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Problem Description 
How can we most accurately predict whether or not a person is moving his or her limbs via an EEG-

recording? This thesis will evaluate methods for preprocessing and classification of EEG-recordings, in 

order to detect a person’s limb movements.  
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Abstract 
By using EEG-recorders as input devices, the electrical activity on the scalp of humans can be used to 

control a computer. In later years, machine learning techniques have allowed these Brain-Computer 

Interfaces to be more accurate and to adapt to the individual person. In this thesis, the state of the art 

Sub-Band Common Spatial Patterns method for EEG classification was implemented, and then extended 

with the goal of improving its classification accuracy. In particular it was found that its accuracy can be 

improved by: 

1. Employing Oracle Approximating Shrinkage in the calculation of the covariance matrix used by 

the Common Spatial Patterns algorithm.  

2. Using the increase/decrease of the signal power over time as an additional feature. 

3. Using L1-regularized Logistic Regression for classification and feature selection. 

4. Boosting the final classifier. 

Ultimately these alterations increased the classification accuracy from 86.4% to 91.7% on the BCI 

Competition III (IVa) dataset, and from 65.1% to 69.0% on the BCI2000 dataset. 
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1 Introduction 

 Computerized interpretation of EEG 1.1
Electroencephalography (EEG) provides an insight into the firing patterns of the neurons in the brain by 

recording the electrical activity on the scalp. EEG is today mainly used in clinical contexts, for example to 

diagnose epilepsy, coma and brain death.  Compared with other techniques for brain imaging, such as 

magnetic resonance imaging (MRI) and computed tomography (CT), EEG recordings have lower spatial 

resolution and higher temporal resolution.  

A novel application of EEG technology is its use in non-invasive Brain Computer Interfaces (BCI). A BCI is 

a device that tries to infer the intention or action of the user, based on his or her neural activity (Hild, et 

al., 2010). EEG-based devices are particularly attractive for this use because of their relatively low-cost 

and their portability. An EEG based BCI can have applications within many areas. One application for 

BCIs is to replace typical input devices for users with functional deficits that prevent them from using 

standard equipment. EEG-controlled spelling systems, for instance, have been developed to replace 

keyboards (Müller, et al., 2008). EEG-controlled wheel chairs have been developed for users who are 

unable to operate them with their hands (Rebsamen, et al., 2007). Outside the domain of health care, 

companies such as NeuroSky1 and Emotiv Systems2 are developing consumer level EEG products, and 

applying them to, for instance, computer games.  

An early example of a BCI system is that of (Birbaumer, et al., 1999). There, severely paralyzed sufferers 

of the neurodegenerative disease amyotrophic lateral sclerosis (ALS) were enabled to communicate 

using a spelling system that was driven by EEG. The subjects learned to control a specific characteristic 

of their scalp potentials, which in turn gave a binary input to the spelling system. This process was slow; 

it could take a person more than an hour to spell 100 characters, and the training process could span 

several months. Later BCI systems have taken the approach of employing machine learning, so that the 

machine would learn to adapt to the particular subject, not the other way around. For such approaches, 

motor activity proved to be a good feature to detect. Since both imagined and actual motor activity uses 

the same region of the brain, motor activity is applicable even in BCIs designed for severely paralyzed 

people. 

  

                                                           
1
 NeuroSky is based in California, USA. http://www.neurosky.com/ 

2
 Emotiv Systems is of Australian origin, and based in Hong Kong. http://emotiv.com/ 
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 Main Problem 1.2
A complete BCI system needs to record EEG data, interpret it and apply this interpretation to control, for 

example, a wheelchair, a spelling system or a computer game. Figure 1.1 illustrates these components of 

a BCI system. The focus of this thesis will be exclusively on step 2, the interpretation of the EEG data. 

Further, this thesis will only deal with the detection of real or imagined motor activity in the brain of the 

user. 

 

 

 

 

Figure 1.1: High level view of typical BCI architecture 

The problem to be solved at step 2 of this process is to take raw EEG data from a short time span, 

process it, and arrive at a best guess of the user’s motor activity. This function will be learned from 

labeled example data, and is thus an example of what within machine learning is called a supervised 

learning problem (Mitchell, 1997). The problem of EEG classification is typically attacked by employing 

several discrete stages of processing, as described in section 2.3 (page 14), before a classifier produces a 

final label for the given EEG-data (i.e. “right hand”). Concretely, for one of the datasets used in this 

thesis, we develop a function whose input is a matrix of 23600 floating-point numbers (200 samples per 

118 channels) that will output a binary classification (one of two numbers).  

The quality of such a system can then be evaluated by its ability to correctly label a new set of unlabeled 

data. The main goal of this work is to take one of the state-of-the-art methods for EEG classification, and 

extend and alter it in various ways in order to see if its accuracy can be improved. 

 Experimental Setup 1.3
The basis for this work is the Sub-Band Common Spatial Patterns (SBCSP) method (Novi, et al., 2007). 

The method is presented in detail in chapter 2.  

The various extensions and alterations that will be done to the classification algorithm will be empirically 

evaluated on existing datasets. The evaluation procedure is described more in detail in section 4.1 (page 

29), though the gist of it is simply to see what percentage of the data is correctly classified by the 

1) Electrodes, amplifiers and 

circuitry to record the 

electrical activity on the scalp. 

2) Interpretation of EEG data, 

through signal processing and 

machine learning. 

3) Output: Control of some 

software or device. 
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system. The specific methods that will be evaluated are presented in chapter Feil! Fant ikke 

referansekilden. (page Feil! Bokmerke er ikke definert.). 

One data set is the publicly available BCI Competition III dataset IVa, which consist of imagined right 

hand and right foot movements recorded from 5 subjects (Blankertz, 2005), where the imagined 

movements where initiated by a visual cue.  

Additionally, the dataset produced by the developers of the BCI2000 system (Schalk, et al., 2004) will be 

used for evaluation. This dataset contains recorded data from 109 subjects. The subjects were 

instructed to open (or alternatingly to imagine opening) their right or left fist, based on a visual cue. 

Other actions are also present in the dataset (foot movement), but these were not used in the 

experiments here. Note that to cut down the computational requirements, only the data from the first 

50 people in this dataset are used in this thesis. Table 1.1 shows an overview of the datasets used in this 

thesis.  

 BCI Competition III (IVa) BCI2000 

Subjects 5 109 (50 used) 

Trials per subject 280 90 

Activity Foot and hand movement Right and left fist movement 

Sampling rate 100Hz 160Hz 
Table 1.1: Overview of the characteristics of both datasets used in this thesis. 

SBCSP itself, and other alterations of it (i.e. (Ang, et al., 2008)), have previously been evaluated against 

the BCI Competition III (IVa) dataset. By using the dataset in this thesis as well, we can compare the 

results here against previous work. Additionally testing against the BCI2000 dataset allows us to see 

whether the results obtained generalize to new datasets. 

 Brief Summary of Experiments 1.4
Building upon the Sub-band Common Spatial Patterns (SBCSP) method, we will extend and alter the 

system in the certain ways, and see what this does with the classification accuracy: 

Common Average Referencing: This method is intended to improve signal-to-noise ratio, and will be 

evaluated for use with the SBCSP. 

Covariance Estimation: An early step in the method is the Common Spatial Patterns (CSP) algorithm, 

which requires estimates of particular covariance matrices. We will assess various ways of estimating 

covariance matrices, with and without regularization, for use by the CSP algorithm. 

Classification: The final step of the SBCSP method is classification by a classifier. We will evaluate a 

selection of linear and non-linear classifiers for this purpose.  

Features: The classifier finally does its classification based on a vector of numbers that describe the EEG 

data segment. This representation is called the feature vector, and we will investigate different 

variations of this representation. 



12 
 

Feature Selection: The SBCSP method defines a particular procedure to reduce the number of features 

that represent the EEG data. We will experiment with alternative approaches to achieve the same goal, 

as well as alternative numbers of features to be used. 

Boosting: We will iteratively retrain classifiers on the dataset, such that previously misclassified 

examples are weighted as being more important in subsequent rounds. This is known as boosting, and 

has been shown to improve classification accuracy in certain cases previously. 

Bandpass Filter Optimization: The SBCSP method requires the extraction of certain frequency ranges 

from the data. This is done through a filter defined by several parameters. We will do a rough search 

through this parameter space. 

 Document Overview  1.5
This first chapter has presented the context of EEG based BCIs, and the questions that this thesis intends 

to answer.  

Chapter 2 presents the physiological and mathematical background for the software system. The 

physiological phenomena that the BCI system intends to detect are briefly presented, followed by the 

algorithms typically used to detect them.  

Chapter 3 shows some existing results on the BCI Competition III (IVa) dataset, including the results of 

SBCSP, and the results obtained by the reimplementation of the method produced for this thesis.  

Chapter 4 presents each of the experiments done in the context of this thesis. Each experiment will be 

presented separately, followed by their results and a brief discussion of these results. Bit by bit we will 

use the results obtained to build an improved classifier.  

Chapter 5 is the conclusion, containing the main findings of this thesis, followed by some proposals for 

future work in this area. 
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2 Physiological and Mathematical Background  

 Fundamental Difficulties 2.1
All EEG based approaches to Brain Computer Interfacing have to deal with some fundamental 

difficulties. In many forms of research on the brain, it is common that the researcher averages EEG 

signals from several hundred recordings in order to accentuate any pattern in the data. This technique 

cannot generally be used in a BCI however, since a BCI must produce immediate classifications of the 

current activity of the brain.  

The EEG records electrical activity on the scalp, which means that the sensors have to observe the 

neurological action at a distance. Since the sensors are removed from the origin of the signals of interest 

they will be mixed with signals irrelevant to the activity we want to detect, arising both from the brain 

and from the environment. A further complication is that while an EEG recorder can produce hundreds 

of thousands of electrode samples per second, obtaining example data involves inconveniencing a 

human being for some period of time. This means that the classification problem is one with high-

dimensional data and few training examples.  

Fortunately, researchers have come up with several approaches to overcoming these difficulties – some 

of these will be described and evaluated later in this document.  

Another complication is that motor activity presents itself differently from person to person. In 

particular, there is a variation in the frequency at which the data is most discriminable. This means a 

classifier that has been trained on one person will not in general work very well on other people. Even 

on the same person, the act of removing and rewearing the EEG device may reposition the electrodes 

such that the classifier has to be retrained to work properly. The problem of applying previously learned 

information to new sessions and new people is known as subject-to-subject transfer. This topic is 

investigated in for example (Krauledat, et al., 2007) and (Kang, et al., 2009), but will not be explored in 

this thesis. 

 What We Are Looking For 2.2
It is known that both real and imagined motor activity cause an observable change in the EEG reading of 

the brain, called Event Related Desynchronization (ERD). In EEG synchrony, neurons are oscillating in 

phase, which means the individual contributions of each neuron can add up and thus produce higher 

amplitudes in the EEG recording. Therefore desynchronization is associated with decreased amplitudes. 

It is this change in amplitude over the relevant areas of the motor cortex that we try to detect.  The 

change can only be observed at certain frequency ranges. An introduction to the basic principles of 

Event Related Desynchronization and Synchronization can be found in (Pfurtscheller, et al., 1999).  
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Figure 2.1: Some EEG channels during a movement                          Figure 2.2: Highlight of the Motor Cortex of the human brain 

Where the ERD occurs on the brain is critical in distinguishing which activity occurred. While motor 

activity will be detectable over the motor cortex (shown in figure 2.2), a right hand movement will cause 

ERD on the left side of the brain, and vice versa. Figure 2.1 shows a plot of some EEG channels during a 

movement, where the dotted red line indicates the start of a hand movement.  

 State of the Art: The General Approach 2.3
Most approaches to EEG classification of motor imagery follow a certain general pattern. Typically, the 

process starts by extracting certain frequencies from the data, followed by a spatial filtering and 

concluded by a classification by a linear classifier, as illustrated in figure 2.3. The reasoning behind this 

general approach will be elucidated below. 

 

Figure 2.3: Illustration of the typical dataflow in an EEG classification system 

2.3.1 Frequency Range Extraction 

The amplitude change associated with ERD can be detected in what is traditionally called the mu (8-

12Hz) and beta (12-30Hz) rhythms (Wang, et al., 2006). Unfortunately for the designer of an EEG 

classifier, the specific frequencies at which it can be optimally detected vary from subject to subject. 

Several approaches have been suggested to remedy this. 

CSP: A common approach is that an expert tunes the frequency range for each subject by hand, typically 

by visually inspecting the resulting spatial patterns produced by the Common Spatial Patterns (CSP) 

algorithm (see section 2.6, page 18). This approach is typically called simply a CSP based classifier. The 

required manual tuning makes this approach cumbersome and impractical for many use cases. 
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CSSP: In the Common Spatio-Spectral Patterns algorithm (Lemm, et al., 2005), a simple Finite Impulse 

Response (FIR) filter is optimized along with the spatial filter. This extracts a single frequency band, and 

does not require manual tuning. 

CSSSP: The Common Sparse Spectral Spatial Patterns algorithm (Dornhege, et al., 2006) optimizes an 

arbitrary FIR-filter along with the spatial filter. However, the optimization problem is non-convex and 

thus may get stuck in a local optimum. 

SBCSP: The Sub-band Common Spatial Patterns algorithm takes the approach of simply including several 

4Hz frequency bands, and lets a classifier determine which of these bands contain discriminative 

information. It is this method that is extended in this thesis.  

A positive side effect of extracting frequency ranges is that it serves to remove – to some degree – the 

noise and artifacts that are caused by events such as eye-blinks.  

2.3.2 Spatial Filtering 

In addition to knowing what frequencies to look at, we want to know where on the brain we should look 

in order to discriminate between different motor activities. To do this we employ a spatial filter, which is 

a weighing of each EEG channel, telling us where to look in order to discriminate between the activities. 

These can be visualized by means of a scalp map, as in figure 2.4.  

 

Figure 2.4: The scalp maps shows two spatial filters obtained from a subject from the BCI Competition 2003 dataset, using 
the CSP method. These two maps maximize the variance of one class while minimizing the variance of the other. Together, 
they cover both classes of activity. 

It may be surprising how non-smooth these spatial filters are. After all, a specific motor activity will 

produce ERD originating at a specific location in the motor cortex, which will diffuse smoothly through 

the volume of the brain. If one where to plot this propagation – that is a forward-model relating the 

source signals to the scalp signals – one would see a smooth plot with large values around the areas of 

the motor cortex related to the specific activities. Such models are called spatial patterns. However, the 

spatial filter is calculated in order optimize the discriminability of two or more types of signal, and must 

also account for noise in the data. This will typically result in a more complex structure of the filter. 

(Blankertz, et al., 2010) give a more in depth argument for why this is the case, along with a numerical 

simulation showing how this can occur.  
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2.3.3 Linear Classification 

Commonly, the final classification of the extracted features is done by a linear classifier. A particularly 

favored approach is classification by Linear Discriminant Analysis (LDA). (Lotte, et al., 2010) reviewed 

several linear and non-linear classifiers, and found that LDA and Support Vector Machines (SVMs) 

tended to give good results. On certain datasets SVMs with non-linear kernels outperformed linear 

SVMs. See section 4.4.2, page 33 for a description of SVMs and kernels.  

The accuracies obtained by the various classifiers depend heavily on two factors: The features that are 

extracted from the data, and the number of training examples that are available. There is no reason to 

expect that all features one can generate from EEG data will be linearly separable. However, with EEG 

data the number of training examples from a particular subject will typically be small. Since non-linear 

models typically require more parameters to describe than linear models, they are harder to fit to the 

data, and are less likely to generalize well when the number of training examples is sufficiently small.  

 Notation 2.4
In order to improve readability, a common notation will be used in the mathematical descriptions of the 

methods presented in this chapter. Matrices will be denoted with a bold, capital letter (such as  ), 

vectors will be denoted in bold, lower case letters (such as  ), while scalars are written in non-bold, 

lower case letters (such as  ).  Indexing into vectors and matrices will be denoted as a superscripted 

number in parenthesis, so      denotes the  -th element of the vector  .  

 Sub-Band Common Spatial Patterns 2.5
The classification system reproduced and extended in this work is called Sub-Band Common Spatial 

Patterns (SBCSP), and was introduced in (Novi, et al., 2007). This model was further developed in (Ang, 

et al., 2008) and (Ang, et al., 2009).  

4-8Hz

8-12Hz

36-40Hz

CSP

CSP

CSP

FDA

FDA

FDA

RFE Classifier Class IDRaw EEG

Frequency band 

extraction
Spatial filtering

Projection to 

1 dimension
Feature selection Classification

 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Figure 2.5: The SBCSP architecture. 

This section will give a high level presentation of the steps involved in the SBCSP method, while the 

detailed description of each step will be given in subsequent chapters.  Figure 2.5 shows a high level 

view of the architecture and the dataflow of the method. 

It may be useful to take note of the size of the data as it passes through each step. Initially each EEG-trial 

is represented as a matrix  , with dimensions    , where   is the number of channels, and   is the 
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number of samples. For the BCI competition III (IVa) data that the SBCSP was evaluated on,       

     . Each trial was 3.5 seconds long (sampled at 100Hz). The SBCSP method looks only on the 

samples from 0.5-2.5 seconds, thus reducing   to 200.  

Stage 1: Frequency band extraction 

First, the raw EEG-data is split into frequency bands of 4Hz each. This is done by adapting a Gabor filter 

as a bandpass filter, and convoluting this with the EEG signal. The output of this stage is a frequency 

filtered     matrix for each frequency range. 

Stage 2: Spatial filtering 

Each subband is then used to train the Common Spatial Patterns (CSP) algorithm (see section 2.6, page 

18 for an in depth description of CSP). This supervised learning algorithm produces a     projection 

matrix  , which we can use to project the data in a way that maximizes the variance of one class while 

minimizing the variance of another. The projection matrix defined by the first   and the last   rows of   

give us the projection that contain the most discriminative information. Typically, the chosen value of   

is 1.  

Next, we use as features the logarithm of the variance of the signal in each of the    most significant 

projection directions, after normalizing the values by dividing by their sum. 

               ⟨   (
     ̃    

∑      ̃      
   

)       (
     ̃     

∑      ̃      
   

)⟩ 

Here  ̃ denotes the EEG data after projection into the    most significant projection directions found by 

the CSP algorithm.  

Thus this step reduces the     matrix for each subband to a vector of    numbers. 

Stage 3: Projection to one dimension 

The    numbers from the CSP stage is then projected to one dimension using the projection defined by 

Linear Discriminant Analysis (see section 2.7.1, page 20). This aims to increase separability of 2-classes of 

data, by finding the projection that maximizes the ratio of between-class variance to within-class 

variance. The resulting projection matrix projects the data to one dimension, a single number.  

Stage 4: Feature selection 

Each number produced by the LDA projection in each subband are then concatenated to a feature 

vector that describes the trial. (Novi, et al., 2007) evaluate two feature selection approaches, one based 

on Support Vector Machine Recursive Feature Elimination (SVM-RFE), and one based on combining a 

Bayesian feature ranking with a SVM classifier. 

The SVM-RFE approach uses an SVM classifier to rank the features by their predictive power. An SVM 

classifier finds a hyperplane that separates two classes, while maximizing the margins between the 

hyperplane and each class. This hyperplane is defined by a weight vector  , and an offset parameter  . 

Each weight corresponds to a specific feature. Recursive Feature Elimination works by iteratively 
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training an SVM, removing the feature with the lowest weight, and repeating until the set of features is 

empty. This effectively ranks the features by their predictive power, and we can choose the top   

features for the final classification. Good values for   can be empirically determined, and was set to 10 

in the SBCSP method. 

Stage 5: Classification 

With the top   features selected, these are finally fed into a classifier which determines the class of the 

data. The SBCSP paper proposes using a linear SVM for this classification. 

 Common Spatial Patterns 2.6

2.6.1 Introduction 

The Common Spatial Patterns (CSP) algorithm was originally introduced in (Fukunaga, et al., 1970) and 

became known as the Fukunaga-Koontz transform. It was since introduced to the context of EEG-

analysis in (Koles, 1991), and eventually became known as the Common Spatial Patterns algorithm in the 

EEG context.  

The main idea is to produce a transformation of the multi-channel EEG-data to a lower dimensional 

subspace such that the variance of each class of data is contrasted. The transform contrasts the data by 

simultaneously maximizing the variance of one class while minimizing the variance of the other, and vice 

versa, thus increasing separability. The method can be seen as an extension of the well-known method 

of Principal Component Analysis, first developed in (Pearson, 1901). It has been very successful in EEG 

classification because ERD manifests as changes in the signal power, and because signal variance and 

signal power are essentially equivalent measures in band pass filtered EEG data (see section 4.5, page 36 

for more on this relationship).   

2.6.2 Description 

The CSP method performs a whitening of the data (decorrelating, while maintaining variance), and then 

rotates the data to contrast the within-class variance, as illustrated in figure 2.6. 

 

Figure 2.6: The steps of CSP: The blue and green ellipses correspond to the within-class covariance matrices along with the 
principal axes, while the mutual covariance is depicted in grey. Left: The raw EEG data. Center: The data after whitening. 
Right: The data after rotating to contrast within-class variance. Picture from (Lemm, et al., 2011). 
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In the following description we have the EEG data of each trial in matrices  , each with dimension    , 

where   is the number of channels and   is the number of samples. Let    and    denote EEG from 

classes   and   respectively. 

The normalized spatial covariance of a trial can be calculated as3: 

    
    

 

          
  

              
    

 

     (    
 )

 

Where   is the transpose of  , and          sums of the diagonal elements of  . We then find these 

matrices for each trial and average them for each class, obtaining   
̅̅ ̅ and   

̅̅ ̅, the averaged spatial 

covariance matrices for each class. Next, we sum these matrices, and decompose the sum into 

eigenvalues and eigenvectors: 

 ̅       
̅̅ ̅    

̅̅ ̅       
    

Where    is the matrix of eigenvectors and   is the diagonal matrix of eigenvalues. We sort these two 

matrices by eigenvalues in descending order.  We can then find the whitening transformation matrix as: 

          
  

The whitening transforms  ̅ into the identity matrix,   ̅    . It transforms the average spatial 

covariance matrices as: 

        
̅̅ ̅                    

̅̅ ̅   

   and    have the properties that they share common eigenvectors, and the sum of corresponding 

eigenvalues will always be one: 

        
                   

                   

So if   is an eigenvector of    with eigenvalue  , it is also an eigenvector of    with eigenvalue       . 

Thus the most important eigenvector for one class is the least important for the other class, and vice 

versa. The transformation by these eigenvectors gives us the optimal separation of the variance of each 

class. By combining the whitening with these eigenvectors we obtain the transformation matrix: 

          

Finally we can transform the raw EEG trial data   by 

     

                                                           
3
 Alternative ways of calculating covariance matrices for this step are explored in section 4.3, page 30. 
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The top and bottom rows of   correspond to the top and the bottom of the eigenvalue spectrum, and 

are the directions that contrast the two classes of data. We can use the variance of these rows as 

features for classification. 

 Linear Classification 2.7

2.7.1 Linear Discriminant Analysis 

One way to approach linearly separating data is to look at it as dimensionality reduction problem. If we 

project our length   feature vector down to one dimension, we get a vector of length 1 – in other words 

a single number. For two-class classification, the problem of classification is then as simple as picking a 

suitable number on the number line and claiming that numbers larger than it are of one class, and of the 

other class otherwise. This is the approach taken in Linear Discriminant Analysis (LDA). 

 

Figure 2.7: Illustration of two choices of projection directions. Left: The dataset is projected down to the X1 axis, giving poor 
separation of the classes. Right: The data is projected using Fishers criterion, giving good separation of the classes. 

We can project our feature vector   down to one dimension using a transformation vector  : 

       

This is what is done by both LDA and linear regression, and it is the essence of what is done by logistic 

regression, although all methods choose different values of  . When we look at   as a projection, we 

want to choose the projection that maximizes the separability of the classes. The idea proposed by 

(Fisher, 1936) was to choose   so as to maximize variance between the classes, while minimizing the 

variance within each class. Such a projection is shown in figure 2.7. The mean    of a class K is given by: 

   
 

 
∑  

     

 

The between-class covariance matrix is given by: 
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The within-class covariance matrix for class K is given by: 

   ∑  

     

           
  

We can then define the separability of two classes as the ratio of the between-class variance to within-

class variance. Thus we want to choose the projection   so as to maximize: 

     

          
 
 

We can differentiate this with respect to  , find the maximum, simplify the result and obtain: 

          
          

We then have the projection we want, and need to decide on the threshold which separates the classes. 

There is no one given choice here, but a common choice is to put the threshold in middle of the means 

of the two classes.  

This discriminant gives the Bayes optimal prediction if two conditions are satisfied: The feature vectors 

must be normally distributed, and the classes must have equal covariance. Unfortunately, in the case of 

EEG classification these conditions are only approximately met. 

2.7.2 Logistic Regression 

Like ordinary linear regression, the logistic regression classifier fits a linear model to the data. However, 

while linear regression predicts a continuous valued target variable, logistic regression predicts a 

discrete valued target variable. While one can easily discretize the output of a linear regression in order 

to use it as a classifier, logistic regression allows us to achieve better accuracy by specifically optimizing 

the model to minimize classification error. 

In linear regression, the learned function       is determined by linear combination of the features   

and the parameters  : 

                      

For conciseness, we can define     , and write: 

                             

In order to make the output fall inside the range 〈   〉, we wrap the linear regression model in the 

sigmoid function (also called the logistic function), denoted here by     . The sigmoid function has an 

output between 0 and 1, and is exactly 0.5 when its parameter is 0, as shown in figure 2.8. 

 

                                             
 

      

 

Figure 2.8: Plot of the sigmoid function 
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Thus the following is the model for logistic regression: 

       (     )   
 

       
 

For this model to be useful, we need to find good values of the parameters  . To do this, we can define 

an error function               , where   is the true class label of  , and find good values of the 

parameters by minimizing the error function. The standard squared error function is not a good choice 

in this case, because the resulting function would be non-convex and therefore hard to minimize. 

Therefore we choose the following error function for logistic regression: 

               {
             

                 
 

                              

This function has the reassuring property that its value approaches infinity as the prediction approaches 

the wrong value, while it approaches zero as the prediction approaches the right value.  

Our final optimization objective      then is the average error over all the   examples 

     
 

 
∑     (  ( 

   )     )

 

   

 

 
 

 
∑           ( 

   )                  ( 
   ) 

 

   

  

Minimizing this function yields the Maximum Likelihood Estimate of the regression parameters. The 

function can be minimized by, for example, Gradient Descent or Newton’s Method. 

2.7.3 Regularized Logistic Regression 

When training a classifier, we might run into problems where the model fails to generalize to new 

examples, because the learned model is too complex. This is known as overfitting (Mitchell, 1997). This 

is particularly likely to occur when we have few training examples relative to the number of features, as 

is often the case with EEG data. In logistic regression, one way to reduce the complexity is to make each 

of the parameters in   matter less, by reducing their size. A measure of the size of a vector is called a 

norm, and it can be defined in many ways. Here are two examples that are useful in this context: 

      
 

 
∑|  |

 

   

                           
 

 
∑  

 

 

   

 

These are called the L1-norm and L2-norm of a vector. By adding       or       as a term to our 

minimization objective, it will be minimized along with the error function, thus restricting the growth of 
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the regression parameters. However, we need to decide on the degree to which we wish to restrict 

growth of the parameter vector. We can make this trade-off explicit by weighting the norm with a 

parameter  . For example if we pick the L2 norm, we have: 

     (
 

 
∑     (  ( 

   )     )

 

   

)  
 

  
      

By dividing   with the number of training examples  , we get the nice property that the degree of 

regularization diminishes as the number of training examples grow larger.  
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3 Existing Results and Reproduction 

 Existing Results 3.1

3.1.1 Results of Sub-Band Common Spatial Patterns 

(Novi, et al., 2007) presented results of the SBCSP method over the BCI Competition III (IVa) dataset. 

Table 3.1 shows the accuracies of the various methods, after a 10-fold cross-validation (see section 

4.1.1, page 29 for a description of cross-validation).  

Subject CSP CSSP CSSSP SBCSP-MC SBCSP-RFE 

aa 91.5±5.4 85.4±6.2 88.4±6.3 89.3±5.6 90.8±4.5 

al 99.2±1.8 97.7±3.0 97.9±2.7 98.6±1.8 97.8±3.4 

av 70.9±8.2 67.4±7.6 68.2±7.7 70.4±5.3 69.0±7.3 

aw 96.9±2.8 96.5±3.3 93.5±4.3 95.7±4.0 95.8±3.3 

ay 94.7±3.8 94±3.9 89.5±5.7 95.7±2.8 95.0±3.4 

Average 90.6 88.2 87.5 90.0 89.7 
Table 3.1: Result from (Novi, et al., 2007), of the SBCSP method over the BCI Competition III (IVa) dataset. 

Here CSP, CSSP and CSSSP are single band methods where only a single frequency band is extracted (see 

section 2.3.1, page 14 for a detailed description). The column for SBCSP-MC in the chart is for the SBCSP 

variant where the results from each sub-band is classified by a Bayesian “Meta-Classifier” is used as a 

preprocessing step before it is fed to a SVM classifier. Finally, the SBCSP-RFE column contains the results 

for the SBCSP variant that does Recursive-Feature Elimination before doing SVM classification. 

3.1.2 Results of Filter Bank Common Spatial Patterns 

(Ang, et al., 2008) proposed choosing different feature selection and classification mechanisms for the 

SBCSP method. Several mechanisms were empirically evaluated, and the two variants with the most 

promising results were labeled FBCSPw and FBCSPf . Their results on the BCI Competition III dataset IVa 

are shown in the table 3.2. 

 CSP (Ang) SBCSP (Ang) FBCSP-w FBCSP-f 

Average 86.6 86.3 89.2 90.3 
Table 3.2: Experimental results from (Ang, et al., 2008). 

 Reproduction 3.2
In order to do experiments for this thesis, the SBCSP method was reimplemented. In particular, the 

variant using SVM based Recursive Feature Elimination was implemented (SBCSP-RFE). The results 

obtained by this method are shown in table 3.3, over both the BCI Competition III (IVa) dataset, and the 

BCI2000 dataset. A summary of the results of all methods is given in figure 3.2. 

 SBCSP (This thesis) 

Average accuracy over the BCI Competition III (IVa) dataset 86.4% 

Average accuracy over the BCI2000 dataset 65.1% 
Table 3.3: Accuracy of the SBCSP reproduction over two datasets. 
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The lower accuracy over the BCI2000 dataset can be explained by the significantly lower number of 

training examples per person in this dataset.  

 Discrepancies 3.3
As can be seen, the results given for the SBCSP method are different between (Novi, et al., 2007), (Ang, 

et al., 2008) and the new reproduction in this thesis. The differences can be explained by the following 

implementation differences: 

1) Novi, et al. extract 24 frequency bands, each with a bandwidth of 4Hz. Ang, et al. extract 9 bands 

(the bandwidth is not specified). The reproduction in this thesis extracted 22 bands.4 

2) Novi, et al. uses a set of Gabor filters to extract frequency ranges, while Ang, et al. uses a set of 

Chebyshev Type II filters. This thesis uses a set of FIR-filters, in order to facilitate the 

experiments done in section 4.8. These filter types have different properties and will give slightly 

different results.  

3) Unspecified bands: In the previous SBCSP productions, it has not been stated which specific 

frequency bands were extracted from the data. 

4) Setting of filter parameters: The specific parameters used for the filters are not stated. These 

parameters determine exactly what data is extracted from the raw EEG data, which naturally 

affects the results obtained. The plots in figure 3.1 exemplify this. 

 

Figure 3.1: The frequency response of two Chebyshev Type II filters, which attempt to extract the same frequency range. To 
the left, a naïve parameter setting results in only fully extracting a very narrow band. To the right, a broader band is 
extracted. 

The filter settings can have a dramatic effect on the accuracy of the method, however there is no 

generally agreed upon procedure for how to set these parameters. Good results may be obtained by 

doing an exhaustive search over the parameters, however this carries a significant risk of overfitting the 

parameters to the particular dataset. In other words, the set of parameters that give optimal results for 

one dataset may not give the optimal results for other datasets. This will be further investigated in 

section 4.8 (page  46). 

                                                           
4
 22 bands of 4Hz were extracted, because they can span 2-48Hz by having an overlap of 2Hz. Covering the 0-2Hz 

band and 48-50Hz band would make some experiments in section 4.8 impossible due to technicalities of FIR-filter 
design.  
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4 Experiments and New Results 

 Evaluation 4.1

4.1.1 Cross Validation 

The classification accuracies of the various approaches are validated in this section by a variant of 10-

fold cross validation, where the original order of the data is maintained. Each dataset, containing   

examples, is split in 10 parts (folds), each containing  /10 examples. This split is done while maintaining 

the order in which they were recorded, such that each fold contains examples that were recorded one 

after another from the subject.   One of these folds is then used as test data, while the remaining folds 

are used to train the model. The accuracy of the classifier is then measured over the test set. This 

process is then repeated 10 times, such that every example in the dataset appears in the test set exactly 

once. The mean of the 10 calculated accuracies is then used as the final assessment of accuracy.  

This methodology differs from typical  -fold cross validation in that it preserves the order in which the 

data was sampled. Typically, the data is shuffled before being split into folds, such that each fold 

contains a randomly sampled subset of the data. There are two reasons randomization is not done in 

this work. First, since it is known that EEG-data is non-stationary – effects such as subject fatigue can 

cause the data to change over time – we believe that randomly sampling the example data will gloss 

over the effects of such changes, and may consequently give an unrealistic picture of real world 

performance. Second, not using random samples makes the results given here reproducible.  

4.1.2 Comparing Methods 

In order to do a statistically rigorous comparison of classification methods, a typical approach is to view 

the mean accuracy as a sample mean estimating some true mean accuracy of the method. By cross-

validation we can then find confidence interval for the mean, and compare the means of two methods 

by a paired t-test.  

This is, however, much less straight-forward for the experiments in this thesis. Both datasets used in 

these experiments contain multiple subjects. So while we can find the mean accuracy per person, the 

mean of those means is the true measure of the accuracy of a method. Calculating a confidence interval 

on this mean of means is an estimation problem in itself, known as a linear mixed effects model. 

(Jarŝová, 2010) performs a numerical simulation comparing three methods for approximating a 

confidence interval in such a setting. The conclusion of the study is that such approximations can be 

highly unstable and are therefore often worthless. Because of these problems, methods in this thesis are 

not compared with paired t-tests, as it would be unclear how such tests should be interpreted. 

In order to still be able to make some comparison between methods we will perform cross validation 

across two different datasets. We will first run all experiments on the BCI Competition III (IVa) dataset, 

and then run the same tests on the BCI2000 dataset. If a method that appeared better on the 5 subjects 

in the former dataset still outperforms other methods on the 50 subjects in the latter, we can be quite 

confident this difference is not due to chance.   
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 Common Average Reference 4.2

4.2.1 Introduction 

A very simple approach to denoising an EEG signal is to apply a common average reference. The idea is 

simply to subtract from each channel the average of all channels at that point in time.  

       ̅ 

This computationally cheap procedure is meant to accentuate the activity in each channel from its 

surrounding noise, and has been shown to improve the signal-to-noise ratio in certain applications 

(Ludwig, et al., 2009). Since it works with the spatial domain, it can be considered a spatial filter. 

4.2.2 Results 

The SBCSP method was run, with the addition of applying a common average reference (CAR). The 

experiment was run in two variants, one where the CAR was run before the data was split into multiple 

frequency bands (named pre-CAR here), and one where CAR was applied after the frequency split 

(named post-CAR here). The average accuracies of these variants versus the original SBCSP after a 10-

fold cross validation over the BCI Competition III dataset are shown in table 4.1. 

Method Average accuracy 

Baseline (SBCSP) 86.4% 

SBCSP with pre-CAR 84.4% 

SBCSP with post-CAR 83.7% 
Table 4.1. Average accuracies obtained on the BCI Competition III (IVa) dataset. 

4.2.3 Discussion 

Adding the CAR procedure to this method yields a significantly worse accuracy. This indicates that the 

CAR procedure is in conflict with some other step of the SBCSP method. A reasonable suspect is the CSP 

algorithm. CSP and CAR are both spatial filters attempting some form of denoising, however, while CAR 

attempts to accentuate the individual channel activity from the other channels, CSP uses all channels to 

accentuate the difference in signal variance. Since the classifier is ultimately based on the signal 

variance, CAR can be seen as optimizing for a criterion that is irrelevant to the classification task. In 

doing so, it appears to harm the classification accuracy.  

 Covariance Matrix Estimation 4.3

4.3.1 Introduction 

The CSP algorithm diagonalizes the covariance matrices estimated for the two classes of data, in order 

to find its projection. The inputs to the algorithm are the estimates of the covariance matrices. Since the 

data for each class is found in separate chunks of EEG data (one for each trial), the actual covariance 

estimate used for each class in SBCSP is the average of the covariance estimate for the trials in that 

class.  

Typically, the unbiased empirical covariance matrix or the maximum likelihood estimate is used. These 

estimates are known to have certain problems. When the number of variables are large relative to the 
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number of samples, the large values of the true covariance matrix are estimated to be too large, and the 

small values of the true covariance matrix are estimated to be too small (Schäfer, et al., 2005). These 

estimates are also sensitive to outliers. Therefore it is worthwhile to investigate the various approaches 

designed to deal with these problems.  

4.3.2 Baseline: The Unbiased Empirical Covariance Matrix and the Maximum Likelihood 

Estimate 

The unbiased empirical covariance matrix is calculated as follows: 

   
    ̅     ̅  

   
 

Where   is the number of samples, and  ̅ is the mean vector of  . When the random variables are 

normally distributed, one can derive that the following very similar estimate is the Maximum Likelihood 

estimate: 

    
    ̅     ̅  

 
 

Clearly the difference between these two becomes vanishingly small as   grows large.  

In the case of data that is already centered around 0 – which is approximately true for bandpass filtered 

EEG data – the  ̅ becomes zero and can be omitted, giving the simpler form      . This assumption is 

used in the SBCSP method. SBCSP also normalizes the covariance estimate by dividing by the sum of the 

diagonal elements of    , yielding the following matrix: 

       
   

          
 

4.3.3 Ledoit-Wolf Shrinkage 

The empirical covariance estimates above have appealing qualities such as being unbiased and being 

maximum likelihood, so it’s somewhat surprising that they can be outperformed in certain applications. 

However, the maximum likelihood property is reached asymptotically, as the number of observations of 

a variable goes towards infinity. When the number of observations of each variable is small, they suffer 

from systematic errors – large values are estimated too large and small values are estimated too small.  

(Stein, 1956) introduced a trick to minimize this problem, called shrinkage. The idea is to take a 

weighted average of empirical covariance estimate and some other matrix, for example the identity 

matrix, in order to reduce the systematic error. Here the shrunk estimate    is calculated as the 

weighted average of the empirical estimate   and the target matrix  , weighted by  . 

             

The weight   determines the degree to which the empirical estimate is pushed towards the target 

matrix. Good choices of   can be found empirically via a computationally expensive cross-validation. 

However, Ledoit and Wolf in (Ledoit, et al., 2003) found an analytical closed form solution that 
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computes an optimal value of  . The optimality guarantee of the Ledoit-Wolf theorem is that it gives the 

shrinkage that minimizes the distance between the true and estimated covariance matrices, where the 

distance is defined in terms of the Frobenius norm of the matrices. The Frobenius norm of a matrix is 

the square root of the sum of its squared elements: 

‖ ‖  √∑ 

 

   

∑   
 

 

   

 

This is a quadratic measure of distance, and minimizing it gives us a solution that is optimal in a least-

squares sense. A remarkable property of the Ledoit-Wolf shrinkage is that it is guaranteed to not 

increase this squared error no matter what the choice of target matrix   is. While   can be any matrix, 

good choices are the identity matrix, or other matrices that are computed from the dataset but that 

contain significantly less estimated parameters than the empirical covariance matrix. Various applicable 

choices of target matrices are presented and empirically evaluated on genomics data in (Schäfer, et al., 

2005). 

4.3.4 Oracle Approximating Shrinkage 

The Oracle Approximating Shrinkage (Chen, et al., 2009) approach is similar to, and builds on the Ledoit-

Wolf theorem. However, it introduces the additional assumption that the data is normally distributed. 

Under this assumption, they derive an estimator for the shrinkage parameter that is shown numerically 

to outperform the Ledoit-Wolf estimator in terms of Mean Squared Error, particularly when the number 

samples is very small compared to the number of variables. The Oracle Approximating Shrinkage is 

found through a closed form analytical solution, so it is of similarly low computational complexity as the 

Ledoit-Wolf approach.   

4.3.5 Results 

The various covariance estimators were used to produce the inputs to the CSP algorithm, and average 

accuracies were calculated through a 10-fold cross validation over the BCI Competition III (IVa) dataset 

(table 4.2), and over the BCI2000 dataset (table 4.3). The identity matrix was used as the target matrix 

for the methods with shrinkage. 

Covariance estimator Average accuracy 

Normalized Covariance (SBCSP) 86.4% 

Maximum Likelihood Estimate (MLE) 87.7% 

MLE with Ledoit-Wolf Shrinkage 89.3% 

MLE with Oracle Approximating Shrinkage 89.7% 
Table 4.2: Average accuracies over the BCI Competition III (IVa) dataset. 

Covariance estimator Average accuracy 

Normalized Covariance (SBCSP) 65.1% 

Maximum Likelihood Estimate (MLE) 64.8% 

MLE with Ledoit-Wolf Shrinkage 67.9% 

MLE with Oracle Approximating Shrinkage 68.0% 
Table 4.3: Average accuracies over the BCI2000 dataset. 
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4.3.6 Discussion 

The baseline and Maximum Likelihood Estimate is outperformed by the covariance estimates with 

shrinkage. The MLE outperformed the baseline only in the BCI Competition dataset. Comparing the 

Maximum Likelihood Estimate with the SBCSP Normalized Covariance is akin to seeing the effect of 

assuming zero-centeredness in the data. While it is true that bandpass filtered EEG data will have a 

mean that is close to zero, the mean will not in general be exactly zero. How close the data is to having a 

mean of zero depends highly on the filter used, and it can deviate significantly from zero for certain 

filters. No clear winner arises between the Normalized Covariance and the MLE in this test. However 

both of these are outperformed by the shrunk variants. 

That the shrunk variants outperform the MLE is testament to the relatively small number of samples as 

compared to the number of variables. The result is not entirely surprising, considering that the Ledoit-

Wolf estimator is formally guaranteed to never have higher squared error than the MLE estimate. Oracle 

Approximating Shrinkage improves on Ledoit-Wolf in the case where data is normally distributed. For 

EEG data, this assumption can be justified by the central limit theorem, when we consider that the scalp 

activity is the result of a combination of the contributions of individual neurons in the brain. The 

empirical accuracies found support this assertion. 

(Ledoit, et al., 2003b) open their paper with the statement: “The central message of this paper is that 

nobody should be using the sample covariance matrix for the purpose of portfolio optimization.” This 

advice can be extended to the domain of EEG classification. The gain in accuracy should be worth the 

slight increase in computational cost for most applications. 

 Classification 4.4

4.4.1 Introduction 

The final step of the SBCSP method is the component that learns to look at a vector of numbers and 

from it produce a prediction of what it describes, the classifier. Numerous approaches to classification 

exist, all of which make different trade-offs of various qualities and make different assumptions about 

the data. We will investigate how well these perform when applied on the features produced by the 

SBCSP method. 

4.4.2 Baseline: Linear SVM 

The Support Vector Machine finds a hyperplane to separate the classes of data. The hyperplane is 

chosen so as to maximize the margins between the hyperplane and the two classes. The model has been 

extended to a so-called soft-margin formulation, which allows it to be applied to linearly inseparable 

problems. This is done by adding an error term to the optimization problem, such that we 

simultaneously maximize the margin and minimize the classification error. This optimization problem is 

convex, and can be solved with Quadratic Programming techniques. However, there are different ways 

to formulate this optimization problem, and there are parameters that define what trade-offs are made 

by the model. Presented here is the formulation and the parameters that were found to give good 

results on the BCI Competition III dataset. 
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The SVM implementation used here is that of liblinear (Fan, et al., 2008). Good results were found using 

a L2-regularized solver to optimize a formulation of the optimization problem with an L2 squared loss 

function. The parameter C which weights the error term was set to 1.  

4.4.3 Radial Basis Function SVM 

When the dataset cannot be linearly separated, one possible approach is to apply a non-linear 

transformation of the dataset into a higher dimensional space, and hopefully find a better linear 

separating hyperplane in that space. SVMs are formulated to allow for just such a transformation, 

without increasing computational cost. This is done by the use of what is called the Kernel Trick. The 

SVM optimization problem involves evaluating the inner product of two vectors. Given a function 

     which maps the data to a higher dimensional space, it is known that the inner product of two 

mapped points can be found without explicitly evaluating the mapping, such that           

      , where        is the kernel function. By substituting the inner product with the kernel, we can 

solve the optimization problem without increasing the computational cost. A popular choice of kernel 

function is the Radial Basis Function:                   ‖   ‖   

The SVM implementation used for this is the so-called nu-SVM formulation, which introduces a 

parameter         which represents an upper bound on the fraction of training errors and a lower 

bound of the fraction of support vectors. Good accuracies where found with              . 

4.4.4 Linear Discriminant Analysis 

See the section under Linear Classification (page 20) for a description of Linear Discriminant Analysis.  

To see the effects of regularization, three variants of this classifier was tested. One did not use shrinkage 

in the calculation of the covariance matrices, while the two other versions used Ledoit-Wolf shrinkage 

and Oracle Approximating Shrinkage respectively. 

4.4.5 Logistic Regression 

See the section under Linear Classification (page 21) for a description of Logistic Regression.  

The regression parameters where penalized using the L1-norm. This regularization term was weighted 

with the parameter  , which was found through cross-validation on each subject. That is, each training 

set (which is itself a subset of the entire dataset), was further split into a training and test set and cross-

validated so as to find good values for the parameters. 

4.4.6 Naïve Bayes 

The probability of a class label  , given a feature vector  , can through Bayes theorem be stated as: 

   |   
   |      

    
 

Through the naïve assumption that the features are independent, we can simplify to: 

   |       ∏ (    | )
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With the further assumption that the likelihood of the features are Gaussian-distributed, this gives rise 

to a classifier that finds the most likely class, given the feature vector. 

4.4.7 Ridge Regression 

While Logistic Regression is actually a classification algorithm, Ridge Regression does indeed perform 

regression: It produces a model with a continuous valued output. This continuous model was turned 

into a classifier for the purposes of this experiment. The class labels where represented as 1 and -1, and 

a classification was performed based on whether the regression models output was positive or negative. 

The Ridge Regression model finds the model           that minimizes the error function 

     (∑(  ( 
   )      )

 
 

   

)          

This makes it very much like a L2-regularized Logistic Regression, except instead of minimizing the 

classification error it minimizes the squared error of its continuous valued output. The regularization 

parameter   was found through cross-validation on each subject, as with Logistic Regression. 

4.4.8 Least Angle Regression (LARS) 

The LARS algorithm (Efron, et al., 2004) creates a linear regression model by selecting a subset of the 

variables to use for the regression. As such it is a feature selection algorithm as well, that is optimized 

along with the classifier. The LARS algorithm can be seen as a natural basis for two other feature 

selecting regression algorithms: The L1-regularized least squares regression (called the Lasso), and an 

algorithm called Forward Stagewise linear regression. LARS is particularly useful when the number of 

variables is large relative to the number of examples. The size of the variable subset chosen by the 

algorithm was found through cross-validation for each subject.  

4.4.9 Results 

Over the BCI Competition III (IVa) dataset and over the BCI2000 dataset the classifiers reached the 

accuracies shown in the table 4.4 and 4.5 respectively. 

Covariance Estimate Normalized Covariance Oracle Approximating Shrinkage 

Linear SVM (SBCSP) 86.4% 89.7% 

Rbf SVM 87.4% 88.8% 

LDA 89.1% 90.2% 

LDA (Ledoit Wolf Shrinkage) 89.2% 90.9% 

LDA (OAS) 89.2% 90.8% 

Logistic Regression 89.5% 91.2% 

Naïve Bayes 89.1% 87.6% 

Ridge Regression 89.2% 90.7% 

LARS 89.4% 85.3% 
Table 4.4: Average accuracies over the BCI Competition III (IVa) dataset. 
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Covariance Estimate Normalized Covariance Oracle Approximating Shrinkage 

Linear SVM (SBCSP) 65.1% 68.0% 

Rbf SVM 64.7% 68.0% 

LDA 64.9% 67.5% 

LDA (Ledoit Wolf Shrinkage) 65.4% 67.8% 

LDA (OAS) 65.4% 67.8% 

Logistic Regression 65.4% 68.5% 

Naïve Bayes 64.9% 66.6% 

Ridge Regression 65.1% 67.7% 

LARS 64.2% 67.2% 
Table 4.5: Average accuracies over the BCI2000 dataset. 

4.4.10 Discussion 

The non-linear Radial Basis Function SVM performed on par with the linear alternatives, suggesting that 

there is perhaps not much to gain by trying to separate these log-variance features non-linearly. 

While the shrunk variants of LDA outperformed the non-shrunk variant as expected, the Oracle 

Approximating shrinkage did not outperform the Ledoit-Wolf shrinkage. OAS only outperforms Ledoit-

Wolf on the condition that the data is normally distributed. This assumption may not hold for the log-

variance features. 

The four classifiers LDA, Logistic Regression, Ridge Regression and LARS all use quite similar models of 

the data. Of these, the last two are regressors and do not directly minimize the classification error. It is 

somewhat surprising that they never the less work rather well. However, the overall impression is still 

that one should prefer the classifiers, in particular Logistic Regression, which performs best in all four 

experiments.  

 Feature Extraction 4.5

4.5.1 Introduction 

Once the CSP algorithm has produced its projection matrix, the projected EEG data typically goes 

through further processing where certain features are extracted, which are finally fed to a classifier. In 

the literature, several features have been proposed for CSP based classifiers. This section will describe 

some of these, and present the accuracies obtained when using them with the SBCSP method. 

In the following descriptions, we will denote the raw EEG trial data by  , the projection matrix by  , and 

the resulting projected data by  . 

     

The    most significant projection directions of M are used for projection. So when    , we only use 

the first and the last row of   when extracting features. If    , we are picking the two first and the 

two last rows, and so on. To simplify the notation, we will denote the reduced matrix as  ̃, which has 

size     , where   is the number of samples in the EEG recording.  
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Seeing as how the CSP algorithm maximizes the difference in variance, all the features presented below 

relate directly to variance, but have subtle differences between them. 

4.5.2 Baseline: Normalized Log-Variance 

Since the CSP algorithm maximizes the contrast of variance for the classes of data, a natural approach is 

to use the variance as a feature. Here the variance for each projection direction is normalized so they 

sum to one. Finally, the logarithms of these numbers are concatenated, giving a feature vector of 

length   . 

               ⟨   (
     ̃    

∑      ̃        
 

)       (
     ̃     

∑      ̃        
 

)⟩ 

This is feature was proposed in (Ramoser, et al., 2000) and is the one used in the SBCSP method. In 

SBCSP,     thus this feature vector is of length 2, and is subsequently projected to one dimension 

using Fischer’s discriminant (LDA). The resulting numbers for each subband are then concatenated to 

form the feature vector. 

4.5.3 Normalized Log-Power 

In (Ang, et al., 2009), the feature vector was formulated as follows: 

                (
    ( ̃ ̃ )

     ( ̃ ̃ )
) 

Note that     ( ̃ ̃ ) is equivalent to the sum of the squared samples for each of the    projection 

directions. That means it is a measure of the power of the signal. The calculation gives a feature vector 

of length   , which was then projected to one dimension using LDA. 

Note also that if the data has a mean of zero, this measure is exactly proportional to the normalized log-

variance measure presented above. The bandpass filtered EEG data will have a mean that is 

approximately, but not quite zero. The experiment will show whether this assumption affects the 

classification accuracy.  

4.5.4 Log-Power Difference 

When r=1, the normalized log-power yields two numbers that are fed to the classifier. For one class we 

expect the first number to be large and the other small, while we have the opposite expectation for the 

other class. A natural and simple feature to use then is the difference between these numbers. This 

feature was used, for example, by (Lei, et al., 2009). 

                     (    ( ̃    ̃    ))      (    ( ̃    ̃    )) 

4.5.5 Log-Variance Difference 

For completeness, we also present using the difference between the log-variances as a feature.  

                        (     ̃    )      (     ̃    ) 
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In the case where the data has zero mean, the log-variance is proportional to the log-power, so this and 

the previous measure are only subtly different. 

4.5.6 CSP as a Channel Selector 

(Wang, et al., 2005) proposed using CSP as a channel selector. We can view the spatial patterns, that is 

the columns of    , as defining a certain ranking of the channels. The method proposes picking the first 

and last spatial pattern, and picking the channels corresponding to the highest coefficients in the spatial 

pattern. Let a and b be the first and last columns of    . We then select the channels and compute the 

feature vector as follows: 

         
 

                            
 

       

                   ⟨     |     |       (|     |)     (     )            ⟩ 

The idea of using the average of the signal as a feature is in hope of detecting a physiological 

phenomenon known as Bereitschaftspotential or Readiness Potential (RP). The RP is a subtle build of 

scalp activity preceding voluntary movement, which can be observed at low frequencies.    

4.5.7 Power Trend 

All of the above features disregard the development of the signal over time. Perhaps some 

discriminative trend can be found in the time domain. This was investigated by plotting the average 

projected signal in a frequency band for a subject, as exemplified in figure 4.1. 

 

Figure 4.1: The plot shows the average of the squared values of the signal in the 10-14Hz frequency for subject “al” in the BCI 
Competition III dataset. The two most discriminatory projection directions from CSP are shown, with each class plotted in a 
separate color. 
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The plot shows that the CSP projection indeed does emphasize difference in signal variance, however 

there also appears to be a trend where the accentuated variance component increases over time. 

A new feature was introduced in order to capture this development over time. By expressing the 

squared sample value as a function of time, we have a simple one variable Linear Regression model of 

the form: 

           

Here   is the intercept, and   is the slope. The least squares solution to this model can be found quickly. 

The slope   describes if the signal increases or decreases over time. Thus, we find the slope for each of 

the    CSP projection directions, and use those    numbers as our feature vector.  

4.5.8 Results 

A 10-fold cross validation for every subject in the BCI Competition III (IVa) and the BCI2000 datasets 

yields the average accuracies for each of the feature sets as shown in Table 4.6 and Table 4.7. They were 

evaluated in combination with two types of covariance estimates for CSP: The normalized covariance 

estimate as in SBCSP, and the estimate given using Oracle Approximating Shrinkage. 

Covariance Estimate Normalized Covariance Oracle Approximating Shrinkage 

Normalized log-variance (SBCSP) 86.4% 89.7% 

Log-variance difference 87.4% 89.7% 

Normalized log-power 85.9% 88.4% 

Log-power difference 86.9% 88.4% 

CSP channel selection 68.3% 62.4% 

Power trend 61.6% 61.6% 
Table 4.6: Average accuracies over the BCI Competition III (IVa) dataset. 

Covariance Estimate Normalized Covariance Oracle Approximating Shrinkage 

Normalized log-variance (SBCSP) 65.1% 68.0% 

Log-variance difference 65.1% 68.1% 

Normalized log-power 65.4% 68.0% 

Log-power difference 66.5% 68.2% 

CSP channel selection 60.3% 59.6% 

Power trend 52.9% 52.6% 
Table 4.7: Average accuracies over the BCI2000 dataset. 

Unlike the other features, the performance of the Power trend feature varied largely with the classifier 

used. Table 4.8 shows the accuracies with various classifiers. 
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Power Trend  Normalized Covariance Oracle Approximating Shrinkage 

Classifier Average accuracy Average accuracy 

Linear SVM 61.6% 61.6% 

Rbf SVM 70.9% 69.9% 

LDA (Ledoit Wolf Shrinkage) 60.6% 62.0% 

Logistic Regression 61.0% 62.3% 

Naïve Bayes 75.1% 75.6% 

Ridge Regression 59.9% 61.4% 

LARS 60.9% 60.8% 
Table 4.8: Average accuracies of various classifiers with the Power Trend feature over the BCI Competition III (IVa) dataset. 

 

4.5.9 Discussion  

There are several questions one could try to answer with this experiment. Is there any detrimental 

effect of assuming zero centered data, i.e. calculating the log-power instead of the log-variance? Is the 

data best described through an LDA projection of the variance or power in each CSP projection 

direction, or through simply calculating their arithmetic difference? How does using CSP as a channel 

selector compare to using the fully projected data? 

The clearest result from this experiment is that using CSP as a channel selector performs poorer than the 

full projection. This is not surprising, given that information from all channels but one is discarded, while 

the full CSP projection produces a weighted combination of all channels. Much of the appeal of the 

channel selection approach is that its implementation is comparatively more computationally efficient.  

When looking at calculating signal power versus signal variance – in other words, the effect of assuming 

zero centered data –  we can see, surprisingly, that the power based features actually perform slightly 

better than the variance based features on the BCI2000 dataset. While we know analytically that the 

variance based features are strictly better (variance is what is contrasted by CSP), the results 

demonstrate that assuming data to be zero-centered will not have drastic negative effects on accuracy.  

The question of whether on should use the LDA projection of normalized data, or their arithmetic 

difference, the results indicate a slight advantage to simply using the arithmetic difference. In none of 

the experiments is the difference feature outperformed by the LDA projected feature. An additional 

argument in favor of the arithmetic difference is that finding the LDA projection is a much more 

complicated calculation than doing a simple subtraction. 

That an accuracy of 75.6% was achieved by Naïve Bayes using the Power Trend feature is interesting, 

seeing as how it is intended to detect something else than the magnitude of the power of the signal. 

Still, it may be the case that what is detected with this feature is in fact the signal power. For example, a 

positive slope of the regression line indicates an increase in power over time. But an increase in power 

will be correlated with a having a larger power, so this feature may be only capturing the magnitude of 

the power, just like the other features. To see if any information is added by knowing the trend of the 

power, we must see if any increased accuracy is gained when combining this feature with other 

features.  



41 
 

4.5.10 Combining features 

Table 4.9 shows the results of combining the Power trend (PT) feature with the Normalized log-variance 

(NLV) and the Log-variance difference (LVD). The feature vectors were simply concatenated and 

projected to one dimension through Linear Discriminant Analysis. Here we only consider the results 

where Oracle Approximating Shrinkage was used with CSP. 

 NLV NLV & PT  LVD LVD & PT 

Linear SVM 89.7% 89.8% 89.7% 89.4% 

Rbf SVM 88.8% 89.6% 90.1% 89.3% 

LDA (Ledoit Wolf Shrinkage) 90.9% 91.1% 90.6% 90.8% 

Logistic Regression 91.2% 91.5% 90.9% 91.0% 

Naïve Bayes 87.6% 87.8% 85.9% 87.9% 

Ridge Regression 90.7% 90.8% 90.6% 90.9% 

LARS 85.3% 88.0% 88.9% 88.8%  

Average 89.2% 89.8% 89.5% 89.7% 
Table 4.9: Average accuracies of feature combinations over the BCI Competition III (IVa) dataset. 

The results suggest that Logistic Regression with the NLV & PT features is a good choice of classifier and 

feature set. For the NLV feature, adding the PT feature improved accuracies for all classifiers. Adding PT 

to LVD yielded improved results on average.  The overall improvement suggests that the better results 

are not flukes, but that some new discriminating information was obtained from the PT feature. 

Comparing table 4.5 (page 36) and table 4.16 (page 46), we can see that adding PT to NLV was beneficial 

also over the BCI2000 dataset, increasing accuracy from 68.5% to 68.7%. 

 Feature Selection 4.6

4.6.1 Introduction 

Before classification, the SBCSP method performs a ranking of the features from each subband, after 

which the top 10 features are used in further classifications. This section will present results of using 

different combinations of feature eliminators and classifiers, and will also show the effect of selecting 

different numbers of features. 

4.6.2 Baseline: Recursive Feature Elimination by Linear SVM 

Whenever a classifier produces some weighing of the importance of each feature, we can do recursive 

feature elimination. The classifier is trained with all features, and the least important feature is 

discarded from the set of features. This is repeated until only one feature is left. This produces a rank on 

the importance of each feature, and we can select the top   features from this ranking. In the SBCSP 

method     , and the weight vector of a linear SVM is used to rank the features. In this experiment, 

we will also show results for other choices of  . The parameters of the SVM were the same as those 

used previously for classification. 

4.6.3 Recursive Feature Elimination by Logistic Regression 

Since Logistic Regression has given the best accuracies for classification, we will try using it for feature 

selection. Two versions are tried here, with L1 or L2-regularization. It should be noted that when using 

L1-regularization, Logistic Regression tends to produce a so called sparse solution, which is to say that 
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many of the features will be weighted to 0. L1-regularized Logistic Regression thus eliminates features as 

a result of the regularization of the model, which means that the least important feature will frequently 

have to be picked at random from the 0-weighted features under recursive feature elimination. 

4.6.4 Results 

Each feature elimination method was tested in combination with both Linear SVM and L1-regularized 

Logistic Regression as classifiers. The feature type used here is the Normalized log-variance, as in the 

original SBCSP. The CSP projection was found using Oracle Approximating Shrinkage for the covariance 

estimate. The dataset was the BCI Competition III dataset IVa. Table 4.10 and figure 4.2 shows the 

average accuracies obtained after 10-fold cross validation. 

Feature Eliminator Linear SVM Linear SVM Log. Regr. 
(L1-reg.) 

Log. Regr. 
(L1-reg.) 

Log. Regr. 
(L2-reg.) 

Log. Regr. 
(L2-reg.) 

Classifier Linear SVM Log. Regr. 
(L1-reg.) 

Linear SVM Log. Regr. 
(L1-reg.) 

Linear SVM Log. Regr. 
(L1-reg.) 

n=2 90.2 % 90.0 % 90.5 % 90.5 % 90.3 % 90.5 % 

n=3 90.3 % 91.0 % 90.6 % 91.2 % 90.8 % 91.3 % 

n=4 89.9 % 90.9 % 89.6 % 90.9 % 90.6 % 91.1 % 

n=5 90.5 % 90.9 % 90.0 % 91.1 % 90.0 % 91.1 % 

n=6 90.8 % 91.3 % 89.6 % 91.4 % 90.1 % 91.4 % 

n=7 89.9 % 91.2 % 89.9 % 91.2 % 90.6 % 91.4 % 

n=8 89.0 % 91.3 % 89.9 % 91.1 % 90.3 % 91.3 % 

n=9 89.5 % 91.1 % 90.3 % 91.2 % 89.9 % 91.3 % 

n=10 89.7 % 91.1 % 89.8 % 91.2 % 89.5 % 91.2 % 

n=11 89.0 % 91.1 % 89.5 % 91.3 % 89.4 % 91.2 % 

n=12 88.8 % 90.9 % 89.8 % 91.3 % 89.4 % 91.1 % 

n=13 88.9 % 90.9 % 89.5 % 91.1 % 89.6 % 91.1 % 

n=14 88.4 % 90.9 % 89.4 % 91.1 % 89.2 % 91.1 % 

n=15 88.6 % 91.0 % 89.6 % 91.1 % 89.3 % 91.1 % 

n=16 88.2 % 91.1 % 89.1 % 91.1 % 89.1 % 91.1 % 

n=17 88.1 % 91.1 % 89.4 % 91.1 % 88.9 % 91.1 % 

n=18 88.1 % 91.1 % 89.1 % 91.1 % 88.2 % 91.1 % 

n=19 88.4 % 91.1 % 88.6 % 91.1 % 88.4 % 91.1 % 

n=20 88.4 % 91.1 % 88.8 % 91.1 % 88.5 % 91.1 % 

n=21 88.4 % 91.1 % 89.1 % 91.1 % 88.1 % 91.1 % 
Table 4.10: Average accuracies of classifiers, feature eliminators and feature counts, over the BCI Competition III dataset. 
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Figure 4.2: Plot of the accuracies of classifier and feature eliminator combinations over BCI Competition III (IVa) dataset. The 
L1-regularized Logistic Regression classifier can be seen to be more stable than the Linear SVM with regards to variations in 
the feature selection.  

4.6.5 Discussion 

A conclusion to be drawn from this experiment is that when L1-regularized Logistic Regression is used as 

classifier, the feature selection step is nearly unnecessary. For feature counts larger than 15, the L1-

regularized Logistic Regression classifier achieved the exact same accuracy no matter how its features 

were selected. This is presumably because the regularization will assign a weight of 0 to the excessive 

features. While the benefit of the feature selection step was small for this classifier, peak accuracies 

were achieved when 6 features were selected, no matter how they were selected.  

The L1 and L2-regularized Logistic Regression feature eliminators achieved about the same accuracies on 

average when combined with the L1-regularized Logistic Regression classifier. While the L1-regularized 

eliminator optimizes for the same accuracy as the classifier, it produces a sparse weighing of the 

features, which gives a coarser rank of the features than its L2-regularized counterpart. The results show 

that one can expect very little difference in accuracy between the two approaches. 

This experiment solidifies the preference for L1-regularized Logistic Regression as a classifier over the 

Linear SVM variant. The Logistic Regression classifier gave overall better accuracies, and appears to be 

more stable with regards to feature count and feature quality.  

 Boosting 4.7

4.7.1 Introduction 

The idea of boosting algorithms is to build an ensemble of classifiers that are iteratively trained on 

reweighted training data, or on weighted random samples of the training data. The intent is to reduce 

the misclassification rate in the ensemble. For example, the popular AdaBoost algorithm (Freund, et al., 

1997) will increase weights on previously misclassified examples. On the other hand, BrownBoost 

(Freund, 2001) takes the opposite approach of effectively “giving up” on the repeatedly misclassified 

examples.  The classifiers are finally combined through majority voting. Emphasizing misclassified 

88.0 %

88.5 %

89.0 %

89.5 %

90.0 %

90.5 %

91.0 %

91.5 %

92.0 %

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

SVM-RFE → SVM 

SVM-RFE → LR (L1) 

LR(L1)-RFE → SVM 

LR(L1)-RFE → LR(L1) 

LR(L2)-RFE → SVM 

LR(L2)-RFE → LR(L1) 
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examples, as done by AdaBoost, can be shown to be similar to the margin maximization that is done by 

an SVM. An introduction to boosting can be found in (Freund, et al., 1999). 

4.7.2 Algorithm 

The boosting algorithm used here is similar, but not equivalent, to that of AdaBoost, in that it 

emphasizes misclassified examples. A weight vector is maintained that weighs each training example, 

and another weight vector weighs each classifier. In each of the maximum 100 iterations, a classifier is 

trained on a subset of the training data and tested on the whole set. The subset is found through a 

weighted random sample, with replacement, of the whole training set. The sample weights for 

misclassified examples are increased by 0.1, while sample weights for correctly classified examples are 

decreased by 0.1. Finally the accuracy of the classifier is measured. If the accuracy is less than 0.5, the 

process is stopped. Otherwise, the classifier is added to the ensemble, weighted by its accuracy. The 

final classification of the ensemble is then the weighted sum of all their predictions.  

4.7.3 Results 

Boosting performs iterative random sampling of the dataset, and this randomization may cause the 

measured accuracy to vary from run to run. Thus, to get a clearer picture of the true expected accuracy 

of this procedure, it was run 200 times. Tables 4.11 – 14 show the frequencies of the various accuracies 

obtained by these runs. Figures 4.3 – 4.6 visualize this with histograms. The boosting procedure was 

tested with four different combinations of features, classifiers and datasets.  

Test 1: Baseline (SBCSP)  

CSP Covariance: Normalized, no shrinkage. Classifier: Linear SVM. Feature Elimination: Linear SVM (10-features). 

Features: Normalized Log-Variance. Dataset: BCI Competition III (IVa). 

Accuracy Frequency 

86.0 % 3 

86.1 % 1 

86.2 % 3 

86.3 % 5 

86.4 % 16 

86.5 % 7 

86.6 % 15 

86.7 % 32 

86.8 % 18 

86.9 % 30 

87.0 % 16 

87.1 % 16 

87.2 % 23 

87.3 % 6 

87.4 % 6 

87.5 % 2 

87.6 % 1 
  

Mean boosted accuracy 86.9% 

Unboosted accuracy 86.4% 
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Table 4.11: Frequency of accuracies after boosting, test 1.  
Figure 4.3: Histogram of accuracies after boosting, test 1. 
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Test 2: Logistic Regression with Normalized Log-Variance features 

CSP Covariance: Oracle Approximating Shrinkage. Classifier: Logistic Regression (L1-regularized).  Feature 

Elimination: Logistic Regression (L1-regularized, 6 features). Features: Normalized Log-Variance. Dataset: BCI 

Competition III (IVa) 

Table 4.12: Frequency of accuracies after 
boosting, test 2. 

Accuracy Frequency 

90.8 % 0 

90.9 % 11 

91.0 % 27 

91.1 % 34 

91.2 % 62 

91.3 % 24 

91.4 % 38 

91.5 % 4 

91.6 % 1 

91.7 % 0 
  

Mean boosted accuracy 91.3% 

Unboosted accuracy 91.4% 

 

Test 3: Logistic Regression with Normalized Log-Variance and Power Trend features 

CSP Covariance: Oracle Approximating Shrinkage. Classifier: Logistic Regression (L1-regularized).  

Feature Elimination: Logistic Regression (L1-regularized, 6 features). Features: Normalized Log-Variance + Power 

Trend. Dataset: BCI Competition III (IVa) 

Accuracy Frequency 

91.1 % 0 

91.2 % 4 

91.3 % 9 

91.4 % 34 

91.5 % 20 

91.6 % 35 

91.7 % 58 

91.8 % 24 

91.9 % 15 

92.0 % 0 

92.1 % 1 

92.2 % 1 
  

Mean boosted accuracy 91.7% 

Unboosted accuracy 91.1% 
Table 4.13: Frequency of accuracies after 
boosting, test 3. 
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 Figure 4.5: Histogram of accuracies after boosting, test 3. 
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Figure 4.4: Histogram of accuracies after boosting, test 2. 
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Test 4: Logistic Regression with Normalized Log-Variance and Power Trend features 

CSP Covariance: Oracle Approximating Shrinkage. Classifier: Logistic Regression (L1-regularized).  

Feature Elimination: Logistic Regression (L1-regularized, 6 features). Features: Normalized Log-Variance + Power 

Trend. Dataset: BCI2000 

Accuracy Frequency 

68.3 % 1 

68.4 % 0 

68.5 % 3 

68.6 % 8 

68.7 % 23 

68.8 % 21 

68.9 % 45 

69.0 % 42 

69.1 % 25 

69.2 % 20 

69.3 % 10 

69.4 % 2 
  

Mean boosted accuracy 69.0% 

Unboosted accuracy 68.7% 
Table 4.14: Frequency of accuracies after 
boosting, test 4. 

  
Figure 4.6: Histogram of accuracies after boosting, test 4. 

4.7.4 Discussion 

The main question to be answered by this experiment is whether or not boosting is beneficial when 

used against each of the three feature/classifier combinations tested. The clearest conclusion is to be 

drawn from test 3. In test 3, each of the 200 boosted classifiers were more accurate than the unboosted 

classifier, and we can confidently conclude that boosting is beneficial for this feature/classifier 

combination. A benefit is also seen in the other tests, except in test 2. Still, no test showed any 

significant detrimental effect by using boosting, and the general impression is that boosting will often be 

beneficial, and is certainly worth trying in similar EEG classification setups. 

 Bandpass Filter Optimization 4.8

4.8.1 Introduction 

The first step of the SBCSP algorithm is to split the signal into multiple frequency ranges. There are many 

ways of implementing such a filter. (Novi, et al., 2007) originally performed the filtering with a set of 

Gabor filters. In their reproduction, (Ang, et al., 2008) used a set of Chebyshev Type II filters. For the 

experiments in this thesis, a set of Finite Impulse Response (FIR) filters have been used. The purpose of 

this section is not to compare these methods, but rather to compare the different parameters with 

which one can design such a filter. Since the goal of extracting, for example, the 6-10Hz range of a signal 

can be achieved through several different FIR-filters, we wish to investigate the effect such changes 

have on the classification accuracy. Further, we wish to determine whether or not ‘good’ settings for 
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these parameters can be expected to hold for new datasets or if the apparently better parameters 

performed better due to random fluctuations in accuracy.  

4.8.2 Parameterization 

A FIR-filter is determined by its filter coefficients, and these coefficients are typically found through 

some filter design procedure. The frequency range that is not attenuated is called the passband, the 

area that is attenuated is called the stopband and the gap between these two is called the transition 

band. For this experiment, we will characterize the filters we design by two parameters. First, the 

parameter   denotes the desired width of the passband, in hertz. The parameter   denotes the desired 

width of the transition band. Figure 4.7 illustrates what is meant by these parameters.   

 

Figure 4.7: Illustration of the terminology used in these experiments. We will denote the desired width of the passband by w, 
and denote the size of the transition between the passband and stopband by d. 

The parameters   and   will be used to design filters using two methods, the Parks-McClellan filter 

design algorithm and the window method using a Hamming window. See e.g. (Oppenheim, et al., 2009) 

for a description of these. Figure 4.8 shows examples such filters. All filters were of order 52. The 

implementations in the Scipy library (Jones, et al., 2001) were used.  

  

Figure 4.8: The frequency response of two filters. Left: A filter designed by the window method, w = 4, d = 0. Right: Filter 
designed by the Parks-McClellan algorithm, w = 4, d = 2. This is the filter used in the previous experiments.  
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4.8.3 Results 

Presented here in figures 4.9-4.13 are the average accuracies after cross validation, obtained using 

different filter parameters. In order to aid visual interpretation of the data, the results are presented as 

bubble diagrams, where the difference in circle diameter is proportional to the relative difference in 

performance within each of the two filter types. 

Test 1: SBCSP (Baseline) 

CSP Covariance: Normalized, no shrinkage. Classifier: Linear SVM. Feature Elimination: Linear SVM (10-features). 

Features: Normalized Log-Variance. Dataset: BCI Competition III (IVa) 

 

Figure 4.9: Accuracies obtained with various filter parameters.  
 

Test 2: With shrinkage 

CSP Covariance: Oracle Approximating Shrinkage. Classifier: Linear SVM. Feature Elimination: Linear SVM (10-

features). Features: Normalized Log-Variance. Dataset: BCI Competition III (IVa) 

 
Figure 4.10: Accuracies obtained with various filter parameters. 
 

Test 3: With shrinkage, Logistic Regression 
CSP Covariance: Oracle Approximating Shrinkage. Classifier: Logistic Regression (L1-regularized).  

Feature Elimination: Linear SVM (10-features). Features: Normalized Log-Variance. Dataset: BCI Competition III 

(IVa) 
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Figure 4.11: Accuracies obtained with various filter parameters. 

 

Test 4: With shrinkage, Logistic Regression (BCI2000) 

CSP Covariance: Oracle Approximating Shrinkage. Classifier: Logistic Regression (L1-regularized).  

Feature Elimination: Linear SVM (10-features). Features: Normalized Log-Variance. Dataset: BCI2000 

 

Figure 4.12: Accuracies obtained with various filter parameters. 
 

Test 5: With shrinkage, Logistic Regression, Normalized Log-Variance and Power Trend features 

CSP Covariance: Oracle Approximating Shrinkage. Classifier: Logistic Regression (L1-regularized).  

Feature Elimination: Linear SVM (10-features). Features: Normalized Log-Variance + Power Trend. Dataset: BCI 

Competition III (IVa) 

 

Figure 4.13: Accuracies obtained with various filter parameters. 
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4.8.4 Discussion 

To the question of which parameters one should choose for filter design, this experiment does not give 

definitive answer. It is hard to discern any “best” filter setting by this data. For example, the best 

Window method filter in test 5 was w = 4, d= 0. This filter was the worst Window method filter in test 1. 

Similarly contradictory results can be seen between test 3 and test 4, which used exactly equal methods 

on different datasets. This builds the impression that most fluctuations in accuracy per parameter 

setting is random. However, a set of filters that performed well in all tests were the sharpest Parks-

McClellan filters (i.e. d = 1). These appear to be robust parameter choices. 

What these result indicate is that while the choice of filter parameters affects classification accuracy, the 

increase or decrease in accuracy is not generally due to the filter being better or worse, but rather due 

to the variance of the classifier. Thus changing filter parameters allow us to produce numerous 

variations of the same dataset, causing fluctuations in the accuracy that may well be best attributed to 

chance.  
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5 Conclusion 
The contribution of this work has been to implement a state of the art classification system, to develop 

several hypotheses as to how to improve the system, and then to test these empirically.  

Common Average Referencing: Using CAR reduced the classification accuracy. The procedure is a spatial 

filter that attempts to isolate the contribution of each channel from its environment (the other 

channels). While this is a useful goal in many contexts, it appears to be entirely irrelevant to maximizing 

differences in variance, which is the basis of the classifier. The results indicate that it is not only 

irrelevant, but in fact harmful to the classification accuracy. 

Covariance Estimation: Accuracy was improved significantly by shrinking the covariance estimates used 

by the CSP algorithm. Ledoit-Wolf (LW) shrinkage is proven to never do worse than the standard 

covariance estimate, so the increase in accuracy from using it was unsurprising. However, Oracle 

Approximating Shrinkage (OAS) does not have the same guarantees. Still, we argue that OAS is 

preferable to LW in this context. The argument for this is two-fold. 1) The underlying assumption of OAS 

that the data is normally distributed is reasonable for EEG data. 2) Empirically, the accuracies gained 

using OAS were slightly better than with LW. 

Classification: Several classifiers were compared. The results show that linear classifiers give good 

results, and that of these L1-regularized Logistic Regression performed the best in all tests. 

Features: The experiments showed that the simplifying assumption of zero-centered data in the 

calculation of the features could be detrimental to overall accuracy. The Power Trend feature was 

introduced and shown to have some additional discriminatory information not contained in the variance 

based features. Overall, the very best results were gained by combining the Normalized Log-Variance 

and the Power Trend features.  

Feature Selection: When L1-regularized Logistic Regression was used as a classifier, the feature selection 

step proved to become much less important, because the regularization procedure in effect performs 

the feature selection itself. Still, of the feature selectors, the Logistic Regression based one 

outperformed the SVM based selection. The highest accuracy was obtained when selecting 6 features. 

Boosting: The results with regards to boosting varied largely with the classifier and the features it was 

combined with. However, the picture arising from the tests is that boosting probably will not hurt the 

accuracy, and that it in some cases will help a lot. Therefore boosting seems advisable. 

Bandpass Filter Optimization: Searching through the space of filter parameters may result in increased 

classification accuracy, but such increases may very well be attributable to chance and cannot generally 

be expected to generalize to new datasets.  

Overall the improvements have taken the classification accuracy on the BCI competition III dataset from 

86.4%, to an accuracy after boosting in the range of 91.2-92.2%, with 91.7% being the average. On the 

BCI2000 dataset, the methods accuracy was increased from 65.1% to 69.0%. 
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 Future Work 5.1
Certain other EEG-classification systems are based on extracting a single frequency band by optimizing a 

frequency filter along with the spatial filter. Some of the improvements found in this work would likely 

be beneficial in these methods as well, although this has not been confirmed empirically. Boosting, and 

the usage of the power trend feature are particularly promising candidates for such an experiment. 

Additionally, the use of covariance matrix shrinkage is theoretically guaranteed to be beneficial, 

although it is unclear if shrinkage can be directly applied during the optimization of the spatio-spectral 

filter. 

The result that the Power Trend feature on its own is significantly better discriminated by a Naïve Bayes 

classifier suggest that perhaps a better accuracy could possibly be achieved by some combination of 

Logistic Regression and Naïve Bayes in an ensemble, trained on different features with separate runs of 

feature selection. It should also be noted that the discriminability found in the signals development over 

time after CSP projection is somewhat “by accident”, as the CSP algorithm ignores the time domain. If a 

spatial filter could be directly optimized for such time domain discriminability, it could possibly improve 

classification accuracy significantly when combined with traditional CSP.  
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