connections could be provided for standardization.

Generally, user interactions should be held at a minimum, thus automatizing
most of the process.

6.2.7 How does the architecture of an Internet-enabled
instrumentation system influence the network de-
pendability?

A system’s network dependability is directly correlated to the rate of network
communication. That means, a system which needs to access the network
frequently is more dependent on the network than a system which accesses the
network less often.

Of the three architectures presented in 1.6, the network dependability
increases from architecture 1 to architecture 3. Architecture 1 only needs to
access the Internet while downloading measurement procedures and uploading
measurement results. Architecture 3 could require Internet-communication for
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each instrument command in a measurement procedure if run on the operator’s
computer.

To reduce the dependence on the Internet, measurement procedures should
run at the instrument computer. Generally, this would lower the operator’s
insight into the measurement process if not using architecture 1. The results
could be handled in a store-and-forward operation, where the results are stored
locally before being forwarded to the remote database. This would prevent loss
of data even if the network connection is broken.

None of the systems presented here would work without access to the
Internet. This is acceptable considering architecture 3. Using architecture 1, co-
locating the operator and the instruments, it might be possible to develop cache
functionality, such that measurement procedures and virtual device software are
stored locally. When the Internet is available, the needed software would be
downloaded (and stored for future use) to ensure consistency, while the locally
stored versions could be used during network downtime.

E.g. when adding a device to the instrument computer

1. If an Internet-connection is available

(a) The instrument computer first checks the remote database for a device
proxy

(b) If found, the proxy is downloaded and added to the local cache

2. If an Internet-connection is unavailable

(a) The instrument computer checks the local cache for a device proxy

If there is no connection to the Internet, the above will work as long as a
version exist in the local cache. The consistency of the procedure can not be
guarantied, but at least the device operation will work.

6.2.8 What are the challenges for the instrument manufac-
turers in the future?

More and more new devices come with built-in Ethernet cards, and may be
accessed directly from a LAN or Internet. To prevent unwanted users to access,
some security measures have to be established.

The devices could be equipped with features to help with the authorization of
users, either by using certificates and/or usernames and passwords. The devices
could also utilize user groups, and associate each group with certain functionality.
E.g. the group ”Administrator” could have access to all functionality, while
”Basic user” could have access to simple configuration and reading functionality.
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When integrating the Internet into the system, firewalls should also play a part
in the authorization process.

As already mentioned in 2.5, it may be a challenge to securely authenticate
devices. The devices range from some not having computer-interfaces, to others
being equipped with computer-interfaces and built-in identification strings. These
identification strings are sometimes not ”permanent” and can be altered. New
devices should have permanent and unique identification tags, which may be
accessed by a computer. Possibly, all devices could be equipped with unique
MAC-addresses (through their Ethernet cards).

Traditionally, computer-based instrumentation has been a local process,
where a computer communicates with a device directly over a local bus. There
is now a shift from computer-based toward network-based instrumentation.
This might suggest the need for the development of a new instrumentation
protocol, for example based on SCPI, which takes into account network issues
like quality of service, addressing, and security. If manufacturers could agree on a
standardized instrumentation protocol, thus obtaining interoperability, it would
be very advantageous. This new protocol could use for example SOAP (XML
over HTTP), such that it would work with firewalls and proxy servers.

6.2.9 How can Internet-enabled instrumentation systems
be developed both with the present and the future
in mind?

Developing systems for the future, flexibility and modularity in components
are important properties. That is, when new standards or technologies are
introduced, new modules may be added or old modules replaced or removed
without affecting the rest of the system. If a new communication protocol is
introduced, it should be possible to make the system work with this protocol
without affecting the instrumentation system as such. It should be possible to
add, replace or remove measurement procedures or support for hardware, without
rewriting or recompiling the rest of the system. Methods to make a system
scalable has been discussed in chapter 5.

In the future, an instrumentation system should be able to provide remote
control services to external users, e.g. via the Internet. Moreover, the system
should ideally be configurable to fit every user’s needs. Many users requires many
different configuration options. Standardization is then again important. If the
metrology community could agree upon certain ways of integrating the Internet
into their work, interoperability and cooperation would be much less challenging.
In the future, there might be a shift toward cooperation over the Internet between
NMIs, especially within the European Union (EU). Though somewhat reluctant
to make use of the Internet in their everyday instrumentation work today, as seen
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in appendix A, the metrologists might change their minds in the future.

6.2.10 To what degree will the Internet influence metrol-
ogy in the long run?

In many areas, e.g. business and education, Internet is becoming increasingly
important. Business-to-business transactions are being done online, and students
may attend online classes. The metrology community will most probably also be
influenced more and more.

In the future it could be much more common to run or monitor measurements
via the Internet. Initially, companies might utilize Internet to run or monitor
their own measurements or operate their own instruments. If or when standards
become available, it would be possible to cooperate and coordinate actions more
easily between NMIs.

Instruments could be utilized more efficiently by more people, because they
may be operated from remote. Sharing instrument could be much more common.

When in need of performing a special measurement, involving both local and
remote instruments, an analysis must be performed to check which instruments
have to be shipped where. Instruments with well-known transport properties
should be sent instead of instruments with less well-known transport properties.
This must be weighted against the costs of the instruments, company policy, and
the skill of the people handling the instruments. It also requires all involved
parties to agree upon the terms of such inter-laboratory cooperation.

Public databases could be used to obtain consistent measurements. If several
NMIs run the same software, standardization may be implemented more easily.
This would also reduce costs, in that individual NMIs do not need to write
their own software. Well-tested software could instead be shared among many
laboratories.

IPv6 is an abbreviation for ”Internet Protocol Version 6”, and is the next
generation Internet protocol. It will succeed IPv4, which is most common today.
An important difference between the two protocols is the size of their address
space. While IPv4 may address only 4294967296 devices, IPv6 may address
3,8e+38 devices. This could lead to more devices being equipped with a network
card and made available via the Internet. This may include lottery machines, gas
pumps, mass balances and household electricity meters etc., all of which need to
be monitored, calibrated, or checked on a regular basis. Due to the inconvenience
of transporting many of these devices, the experiences from the work on Internet-
enabled metrology may be utilized.

There is a trend towards a convergence of different everyday applications
into fewer and fewer devices. A good example would be new cell phones with
integrated multimedia players and digital cameras. They connect to other devices
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via several communication channels, and soon they will likely include GPS
receivers. Becoming more connected, these multifunction devices will perhaps
be the device-of-choice when using Internet in the future. In a few years
measurements could be controlled and run using regular cell phones.

6.3 Recommendations

Some recommendations may be proposed, based on the experiences from this
work. Several areas have been discussed and some conclusions have been drawn.

6.3.1 Architecture

It is believed that architecture 3, introduced in 1.6.3, will have the best potential
in the future. It’s advantages clearly surpasses it’s weaknesses. In a way, the
other architectures are sub-versions of this.

It might be a good idea to let a system be configurable to work with any of the
architectures. Developing with architecture 3 in mind, it would be manageable to
let users choose between any of the three architectures. That is, when operating
local instruments, the operator should use architecture 1. If operating remote
instruments, the operator should use architectures 2 or 3, depending on the
accessibility of the instruments.

6.3.2 Communication

The communication used in an instrumentation system is dependent on which
architecture is used and the accessibility-level of the operator and instruments.
If the operator and the instruments are separated, and the operator and/or the
instruments are behind firewalls, proxy servers and/or NATs, flexible middleware
software is required, to enable full-duplex communication channels through the
network protection entities. Sometimes this communication channel needs to
support bidirectional HTTP, when dedicated HTTP proxy servers are involved.
.NET Remoting was the only middleware found and tested in this work,
supporting bidirectional HTTP channels. .NET Remoting is practical to use
and integrate into a system, but requires to be run within the .NET Framework.

When architecture 2 is used, the same middleware software as for architecture
3 might be needed. This is due to potential asynchronous operations, which
requires the server to communicate directly with a client. It is somewhat less
complicated than for architecture 3, in that only one channel to the server is
needed.

When using architecture 1, no complex middleware software is needed. Often
regular HTTP calls to the server are sufficient, containing measurement data or
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requests for measurement procedures.
If implementing all architectures into a system as described in 6.3.1, it would

also require the implementation of all communication types. The system should
handle different communication protocols, though always have a strong focus on
security. E.g. if no HTTP proxy servers are involved, direct TCP communication
could be used instead.

6.3.3 Security

When developing an instrumentation system to be used with Internet, a clear
understanding of the security requirements is needed.

1. Operators and instrument handlers must be able to use systems without
the risk of harm.

2. Instrumentation systems sometimes comprise expensive instruments and
devices, and it is therefore important to protect them from intentional or
unintentional misuse.

3. Graded information must not be readable or accessible to unauthorized
users. If using the Internet to transfer sensitive information, cryptographic
techniques should be used to protect the traffic.

In both versions of the iMet system, described in chapters 2 and 4, SSL over
HTTP was used. This protected the traffic during transport. In addition, the
use of digital signatures and MACs would preserve information integrity after
transport. E.g. when performing a remote calibration, the calibration results
should be signed both by the customer and by the NMI operator. This would
make it easier to verify the results at a later stage.

6.3.4 Scalability

To make an instrumentation system as scalable as possible, it should be easy
and practical to add or upgrade measurement procedures and support for new
hardware. As seen in chapter 5, this was solved by adding the information to
a database, after which it could be downloaded and run when needed. Initially,
the control application as such did not support any devices or measurements.

For direct instrument operation, two inter-communicating components could
be developed for each device, one dynamically added to the operator’s application
and the other to the application running at the instrument computer. This would
make the main control applications independent of the connected instruments.
This was tested for the generic instrumentation system described in chapter 5.
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6.4 Way forward

Only the principles are developed and tested here. Quite a lot of work remains
to make a complete system. The properties of the complete system will be
strongly dependent upon the content of the database, which should contain all
measurement and hardware information. Work could be saved if developing with
reuse in mind, such that devices having similar functionality, utilize the same
software proxies.

JV will continue to work for increased NMI collaboration and coordination in
the ICT field, among others through the EUROMET network.

Device authentication is a challenging field, which could be satisfactory
obtained in the near future. JV has recently started an MSc work to look into
this. In that work, analysis of electrical properties of different devices plays an
important role in the authentication process.

It is of utter importance to find suitable multifunction transfer standards.
Work will continue to search and test different instruments. Internet-enabled
calibration without transfer standards will also be looked into.

It is important to look for new ways to utilize the Internet in the metrology
area, and this search will continue at Justervesenet.

6.5 Summary of conclusions

During the current work, three systems were developed, which comprised different
functions. The first system was also compared and tested against NPL’s Internet-
enabled instrumentation system, iGen.

6.5.1 First system: iMet v.1.0

What separated the first system from existing instrumentation systems, was the
ability to let an operator remotely control an instrument located behind strict
firewalls or proxy servers in a secure way. As seen in 2.3.2, this was made possible
by utilizing specialized middleware software, which supported full-duplex HTTP
channels.

In addition, preinstalled calibration procedures allowed more complex
measurements to be run. Because the procedures where preinstalled, the system
needed to be rewritten, recompiled, and restarted whenever adding a new
procedure. Tests showed that the system was well-suited for performing remote
calibrations.

Regarding the security of the system, the focus has been on using standardized
security measures. The results from a security analysis showed that the system
seems quite secure regarding the Internet-communication, but more work is
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needed to ensure long-term non-repudiation of data, e.g. by using digital
signatures.

See 2.8 for further conclusions.

6.5.2 Comparison of iGen and iMet

Two instrumentation systems were compared to identify potential areas of
improvement. This was NPL’s iGen system and JV’s iMet system.

Several pros and cons were discovered for both systems. The two main
differences were the differences in architectural design and the degree of
measurement scalability. The iMet system could be used to operate remote
instruments, while the iGen system assumed locally connected instruments. On
the other hand, the iGen system was more robust with regards to changing
network conditions, since the instrument communication happened locally.

The iGen system was much more flexible with regards to adding and running
new measurement procedures, since it interpreted and ran source-code at runtime.

See 3.5 for further conclusions.

6.5.3 Second system: iMet v.2.0

The second system was constructed with the comparison in mind. It utilized
the same middleware software as the first system, but the focus was now on
scalability. Measurement procedures could be downloaded and run when needed,
and new procedures could be added to the system without system recompilation
or restart.

Some object-oriented programming languages, like Java and C#, can
dynamically compile source-code in memory and run it at runtime. This ability
was utilized in the second system, such that source-code measurements could be
downloaded by control applications at runtime, and compiled and run in memory.
The source-code was added to a dedicated database server beforehand.

Tests showed that the system can be used to perform remote calibrations,
though more work is needed to identity well-suited transfer standards.

See 4.8 for further conclusions.

6.5.4 Third system: Generic instrumentation system

The third system was a joint project between NPL and JV. The focus was now on
scalable hardware support. Several hardware devices had been identified, which
used non-standard PC-cards and control applications. This traditionally resulted
in the use of multiple control applications.

The aim for the third system was to construct a system which could
dynamically add support for potentially any new hardware at runtime. The
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solutions chosen in the second system where further developed to comprise
software components used to communicate with hardware devices. This meant
adding support for new measurements and new hardware devices to a dedicated
database server at runtime, and downloading, compiling, and running this source-
code when needed.

The system was tested, and the results showed that the system was able to
dynamically add support for instruments with non-standard PC-cards. It is then
possible to gather all instrument control applications into one single application,
which would lead to less errors, less user training and ease of maintenance.

See 5.8 for further conclusions.



Appendix A

European survey on ICT
tools usage

A.1 Background

In 2005, an electronic survey was conducted to explore the current status of
ICT-tools usage among different NMIs1 in Europe through the EUROMET[110]
network. The work was part of EUROMET’s iMERA[23] project which builds on
the MERA[111] project. The results of the survey revealed, to a certain degree,
the attitude of NMI employees toward the use of ICT-tools and the Internet in
the metrology area. The complete report is available on the Internet [112].

The survey comprised several areas like network topologies and technologies
in use, and the opinions of the NMIs employees concerning ICT tools usage.

A total of 81 people participated in the survey, which is somewhat less than
expected. Conclusions drawn from the survey results are therefore limited to
qualitative trends.

The survey looked at how NMI employees deal with ICT-related issues in their
everyday lives. Are they utilizing ICT tools to solve instrumentation problems
in a new way, or are they using traditional tools. If the latter, is it because
they do not have access to the correct tools, is it because they do not have the
proper education, or are they just stuck in a traditional way of thinking? Is
there general interest in co-operating with other NMIs using new communication
methods? Could instrumentation procedures be improved by allowing several
NMIs to co-operate and co-ordinate their actions in a seamless way? What

1UK, Germany, France, Italy, Sweden, Denmark, Republic of Slovenia, The Netherlands,
Norway, Czech Republic, Poland, Switzerland and Finland
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changes are needed to allow different NMIs to further co-operate and co-ordinate
their actions? Is there a need for standardization of certain elements like file
formats, data formats, or software in order to obtain compatibility between the
NMIs? Which economic issues must be dealt with, and who should be responsible
for dealing with them?

A.2 Survey Participants

From each NMI, the following persons were selected to attend the survey:

• 1 IT administrator

• 5 Metrologists

• 5 Managers

The relative proportions of each user group to the total number of survey
participants are shown in Fig. A.1.

Fig. A.1: Question: What kind of user are you?

A.3 Technology

One of the aspects of the survey was to investigate the degree of inter-
compatibility of the European Measurement Institutes, that is to find what needs
to be done to let the NMIs co-operate and co-ordinate their actions in a seamless
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way. The nature of the co-operation would comprise e.g. remote instrumentation
systems, database solutions, and co-operative project management.

The participants were asked what platform the PCs the used at work was
running, and the results are shown in Fig. A.2.

Fig. A.2: Question: Which operating system is running on the PCs you normally use
at your organization?

A.4 Trends and Opinions

A.4.1 Communications

The participants were asked if they wanted to use different means of communica-
tion, other than email and phone, to collaborate with other NMI employees. The
results for video conferencing (VC) and text chat (TC) are shown in Fig. A.3.

As is seen, a majority (67%) of the metrologists would like to use VC tools
when collaborating with other NMI employees, while only 51% are interested in
using TC tools. The reasons why people answered no can be seen in the following
list:

• No added value

• Email is sufficient

• Requires all communicating parties to be online at the same time

• Face-to-face meetings are preferred
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• Infrastructural problems

• Too much technical knowledge is required

• Too much preparations

• Emails are easier to understand (listening to low-quality speech is hard)

Fig. A.3: Questions: a) Would you like to use VC software to communicate with
people at other measurement institutes in Europe? b) Would you like to use electronic
TC software to communicate with people at other measurement institutes in Europe?

A.4.2 Measurements

The survey tried to high-light the opinions among metrologists toward remote
control and monitoring of measurements. The results found are shown in Fig.
A.4.

A.4.3 Templates

The survey tried to find if the NMIs were using templates for different tasks, like
document templates and measurement data templates, and the results can be
seen in Fig. A.5 and Fig. A.6.



A.4. TRENDS AND OPINIONS 131

Fig. A.4: Questions: a) If the communication challenges are dealt with, would you like
to be able to run your experiments via the Internet? (e.g. from your own home) b) If
the communication challenges are dealt with, would you like to be able to monitor your
experiments via the Internet? (e.g. from your own home)

Fig. A.5: Question: Does your NMI provide for word processor templates that may be
used by all employees?

A.4.4 Measurement Data Format

As a step toward standardization in order to increase compatibility between
different NMIs, the metrologists were asked if they thought it was a good idea for
all metrologists, within the same discipline, to use the same measurement data
formats. The results are shown in Fig. A.7.
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Fig. A.6: Question: Do you save your measurement results in a standardized format,
allowing easy exchange of data? (e.g. use the same software spreadsheet template for
all your measurement)

Fig. A.7: Question: Do you think it is a good idea for metrologists, within the same
discipline, to use the same measurement data format?

A.5 Conclusions

When looking at the results from the survey, there are a few conclusions that can
be drawn:

• About Technology

– The IT platforms on the client side is mostly Microsoft-based
– The IT platforms on the server side is shared between Microsoft and

Apache
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– Tendency of different solutions and lack of standardization

• About Opinions

– Metrologists are somewhat reluctant to change formats of existing
templates

– Metrologists are generally interested in monitoring and controlling
measurements remotely via the Internet
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Appendix B

Network security

In order to protect a company’s sensitive information accessible to their LAN
users, it is crucial to install some sort of security protection systems like firewalls,
proxy servers or network address translators (NAT).

B.1 Firewalls

A firewall is used to analyze and filter all packets exchanged between a LAN and
the Internet. If data packets arrive at the firewall, which do not meet certain
requirements, they are usually dropped. A firewall is used to protect it’s LAN
computers from external hackers, and to restrict access to certain domains on the
Internet.

B.2 Proxy servers

A proxy server is used to avoid direct communication between a LAN computer
and an external host. The proxy will act on behalf of the internal client, and all
traffic between the client and the Internet passes through the proxy server. A
proxy server is often used to hide the internal address space from the Internet,
due to security policy or lack of public addresses. A proxy server is often equipped
with firewall and NAT capabilities.

B.2.1 Transparent proxies

Transparent proxies operate so that an internal client is unaware of the proxy
server.
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B.2.2 Generic proxies

Generic proxies may require user identification before allowing access to certain
services. Thus, the internal client needs to be aware of the proxy server.

B.2.3 Dedicated proxies

Dedicated proxies are associated with certain services. E.g. a HTTP proxy server
is used to only allow HTTP traffic.

B.3 Network address translators

Due to the shortage of public IP addresses, NATs are used to translate private
LAN addresses to public addresses. It changes the sender field in each packet
coming from the internal LAN to the NAT’s public address. External hosts will
believe that the packet originated from the NAT server. The NAT keeps track
of each packet sent, so that responses from external hosts are forwarded to the
correct internal hosts. NATs may be used in combination with routers and proxy
servers.
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