
Department of Structural Engineering
Faculty of Engineering Science and Technology
NTNU- Norwegian University of Science and Technology

MASTER THESIS 2011

SUBJECT AREA:

Structural Engineering

DATE:

June 7th, 2011

NO. OF PAGES:

50 + appendices

TITLE:

Isogeometric Finite Element Analysis based on
 Bézier Extraction of NURBS and T-splines

 Isogeometrisk elementanalyse basert på

Bézier ekstraksjon av NURBS og T-splines

BY:

Ole Jørgen Fredheim

RESPONSIBLE TEACHER: Kjell Magne Mathisen

SUPERVISOR(S): Kjell Magne Mathisen and Kjetil André Johannessen

CARRIED OUT AT: Department of Structural Engineering, NTNU

SUMMARY:
This thesis will give a theoretical overview of B-splines, as well as NURBS and T-splines which
are based on B-splines, and also the concept of Bezier decomposition of these spline functions.
Bezier decomposition will decompose the splines into Bernstein polynomials which are defined
over the domain of one quadrature element. This theoretical background will then be used to
implement a Matlab isogeometric finite element analysis program. Two different choices for
implementation are explored, a isogeometric finite element solver built from scratch for use of
NURBS, and the use of Bezier extraction to implement isogeometric analysis with NURBS and T-
splines in an already existing finite element solver. The main focus will be on use of Bezier
extraction, which will significantly ease the implementation. Numerical studies are performed with
problems of linear elasticity and heat conduction, to study the convergence of an isogeometric
analysis. The accuracy of isogeometric analysis will prove to be better than for a traditional FEA
for the analyzed problems.

ACCESSIBILITY

Open

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY NTNU
FACULTY OF ENGINEERING SCIENCES AND TECHNOLOGY
DEPARTMENT OF STRUCTURAL ENGINEERING

TKT4915 Beregningsmekanikk, masteroppgave

Masteroppgave 2011
for

Ole Jørgen Fredheim

Isogeometrisk elementanalyse basert på
Bézier ekstraksjon av NURBS og T-splines

Isogeometric Finite Element Analysis based
on Bézier Extraction of NURBS and T-splines

Isogeometric analysis was introduced by Hughes et al. (2005) as a generalization of standard finite element
analysis. In isogeometric analysis the solution space for dependent variables is represented in terms of the
same functions which represent the geometry. The geometric representation is typically smooth, whereas
the solution space for standard finite element analysis is continuous but not smooth. Adopting the
isogeometric concept has shown computational advantages over standard finite element analysis in terms
of accuracy in many application areas, including solid and structural mechanics. Most CAD systems use
spline basis functions and often Non-Uniform Rational B-Splines (NURBS) of different polynomial order
to represent geometry. In order to overcome the tensor product restrictions inherent in NURBS, T-spline
basis has been used to generate analysis-suitable geometrical models of arbitrary topology.

The purpose of this master thesis is to study and demonstrate how isogeometric finite element analysis based
on Bézier extraction of NURBS and T-splines can be implemented into a standard finite element code for 2D
elasticity and heat conduction problems. The report should provide a review of the isogeometric concept in
general and emphasize on the construction of isogeometric Bézier elements. In particular describe how the
Bézier extraction operator can provide an element structure for isogeometric analysis similar to standard finite
element analysis as oppose to conventional isogeometric analysis, and also how this tool enables analysis
based on Bézier extraction of NURBS and T-splines. The study should emphasize theory and computational
formulation of isogeometric analysis as well as demonstrate how isogeometric analysis compares to standard
finite element analysis when solving problems in solid and structural mechanics.

The master thesis should be organized as a research report. It is emphasized that clarity and structure
together with precise references are central requirements in writing a scientific report.

Advisors: Kjell Magne Mathisen and Kjetil André Johannessen

The master thesis should be handed in at the Department of Structural Engineering within June 14,
2011.

NTNU, January 17, 2011
Kjell Magne Mathisen
Principal Advisor

Abstract

This thesis will give a theoretical overview of B-splines, as well as NURBS and
T-splines which are based on B-splines, and also the concept of Bézier decompo-
sition of these spline functions. Bézier decomposition will decompose the splines
into Bernstein polynomials which are defined over the domain of one quadrature
element. This theoretical background will then be used to implement a Matlab
isogeometric finite element analysis program. Two different choices for imple-
mentation are explored, a isogeometric finite element solver built from scratch
for use of NURBS, and the use of Bézier extraction to implement isogeometric
analysis with NURBS and T-splines in an already existing finite element solver.
The main focus will be on use of Bézier extraction, which will significantly ease
the implementation. Numerical studies are performed with problems of linear
elasticity and heat conduction, to study the convergence of an isogeometric anal-
ysis. The accuracy of isogeometric analysis will prove to be better than for a
traditional FEA for the analysed problems.

ii

Preface

The following thesis is written as a completion of my masters degree in civil
engineering at Department of Structural Engineering, NTNU, in the spring of
2011.

I would like to acknowledge the help from a number of people. First of
all, my principal advisor Kjell Magne Mathiesen, whose help has been of great
importance. His feedback and guidance throughout the work with this thesis
and my project work last fall has been crucial. Also Kjetil André Johannessen
deserves a great thank-you as he has been very helpful for the understanding of
splines and isogeometric analysis. Trond Kvamsdal and Knut Morten Okstad
has also been helpful. I would like to thank fellow student Thanh Ngan Nguyen
for help with the implementation in Matlab, troubleshooting the program code,
and for comparison of results. I will also thank Merete Berg, for reading and
commenting my entire thesis.

Ole Jørgen Fredheim, Trondheim, June 7th 2011.

iii

iv

Contents

1 Introduction 1
1.1 Computer Aided Engineering . 1
1.2 Computer Aided Design . 1
1.3 Isogeometric Analysis . 2
1.4 State of the Art . 2
1.5 This thesis . 2

2 B-splines 5
2.1 Knot vector . 5
2.2 B-splines . 5

2.2.1 Example: Quadratic B-spline basis functions 6
2.3 Derivatives of B-spline basis functions 9
2.4 Anchors . 9
2.5 B-spline curves . 9

2.5.1 Example: B-Spline curve from quadratic basis functions . 10
2.6 B-spline surfaces . 10
2.7 Knot insertion . 10
2.8 Non-Uniform Rational B-splines 12

3 T-splines 15
3.1 Point-based B-splines . 15
3.2 T-splines . 16
3.3 Local knot vectors . 17
3.4 Generating a T-spline surface . 18
3.5 Element mesh . 18
3.6 Suitability for analysis . 21

4 Bézier Extraction 23
4.1 Bernstein polynomials and Bézier curves 23
4.2 Bézier decomposition . 24
4.3 Bézier extraction of NURBS . 26

4.3.1 Example of Bézier decomposition 27
4.4 Bézier extraction of T-splines . 29

5 Isogeometric Finite Element Analysis 31
5.1 Creating a isogeometric finite element solver 31
5.2 Implementation of Bézier Extractor in FEM 34
5.3 Shape function algorithm . 35

v

5.4 Finite Element Analysis with CAD software 36

6 Numerical Examples 39
6.1 Curved beam with end shear . 39
6.2 Infinite plate with a circular hole under far-field uniaxial tension 43
6.3 Thermo-mechanical analysis: Beam with temperature gradient . 45

7 Discussion 49
7.1 Concluding remarks . 49
7.2 Future work . 50

A Algorithms 51

B Report for MekIT11 57

C Presentation from MekIT11 77

vi

Chapter 1

Introduction

1.1 Computer Aided Engineering

Use of Computer Aided Engineering (CAE) is almost unavoidable for engineers
today. The complexity of the analysed problems makes hand calculations very
impractical, and often impossible. Thus numerical solutions to the analysed
problems must be obtained by use of computers.

Many different numerical solution methods exist, and the finite element
method (FEM) is one frequently used method. This method discretize the anal-
ysed problem into smaller elements, where the governing equations are solved.
The name “Finite Element Method” was coined by Ray W. Clough in 1960
[7], although “[...] it had essentially no impact on the civil engineering pro-
fession, mainly because the method could be applied effectively only by means
of an automatic digital computer, and these were not readily available to typi-
cal structural engineers.”[8] Since then, the computational power has increased
tremendously, and finite element analysis can be performed everywhere.

Many different types of elements exist, but isoparametric elements has been
predominant in finite element analysis since it’s development in the 1960’s [15].
The concept of isoparametric elements is that the mathematical functions used
for the interpolation of the unknown variables are also used to describe the
geometry of the element. Frequently utilized functions in a traditional FEM are
the Lagrange and Hermite polynomials, which has the desired mathematical
properties for a finite element analysis (FEA). However, these polynomials are
not able to represent all geometries such as conical sections, and this will lead
to a geometric error in the model.

1.2 Computer Aided Design

Computer Aided Design (CAD) or Computer Aided Geometric Design (CAGD)
is also a necessary tool for an engineer. The design process often start by first
creating a CAD model of the construction, and the subsequent analysis is done
with the information from this model.

The CAD systems used today has its origins in the work of two French
automotive engineers, Pierre Bézier of Renault and Paul de Faget de Casteljau
of Citroen [13]. Bézier utilized the Bernstein polynomials to generate curves

1

and surfaces. In 1972, B-splines was established by Riesenfield [20], and NURBS
followed in 1975 by Versprille [28].

Even though there has been continuous development in CAD, and other geo-
metric representations has been developed, such as subdivision surfaces, NURBS
has retained its dominant position for engineering design.

1.3 Isogeometric Analysis

Because CAE and CAD was developed independently, they are not compatible.
The geometry is described differently, as the purpose of CAE and CAD has been
different. This leads to an extensive amount of overlapping work done, as most
of the time a structure is first modelled as a CAD model, and then remodelled
in order to perform a finite element analysis. Isogeometric analysis is a way to
integrate these two systems, and allow for the CAD-models to be used in the
FEA.

Isogeometric analysis was introduced by Hughes et al. [14, 13]. The concept
of isogeometric analysis is to use the same basis for the analysis as is being
used in description of the geometry. This as opposed to the traditional finite
element method, where the basis for the analysis is what is used to describe
the geometry. But still, isogeometric elements are also isoparametric elements,
since the basis for geometry and analysis is the same. Since the NURBS that are
being used in the CAD software are able to provide an exact representation of
the geometry, these functions are used as the basis for the analysis. This choice
of basis is necessary to use the imported geometry from CAD in the analysis.

Isogeometric analysis is being extensively studied, and is being applied to
many different fields of analysis. For structural analysis purposes, isogeomet-
ric analysis has been applied to, for instance, shells [2, 3, 16], fluid-structure
interaction [25] and finite deformation of elastoplastic solids[19].

1.4 State of the Art

T-splines is a recent development in CAGD which allows for local refinement
and fewer control points [24, 23], and these properties are also interesting for
isogeometric analysis purposes [12, 1]. An isogeometric analysis demand exten-
sive changes to the finite element framework, and Bézier extraction has been
proposed as a method to ease the implementation for both NURBS [5] and T-
splines [22]. T-splines has been proven linearly independent for a certain class
of T-spline geometry [6, 21], but in the general case this is not true, and a linear
dependence between basis functions result in T-splines being useless for analysis
purposes. Locally refined B-splines, in short LR B-spline, is a proposed solution
to this issue [17]

1.5 This thesis

This thesis will begin with an thorough introduction to splines, by first introduc-
ing B-splines and NURBS in Chapter 2, and then expanding this to T-splines
in Chapter 3. This theoretical understanding of splines will be necessary when
introducing Bézier extraction of NURBS and T-splines in Chapter 4, which will

2

be used as the basis for isogeometric analysis. In Chapter 5 it is discussed
how to construct an isogeometric finite element solver for NURBS, and also
how to implement NURBS and T-splines in an existing finite element code by
the use of Bézier extraction operators. Numerical studies of two linear elastic,
static problems will be presented in Chapter 6, as well as a thermo-mechanical
problem. In the appendices some key Matlab algorithms are given. Also, a
report co-authored for the ”MekIT’11 Sixth National Conference on Computa-
tional Mechanics”, and the corresponding presentation given at the conference,
is presented.

Throughout the thesis the discussion will be restricted to two spatial dimen-
sions, and only surfaces will be discussed. The theory presented here will be
enough for an expansion to three spatial dimensions and solids, but this will not
handled here, as the concepts are better understood in 2d. For the numerical
examples only in-plane forces are considered, and all examples are in a state of
either plane stress or plane strain. The basic theory of FEM will be omitted,
but this can be found in any textbook, for instance Cook et.al. [9].

Some of the key concepts will be explained with illustrative examples, in
order to provide some additional clarity to the theory discussed.

3

4

Chapter 2

B-splines

B-splines, or basis-splines, is the basis for both NURBS and T-splines, and it is
necessary to understand B-splines in order to understand NURBS and T-splines
which will be discussed later. B-splines will in this chapter be introduced as a
basis for analysis, and the framework needed to manipulate these functions will
be established, before expanding the knowledge to NURBS, and in the next
chapter, T-splines.

2.1 Knot vector

A knot vector is a set of increasing parameter space coordinates. Parame-
ter space is an imaginary space where the basis functions are defined, and
is partitioned into knot spans between the knots. The knot vector is writ-
ten as Ξ = [ξ1, ξ2, . . . , ξn+p+1], where ξi is the ith knot, i is the knot index,
i = 1, 2, . . . , n + p + 1, p is the polynomial order, and n is the number of basis
functions used to create the B-spline curve. The knot vector is the basis needed
to generate B-splines.

In the knot vector several knot values may be equal, and the multiplicity is
then the number of repeated knots. An increased multiplicity of knots will be
reflected in the basis functions, as this multiplicity will cause a decrease of the
continuity at the corresponding knots. If the multiplicity at the ends is equal
to p+1, the knot vector is said to be open. A basis spline constructed from an
open knot vector is discontinuous at the end, and a curve created from such a
basis spline will be interpolatory at the end control points.

2.2 B-splines

B-splines are piecewise polynomial functions, and are defined by the Cox-de
Boor recursion formula [10, 11]:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2.1)

Ni,0(ξ) =

{
1 if ξ ∈[ξi, ξi+1)
0 else

(2.2)

5

In addition to (2.1) and (2.2), the restriction is imposed that if a denominator
is equal to zero, then the respective term in the equation is defined to be zero.

A B-spline function of polynomial order p=0 or p=1 will be the same as
the respective Lagrange shape functions used in classical FEM. Therefore an
analysis with linear elements, such as the 4-noded quadrilateral, will be identical
to an analysis with a classical FEM For any order p, the B-spline basis will form
a partition of unity, as the Lagrangian functions do.

2.2.1 Example: Quadratic B-spline basis functions

To better understand the nature of B-splines an example is necessary. It is here
shown how to build the quadratic basis functions from the open knot vector
Ξ = [0, 0, 0, 1, 2, 2, 3, 3, 3]. First construct the piecewise constant (p=0) basis
functions, then use these to create the linear (p=1) basis functions, and lastly
the quadratic (p=2) basis functions can be created. From (2.2) we have that

N1,0(ξ) =

{
1 if ξ ∈[ξ1, ξ2)
0 else

(2.3)

From the knot vector Ξ we see that ξ1 = ξ2 = 0 thus N1,0 ≡ 0. (2.2) is applied
to all indices and we obtain the piecewise constant basis functions:

N1,0(ξ) = 0

N2,0(ξ) = 0

N3,0(ξ) =

{
1 if ξ ∈[0, 1)
0 else

N4,0(ξ) =

{
1 if ξ ∈[1, 2)
0 else

N5,0(ξ) = 0

N6,0(ξ) =

{
1 if ξ ∈[2, 3)
0 else

N7,0(ξ) = 0

N8,0(ξ) = 0 (2.4)

Now use (2.1) to build the linear basis functions Ni,1 from the piecewise constant
ones. For i=1 we get

N1,1(ξ) =
ξ − 0

0− 0
N1,0(ξ) +

0− ξ
0− 0

N2,0(ξ) (2.5)

Since the fraction is defined to be zero in cases where the denominator equals
zero, N1,1(ξ) = 0. For i=2 we get

N2,1(ξ) =
ξ − 0

0− 0
N2,0(ξ) +

1− ξ
1− 0

N3,0(ξ) (2.6)

Recalling that N3,0 =

{
1 if ξ ∈[0, 1)
0 else

, (2.6) reads

N2,1(ξ) =

{
1− ξ if ξ ∈[0, 1)
0 else

(2.7)

6

The other linear functions are obtained from the same procedure

N1,1(ξ) = 0

N2,1(ξ) =

{
1− ξ if ξ ∈[0, 1)
0 else

N3,1(ξ) =

ξ if ξ ∈[0, 1)
2− ξ if ξ ∈[1, 2)
0 else

N4,1(ξ) =

{
ξ − 1 if ξ ∈[1, 2)
0 else

N5,1(ξ) =

{
3− ξ if ξ ∈[2, 3)
0 else

N6,1(ξ) =

{
ξ − 2 if ξ ∈[2, 3)
0 else

N7,1(ξ) = 0 (2.8)

The example is completed by building the quadratic basis functions, in the same
fashion as for the linear basis functions

N1,2(ξ) =
ξ − 0

0− 0
N1,1(ξ) +

1− ξ
1− 0

N2,1(ξ)

=

{
(1− ξ)2 if ξ ∈[0, 1)
0 else

(2.9)

N2,2(ξ) =

3ξ − 2ξ2 if ξ ∈[0, 1)
(2− ξ)(1− ξ) if ξ ∈[1, 2)
0 else

N3,2(ξ) =

1
2ξ

2 if ξ ∈[0, 1)
4ξ − 3

2ξ
2 − 2 if ξ ∈[1, 2)

0 else

N4,2(ξ) =

(ξ − 1)2 if ξ ∈[1, 2)
(3− ξ)2 if ξ ∈[2, 3)
0 else

N5,2(ξ) =

{
10ξ − 2ξ2 − 12 if ξ ∈[2, 3)
0 else

N6,2(ξ) =

{
(ξ − 2)2 if ξ ∈[2, 3)
0 else

(2.10)

The piecewise constant, linear and quadratic basis functions are plotted in Fig-
ure 2.1.

7

(a) The nonzero 0th order basis functions

(b) Linear basis functions

(c) Quadratic basis functions

Figure 2.1: B-spline basis functions of degree 0 to 2 for Ξ = [0, 0, 0, 1, 2, 2, 3, 3, 3]

8

2.3 Derivatives of B-spline basis functions

The derivatives of the B-splines are defined by a recursive function, as the
B-splines also are. For a given polynomial order, p, and knot vector, Ξ, the
derivative of the ith basic function is given by:

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2.11)

This equation can be generalized to higher order derivatives by differentiating
each side, which leads to the following equation

dk

dkξ
Ni,p(ξ) =

p

ξi+p − ξi

(
dk−1

dk−1ξ
Ni,p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dk−1ξ
Ni+1,p−1(ξ)

)

(2.12)

2.4 Anchors

An open knot vector with n+p+1 knots will give n basis functions, thus it is
not a one-to-one correspondence between knots and basis functions. In order to
locate the basis functions in the parametric space, the anchor ti is defined as
the parametric coordinate to the center of support for basis function Ni,p.

ti =

{
ξi+(p+1)/2 if p is odd,
1
2 (ξi+(p/2) + ξi+(p/2)+1) if p is even

(2.13)

For an odd polynomial degree the anchor will be at the center of a knot, while in
the case of even polynomial degree the anchor will be positioned in the center of
a knot span. In Figure 2.2 anchors of even and odd degree is shown along with
the corresponding B-spline basis functions. B-splines can easily be described
without the notion of anchors, but they will be helpful when T-splines are
discussed.

2.5 B-spline curves

B-Spline curves are created similarily as in classical FEA, by a linear combi-
nation of B-spline basis functions. What separates B-spline curves from curves
in FEA is that instead of interpolating a set of nodal points, the B-splines are
related to a set of control points. These control points are the equivalent to the
nodes, but the curve will generally not pass through the control points. For a
given set of n pth order basis functions, Ni,p(ξ), i=1,2. . . ,n, and a correspond-
ing set of control points Bi ∈ Rd,i=1,2,. . . ,n, the piecewise-polynomial B-spline
curve is given by

C(ξ) =

n∑

i=1

Ni,p(ξ)Bi (2.14)

Since there is a one-to-one correspondence between the control points and the
basis functions, there is also a one-to-one correspondence between the control
points and the anchors. The continuity of the B-spline curve is the same as
for the basis functions of which it is constructed, so that the curve is Cp−1-
continuous everywhere except at knots, where the curve is Cp−m-continuous.

9

Thus any B-spline curve constructed from an open knot vector will always be
C−1-continuous at the ends, since the multiplicity at the ends are p+1.

2.5.1 Example: B-Spline curve from quadratic basis func-
tions

In this example the quadratic basis functions, Ni,2(ξ), i=1,2. . . ,6, which were
created in the previous example, are being used to generate a 2-dimensional
B-spline curve. In order to do this, the corresponding control points, Bi ∈ R2,
i=1,2,. . . ,6, is needed. If the control points is chosen to be (0,0),(0,1),(1,2),(1,0),(0.5,-
1), and (0,-1), the resulting curve will be the one shown in Figure 2.3.

It is clear from the figure how the multiplicity of the knot vector is influencing
the curve. At control point number 1 and 6 the curve is discontinuous, due to
the multiplicity being p+1, and at control point number 4 the curve is C0-
continuous since the multiplicity equals p at this control point. These 3 control
points are also the only control points that are interpolating the curve, which
can easily be predicted by looking at the basis functions in Figure 2.1c where
the value of the corresponding basis function is 1, and all others equal 0.

2.6 B-spline surfaces

The expansion from B-Spline curves to B-Spline surfaces is fairly straight for-
ward. To generate a surface, a net of control points {Bi,j}, i=1,2,. . . ,n, j=1,2,. . . ,m,
polynomial orders p and q, and knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1}, and
H = {η1, η2, . . . , ηm+q+1} is needed. A tensor product B-spline surface is then
defined by

S(ξ, η) =

n∑

i=1

m∑

j=1

Ni,p(ξ)Mj,q(η)Bi,j (2.15)

where Ni,p(ξ) and Mj,q(η) are univariate B-spline basis functions of order p
and q, corresponding to knot vectors Ξ and H, respectively. An example of a
B-spline surface is given in Figure 2.4.

2.7 Knot insertion

Knots may be inserted in the knot vector without altering the B-spline curve if
the new control points P̄ are placed according to a specific procedure, known
as knot insertion [4]. Knot insertion is what allows for refinement of element
meshes and Bézier decomposition.

P̄A =

P1 A = 1
αAPA + (1− αA)PA 1 < A < m
Pn A = m

(2.16)

αA =

1 1 < A < k − p
ξ̄−ξA

ξA+p−ξA k − p+ 1 < A < k

0 A ≥ k + 1

(2.17)

10

(a) Anchors for even degree, p=2

(b) Anchors for odd degree, p=3

Figure 2.2: Anchors for some B-spline basis functions

Figure 2.3: B-Spline curve constructed from quadratic basis functions, and knot
vector Ξ = [0, 0, 0, 1, 2, 2, 3, 3, 3]. The control points are marked as the dots

Figure 2.4: B-Spline surface constructed from quadratic basis functions, and
knot vectors Ξ = [0, 0, 0, 0.5, 1, 1, 1] and H = [0, 0, 0, 1, 1, 1]. The control points
are marked with dots

11

2.8 Non-Uniform Rational B-splines

Non-Uniform Rational B-splines (NURBS) can be understood by investigating
them from both a geometric and a algebraic perspective. From the geometric
perspective, a NURBS entity in Rd is the result of a projective transformation
of a B-Spline entity in Rd+1. For instance, a 3-dimensional B-Spline curve
projected onto the plane z=1 will create in a 2-dimensional NURBS curve, as
seen in Figure 2.5

(Bi)j = (Bw
i)j/wi, j = 1, . . . , d (2.18)

wi = (Bw
i)d+1 (2.19)

where wi is the weight of the control point. This transformation will be applied
to all points on the curve, by dividing by the weighting function defined as

W (ξ) =

n∑

i=1

Ni,p(ξ)wi (2.20)

Now the curve can be written in terms of the B-spline curve as

(C(ξ))j =
(Cw(ξ))j
W (ξ)

(2.21)

In order to being able to manipulate the NURBS basis functions it is necessary
to understand the algebraic perspective. The univariate rational basis function
Ri,p(ξ) is given by

Ri,p(ξ) =
Ni,p(ξ)wi
W (ξ)

=
Ni,p(ξ)wi∑n
ĩ=1Nĩ,p(ξ)wĩ

(2.22)

This equation is used to express the equation of a curve, equivalently to how a
B-spline curve is defined:

C(ξ) =

n∑

i=1

PiRi,p(ξ) (2.23)

This form is exactly the same as (2.21), but it is now written in a form which is
easier to manipulate, and it is this form that will be used for analysis purposes.
The bivariate tensor product basis functions for a surface is defined as

Rp,qi,j (ξ, η) =
Ni,p(ξ)Mj,q(η)wi,j∑n

î=1

∑m
ĵ=1Nî,p(ξ)Mĵ,q(η)wî,ĵ

=
NA(ξ, η)wA
W (ξ, η)

(2.24)

W is defined as the diagonal matrix of weights

W = wiδij (2.25)

and (2.22) and (2.24) are rewritten in matrix form as

R(ξ) =
1

W (ξ)
WN(ξ) (2.26)

12

Figure 2.5: B-Spline curve projected onto the plane z=1 to create the NURBS
representation of a circle

and

R(ξ, η) =
1

W (ξ, η)
WN(ξ, η) (2.27)

Since all NURBS are a projective transformation of a B-spline, all algorithms
that are to be applied to the NURBS must be applied to the B-spline, and this
is done by first projecting the NURBS into d+1 dimensions, then modify the
B-spline, and finally project back to d dimensions. This is done when inserting
new knots, and also for Bézier decomposition, which is discussed in Chapter 4.

13

14

Chapter 3

T-splines

T-splines was first introduced by Sederberg et.al. 2003 [24] as a generalization
of NURBS, and has recently also been introduced in an analysis setting [12,
1]. As opposed to B-splines and NURBS, T-splines are not restricted to a
tensor product structure. That is, while NURBS control points must lie in
a rectangular grid, T-splines may form an incomplete grid, with T-junctions.
The tensor product structure of NURBS implicate that a local refinement is
impossible, since complete rows and columns must be inserted in the control
point grid, which will create unwanted degrees of freedom elsewhere in the
analysed problem, see Figure 3.1. Since this is avoided with T-splines, they are
superior to NURBS when it comes to local refinement. In this chapter introduce
T-splines and its properties are introduced, after first introducing PB-splines.

(a) No refinement (b) Tensor product refinement
with NURBS

(c) Local refinement with T-
splines

Figure 3.1: Tensor product refinement vs. local refinement

3.1 Point-based B-splines

As discussed earlier, a B-spline surface originates from the index space defined
by Ξ and H, which will create a rectangular grid. Point-based B-splines, or
PB-splines, will remove this tensor product restriction. Unlike B-splines the
PB-splines are not related to a grid but to independent points and knot vectors.
For each PB-spline there will be a local knot vector in each parametric direction.
As discussed in Chapter 2, B-Spline basis functions are only dependent on the
global knot vector, and all B-spline functions can be calculated from this knot
vector. By further inspection one will realise that each of the basis functions
are only influenced by a certain set of knots. For instance, if the knot vector

15

Ξ = [0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4] is given, there will be 7 cubic B-splines, and each
B-spline will correspond to a local knot vector with length p+2. The basis
function N1,3(ξ) will depend on the local knot vector Ξ1 = [0, 0, 0, 0, 1], N2,3(ξ)
will depend on Ξ2 = [0, 0, 0, 1, 2], N3,3(ξ) will depend on Ξ2 = [0, 0, 1, 2, 3], and
so on. With this in mind, it is obvious that a global knot vector is not needed
in order to create a spline, and this is what allows the creation of PB-splines.

By removing the limitation to global knot vector, and only locking at in-
dividual knot vectors for each spline, PB-splines are created. PB-splines is a
collection of blending functions, Ni, which are B-spline basis functions created
from the local knot vectors Ξi and Hi. The equation for a PB-spline is

P(ξ, η) =

∑n
i=1 PiNi(ξ, η)∑n
i=1Ni(ξ, η)

, (ξ, η) ∈ D (3.1)

where D is the domain the PB-spline is defined in, where
∑n
i=1Ni(ξ, η) > 0.

Each of the knot vectors Ξi and Hi are independent of each other, and may
be comprised of the same knot values. Since the knot vectors Ξi and Hi are
independent from Ξj and Hj if i 6= j, the blending functions Ni and Nj will
no longer be linearly independent. This is why they are referred to as blending
functions and not basis functions, as a basis infer linear independence. In a finite
element setting, PB-splines are not suitable, as basis functions are needed, but
this will be resolved by T-splines.

3.2 T-splines

T-splines will be discussed as an extension of B-splines, but all concepts also
apply to NURBS, such that T-splines can be rational functions. T-splines are
PB-splines with some restrictions imposed on the control points, which now are
organised in the T-mesh. The T-mesh is the index space representation of the
control point net. Often the term T-mesh is used to describe both the index
space representation and the physical representation of the control point mesh.
Here T-mesh will always refer to the index space, as the index space offer a more
intuitive understanding. The T-mesh is essentially a rectangular grid which do
not need to have complete rows and columns, thereby allowing T-junctions.
Each of the lines in the T-mesh is referred to as a ξ-edge with constant ξ-value,
or a η-edge with constant η-value. A T-junction can then be described as vertex
shared by two ξ-edges and one η-edge, or vice versa. Each edge is labelled with
a knot interval, constrained by the following rules: [24]

• Rule 1: The sum of knot intervals on opposing edges of any face must be
equal.

• Rule 2: If a T-junction on one edge of a face can be connected to a T-
junction on an opposing edge of the face (thereby splitting the face into
two faces) without violating Rule 1, that edge must be included in the
T-mesh.

It is from the T-mesh the local knot vectors, Ξi and Hi, are extracted for each
basis function Ni. For T-splines of odd degree each of the vertices in the T-mesh
is an anchor for a control point, and for even degree the anchors will be at the
center of every cell. Figure 3.2 shows an example of a T-mesh.

16

Figure 3.2: Example T-mesh

3.3 Local knot vectors

The local knot vectors for each anchor will be extracted from the T-mesh. From
here on local knot vector will only be referred to as knot vectors, as all knot
vectors are local in a T-spline setting. Since the location of the anchors differ
between odd and even T-splines, the cases of odd or even order must be treated
differently. The case of odd degree will be discussed first. The first value added
to the knot vector is the coordinate value of the anchor itself, this is placed at
the center of the knot vector. For the anchor P1 in Figure 3.3a, this will give
us Ξ1 = {., ., ξ8, ., .} and H1 = {., ., η5, ., .}. The remaining values are found by
traversing along the edges ξ = ξ8 and η = η5 until (p+1)/2 intersecting edges
are crossed, and filling in the corresponding knot values in the knot vector. For
Ξ1, first march right to intersect ξ9 and ξ10, and add these to the knot vector,
Ξ1 = {., ., ξ8, ξ9, ξ10}. Then march left, to intersect ξ7 and ξ6, to obtain the
complete knot vector Ξ1 = {ξ6, ξ7, ξ8, ξ9, ξ10}. For H1, first march upwards
and intersect the line at η6. This is at the edge of the mesh with no more
intersecting lines to cross. In this case the last intersected knot value is added
until the knot vector is filled up, thus resulting in H1 = {., ., η5, η6, η6}. Then
march downwards, intersecting η4 and η3, and the knot vectors for anchor P1

becomes
Ξ1 = {ξ6, ξ7, ξ8, ξ9, ξ10} (3.2)

H1 = {η3, η4, η5, η6, η6} (3.3)

For the anchor P2 shown in Figure 3.3b this procedure will result in the knot
vectors

Ξ2 = {ξ5, ξ6, ξ8, ξ11, ξ11} (3.4)

H2 = {η1, η1, η2, η3, η4} (3.5)

In the case of even order the knot vector extraction is only slightly different.
Since the anchor is in the middle of a cell, the coordinates of the anchor is

17

omitted from the knot vector. The elements of the knot vector are found by
adding the first (p/2)+1 lines encountered in each direction, as done for the odd
case. For the anchors shown in Figure 3.4a and 3.4b, the following knot vectors
are obtained:

Ξ1 = {ξ3, ξ4, ξ8, ξ11} (3.6)

H1 = {η1, η2, η3, η4} (3.7)

and

Ξ2 = {ξ1, ξ1, ξ2, ξ31} (3.8)

H2 = {η3, η4, η5, η6} (3.9)

The traversing from the T-junctions will cause T-junction extension which are
lines of reduced continuity. T-junction extensions will be discussed closer in
section 3.6.

3.4 Generating a T-spline surface

Consider the T-mesh shown in Figure 3.5a. If a T-spline of quadratic order is
modelled from this, there will be 16 anchors ti, corresponding to control point
Pi and basis function Ni,2. The anchors are shown in the same figure. For
each anchor, the knot vectors Ξi and Hi shown in Table 3.1 are extracted.
With the knot vectors for each anchor the basis functions corresponding to
each set of knot vectors can be computed, as shown in Figure 3.5b. Note the
change in continuity of the basis functions across the line ξ = 0.5. The added
zero valued knot interval in the T-mesh results in a C0-continuity of the basis
functions for the anchors affected by this knot, while the basis functions has
no continuity reductions in other areas of the T-mesh. This leads to an abrupt
change of continuity in the resulting T-spline surface as shown in Figure 3.5c.
The surface is C∞ along y=-1, since the basis functions Ni,2, i = 7, . . . , 16
which has reduced continuity equals zero along this edge. Along along y=2 it
is C0-continuous at x=0.

3.5 Element mesh

In a finite element analysis the geometry needs to be meshed into finite elements,
where the numerical quadrature is being performed, and the T-mesh cannot be
directly used for this purpose. An element is defined as the domain over which
the T-splines are C∞-continuous. A new mesh will need to be defined, called the
extended or elemental T-mesh. This mesh includes all lines of reduced continuity,
and the lines defining the T-mesh. Every element will then be bounded by the
lines in the extended T-mesh. This mesh will only contain rectangular elements,
even if there are L-shaped areas in the T-mesh. The lines of reduced continuity
originates from the T-junction extensions. The extended T-mesh for cubic T-
splines formed from the T-mesh in Figure 3.2 is shown in Figure 3.6.

18

(a) Anchor P1 (b) Anchor P2

Figure 3.3: Knot vector extraction for anchors of odd degree, p=3

(a) Anchor P1 (b) Anchor P2

Figure 3.4: Knot vector extraction for even degree, p=2

i Ξi Hi
1 {0, 0, 0, 1} {0, 0, 0, 0.5}
2 {0, 0, 1, 1} {0, 0, 0, 0.5}
3 {0, 1, 1, 1} {0, 0, 0, 0.5}
4 {0, 0, 0, 1} {0, 0, 0.5, 1}
5 {0, 0, 1, 1} {0, 0, 0.5, 1}
6 {0, 1, 1, 1} {0, 0, 0.5, 1}
7 {0, 0, 0, 0.5} {0, 0.5, 1, 1}
8 {0, 0, 0.5, 0.5} {0, 0.5, 1, 1}
9 {0, 0.5, 0.5, 1} {0, 0.5, 1, 1}
10 {0.5, 0.5, 1, 1} {0, 0.5, 1, 1}
11 {0.5, 1, 1, 1} {0, 0.5, 1, 1}
12 {0, 0, 0, 0.5} {0.5, 1, 1, 1}
13 {0, 0, 0.5, 0.5} {0.5, 1, 1, 1}
14 {0, 0.5, 0.5, 1} {0.5, 1, 1, 1}
15 {0.5, 0.5, 1, 1} {0.5, 1, 1, 1}
16 {0.5, 1, 1, 1} {0.5, 1, 1, 1}

Table 3.1: Knot vectors for the anchors

19

(a) T-mesh with anchors marked as red
crosses, and labelled with knot interval
values

(b) Basis functions corresponding to each
anchor and local knot vector

(c) Resulting T-spline surface with control points

Figure 3.5: Example of generation of a T-spline surface

20

Figure 3.6: Extended T-mesh with lines of reduced continuity defining the
quadrature elements, for p=3

3.6 Suitability for analysis

In order to use T-splines as a basis for FEM, it is necessary that they are lin-
early independent. It has recently been proven that some T-splines are linearly
dependent [6], and the term analysis suitable T-splines was introduced by Li
et.al. [18]. Analysis suitable T-splines form a subset of T-splines which are al-
ways linearly independent. In section 3.3, T-junction extensions was mentioned.
T-junction extensions are formed by marching from the T-junctions in the di-
rection of a missing edge, until p+1

2 perpendicular edges are crossed. This will
create a face extension. If an edge is attached to the T-junction in the opposite
direction, a edge extension is formed by marching in the opposite direction of
the face extension until a vertex is encountered. Scott et.al. [21] states; “An
analysis suitable T-spline is one whose extended T-mesh is analysis-suitable.
An analysis suitable extended T-mesh is one where no T-junction extensions
intersect”. If an endpoint of two T-junction extensions intersect this will also
count as an intersection. Intersecting T-junction extensions can be visualized
by the extension graph E(Text), where Text is the extended T-mesh. In this
graph all T-junctions will be plotted, and if two extensions intersect there will
be drawn an edge between the T-junctions. If the extension graph includes no
such edges, there is no intersecting T-junction extensions, and the T-spline will
be analysis suitable.

In Figure 3.7a the extension graph for the T-mesh shown in Figure 3.2 (p.17)
is given. All T-junctions are marked with a circle, and a red arc is drawn be-
tween all T-junctions which will have intersecting T-junction extensions. As the
graph shows, several T-junctions extensions are intersecting, and this T-mesh
is not analysis suitable. However, the T-mesh can be made analysis suitable by
adding new edges to eliminate some of the T-junctions, such that no T-junction
extensions will intersect. Figure 3.7b and 3.7c are showing how edges can be
added to accomplish this. All the red edges will need to be added, and the blue
edge from one of the figures will also need to be added.

21

(a) The extension graph for the T-mesh

(b) T-mesh made analysis suitable

(c) T-mesh made analysis suitable

Figure 3.7: a) Extension graph, showing that the T-mesh is not analysis suitable
b) and c) The T-mesh can be made analysis suitable by adding the red edges
and either of the blue edges

22

Chapter 4

Bézier Extraction

As discussed in previous chapters, B-splines, and thus also NURBS and T-
splines, are spanning more than one element, and they are defined over the entire
domain of the structure. This in contrast to Lagrangian shape functions which
are common in the finite element method, where shape functions are defined
locally to each element. This introduces new problems in the implementation of
an isogeometric analysis. The framework will have to localize which of the basis
functions will have support in the domain of an element. Also, the Gaussian
integration points will have to be transformed to parametric coordinates in order
to calculate the values of the shape functions. Both these problems will be solved
by the concept of Bézier decomposition. This is done by calculating the B-spline
basis in terms of an other basis, which is defined only over the element domain.
By choosing Bernstein polynomials as that basis, this is possible. This chapter
will introduce Bernstein polynomials and the Bézier extraction operator.

4.1 Bernstein polynomials and Bézier curves

A set of Bernstein polynomial basis functions are defined as B(ξ) = {Ba,p(ξ)}p+1
a=1,

which corresponds to the set of vector valued control points P = {Pa}p+1
a=1 where

each Pa ∈ Rd, where d is the number of spatial dimensions and P is a matrix
of dimension n× d. The Bernstein polynomials can be defined recursively as [5]

Ba,p(ξ) = (1− ξ)Ba,p−1(ξ) + ξBa−1,p−1(ξ) ξ ∈ [0, 1] (4.1)

where
B1,0(ξ) ≡ 1 (4.2)

and
Ba,p(ξ) ≡ 0 if a < 1 or a > p+ 1 (4.3)

The linear, quadratic and cubic Bernstein polynomials are shown in Figure 4.1.
These polynomials are identical to B-spline basis functions across one knot span
if the multiplicity of the knots at both ends of the knot span is equal to the
polynomial order. A Bézier curve of degree p is a linear combination of p+1
Bernstein polynomial basis functions and can be written as

C(ξ) =

p+1∑

a=1

PaBa,p(ξ) = PTB(ξ) (4.4)

23

(a) p=1 (b) p=2 (c) p=3

Figure 4.1: Bernstein polynomials of order 1,2 and 3

The Bernstein polynomials are defined over the interval [0,1], while in finite
element method these functions are used in quadrature over the interval [-1,1],
thus it is reasonable to redefine the basis functions so that they span this interval.
By doing so the basis functions reads

Ba,p =
1

2
(1− ξ)Ba,p−q(ξ) +

1

2
(1 + ξ)Ba−1,p−1(ξ) (4.5)

∂Ba,p
∂ξ

=
1

2
p
(
Ba−1,p−1(ξ)−Ba,p−1(ξ)

)
(4.6)

4.2 Bézier decomposition

Given a B-spline curve T (ξ) of order p, and a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1},
additional knots may be inserted at the internal knots by the use of knot inser-
tion, (2.16) and (2.17), until the multiplicity of each knot equals p. By doing so,
the B-spline basis functions will be C0-continuous between each element, and
within each element they will be identical to the Bernstein polynomials of order
p. This series of knot insertions is called Bézier decomposition. In Figure 4.2
the series of knot insertions needed for a Bézier decomposition of the NURBS
representation of a quarter of a circle is shown.

Assume a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1} and a set of control points
P = {PA}nA=1 , which defines a B-Spline curve. Let {ξ̄1, ξ̄2, . . . , ξ̄m} be the set
of knots that are required to produce the Bézier decomposition of the B-Spline.
Then for each new knot, ξ̄j , j = 1, 2, . . . ,m, define αjA, A = 1, 2, . . . , n+ j, to be
the Ath alpha as defined in (2.17). Now, defining Cj ∈ R(n+j−1)×(n+j) to be

Cj =

α1 1− α2 0 . . . 0
0 α2 1− α3 0 . . . 0
0 0 α3 1− α4 0 . . . 0
...

. . .

0 . . . 0 αn+j−1 1− αn+j

(4.7)

and letting P̄1 = P, one can rewrite (2.17) in matrix form to represent the
sequence of knot insertions needed as

P̄j+1 = (Cj)TPj (4.8)

The control points for the Bézier elements, Pb, are given as the final set of
control points, Pb = P̄m+1. Defining CT = (Cm)T (Cm−1)T . . . (C1)T will yield

Pb = CTP (4.9)

24

(a) Original NURBS curve (b) Insert knot: 0.25

(c) Insert knot: 0.50 (d) Insert knot: 0.75

Figure 4.2: Control points and rational basis functions created by knot insertion
in order to create the Bézier decomposition of a NURBS curve, with original
knot vector [0 0 0 0.25 0.5 0.75 1 1 1]

25

Since the Bézier decomposition of a curve does not cause any parametric or
geometric change to a curve, it can be written

T (ξ) = PTN(ξ) = (Pb)TB(ξ) = (CTP)TB(ξ) = PTCB(ξ) (4.10)

The control points P are arbitrary, thus it is shown that

N(ξ) = CB(ξ) (4.11)

where C is the linear Bézier extraction operator. The Bézier extraction operator
is constructed with only information from the knot vector, and it does not
depend on the control points of the B-spline curve or the basis functions.

4.3 Bézier extraction of NURBS

As discussed in Chapter 2, NURBS are constructed from the B-spline basis
functions, which allows to apply the extraction operator to NURBS. If (4.11) is
substituted into (2.26) (p.12) , then (2.23) can be written as

T (ξ) =
1

W (ξ)
PTWN(ξ) =

1

W (ξ)
PTWCB(ξ) =

1

W (ξ)
(CTWP)TB(ξ) (4.12)

Now rewrite the weight function, W(ξ), in terms of the Bernstein basis as

W (ξ) =

n∑

i=1

wiNi(ξ) = wTN(ξ)

= wTCB(ξ) = (CTw)TB(ξ)

= (wb)TB(ξ) = W b(ξ) (4.13)

where wb = CTw are the Bézier weights. As with knot insertion, Bézier decom-
position of control points are done directly to the B-Spline curve which defines
the NURBS curve. Geometrically this is done by projecting the NURBS control
points into d+1 dimensions, then the Bézier extraction operator is applied to
the B-Spline contol points, and then the curve is projected back into d dimen-
sions to obtain the Bézier control points, Pb. Define Wb to be the diagonal
matrix consisting of Bézier weights, equivalent to (2.25) (p. 12) .

Wb = wbi δij (4.14)

Now the decomposition of the NURBS control points, P, can be calculated as

Pb = (Wb)−1CTWP (4.15)

Multiply by Wb to get
WbPb = CTWP (4.16)

and then substitute into (4.12) to obtain the equation for a NURBS curve in
terms of C0 Bézier elements

T (ξ) =
1

W b(ξ)
(WbPb)TB(ξ) =

n+m∑

i=1

Pb
iw

b
iBi(ξ)

W b(ξ)

26

For a surface the bivariate extraction operator is needed. This is defined for an
element as

Ce
A = Ci

η ⊗Cj
ξ (4.17)

where ⊗ is the tensor product defined as

A⊗B =

A11B A12B . . .
A21B A22B

...
. . .

 (4.18)

4.3.1 Example of Bézier decomposition

In order to increase the understanding of the Bézier decomposition, an example
is useful. This example will take a closer look at a circular beam that is to be
analysed. In the analysis quadratic NURBS basis functions are used, and the
element mesh is consisting of 6 elements in the radial direction, and 3 elements
in the tangential direction. Thus, the parametric space will be defined by the
open knot vectors

Ξ = {0, 0, 0, 1

6
,

2

6
,

3

6
,

4

6
,

5

6
, 1, 1, 1} (4.19)

and

H = {0, 0, 0, 1

3
,

2

3
, 1, 1, 1} (4.20)

In the parametric directions ξ and η, the univariate B-spline basis functions are
Ni,p(ξ) and Mj,q(η), respectively. The basis functions are plotted in Figure 4.3a,
and in Figure 4.3b the beam with control points is shown. Recalling (4.11), and
dropping subscripts p and q, the basis functions can be in terms of the Bézier
extraction operator and Bernstein polynomials as

N1

N2

N3

N4

N5

N6

N7

N8

=

1.0 0 0 0 0 0 0 0 0 0 0 0 0
0 1.0 0.5 0 0 0 0 0 0 0 0 0 0
0 0 0.5 1.0 0.5 0 0 0 0 0 0 0 0
0 0 0 0 0.5 1.0 0.5 0 0 0 0 0 0
0 0 0 0 0 0 0.5 1.0 0.5 0 0 0 0
0 0 0 0 0 0 0 0 0.5 1.0 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0.5 1.0 0
0 0 0 0 0 0 0 0 0 0 0 0 1.0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

(4.21)

M1

M2

M3

M4

M5

=

1.0 0 0 0 0 0 0
0 1.0 0.5 0 0 0 0
0 0 0.5 1.0 0.5 0 0
0 0 0 0 0.5 1.0 0
0 0 0 0 0 0 1.0

B1

B2

B3

B4

B5

B6

B7

(4.22)

27

(a) Parametric space with univariate basis
functions and Bernstein polynomials plotted
along the axes

(b) Circular beam with control point net

Figure 4.3: Parametric space and control points

In general, the global extraction operator does not need to be calculated, the
local extraction operators will be calculated for each element with an algorithm
given in Appendix A. Here the global operator is calculated for the sake of
clarity. With the information in figure 4.3a, and (4.21) and (4.22), the extraction
operators for each element can be localized. For the shaded element one gets

N2

1

N2
2

N2
3

 =

N2

N3

N4

 =

0.5 0 0
0.5 1.0 0.5
0 0 0.5

B3

B4

B5

 =

0.5 0 0
0.5 1.0 0.5
0 0 0.5

B2

1

B2
2

B2
3

(4.23)

M1

1

M1
2

M1
3

 =

M1

M2

M3

 =

1.0 0 0
0 1.0 0.5
0 0 0.5

B1

B2

B3

 =

1.0 0 0
0 1.0 0.5
0 0 0.5

B1

1

B1
2

B1
3

(4.24)

where the superscript denotes element number in each parametric direction. The
bivariate extraction operator for the shaded element, element 2, then become

C2 = C1
η ⊗C2

ξ

=

1.0 0 0
0 1.0 0.5
0 0 0.5

⊗

0.5 0 0
0.5 1.0 0.5
0 0 0.5

 (4.25)

With the extraction operators at hand, the control points are computed for the
Bézier elements with (4.15), and the physical element mesh is calculated with
(4.12). This is shown in Figure 4.4

28

Figure 4.4: From control points to Bézier control points to Bézier physical mesh

4.4 Bézier extraction of T-splines

Bézier extraction of T-splines be treated slightly different form the case with
NURBS, but the concept is the same. In the case with NURBS, the extraction
operator was calculated for the entire elements. In the case of T-splines, each
T-spline will be extracted independently, and add a single row to the extraction
operator. For T-splines the local knot vectors are in general knot open, and an
extended knot vector will handle this. The extended knot vector is created from
the local knot vector by adding additional knots to the ends of the knot vector
to increase the multiplicity to p+1, such that one are dealing with an open knot
vector. For example, if the local knot vector is Ξ = {3, 4, 5, 6, 7}, add {3, 3, 3}
and {7, 7, 7} to obtain the extended knot vector Ξ̄ = {3, 3, 3, 3, 4, 5, 6, 7, 7, 7, 7}.
Now define nt as the number of additional knots added in front of the knot
vector, and the T-spline basis function will be numbered nt+1, if numbered left
to right. Figure 4.5 shows a T-spline basis function plotted with the additional
basis functions from the extended knot vector. Figure 4.6 shows the Bernstein
polynomials the curve will be decomposed to.

After obtaining the extended knot vector, the Bézier extraction is done as
with NURBS, except only the one necessary row will be calculated.

NA(ξA)|e = Ne
a(ξ̃) = eTaNe(ξ̃) = eTaCeB(ξ̃) = (cea)TB(ξ̃) (4.26)

where ea is a unit vector equal to 1 in entry a and zero elsewhere. The vector
cea extracts basis function A for element e. The Bézier extraction operators for
each element in the knot vector is shown in Table 4.1. The rows which is needed
for the decomposition of N7 is highlighted in bold font. Figure 4.7 shows how
the Bernstein polynomials scaled according to the extraction operator will sum
up to N7.

For a surface bivariate extraction is needed, which is done as a product of
the basis functions in each parametric direction. The bivariate basis function in
terms of Bézier extractor and Bernstein polynomials is defined by the following
formula:

NA(ξA)|e = Ne
a(ξ̃) = Ne,1

a (ξ̃1)Ne,2
a (ξ̃2) =

[
(ce,1a)TB1(ξ̃1)

][
(ce,2a)TB2(ξ̃2)

]

(4.27)
where superscript 1 or 2 denotes the parametric direction. An algorithm for
calculation of Bézier extraction operators for T-splines is given by Scott it et.al.
2011 [22].

29

Figure 4.5: The T-spline function N7 from Ξ = {3, 4, 5, 6, 7} is plotted in solid
line. The additional basis functions are plotted in dashed lines

Figure 4.6: The Bernstein polynomials for Bézier elements after knot insertion

N1

N2

N3

N4

=

1 0 0 0
0 1 0.5 0.25
0 0 0.5 0.5833
0 0 0 0.1667

B1

B2

B3

B4

N2

N3

N4

N5

=

0.25 0 0 0
0.5833 0.6667 0.3333 0.1667
0.1667 0.3333 0.6667 0.6667

0 0 0 0.1667

B4

B5

B6

B7

N3

N4

N5

N6

=

0.1667 0 0 0
0.6667 0.6667 0.3333 0.1667
0.1667 0.3333 0.6667 0.5833

0 0 0 0.25

B7

B8

B9

B10

N4

N5

N6

N7

=

0.1667 0 0 0
0.5833 0.5 0 0
0.25 0.5 1 0

0 0 0 1

B10

B11

B12

B13

Table 4.1: Bézier extraction operators. Only the highlighted rows are needed
to compute the T-spline N7

Figure 4.7: The T-spline function N7 from Ξ = {3, 4, 5, 6, 7} decomposed to
Bernstein basis. The influencing Bernstein basis functions, which sums up to
N7, are plotted according to the Bézier extractor for each Bézier element

30

Chapter 5

Isogeometric Finite
Element Analysis

The concept of isogeometric analysis is to use the NURBS or T-spline func-
tions which defines the geometry of the analysed problem as shape functions
in the finite element analysis. This in contrast to the traditional isoparamet-
ric concept, where the shape functions used in the finite element analysis are
used to describe the geometry. The isoparametric concept will often lead to
an inaccurate geometry, as the Lagrangian shape functions often used, are not
able to exactly represent for instance conical sections. An isogeometric analysis
program can be implemented in two different ways. The first is to write an
entire new program code, to account for the basis functions which are spanning
more than one quadrature element, which cannot be handled by a traditional
finite element solver. The second is to use the concept of Bézier extraction to
confine the basis to each quadrature element, and thus only the shape function
routine will need to be changed. Both these options will be discussed, so that
the advantage of using Bézier extraction can be appreciated.

5.1 Creating a isogeometric finite element solver

The main structure of an isogeometric analysis program will follow the structure
of classical FEA, where the same steps needed to be performed. The stiffness
matrix K needs to be established by a loop over all the elements to construct
the element stiffness matrices ke, and also the load vector P0 from the element
load vectors p0e

This section will focus on a NURBS based isogeometric analysis, as this
is is easier to fully understand, even if most of the concepts discussed can be
extended to also include T-splines. Both NURBS and T-spline based analysis
will handled in section 5.2.

As discussed in section 3.5, each element is defined as the domain bounded
by lines of reduced continuity. In the case of NURBS this will give us elements
for each of the knot spans in the parametric space. Each element is labelled
with NURBS coordinates i and j, p+ 1 ≤ i ≤ n and q+ 1 ≤ j ≤ m, which refers
to a knot in the ξ- and η-direction, respectively. The NURBS coordinates of

31

each element will give the element number e, defined as

e = (j − q − 1)(n− p) + (i− p). (5.1)

and the domain of each element in the parametric space is then:

Ω̂e = [ξi, ξi+1]× [ηj , ηj+1] (5.2)

Each of the NURBS basis functions are defined over the entire domain of
the parametric space, even if they only have support in a small region of the
domain, as shown in Figure 5.1 where the shape function corresponding to
control point 19 in a 5x5 element mesh is shown. It is possible for each element
to calculate the value of all NURBS basis functions and then extract the non-
zero values when evaluating the stiffness matrix and load vector. But this
is a very inefficient way to handle this problem. A much more elegant work
around is to use the information given in the knot vectors to determine which
basis function will have support in the elements prior to calculating them, and
thus only need to calculate the non-zero values. This is accomplished with the
ElementNode-matrix (IEN-matrix). The IEN-matrix is a matrix that relates the
global element number e and local basis function a to the global control point
A, such that A=IEN(a,e). In Table 5.1 the IEN matrix for the 5x5 elements
mesh used in Figure 5.1 is shown. All the entries in the IEN matrix such that
19=IEN(a,e) is in bold font, to show which elements shape function 19 will have
support in. An algorithm to calculate this matrix is given in [13].

For each element, the evaluation of the element stiffness matrix and load
vector is done by performing numerical integration, Gaussian quadrature, in
the domain of a parent element, Ω̃e = [−1, 1]× [−1, 1].

ke =

n∑

i=1

BT
i DBithwi|Ji| (5.3)

where n is the number of quadrature points needed to perform the integration,
th is the thickness, w is the weight of the quadrature point, and subscript i
denotes the ith quadrature point.

In classical finite element analysis the sampling of the shape functions, and
its derivatives, are done directly at the gauss points for numerical quadrature,
which is possible since the shape functions are defined only on the domain Ω̃e.
In isogeometric analysis this is not true, thus the gauss points will have to be
transformed to parametric coordinates, in order to obtain the value in these
points. These points are calculated from the gauss points ξ̃, η̃, and the knot
vectors Ξ, H.

ξ = ξi + (ξ̃ + 1)
(ξi+1 − ξi)

2
(5.4)

η = ηj + (η̃ + 1)
(ηj+1 − ηj)

2
(5.5)

Due to this transformation of the quadrature points, it is not sufficient to only
reprogram the shape function, but also all of the elements in the element library
will need some recoding. The transformed Gauss points will need to be calcu-
lated prior to calling the shape function algorithm. It would be possible to also

32

(a) 5×5 element mesh plotted in the para-
metric space

(b) The physical domain of a the circu-
lar beam, with 49 control points. Control
point 19 marked with black dot

(c) Shape function plotted in the parametric
space

(d) Shape function plotted on the physical
domain

Figure 5.1: One of the main complications in isogeometric analysis. The shape
functions are spanning more than one element. The shape function correspond-
ing to control point number 19 in a 5×5 element mesh is shown for a circular
beam with 49 control points and 25 9-noded quadratic quadrilateral elements

a \ e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 1 2 3 4 5 8 9 10 11 12 15 16 17 18 19 22 23 24 25 26 29 30 31 32 33
2 2 3 4 5 6 9 10 11 12 13 16 17 18 19 20 23 24 25 26 27 30 31 32 33 34
3 3 4 5 6 7 10 11 12 13 14 17 18 19 20 21 24 25 26 27 28 31 32 33 34 35
4 8 9 10 11 12 15 16 17 18 19 22 23 24 25 26 29 30 31 32 33 36 37 38 39 40
5 9 10 11 12 13 16 17 18 19 20 23 24 25 26 27 30 31 32 33 34 37 38 39 40 41
6 10 11 12 13 14 17 18 19 20 21 24 25 26 27 28 31 32 33 34 35 38 39 40 41 42
7 15 16 17 18 19 22 23 24 25 26 29 30 31 32 33 36 37 38 39 40 43 44 45 46 47
8 16 17 18 19 20 23 24 25 26 27 30 31 32 33 34 37 38 39 40 41 44 45 46 47 48
9 17 18 19 20 21 24 25 26 27 28 31 32 33 34 35 38 39 40 41 42 45 46 47 48 49

Table 5.1: IEN matrix for a 5x5 mesh of Q9 elements. A=IEN(a,e). Shape
function 19 from Figure 5.1 has support in elements 3, 4, 5, 8, 9, 10, 13, 14, 15

33

calculate these within the shape function routine, but this would lead to calcu-
lating them in every loop of the shape function, instead of every loop through
elements. This is therefore a computational waste that should be avoided.

Evaluation of B-splines are performed for each Gauss points, within the
shape function algorithm. The B-spline basis functions can be calculated with
(2.1) (p. 5). Use of this recursive formula will be computationally expensive, as
many of the lower order basis functions will be calculated several times. This
will then lead to more computational effort needed to construct the stiffness
matrix. Although more efficient algorithms using dynamic programming exist,
this is beyond the scope of this thesis.

5.2 Implementation of Bézier Extractor in FEM

Use of the Bézier extraction operator will help to avoid some of the complicat-
ing factors mentioned in the previous section. As discussed in Chapter 4, the
Bézier extraction operator will allow us to represent a NURBS or T-spline basis
function in terms of Bernstein polynomials.

Since the shape functions now will be defined separately for each elements,
and only on the domain of each element, the implementation is simplified. The
NURBS coordinates will no longer be needed, and the Gauss points will not
need the transformation to parametric coordinates. In the construction of the
stiffness and load matrices, each Bézier element will be similar to the Lagrange
elements. The shape function algorithm will be called to calculate the shape
functions and derivatives. The IEN-array will still be needed, and will replace
the normal connectivity array. The shape function from Figure 5.1d is shown
again in Figure 5.2, but now it is calculated with the Bézier extraction operator,
and is only defined in the domain of one element.

In order to take advantage of the Bézier extraction operators these will
need to be pre-calculated prior to the assembly of the stiffness matrix, and the
multivariate extraction operators needs to be stored in the memory. As the
size of the analysed problem increases, the memory requirements for storing the
operators can become extensive. If only the univariate extraction operators are
pre-calculated and then the tensor product multivariate operators are evaluated
when needed, or if each extraction operator are calculated when needed in the
shape function routine, the memory requirements can be severely reduces. But
doing so will also demand more changes to the finite element code, also to other
routines than the shape function algorithm. Doing so will also increase the
total number of calculations needed in the complete analysis. Thus it is not
recommended to do so, unless the size of the problems which can be analysed
is restricted by available memory only.

Once the extraction operators are calculated one can calculate the Bézier
control points and respective Bézier weights. The Bézier weights must be calcu-
lated and used in the shape function algorithm, while the Bézier control points
are not strictly necessary, and one may choose whether or not these should be
calculated. Using Pb instead of P in analysis will be less computational efficient,
since P would then have to be calculated from Pb whenever needed. However,
for visualization Pb may be useful, for instance if one want to visualize the
Bézier element mesh.

34

Figure 5.2: The shape function from Figure 5.1d, defined only over the domain
of the shaded element, by use of Bézier extraction

It is important to understand that the Bézier extraction will not introduce
additional degrees of freedom. The Bézier control points are merely virtual
control points, used to ease the implementation. They have no physical meaning,
other than to define the physical domain of the Bézier element, and the Bézier
elements will still relate to the NURBS control points. Also, the physical domain
of the Bézier elements is identical to the physical domain of the NURBS or T-
spline elements. This should be apparent from the fact that Bézier extraction
do not cause any changes to the basis functions. If this was not true, a FEA
based on Bézier extraction would not be possible.

5.3 Shape function algorithm

The shape function algorithm is an integral part of the analysis software, and
with the use of Bézier extraction this is the only part that will need to be
changed. A thorough description of this algorithm is given here. The purpose
of the shape function algorithm is to calculate the value of the basis function
and its derivatives at the quadrature points, as well as calculating the Jacobian
determinant. I.e. all necessary variables in (5.3).

Recall (2.26) (p. 12) which in terms of the Bézier extraction operator and
Bernstein polynomials gives us

R(ξ) = W
N(ξ)

W (ξ)
= WC

B(ξ)

W b(ξ)
(5.6)

where C is the bivariate extraction operator. This equation can be written for
each element as:

Re(ξ) = WeCe Be(ξ)

W b(ξ)
(5.7)

Differentiating this equation with respect to parametric coordinates, ξi, yields

∂Re(ξ)

∂ξi
= WeCe ∂

∂ξi

(
Be(ξ)

W b(ξ)

)

= WeCe

(
1

W b(ξ)

∂Be(ξ)

∂ξi
− ∂W b(ξ)

∂ξi

Be(ξ)

(W b(ξ))2

)
(5.8)

35

Equations (5.7) and (5.8) require the values of the Bernstein basis, the weight
function, and the derivatives of the basis and weight function with respect to ξ.
The Bernstein basis and derivatives will be calculated in a separate algorithm
which will be called from the shape function algorithm by use of (4.5) and (4.6)
(p. 24). The weight function is calculated by (4.13) (p. 26) and its derivatives
are calculated as

∂W b(ξ)

∂ξi
=

A∑

a=1

∂Ba(ξ)

∂ξi
wba (5.9)

The calculation of the stiffness matrix requires the derivatives of R with respect
to physical coordinates (x1, x2). These derivatives are obtained by use of the
chain rule, and the resulting equation is

∂Re(ξ)

∂xi
=

2∑

j=1

∂Re(ξ)

∂ξj

∂ξj
∂xi

(5.10)

The calculation of ∂ξ/∂x is done by first computing the Jacobian ∂x/∂ξ, and
then computing the inverse.

∂x

∂ξ
= (Pe)T

∂Re

∂ξ
(5.11)

= ((We)−1(Ce)−TWb,ePb,e)T
∂Re

∂ξ
(5.12)

(5.11) and (5.12) are equivalent, the difference is whether P or Pb is used in
the calculation. With the results form (5.7), (5.10) and (5.11) or (5.12) the
necessary variables needed are obtained, and the shape function algorithm is
finished for this quadrature point. The shape function for Matlab is given in
Appendix A. When the extraction operator is utilized, both T-splines and
NURBS are handled by the same shape function algorithm. Since the shape
function is written in terms of C and Bernstein polynomials, the only difference
is that for T-splines there might be varying number of shape functions with
support in each element. This is handled by the shape function algorithm.

5.4 Finite Element Analysis with CAD software

CAD software usually use NURBS as the basis for geometric modelling. How-
ever, some CAD software has the possibility to add T-spline compatibility by
use of plug ins. Such software includes Autodesk Maya and Rhinoceros. In this
thesis, “T-Splines for Rhino” has been used to explore the possibilities of using
such software together with a FEA.

With this software the user has the possibility to export both control points
and Bézier extraction operators for each of the elements in the extended T-mesh.
As earlier discussed, this is the only information needed to model the geometry
for the finite element analysis. The exported Bézier extractors will not be in a
format which is possible to import directly into the FE framework, but contains
the necessary data to create the C-matrices and the IEN-array. In order to use
the exported data it will need to be rearranged into the needed matrices, but
this can easily be done with some sort of parsing script. With this information
it is now possible to perform an analysis after applying boundary conditions

36

and loading.When C and IEN has been established, the analyst will not need
to know any T-spline theory in order to perform the analysis. The extraction
operator will deal with that. A parsing script for Matlab is given in Appendix
A.

Figure 5.3 shows both the T-mesh and the extended T-mesh for a geometry
imported from Rhino for analysis. Table 5.2 shows the IEN-matrix that is
generated from the imported data. As the IEN-matrix clearly shows, there is
not a fixed number of shape functions that will have support in each element.
This is due to the T-junctions and associated knot vectors that defines the
support of each basis function in the parametric space, and this is not the same
for each knot vector.

When it comes to refinement of the element mesh, this method is not very
suitable. Of course, it is possible to some extent to refine the T-mesh in Rhino,
but this is no optimal solution. If a finer mesh than the one imported from
Rhino is wanted, a refinement of the mesh is needed to be done by a refinement
algorithm. This algorithm will not be further mentioned here, as this algorithm
is beyond the scope of this thesis.

37

(a) T-mesh (b) Extended T-mesh

Figure 5.3: T-meshes imported from T-splines for Rhino

a \ e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 9 9 9 9 9 9 9 9 1 1 9 5 5 5 9 9 9
2 10 10 10 10 10 10 10 10 2 2 10 6 6 6 10 10 10
3 11 11 11 14 14 14 14 14 3 3 14 7 7 7 11 13 13
4 12 12 12 15 18 15 15 19 4 4 19 8 8 8 12 14 14
5 14 14 14 16 22 16 16 23 5 5 20 9 9 9 13 15 17
6 15 15 15 18 25 19 19 25 6 6 23 10 10 10 14 17 18
7 16 16 16 22 26 25 20 26 7 7 24 11 11 11 15 18 21
8 18 25 25 25 27 26 25 27 8 8 25 12 12 12 17 21 22
9 22 27 28 26 28 27 28 28 9 9 28 13 14 14 18 22 25
10 25 28 29 27 30 28 29 29 10 10 29 14 15 15 21 25 26
11 27 29 30 28 31 29 30 30 11 11 30 15 16 16 22 26 27
12 28 30 33 30 32 30 32 31 12 12 31 17 18 25 25 27 28
13 30 33 34 32 33 32 33 32 13 14 32 18 25 28 27 28 31
14 33 34 35 33 34 33 34 33 14 15 33 25 28 29 28 32 32
15 34 36 36 34 37 34 35 34 15 16 34 28 30 30 33 33 33
16 37 37 37 37 38 36 36 36 25 25 35 33 33 33 34 34 34
17 39 39 37 37 37 36
18 39 39 38 37
19 39 38
20 39

Table 5.2: IEN matrix for the T-mesh imported from Rhino. The num-
ber of shape functions with support in each element is not fixed, but always
(p+1)(q+1) or higher

38

Chapter 6

Numerical Examples

Isogeometric analysis will in this chapter be used to solve some example prob-
lems, to investigate the convergence rate and accuracy of the obtained solution
and also to show some areas of application of isogeometric analysis. The prob-
lems involve linear elasticity and transient heat conductivity. For two of the
elasticity problems a convergence study is performed in order to examine the
convergence properties.

6.1 Curved beam with end shear

The first problem analysed consist of a cantilevered beam shaped as a quarter
of a circle, with the outline as shown in Figure 6.1a. The material is linear
elastic and in a state of plane stress, with elastic modulus E=10000 and a
Poisson ratio ν = 0.25. The inner radius a is 5 units and the outer radius b
is 10 units. The beam is analysed with the free end subjected to a prescribed
displacement in the negative x-direction, u0 = 0.01, and the resulting strain
energy is calculated. The analytical solution for the strain energy of the system
is given by Timoshenko and Goodier [27] , and the results from the isogeometric
analysis is compared with the results obtained by Zienkiewicz and Taylor [29]
from a traditional finite element analysis. The error in the strain energy is
calculated as

‖e‖2E = U − Uh (6.1)

The beam is analysed with 9- and 16-noded Bézier quadrilaterals, with coarsest
meshes consisting of 3x6 and 2x4 elements, respectively. The coarsest meshes
are shown in Figure 6.1c and 6.1e. The results obtained from the analysis is
given in Table 6.1 and 6.2, and the resulting error is plotted logarithmically
versus number of degrees of freedom in Figure 6.2.

In Figure 6.3 the stresses from an analysis performed with 48x24 quadratic el-
ements is shown, plotted on the deformed shape of the beam. The displacements
in both x- and y-direction are magnified to a scale of 50 times the displacements,
in order to be shown properly.

As seen in the convergence plot, the NURBS based finite element analysis is
performing better than the traditional finite element analysis. The convergence
rates are as expected the same as for a traditional FEA, but the accuracy is
better.

39

(a) Geometry and boundary condi-
tions for the curved beam

(b) Coarsest mesh: Control points for Q9 (c) Coarsest mesh: Bézier mesh with
Bézier control points for Q9

(d) Coarsest mesh: Control points for Q16 (e) Coarsest mesh: Bézier mesh with
Bézier control points for Q16

Figure 6.1: Circular beam with end shear

40

NURBS-Q9 NURBS-Q16
DOFs Elmts Energy DOFS Elmts Energy

80 18 0.029708322024974 70 8 0.029653101738195
224 72 0.029653401864295 154 32 0.029649732629062
728 288 0.029649900409357 418 128 0.029649669346247

2600 1152 0.029649682879498 1330 512 0.029649668455942
9800 4608 0.029649669343369 4690 2048 0.029649668442595

Exact 0.029649668442380 0.029649668442380

Table 6.1: Strain energy for circular beam with NURBS elements

Lagrange Q4 Lagrange Q9 Lagrange Q16
DOFs Elmts Energy Elmts Energy Elmts Energy

182 72 0.03042038175071 18 0.02970101373401 8 0.02965327376971
650 288 0.02984351371323 72 0.02965318188484 32 0.02964975296446

2450 1152 0.02969820784232 288 0.02964989418870 128 0.02964966996157
9506 4608 0.02966180825828 1152 0.02964968266120 512 0.02964966846707

37442 18432 0.02965270370808 4608 0.02964966933301 2048 0.02964966844276
Exact 0.029649668442380 0.029649668442380 0.029649668442380

Table 6.2: Strain energy for circular beam with Lagrangian elements

Figure 6.2: Error in strain energy vs. degrees of freedom for the circular beam

41

(a) σx

(b) σy

(c) τxy

Figure 6.3: Stresses in the curved beam analysed. The stresses are plotted
onto the deformed shape of the beam, with displacements exaggerated 50-fold.
No stress-smoothing is necessary as the stresses are continuous over element
boundaries

42

6.2 Infinite plate with a circular hole under far-
field uniaxial tension

The infinite plate with a circular hole is a frequently used benchmark problem
for finite element solvers. The problem consist of a plate which is infinitely large
in the x- and y-direction, and the thickness is small. The plate has a hole with
radius equal 1 in the center. The plate is linear elastic, and in a state of plane
strain. The elasticity modulus is 1000, and the Poisson ratio is 0.3. The plate
is loaded with stress in x-direction, σx = 1, far from the hole.

Due to symmetry only a quarter of the plate needs to be analysed. Nor-
mally a quadratic part of the upper right quadrant is analysed, with the exact
solution to the stresses along the edges applied as a traction. This approach
will introduce additional singularity in the sharp corner which is created by this
representation. For an isogeometric analysis this will be avoided by choosing a
different parametrisation. The plate will be analysed as a quarter of an annu-
lus, which can be exactly represented by quadratic NURBS, and therefore no
further error is introduced here. The exact stresses is then applied to the outer
radius of the quarter annulus as a traction boundary condition. The geometry
of the infinite plate and the geometry of the analysed part is shown in Figure
6.4. The problem was analysed with NURBS and Lagrangian 9- and 16-noded
quadrilaterals.

The analytical solution to stresses at any given point (r,θ) in the plate is
given by [30] as

σx = 1− a2

r2

(
3

2
cos 2θ + cos 4θ

)
+

3

2

a4

r4
cos 4θ

σy = −a
2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3

2

a4

r4
cos 4θ

τxy = −a
2

r2

(
1

2
sin 2θ + sin 4θ

)
+

3

2

a4

r4
sin 4θ (6.2)

The exact strain energy of the analysed part can be calculated as

E =

∫

V

σTεdV =

∫ π/2

0

∫ 4

1

σTD−1σrdrdθ = 0.01197664128 (6.3)

where

σ =

σx
σy
τxy

 , D =

E(1− ν)

(1 + ν)(1− 2ν)

1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 (6.4)

At the loaded edge of the plate the exact stresses is applied to the system as a
traction

t = n̂

[
σx τxy
τxy σy

]
(6.5)

where n̂ is the unit outward normal. The plate is analysed with 9- and 16-noded
elements, and the resulting strain energy is given in Tables 6.3 and 6.4, and a
convergence plot is shown in Figure 6.5. The convergence rates are as expected
for quadratic and cubic elements, and also for this problem the NURBS solution
achieves better accuracy than the Lagrange elements, with the same convergence
rates.

43

(a) The problem (b) Part of the problem that
is analyzed

Figure 6.4: Infinite plate with a circular hole under far-field uniaxial tension

NURBS-Q9 NURBS-Q16
DOFs Elmts Energy DOFS Elmts Energy

144 40 0.011953123289377 154 32 0.011973812023053
576 220 0.011975309108001 418 128 0.011976608009310

2304 1012 0.011976577690435 1330 512 0.011976640728685
9216 4324 0.011976637976321 4690 2048 0.011976641280095

36864 17860 0.011976641099244 17554 8192 0.011976641287725
Exact 0.011976641287842 0.011976641287842

Table 6.3: Strain energy for infinite plate with NURBS elements

Lagrange-Q9 Lagrange-Q16
DOFs Elmts Energy DOFS Elmts Energy

306 32 0.011958472345477 650 32 0.011975035686685
122 128 0.011974281506711 2450 128 0.011976572964402

4290 512 0.011976443358185 9506 512 0.011976639679251
16770 2048 0.0119766277358221 37424 2048 0.011976641260059
Exact 0.011976641287842 0.011976641287842

Table 6.4: Strain energy for infinite plate with Lagrange elements

Figure 6.5: Error in strain vs. degrees of freedom for the infinite plate

44

6.3 Thermo-mechanical analysis: Beam with tem-
perature gradient

Changes is temperature in a material will lead to thermal stresses and displace-
ments. In this section, both a transient and a steady-state thermal analysis
of a beam is performed. In this problem, a prescribed temperature is applied
to each horizontal edge at t=0. The temperatures in the structure from the
steady-state solution will then be applied to a static linear elastic analysis of
the same beam, to obtain the displacements due to the thermal gradient.

Heat conduction for an isotropic material is governed by [9]

∂

∂x
kT , x+

∂

∂y
kT , y +Q− cρṪ (6.6)

where k is the thermal conductivity, T is the temperature, Q is thermal flux, c is
thermal capacity and ρ is the density. After integrating to obtain a weak form,
and using a Galerkin formulation of FEM [26], the finite element formulation of
heat conduction is given by

∫

Ωe

NT ρcNdΩṪ +

∫

Ωe

∂N

∂x

T [
k 0
0 k

]
∂N

∂x
dΩT =

∫

Ωe

NTQdΩ−
∫

Γeq

NT q̄ndΓ

(6.7)
which in matrix form is

MṪ + KT = F (6.8)

where M is the heat capacity matrix, and K is the conductivity matrix, sim-
ilar to the mass- and stiffness matrices in a linear elastic problems. A central
difference approach is used to calculate the value of Ṫ as

Ṫn+1 =
Tn+1 − Tn

∆t
(6.9)

and (6.8) is written as

(
M

∆t
+ K

)
Tn+1 = Fn+1 +

M

∆t
Tn (6.10)

A simply supported beam subjected to a thermal loading will now be analysed.
The beam has length 100 units, and heigth 5 units. The material is isotropic,
linear elastic with E=210000, ν=0.3, α = 1.1x10−5, k=1, ρ=1, and c=1. At
t=0 a prescribed temperature of +25 is applied to the lower edge, and -25 at
the upper edge of the beam. The initial temperature in the beam, at t < 0, is
0. The vertical edges are completely insulated. Thus, the boundary conditions
are:

T (x, y, t < 0) = 0 T (x,+2.5, t ≥ 0) = −25, T (x,−2.5, t ≥ 0) = 25,

q(0, y, t) = q(100, y, t) = 0 (6.11)

u(0, 0) = v(0, 0) = v(100, 0) = 0 (6.12)

The beam with boundary conditions is shown in Figure 6.6
The transient problem is solved by a implicit method, which is numerically

stable, without a critical time step that needs to be calculated. This in contrast

45

to an explicit method. This is at the cost of having to solve the system of
equations at each time step. For a finite element code in Matlab, the main
computational effort lies in establishing the stiffness matrix. The actual solving
of the system of equations is done quickly. Hence a implicit solution method is
a good choice. The transient problem is solved in the time interval t ∈ (0s, 1s],
with a time step ∆t = 0.01s. The resulting temperature field is shown in Figure
6.7, for four different values of time, t.

For the case of steady-state at t ' ∞, the exact solution to the temperature
in the beam is T = −25y. The thermal expansion of the material due to this
imposed temperature field will lead to a constant curvature κ = 10α over the
length of the beam. This curvature will give a deflection of the beam, which at
the center line of the beam can be calculated from

κ =
∂2y

∂x2
(6.13)

where y is the deflection at position x. Integrating and imposing boundary
conditions yield

y =
1

2
κx2 − 50κx = 0 (6.14)

which at center of the beam, x=50, will result in a maximum deflection of
−0.1375. The solution to the temperature field is linear, and the deflection at
center is a quadratic polynomial. For a quadratic element both these solution is
within the trial space of the finite element solution, and the analysis is expected
to obtain the exact solution of the deflection at midpoint with a single Q9-
quadrilateral. This problem can then be used as a patch test to identify errors
in the element code, at least to some extent.

For the static elasticity problem, any change in temperature from the initial
state will result in a thermal strain due to thermal expansion:

εo =

εx
εy
τxy

 =

α
α
0

∆T, ∆T = N∆T (6.15)

where ∆T is the change of temperature at the control points from the thermal
analysis. The temperature strains are then applied to the structure in a linear
elastic analysis as a consistent load vector

p0 =

∫

Ωe

BTDεodΩ =

∫

Ωe

BTD

α
α
0

N∆TdΩ (6.16)

As expected, a downwards deflection v=0.1375 at the mid-node is obtained with
a single Q9 element.

46

(a) Thermal boundary conditions

(b) Mechanical boundary conditions

Figure 6.6: Boundary conditions for the beam that is analysed

(a) t=0.01s

(b) t=0.31s

(c) t=0.61s

(d) t=0.91s ' steady-state solution

Figure 6.7: Temperature distribution in a rectangular beam, with a temperature
of ±25 applied to the horizontal edges at t=0. The left figures are showing the
y-T axis, and the right figures are x-y axis

47

48

Chapter 7

Discussion

7.1 Concluding remarks

Use of the Bézier extraction operator in order to implement isogeometric analysis
in an existing finite element framework seems to be a reasonable choice. By using
this method, one can easily implement isogeometric analysis (IGA) in existing
software, without having to make much changes to the code. Since the Bézier
extraction approach to isogeometric analysis is easing the implementation this
might prove to be a essential step forward in the integration of FEM and CAD.
Implementation of IGA into existing software will be important for the spread
of IGA.

Also, use of isogeometric elements may not always be the best choice for all
analysis purposes, and the choice of using Lagrangian elements may be better
in some situations. For this purpose the user should be able to choose whether
to use isogeometric or traditional elements for the analysis. Bézier extraction
will allow for this, as the finite element framework can handle both isogeometric
Bézier elements and Lagrange elements.

One problematic issue with Bézier extraction is the storage of the Bézier
extraction operator, which can be very demanding when the number of elements
increases. The simplest choice for storing the operators, at least in Matlab, is
the use of a 3 dimensional matrix. But a 3-d matrix can not be stored as a sparse
matrix, which leads to huge demand of memory. For the analysed problems in
Chapter 6 the extraction operator demanded more memory than the stiffness
matrix, which could be stored sparsely, and this restricted the number of degrees
of freedom that could be used.

When it comes to the numerical solutions obtained by an isogeometric anal-
ysis, NURBS and T-spline based isogeometric analysis seems to be better choice
than traditional finite element analysis. As seen in the numerical examples per-
formed in this thesis, the accuracy is superior to Lagrangian elements which
gives us less error while the convergence rates stays unchanged. Another ad-
vantage is the that the stresses calculated from an IGA with p ≥ 2 will be
continuous over element boundaries due to the Cp−1-continuity.

When T-splines are used, the ability to perform a local refinement is a signif-
icant advantage compared to a NURBS based isogeometric analysis. This local
refinement may lead to a massive reduction of needed degrees of freedom close

49

to regions where smaller elements are needed, for example close to singularities
in the solution. But T-splines also has flaws when it comes to linear dependence.
Since T-splines in general are not linearly independent, in contrast to NURBS,
the T-spline geometry from CAD software might not be suitable for analysis.

The ability to directly import geometries from CAD software is a huge ad-
vantage, and one of the main reasons for performing a isogeometric analysis
instead of a traditional FEA. Since the geometry is already defined, the analyst
will not need to remodel the geometry for the finite element analysis, which
might be very time consuming. Also, the error in geometry description, which
often is unavoidable with isoparametric elements, is now completely removed.
This is of course only true if the CAD model is considered to be the exact geom-
etry of the analysed structure. Geometric deviations from the model will also
be maintained in the analysis.

7.2 Future work

In this thesis the isogeometric analysis has been implemented in a Matlab finite
element framework, which is fine for academical purposes. The concept of Bézier
decomposition can easily be studied in this programming environment, and for
the numerical studies performed the computational cost and time consumption
is not relevant. However, for engineering purposes in a commercial situation
this is not acceptable, and the computational efficiency needs to be improved.

In this thesis Bézier extraction of T-splines has only been used with imported
extraction operators from CAD software. While importing T-splines from CAD
software is useful, refinement should be performed by analysis software and not
design software. Therefore the Bézier extraction operator will also need to be
extracted by the analysis software, and this algorithm needs to be implemented.

As mentioned briefly in the introduction, LR B-splines is another approach
to local refinement of splines, and research is being done on this topic. In parallel
to this work, Bézier decomposition of LR B-splines should also be researched.
Since this class of of splines are also based on B-splines, Bézier extraction should
be possible similarly to NURBS and T-splines.

50

Appendix A

Algorithms

The two most conceptually important algorithms in an isogeometric analysis
based on Bézier extraction is the algorithm to create the Bézier extraction op-
erator and the shape function algorithms. Here these two are presented.

In Algorithm 1 the algorithm for the construction of the univariate extraction
operators for NURBS is presented. This algorithm requires only the knot vector
and the polynomial order.

In Algorithm 2 the shape function algorithm is presented. This algorithm
will work for both NURBS and T-splines with extraction operator. The algo-
rithm can handle a varying number of shape functions with support in each
elements due to T-splines. This algorithm requires an additional algorithm,
bernstein basis, which calculates the values of the Bernstein polynomials and
derivatives. This is given in Algorithm 3. Both algorithms 1 and 2 are written
for Matlab, and are slightly modified versions of the algorithms given in [5].

A parsing script that will import the Bézier extraction operators and IEN
matrix from Rhino to a readable format for a Matlab finite element program is
given in Algorithm 5. This script require a text file where all information other
than numbers are removed prior to the parsing.

51

Input: Knot vector and polynomial order
Output: Univariate element extraction operators, and number of

elements nb
1: function [C nb] = bezier extraction(knot,p)
2: m=length(knot)-p-1;
3: a=p+1;
4: b=a+1;
5: nb=1;
6: C(:,:,1) = eye(p+1);
7: while b≤m do
8: C(:,:,nb+1) = eye(p+1);
9: i=b;

10: while b ≤ m && knot(b+1) == knot(b); do
11: b=b+1;
12: end while
13: multiplicity = b-i+1;
14: if multiplicity < p then
15: numerator=knot(b)-knot(a);
16: for j=p:-1:multiplicity+1 do
17: alphas(j-multiplicity)=numerator/(knot(a+j)-knot(a));
18: end for
19: r=p-multiplicity;
20: for j=1:r do
21: save = r-j+1;
22: s = multiplicity + j;
23: for k=p+1:-1:s+1 do
24: alpha=alphas(k-s);
25: C(:,k,nb)=alpha*C(:,k,nb)+(1-alpha)*C(:,k-1,nb);
26: end for
27: if b≤m then
28: C(save:save+j,save,nb+1)=C(p-j+1:p+1,p+1,nb);
29: end if
30: end for
31: nb=nb+1;
32: if b ≤ m then
33: a=b;
34: b=b+1;
35: end if
36: else if multiplicity==p then
37: if b ≤ m then
38: nb=nb+1;
39: a=b;
40: b=b+1;
41: end if
42: end if
43: end while

Algorithm 1: Algorithm to create univariate Bézier extractors from knot
vector

52

Input: Quadrature points GP=[ξ η], element number e, Bézier weights
Wb, Element order p and q, bivariate element extraction operator
C, IEN-matrix, Weights W, Control points P

Output: Shape function values R, Shape function derivatives ∂R
∂x ,

determinant of the Jacobian |J |
1: function [R dRdx detJ]=shape2dIGA(GP,e,Wb,p,q,C,IEN,W,P)
2: %% Initialize variables:
3: ncpt=(p+1)*(q+1);
4: B=zeros(ncpt,1);
5: dBdxi=zeros(ncpt,2);
6:

7: wb=0;
8: dwbdxi=zeros(2,1);
9:

10: R=zeros(nen,1);
11: dRdxi=zeros(nen,2);
12: dRdx=zeros(nen,2);
13:

14: %% Calculations:
15: %% Calculate bernstein shape function and its derivatives
16: [B dBdxi]=bernstein basis(p,q,GP(1),GP(2));
17:

18: %% Calculate weight function and its derivatives
19: for a=1:ncpt; do
20: wb = wb + B(a)*Wb(a);
21: dwbdxi(1) = dwbdxi(1) + dBdxi(a,1)*Wb(a);
22: dwbdxi(2) = dwbdxi(2) + dBdxi(a,2)*Wb(a);
23: end for
24:

25: a=find(IEN(:,e));
26: C=C(a,:);
27: W=W(IEN(a,e));
28: %% Shapefunction and derivatives
29: R=diag(W)*C*B/wb;
30: dRdxi(:,1)=diag(W)*C*(dBdxi(:,1)/wb-dwbdxi(1)*B/(wb*wb));
31: dRdxi(:,2)=diag(W)*C*(dBdxi(:,2)/wb-dwbdxi(2)*B/(wb*wb));
32: %% Jacobian matrix
33: dxdxi=P’*dRdxi;
34:

35: dxidx=inv(dxdxi);
36: dRdx=dRdxi*dxidx;
37: detJ=det(dxdxi);

Algorithm 2: Shape function algorithm

53

1: function [B dBdxi]=bernstein basis(p,q,xi,eta)
2: %% Initialization
3: ncpt=(p+1)*(q+1);
4: B=zeros(ncpt,1);
5: dBdxi=zeros(ncpt,2);
6: %% Calculation
7: for j=1:q+1 do
8: for i=1:p+1 do
9: B((p+1)*(j-1)+i)=bernstein(p,i,xi)*bernstein(q,j,eta);

10: dBdxi((p+1)*(j-1)+i,1)=0.5*p*(bernstein(p-1,i-1,xi)-bernstein(p-
1,i,xi))*bernstein(q,j,eta);

11: dBdxi((p+1)*(j-1)+i,2)=bernstein(p,i,xi)*0.5*q*(bernstein(q-1,j-
1,eta)-bernstein(q-1,j,eta));

12: end for
13: end for

Algorithm 3: Bivariate Bernstein polynomials and derivatives

1: function B=bernstein(p,a,xi)
2: if p==0 && a==1 then
3: B=1;
4: else if p==0 && a∼=1 then
5: B=0;
6: else
7: if a<1 || a>p+1 then
8: B=0;
9: else

10: B1=bernstein(p-1,a,xi);
11: B2=bernstein(p-1,a-1,xi);
12: B=0.5*(1-xi)*B1+0.5*(1+xi)*B2;
13: end if
14: end if

Algorithm 4: Univariate Bernstein polynomial

54

Input: Text file “Bezier.txt” with extraction operators from Rhino
Output: Bézier extraction operators C, and IEN matrix

1: clear all
2: id = fopen(’Bezier.txt’);
3: readin=0;
4: IEN=0;
5: while readin != -1 do
6: readin=fgetl(id);
7: if readin == -1 then
8: break
9: end if

10: readin = str2num(readin);
11: readin(1) = readin(1)+1;
12: readin(2) = readin(2)+1;
13: readin(3) = readin(3)+1;
14: j=0;
15: for i = 5:2:length(readin); do
16: readin(i)=readin(i)+1;
17: % Establish IEN Matrix
18: if readin(1)>size(IEN)(1) then
19: IEN(readin(1),1)=0;
20: end if
21: if find(IEN(readin(1),:)==readin(i)) then
22:

23: else
24: a=find(IEN(readin(1),:));
25: IEN(readin(1),length(a)+1)=readin(i);
26: end if
27: % Establish C matrices
28: c(4*(readin(2)-1)+readin(3),readin(i),readin(1))=readin(i-1);
29: end for
30: end while
31: C=zeros(size(IEN)(2),16,size(IEN)(1));
32: for i=1:size(IEN)(1) do
33: a=find(IEN(i,:));
34: IEN(i,a)=sort(IEN(i,a));
35: C(a,:,i)=c(:,IEN(i,a),i)’;
36: end for

Algorithm 5: Parsing script for Rhino

55

56

Appendix B

Report for MekIT11

The following report, ”Isogeometric Analysis based on Bézier Extraction of
NURBS and T-Splines”, was written with Thanh Ngan Nguyen, Kjetil André
Johannessen and Kjell Magne Mathisen for the MekIT’11 Sixth National Con-
ference on Computational Mechanics, held in Trondheim 23rd-24th May 2011.

57

Isogeometric finite element analysis based on Bézier
extraction of NURBS and T-splines

Thanh Ngan Nguyen∗†, Ole Jørgen Fredheim∗†, Kjetil André Johannessen‡
and Kjell Magne Mathisen†

†) Department of Structural Engineering,
Norwegian University of Science and Technology, N-7491 Trondheim, Norway
e-mail: thanhnga@stud.ntnu.no, olejorfr@stud.ntnu.no, kjell.mathisen@ntnu.no

‡) Department of Mathematical Sciences,
Norwegian University of Science and Technology, N-7491 Trondheim, Norway

e-mail: kjetijo@math.ntnu.no

Summary The presented study addresses use of Bézier extraction for NURBS and T-spline based
isogeometric analysis. In isogeometric analysis the shape functions are not confined to one single
element, but spans several elements, which complicates implementation. The Bézier extraction
operator decomposes the NURBS or T-spline basis functions to Bernstein polynomials which
allows generation of C0-continuous Bézier elements, where all necessary changes in the finite
element code are localized to the shape function routine. We will shortly review the theory of
NURBS and T-splines and show how to compute the Bézier extraction operator. Also, numerical
studies are performed to investigate performance of isogeometric analysis compared to traditional
finite element analysis.

Introduction
Isogeometric analysis was introduced by Hughes et al. [5, 6]. The concept of isogeometric anal-
ysis is to use the same basis for the analysis as is being used in description of the geometry. This
as opposed to the traditional finite element method (FEM), where the basis for the analysis is
what is used to describe the geometry. Computer Aided Engineering (CAE) was introduced
earlier than Computer Aided Design (CAD), and CAE and CAD have been developed indepen-
dently. The idea of isogeometric analysis will help integrating these two concepts, and allow
use of geometric models directly from CAD software in a finite element analysis (FEA).

In this paper we start with presenting the basic theory for B-splines, the non-rational part of
NURBS, before the fundamentals of NURBS and T-splines are reviewed briefly. Then we de-
scribe the construction of isogeometric Bézier elements and the Bézier extraction operator for
NURBS. A thorough example of the bivariate extraction operator is included. The Bézier extrac-
tion operator for T-splines as opposed to the extraction operator for NURBS is then discussed.

Numerical studies are performed using a finite element (FE) solver based on Bézier extraction of
NURBS. The two examples consist of problems involving conical sections, where isogeometric
analysis have the advantage in exact representation of the geometry. The first example is a
cantilevered beam shaped as a quarter of a circle and the second is an infinite plate with circular
hole subjected to far-field uniaxial tension. The latter problem is often modelled as a quarter of
the geometry with the outer edge square shaped. Here, we have chosen to model the plate as a
quarter of disk, which gives a geometry without singularties.

B-splines
Knot vector

A knot vector is a set of increasing parameter space coordinates. Parameter space is the space
where the basis functions are defined, and is partitioned into knot spans between the knots. The

Figure 1: B-spline curve constructed from quadratic basis functions, and knot vector Ξ =
{0, 0, 0, 1, 2, 2, 3, 3, 3}. The control points are marked as circles.

knot vector is written as Ξ = {ξ1, ξ2, . . . , ξn+p+1}, where ξi is the ith knot, i is the knot index,
i = 1, 2, . . . , n + p + 1, p is the polynomial order, and n is the number of basis functions used
to create the B-spline curve.

Basis functions

B-splines are piecewise polynomial functions, and are defined by the following recursive for-
mulas [3, 4]

Ni,0(ξ) =

{
1 if ξ ∈[ξi, ξi+1)
0 otherwise (1)

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2)

B-spline curves

B-spline curves (see figure 1) are created by a linear combination of B-spline basis functions.
What separates B-spline curves from curves in FEA is that instead of interpolating a set of nodal
points, the B-splines are related to a set of control points. These control points are the equivalent
to the nodes, but the curve will generally not pass through the control points. For a given set of
n pth order basis functions, Ni,p(ξ), i = 1, 2 . . . , n, and a corresponding set of control points
Bi ∈ Rd, i = 1, 2, . . . , n, the piecewise-polynomial B-spline curve is given by

C(ξ) =
n∑

i=1

Ni,p(ξ)Bi (3)

B-spline surfaces

The expansion from B-spline curves to B-spline surfaces is straightforward. To generate a sur-
face, we will need a net of control points {Bi,j}, i = 1, 2, . . . , n, j = 1, 2, . . . ,m, polynomial
orders p and q, and knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1}, and H = {η1, η2, . . . , ηm+q+1}. A
tensor product B-spline surface is then defined by

S(ξ, η) =
n∑

i=1

m∑

j=1

Ni,p(ξ)Mj,q(η)Bi,j (4)

where Ni,p(ξ) and Mj,q(η) are univariate B-spline basis functions of order p and q, correspond-
ing to knot vectors Ξ andH, respectively.

Figure 2: B-spline curve projected onto the plane z = 1 to create the NURBS representation of a circle.

Knot insertion

If a new knot, and corresponding control point, is added to the knot vector, the resulting B-spline
curve will in general be different than the original curve. However, knots may be inserted in the
knot vector without altering the B-spline curve if the control points are placed according to a
specific knot insertion algorithm. Let Ξ = {ξ1, ξ2, ..., ξn+p+1} be a given knot vector. Inserting
a new knot ξ̄ ∈ [ξk, ξk+1] with k > p into the knot vector requires n + 1 new basis functions to
be defined using equations 1 and 2. The m = n + 1 new control points,

{
P̄i

}m
A=1

, are formed
from the original control points, {Pi}nA=1, by

P̄A =

P1 A = 1
αAPA + (1− αA)PA 1 < A < m
Pn A = m

(5)

αA =

1 1 < A < k − p
ξ̄−ξA

ξA+p−ξA k − p+ 1 < A < k

0 A ≥ k + 1

(6)

Non-uniform rational B-splines
Non-uniform rational B-splines (NURBS) is an expansion from B-splines, which will remove
some of the limitations of B-splines and allow us to exactly represent conical sections. Figure 2
shows an example of a B-spline curve projected onto the plane z = 1 to create the NURBS
representation of a circle. A NURBS entity in Rd is the result of a projection of a B-spline
entity in Rd+1. The control points, Pi, and weights, wi, are calculated as

(Pi)j = (Pw
i)j/wi, j = 1, . . . , d (7)

wi = (Pw
i)d+1 (8)

The univariate rational basis functions Ri,p(ξ) are defined as

Ri,p(ξ) =
Ni,p(ξ)wi
W (ξ)

=
Ni,p(ξ)wi∑n
î=1Nî,p(ξ)wî

(9)

where the weighting function W (ξ) is defined as

W (ξ) =
n∑

i=1

Ni,p(ξ)wi (10)

and a NURBS curve is defined equivalently as its B-spline counterpart

C(ξ) =
n∑

i=1

Ri,p(ξ)Pi (11)

The bivariate basis functions for a surface is defined as

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j∑n
î=1

∑m
ĵ=1 Nî,p(ξ)Mĵ,q(η)wî,ĵ

=
NA(ξ, η)wA
W (ξ, η)

(12)

We define W as the diagonal matrix of weights,

Wij = wiδij (13)

and N(ξ) as a vector of basis function values, and rewrite equations (9) and (12) in matrix form

R(ξ) =
1

W (ξ)
WN(ξ) (14)

R(ξ, η) =
1

W (ξ, η)
WN(ξ, η) (15)

T-splines
Introduction

The theory and formulas presented is extracted from [1] and [7]. NURBS represent a restricted
subset of T-splines since T-splines overcome the tensor product restriction associated with
NURBS. This means that T-splines allow local refinement. While NURBS control points lie
in a rectangular grid, rows and columns of T-spline control points may be incomplete as illus-
trated in figure 3, forming T-junctions in the T-mesh.

Local refinement has many benefits. For the same geometric representation, T-splines give less
control points compared to NURBS, implying lower computational cost when performing ana-
lyses. Gaps which are non-avoidable in a NURBS model may be closed using T-spline merging,
making it possible to create complex but still analysis-suitable models.

T-spline fundamentals

The origin of the T-mesh is the index space. Like a NURBS index space, each knot line rep-
resents a knot value, but the T-mesh knot lines may be incomplete. The top part of figure 4
illustrates a simple T-mesh. A valid T-mesh defines a T-spline basis function to each anchor and
corresponding control point. If the polynomial order is even, the anchors are the mid-points of

Global refinement Local refinement

Figure 3: Global and local refinement.

the rectangles in the T-mesh. For odd polynomial degrees, the anchors coincide with the T-mesh
vertices. The latter is most convenient in the review of T-spline fundamentals, and anchors of
even polynomial degrees are therefore not considered.

To obtain a valid T-mesh, local knot vectors must be defined for each anchor. Consider the
example in bottom left of figure 4 where the polynomial order p = 3. The local knot vector is
found by marching horizontally and vertically from the anchor si until (p+1)

2
orthogonal edges

or lines that terminates in a T-junction are encountered in each of the four directions from the
anchor. If boundary edges are passed, the knot value is repeated until the places are filled up.
The local knot vectors to s1 are therefore Ξ1 = {ξ1, ξ1, ξ2, ξ3, ξ4} and H1 = {η1, η1, η2, η3, η4}.
Note that the length of the local knot vector is p+ 2.

Often, the origin of the local knot vector in the index space is not of interest. A local knot in-
terval vector is therefore defined as a sequence of knot intervals, ∆Ξ = {∆ξ1,∆ξ2, ...,∆ξp+1},
such that ∆Ξ = ξi+1 − ξi. The local basis function domain is then defined as Ω̂A = [0,∆ξ1+
∆ξ2 + ...+ ∆ξp+1] × [0,∆η1 + ∆η2 + ...+ ∆ηp+1], A = 1, 2, ...n, where n is the number of
control points. Over each local basis function domain, the T-spline basis functions in the pa-
rameter space are found similarly to NURBS basis functions, equation 4.

For a NURBS mesh, reduced continuity appears only at knot lines. In contrast to this, a T-mesh
contains extra lines of reduced continuity which do not coincide with the knot lines. These lines
are typically marked as dotted lines. The T-mesh including the lines of reduced continuity is
referred to as the extended T-mesh, and it is over this mesh T-spline elements are defined. T-
spline elements are rectangular regions over which the T-spline basis functions are smooth (C∞

continuous). Thus, it is over these elements an analysis of numerical (Gaussian) quadrature
can be performed. To find the lines of reduced continuity, at each T-junction extend the line
until (p+1)

2
orthogonal edges are encountered. Note that this only prevails for odd polynomial

degrees. The extended T-mesh for the example above appears as shown in the bottom right of
figure 4. For a T-mesh to be analysis-suitable, all T-spline basis functions should also be linearly
independent to each other. This requires that no lines of reduced continuity are intersecting.

Bézier Extraction Operator
Bernstein polynomials and Bézier curves

A set of Bernstein polynomial basis functions are defined as B(ξ) = {Ba,p(ξ)}p+1
a=1, which

corresponds to the set of vector valued control points P = {Pa}p+1
a=1 where each Pa ∈ Rd,

where d is the number of spatial dimensions and P is a matrix of dimension n×d. The Bernstein
polynomials can be defined recursively as [2]

Ba,p(ξ) = (1− ξ)Ba,p−1(ξ) + ξBa−1,p−1(ξ) ξ ∈ [0, 1] (16)

Figure 4: T-mesh, anchors of odd polynomial degrees (p = q = 3) and extended T-mesh, p = 3.

where
B1,0(ξ) ≡ 1 (17)

and
Ba,p(ξ) ≡ 0 if a < 1 or a > p+ 1 (18)

A Bézier curve of degree p is a linear combination of p+1 Bernstein polynomial basis functions
and can be written as

C(ξ) =

p+1∑

a=1

PaBa,p(ξ) = PTB(ξ) (19)

The Bernstein polynomials are defined over the interval [0,1], while in the FEM the Lagrange
functions are used in quadrature over the interval [-1,1], thus it is reasonable to redefine the
basis functions so that they span this interval. By doing so the basis functions read

Ba,p =
1

2
(1− ξ)Ba,p−q(ξ) +

1

2
(1 + ξ)Ba−1,p−1(ξ) (20)

and the derivatives
∂Ba,p

∂ξ
=

1

2
p
(
Ba−1,p−1(ξ)−Ba,p−1(ξ)

)
(21)

Bézier decomposition

Given a B-spline curve T (ξ) of order p, and a knot vector Ξ = [ξ1, ξ2, . . . , ξn+p+1], additional
knots may be inserted at the internal knots, by the use of equations (5) and (6), until the multi-
plicity of each knot equals p. By doing so, the B-spline basis functions will be C0-continuous
between elements, and within each element they will be identical to the Bernstein polynomials
of order p. This series of knot insertions is called Bézier decomposition.

Assume that we are given a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1} and a set of control points
P = {PA}nA=1 , that define a B-spline curve. Let {ξ̄1, ξ̄2, . . . , ξ̄m} be the set of knots that
are required to produce the Bézier decomposition of the B-spline. Then for each new knot,
ξ̄j, j = 1, 2, . . . ,m, we define αjA, A = 1, 2, . . . , n + j, to be the Ath alpha as defined in
equation (6). Now, defining Cj ∈ R(n+j−1)×(n+j) to be

Cj =

α1 1− α2 0 . . . 0
0 α2 1− α3 0 . . . 0
0 0 α3 1− α4 0 . . . 0
... . . .
0 . . . 0 αn+j−1 1− αn+j

(22)

and letting P̄1 = P, we can rewrite equation (6) in matrix form to represent the sequence of
knot insertions needed as

P̄j+1 = (Cj)TPj (23)

The control points for the Bézier elements, Pb, are given as the final set of control points,
Pb = P̄m+1. Defining CT = (Cm)T (Cm−1)T . . . (C1)T gives us

Pb = CTP (24)

Since the Bézier decomposition of a curve does not cause any parametric or geometric change
to a curve, we can write

T (ξ) = PTN(ξ) = (Pb)TB(ξ) = (CTP)TB(ξ) = PTCB(ξ) (25)

The control points P are arbitrary, thus we have shown that

N(ξ) = CB(ξ) (26)

where C is the linear Bézier extraction operator. The Bézier extraction operator is constructed
with only information from the knot vector, and it does not depend on the control points of the
B-spline curve or the basis functions. NURBS are constructed from the B-spline basis functions,
which allows us to apply the extraction operator to NURBS. Substituting equation (26) into (14),

T (ξ) =
1

W (ξ)
PTWN(ξ) =

1

W (ξ)
PTWCB(ξ) =

1

W (ξ)
(CTWP)TB(ξ) (27)

We will also rewrite the weight function, W (ξ), in terms of the Bernstein basis as

W (ξ) =
n∑

i=1

wiNi(ξ) = wTN(ξ) = wTCB(ξ) = (CTw)TB(ξ) = (wb)TB(ξ) = W b(ξ)

(28)

Where wb = CTw are the Bézier weights. As with knot insertion, Bézier decomposition of
control points are done directly to the B-spline curve which defines the NURBS curve. Geo-
metrically this is done by projecting the NURBS control points into d + 1 dimensions, then
the Bézier extraction operator is applied to the B-spline control points, and finally the curve is
projected back into d dimensions to obtain the Bézier control points, Pb. We define Wb to be
the diagonal matrix consisting of Bézier weights, equivalent to (13),

W b
ij = wbi δij (29)

Now the Bézier decomposition of the NURBS control points, Pb, can be calculated as

Pb = (Wb)−1CTWP (30)

We premultiply by Wb to get
WbPb = CTWP (31)

and then substitute into equation (27) to obtain the equation for a NURBS curve in terms of C0

Bézier elements,

T (ξ) =
1

W b(ξ)
(WbPb)TB(ξ) =

n+m∑

i=1

Pb
iw

b
iBi(ξ)

W b(ξ)
(32)

The bivariate extraction operator for an element is defined as

Ce
A = Ci

η ⊗Cj
ξ (33)

where ⊗ is the tensor product and is defined as

A⊗B =

A11B A12B
A21B A22B

... . . .

 (34)

Example of Bézier decomposition

In order to increase our understanding of the Bézier decomposition we will take a closer look
at a circular beam that is to be analysed. In the analysis we want to use quadratic NURBS basis
functions, and we want an element mesh consisting of 6 elements in the tangential direction,
and 3 elements in the radial direction. Thus, the parametric space will be defined by the open
knot vectors

Ξ = {0, 0, 0, 1

6
,
2

6
,
3

6
,
4

6
,
5

6
, 1, 1, 1} (35)

and
H = {0, 0, 0, 1

3
,
2

3
, 1, 1, 1} (36)

In the parametric directions ξ and η we have the univariate B-spline basis functions Ni,p(ξ) and
Mj,q(η), respectively. The basis functions are plotted in figure 5(a).

(a) Parametric space with univariate basis functions and
Bernstein polynomials plotted along the axes

(b) Circular beam with control point net

Figure 5: Parametric space and control points.

Recalling equation (26), and dropping subscripts p and q, we can write the basis functions in
terms of the Bézier extraction operator and Bernstein polynomials as

N1

N2

N3

N4

N5

N6

N7

N8

=

1.0 0 0 0 0 0 0 0 0 0 0 0 0
0 1.0 0.5 0 0 0 0 0 0 0 0 0 0
0 0 0.5 1.0 0.5 0 0 0 0 0 0 0 0
0 0 0 0 0.5 1.0 0.5 0 0 0 0 0 0
0 0 0 0 0 0 0.5 1.0 0.5 0 0 0 0
0 0 0 0 0 0 0 0 0.5 1.0 0.5 0 0
0 0 0 0 0 0 0 0 0 0 0.5 1.0 0
0 0 0 0 0 0 0 0 0 0 0 0 1.0

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

(37)

M1

M2

M3

M4

M5

=

1.0 0 0 0 0 0 0
0 1.0 0.5 0 0 0 0
0 0 0.5 1.0 0.5 0 0
0 0 0 0 0.5 1.0 0
0 0 0 0 0 0 1.0

B1

B2

B3

B4

B5

B6

B7

(38)

With the information in figure 5(a) and equations (37) and (38), we can localize the element

Figure 6: From control points to Bézier control points to Bézier physical mesh.

extraction operators. For the shaded element in figure 5(a) we get

N2

1

N2
2

N2
3

 =

N2

N3

N4

 =

0.5 0 0
0.5 1.0 0.5
0 0 0.5

B3

B4

B5

 =

0.5 0 0
0.5 1.0 0.5
0 0 0.5

B2

1

B2
2

B2
3

 (39)

M1

1

M1
2

M1
3

 =

M1

M2

M3

 =

1.0 0 0
0 1.0 0.5
0 0 0.5

B1

B2

B3

 =

1.0 0 0
0 1.0 0.5
0 0 0.5

B1

1

B1
2

B1
3

 (40)

where the superscript denotes element number in each parametric direction. In general the
global extraction operator does not need to be calculated, since the local extraction operators
will be calculated for each element. Here we have chosen to calculate it for the sake of clarity.
The bivariate extraction operator for the shaded element in figure 5(a) then becomes

C2 = C1
η ⊗C2

ξ =

1.0 0 0
0 1.0 0.5
0 0 0.5

⊗

0.5 0 0
0.5 1.0 0.5
0 0 0.5

 (41)

With the extraction operators at hand we can compute the control points for the Bézier elements
from equation (30).

Bézier extraction of T-splines

The theory presented is extracted from [7]. FE data structures for T-splines based on Bézier
extraction is a generalization of data structures based on Bézier extraction of NURBS. Like
Bézier extraction of NURBS, the idea is to extract the linear operator which maps the Bernstein
polynomials on Bézier elements to the global T-spline basis.

For T-splines, no global tensor product domain exist however, a local domain can be defined for
each basis function. Thus, the element extraction operators are not computed as a tensor product
for each element as for NURBS. In contrast, the computation of the operators is performed
function-by-function, resulting in a single row to each basis function in support of the T-spline
element.

The second difference compared to NURBS is due to the local knot vectors of T-splines. Since
the local knot vectors are in general not open, an extended knot vector is introduced by re-
peating the first and last knots until the multiplicity is equal to p + 1. Figure 7 shows the uni-
variate T-spline basis function N3 (thick solid line) to the local knot vector Ξ = {0, 0, 1, 2, 3}.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Figure 7: Basis function N3 (thick solid line) to the local knot vector Ξ = {0, 0, 1, 2, 3} and the additional
basis functions (thin dotted lines) to the extended knot vector Ξ̄ = {0, 0, 0, 0, 1, 2, 3, 3, 3, 3}.

The thin dotted lines are the additional basis functions when the extended knot vector Ξ̄ =
{0, 0, 0, 0, 1, 2, 3, 3, 3, 3} is introduced. Conceptually, the extraction operators may now be com-
puted similarly to NURBS to obtain the basis functions of the Bézier elements shown in figure 8.
The extraction operators will therefore be equal to the operators in the case of NURBS,

N1

N2

N3

N4

=

1 0 0 0

0 1 1
2

1
4

0 0 1
2

7
12

0 0 0 1
6

B1

B2

B3

B4

(42)

N2

N3

N4

N5

=

1
4

0 0 0

7
12

2
3

1
3

1
6

1
6

1
3

2
3

7
12

0 0 0 1
4

B4

B5

B6

B7

(43)

N3

N4

N5

N6

=

1
6

0 0 0

7
12

1
2

0 0

1
4

1
2

1 0

0 0 0 1

B7

B8

B9

B10

(44)

Notice however that only the rows with bold typing in the extraction operators are necessary
to map the Bernstein polynomials on Bézier elements in figure 8 to the global T-spline basis
function N3 in figure 7. Thus, an algorithm to find the Bézier extraction operators for T-splines
does not compute the redundant rows.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Figure 8: Basis functions of the Bézier elements after Bézier decomposition of Ξ̄ =
{0, 0, 0, 0, 1, 2, 3, 3, 3, 3}.

Implementation in a FE solver

To implement isogeometric analysis with Bézier extraction in a FE code the only necessary
changes are confined to the shape function routine and the generation of the element extraction
operators [7]. Figure 9 shows a flow chart for the shape function routine for NURBS using
Bézier extraction. The routine is performed for each element.

Since the element extraction operators only need information given by the knot vectors, these
can easily be pre-calculated and then called in before the shape function routine is performed. To
calculate the Bézier weights, the NURBS weights are also needed. The Bézier basis functions
and derivatives are calculated according to equations (20) and (21) in a separate routine, and are
therefore also called into the shape function routine.

Isogeometric analysis based on Bézier extraction of T-splines is in this study performed by
importing the extended T-mesh of a curved beam modelled in Rhinoceros with T-splines into
the FE solver in MATLAB. The imported geometry is shown in figure 10. The input from
Rhinoceros consists of 39 control points and corresponding weights, together with Bézier ex-
traction operators for the 17 elements. A parsing script creates the IEN array for the extended
T-mesh and modifies the data to be compatible with the programme based on Bézier extraction
of NURBS. This illustrates that T-mesh analysis may be easily performed in a FE solver with a
shape function routine adapted to NURBS based on Bézier extraction. The only input needed is
the control points and the extraction operators.

Numerical studies

Circular beam subjected to end shear load

The problem consists of a cantilevered beam shaped as a quarter of a circle (see figure 11).
The material is linear elastic and in a state of plane stress. The beam is analysed with the free
end subjected to a prescribed displacement in the negative x−direction, and the resulting strain
energy is calculated. The analytical solution for the strain energy of the system is given by
Timoshenko and Goodier [8] , and the results from the isogeometric analysis is compared with
the results obtained by Zienkiewicz and Taylor [9] with a traditional FEA. The error in the strain
energy is defined as

‖e‖2
E = U − Uh (45)

SHAPE FUNCTION ROUTINE

Call Bézier basis functions and derivatives

for b = 1 : number of Bézier basis functions

Evaluate weight function of Bézier element

Evaluate derivatives of weight function

STOPSTOPSTOPSTOPSTOPSTOPSTOPSTOPSTOP

for a = 1 : number of NURBS basis functions in support

for b = 1 : number of Bézier basis functions

Evaluate NURBS basis functions

Evaluate NURBS derivatives

WRITE OUTPUT

STOPSTOPSTOPSTOPSTOPSTOPSTOPSTOPSTOP

NURBS basis functions

NURBS derivatives

STARTSTARTSTARTSTARTSTARTSTARTSTARTSTARTSTART

READ INPUT

Evaluate Bézier weights

NURBS weights

Bézier extraction operator

Figure 9: Flow chart of shape function routine for NURBS using Bernstein polynomials.

Figure 10: The extended T-mesh imported into the FE solver based on Bézier extraction of NURBS.

where U is the exact strain energy and Uh is the corresponding strain energy of the FE solution.
The beam is analysed with 9− and 16−noded Bézier quadrilaterals, with the coarsest meshes
consisting of 3×6 and 2×4 elements, respectively, as shown in figure 12. The results in terms
of energy are given in table 1 and 2, for NURBS and Lagrange elements, respectively. As seen
in the convergence plots (see figure 13), the NURBS based FEA is performing better than the
traditional FEA. The convergence rates are as expected the same as for the traditional FEA, but
the accuracy is better.

Infinite plate with a circular hole under far-field uniaxial tension

The problem consist of a plate which is infinitely large in the x− and y−direction, with a hole
with radius equal 1 in the center of the plate (see figure 14). The plate is linear elastic, and in
a state of plane strain. The elasticity modulus is 1000, and the Poisson ratio is 0.3. The plate is
loaded with a uniform stress field in the x−direction, σx = 1 The analytical solution to stresses
at an arbitrary point with coordinates (x, y) in the plate is given by [10]

σx = 1− a2

r2

(
3

2
cos 2θ + cos 4θ

)
+

3

2

a4

r4
cos 4θ

σy = −a
2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3

2

a4

r4
cos 4θ

τxy = −a
2

r2

(
1

2
sin 2θ + sin 4θ

)
+

3

2

a4

r4
sin 4θ (46)

The exact strain energy of the analysed part can be evaluated from the analytical solution to the
stresses

U =

∫

V

σTεdV =

∫ π/2

0

∫ 4

1

σTD−1σrdrdθ = 0.01197664128784163 (47)

where

σ =

σx
σy
τxy

 (48)

x

y

E = 10 000
 = 0.25
t = 1.0

r
inner

= 5

r
outer

= 10

u
0
= 0.01

Figure 11: The geometry of the circular beam with end shear, with material properties, boundary condi-
tions and prescribed displacements.

(a) 9-noded quadrilateral (b) 16-noded quadrilateral

Figure 12: Coarsest Bézier mesh with Bézier control points, for the circular beam.

NURBS-Q9 NURBS-Q16
DOFs Elmts Strain energy DOFS Elmts Strain energy

80 18 0.029708322024974 70 8 0.029653101738195
224 72 0.029653401864295 154 32 0.029649732629062
728 288 0.029649900409357 418 128 0.029649669346247

2600 1152 0.029649682879498 1330 512 0.029649668455942
9800 4608 0.029649669343369 4690 2048 0.029649668442595

Exact 0.029649668442380 0.029649668442380

Table 1: Strain energy for circular beam with NURBS elements.

Lagrange Q4 Lagrange Q9 Lagrange Q16
DOFs Elmts Strain energy Elmts Strain energy Elmts Strain energy

182 72 0.03042038175071 18 0.02970101373401 8 0.02965327376971
650 288 0.02984351371323 72 0.02965318188484 32 0.02964975296446

2450 1152 0.02969820784232 288 0.02964989418870 128 0.02964966996157
9506 4608 0.02966180825828 1152 0.02964968266120 512 0.02964966846707

37442 18432 0.02965270370808 4608 0.02964966933301 2048 0.02964966844276
Exact 0.029649668442380 0.029649668442380 0.029649668442380

Table 2: Strain energy for circular beam discretized with Lagrangian elements.

Figure 13: Error in strain energy vs. number of degrees of freedom for the circular beam.

(a) The problem (b) Part of the problem that is
analysed

Figure 14: Infinite plate with a circular hole under far-field uniaxial tension.

NURBS-Q9 NURBS-Q16
DOFs Elmts Energy DOFS Elmts Energy

144 40 0.011953123289377 154 32 0.011973812023053
576 220 0.011975309108001 418 128 0.011976608009310

2304 1012 0.011976577690435 1330 512 0.011976640728685
9216 4324 0.011976637976321 4690 2048 0.011976641280095

36864 17860 0.011976641099244 17554 8192 0.011976641287725
Exact 0.011976641287842 0.011976641287842

Table 3: Strain energy for infinite plate.

Figure 15: Error in strain energy vs. number of degrees of freedom for the infinite plate.

D =
E(1− ν)

(1 + ν)(1− 2ν)

1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 (49)

At the loaded edge of the plate the exact stresses is applied to the system as a traction field

t = n̂

[
σx τxy
τxy σy

]
(50)

where n̂ is the unit outward normal. The plate is analysed with the 9− and the 16−noded
element, and the resulting strain energy is given in table 3. The convergence rates plotted in
figure 15 are as expected for quadratic and cubic elements.

Conclusions

The Bézier extraction operator is significantly easing the implementation of isogeometric ana-
lysis in an existing FE code, since the only necessary changes can be done in the shape function
routine. The rest of the code may be kept as it is. The eased implementation is at the cost of a

slight increase of computational effort in the computation of the stiffness matrix, compared to a
FE code that is designed to do isogeometric analysis.

As shown in the example with the circular beam use of NURBS in analysis has an increased
accuracy compared to a traditional FEA. The convergence rates are the same as expected for the
order of elements, but for a given element mesh, isogeometric analysis will produce a smaller
error compared to traditional FEA.

References
[1] Y.Bazilevs, V.Calo, J.Cottrell, J.Evans, T.Hughes, S.Lipton, M.Scott and T.Sederberg Isogeometric

analysis using t-splines Computer Methods in Applied Mechanics and Engineering, vol.199(5-8),
229 – 263, 2010 Computational Geometry and Analysis.

[2] M. J.Borden, M. A.Scott, J. A.Evans and T. J. R.Hughes Isogeometric finite element data structures
based on bézier extraction of nurbs International Journal for Numerical Methods in Engineering,
2010.

[3] M.Cox The numerical evaluation of B-splines IMA Journal of Applied Mathematics, vol.10(2),
134, 1972.

[4] C.de Boor On calculation with B-splines J. Approx. Theory, vol.6, 50–62, 1972.

[5] T.Hughes, J.Cottrell and Y.Bazilevs Isogeometric analysis: CAD, finite elements, NURBS, ex-
act geometry and mesh refinement Computer methods in applied mechanics and engineering,
vol.194(39-41), 4135–4195, 2005.

[6] T. J.Hughes, J. A.Cottrell and Y.Bazilevs Isogeometric Analysis Towards Unification of CAD and
FEA John Wiley & Sons, Ltd., West Sussex, 2009.

[7] M. A.Scott, M. J.Borden, C. V.Verhoosel, T. W.Sederberg and T. J. R.Hughes Isogeometric finite
element data structures based on bézier extraction of t-splines International Journal for Numerical
Methods in Engineering, 2011.

[8] S.Timoshenko and J.Goodier Theory of Elasticity, McGraw-Hill, New York, 1970 J. Heydenreich,
Rev. Roumaine Phys.., vol.1, 1969–14.

[9] O. C.Zienkiewicz, R. L.Taylor and J. Z.Zhu The Finite Element Method: Its Basis and Fundamen-
tals Elsevier Butterworth Heinemann, 2005.

[10] O. C.Zienkiewicz and J. Z.Zhu The superconvergent patch recovery and a posteriori error esti-
mates. part 1: The recovery technique International Journal for Numerical Methods in Engineer-
ing, vol.33(7), 1331–1364, 1992.

76

Appendix C

Presentation from MekIT11

This appendix contains the presentation of the report in Appendix B, given at
the MekIT11 conference on May 23, 2011, with Thanh Ngan Nguyen.

77

Isogeometric finite element analysis based on
Bézier extraction of NURBS and T-splines

Thanh Ngan Nguyen∗†

Ole Jørgen Fredheim∗†

Kjetil André Johannessen‡

Kjell Magne Mathisen†

† Department of Structural Engineering, NTNU
‡ Department of Mathematical Sciences, NTNU

Trondheim, Norway

May 23, 2011

Outline

I Motivation

I NURBS and T-splines

I Bernstein polynomials and Bézier curves

I Bézier extraction of NURBS and T-splines

I Implementation in a finite element solver

I Numerical examples

I Concluding remarks

Motivation

I Isogeometric analysis: The basis for geometry is used for
analysis

I Computer Aided Engineering (CAE) introduced before
Computer Aided Design (CAD), CAD and CAE developed
independently

I Isogeometric analysis: The shape functions span several
elements which complicates implementation

I The Bézier extraction operator decomposes the NURBS or
T-spline basis functions to be represented over C 0 continuous
Bézier elements

I Bézier extraction confines the necessary changes in the finite
element code to the shape function routine

NURBS

Non-Uniform Rational B-Splines

I Expansion from B-splines

I Projective transformation of a
B-spline in Rd+1

I (Pi)j = (Pw
i)j/wi , j = 1, . . . , d

I Weights wi = (Pw
i)d+1

Rational basis functions defined as

Ri ,p(ξ) =
Ni ,p(ξ)wi

W (ξ)
=

Ni ,p(ξ)wi∑n
î=1

Nî ,p(ξ)wî

NURBS curve defined equivalently as B-spline curve

C(ξ) =
n∑

i=1

Ri ,p(ξ)Pi

T-spline fundamentals 1

T-spline fundamentals:

I No tensor product
restriction as for NURBS

I Incomplete rows and
columns of control points Global refinement Local refinement

Example: A simple T-mesh

I Each knot line represents a
knot value

I Incomplete knot lines
terminates in T-junctions

T-mesh

1

1

2

5

4

3

4

3

2

6

5

T-spline fundamentals 2

Local knot vectors:

I Local knot vectors define
the T-spline basis function

I Found from the T-mesh

I The local knot vectors to s1
are Ξ1 = {ξ2, ξ3, ξ4, ξ5, ξ6}
and H1 = {η1, η2, η4, η5, η5}

s
1

Local knot vectors, p = 3

1

2

5

4

3

6

1

4

3

2

5

Extended T-mesh:

I Lines of reduced continuity
define T-spline elements

I T-spline elements: regions
over which T-spline basis
functions are C∞ continuous

Extended T-mesh, p = 3

1

1

2

5

4

3

4

3

2

6

5

Bernstein polynomials and Bézier curves

Bernstein polynomials

Ba,p(ξ) = (1− ξ)Ba,p−1(ξ) + ξBa−1,p−1(ξ) ξ ∈ [0, 1]

Identical to B-splines with multiplicity equal p at each knot

Bézier curves
A Bézier curve is a linear combination of Bernstein polynomials

C (ξ) =

p+1∑

a=1

PaBa,p(ξ) = PTB(ξ)

Bézier extraction

B-splines and NURBS can be written in terms of Bernstein
polynomials and the Bézier extraction operator C. C is generated
by knot insertions until the multiplicity at each internal knot is
equal to the polynomial order p.

B-splines

I Pb = CTP

I N(ξ) = CB(ξ)

NURBS

I Pb = (Wb)−1CTWP

I R(ξ) = WC B(ξ)
W b(ξ)

Example of Bézier decomposition 1

A circular beam

Ξ = {0, 0, 0, 1

6
,

2

6
,

3

6
,

4

6
,

5

6
, 1, 1, 1}

H = {0, 0, 0, 1

3
,

2

3
, 1, 1, 1}

Example of Bézier decomposition 2

Basis functions can be written in terms of Bézier extraction
operator and Bernstein polynomials, and for the shaded element
we get

N2
1

N2
2

N2
3

 =

N2
N3
N4

 =

0.5 0 0
0.5 1.0 0.5
0 0 0.5

B3
B4
B5

 =

0.5 0 0
0.5 1.0 0.5
0 0 0.5

B2
1

B2
2

B2
3

M1
1

M1
2

M1
3

 =

M1
M2
M3

 =

1.0 0 0
0 1.0 0.5
0 0 0.5

B1
B2
B3

 =

1.0 0 0
0 1.0 0.5
0 0 0.5

B1
1

B1
2

B1
3

Bézier extraction of T-splines 1

Bézier extraction operator for T-splines:

I Same idea as Bézier extraction of NURBS

I Map T-spline basis function to Bernstein polynomials

0 1 2 3
0

0.2

0.4

0.6

0.8

1

0 1 2 3

0

0.2

0.4

0.6

0.8

1

Basis function N3 (thick red line),
Ξ = {0, 0, 1, 2, 3} Bernstein polynomials

Bézier extraction of T-splines 2

Differences compared to NURBS extraction operator:

I Local knot vectors vs. global knot vector ⇒ introduce the
extended knot vector Ξ̄ = {0, 0, 0, 0, 1, 2, 3, 3, 3, 3}

I Local tensor product domains vs. global tensor product
domain ⇒ one row to each basis function in support

I The element extraction operator for the knot span [0,1)
becomes

N1

N2

N3

N4

=

1 0 0 0

0 1 1
2

1
4

0 0 1
2

7
12

0 0 0 1
6

B1

B2

B3

B4

0 1 2 3
0

0.2

0.4

0.6

0.8

1

0 1 2 3

0

0.2

0.4

0.6

0.8

1

N1,N2,N3,N4 B1, B2, B3, B4

Implementation in a finite element solver 1

Isogeometric analysis based on
Bézier extraction of NURBS:

I Changes confined to shape
function routine

I Extraction operators and
Bézier basis functions are
pre-calculated

I Output: NURBS basis
functions and derivatives

SHAPE FUNCTION ROUTINE

Call Bézier basis functions and derivatives

for b = 1 : number of Bézier basis functions

Evaluate weight function of Bézier element

Evaluate derivatives of weight function

STOPSTOPSTOPSTOPSTOPSTOPSTOPSTOPSTOP

for a = 1 : number of NURBS basis functions in support

for b = 1 : number of Bézier basis functions

Evaluate NURBS basis functions

Evaluate NURBS derivatives

WRITE OUTPUT

STOPSTOPSTOPSTOPSTOPSTOPSTOPSTOPSTOP

NURBS basis functions

NURBS derivatives

STARTSTARTSTARTSTARTSTARTSTARTSTARTSTARTSTART

READ INPUT

Evaluate Bézier weights

NURBS weights

Bézier extraction operator

Implementation in a finite element solver 2

Isogeometric analysis based on
Bézier extraction of T-splines:

I Performed by importing a
T-mesh from Rhinoceros
into the FE solver

I Input: Control points and
extraction operators

I A parsing script creates the
IEN array for the extended
T-mesh

Numerical studies

Numerical studies has been performed with analysis of two linear
elasticity problems

I Circular beam with end shear

x

y

E = 10 000
 = 0.25
t = 1.0

r
inner

= 5

r
outer

= 10

u
0
= 0.01

I Infinite plate with a circular hole under
far-field uniaxial tension

Circular beam with end shear 1

I The beam is in a state of plane stress

I Analysed with quadratic and cubic NURBS elements
with coarsest meshes 6x3 and 4x2 elements, respectively

I Compared to solution obtained with Lagrange elements

Circular beam with end shear 2

NURBS perform better than Lagrange

Infinite plate with a circular hole under far-field uniaxial
tension 1

I A plain strain problem

I Only one quarter of plate needs to be analysed

I Analysed as a quarter of circle to avoid singularities in the
corner, in contrast to when analysed as a quarter plate

Infinite plate with a circular hole under far-field uniaxial
tension 1

Concluding remarks

I Bézier extraction is significantly easing implementation of
isogeometric analysis in an existing FE framework

I NURBS avoid geometric error in discretization of the problem

I NURBS elements has higher accuracy than Lagrange elements

I NURBS elements has the same convergency rates as Lagrange
elements

88

Bibliography

[1] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton,
M.A. Scott, and T.W. Sederberg. Isogeometric analysis using t-splines.
Computer Methods in Applied Mechanics and Engineering, 199(5-8):229 –
263, 2010. Computational Geometry and Analysis.

[2] DJ Benson, Y. Bazilevs, MC Hsu, and TJR Hughes. Isogeometric shell
analysis: the reissner-mindlin shell. Computer Methods in Applied Me-
chanics and Engineering, 199(5-8):276–289, 2010.

[3] DJ Benson, Y. Bazilevs, M.C. Hsu, and TJR Hughes. A large deformation,
rotation-free, isogeometric shell. Computer Methods in Applied Mechanics
and Engineering, 2010.

[4] W. Boehm. Inserting new knots into b-spline curves. Computer-Aided
Design, 12(4):199–201, 1980.

[5] Michael J. Borden, Michael A. Scott, John A. Evans, and Thomas J. R.
Hughes. Isogeometric finite element data structures based on bézier extrac-
tion of nurbs. International Journal for Numerical Methods in Engineering,
2010.

[6] A. Buffa, D. Cho, and G. Sangalli. Linear independence of the t-spline
blending functions associated with some particular t-meshes. Computer
Methods in Applied Mechanics and Engineering, 199(23-24):1437–1445,
2010.

[7] R.W. Clough. The finite element method in plane stress analysis. 1960.

[8] R.W. Clough. Original formulation of the finite element method. Finite
elements in analysis and design, 7(2):89–101, 1990.

[9] Robert D Cook, David S Malkus, Michael E Plesha, and Robert J Witt.
Concepts and Applications of Finite Element Analysis. John Wiley & Sons,
Inc., 2002.

[10] M.G. Cox. The numerical evaluation of B-splines. IMA Journal of Applied
Mathematics, 10(2):134, 1972.

[11] C. de Boor. On calculation with B-splines. J. Approx. Theory, 6:50–62,
1972.

89

[12] M.R. Dörfel, B. Jüttler, and B. Simeon. Adaptive isogeometric analysis by
local h-refinement with T-splines. Computer methods in applied mechanics
and engineering, 199(5-8):264–275, 2010.

[13] Thomas J.R. Hughes, J. Austin Cottrell, and Yuri Bazilevs. Isogeometric
Analysis Towards Unification of CAD and FEA. John Wiley & Sons, Ltd.,
West Sussex, 2009.

[14] TJR Hughes, JA Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD,
finite elements, NURBS, exact geometry and mesh refinement. Computer
methods in applied mechanics and engineering, 194(39-41):4135–4195, 2005.

[15] B.M. Irons. Engineering applications of numerical integration in stiffness
methods. AIAA Journal, 4:2035–2037, 1966.

[16] J. Kiendl, K.U. Bletzinger, J. Linhard, and R. Wuchner. Isogeometric
shell analysis with kirchhoff-love elements. Computer Methods in Applied
Mechanics and Engineering, 198(49-52):3902–3914, 2009.

[17] T. Kvamsdal, K.A. Johannesen, and T. Dokken. Adaptive refinement in
isogeometric analysis using LR B-splines. In MekIT’11 Sixth NationalCon-
ference on Compuational Mechanics, pages 157–170, 2011.

[18] X. Li, J. Zheng, TW Sederberg, TJR Hughes, and MA Scott. On the linear
independence of t-splines. Computer Aided Geometric Design, pages 10–40,
2010.

[19] K.M. Mathisen, K.M. Okstad, T. Kvamsdal, and S Raknes. Isogeomet-
ric analysis of finite deformation elastic and elastoplastic solid problems.
In MekIT’11 Sixth NationalConference on Compuational Mechanics, pages
157–170, 2011.

[20] R.F. Riesenfeld. Applications of b-spline approximation to geometric prob-
lems of computer-aided design. 1973.

[21] M.A. Scott, X. Li, T.W. Sederberg, and T.J.R. Hughes. Local refinement
of analysis-suitable t-splines. Computer Methods in Applied Mechanics and
Engineering, 2011.

[22] Michael A. Scott, Michael J. Borden, Clemens V. Verhoosel, Thomas W.
Sederberg, and Thomas J. R. Hughes. Isogeometric finite element data
structures based on bézier extraction of t-splines. International Journal
for Numerical Methods in Engineering, 2011.

[23] T.W. Sederberg, D.L. Cardon, G.T. Finnigan, N.S. North, J. Zheng, and
T. Lyche. T-spline simplification and local refinement. ACM Transactions
on Graphics (TOG), 23(3):276–283, 2004.

[24] T.W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-
NURCCs. In ACM SIGGRAPH 2003 Papers, pages 477–484. ACM, 2003.

[25] G. Skeie, S. Støle-Hentschel, V. Tharigopula, T. Driveklepp, T. Rusten, and
Damhaug. A.C. Isogeometric analysis in linearized fluid-structure interac-
tion in sloshing. In MekIT’11 Sixth NationalConference on Compuational
Mechanics, pages 303–312, 2011.

90

[26] RL Taylor. Feap-a finite element analysis program: version 8.3 theory
manual. University of California at Berkeley, 2011.

[27] SP Timoshenko and JN Goodier. Theory of Elasticity, McGraw-Hill, New
York, 1970. J. Heydenreich, Rev. Roumaine Phys.., 1:1969–14.

[28] K.J. Versprille. Computer-aided design applications of the rational b-spline
approximation form. 1975.

[29] O C Zienkiewicz, R L Taylor, and J Z Zhu. The Finite Element Method:
Its Basis and Fundamentals. Elsevier Butterworth Heinemann, 2005.

[30] O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery and
a posteriori error estimates. part 1: The recovery technique. International
Journal for Numerical Methods in Engineering, 33(7):1331–1364, 1992.

91

