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Abstract

Solving heterogeneous material problems are of importance in many fields. If the het-
erogeneities are small compared to the scale of the whole problem, a standard finite
element analysis often becomes computationally too large. Multi-scale homogenization
is a technique that reduces the amount of calculations, but still manages to capture
the heterogeneous properties. The domain of the problem is divided into Represen-
tative Volume Elements(RVEs), which in turn are discretized through ordinary finite
elements. Periodic boundary conditions have to be applied to the RVEs for homoge-
nization to be possible, and a common way to maintain these boundary conditions is
by Multi-Point Constraints(MPC). A limitation with MPC is that it does not maintain
the periodic boundary conditions in a correct manner when the RVE boundary nodes
are non-matching, which they in general are.

In this thesis, Localized Lagrange Multipliers(LLM) are used to maintain the periodic
boundary conditions over the RVE, in order to handle RVEs with non-matching grids.
Mathematical homogenization theory in 2D and derivations of MPC and the LLM
method are given. A computer program solving two-scale computational homogeniza-
tion problems in 2D using both LLM and MPC has been implemented in MATLAB.
Several RVEs with different boundary situations and material compositions are anal-
ysed, and the results from the LLM and MPC analysis are compared.

The results show that LLM is more suitable than MPC to handle the periodic boundary
conditions in multi-scale homogenization. LLM deals with all situations that MPC
does. In addition, it produces reliable solutions when the boundary nodes are non-
matching.
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Chapter 1

Introduction

Heterogeneous materials are found everywhere. Actually, materials that normally
are considered homogeneous, are heterogeneous on a sufficiently small scale, such as
steel. The components that create the heterogeneities in a material are often much
smaller in size than the size of the whole material component. For instance in reservoir
simulation, a field of current interest, the geomechanical model is typically built from
units that are at least 100 times larger in volume than the units of the geological model
[21]. The seabed consists of relatively thin layers with different rigidity compared to the
size of the reservoirs and the depth down to the reservoirs, which yield the difference in
scale [19]. Composite materials as reinforced concrete, plastics and wood are also good
examples of heterogeneous materials where the computational model should capture
the heterogeneous properties.

Consider a problem of various length scales, where the material is heterogeneous on the
smallest scale. Solving this problem with a standard finite element analysis requires
that the size of the elements correspond with the size of the smallest heterogeneity.
For large and complex problems, this leads to a computationally large analysis of a
size beyond the capacity of the computing machines of the near future. To handle this
problem in a more efficient way, various techniques have been proposed. A promising
approach developed in the recent years is Multi-scale Computational Homogenization.
This procedure does not yield closed form over all constitutive equations. Instead it
computes stress-strain relations at points of interest on the macroscopic field via a
detailed modelling of the microscopic area linked to the point [19].

Computational homogenization introduces a coarser element grid to lower the compu-
tational effort. These elements consist themselves of several ordinary finite elements
and are named Representative Volume Elements(RVEs), implying that they describe
the heterogeneities within their range. Two independent problems need then to be
solved; one microscopic problem and one macroscopic problem. In first order linear
computational homogenization, a material will be considered heterogeneous at micro
scale and homogeneous at macro scale. The macroscopic behaviour of the material is
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predicted based on the microscopic properties, and it is highly important to preserve
the information that is being transferred between the different grids and to make the
system satisfy physical principles and conservation laws at all levels [14].

The RVEs are assumed to vary periodically, and the periodicity is maintained in the
calculations by boundary conditions in the micro scale problem, also known as the
RVE problem. A common way to force periodicity over the RVE is by Multi-Point
Constraints(MPC), where the different RVE boundaries are selected to be master or
slave boundaries, and the slave boundaries are forced to follow the master boundaries.
If the boundary nodes are matching, MPC should handle the coupling just fine, but if
the boundary nodes are non-matching, as they generally are, MPC is no longer able
to cope with the situation.

There are other possible interface treatments than MPC, and they can be divided into
three groups depending on if they introduce Additional Interface Variables(AIVs) to
the equation system [6];

Primal: No AIVs

Dual: AIVs are dual variables, also known as multipliers.

Primal-Dual: AIVs include both dual and primal variables. Primal vari-
ables are for instance displacements.

The three interface treatment classes are illustrated in figure 1.1. All treatments have
their advantages and criteria they fulfil. In the RVE problem, the most important cri-
teria to satisfy in the coupling are energy conservation, correct stress transmission and
kinematics, in that order. The primal treatment does not satisfy energy consistency,
and is out of question. An example of a dual treatment is Mortar, whereas Localized
Lagrange Multipliers(LLM) is a primal-dual method. Both mortar and LLM satisfy
the energy criterion, however, the mortar method generally violates the force patch
test, and the LLM method cannot simultaneously pass the force and motion patch
tests [6]. Since correct stress transmission is more important than correct displace-
ments, LLM is the most suitable method for multi-scale homogenization, and is the
method described and used in this thesis.

In chapter 2, first order linear mathematical homogenization in 2D is described, where
only the most important aspects regarding the method have been written down. This
thesis focuses on the micro scale problem, and how to calculate the homogeneous
properties of an RVE in a best possible way. The accuracy of the result depends
on what type of boundary treatment used in the calculation, and the transformation
method(MPC) and the LLM method are described in chapter 3. A computer program
for solving two-scale linear homogenization problems in 2D, using both MPC and LLM,
has been implemented in MATLAB. Chapter 4 explains how the program is built up,
and the most important functions regarding the RVE problem are described in detail.
The MATLAB code is in chapter 5 applied on different RVEs with both matching
and non-matching grids, and the homogenized constitutive matrices yielding from the
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(a) Primal; no AIVs (b) Dual; the AIVs are multi-
pliers

(c) Primal-dual; the AIVs are multipli-
ers and displacements

Figure 1.1: Three different interface treatment classes. The arrows are indicating multipli-
ers.

MPC and LLM analysis are compared. The comparison is done by calculating the
wave velocities in the homogenized material for different propagation angles, and the
wave velocities are graphically depicted in plots.

Most of the theory regarding computational homogenization has been taken from
lecture notes by J. Fish [7], and the theory is also described in a master’s thesis by K.
Spildo [19]. Theory concerning the localized Lagrange multiplier method was mostly
found in articles describing interface treatments for fluid-structure interactions written
by C. A. Felippa, K. C. Park and M. R. Ross [5, 6, 17, 18], a Ph.D. thesis by M. R.
Ross [16] and a pre-master’s project by S. B. Raknes [14].





Chapter 2

Linear Homogenization in 2D

To model a heterogeneous material in a finite element analysis, the element grid has
to be small enough to capture all the material properties in a satisfying way. The
problem that can occur in such an analysis is that the calculations become too heavy
for the computational machine. One possibility to minimize the computational effort
is to make use of multi-scale mathematical homogenization. This method divides the
problem into two independent problems; a micro scale problem and a macro scale
problem. The micro scale problem takes care of the heterogeneities in the material,
while the macro scale problem is considered as a homogeneous problem and makes use
of average material properties that the micro scale problem results in.

2.1 Assumptions

In mathematical homogenization the material is assumed to be heterogeneous on micro
scale and homogeneous on macro scale, as illustrated in figure 2.1. To make this
separation of scales possible, the macroscopic length scale has to be much larger than

Figure 2.1: Separation of scales [19].
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the microscopic length scale. The microscopic length scale must in turn be much larger
than the molecular dimension to be able to describe the properties of the material in
a satisfying manner, i.e. lmolecular � lmicro � lmacro [11].

To describe the material on micro level, the material is divided into elements that
on macro level are considered as points. The physical and geometrical properties
around these points are described on micro level through Representative Volume El-
ements(RVEs). The properties of the RVEs are used as homogenized properties in
the macro scale problem and should be of an appropriate size; large enough to rep-
resent the micro-structure without introducing non-existing properties. The following
definition of an RVE is given in [11]:

An RVE is the smallest micro-structural volume that sufficiently accurately
represents the overall macroscopic properties of interest.

Figure 2.2 shows a deformed RVE.

Figure 2.2: A deformed Representative Volume Element - RVE [8].

An important assumption that makes it possible to divide the material into RVEs,
is that the heterogeneities vary periodically over the macroscopic domain. So-called
global periodicity is though a limited assumption since the heterogeneities have to be
the same in the whole domain. A more practical assumption is local periodicity, which
allows the heterogeneities to vary over the macroscopic domain if it repeats itself in a
neighbourhood around each macroscopic point [11], cf. figure 2.3.

The heterogeneous properties on micro scale vary periodically in such a small manner
that they are not registered on macro scale, i.e. the macroscopic level is assumed

homogeneous. Let xi be the macro scale coordinate and yi =
xi
ε

be the micro scale

coordinate, where 0 < ε � 1 denotes the size of a period or an RVE. A periodic
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Figure 2.3: Local periodicity (left) versus global periodicity (right) [11].

function f can then be approximated as

f ε(xi) = f(xi, y(xj)) = f(xi, yj + kΘj), k = 1, 2, . . .

where Θj is a period of the variation or the length of an RVE, as seen in figure 2.4.
An important property of any periodic function, which is exploited in the following
mathematical derivation, is that the integral over a period is equal to zero.

Figure 2.4: Macro and micro scale coordinates. Modified from [19].
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2.2 First Order Mathematical Homogenization

2.2.1 Equilibrium Equations

Equilibrium of an infinitesimal element of the macro domain, Ωε, with body forces bi,
results in the equilibrium equation

∂σεij
∂xj

+ bi = 0 on Ωε.

The stresses can be expressed by Hooke’s law;

σεij = Lεijklε
ε
kl on Ωε,

where the strains are given as

εεkl =
1

2

(
∂uεl
∂xk

+
∂uεk
∂xl

)
on Ωε.

On matrix form, Hooke’s law looks like
σ11

σ22

σ12

 =

L1111 L1122 L1112

L2211 L2222 L2212

L1211 L1222 L1212


ε11

ε22

γ12


where γ12 = 2ε12.

Since the period, or the RVE, is small compared to the size of the whole system,
double scale asymptotic expansion is used to approximate the displacement field [2].
The displacements can then be written as

ui(x, y) = ε0u
(0)
i (x, y) + ε1u

(1)
i (x, y) + ε2u

(2)
i (x, y) +O(ε3),

where ε is the scale factor between micro and macro scale. The superscript in brackets
is to identify the right part of the displacements to be multiplied with the relevant ε.
Remember that x and y are the variables from macro and micro scale, respectively,
and not the two-dimensional space coordinates.

Using the asymptotic expansion of the displacements, the expression for the strains
and Hooke’s law result in three equilibrium equations of different order [7];

O(ε−2) :
∂σ

(−1)
ij

∂yj
= 0,

O(ε−1) :
∂σ

(−1)
ij

∂xj
+
∂σ

(0)
ij

∂yj
= 0,

O(ε0) :
∂σ

(0)
ij

∂xj
+
∂σ

(1)
ij

∂yj
+ bi = 0.
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2.2.2 O(ε−2) Equilibrium Equation

The order O(ε−2) equilibrium equation can, as shown in [14], be written as

∂σ
(−1)
ij

∂yj
=

∂

∂yj
(Lijklε

(−1)
kl ) =

∂

∂yj

[
1

2
Lijkl

(
∂u

(0)
l

∂yk
+
∂u

(0)
k

∂yl

)]
= 0.

This second order differential equation is transformed to weak form by multiplying by
u

(0)
i and integrating over the RVE;

∫
Θ

u
(0)
i

∂

∂yj

[
1

2
Lijkl(y)

(
∂u

(0)
l

∂yk
+
∂u

(0)
k

∂yl

)]
dy = 0.

Integration by parts and use of the divergence theorem yield

∫
∂Θ

u
(0)
i σ

(−1)
ij nj dΓ︸ ︷︷ ︸

= 0

−
∫

Θ

∂u
(0)
i

∂yj

[
1

2
Lijkl(y)

(
∂u

(0)
l

∂yk
+
∂u

(0)
k

∂yl

)]
dy = 0, (2.1)

where the first term is equal to zero because of the assumed periodicity of the RVEs.
Looking at the first term, it can be seen that it is the displacements multiplied with
the tractions integrated over the boundaries of the RVE, in other words it express the
difference in energy at the boundaries. Assuming periodicity over the RVE is thus
equivalent to require that the difference in energy at the boundaries is equal to zero.
Rearranging the second term gives

1

2

∫
Θ

∂u
(0)
i

∂yj
Lijkl

(
∂u

(0)
l

∂yk
+
∂u

(0)
k

∂yl

)
dy = 0,

where the only non-trivial solution, assuming Lijkl to be positive definite, is

∂u
(0)
i

∂yj
= 0 ⇒ u

(0)
i = u

(0)
i (x).

Thus, the leading term in the asymptotic expansion of the displacements is dependent
of the macro scale coordinate only. From this it follows that

σ
(−1)
ij =

1

2
Lijkl

(
∂u

(0)
l

∂yk
+
∂u

(0)
k

∂yl

)
= 0.
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2.2.3 O(ε−1) Equilibrium Equation

Using the result from the previous subsection, the O(ε−1) equilibrium equation be-
comes

∂σ
(−1)
ij

∂xj︸ ︷︷ ︸
= 0

+
∂σ

(0)
ij

∂yj
=

∂

∂yj
(Lijklε

(0)
kl ) = 0.

Assume the following decomposition of u
(1)
k ;

u
(1)
k (x, y) = Hmnk(y)ε(0)

mnx(x), Hmnk(y) ∈ ρΘ

ρΘ =
{
Hmnk(y)|H ∈ C0,Θ− periodic

}
,

where

ε(0)
mnx(x) =

1

2

(
∂u

(0)
m

∂xn
+
∂u

(0)
n

∂xm

)
.

This assumption sets u
(1)
k to be a function of the micro scale coordinate y, scaled with

the first gradient of u
(0)
k , hence the name first order homogenization. Inserting into

the equilibrium equation gives, after some manipulations [7],

∂

∂yj
[Lijkl(Ψklmn + Iklmn)] = 0,

where

Ψklmn(y) =
1

2

(
∂Hmnk(y)

∂yl
+
∂Hmnl(y)

∂yk

)
,

Iklmn =
δkmδln + δlmδkn

2
.

This second order differential equation can be solved with the finite element method
in order to find Hmnk(y), of which u

(1)
k can be calculated.

2.2.4 O(ε0) Equilibrium Equation

Integrating the order O(ε0) equilibrium equation over the RVE and exploiting period-
icity yield∫

Θ

(
∂σ

(0)
ij

∂xj
+
∂σ

(1)
ij

∂yj
+ bi

)
dΘ =

∫
Θ

∂σ
(0)
ij

∂xj
dΘ +

∫
Θ

∂σ
(1)
ij

∂yj
dΘ︸ ︷︷ ︸

= 0

+

∫
Θ

bi dΘ = 0.

This can be written as
∂σ̃ij
∂xj

+ b̃i = 0, (2.2)
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where

σ̃ij =
1

|Θ|

∫
Θ

σ
(0)
ij dΘ

and b̃i =
1

|Θ|

∫
Θ

bi dΘ

are the general homogenized stress and body force, respectively.

Substituting

σ
(0)
ij = Lijklε

(0)
kl = Lijkl(Ψklmn + Iklmn)ε(0)

mnx

into (2.2) gives

∂

∂xj

[
1

|Θ|

∫
Θ

Lijkl(Ψklmn + Iklmn) dΘ ε(0)
mnx

]
+ b̃i = 0.

This transforms to
∂

∂xj

(
L̃ijmnε

(0)
mnx

)
+ b̃i = 0,

where

L̃ijmn =
1

|Θ|

∫
Θ

Lijkl(Ψklmn + Iklmn) dΘ

is the homogenized constitutive tensor.

2.2.5 Properties of the Homogenized Constitutive Tensor

Two important properties of a stiffness tensor are that it is symmetric and positive
definite. The homogenized constitutive tensor should also possess these properties.
Let an expression for the RVE problem be added to the homogenized constitutive
tensor [7];

L̃stmn =
1

|Θ|

∫
Θ

Istij Lijkl(Ψklmn + Iklmn) dΘ

+

0 =
1

|Θ|

∫
Θ

ΨstijLijkl(Ψklmn + Iklmn) dΘ,

which becomes

L̃stmn =
1

|Θ|

∫
Θ

(Ψstij + Istij)Lijkl(Ψklmn + Iklmn) dΘ.

Thus, the homogenized constitutive tensor is symmetric and positive definite.



12 Chapter 2. Linear Homogenization in 2D

2.2.6 Chapter Summary

A linear elastic problem can be solved by splitting it into a micro scale problem and a
macro scale problem. The micro scale problem is solved by means of the finite element
method using periodic boundary conditions, and the material properties are averaged
and used to solve the macro scale problem.

Micro Scale Problem - RVE
Find Hmnk(y) on the RVE, Θ, such that

∂

∂yj
[Lijkl(Ψklmn + Iklmn)] = 0 on Θ,

H mnk(y) = Hmnk(y + Θ) on Θ,

H mnk(y) = 0 on ∂Θū,

where

Ψklmn(y) =
1

2

(
∂Hmnk(y)

∂yl
+
∂Hmnl(y)

∂yk

)
.

Macro Scale Problem
Find u

(0)
i (x) on the domain Ω, such that

∂

∂xj

(
L̃ijmnε

(0)
mnx

)
+ b̃i = 0 on Ω,

u
(0)
i = ūi on Γu,

σ̄ij nj = t̄i on Γt,

where

L̃ijmn =
1

|Θ|

∫
Θ

σmnij dΘ,

σmnij = Lijkl(Ψklmn + Iklmn),

Ψklmn(y) =
1

2

(
∂Hmnk(y)

∂yl
+
∂Hmnl(y)

∂yk

)
,

are found by solving the micro scale problem.



Chapter 3

Coupling of Non-matching Grids

An essential assumption which makes mathematical homogenization applicable, is to
assume periodicity over the RVE. Equation (2.1) shows how this is utilized when the
first term is set equal to zero. The periodicity is maintained by applying boundary
conditions from macro scale in the micro scale problem. There are three appropriate
methods; prescribed displacements, prescribed tractions or prescribed periodicity. It is
shown in [11] that boundary conditions of prescribed periodicity give the best results
and converge faster than the two other methods.

One way to force prescribed periodicity to the RVE is to require that the difference in
displacement between two equal points on opposite boundaries should be constant, i.e.
two opposite boundaries should have the same shape, as seen in figure 2.2. This can
be taken care of by introducing master DOFs at one boundary and slave DOFs at the
opposite boundary, and then force the slave boundary to follow the master boundary.
The left grid in figure 3.1 shows an RVE with equally distributed nodes, and the
right grid is an example of an RVE with non-matching grids. For matching boundary

Figure 3.1: RVE with matching boundary nodes (left) and non-matching boundary nodes
(right).
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nodes, the relation between slave nodes and master nodes is straightforward, but
for non-matching meshes the slave nodes do not correspond directly with the master
nodes. The slave node condensation is done by translation and is described in detail
in section 3.1.

Another way to look at periodicity is as explained in the text after equation (2.1);
Assuming periodicity over the RVE is equivalent to require that the difference in
energy at the boundaries is equal to zero. A method that ensures no loss in energy
in a coupling is the localized Lagrange multiplier method, regardless of it is matching
or non-matching grids. It is not possible to preserve the kinematics, the stresses and
the energy simultaneously in a coupling [6], but at least this method ensures that the
energy is conserved and hence a good choice to maintain periodicity. The method is
described in section 3.2.

Figure 3.2 shows three RVEs with local periodicity. That is, the RVEs are varying with
the same frequency, making it sufficient to calculate just one RVE and use this result
for the other RVEs. In the following derivations and explanations in this chapter, the
coupling is assumed to be between two adjacent RVEs, when it in practice is a coupling
between two opposite boundaries on the same RVE. This is done for the simplicity of
the figures and notation.

Figure 3.2: Non-matching RVEs with local periodicity.

3.1 The Transformation Method

Enforcing constraints by transformation is a common way to handle Multi-Point Con-
straints(MPC). The slave DOFs are related to the master DOFs through constraint
equations and the original global equations, Kd = r, are modified so that the slave
DOFs are eliminated.
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3.1.1 Reduced Global Equations

The constraint equations can be written in the form [4]

[
Gm Gs

]{dm
ds

}
= q,

where dm and ds are the master DOFs and the slave DOFs, respectively. Gm, Gs

and q contain constants. Since there are as many slave DOFs as there are constraint
equations, Gs is square and non-singular. Solving for the slave DOFs result in

ds = G−1
s

(
q−Gmdm

)
,

which gives the complete array of DOFs{
dm
ds

}
=

[
I

−G−1
s Gm

]
dm +

{
0

G−1
s q

}
or

d = Tdm + q0, (3.1)

where I is the identity matrix.

Rearranging the global equations according to the partitioning of d, pre-multiplying
by TT and substituting for d from equation (3.1) yield

TTK
(
Tdm + q0

)
= TTr

or
Kmdm = rm, (3.2)

where

Km = TTKT,

rm = TT
(
r−Kq0

)
.

After dm is calculated from equation (3.2), the total node displacements can be cal-
culated from equation (3.1).

3.1.2 Constraint Equations

The constraint equations ensure the correct correlation between the master DOFs
and the slave DOFs. If the boundary nodes are matching, the slave node displace-
ment equals the master node displacement. In general, the boundary nodes are non-
matching, making the relation between master and slave node more complicated. A
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common approximation is to make the slave node linearly dependent on the two ad-
jacent master nodes, as illustrated in figure 3.3.

The constraint equations for the first two slave nodes of RVE 2 in figure 3.3 are

d1
sx = d1

mx,

d1
sy = d1

my,

d2
sx = (1− α2)d1

mx + α2d
2
mx,

d2
sy = (1− α2)d1

my + α2d
2
my.

Written out on matrix form,
[
Gm Gs

]{dm
ds

}
= q , gives



1 0 0 0 . . . 99
9 −1 0 0 0 . . .

0 1 0 0 . . . 99
9 0 −1 0 0 . . .

1− α2 0 α2 0 . . . 99
9 0 0 −1 0 . . .

0 1− α2 0 α2 . . . 99
9 0 0 0 −1 . . .

...
...

...
...

. . .

99
9 ...

...
...

...
. . .





d1
mx

d1
my

d2
mx

d2
my
...

999
d1
sx

d1
sy

d2
sx

d2
sy
...



=



0
0
0
0
...


.

Figure 3.3: The slave DOF is linearly related to the two adjacent master DOFs.
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3.1.3 Properties of the Transformation Method

In principle, the transformation method maintains the periodicity over the RVE by
forcing the slave boundary to follow the master boundary. This is done by conden-
sation, where the slave DOFs are condensed out. In addition, it introduces relations
among DOFs through the constraint equations, which makes it different from static
condensation. Static condensation uses only relations already contained in the global
equations [4].

When the boundary nodes are matching, the transformation method gives the exact
solution. The slave nodes follow the master nodes exactly, and it is done without any
heavy calculations.

If the boundary nodes are non-matching, the slave boundary will not be correctly
calculated. The approximation making the slave nodes linearly dependent on the
master nodes does result in the slave nodes being correct, but the displacement field
in between differs from the master boundary displacement, as figure 3.4 depicts.

Figure 3.4: The red dashed line between the slave DOFs shows how the slave displacements
differ from the master displacements when using MPC for non-matching grids.

3.2 The Localized Lagrange Multiplier Method

The Localized Lagrange Multiplier(LLM) method introduces a kinematic interface
frame between the two RVEs. The RVEs are then separately connected to the interface
frame by interaction forces, also known as Lagrange multiplier fields, as illustrated in
figure 3.5. By doing this, each RVE only sees forces passed as Lagrange multipliers and
does not need to know details of the opposite mesh, such as element shape functions
[5]. The term localized means exactly that the multipliers are associated with only one
of the RVEs. There is also no need to choose any master or slave nodes.
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Figure 3.5: The Lagrange multiplier fields between RVE 1 and the frame and RVE 2 and
the frame.

3.2.1 Equations of Motion in 2D

The equations of motion can be derived from the functional

Π = Π1 + Π2 + Πb, (3.3)

where Π1 and Π2 are the functionals of RVE 1 and RVE 2, respectively, and Πb is the
functional of the interface frame. For a structure, which in this case is an RVE, the
potential energy is given as

Πp =
1

2
dTKd− dTr,

where d is the nodal displacement vector of the RVE, K the stiffness matrix and r the
force vector.

The energy of the frame is found by multiplying the displacements with the forces
and integrating over the frame surface. Let dΓ

1 and dΓ
2 be the displacements at the

boundary facing the frame of RVE 1 and RVE 2, respectively, and dΓ
b the displacements

of the interface frame. Further, let λΓ
1 and λΓ

2 be the interaction forces between RVE
1 and the frame and RVE 2 and the frame, respectively, as shown in figure 3.5. Πb

can then be expressed as

Πb(λ
Γ
1 ,λ

Γ
2 ,d

Γ
b ) =

∫
Γb

[
(λΓ

1 )T (dΓ
1 − dΓ

b ) + (λΓ
2 )T (dΓ

2 − dΓ
b )
]
dΓ, (3.4)

where Γb denotes the interface surface [5]. Πb becomes equal to zero if dΓ
1 = dΓ

b and
dΓ

2 = dΓ
b , i.e. the two RVEs are coupled together in a weak sense. The functional

in equation (3.3) will then become the potential energy of the two RVEs only, as
desirable.
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In 2D, the displacements and forces may be discretized as

dΓ
1 =

{
dΓ

1x

dΓ
1y

}
=

[
N1

1b 0 . . . Nn1
1b 0

0 N1
1b . . . 0 Nn1

1b

]


d1
1x

d1
1y
...
dn1

1x

dn1
1y


= N1bd1,

dΓ
2 =

{
dΓ

2x

dΓ
2y

}
=

[
N1

2b 0 . . . Nn2
2b 0

0 N1
2b . . . 0 Nn2

2b

]


d1
2x

d1
2y
...
dn2

2x

dn2
2y


= N2bd2,

λΓ
1 =

{
λ1x

λ1y

}
=

[
N1

1λ 0 . . . Nnb1
1λ 0

0 N1
1λ . . . 0 Nnb1

1λ

]


λ1
1x

λ1
1y
...

λnb1
1x

λnb1
1y


= N1λλ1,

λΓ
2 =

{
λ2x

λ2y

}
=

[
N1

2λ 0 . . . Nnb2
2λ 0

0 N1
2λ . . . 0 Nnb2

2λ

]


λ1
2x

λ1
2y
...

λnb2
2x

λnb2
2y


= N2λλ2,

dΓ
b =

{
dbx
dby

}
=

[
N1
b 0 . . . Nnb

b 0
0 N1

b . . . 0 Nnb
b

]


d1
bx

d1
by
...
dnb
bx

dnb
by


= Nbdb,

where

n1 = number of RVE 1 nodes,

n2 = number of RVE 2 nodes,

nb1 = number of RVE 1 interface boundary nodes,

nb2 = number of RVE 2 interface boundary nodes,

nb = number of interface frame nodes.

N1b and N2b contain the shape functions for the displacements of the interface bound-
ary nodes of RVE 1 and RVE 2, respectively. Nb contains the shape functions for the
displacements of the interface frame, whereas N1λ and N2λ contain the shape functions
for the interaction forces on RVE 1 and RVE 2, respectively. Appropriate choices of



20 Chapter 3. Coupling of Non-matching Grids

shape functions are given in section 3.2.2. d1 and d2 are the nodal displacements of
RVE 1 and RVE 2, respectively, whereas db are the nodal displacements of the inter-
face frame. λ1 and λ2 are the nodal interaction forces between the nodes on RVE 1
and the frame and the nodes on RVE 2 and the frame, respectively, as shown in figure
3.6.

Inserting this discretization into equation (3.4) gives

Πb(λ1,λ2,db) =

∫
Γb

[
(N1λλ1)T (N1bd1 −Nbdb) + (N2λλ2)T (N2bd2 −Nbdb)

]
dΓ

= λT
1 (B1d1 − L1db) + λT

2 (B2d2 − L2db),

where

B1 =

∫
Γb

NT
1λN1b dΓ, B2 =

∫
Γb

NT
2λN2b dΓ,

L1 =

∫
Γb

NT
1λNb dΓ, L2 =

∫
Γb

NT
2λNb dΓ.

Now, if the different potential energies are inserted into (3.3), the expression for the
functional becomes

Π =
1

2
dT

1 K1d1 − dT
1 r1

+
1

2
dT

2 K2d2 − dT
2 r2

+ λT
1 (B1d1 − L1db) + λT

2 (B2d2 − L2db).

By differentiating this functional with respect to all of the unknown variables and
setting each equation equal to zero, five sets of equations emerge. These equations

Figure 3.6: The Lagrange multipliers are located on the RVE nodes.
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have to be satisfied in order to make the functional stationary.

δΠ

δd1

= 0 ⇒ K1d1 + BT
1λ1 = r1

δΠ

δd2

= 0 ⇒ K2d2 + BT
2λ2 = r2

δΠ

δλ1

= 0 ⇒ B1d1 − L1db = 0

δΠ

δλ2

= 0 ⇒ B2d2 − L2db = 0

δΠ

δdb
= 0 ⇒ −LT

1λ1 − LT
2λ2 = 0

As seen from equation one and two above, B1 and B2 are matrices that map λ1 and
λ2 onto the full set of node forces, and should not be confused with the RVE’s strain-
displacement matrix. Equation five shows that the interaction forces obey Newton’s
third law. L1 and L2 are matrices that relate the frame DOFs to the RVE boundary
DOFs. It can hence be seen in equation three and four that the RVE displacements,
d1 and d2, are equated to the interface frame displacements, db [12];

d1b = B1d1 = L1db,

d2b = B2d2 = L2db,

where d1b and d2b are the displacements of the interface boundary nodes of RVE 1 and
RVE 2, respectively, as shown in figure 3.7. On matrix form, the coupled equations of

Figure 3.7: The displacements of the interface boundary nodes of RVE 1 and RVE 2, and
the nodal displacements of the interface frame.
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motion become 
K1 0 BT

1 0 0
0 K2 0 BT

2 0
B1 0 0 0 −L1

0 B2 0 0 −L2

0 0 −LT
1 −LT

2 0




d1

d2

λ1

λ2

db

 =


r1

r2

0
0
0

 .

3.2.2 Choice of Shape Functions

The shape functions for the interface boundary displacements of the RVEs, N1b and
N2b, contain the existing shape functions that correspond with the interface boundary
nodes, while the others are set to zero. It may thus be given as

N i
kb =

{
N i
k if i is an interface boundary node,
0 otherwise,

where

N i
k = the original shape function at node i from RVE k ,

i = 1, 2, . . . , nk and k = 1, 2.

For a two-dimensional four-node quadrilateral element the shape functions will be
linear.

If the RVEs consist of four-node quadrilateral elements, the interface frame will be
divided into one-dimensional two-node elements. The shape functions for the interface
frame, Nb, are then piecewise linear C0-continuous functions [5]. The locations of the
frame nodes are discussed in section 3.2.3.

B1, B2, L1 and L2 have either N1λ or N2λ in the integrand. To simplify the imple-
mentation of these integrals, the Lagrange multiplier shape functions, N1λ and N2λ,
are chosen to be Dirac delta functions located on the interface boundary nodes of the
RVEs [5];

N j
kλ = δ(ξ − ξjk) =

{
1 if ξ = ξjk,
0 otherwise,

where

ξjk = the coordinate of node j from the interface boundary of RVE k. See figure 3.8,

j = 1, 2, . . . , nbk and k = 1, 2.

By implementing this discretization, the Lagrange multipliers become point forces that
correspond with the RVE interface boundary DOFs.

Figure 3.8 shows an example of how to calculate the components in L1 that correspond
with the middle node of RVE 1, with N2

1λ chosen to be a Dirac delta function. It shows
how the Dirac delta function simplifies the integration, however, this does come with
a sacrifice in the order of the discretization error [16].
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Figure 3.8: Integration with N2
1λ as Dirac delta function and Nb as piecewise linear func-

tions.

3.2.3 The Zero Moment Rule

For non-matching meshes treated by the LLM method, the placement of frame nodes
should obey conservation conditions that guarantee correct transmission of constant
stress states across the interface. For a one-dimensional frame which separates two
two-dimensional RVEs, the problem can be solved directly using the Zero Moment
Rule (ZMR) [18].

First, points on the frame are mapped to the isoparametric dimensionless coordinate
ξ that ranges from ξ = −1 to ξ = +1. A free body diagram of the frame is drawn,
where the forces consist of the Lagrange multipliers that are normal to the frame and
have a magnitude that create a constant stress state, as illustrated in figure 3.9(a).
The frame is now considered an isolated object and the moment distribution, M(ξ),
can be calculated, as shown in figure 3.9(b). The points where the moment is zero are
now possible frame node locations assuring that constant stress states are preserved
[13].

The ZMR does not say how many frame nodes to use, however they should be sym-
metrically distributed and they should not be collocated at the refined mesh nodes
[17]. As seen in figure 3.9(c), the moment in this example is zero in four places and
gives rise to three possible frame node configurations shown in figure 3.9(d). The
most suitable configuration of frame nodes is problem dependent. A proof of the zero
moment rule can be found in [13].
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(a) The Lagrange multipliers normal to the frame are mapped to the
interface frame, with a magnitude assuring that they create a constant
stress state.

(b) The moment is calculated from
the forces along the shaded portion.

(c) Bending moment di-
agram; The frame nodes
are located at the roots of
M(ξ).

(d) Possible frame node
configurations.

Figure 3.9: The zero moment rule: An example.
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3.2.4 Properties of the LLM Method

As mentioned in the introduction, it seems impossible to simultaneously satisfy the
kinematics, the stresses and the energy consistency when coupling non-matching meshes
with one common frame configuration [6]. Which criteria that are the most important
to satisfy, depends on the given problem. In homogenization theory it is most impor-
tant to satisfy the energy consistency, since this is equivalent with periodic boundary
conditions.

The LLM method conserves the energy in the coupling when the first variation of the
functional is set equal to zero, resulting in five equations that have to be satisfied. The
stresses are preserved if they are constant and the frame nodes are placed according
to the zero moment rule. The kinematics is satisfied in a weak sense only.

The advantages using LLM are that the RVEs are completely uncoupled and there is no
need to choose any master or slave boundaries. In addition, the Lagrange multipliers
are physical quantities, as they are the forces required to hold the RVEs together.

The downsides with the LLM method are that it introduces a large number of addi-
tional interface variables and that the frame must be discretized trough special rules
if certain conservation attributes should be enforced [5]. Also, the diagonal in the
equation of motion-matrix contains null submatrices and the positive definiteness is
thus lost. However, the equation system is non-singular if the Ks are positive definite
[4].





Chapter 4

Computational Homogenization in
MATLAB

The implementation of a two-scale linear homogenization problem may be divided into
four steps:

1. The micro scale problem, also known as the RVE problem, must be solved for
as many right-hand side vectors as unit strain components in the problem. The
stresses each right-hand side vector creates are then calculated.

2. Calculate the homogenized constitutive matrix L̃.

3. Solve the macro scale problem with L̃ as material properties.

4. Post-process stresses in the RVEs of current interest.

The focus in this thesis is on the first two steps.

4.1 The RVE problem

The RVE problem is solved by means of the finite element method, and it has to be
solved for as many right-hand side vectors as unit strain components in the problem. In
two dimensions this is done by applying three different unit strain states. Each strain
state results in a nodal displacement field, of which stresses in each element in the
RVE can be calculated. The stresses calculated are then a column in the constitutive
matrix L of the element. The unit strain vectors that are applied on each element are

ε0,11 =


1
0
0

 , ε0,22 =


0
1
0

 , ε0,12 =


0
0
1

 ,
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and the resulting L-matrix builds up column by column
σ11

σ22

σ12

 =

L1111 L1122 L1112

L2211 L2222 L2212

L1211 L1222 L1212


ε11

ε22

ε12

 .

The RVEs are assumed to vary periodically, making it sufficient to evaluate just one
RVE using periodic boundary conditions. The boundaries which are going to be cou-
pled are the opposite boundaries on the same RVE. Looking at figure 4.1, Γ1 is going to
be coupled with Γ2, and Γ3 is going to be coupled with Γ4. The corners are constrained
for displacements, because each corner node are related to four different RVEs.

Using the localized Lagrange multiplier method to handle the boundary conditions
means solving the equation system



K BT
1 BT

2 BT
3 BT

4 0 0
B1 0 0 0 0 −L1 0
B2 0 0 0 0 −L2 0
B3 0 0 0 0 0 −L3

B4 0 0 0 0 0 −L4

0 −LT
1 −LT

2 0 0 0 0
0 0 0 −LT

3 −LT
4 0 0


︸ ︷︷ ︸

A



d
λ1

λ2

λ3

λ4

db12

db34

︸ ︷︷ ︸
x

=



r
0
0
0
0
0
0

︸ ︷︷ ︸
b

.

In the system Ax = b, it is only the right-hand side b that changes for each unit
strain state. The A-matrix is constant for the given RVE, except for different frame
node configurations where the L-matrices are changed. When the x-matrix is solved
for, the RVE node displacements are found in the vector d, of which the stresses can
be calculated.

If MPC is used to handle the periodic boundary conditions, the equation system to
be solved is

TTKTdm = TTr,

where q is set equal to zero and T =

[
I

−G−1
s Gm

]
.

After solving for the master displacements dm, the total displacement vector can be
found by

d = Tdm.
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Figure 4.1: RVE defining the four boundaries.

4.2 The Homogenized Constitutive Matrix L̃

The stresses found in the RVE problem is averaged over the entire RVE to get the
homogenized material properties in L̃;

L̃ijmn =
1

|Θ|

∫
Θ

Lijkl(Ψklmn + Iklmn) dΘ =
1

|Θ|

∫
Θ

σmnij dΘ, (4.1)

where σmnij are stress functions induced by the overall unit strain εmn, and Θ is the

RVE volume [20]. The L̃-matrix is now used as the element constitutive matrix in the
macro problem.

4.3 Implementation of LLM in MATLAB

A program for solving two-scale linear homogenization problems in 2D with localized
Lagrange multipliers has been implemented in MATLAB. It is based on the RVE
having four-node quadrilateral elements and that opposite RVE-boundaries consist
of equal number of nodes, as illustrated in figure 4.1. Numerical integration in the
program is carried out with 2 × 2 points Gaussian quadrature. The main script which
runs the program is given in figure 4.2. This is where the geometry and properties of
the RVE and macro problem are punched in.

The pre-process in the RVE problem includes calculating the element constitutive
matrix D, the stiffness matrix K and for each boundary gamma; LΓ, BΓ and the
frame coordinates. K, LΓ and BΓ are then organized in A.
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Two-scale Linear Homogenization with LLM

Input Micro Problem
� Perimeter coordinates
� Young’s Modulus and Poisson’s Ratio for each element

Input Macro Problem
� Perimeter coordinates
� Boundary conditions - BCmacro
� Tractions - rmacro

RVE Analysis
� Calculate the constitutive matrix D for all elements
� Call K matrix.m to get K

gamma = 1
� Call zmr.m to get the natural coordinates of the frame for boundary 1 and 2
� Call L matrix.m to get L1
� Call B matrix.m to get B1
gamma = 2
� Call L matrix.m to get L2
� Call B matrix.m to get B2
gamma = 3
� Call zmr.m to get the natural coordinates of the frame for boundary 3 and 4
� Call L matrix.m to get L3
� Call B matrix.m to get B3
gamma = 4
� Call L matrix.m to get L4
� Call B matrix.m to get B4

� Form the coupled equations of motion-matrix A

HomoL = zeros(3 , 3)
FOR m = 1 TO m = 3 DO

eps = zeros(3 , 1)
eps(m , 1) = 1
� Call r matrix.m to get r
b = zeros(length(A) , 1)
b(1:length(K)) = r
x = A\b
d = x(1:length(K))
� Call sigmaHomo vector.m to get sigmaHomo
HomoL(: , m) = sigmaHomo

END DO
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Macro Analysis

� Call macro K matrix.m to get Kmacro
u = Kmacro\rmacro
dmacro(BCmacro) = u

Figure 4.2: Pseudocode for the main script using LLM.

To find the homogenized constitutive matrix HomoL, the LLM equation system is
solved three times, each time for a different unit strain eps. Then the macro problem
is solved with HomoL as input in macro K matrix.m.

In the following subsections the functions zmr.m, L matrix.m, B matrix.m and sigma-
Homo vector.m are described in detail. K matrix.m, macro K matrix.m, r matrix.m
and A matrix.m are not mentioned further, since the latter function is just arranging
matrices and the first three are not any different as for a normal finite element code.
The code with all functions can be found in appendix B.

4.3.1 The Zero Moment Rule - zmr.m

The intention with the zero moment rule is to find the placement of the frame nodes.
The frame nodes are treated in natural coordinates and range from ξ = −1 to ξ = +1
and are located where the moment created by the Lagrange multipliers is equal to
zero, cf. figure 3.9. The first node, ξ = −1, is the bottom node for the frame between
Γ1 and Γ2 and the left node for the frame between Γ3 and Γ4.

The forces, and the nodes where the forces work, have to be found before calculating
the moment. The nodes where the forces work are the boundary nodes of the RVE,
and they are named lambdaNatcoord1 and lambdaNatcoord2 as seen in the pseu-
docode given in figure 4.3. The magnitude of the forces is found calling the function
zmr force.m, where the stress is assumed to be constant along the RVE boundary with
a value of 1. Each boundary element is treated with linear shape functions, and since
the nodes are always at the element ends, each node has to take half the force. That
is, the force is equal to the shape function area, as shown in figure 4.4(a).

By internal boundary nodes or internal multiplier nodes in the pseudocode, it is meant
the RVE boundary nodes from both boundaries together except the end nodes, and
they are arranged from low to high in array b. The moment will never change sign
between the end node and the first internal multiplier, so the first moments calculated
are at the second and third internal multiplier node. If the moments have different
signs, the moment is equal to zero somewhere between those nodes, and the coordinate
can be calculated as in figure 4.4(b). There should also be frame nodes where the
boundary nodes are matching. The resulting frame nodes are given in the array
frameNatcoord.
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It can be convenient to change the frame node configuration in some occasions. The
zmr.m has four built-in options of configurations which is chosen in the main script;
All nodes, end nodes, internal nodes or every other node.

The Zero Moment Rule

IF gamma = 1 THEN
id1 = node numbers for boundary 1
id2 = node numbers for boundary 2
xy1 = y-coordinates for boundary 1 nodes
xy2 = y-coordinates for boundary 2 nodes

ELSE
id1 = node numbers for boundary 3
id2 = node numbers for boundary 4
xy1 = x-coordinates for boundary 3 nodes
xy2 = x-coordinates for boundary 4 nodes

END IF

� lambdaNatcoord1 = Natural coordinates of boundary 1/3 nodes
� lambdaNatcoord2 = Natural coordinates of boundary 2/4 nodes

IF just two boundary nodes at both boundaries THEN
frameNatcoord = [−1, 1]
RETURN

END IF

� Call zmr force.m to get the Lagrange multipliers for both boundaries so that they
create a constant stress state

� Arrange the internal boundary nodes from both boundaries in a single array b
and the corresponding multipliers in a single array force

n = 2
FOR k = 2 TO k = length(b) DO

� Calculate the moment at b(k−1) and b(k)
IF moments have different signs OR b(k−1) = b(k) THEN

� frameNatcoord(n) = natural coordinate where the moment is zero be-
tween b(k−1) and b(k)

n = n + 1
END IF

END DO
frameNatcoord(1) = −1
frameNatcoord(length(frameNatcoord) + 1) = 1

Figure 4.3: Pseudocode for zmr.m
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(a) The multipliers are calculated using linear
shape functions to assure a constant stress state.

(b) The frame node are located where
the moment changes sign.

Figure 4.4: Explanation of how the multipliers are calculated (a) and how the frame nodes
are found (b).

4.3.2 The L-matrix

Each RVE boundary has their own L-matrix which relate the boundary DOFs to the
frame DOFs. For Γ1 the expression reads

L1 =

∫
Γb

NT
1λNb dΓ.

Since the Lagrange multiplier shape functions are Dirac delta functions located at the
boundary nodes, the integration is done directly by reading off the values of the frame
node shape functions corresponding to the boundary node coordinate xi. The frame
node shape functions are piecewise linear functions. An example of the integration is
illustrated in figure 3.8 and the result is two rows in the following L-matrix.[

N1
b 0 N2

b 0 N3
b 0 N4

b 0
0 N1

b 0 N2
b 0 N3

b 0 N4
b

]

N1

1λ 0
0 N1

1λ

N2
1λ 0
0 N2

1λ

N3
1λ 0
0 N3

1λ




− − − − − − − −
− − − − − − − −
0 0 N2

b (ξ) 0 N3
b (ξ) 0 0 0

0 0 0 N2
b (ξ) 0 N3

b (ξ) 0 0
− − − − − − − −
− − − − − − − −


︸ ︷︷ ︸

L1

Figure 4.5 shows how the L-matrix is established in the program. The value Nb that
goes into the matrix is found calling the function shapefunc frame.m. Nb is equal to
zero if xi is outside the frame shape function, otherwise the value is calculated from
the linear frame shape function which has a value of 1 at frame node j and 0 at the
two adjacent frame nodes.
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The L-matrix

IF gamma = 1 THEN
id = node numbers for boundary 1
xy = y-coordinates for boundary 1 nodes

ELSEIF gamma = 2 THEN
id = node numbers for boundary 2
xy = y-coordinates for boundary 2 nodes

ELSEIF gamma = 3 THEN
id = node numbers for boundary 3
xy = x-coordinates for boundary 3 nodes

ELSE
id = node numbers for boundary 4
xy = x-coordinates for boundary 4 nodes

END IF

� lambdaNatcoord = Natural coordinates of boundary nodes

L = zeros(2∗number of boundary nodes , 2∗number of frame nodes)
FOR i = 1 TO i = number of boundary nodes DO

FOR j = 1 TO j = number of frame nodes DO
xi = lambdaNatcoord(i)
� Call shapefunc frame.m to get Nb = value of the shape function of frame

node j at xi
L(2∗i , 2∗j) = Nb
L(2∗i−1 , 2∗j−1) = Nb

END DO
END DO

Figure 4.5: Pseudocode for L matrix.m

4.3.3 The B-matrix

The B-matrix relates the RVE boundary DOFs to all RVE DOFs. The matrix is
unique for each boundary and the expression for Γ1 is

B1 =

∫
Γb

NT
1λN1b dΓ.

Figure 4.6 explains how the B-matrix is created. Since the boundary nodes are a
selection of the RVE nodes, the matrix becomes a Boolean matrix. That is, there is
only zeroes except for the entries where the boundary node and the RVE node is the
same. The value at that entry becomes 1, since the Dirac delta function lines up with
the RVE shape function which is 1 at the node.
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The B-matrix

IF gamma = 1 THEN
id = node numbers for boundary 1

ELSEIF gamma = 2 THEN
id = node numbers for boundary 2

ELSEIF gamma = 3 THEN
id = node numbers for boundary 3

ELSE
id = node numbers for boundary 4

END IF

B = zeros(2∗number of boundary nodes , 2∗number of RVE nodes)
FOR i = 1 TO i = number of boundary nodes DO

B(2∗i , 2∗id(i)) = 1
B(2∗i−1 , 2∗id(i)−1) = 1

END DO

� Eliminate the columns in B corresponding to the constrained corner DOFs

Figure 4.6: Pseudocode for B matrix.m

In B matrix.m, the current boundary node numbers are found in the vector id. The
vector is used to place the ones in the correct entries in the matrix. For the boundary
in figure 3.8, assuming that the whole RVE consists of six nodes, the boundary node
numbers are id = [ 2 4 6 ]. Hence the B-matrix becomes[

N1
1b 0 N2

1b 0 N3
1b 0 N4

1b 0 N5
1b 0 N6

1b 0
0 N1

1b 0 N2
1b 0 N3

1b 0 N4
1b 0 N5

1b 0 N6
1b

]

N1

1λ 0
0 N1

1λ

N2
1λ 0
0 N2

1λ

N3
1λ 0
0 N3

1λ




0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

B1

To handle the constrained corners in the calculation, the rows and columns correspond-
ing to the corner DOFs are eliminated in K and r. Thus the columns in the B-matrices
corresponding to the corner DOFs must also be eliminated for the A-matrix to end
up correctly. For the B-matrix above, this means that the first four and the last four
columns are eliminated.
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4.3.4 The sigmaHomo-vector

After the displacement vector d is calculated, the stresses need to be found in order
to calculate the homogenized constitutive matrix. Each component in the L̃-matrix is
found from equation (4.1). The integration is done numerically as

L̃ijmn =
1

|Θ|

nG∑
k=1

σmnij (xk, yk)J(xk, yk)w(xk, yk),

where nG is the number of Gauss points and σmnij (xk, yk), J(xk, yk) and w(xk, yk) are
respectively the stress, the Jacobian and the Gauss weight in the Gauss point (xk, yk).
The Jacobian is the determinant of the Jacobian matrix and the Gauss weight has a
value of 1 for the 2 × 2 Gauss integration. The sum in the expression above sums up
the stress in each Gauss point for each stress component. This can also be written for

The sigmaHomo-vector

Input:
� eps = initial unit strain
� d = total displacement vector including corner DOFs

Gauss = [−1 1 1 −1 ; −1− 1 1 1 ] /
√

3
w = 1
vol = 0
sigma = zeros(3 , 1)
FOR i = 1 TO i = number of elements DO

De = constitutive matrix for element i
id = DOF numbers for element i
de = d(id) = nodal displacements of element i
FOR j = 1 TO j = number of Gauss points = 4 DO

xi = Gauss(1 , j)
eta = Gauss(2 , j)
� Call dispstrain B.m to get displacement-strain matrix dsB and Jacobian J

for Gauss point j in element i
sigmaGauss = De ∗ (dsB ∗ de + eps)
sigma = sigma + sigmaGauss ∗ J ∗ w
vol = vol + J

END DO
END DO

sigmaHomo = sigma./vol

Figure 4.7: Pseudocode for sigmaHomo vector.m
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all three components for the given strain load case as

σ =


σ11

σ22

σ12

 =

nG∑
k=1

σk Jk w,

where σk and Jk are the stress vector and the Jacobian in every Gauss point k, re-
spectively. The stress vector can be calculated from

σk = De
(
Bkd

e + ε0

)
,

where Bk is the displacement-strain matrix in each Gauss point and the superscript
e shows that the matrix or vector applies for the whole element and not only the
Gauss point. ε0 is the initial unit strain vector. As seen in figure 4.7, σk is named
sigmaGauss, σ is named sigma, Bk is named dsB and the Jacobian is named J.

The displacement-strain matrix dsB and the Jacobian J are found calling the function
dispstrain B.m. Inside this function the element is transformed into an isoparametric
element with natural coordinates ξ and η, as shown in figure 4.8. This transformation
makes it possible to calculate the dsB-matrix for all types of element shapes. The four
Gauss points are located at ± 1√

3
and are given as input to dispstrain B.m through xi

and eta.

Finally, the vector sigmaHomo is calculated by dividing each component in sigma
by the total RVE volume vol. The volume is found by summing up the Jacobian for
each Gauss point. The sigmaHomo-vector is then given to the main script and placed
as a column in HomoL. There are one sigmaHomo-vector for each unit strain state
and together they make up the total homogenized constitutive matrix HomoL.

Figure 4.8: Isoparametric element with the four Gauss points.
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4.4 Implementation of MPC in MATLAB

A program for solving two-scale linear homogenization problems with the transfor-
mation method has been implemented in MATLAB with the same template as with
LLM. Figure 4.9 shows the main script. The pre-process is to calculate the constitu-
tive matrix D, the transformation matrix T and the stiffness matrix K. The modified
stiffness matrix and load vector corresponding to the master DOFs, Km and rm, are
calculated as derived in subsection 3.1.1. In the code they are named Km and rm
respectively. All the functions are the same as the ones used in the LLM code, except
for T matrix.m which is described in detail in the following subsection.

4.4.1 The T-matrix

The K-matrix and the r-vector are transformed before the displacements are found,
and the transformation is done with the T-matrix expressed as

T =

[
I

−G−1
s Gm

]
,

where I is the identity matrix. Gs and Gm contain the constants in the constraint
equations that are in front of the slave DOFs and the master DOFs respectively, as
explained in subsection 3.1.2.

In the pseudocode given in figure 4.10, it is seen that Γ2 and Γ4 are the slave boundaries
and hence Γ1 and Γ3 the master boundaries. The first loop is over the boundary 4 slave
nodes and the second is over the boundary 2 slave nodes, making Gs a diagonal matrix.
First, inside the loops, the two slave DOF constants are placed in the G-matrix. Then
the four master DOF constants are placed in the correct entries with the value alpha
or 1−alpha, depending on it is the upper or lower master node, respectively. The
value alpha and the upper master node masternode are found calling the function
mpc alpha.m.

After the two loops is done, Gs and Gm are found and used to calculate the T-matrix.
Finally, the columns corresponding to the constrained corner DOFs are eliminated.
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Two-scale Linear Homogenization with MPC

Input Micro Problem
� Perimeter coordinates
� Young’s Modulus and Poisson’s Ratio for each element

Input Macro Problem
� Perimeter coordinates
� Boundary conditions - BCmacro
� Tractions - rmacro

RVE Analysis
� Calculate the constitutive matrix D for all elements
� Call T matrix.m to get T
� Call K matrix.m to get K

Km = TT∗ K ∗ T

HomoL = zeros(3 , 3)
FOR m = 1 TO m = 3 DO

eps = zeros(3 , 1)
eps(m , 1) = 1
� Call r matrix.m to get r
rm = TT∗ r
dm = Km\rm
d = T ∗ dm
� Call sigmaHomo vector.m to get sigmaHomo
HomoL(: , m) = sigmaHomo

END DO

Macro Analysis
� Call macro K matrix.m to get Kmacro
u = Kmacro\rmacro
dmacro(BCmacro) = u

Figure 4.9: Pseudocode for the main script using MPC.
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The T-matrix

� id1 = node numbers for boundary 1
� id3 = node numbers for boundary 3
� ids2 = slave node numbers for boundary 2 (excluding corner nodes)
� ids4 = slave node numbers for boundary 4 (excluding corner nodes)
� idm = master node numbers (excluding corner nodes, including internal nodes)
� slavedofs = slave DOFs
� masterdofs = master DOFs

G = zeros(2∗number of slave nodes , 2∗number of RVE nodes)
FOR i = 1 TO i = number of boundary 4 slave nodes DO

G(2∗i−1 , 2∗ids4(i)−1) = −1
G(2∗i , 2∗ids4(i)) = −1
� Call mpc alpha.m to get alpha and masternode = the upper masternode

where alpha is equal 1
G(2∗i−1 , 2∗id3(masternode)−1) = alpha
G(2∗i−1 , 2∗id3(masternode−1)−1) = 1 − alpha
G(2∗i , 2∗id3(masternode)) = alpha
G(2∗i , 2∗id3(masternode−1)) = 1 − alpha

END DO
c = number of boundary 4 slave nodes
FOR i = 1 TO i = number of boundary 2 slave nodes DO

G(2∗(i + c)−1 , 2∗ids2(i)−1) = −1
G(2∗(i + c) , 2∗ids2(i)) = −1
� Call mpc alpha.m to get alpha and masternode = the upper masternode

where alpha is equal 1
G(2∗(i + c)−1 , 2∗id1(masternode)−1) = alpha
G(2∗(i + c)−1 , 2∗id1(masternode−1)−1) = 1 − alpha
G(2∗(i + c) , 2∗id1(masternode)) = alpha
G(2∗(i + c) , 2∗id1(masternode−1)) = 1 − alpha

END DO

Gs = G(: , slavedofs)
Gm = G(: , masterdofs)
T = zeros(2∗number of RVE nodes , 2∗number of master nodes)
T(masterdofs , :) = identity matrix
T(slavedofs , :) = −inv(Gs) ∗ Gm

� Eliminate the columns in T corresponding to the constrained corner DOFs

Figure 4.10: Pseudocode for T matrix.m
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Numerical Examples

In the first section, the MATLAB code is verified by comparing the results to known
analytical solutions. The second section derives a way to inspect the reliability of the
results in a graphical way, when an analytical solution is not at hand. RVEs with
different geometry and different content are then analysed with LLM and MPC, for
both matching and non-matching nodes, in the last sections.

5.1 Verification of Code

The code has to be verified before it can be used on numerical problems. If the
calculated results in these basic problems are equal to the analytical solutions, the
results of other more advanced numerical examples should be reliable as well.

5.1.1 Homogeneous Material with Matching Grids

An RVE that consists of elements with identical material properties is homogeneous,
and the homogenized constitutive matrix L̃ should become equal to the element consti-
tutive matrix D. Steel is a common construction material and has material properties
E = 200,000 N

mm2 and ν = 0.3. The plane strain constitutive matrix for steel is thus

Dsteel =

269230.7692 115384.6154 0
115384.6154 269230.7692 0

0 0 76923.0769

 .
Figure 5.1(a) shows an RVE with two elements, both with the properties of steel.
The RVE is modelled in MATLAB, as shown in figure 5.1(b), with the steel material,
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(a) Two elements with the same
material properties.
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(b) Grid used in MATLAB.

Figure 5.1: RVE with homogeneous material divided into two elements.

and an RVE analysis with LLM and the transformation method(MPC) is carried out.
Running with plane strain the homogenized constitutive matrices become

L̃LLM =

269230.7692 115384.6154 0
115384.6154 269230.7692 0

0 0 76923.0769


and

L̃MPC =

269230.7692 115384.6154 0
115384.6154 269230.7692 0

0 0 76923.0769

 .
The matrix from both methods is equal to Dsteel, verifying the code for homogeneous
matching grids. The L̃MPC-matrix is identical down to the last decimal, whereas the
L̃LLM -matrix is identical down to the sixth decimal. The discrepancy in the latter can
be explained by the numerical number inserted in the diagonal of the A-matrix used
in the LLM equation system. For the A-matrix to be invertible in MATLAB, the zeros
in the diagonal are replaced by a small number. In this example the number is 10−18,
but it can also be chosen a lower number to get rid of the discrepancy.

5.1.2 Layered Material with Matching Grids

The RVE is heterogeneous if the elements have different material properties, and when
the RVE is going to be treated as a single unit in the macro problem, the homogenized
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constitutive matrix needs to be calculated correctly for the material properties to be
preserved. Consider a material that consists of perfect layers with transverse isotropy.
An analytical solution to such a problem can be found using Backus averaging. The
Backus parameters in 2D are derived in appendix A and can be written

A =

〈
a− f 2

c

〉
+

〈
1

c

〉−1〈
f

c

〉2

C =

〈
1

c

〉−1

F =

〈
1

c

〉−1〈
f

c

〉
L =

〈
1

l

〉−1

where the brackets 〈〉 are the volume weighted average of the enclosed properties.
That is, the enclosed properties are calculated for each layer and then averaged over
all layers. a, c, f and l are components in the constitutive matrix for each layer, given
as

D =

a f 0
f c 0
0 0 l

 .
The single matrix that can describe the perfectly layered material correctly, and thus
is the effective constitutive matrix for the material, becomes

L̃Backus =

A F 0
F C 0
0 0 L

 .
A code for calculating the Backus average, with Young’s modulus and Poisson’s ratio
as input, has been implemented in MATLAB, and can be found in appendix B.5.

A ten layer RVE is shown in figure 5.2(a), where the material properties for each layer
are constant and given in table 5.1. The resulting homogenized constitutive matrix
using Backus averaging is

L̃Backus =

249.9792461 0.040642132 0
0.040642132 0.109754705 0

0 0 0.035351296

 .
Running the two main scripts with a ten layered model, illustrated in figure 5.2(b),
and the layer properties as listed in table 5.1 give

L̃LLM =

249.9792461 0.040642132 0
0.040642132 0.109754705 0

0 0 0.035351296


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and

L̃MPC =

249.9792461 0.040642132 0
0.040642132 0.109754705 0

0 0 0.035351296

 .
Both matrices are identical to the Backus solution down to the last decimal. This
ensures that both codes work for heterogeneous RVEs with matching grids. It is also
seen in figure 5.3 that the resulting nodal displacements using LLM or MPC are equal,
despite that the kinematics in the LLM method is satisfied in a weak sense only. The
reason is the matching grids, which makes the L-matrix for each boundary containing
just ones since the frame nodes are located at the boundary nodes.

Table 5.1: Layer properties.

Layer E [ N
mm

] ν
1 100 0.450
2 1000 0.405
3 10 0.360
4 1 0.315
5 0.01 0.270
6 1000 0.225
7 0.1 0.180
8 10 0.135
9 100 0.090
10 1 0.045

(a) Ten layers with different
material properties.
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(b) Grid used in MATLAB.

Figure 5.2: RVE with ten different layers.
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(f) MPC - ε0,12

Figure 5.3: RVE node displacements due to the applied unit strain states using LLM and
transformation(MPC). ε0,11 loads in the horizontal x-direction and ε0,22 in the vertical y-
direction. The black squares and the red circles indicate the initial node coordinates and the
displaced node coordinates, respectively.
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5.1.3 Homogeneous Material with Non-matching Grids

Assume the same homogeneous steel material and the same RVE as in subsection 5.1.1,
but let the boundary nodes move along their boundaries independently of each other,
as illustrated in figure 5.4. The hight of the RVE is 2 units, hence ∆i ∈ 〈−1, 1〉. Four
cases with non-matching boundary nodes are going to be analysed to examine to what
degree the results are affected by different configurations of non-matching nodes. The
homogenized constitutive matrices for each case are going to be compared to the steel
element matrix, recall

Dsteel =

269230.7692 115384.6154 0
115384.6154 269230.7692 0

0 0 76923.0769

 .
Any discrepancy is measured with the relative difference in Frobenius norm, where the

Frobenius norm is given as ‖L‖F =
√∑

i,j L
2
ij [15].

The four cases are

Case 1: ∆1 = ∆2 = 0.1

Case 2: ∆1 = ∆2 = 0.5

Case 3: ∆1 = ∆2 = 0.9

Case 4: ∆1 = −0.1 and ∆2 = 0.9

The four meshes are depicted in figure 5.5. Four-node quadrilateral elements do not
handle trapezoidal shapes very well [4], so the RVEs are divided into smaller elements
in the x-direction to minimize the error.

The mesh for case 1 is close to having matching boundary nodes. The analysis in
MATLAB gives

L̃
1

LLM =

269230.7692 115384.6154 0
115384.6154 269230.7692 0

0 0 76923.0769


and

L̃
1

MPC =

264983.8155 113564.4924 37.2587
113564.4924 268450.7165 15.9680

37.2587 15.9680 76667.7422

 .
The superscript indicates which case the homogenized constitutive matrix belongs
to. The LLM matrix is identical to the steel element matrix, while the MPC matrix
deviates clearly. The relative difference in Frobenius norm is

‖L̃1

MPC −Dsteel‖F
‖Dsteel‖F

= 0.01195.
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Figure 5.4: RVE with homogeneous material and adjustable boundary nodes.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(a) Case 1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(b) Case 2

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(c) Case 3

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(d) Case 4

Figure 5.5: Four cases of non-matching grids.
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In the two following cases, the nodes will have a larger spacing to test the ruggedness
of the LLM method and to see if the deviation using MPC gets any larger. The results
for case 2 and 3 are

L̃
2

LLM =

269230.7692 115384.6154 0
115384.6154 269230.7692 0

0 0 76923.0769

 ,
L̃

2

MPC =

213323.8645 91424.5133 2287.9041
91424.5133 258962.1541 980.5303
2287.9041 980.5303 72716.0396


and

L̃
3

LLM =

269230.7692 115384.6154 0
115384.6154 269230.7692 0

0 0 76923.0769

 ,
L̃

3

MPC =

206347.7757 88434.7610 4563.7175
88434.7610 257680.8317 1955.8789
4563.7175 1955.8789 71995.7003

 .
The LLM matrices are the same as if it were matching grids. The relative differences
for the MPC-matrices are

‖L̃2

MPC −Dsteel‖F
‖Dsteel‖F

= 0.15760 and
‖L̃3

MPC −Dsteel‖F
‖Dsteel‖F

= 0.17783,

which confirm that making the slave nodes follow the master boundary is just an
approximation and that the approximation works best when the boundary nodes are
almost matching.

Case 4 is different from the three other cases in the way that the grid is not symmetric
about the horizontal axis. The internal frame node will consequently not be placed in
the middle of the boundary nodes, as is the case for the first three LLM cases. The
frame node locations calculated in MATLAB for case 3 and 4 are shown in figure 5.6.
The results for case 4 become

L̃
4

LLM =

269230.7692 115384.6154 0
115384.6154 269230.7692 0

0 0 76923.0769

 ,
L̃

4

MPC =

173380.6400 74305.9886 2911.1258
74305.9886 251625.6434 1247.6254
2911.1258 1247.6254 68251.7060

 .
LLM still gives the exact answer. The relative difference for the MPC matrix becomes

‖L̃4

MPC −Dsteel‖F
‖Dsteel‖F

= 0.27028,
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which is larger than in case 3, even though the spacing is smaller. The reason for the
discrepancy when analysing non-matching grids with MPC is shown in figure 5.7(b),
where it can be seen that the slave boundary does not follow the master boundary at
all. The master boundary moves about 1.5 units to the left, while the slave boundary
just moves a maximum of 0.2 units. The LLM method creates no displacements,
because the RVE is in equilibrium with itself since the material is homogeneous.
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(a) Case 3 - frameNatcoord = [−1 0 1]
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(b) Case 4 - frameNatcoord = [−1 0.8333 1]

Figure 5.6: Location of frame nodes for case 3 and 4. The green and red squares indicate
the boundary 1 and 2 nodes respectively, whereas the blue circles mark the frame nodes.
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Figure 5.7: Node displacements due to unit strain load in x-direction for case 4. The
black squares and the red circles indicate the initial node coordinates and the displaced node
coordinates, respectively.
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The frame nodes are placed according to the zero moment rule to guarantee correct
transmission of constant stress states. When the material is homogeneous, the stresses
are constant over the RVE, making the choice of frame node configuration insignificant.
Running case 4 with the end frame nodes only, as shown in figure 5.8(a), results in

L̃
4,end

LLM =

269230.7692 115384.6154 0
115384.6154 269230.7692 0

0 0 76923.0769

 ,
which is identical to Dsteel.

The layered RVE in subsection 5.1.2 is heterogeneous. Choosing frame node configu-
rations as every other frame node, shown in figure 5.8(b), or just end nodes yield

L̃
everyother

LLM =

252.5967575 5.6033042 0
5.6033042 15.5588765 0

0 0 5.0207867


and

L̃
end

LLM =

389.0062792 218.3310325 0
218.3310325 389.0062792 0

0 0 85.3376233

 .
The matrices are not even comparable to L̃Backus, except for the L̃1111-components.
For a heterogeneous material, the stresses at the boundaries are varying, so the frame
nodes are needed at every zero moment point to capture the change in stress between
the different elements at the boundary.
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(a) Case 4 - end frame nodes
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(b) Ten layer material - every other frame node

Figure 5.8: Different frame node configurations. The green and red squares indicate the
boundary 1 and 2 nodes respectively, whereas the blue circles mark the frame nodes.
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5.1.4 Non-matching Grids Inside Homogeneous Layers

Consider the the ten layer material from subsection 5.1.2. Let each of the two layers in
the middle, layer 5 and 6, be divided into two elements, which have the same material
properties as the layer. The nodes inside the two layers are non-matching, as seen
from the boundaries in figure 5.9. The RVE is analysed with MPC and LLM, where
the frame node configuration for the LLM method are chosen to be either all frame
nodes or only frame nodes where the boundary nodes are matching, as seen in figure
5.9. The results become

L̃
All

LLM =

249.9792461 0.040642132 0
0.040642132 0.109754705 0

0 0 0.035351296

 ,
L̃
Match

LLM =

249.9792461 0.040642132 0
0.040642132 0.109754705 0

0 0 0.035351296


and

L̃MPC =

237.6427437 0.040096523 0.000012079
0.040096523 0.109527413 −0.00001254
0.000012079 −0.00001254 0.035259442

 .
Both of the LLM matrices are identical to L̃Backus, while MPC does not give the
correct matrix. This shows that non-matching grids inside a homogeneous layer do
not influence the result when using LLM, even if only the end frame nodes of the layers
are used.
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(a) All possible frame nodes
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(b) Only frame nodes at matching nodes

Figure 5.9: Frame node configurations for the ten layer material where the two middle
layers have non-matching nodes inside the layers. The green and red squares indicate the
boundary 1 and 2 nodes respectively, whereas the blue circles mark the frame nodes.
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5.2 Wave Velocities

The homogenized constitutive matrix calculated in the RVE problem is suppose to be
the best representation of the RVE when treated as one single unit. It can be difficult
to see if the calculated matrix is correct or close to the correct solution, especially if
the RVE consists of many layers and the layers are tilted. Without knowing if the
homogenized constitutive matrix calculated is correct or not, it should at least lie in
between an upper and a lower bound.

5.2.1 Upper and Lower Bounds

The elastic moduli can be approximated by assuming uniform strain in the material
and averaging the relation for stress. Let S,E and L be the coarse scale stress, strain
and elastic moduli respectively, and s, e and l be the same variables at fine scale. Then
[9]

S = LE =
1

V

∫
le dV ≈ 1

V

∫
l dV E = LV oigtE,

where V is the volume. This was done by Voigt, and hence called the Voigt-moduli.
The strain can be taken out from the integrand since it is assumed to be constant. In
a similar way, done by Reuss, the elastic moduli can be approximated by assuming
uniform stress in the material and averaging the expression for strain [9];

E = L−1S =
1

V

∫
l−1s dV ≈ 1

V

∫
l−1 dV S = L−1

ReussS.

In an RVE, each element has constant material properties and the integral can thus
be substituted by a sum, given as

LV oigt =
1

V

∫
l dV =

∑
i

1

V

∫
Ωi

li dVi =
∑
i

li
1

V

∫
Ωi

dVi =
∑
i

lifi,

L−1
Reuss =

1

V

∫
l−1 dV =

∑
i

1

V

∫
Ωi

l−1
i dVi =

∑
i

l−1
i

1

V

∫
Ωi

dVi =
∑
i

l−1
i fi,

where fi = Vi
V

. The effective constitutive matrices for the material with Voigt and
Reuss averaging, respectively, become

L̃V oigt =
∑
i

lifi,

L̃Reuss =
1∑
i

1
li
fi
,

where li is the element constitutive matrix known as De. It can be seen that the
Voigt average is a parallel model and that the Reuss average is a series model, hence
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resulting in the two bounds for the constitutive matrix. The parallel model is stiff and
the Voigt matrix is thus the upper bound, whereas the series model is more flexible
and Reuss thus the lower bound. The proof that they really are the upper and lower
bounds can be found in [9].

5.2.2 Christoffel Equation

It can be difficult and cumbersome to compare the homogenized constitutive matrix
with the Voigt and Reuss matrices and to see if it lies inside the bounds. A more
graphical way to compare the matrices is achieved by calculating the wave speeds in
the material from each constitutive matrix, and then display the velocities in a plot.
The velocities are calculated for different propagation angles angles.

The velocity in a medium can be found starting with the wave equation. Newton’s
second law, force equals mass times acceleration, leads to [10]

ρ(x)∂2
t ui(x, t) = ∂xjσij(x, t),

written on index notation where subscripts repeated more than once in a term is
summed upon, in this case subscript j. x is the spatial location, t is the time, ρ is
the density and ∂x = ∂

∂x
. Substituting with Hooke’s law, σij(x, t) = Lijkl(x)εkl(x, t) =

Lijkl(x)∂xluk(x, t), yields

ρ(x)∂2
t ui(x, t) = ∂xj

(
Lijkl(x)∂xluk(x, t)

)
.

For a homogeneous medium, L and ρ are independent of spatial position and the
equation becomes

ρ∂2
t ui(x, t) = Lijkl∂xj∂xluk(x, t). (5.1)

If u is the velocity field and U is the polarization vector, the kth component of u can
be written as

uk = Uke

−iω

(
t− njxj

V (n)

)
,

where ω is the angular frequency, V (n) is the wave propagation velocity and n is a
unit vector in the wave propagation direction. Inserting this into (5.1) results in [10]

(Γik − ρV 2δik)Uk = 0 (5.2)

where

Γik = Lijklnjnl,

where the former is the Christoffel equation and the latter the Christoffel matrix. For
the Christoffel equation to be valid, the expression inside the round brackets has to
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be zero, making this a eigenvalue-eigenvector problem. ρV 2 are the eigenvalues of Γ
and the polarization vectors U are the corresponding eigenvectors.

The Christoffel matrix can be calculated as

Γ = DTL̃D,

where

DT =

[
n1 0 n2

0 n2 n1

]
in 2D. Γ becomes a 2× 2 matrix, which results in two eigenvalues ρV 2, of which two
different wave velocities V can be calculated. n1 and n2 are the wave polarization
directions, and since Γ is symmetric, as seen in the Chrisoffel equation (5.2), the
two eigenvectors will be mutually orthogonal [10]. The wave with polarization in
the propagation direction is called the P-wave, for pressure wave, and the wave with
polarization perpendicular to the propagation direction is called the S-wave, for shear
wave [3].

The wave velocities and the Voigt and Reuss bounds are calculated in MATLAB, and
the codes can be found in appendix B.3.11.

5.3 Flat Layered Materials

Consider a two layer RVE with matching grids. The two layers have different material
properties, given as

EA = 100, νA = 0.2,

EB = 300, νB = 0.1.

The RVE is shown together with the MATLAB model in figure 5.10. The resulting
wave velocities for both LLM and MPC are graphically illustrated in figure 5.11, where
it can be seen that the results for the two methods are identical for all propagation
angles θ. The blue P-wave has the same velocity as the Voigt average for the angles θ =
0 and θ = π, which is naturally since the two materials then act in parallel. Similarly,
when the wave direction is θ = π

2
the materials act in series, thus the P-wave touches

the Reuss bound.

When the propagation direction is θ = 0 and θ = π, the S-wave will polarize in the
vertical direction and hence act like the materials are in series. When the propagation
direction is θ = π

2
, the S-wave polarizes in the horizontal direction. The S-wave will

just go through material A before the wave is propagated half way, then it will go
through material B only. In this way it acts like a series model, and hence touches the
Reuss bound at θ = π

2
as well.
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(a) Two layers with different
material properties.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

(b) Grid used in MATLAB.

Figure 5.10: RVE with two layers and matching grids.

−10 −5 0 5 10
0

5

10

(a) LLM

−10 −5 0 5 10
0

5

10

(b) MPC

Figure 5.11: Wave velocities for the perfectly layered RVE, shown for θ = [0, π]. The blue
line is VP whereas the red line is VS. The blue and red shaded areas are the Voigt and Reuss
bounds for VP and VS, respectively.

5.4 Tilted Layered Materials

Let an RVE consist of two different materials, material A and B, which are the same
materials and thus have the same properties as in the previous section. The materials
can be tilted in an angle β ∈ 〈−90◦, 90◦〉.

Figure 5.12 shows an RVE with 2 layers tilted β = 45◦. The RVE is analysed with
both LLM and MPC, and the homogenized constitutive matrices become

L̃
2

LLM =

184.81 33.88 8.09
33.88 180.65 2.32
8.09 2.32 72.43


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(a) 2 layers
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(b) Grid in MATLAB - 2 layers

Figure 5.12: RVE with 2 layers consisting of material A and B, and the corresponding grid
in MATLAB with β = 45◦. β is the angle of tilt. The two nodes that are close to the corner
nodes is hard to see in the MATLAB grid, exactly because they are so close.

and

L̃
2

MPC =

161.03 30.02 6.27
30.02 181.14 2.71
6.27 2.71 70.13

 ,
where the superscript indicates the number of layers in the RVE. A reference solution
for the two layer RVE has been calculated with 20 × 20 square elements and matching
grids, where the 200 elements below the diagonal were selected to be material A. This
yielded

L̃
2

ref =

181.12 33.34 2.78
33.34 180.40 2.74
2.78 2.74 67.90


using both LLM and MPC.

The wave velocities for the matrices are given in figure 5.13. It can be seen that the
LLM wave velocity plot is fairly close to the reference plot. The relative difference in
Frobenius norm is

‖L̃2

LLM − L̃
2

ref‖F
‖L̃2

ref‖F
= 0.03562.

It should be emphasized that the reference solution is not exact. The two layer RVE
behaves the same if loaded in the x- or y-direction, and this is not the case for the
reference solution, as seen in the reference solution matrix. The first diagonal com-
ponent in the LLM matrix is relatively close to the reference solution, whereas in the
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Figure 5.13: Wave velocities for 2 layers where the materials are tilted 45◦. The blue line
is VP whereas the red line is VS. The blue and red shaded areas are the Voigt and Reuss
bounds for VP and VS, respectively.

MPC matrix it is not that close. The relative difference for the MPC matrix is

‖L̃2

MPC − L̃
2

ref‖F
‖L̃2

ref‖F
= 0.07945,

which is more than the double compared to the LLM matrix. The MPC P-wave
velocity is also outside the bounds for some propagation angles.

At least some of the discrepancy shown in the LLM result can be explained by the
defect of four-node quadrilateral elements when distorted as a trapezoid. The first and
last element in figure 5.12(b) have a trapezoidal shape where one of the sides has a
very short length. The partition of four elements along the x-axis is to minimize the
error in the first place, but if the x-axis is divided into eight elements, as seen in figure
5.14, the result for LLM becomes

L̃
2

LLM,16elements =

184.09 33.72 7.87
33.72 180.70 2.35
7.87 2.35 72.09

 .
The relative difference in Frobenius norm is

‖L̃2

LLM,16elements − L̃
2

ref‖F
‖L̃2

ref‖F
= 0.03261.
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Figure 5.14: RVE with 2 layers consisting 16 elements. The partition in the x-direction is
to minimize the error from the trapezoidal shape of the quadrilateral elements.

It is seen that the model with 16 elements is closer to the reference solution than the
original model with 8 elements, but the difference between those two is not large, as
seen when comparing the calculated relative differences in Frobenius norm. Figure 5.14
also shows that the elements get more narrow when partitioning in the x-direction,
and hence obtain a more extreme trapezoidal shape in the other direction. So there is
not much to gain by dividing the x-axis by more than four elements.

Now, consider an RVE that is 2 units wide and 34 units high, with layers consisting
of every other material A and B, and a tilt of β = 45◦. Three meshes, where the
coupled boundaries have different composition of nodes and material, are going to be
examined.

Mesh 1: The boundary nodes are matching, but the materials at the
boundaries are not matching. That is, when Γ1 consists of material A, Γ2

consists of material B. The mesh is shown in figure 5.15(a). The MATLAB
grid has to have 18 layers, all of which are 2 units thick, to describe this
boundary situation for the given RVE and β.

Mesh 2: The boundary nodes are non-matching, and the materials are
50/50 matching/non-matching at the boundary. Figure 5.15(c) shows mesh
2 and how the boundaries are coupled. 10 layers with a thickness of 4 units
are used in the analysis.

Mesh 3: The boundary nodes are matching, and the materials are match-
ing. That is, when Γ1 consists of material A, Γ2 also consists of material
A. It is seen in the mesh, given in figure 5.15(e), that the nodes are not
matching in the end layers. This inaccuracy is a drawback that occurs
when fulfilling the boundary situation. The MATLAB mesh has 34 layers,
all of which are 1 unit thick.
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(a) Mesh 1: Matching nodes, non-
matching materials
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(c) Mesh 2: Non-matching nodes,
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(d) Grid in MATLAB - 10 layers
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(f) Grid in MATLAB - 34 layers

Figure 5.15: RVEs with different boundary situations, and their corresponding grids in
MATLAB with β = 45◦. The hight is 34 units and the width is 2 units. Each RVE has
to have different thickness of the layers, and thus different number of layers, to create the
different boundary situations without changing the angle of tilt and the size of the RVE. On
the left, the materials at the boundaries are shown next to each other.
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Analysing the three meshes with LLM and MPC result in

L̃
Mesh 1, 45◦

LLM =

172.54 43.35 11.02
43.35 171.26 10.96
11.02 10.96 77.78

 , L̃
Mesh 1, 45◦

MPC =

189.53 34.89 6.29
34.89 185.97 8.06
6.29 8.06 81.21

 ,
L̃
Mesh 2, 45◦

LLM =

172.02 42.82 10.27
42.82 171.09 10.49
10.27 10.49 77.08

 , L̃
Mesh 2, 45◦

MPC =

180.30 32.54 3.98
32.54 183.52 5.64
3.98 5.64 77.67

 ,
L̃
Mesh 3, 45◦

LLM =

172.72 43.42 11.12
43.42 171.34 11.08
11.12 11.08 77.93

 , L̃
Mesh 3, 45◦

MPC =

169.97 42.03 10.64
42.03 171.58 10.26
10.64 10.26 77.22

 .
The corresponding wave velocity plots are depicted in figure 5.16.

First, it can be concluded from the similarity of the LLM matrices, that all three
RVEs have the same homogenized behaviour despite different thickness of the layers
and different number of layers, as long as the layers are every other material A and B,
and the volume fractions of the two materials are the same. The similarity of the LLM
matrices and wave velocity plots also show that the LLM method gives the same result
regardless of boundary situation. The solution seems realistic as well, since the P- and
S-wave velocity touch the Voigt bound and Reuss bound at θ = 45◦, respectively, and
both touch the Reuss bound at θ = 135◦. This is where the materials act in parallel
and series, respectively.

The variation among the LLM matrices can come from the influence the two end layers
have in the three meshes. It can be seen in figure 5.15 that the end layers in mesh 3
are larger in size in proportion to the other layers in the mesh, whereas in mesh 2, the
end layers are smaller.

Second, the matrix resulting from the MPC analysis with mesh 3 seems much closer
to the LLM results than for mesh 1 and 2. This is also seen in figure 5.16(f). The
relative differences in Frobenius norm between the LLM matrix and MPC matrix for
each mesh are

‖L̃Mesh 1, 45◦

MPC − L̃
Mesh 1, 45◦

LLM ‖F
‖L̃Mesh 1, 45◦

LLM ‖F
= 0.10196,

‖L̃Mesh 2, 45◦

MPC − L̃
Mesh 2, 45◦

LLM ‖F
‖L̃Mesh 2, 45◦

LLM ‖F
= 0.09023,

‖L̃Mesh 3, 45◦

MPC − L̃
Mesh 3, 45◦

LLM ‖F
‖L̃Mesh 3, 45◦

LLM ‖F
= 0.01408,

which shows that the difference between LLM and MPC is much smaller for mesh 3,
where both the boundary nodes and the materials match, than for mesh 1, where the
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Figure 5.16: Wave velocities for all three meshes, where the materials are tilted 45◦. The
blue line is VP whereas the red line is VS. The blue and red shaded areas are the Voigt and
Reuss bounds for VP and VS, respectively.

nodes are also matching, but not the materials. Even the difference for mesh 2, where
the boundary nodes are non-matching, is smaller than for mesh 1.

The node displacements using MPC for mesh 1 are shown in figure 5.17(a), and it is
seen that the slave boundary follows the master boundary exactly. This is also the
case for mesh 3, as seen in figure 5.17(b). The displacements of the internal nodes
for mesh 1 and 3 seem to roughly follow the same pattern. On the other hand, the
boundary node displacements for mesh 1 are not comparable to the ones in mesh
3. The boundary node displacements for mesh 1 are on a straight line, because the
coupling is the same for each layer. That is, the coupling is material A-B or B-A for
every layer. In mesh 3, the coupling is either A-A or B-B, and hence the displacement
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(a) MPC - Mesh 1 - ε0,22
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(b) MPC - Mesh 3 - ε0,22

Figure 5.17: Node displacements due to unit strain load in y-direction for mesh 1 and 3
using MPC. The displacement plots for the other two load states give the same displacement
pattern. The black squares and the red circles indicate the initial node coordinates and the
displaced node coordinates, respectively.

patterns for the boundaries are equal to the displacement patterns for the internal
nodes. This can be a reason why MPC gives the correct solution for mesh 3, but not
for mesh 1.

The difference between the MPC matrix and the LLM matrix for mesh 3 can possibly
be explained by the fact that the boundary nodes are not completely matching, as seen
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in figure 5.15(e). It is seen in the lower left corner in figure 5.17(b) that the second
slave node is located on the linear line between the two adjacent master nodes. The
master node in the upper right corner is one of the three displaced nodes in the cluster
at around 1.4 on the x-axis. It is the non-matching master node that stands out from
the rest of the displaced nodes, and is affecting the result to some degree. However,
the large number of layers makes the two non-matching nodes less significant and the
result becomes fairly close to the LLM solution.

The three meshes, with the three different coupling situations, are now going to be
analysed with β = 26.565◦ and β = 63.435◦. In the input code, the slope of the layers
is 2

x
, so if the angle of tilt changes, it is the x-axis that will adjust. When β = 45◦, the

width of the RVE is 2 units. If β = arctan
(

2
4

)
= 26.565◦, the width becomes 4 units,

and if β = arctan
(

2
1

)
= 63.435◦, the width becomes 1 unit. Thus, the RVEs in these

cases are 34 units high and 4 units and 1 unit wide, respectively, and the meshes are
given in figure 5.18.

The results of the 26.565◦ analysis become

L̃
Mesh 1, 26◦

LLM =

190.26 38.34 15.29
38.34 163.11 2.17
15.29 2.17 72.81

 , L̃
Mesh 1, 26◦

MPC =

196.52 34.56 9.65
34.56 174.97 3.24
9.65 3.24 77.87

 ,
L̃
Mesh 2, 26◦

LLM =

188.46 38.23 14.45
38.23 163.15 2.18
14.45 2.18 72.57

 , L̃
Mesh 2, 26◦

MPC =

189.35 32.99 7.04
32.99 173.30 2.07
7.04 2.07 75.11

 ,
L̃
Mesh 3, 26◦

LLM =

190.75 38.35 15.43
38.35 163.12 2.15
15.43 2.15 72.83

 , L̃
Mesh 3, 26◦

MPC =

188.61 37.52 14.74
37.52 163.61 1.78
14.74 1.78 72.51

 ,
where 26.565◦ is shortened to 26◦ in the superscript for notation simplicity. The wave
velocity plots are given in figure 5.19, and the relative differences between the MPC
and LLM matrix are

‖L̃Mesh 1, 26◦

MPC − L̃
Mesh 1, 26◦

LLM ‖F
‖L̃Mesh 1, 26◦

LLM ‖F
= 0.06476,

‖L̃Mesh 2, 26◦

MPC − L̃
Mesh 2, 26◦

LLM ‖F
‖L̃Mesh 2, 26◦

LLM ‖F
= 0.06236,

‖L̃Mesh 3, 26◦

MPC − L̃
Mesh 3, 26◦

LLM ‖F
‖L̃Mesh 3, 26◦

LLM ‖F
= 0.01026.
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The results for 63.435◦ are

L̃
Mesh 1, 63◦

LLM =

164.25 38.59 2.31
38.59 189.94 15.68
2.31 15.68 73.04

 , L̃
Mesh 1, 63◦

MPC =

186.41 32.47 2.47
32.47 199.04 8.38
2.47 8.38 79.46

 ,
L̃
Mesh 2, 63◦

LLM =

164.39 38.37 2.20
38.37 189.37 15.01
2.20 15.01 72.73

 , L̃
Mesh 2, 63◦

MPC =

169.23 28.91 0.95
28.91 196.28 5.85
0.95 5.85 75.62

 ,
L̃
Mesh 3, 63◦

LLM =

164.42 38.53 2.26
38.53 189.98 15.78
2.26 15.78 73.03

 , L̃
Mesh 3, 63◦

MPC =

160.74 37.29 2.18
37.29 189.84 14.87
2.18 14.87 72.35

 ,
where 63.435◦ is shortened to 63◦ for notation simplicity. These wave velocity plots are
given in figure 5.20, and the relative differences between the MPC and LLM matrix
are

‖L̃Mesh 1, 63◦

MPC − L̃
Mesh 1, 63◦

LLM ‖F
‖L̃Mesh 1, 63◦

LLM ‖F
= 0.10528,

‖L̃Mesh 2, 63◦

MPC − L̃
Mesh 2, 63◦

LLM ‖F
‖L̃Mesh 2, 63◦

LLM ‖F
= 0.07745,

‖L̃Mesh 3, 63◦

MPC − L̃
Mesh 3, 63◦

LLM ‖F
‖L̃Mesh 3, 63◦

LLM ‖F
= 0.01617.

The outcomes are the same as for β = 45◦, in the way that the LLM matrices are
fairly similar, and that the MPC matrix for mesh 3 is close to the LLM solutions.
This is also seen from the wave velocity plots. It has to be emphasized how well the
LLM method calculates the homogenized constitutive matrix regardless of boundary
situation or angle of tilt. Looking at the LLM wave velocity plots, it is hard to tell
the difference between the different meshes with the naked eye.

The relative differences in Frobenius norm for mesh 3 are 0.01026, 0.01408 and 0.01617
for angles 26◦, 45◦ and 63◦, respectively. This implies that MPC, when both the
nodes and materials match, gets worse and worse for increasing angle of tilt. Another
possibility is that the influence from the non-matching nodes in the end layers gets
larger, since the spacing between the vertical nodes increases relatively to the width
of the RVE.

Mesh 2 is closer to the LLM solution for all tilt angles compared to mesh 1 when
looking at the relative differences, even though mesh 1 has matching boundary nodes.
However, when comparing the MPC wave velocity plots to the LLM plots, it can be
seen that mesh 1 is closer for some propagation angles. If the propagation angle equals
the tilt angle, i.e. θ = β, the P-wave velocity for mesh 1 is exactly the same as the one



5.4. Tilted Layered Materials 65

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

(a) Grid in MATLAB - Mesh 1 - β = 26.565◦
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(b) Grid in MATLAB - Mesh 1 - β = 63.435◦
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(c) Grid in MATLAB - Mesh 2 - β = 26.565◦
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(d) Grid in MATLAB - Mesh 2 - β = 63.435◦
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(e) Grid in MATLAB - Mesh 3 - β = 26.565◦
0 0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

30

35

(f) Grid in MATLAB - Mesh 3 - β = 63.435◦

Figure 5.18: Grids in MATLAB for the three meshes with β = 26.565◦ and β = 63.435◦ .
The hight is 34 units and the width is 4 units and 1 unit, respectively. Each RVE has to have
different thickness of the layers, and thus different number of layers, to create the different
boundary situations without changing the angle of tilt and the size of the RVE.
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Figure 5.19: Wave velocities for all three meshes, where the materials are tilted 26.565◦.
The blue line is VP whereas the red line is VS. The blue and red shaded areas are the Voigt
and Reuss bounds for VP and VS, respectively.

for LLM, for all tilt angles. On the other hand, mesh 2 is closer to the LLM P-wave
plot when the propagation direction is perpendicular to the tilt angle, especially for
larger tilt angles as seen in figure 5.20(d).

The LLM solutions seem, as the ones for β = 45◦, realistic. The P-wave velocity
touches the Voigt bound and the S-wave velocity touches the Reuss bound when the
propagation direction is equal to the tilt angle. When the propagation direction is
perpendicular to the tilt angle, both wave velocities touch the Reuss bound. Figure
5.21 shows the wave velocities for mesh 1, using LLM for all tilt angles, in polar
plots. Displaying the wave plots in polar plots makes it easier to see that the velocities
actually touch the boundaries at the correct angles. It can be seen that the P-wave
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Figure 5.20: Wave velocities for all three meshes, where the materials are tilted 63.435◦.
The blue line is VP whereas the red line is VS. The blue and red shaded areas are the Voigt
and Reuss bounds for VP and VS, respectively.

velocity is equal to the Voigt wave velocity at a propagation angle very close to 26◦,
45◦ and 63◦ in these three plots.

The S-wave velocity is for some propagation angles a small fraction slower than the
Reuss wave velocity, as seen in figure 5.21. This is a very small deviation and can be
due to the influence of the end layers of the RVE.
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(a) LLM - Mesh 1 - β = 26.565◦
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(b) LLM - Mesh 1 - β = 45◦
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(c) LLM - Mesh 1 - β = 63.435◦

Figure 5.21: Polar plots for mesh 1 for all tilt angles using LLM, shown for propagation
angles θ = [0, 2π]. The blue and red line is VP and VS, respectively, and the black lines are
the Voigt and Reuss bounds.
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5.5 Randomly Scattered Materials

Consider an RVE where the materials are randomly distributed, and not arranged in
layers. Let material A and B have the properties

EA = 100, νA = 0.2,

EB = 300, νB = 0.1,

as before. Figure 5.22 shows an RVE with matching boundary nodes and nine elements,
where five of them are material B and the remaining four is material A. Looking at
the boundaries that are going to be coupled, the materials are matching some places
and non-matching other places. That is, some boundary parts are material A-A or
B-B in the coupling, others are non-matching with A-B connections.

The RVE is analysed with LLM and MPC and the results become

L̃
Match

LLM =

192.4093 32.1845 −3.5525
32.1845 207.8698 −3.1624
−3.5525 −3.1624 78.7497


and

L̃
Match

MPC =

192.4093 32.1845 −3.5525
32.1845 207.8698 −3.1624
−3.5525 −3.1624 78.7497

 .
The matrices are identical to each other, which is also seen form the wave velocity
plots in figure 5.23. The fact that the materials are non-matching some places along

(a) Randomly scattered materials
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Figure 5.22: RVE with matching grids, where the materials A and B are irregularly dis-
tributed.
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Figure 5.23: Wave velocities for randomly distributed materials with matching grids. The
blue line is VP whereas the red line is VS. The blue and red shaded areas are the Voigt and
Reuss bounds for VP and VS, respectively.

the boundaries does not seem to influence the MPC result, as it did in the previous
section.

Assume that the boundary nodes are relocated, leading to the RVE given in figure
5.24. The boundary nodes are now non-matching, but the elements consist of the
same materials as before. The outcome using both LLM and MPC is

L̃
Non−match
LLM =

184.3955 31.9305 −1.2395
31.9305 193.4649 1.8788
−1.2395 1.8788 73.5664


and

L̃
Non−match
MPC =

141.0476 23.8653 −10.8865
23.8653 192.9717 −5.7153
−10.8865 −5.7153 67.2550

 ,
and the corresponding wave velocity plots can be seen in figure 5.25.

The LLM solution is within the Voigt and Reuss bounds by a large margin. This LLM
matrix is not similar to the LLM matrix from the previous analysis where the nodes
were matching, because the volume fraction and the location of the materials in the
RVE are changed. The frame node locations for the two couplings are depicted in
figure 5.26.

The P-wave velocity plot for the MPC matrix is way off for some propagation angles,
and is not a reliable solution for this RVE. The relative difference in Frobenius norm
between the LLM and MPC matrix is

‖L̃Non−match
MPC − L̃

Non−match
LLM ‖F

‖L̃Non−match
LLM ‖F

= 0.17262.

A difference in the homogenized constitutive matrix of this magnitude can affect the
final result of the two-scale homogenization problem substantially, if the matrix is used
as input in the macro analysis.
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Figure 5.24: RVE with non-matching grids, where the materials A and B are irregularly
distributed.
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Figure 5.25: Wave velocities for randomly distributed materials with non-matching grids.
The blue line is VP whereas the red line is VS. The blue and red shaded areas are the Voigt
and Reuss bounds for VP and VS, respectively.
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Figure 5.26: Frame nodes for the RVE with non-matching grids. The green squares indicate
the boundary 1 and 3 nodes, and the red squares indicate the boundary 2 and 4 nodes, whereas
the blue circles mark the frame nodes.



Chapter 6

Concluding Remarks

It is highly important that the information from micro scale is preserved and trans-
ferred to the macro scale in a proper manner. This means in practice that the ho-
mogenized constitutive matrix for the RVE has to be correctly calculated. Several
numerical analysis have been carried out, demonstrating that the LLM method pro-
duces the correct answer for RVEs with non-matching grids, as well as for matching
grids. This is a major advantage in multi-scale homogenization compared to using
MPC, which gives the correct solution only when the grids are matching.

In section 5.4, an RVE with three different meshes is analysed. The boundary com-
positions are different for each mesh, while the tilt angle of the layers and the size of
the RVE are held constant. LLM gave practically the same result regardless of which
mesh that was considered, which is pretty demonstrative concerning the reliability of
the method. One out of the three meshes was correctly calculated by MPC, which was
the mesh with matching grids and matching materials along the boundary.

The frame node configuration does not necessarily need to be all possible frame nodes.
For a homogeneous RVE, the frame node configuration is insignificant for the result,
even for non-matching grids. The zero moment rule calculates the location of the frame
nodes based on the multipliers when they create a constant stress state. When an RVE
is homogeneous, the coupled boundaries are in mutual equilibrium with constant stress.
So the moment distribution along the coupling is the same as when calculating the
frame nodes and hence the frame nodes are not needed in the calculation to guarantee
constant stress in the coupling. For an RVE consisting of heterogeneous material,
the stresses along the boundaries are not constant, and hence all frame nodes are
needed. However, if the material is perfectly layered and the homogeneous layers are
divided into smaller layers with the same properties, only the end frame nodes of the
homogeneous layers are sufficient.





Chapter 7

Further Work

The code should be tested on actual industrial problems with realistic material prop-
erties as input. The macro scale analysis should also be included to see how much the
results on macro scale are affected when different inputs from micro scale is used and
to get the whole picture of the problem. Other elements than four-node quadrilateral
elements, for instance triangular elements, can with advantage be implemented in the
code to easier describe the geometry inside the RVEs.

A computer program solving two-scale computational homogenization using LLM in
3D should be implemented. Both mathematical homogenization and the LLM method
are directly transferable to 3D, except how to find the frame node locations. Hence a
zero moment rule for a 2D interface frame is an important step to make homogenization
possible in 3D.
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Appendix A

Backus Averaging in 2D

The Backus averaging technique is given in 3D in a paper by Backus [1]. The following
derivation is in 2D and based on the derivation presented by Backus.

Let x1, x2, x3 be the position coordinates and s1, s2, s3 the components of displacements
in 3D. The elastic properties of the medium are constant in x1 and x2 but may vary
with x3. Let w(x3) be any continuous weighting function that averages over a length
l’. Then

〈f〉(x3) =

∫ ∞
−∞

w(ζ − x3)f(ζ) dζ

is the average of f over a distance roughly l’ around the position x3. The average
will be written 〈f〉. One approximation is done in the following derivation: if f(x3) is
nearly constant when x3 changes by no more than l’, while g(x3) may vary much over
the same distance, then

〈fg〉 = f〈g〉. (A.1)

Assume a medium that is transversely isotropic for each x3 with a vertical axis of
symmetry. The stress-strain relations in 2D can be found by setting ε22 = ε12 = ε23 = 0
in the 3D equations, i.e. plane strain in the x2-direction. The stress-strain relations
become

T11 = a
∂s1

∂x1

+ f
∂s3

∂x3

,

T33 = f
∂s1

∂x1

+ c
∂s3

∂x3

, (A.2)

T13 = l

(
∂s1

∂x3

+
∂s3

∂x1

)
,

where a, f, c and l are the elastic parameters varying over x3. T22 is also non-zero, but
not important in this derivation.
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Consider an infinite horizontal slab of vertical thickness L’ � l’. The slab is divided
into horizontal layers so thin that when averaged over a vertical distance l’, all prop-
erties of the slab are almost independent of x3. If the slab is subjected to the static

stress T13 and T33 on the top and bottom, the derivatives
∂si
∂x3

and T11 will vary widely

because of the different properties of the layers, whereas the derivatives
∂si
∂x1

and the

applied stress components will vary slowly. Solving for the rapidly varying stress and
displacement field variables from equation (A.2) yield

∂s1

∂x3

=
1

l
T13 −

∂s3

∂x1

,

∂s3

∂x3

=
1

c
T33 −

f

c

∂s1

∂x1

, (A.3)

T11 =

(
a− f 2

c

)
∂s1

∂x1

+
f

c
T33.

The rapid variations with x3 in the left-hand side field variables are produced by the
rapid variations of the elastic coefficients. Since there are no products of a rapid
varying field variable and a rapid varying elastic parameter on the right-hand side in
(A.3), formula (A.1) can be applied to compute the averages;

∂〈s1〉
∂x3

=

〈
1

l

〉
〈T13〉 −

∂〈s3〉
∂x1

,

∂〈s3〉
∂x3

=

〈
1

c

〉
〈T33〉 −

〈
f

c

〉
∂〈s1〉
∂x1

,

〈T11〉 =

〈
a− f 2

c

〉
∂〈s1〉
∂x1

+

〈
f

c

〉
〈T33〉.

The averaged stresses can now be solved for, resulting in

〈T11〉 = A
∂〈s1〉
∂x1

+ F
∂〈s3〉
∂x3

,

〈T33〉 = F
∂〈s1〉
∂x1

+ C
∂〈s3〉
∂x3

,

〈T13〉 = L

(
∂〈s1〉
∂x3

+
∂〈s3〉
∂x1

)
,

where
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A =

〈
a− f 2

c

〉
+

〈
1

c

〉−1〈
f

c

〉2

C =

〈
1

c

〉−1

F =

〈
1

c

〉−1〈
f

c

〉
L =

〈
1

l

〉−1

are the relations between the averaged stresses and the strains calculated from averaged
displacements, and thus the components of the constitutive matrix;


〈T11〉
〈T33〉
〈T13〉

 =

A F 0
F C 0
0 0 L




∂〈s1〉
∂x1
∂〈s3〉
∂x3

2
∂〈s1〉
∂x3


.





Appendix B

The MATLAB Code

The MATLAB code for solving two-scale linear homogenization problems is given in
the following sections. The mesh generators have some limitations that are important
to know when using the program. The node coordinates can be punched in by hand
if another mesh than the generators can produce is preferable, as long as they create
square elements. The limitations for the mesh generator are;

� The RVE has to be square with 90◦ angle in each corner

� The number of boundary nodes have to be equal on opposite boundaries

� Straight lines are drawn between opposite boundary nodes, and internal nodes
are created where the lines cross.

Figure B.1 illustrates how the mesh generator builds up the RVE.

Figure B.1: Illustration of how the elements, nodes and DOFs are counted in the RVEs
and the macro problem in the code.
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The RVE problem inputs that need to be punched in are

bot, top: The x-coordinates of the bottom and top boundary nodes, re-
spectively, including corner nodes. The vectors have to have the same
length.

left, right : The y-coordinates of the left and right boundary nodes, re-
spectively, including corner nodes. The vectors have to have the same
length.

E, nu : Young’s modulus and Poisson’s ratio for each element. The first
element in the vector is the property of element 1, and the second for
element 2, etc. They have to have the same length as number of elements.

th : Thickness of the RVE. Default is 1 unit.

ElemType : Type of element. Q4 is the only option.

Frame Nodes : Choice of frame node configuration. Alternatives: all;
internal; everyother; end.

PlaneStrain : If yes, plane strain is used, if no, plane stress is used.

WavePlots : Wave velocity plots are drawn together with the Voigt and
Reuss averages. Alternatives: yes; no.

Theta : The upper limit for the propagation angle in the wave velocity
plots. The angle starts at 0 and stops at Theta.

The inputs for the macro problem are

BOT, TOP, LEFT, RIGHT : The same as for the RVE problem.

BCmacro(DOF numbers) = 0 : Boundary conditions. The DOF num-
bers of the DOFs that should be constrained must be written in the brack-
ets.

rmacro(DOF numbers) = value : Loads. The value of the load, and
the DOF numbers of the DOFs the load should be applied to, must be
given.
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B.1 Input for RVEs in This Thesis

1 %% Input to Main script LLM.m and Main script MPC.m
2

3 %5.1.1 Homogeneous Material with Matching Grids
4 bot= [0 2]; %x−nodes of bottom side
5 top= [0 2]; %x−nodes of top side
6 left= [0 1 2]; %y−nodes of left side
7 right=[0 1 2]; %y−nodes of right side
8 [XYZ CON DOF] = mesh(bot,top,left,right);
9 E=ones(size(CON,1),1)*200000; %Young's modulus [El1 El2 ...]

10 nu=ones(size(CON,1),1)*0.3; %Poisson's ratio [El1 El2 ...]
11

12 %5.1.2 Layered Materials with Matching Grids
13 bot= [0 2];
14 top= [0 2];
15 left= [0 1 2 3 4 5 6 7 8 9 10];
16 right=[0 1 2 3 4 5 6 7 8 9 10];
17 [XYZ CON DOF] = mesh(bot,top,left,right);
18 E=[100 1000 10 1 0.01 1000 0.1 10 100 1];
19 nu=[0.45 0.405 0.36 0.315 0.27 0.225 0.18 0.135 0.09 0.045];
20

21 %5.1.3 Homogeneous Material with Non−matching Grids
22 delta1 = 0.1;
23 delta2 = 0.1;
24 bot= [0 0.5 1 1.5 2];
25 top= [0 0.5 1 1.5 2];
26 left= [0 1+delta2 2];
27 right=[0 1−delta1 2];
28 [XYZ CON DOF] = mesh(bot,top,left,right);
29 E=ones(size(CON,1),1)*200000;
30 nu=ones(size(CON,1),1)*0.3;
31

32 %5.1.4 Non−matching Grids Inside Homogeneous Layers
33 bot= [0 1 2];
34 top= [0 1 2];
35 left= [0 1 2 3 4 4.5 5 5.9 6 7 8 9 10];
36 right=[0 1 2 3 4 4.9 5 5.5 6 7 8 9 10];
37 [XYZ CON DOF] = mesh(bot,top,left,right);
38 E=[100 100 1000 1000 10 10 1 1 0.01 0.01 0.01 0.01 1000 1000 1000 ...

1000 0.1 0.1 10 10 100 100 1 1];
39 nu=[0.45 0.45 0.405 0.405 0.36 0.36 0.315 0.315 0.27 0.27 0.27 ...

0.27 0.225 0.225 0.225 0.225 0.18 0.18 0.135 0.135 0.09 0.09 ...
0.045 0.045];

40

41 %5.3 Flat Layered Materials
42 bot= [0 2];
43 top= [0 2];
44 left= [0 1 2];
45 right=[0 1 2];
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46 [XYZ CON DOF] = mesh(bot,top,left,right);
47 E=[100 300];
48 nu=[0.2 0.1];
49

50 %5.4 Tilted Layered Materials
51 beta=45; %Tilt Angle: −90<beta<90, beta˜=0
52 ElemMesh = '34,1'; %(Hight,mesh x) Alt: 2,1/34,1/34,2/34,3
53

54 bot = [0 0.5/tand(abs(beta)) 1/tand(abs(beta)) 1.5/tand(abs(beta)) ...
2/tand(abs(beta))];

55 top = bot;
56 if strcmpi(ElemMesh,'2,1')
57 %2 layered RVE
58 left= [0 0.001 2];
59 right=[0 1.999 2];
60 %2 x 34 units RVE
61 elseif strcmpi(ElemMesh,'34,1')
62 %Mesh 1
63 left= [0 0.001 2.01 4.01 6.01 8.01 10.01 12.01 14.01 16.01 ...

18.01 20.01 22.01 24.01 26.01 28.01 30.01 32.01 34];
64 right=[0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 33.999 34];
65 elseif strcmpi(ElemMesh,'34,2')
66 %Mesh 2
67 left= [0 0.001 4 8 12 16 20 24 28 32 34];
68 right=[0 2 6 10 14 18 22 26 30 33.999 34];
69 elseif strcmpi(ElemMesh,'34,3')
70 %Mesh 3
71 left= [0 0.001 1.01 2.01 3.01 4.01 5.01 6.01 7.01 8.01 9.01 ...

10.01 11.01 12.01 13.01 14.01 15.01 16.01 17.01 18.01 ...
19.01 20.01 21.01 22.01 23.01 24.01 25.01 26.01 27.01 ...
28.01 29.01 30.01 31.01 32.01 34];

72 right=[0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 ...
22 23 24 25 26 27 28 29 30 31 32 33 33.99 34];

73 end
74 if sign(beta)==−1 %if negative beta
75 rightx=right;
76 right=left; left=rightx;
77 end
78 [XYZ CON DOF] = mesh(bot,top,left,right);
79 E=ones(size(CON,1),1)*100;
80 nu=ones(size(CON,1),1)*0.2;
81 Eb1=5:8:size(CON,1); Eb2=6:8:size(CON,1);
82 Eb3=7:8:size(CON,1); Eb4=8:8:size(CON,1);
83 E(Eb1)=300; nu(Eb1)=0.1; E(Eb2)=300; nu(Eb2)=0.1;
84 E(Eb3)=300; nu(Eb3)=0.1; E(Eb4)=300; nu(Eb4)=0.1;
85

86 %Reference Solution 2 layers − 400 elements, 45 deg
87 bot= [0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 ...

1.6 1.7 1.8 1.9 2];
88 top= bot;
89 left= bot;
90 right=bot;
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91 [XYZ CON DOF] = mesh(bot,top,left,right);
92 E=ones(size(CON,1),1)*100;
93 nu=ones(size(CON,1),1)*0.2;
94 Eb=[1:20 23:40 43:60 65:80 85:100 107:120 127:140 149:160 169:180 ...

191:200 211:220 233:240 253:260 275:280 295:300 317:320 ...
337:340 359:360 379:380];

95 E(Eb)= 300;
96 nu(Eb)=0.1;
97

98 %5.5 Randomly Scattered Material
99 %Matching grids

100 bot= [0 1 2 3];
101 top= [0 1 2 3];
102 left= [0 1 2 3];
103 right=[0 1 2 3];
104 %Non−matching grids
105 % bot= [0 1.4 1.7 3];
106 % top= [0 0.3 2.9 3];
107 % left= [0 0.1 2.9 3];
108 % right=[0 1.1 1.2 3];
109 [XYZ CON DOF] = mesh(bot,top,left,right);
110 E= [100 300 300 300 100 300 100 100 300];
111 nu=[0.2 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.1];

B.2 Mesh Generators

1 function [XYZ CON DOF] = mesh(bot,top,left,right)
2

3 nnodesx=length(bot); %Number of horizontal nodes
4 nnodesy=length(left); %Number of vertical nodes
5 nelx=nnodesx−1; %Number of horizontal element
6 nely=nnodesy−1; %Number of vertical element
7 nnodes=nnodesx*nnodesy; %Number of nodes
8

9 lx=bot(nnodesx)−bot(1);
10 ly=left(nnodesy)−left(1);
11

12 XYZ=zeros(nnodes,2); %Node coordinates
13 for i=1:nnodesy
14 yl=left(i)−left(1);
15 dy=right(i)−left(i);
16 for j=1:nnodesx
17 xb=bot(j)−bot(1);
18 dx=top(j)−bot(j);
19

20 x=(dx*yl+xb*ly)/(ly−dx*dy/lx);
21 y=dy/lx*x+yl;
22
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23 XYZ(j+(i−1)*nnodesx,1) = x + bot(1);
24 XYZ(j+(i−1)*nnodesx,2) = y + left(1);
25 end
26 end
27 nel=nelx*nely; %Number of elements
28 CON=zeros(nel,4); %Node numbers for each element
29 for i=1:nely
30 for j=1:nelx
31 CON(j+(i−1)*nelx,:)=[j+(i−1)*nnodesx j+(i−1)*nnodesx+1 ...

j+i*nnodesx+1 j+i*nnodesx];
32 end
33 end
34 DOF=zeros(nel,2*4); %DOFs for each element
35 for i=1:nel
36 DOF(i,:)=[CON(i,1)*2−1 CON(i,1)*2 CON(i,2)*2−1 CON(i,2)*2 ...

CON(i,3)*2−1 CON(i,3)*2 CON(i,4)*2−1 CON(i,4)*2];
37 end
38 figure(1)
39 plot(XYZ(:,1),XYZ(:,2),'sk')
40 title('RVE mesh')
41 end

1 function [CON DOF] = mesh givenXYZ(XYZ,nelx,nely)
2

3 nnodesx=nelx+1; %Number of horizontal nodes
4 nel=nelx*nely; %Number of elements
5

6 CON=zeros(nel,4); %Node numbers for each element
7 for i=1:nely
8 for j=1:nelx
9 CON(j+(i−1)*nelx,:)=[j+(i−1)*nnodesx j+(i−1)*nnodesx+1 ...

j+i*nnodesx+1 j+i*nnodesx];
10 end
11 end
12 DOF=zeros(nel,2*4); %DOFs for each element
13 for i=1:nel
14 DOF(i,:)=[CON(i,1)*2−1 CON(i,1)*2 CON(i,2)*2−1 CON(i,2)*2 ...

CON(i,3)*2−1 CON(i,3)*2 CON(i,4)*2−1 CON(i,4)*2];
15 end
16 figure(1)
17 plot(XYZ(:,1),XYZ(:,2),'sk')
18 title('RVE mesh')
19 end

1 function [XYZ CON DOF] = macro mesh(BOT,TOP,LEFT,RIGHT)
2

3 nnodesx=length(BOT);
4 nnodesy=length(LEFT);
5 nelx=nnodesx−1;
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6 nely=nnodesy−1;
7 nnodes=nnodesx*nnodesy;
8

9 lx=BOT(nnodesx)−BOT(1);
10 ly=LEFT(nnodesy)−LEFT(1);
11

12 XYZ=zeros(nnodes,2);
13 for i=1:nnodesy
14 yl=LEFT(i)−LEFT(1);
15 dy=RIGHT(i)−LEFT(i);
16 for j=1:nnodesx
17 xb=BOT(j)−BOT(1);
18 dx=TOP(j)−BOT(j);
19

20 x=(dx*yl+xb*ly)/(ly−dx*dy/lx);
21 y=dy/lx*x+yl;
22

23 XYZ(j+(i−1)*nnodesx,1) = x + BOT(1);
24 XYZ(j+(i−1)*nnodesx,2) = y + LEFT(1);
25 end
26 end
27 nel=nelx*nely;
28 CON=zeros(nel,4);
29 for i=1:nely
30 for j=1:nelx
31 CON(j+(i−1)*nelx,:)=[j+(i−1)*nnodesx j+(i−1)*nnodesx+1 ...

j+i*nnodesx+1 j+i*nnodesx];
32 end
33 end
34 DOF=zeros(nel,2*4);
35 for i=1:nel
36 DOF(i,:)=[CON(i,1)*2−1 CON(i,1)*2 CON(i,2)*2−1 CON(i,2)*2 ...

CON(i,3)*2−1 CON(i,3)*2 CON(i,4)*2−1 CON(i,4)*2];
37 end
38 figure(2)
39 plot(XYZ(:,1),XYZ(:,2),'ok')
40 title('Macro problem mesh')
41 end

1 function [CON DOF] = macro mesh givenXYZ(XYZ,nelx,nely)
2

3 nnodesx=nelx+1;
4 nel=nelx*nely;
5 CON=zeros(nel,4);
6 for i=1:nely
7 for j=1:nelx
8 CON(j+(i−1)*nelx,:)=[j+(i−1)*nnodesx j+(i−1)*nnodesx+1 ...

j+i*nnodesx+1 j+i*nnodesx];
9 end

10 end
11 DOF=zeros(nel,2*4);



90 Appendix B. The MATLAB Code

12 for i=1:nel
13 DOF(i,:)=[CON(i,1)*2−1 CON(i,1)*2 CON(i,2)*2−1 CON(i,2)*2 ...

CON(i,3)*2−1 CON(i,3)*2 CON(i,4)*2−1 CON(i,4)*2];
14 end
15 figure(2)
16 plot(XYZ(:,1),XYZ(:,2),'ok')
17 title('Macro problem mesh')
18 end

B.3 Main Script Using LLM

1 clear all
2 clc
3 %% INPUT MICRO
4

5 %5.1.1 Homogeneous Material with Matching Grids
6 bot= [0 2]; %x−nodes of bottom side
7 top= [0 2]; %x−nodes of top side
8 left= [0 1 2]; %y−nodes of left side
9 right=[0 1 2]; %y−nodes of right side

10 [XYZ CON DOF] = mesh(bot,top,left,right);
11 E=ones(size(CON,1),1)*200000; %Young's modulus [El1 El2 ...]
12 nu=ones(size(CON,1),1)*0.3; %Poisson's ratio [El1 El2 ...]
13

14 th=1; %Thickness
15 ElemType='Q4'; %Element type
16

17 %Choice of frame node configuration
18 Frame Nodes = 'all';
19 %Frame Nodes = 'internal';
20 %Frame Nodes = 'everyother';
21 %Frame Nodes = 'end';
22

23 PlaneStrain='yes'; %Plane strain: yes / Plane stress: no
24

25 WavePlots = 'no'; %Want wave velocity plots: yes / no
26 Theta = pi; %Max propagation angle
27

28 %% INPUT MACRO
29

30 BOT= [0 2 4];
31 TOP= [0 2 4];
32 LEFT= [0 2 4];
33 RIGHT=[0 2 4];
34

35 [XYZma CONma DOFma] = macro mesh(BOT,TOP,LEFT,RIGHT);
36 %[CONma DOFma] = macro mesh givenXYZ(XYZ,nelx,nely);
37
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38 BCmacro = ones(2*length(XYZma),1);
39 rmacro = zeros(2*length(XYZma),1);
40

41 %Boundary constraints; give constrained DOFs
42 BCmacro([1 7 8 13])=0;
43

44 %Load; give value and DOFs that the value are applied to
45 rmacro([5 17]) = 5;
46 rmacro(11) = 10;
47

48 BCmacro=find(BCmacro);
49 rmacro=rmacro(BCmacro);
50

51 %% MICRO ANALYSIS
52

53 if strcmpi(PlaneStrain,'yes')
54 [D] = plane strain(E,nu);
55 else
56 [D] = plane stress(E,nu);
57 end
58

59 [BCcorner] = BCcorner(XYZ); %All DOFs except corner DOFs
60

61 [K] = K matrix(XYZ,CON,DOF,D,ElemType,th,BCcorner);
62

63 gamma=1;
64 [frameNatcoord12] = zmr(XYZ,gamma,Frame Nodes);
65 [L1] = L matrix(XYZ,frameNatcoord12,gamma);
66 [B1] = B matrix(XYZ,gamma,BCcorner);
67 gamma=2;
68 [L2] = L matrix(XYZ,frameNatcoord12,gamma);
69 [B2] = B matrix(XYZ,gamma,BCcorner);
70 gamma=3;
71 [frameNatcoord34] = zmr(XYZ,gamma,Frame Nodes);
72 [L3] = L matrix(XYZ,frameNatcoord34,gamma);
73 [B3] = B matrix(XYZ,gamma,BCcorner);
74 gamma=4;
75 [L4] = L matrix(XYZ,frameNatcoord34,gamma);
76 [B4] = B matrix(XYZ,gamma,BCcorner);
77

78 [A] = A matrix(K,B1,B2,B3,B4,L1,L2,L3,L4);
79

80 ndofs=2*length(XYZ); %Number of DOFs
81 HomoL=zeros(3,3);
82 for m=1:3
83 eps=zeros(3,1);
84 eps(m,1)=1;
85

86 [r] = r vector(XYZ,CON,DOF,D,ElemType,th,eps,BCcorner);
87

88 b=zeros(length(A),1);
89 b(1:length(K))=r;
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90

91 x=A\b;
92

93 d=zeros(ndofs,1);
94 d(BCcorner)=x(1:length(K)); %Total displacement vector
95

96 [sigmaHomo] = sigmaHomo vector(XYZ,CON,DOF,D,eps,d);
97 HomoL(:,m)=sigmaHomo;
98

99 figure(4+m)
100 plot(XYZ(:,1),XYZ(:,2),'sk'); hold on
101 plot(XYZ(:,1)+d(1:2:length(d)−1),XYZ(:,2)+d(2:2:length(d)),'or')
102 title(['Displacment plot for unit strain state ', num2str(m)])
103 end
104 display('The homogenized constitutive matrix is')
105 HomoLllm=HomoL
106

107 if strcmpi(WavePlots,'yes') %If wave velocity plots
108 theta=0:pi/100:Theta;
109 rho=1;
110

111 VoigtReuss %Runs VoigtReuss script
112

113 [speeds] = christoffelspeeds(HomoLllm,theta,rho);
114

115 figure(8)
116 polar(theta',speeds(:,1),'b'); hold on;
117 title('P−wave velocity polar plot')
118

119 figure(9)
120 polar(theta',speeds(:,2),'r'); hold on;
121 title('S−wave velocity polar plot')
122

123 [xp,yp] = pol2cart(theta,speeds(:,1)');
124 [xs,ys] = pol2cart(theta,speeds(:,2)');
125 figure(10);
126 plot(xp,yp,'b'); hold on
127 plot(xs,ys,'r'); hold on
128 title('Wave velocity plots')
129 end
130 %% MACRO ANALYSIS
131

132 [Kmacro] = macro K matrix(XYZma,CONma,DOFma,HomoL,th,BCmacro);
133

134 u=Kmacro\rmacro;
135

136 dmacro=zeros(2*length(XYZma),1);
137 dmacro(BCmacro) = u; %Total macro displacement vector
138

139 figure(11)
140 plot(XYZma(:,1),XYZma(:,2),'ok');hold on
141 plot(XYZma(:,1)+dmacro(1:2:length(dmacro)−1), ...
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142 XYZma(:,2)+dmacro(2:2:length(dmacro)),'or')
143 title('Macro scale displacement plot')

B.3.1 plane strain.m

1 function [D] = plane strain(E,nu)
2

3 D=zeros(length(E)*3,3);
4 for i=1:length(E)
5 Ee=E(i); %Element Young's modulus
6 nue=nu(i); %Element Poisson's ratio
7

8 D(i*3−2:i*3,1:3) = Ee/((1−2*nue)*(1+nue))*[1−nue nue 0;nue ...
1−nue 0;0 0 (1−2*nue)/2];

9 end

B.3.2 plane stress.m

1 function [D] = plane stress(E,nu)
2

3 D=zeros(length(E)*3,3);
4 for i=1:length(E)
5 Ee=E(i); %Element Young's modulus
6 nue=nu(i); %Element Poisson's ratio
7

8 D(i*3−2:i*3,1:3) = Ee/(1−nueˆ2)*[1 nue 0;nue 1 0;0 0 (1−nue)/2];
9 end

B.3.3 BCcorner.m

1 function [BCcorner] = BCcorner(XYZ)
2

3 ndof=2*length(XYZ);
4 dofNumb(1:ndof)=1:ndof;
5

6 id1=find(abs(XYZ(:,1)−max(XYZ(:,1)))<10ˆ−10);
7 id2=find(abs(XYZ(:,1)−min(XYZ(:,1)))<10ˆ−10);
8 nb1nodes=length(id1); nb2nodes=length(id2);
9

10 idcorner(1)=id2(1); %Find corner DOFs
11 idcorner(2)=id1(1);
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12 idcorner(3)=id2(nb2nodes);
13 idcorner(4)=id1(nb1nodes);
14

15 dofNumb(idcorner*2)=0; %Make corner DOFs zero
16 dofNumb(idcorner*2−1)=0;
17

18 BCcorner=find(dofNumb); %All DOFs except corner DOFs

B.3.4 K matrix.m

1 function [K] = K matrix(XYZ,CON,DOF,D,ElemType,th,BCcorner)
2

3 nel=size(CON,1); %Number of elements
4 ndof=2*length(XYZ); %Number of DOFs
5

6 K=zeros(ndof,ndof);
7 for i=1:nel
8 id=DOF(i,:); %Element DOF numers
9 xyz=XYZ(CON(i,:),:); %Element node coordinates

10 De=D(i*3−2:i*3,1:3); %Constitutive element matrix
11

12 [ke]=feval(ElemType,xyz,De,th);
13

14 K(id,id)=K(id,id) + ke;
15 end
16 K=K(BCcorner,BCcorner);
17 end

ElemType - Q4.m

1 function [ke re] = Q4(xyz,De,th,eps)
2

3 ke=zeros(8,8); %Element stiffness matrix
4 re=zeros(8,1); %Element load vector
5

6 a=1/sqrt(3);
7 w=1;
8 Gauss=[−a a a −a;−a −a a a]; %4−point Gauss
9

10 for i = 1:4
11 xi=Gauss(1,i);
12 eta=Gauss(2,i);
13

14 [dsB J]=dispstrain B(xyz,xi,eta);
15
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16 if nargin==3
17 ke=ke+dsB'*De*dsB*J*th*w;
18 end
19

20 if nargin==4
21 re=re+dsB'*De*eps*J*th*w;
22 end
23 end
24 end

dispstrain B.m

1 function [dsB J] = dispstrain B(xyz,xi,eta)
2

3 natcoord=[−1 1 1 −1;−1 −1 1 1]; %Natural coordinates
4

5 dNdnat(1,:)=1/4*natcoord(1,:).*(1+natcoord(2,:)*eta);
6 dNdnat(2,:)=1/4*natcoord(2,:).*(1+natcoord(1,:)*xi);
7

8 Jmat=dNdnat*xyz; %Forming the Jacobian matrix
9 J=det(Jmat); %Calculate the Jacobian

10

11 dNdx=Jmat\dNdnat;
12

13 dsB=zeros(3,8); %Create displacement−strain matrix
14 dsB(1,1:2:7)=dNdx(1,:);
15 dsB(2,2:2:8)=dNdx(2,:);
16 dsB(3,1:2:7)=dNdx(2,:);
17 dsB(3,2:2:8)=dNdx(1,:);
18 end

B.3.5 zmr.m

1 function [frameNatcoord] = zmr(XYZ,gamma,Frame Nodes)
2

3 if gamma==1
4 id1=find(abs(XYZ(:,1)−max(XYZ(:,1)))<10ˆ−10);%Boundary 1 node nr
5 id2=find(abs(XYZ(:,1)−min(XYZ(:,1)))<10ˆ−10);%Boundary 2 node nr
6 xy1=XYZ(id1,2); xy2=XYZ(id2,2); %Boundary node y−coord
7 else
8 id1=find(abs(XYZ(:,2)−max(XYZ(:,2)))<10ˆ−10);%Boundary 3 node nr
9 id2=find(abs(XYZ(:,2)−min(XYZ(:,2)))<10ˆ−10);%Boundary 4 node nr

10 xy1=XYZ(id1,1); xy2=XYZ(id2,1); %Boundary node x−coord
11 end
12
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13 nb1nodes=length(id1); nb2nodes=length(id2);%Number of boundary nodes
14 Lb=xy1(nb1nodes)−xy1(1); %Length of boundary
15 lambdaNatcoord1=2*(xy1−min(xy1))./Lb − 1;%Boundary 1 nat node coord
16 lambdaNatcoord2=2*(xy2−min(xy2))./Lb − 1;%Boundary 2 nat node coord
17

18 %If just end nodes
19 if (nb1nodes==2 && nb2nodes==2) | | strcmpi(Frame Nodes,'end')
20 frameNatcoord=[−1,1];
21 if gamma==1
22 figure(3)
23 plot(zeros(length(frameNatcoord),1),frameNatcoord,'ob');
24 hold on
25 set(gca,'xtick',[])
26 plot(ones(nb1nodes,1)*−0.15,lambdaNatcoord1,'sg');hold on
27 plot(ones(nb2nodes,1)*0.15,lambdaNatcoord2,'sr')
28 xlim([−1 1])
29 title('Frame nodes for coupling 1−2')
30 else
31 figure(4)
32 plot(frameNatcoord,zeros(length(frameNatcoord),1),'ob');
33 hold on
34 set(gca,'ytick',[])
35 plot(lambdaNatcoord1,ones(nb1nodes,1)*−0.15,'sg');hold on
36 plot(lambdaNatcoord2,ones(nb2nodes,1)*0.15,'sr');
37 ylim([−1 1])
38 title('Frame nodes for coupling 3−4')
39 end
40 return
41 end
42

43 [force1 force2] = zmr force(lambdaNatcoord1,lambdaNatcoord2);
44

45 b1=lambdaNatcoord1; b2=lambdaNatcoord2; %Shortening of name only
46 b=zeros(nb1nodes+nb2nodes−4,1); %Internal nodes from both RVEs
47 force=b; %Internal node multipliers from both RVEs
48

49 %Arranging the internal nodes in the order from low to high
50 %in b and the multipliers in force
51 i=2;j=2;
52 for m=1:length(b)
53 if b1(i) < b2(j)
54 b(m)=b1(i);
55 force(m)=force1(i);
56 i=i+1;
57 else
58 b(m)=b2(j);
59 force(m)=force2(j);
60 j=j+1;
61 end
62 end
63 %Starting at 3rd node and calculate the moments at this and
64 %the former node.
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65 n=2;
66 for k=2:length(b)
67 xi1=b(k−1); %Former node coord
68 xi2=b(k); %Node coord
69 id1=find((xi1−b)>0.0001); %Find the array number for...
70 id2=find((xi2−b)>0.0001); %...the positive moment arms
71 %Moments
72 M1=(force1(1)+force2(1))*(xi1+1)+force(id1)'*(xi1−b(id1));
73 M2=(force1(1)+force2(1))*(xi2+1)+force(id2)'*(xi2−b(id2));
74

75 if xi1==xi2 %If matching nodes
76 frameNatcoord(n)=xi1;
77 n=n+1;
78 elseif sign(M1) == sign(M2)
79 elseif abs(M1)<10ˆ−10 | | abs(M2)<10ˆ−10
80 else %If different signs on moments
81 frameNatcoord(n)=xi1+abs(M1)/(abs(M1)+abs(M2))*(xi2−xi1);
82 n=n+1;
83 end
84 end
85 frameNatcoord(1)=−1; %First node
86 frameNatcoord(length(frameNatcoord)+1)=1; %Last node
87

88 if strcmpi(Frame Nodes,'internal')
89 frameNatcoord=frameNatcoord(2:length(frameNatcoord)−1);
90 elseif strcmpi(Frame Nodes,'everyother')
91 frameNatcoord test=frameNatcoord(1:2:length(frameNatcoord))
92 if frameNatcoord test(length(frameNatcoord test))˜=1
93 frameNatcoord test2=frameNatcoord(1:2:length(frameNatcoord)/2);
94 frameNatcoord test2(length(frameNatcoord test2)+1:length ...
95 (frameNatcoord test2)*2)=fliplr(frameNatcoord(length ...
96 (frameNatcoord):−2:length(frameNatcoord)/2+1));
97 frameNatcoord=frameNatcoord test2;
98 else
99 frameNatcoord=frameNatcoord test;

100 end
101

102 end
103 if gamma==1
104 figure(3)
105 plot(zeros(length(frameNatcoord),1),frameNatcoord,'ob');hold on
106 set(gca,'xtick',[])
107 plot(ones(nb1nodes,1)*−0.15,lambdaNatcoord1,'sg');hold on
108 plot(ones(nb2nodes,1)*0.15,lambdaNatcoord2,'sr')
109 xlim([−1 1])
110 title('Frame nodes for coupling 1−2')
111 else
112 figure(4)
113 plot(frameNatcoord,zeros(length(frameNatcoord),1),'ob');hold on
114 set(gca,'ytick',[])
115 plot(lambdaNatcoord1,ones(nb1nodes,1)*−0.15,'sg');hold on
116 plot(lambdaNatcoord2,ones(nb2nodes,1)*0.15,'sr');
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117 ylim([−1 1])
118 title('Frame nodes for coupling 3−4')
119 end
120 end

zmr force.m

1 function [force1 force2] = zmr force(lambdaNatcoord1,lambdaNatcoord2)
2

3 b1=lambdaNatcoord1; b2=lambdaNatcoord2; %Shortening of name only
4 nb1nodes=length(b1); nb2nodes=length(b2);%Number of boundary noes
5

6 force1=zeros(nb1nodes,1); %Boundary 1 multipliers
7 force2=zeros(nb2nodes,1); %Voundary 2 multipliers
8

9 for i=2:nb1nodes
10 l=b1(i)−b1(i−1); %length of boundary element
11 f=1/2*l; %Force = Area of triangular shape function
12

13 force1(i−1)=force1(i−1) − f;%Negative forces for boundary 1
14 force1(i)=force1(i) − f;
15 end
16 for i=2:nb2nodes
17 l=b2(i)−b2(i−1);
18 f=1/2*l;
19

20 force2(i−1)=force2(i−1) + f;%Positive forces for boundary 2
21 force2(i)=force2(i) + f;
22 end
23 end

B.3.6 L matrix.m

1 function [L] = L matrix(XYZ,frameNatcoord,gamma)
2

3 if gamma==1
4 var=max(XYZ(:,1));
5 id=find(abs(XYZ(:,1)−var)<10ˆ−10); %Boundary node numbers
6 xy=XYZ(id,2); %Boundary node coordinates
7 elseif gamma==2
8 var=min(XYZ(:,1));
9 id=find(abs(XYZ(:,1)−var)<10ˆ−10);

10 xy=XYZ(id,2);
11 elseif gamma==3
12 var=max(XYZ(:,2));
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13 id=find(abs(XYZ(:,2)−var)<10ˆ−10);
14 xy=XYZ(id,1);
15 else
16 var=min(XYZ(:,2));
17 id=find(abs(XYZ(:,2)−var)<10ˆ−10);
18 xy=XYZ(id,1);
19 end
20

21 nbnodes=length(id); %Number of boundary nodes
22 nfnodes=length(frameNatcoord); %Number of frame nodes
23 Lb=xy(nbnodes)−xy(1); %Length of boundary
24 lambdaNatcoord=2*(xy−min(xy))./Lb − 1; %Boundary natural node coord
25

26 L=zeros(2*nbnodes,2*nfnodes);
27 for i=1:nbnodes
28 for j=1:nfnodes
29 xi=lambdaNatcoord(i);
30

31 [Nb]=shapefunc frame(j,xi,frameNatcoord);
32

33 L(2*i,2*j)=Nb;
34 L(2*i−1,2*j−1)=Nb;
35 end
36 end
37 end

shapefunc frame.m

1 function [Nb] = shapefunc frame(j,xi,framenatcoord)
2

3 a=framenatcoord; %Shortening of name only
4 b=length(a); %Number of frame nodes
5

6 if b==1
7 error('Must have at least TWO frame nodes')
8 end
9

10 if j==1 % If bottom frame node
11 if xi<=a(2) %Upper triangle
12 l=a(1)−a(2); %Length of element
13 Nb=xi/l+a(2)/abs(l); %Value at xi
14 else % If outside shape function
15 Nb=0;
16 end
17 elseif j==b % If top frame node
18 if xi>=a(b−1) %Lower triangle
19 l=a(b)−a(b−1);
20 Nb=xi/l−a(b−1)/abs(l);
21 else
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22 Nb=0;
23 end
24 else % If middle frame node(s)
25 if xi<=a(j) && xi>=a(j−1) %Lower triangle
26 l=a(j)−a(j−1);
27 Nb=xi/l−a(j−1)/abs(l);
28 elseif xi>a(j) && xi<=a(j+1) %Upper triangle
29 l=a(j)−a(j+1);
30 Nb=xi/l+a(j+1)/abs(l);
31 else
32 Nb=0;
33 end
34 end

B.3.7 B matrix.m

1 function [B] = B matrix(XYZ,gamma,BCcorner)
2

3 if gamma==1
4 var=max(XYZ(:,1));
5 id=find(abs(XYZ(:,1)−var)<10ˆ−10); %Boundary node numbers
6 elseif gamma==2
7 var=min(XYZ(:,1));
8 id=find(abs(XYZ(:,1)−var)<10ˆ−10);
9 elseif gamma==3

10 var=max(XYZ(:,2));
11 id=find(abs(XYZ(:,2)−var)<10ˆ−10);
12 else
13 var=min(XYZ(:,2));
14 id=find(abs(XYZ(:,2)−var)<10ˆ−10);
15 end
16 nbnodes=length(id); %Number of boundary nodes
17 nnodes=length(XYZ); %Number of nodes
18

19 B=zeros(2*nbnodes,2*nnodes);
20

21 for i=1:nbnodes
22 B(2*i,2*id(i))=1;
23 B(2*i−1,2*id(i)−1)=1;
24 end
25 B=B(:,BCcorner);
26 end
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B.3.8 A matrix.m

1 function [A] = A matrix(K,B1,B2,B3,B4,L1,L2,L3,L4)
2

3 Ki=size(K,1);
4 B1i=size(B1,1);
5 B2i=size(B2,1);
6 B3i=size(B3,1);
7 B4i=size(B4,1);
8 L1j=size(L1,2);
9 L2j=size(L2,2);

10 L3j=size(L3,2);
11 L4j=size(L4,2);
12

13 i=Ki+B1i+B2i+B3i+B4i+L1j+L3j;
14 A=zeros(i,i);
15

16 A(1:Ki,1:Ki) = K;
17 A(Ki+1:Ki+B1i,1:Ki) = B1;
18 A(Ki+B1i+1:Ki+B1i+B2i,1:Ki) = B2;
19 A(Ki+B1i+B2i+1:Ki+B1i+B2i+B3i,1:Ki) = B3;
20 A(Ki+B1i+B2i+B3i+1:Ki+B1i+B2i+B3i+B4i,1:Ki) = B4;
21

22 A(1:Ki,Ki+1:Ki+B1i) = B1';
23 A(1:Ki,Ki+B1i+1:Ki+B1i+B2i) = B2';
24 A(1:Ki,Ki+B1i+B2i+1:Ki+B1i+B2i+B3i) = B3';
25 A(1:Ki,Ki+B1i+B2i+B3i+1:Ki+B1i+B2i+B3i+B4i) = B4';
26

27 A(i−L3j−L1j+1:i−L3j,Ki+1:Ki+B1i) = −L1';
28 A(i−L3j−L1j+1:i−L3j,Ki+B1i+1:Ki+B1i+B2i) = −L2';
29 A(i−L3j+1:i,Ki+B1i+B2i+1:Ki+B1i+B2i+B3i) = −L3';
30 A(i−L3j+1:i,Ki+B1i+B2i+B3i+1:Ki+B1i+B2i+B3i+B4i) = −L4';
31

32 A(Ki+1:Ki+B1i,i−L3j−L1j+1:i−L3j) = −L1;
33 A(Ki+B1i+1:Ki+B1i+B2i,i−L3j−L1j+1:i−L3j) = −L2;
34 A(Ki+B1i+B2i+1:Ki+B1i+B2i+B3i,i−L3j+1:i) = −L3;
35 A(Ki+B1i+B2i+B3i+1:Ki+B1i+B2i+B3i+B4i,i−L3j+1:i) = −L4;
36

37 for k=Ki+1:i %No zeros along the diagonal
38 A(k,k)=10ˆ−18;
39 end
40 end
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B.3.9 r vector.m

1 function [r] = r vector(XYZ,CON,DOF,D,ElemType,th,eps,BCcorner)
2

3 nel=size(CON,1); %Number of elements
4 ndof=2*length(XYZ); %Number of DOFs
5

6 r=zeros(ndof,1);
7 for i=1:nel
8 id=DOF(i,:); %Element DOF numers
9 xyz=XYZ(CON(i,:),:); %Element node coordinates

10 De=D(i*3−2:i*3,1:3); %Constitutive element matrix
11

12 [˜, re]=feval(ElemType,xyz,De,th,eps);
13

14 r(id)=r(id) + re;
15 end
16 r=−r(BCcorner);
17 end

B.3.10 sigmaHomo vector.m

1 function [sigmaHomo] = sigmaHomo vector(XYZ,CON,DOF,D,eps,d)
2

3 nel=size(CON,1); %Number of elements
4

5 a=1/sqrt(3);
6 w=1;
7 Gauss=[−a a a −a;−a −a a a];%4−point Gauss
8

9 sigma=zeros(3,1); %Stress vector
10 vol=0; %Volume
11 for i=1:nel
12 De=D(i*3−2:i*3,1:3); %Constitutive element matrix
13 id=DOF(i,:); %Element DOF numers
14 xyz=XYZ(CON(i,:),:); %Element node coordinates
15 de=d(id); %Element node displacements
16

17 for j = 1:4
18 xi=Gauss(1,j);
19 eta=Gauss(2,j);
20

21 [dsB J]=dispstrain B(xyz,xi,eta);
22

23 sigmaGauss=De*(dsB*de+eps); %Stress in Gauss−point j in ...
element i

24
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25 sigma=sigma + sigmaGauss*J*w; %Add the stresses in all ...
Gauss−points

26

27 vol=vol+J;
28 end
29 end
30 sigmaHomo=sigma./vol; %Divide the summed stresses by total volume
31 end

B.3.11 VoigtReuss.m

1 %% Calculates Voigt and Reuss bounds
2

3 nel=size(CON,1); %Number of elements
4 v=zeros(3,3); %Voigt matrix
5 r=zeros(3,3); %Reuss matrix
6 vol=0; %Total volume
7 Gauss=[−1 1 1 −1;−1 −1 1 1]./sqrt(3); %4 point Gauss
8 for i=1:nel
9 De=D(i*3−2:i*3,1:3); %Constitutive element matrix

10 xyz=XYZ(CON(i,:),:); %Element node coordinates
11

12 vole=0; %Element volume
13 for j = 1:4
14 xi=Gauss(1,j);
15 eta=Gauss(2,j);
16 [˜, J]=dispstrain B(xyz,xi,eta);
17 vole=vole+J;
18 end
19

20 v=v+De*vole; %Voigt sum
21 r=r+vole./De; %Reuss sum
22

23 vol=vol+vole; %Total volume
24 end
25

26 Lv=v./vol; %Voigt average matrix
27 Lr=1./r*vol; %Reuss average matrix
28

29 [speedsv] = christoffelspeeds(Lv,theta,rho); %Voigt velocities
30 [speedsr] = christoffelspeeds(Lr,theta,rho); %Reuss velocities
31

32 figure(8) %Polar P−wave plots
33 polar(theta',speedsv(:,1),'k'); hold on;
34 polar(theta',speedsr(:,1),'k');
35

36 figure(9) %Polar S−wave plots
37 polar(theta',speedsv(:,2),'k'); hold on;
38 polar(theta',speedsr(:,2),'k');
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39

40 [xvp,yvp] = pol2cart(theta,speedsv(:,1)');
41 [xvs,yvs] = pol2cart(theta,speedsv(:,2)');
42 [xrp,yrp] = pol2cart(theta,speedsr(:,1)');
43 [xrs,yrs] = pol2cart(theta,speedsr(:,2)');
44

45 figure(10) %Plots shaded bounds
46 area(xvp,yvp,'FaceColor',[0.8 0.8 0.9]);hold on
47 area(xrp,yrp,'FaceColor',[1 1 1]); hold on
48 area(xvs,yvs,'FaceColor',[0.9 0.8 0.8]); hold on
49 area(xrs,yrs,'FaceColor',[1 1 1]);hold on
50 axis image

christoffelspeeds.m

1 function [speeds] = christoffelspeeds(L,theta,rho)
2

3 speeds=zeros(length(theta),2);
4 for i=1:length(theta)
5 [x,y] = pol2cart(theta(i),1);
6

7 D=[x 0 y;
8 0 y x];
9 D=D/norm([x y]); %Make them unit vectors

10

11 eigvals = eig(D*L*D');
12 eigvals = sort(eigvals,'descend'); %Eigenvalues
13

14 speeds(i,:) = sqrt(eigvals./rho); %Wave velocities
15 end
16 end

B.3.12 macro K matrix.m

1 function [K] = macro K matrix(XYZma,CONma,DOFma,HomoL,th,BCmacro)
2

3 nel=size(CONma,1); %Number of RVEs
4 ndof=2*length(XYZma); %Number of DOFs
5

6 K=zeros(ndof,ndof);
7 for i=1:nel
8 id=DOFma(i,:); %RVE DOF numers
9 xyz=XYZma(CONma(i,:),:); %RVE node coordinates

10

11 a=1/sqrt(3);
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12 w=1;
13 Gauss=[−a a a −a;−a −a a a]; %4−point Gauss
14

15 ke=zeros(8,8);
16 for j = 1:4
17 xi=Gauss(1,j);
18 eta=Gauss(2,j);
19

20 [dsB J]=dispstrain B(xyz,xi,eta);
21

22 ke=ke+dsB'*HomoL*dsB*J*th*w;
23 end
24

25 K(id,id)=K(id,id) + ke;
26 end
27 K=K(BCmacro,BCmacro);
28 end

B.4 Main Script Using MPC

1 clear all
2 clc
3 %% INPUT MICRO
4

5 %5.1.1 Homogeneous Material with Matching Grids
6 bot= [0 2]; %x−nodes of bottom side
7 top= [0 2]; %x−nodes of top side
8 left= [0 1 2]; %y−nodes of left side
9 right=[0 1 2]; %y−nodes of right side

10 [XYZ CON DOF] = mesh(bot,top,left,right);
11 E=ones(size(CON,1),1)*200000; %Young's modulus [El1 El2 ...]
12 nu=ones(size(CON,1),1)*0.3; %Poisson's ratio [El1 El2 ...]
13

14 th=1; %Thickness
15 ElemType='Q4'; %Element type
16

17 PlaneStrain='yes'; %Plane strain: yes / Plane stress: no
18

19 WavePlots = 'no'; %Want wave velocity plots: yes / no
20 Theta = pi; %Max propagation angle
21

22 %% INPUT MACRO
23

24 BOT= [0 2 4];
25 TOP= [0 2 4];
26 LEFT= [0 2 4];
27 RIGHT=[0 2 4];
28
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29 [XYZma CONma DOFma] = macro mesh(BOT,TOP,LEFT,RIGHT);
30 %[CONma DOFma] = macro mesh givenXYZ(XYZ,nelx,nely);
31

32 BCmacro = ones(2*length(XYZma),1);
33 rmacro = zeros(2*length(XYZma),1);
34

35 %Boundary constraints; give constrained DOFs
36 BCmacro([1 7 8 13])=0;
37

38 %Load; give value and DOFs that the value are applied to
39 rmacro([5 17]) = 5;
40 rmacro(11) = 10;
41

42 BCmacro=find(BCmacro);
43 rmacro=rmacro(BCmacro);
44

45 %% MICRO ANALYSIS
46

47 if strcmpi(PlaneStrain,'yes')
48 [D] = plane strain(E,nu);
49 else
50 [D] = plane stress(E,nu);
51 end
52

53 [BCcorner] = BCcorner(XYZ); %All DOFs except corner DOFs
54

55 [T] = T matrix(XYZ,BCcorner);
56

57 [K] = K matrix(XYZ,CON,DOF,D,ElemType,th,BCcorner);
58

59 Km=T'*K*T; %Modify K
60

61 ndofs=2*length(XYZ); %Number of DOFs
62 HomoL=zeros(3,3);
63 for m=1:3
64 eps=zeros(3,1);
65 eps(m,1)=1;
66

67 [r] = r vector(XYZ,CON,DOF,D,ElemType,th,eps,BCcorner);
68

69 rm=T'*r; %Modify r
70

71 dm=Km\rm;
72

73 d=zeros(ndofs,1);
74 dms=T*dm;
75 d(BCcorner)=dms; %Total displacement vector
76

77 [sigmaHomo] = sigmaHomo vector(XYZ,CON,DOF,D,eps,d);
78 HomoL(:,m)=sigmaHomo;
79

80 figure(2+m)
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81 plot(XYZ(:,1),XYZ(:,2),'sk'); hold on
82 plot(XYZ(:,1)+d(1:2:length(d)−1),XYZ(:,2)+d(2:2:length(d)),'or')
83 title(['Displacment plot for unit strain state ', num2str(m)])
84 end
85 display('The homogenized constitutive matrix is')
86 HomoLmpc=HomoL
87

88 if strcmpi(WavePlots,'yes') %If wave velocity plots
89 theta=0:pi/100:Theta;
90 rho=1;
91

92 VoigtReuss %Runs VoigtReuss script
93

94 [speeds] = christoffelspeeds(HomoLmpc,theta,rho);
95

96 figure(8)
97 polar(theta',speeds(:,1),'b'); hold on;
98 title('P−wave velocity polar plot')
99

100 figure(9)
101 polar(theta',speeds(:,2),'r'); hold on;
102 title('S−wave velocity polar plot')
103

104 [xp,yp] = pol2cart(theta,speeds(:,1)');
105 [xs,ys] = pol2cart(theta,speeds(:,2)');
106 figure(10);
107 plot(xp,yp,'b'); hold on
108 plot(xs,ys,'r'); hold on
109 title('Wave velocity plots')
110 end
111

112 %% MACRO ANALYSIS
113

114 [Kmacro] = macro K matrix(XYZma,CONma,DOFma,HomoL,th,BCmacro);
115

116 u=Kmacro\rmacro;
117

118 dmacro=zeros(2*length(XYZma),1);
119 dmacro(BCmacro) = u; %Total macro displacement vector
120

121 figure(11)
122 plot(XYZma(:,1),XYZma(:,2),'ok');hold on
123 plot(XYZma(:,1)+dmacro(1:2:length(dmacro)−1), ...
124 XYZma(:,2)+dmacro(2:2:length(dmacro)),'or')
125 title('Macro scale displacement plot')
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B.4.1 T matrix.m

1 function [T] = T matrix(XYZ,BCcorner)
2

3 nnodes=length(XYZ); %Number of nodes
4

5 id1=find(abs(XYZ(:,1)−max(XYZ(:,1)))<10ˆ−10); %Boundary 1 node nr
6 id2=find(abs(XYZ(:,1)−min(XYZ(:,1)))<10ˆ−10); %Boundary 2 node nr
7 id3=find(abs(XYZ(:,2)−max(XYZ(:,2)))<10ˆ−10); %Boundary 3 node nr
8 id4=find(abs(XYZ(:,2)−min(XYZ(:,2)))<10ˆ−10); %Boundary 4 node nr
9

10 ids2=id2(2:length(id2)−1); %Boundary 2 slave node nr
11 ids4=id4(2:length(id4)−1); %Boundary 4 slave node nr
12

13 ns2nodes=length(ids2); %Number of boundary 2 slave nodes
14 ns4nodes=length(ids4); %Number of boundary 4 slave nodes
15 nsnodes=ns2nodes+ns4nodes; %Number of slave nodes
16

17 slavedofs=zeros(2*nsnodes,1); %Slave DOFs
18 slavedofs(1:2:2*nsnodes−1)=[2*ids4'−1 2*ids2'−1];
19 slavedofs(2:2:2*nsnodes)=[2*ids4' 2*ids2'];
20

21 a=ones(nnodes,1);
22 a(id2)=0; a(id4)=0; %Taking away slave nodes+3 corner nodes
23 a(length(a))=0; %Taking away upper right corner node
24 idm=find(a); %Master nodes(including internal nodes)
25

26 nmnodes=length(idm); %Number of master nodes
27 masterdofs=zeros(2*nmnodes,1); %Master DOFs
28 masterdofs(1:2:2*nmnodes−1)= 2*idm−1;
29 masterdofs(2:2:2*nmnodes)= 2*idm;
30

31 G = zeros(2*nsnodes,2*nnodes);
32 for i=1:ns4nodes %Boundary 4 slave nodes first, lower node numbers
33

34 G(2*i−1,2*ids4(i)−1) = −1; %Slave x−dof in Gs
35 G(2*i,2*ids4(i)) = −1; %Slave y−dof in Gs
36

37 gamma=3; %Boundary 3 and 4
38

39 [alpha masternode] = mpc alpha(XYZ,gamma,i);
40

41 G(2*i−1,2*id3(masternode)−1) = alpha;%Upper master x−dof in Gm
42 G(2*i−1,2*id3(masternode−1)−1) = 1−alpha;%Lower master x−dof
43 G(2*i,2*id3(masternode)) = alpha; %Upper master y−dof in Gm
44 G(2*i,2*id3(masternode−1)) = 1−alpha; %Lower master y−dof
45 end
46 c=ns4nodes; %Shortening of name only
47 for i=1:ns2nodes %Loop over boundary 2 slave nodes
48

49 G(2*(i+c)−1,2*ids2(i)−1) = −1;
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50 G(2*(i+c),2*ids2(i)) = −1;
51

52 gamma=1; %Boundary 1 and 2
53

54 [alpha masternode] = mpc alpha(XYZ,gamma,i);
55

56 G(2*(i+c)−1,2*id1(masternode)−1) = alpha;
57 G(2*(i+c)−1,2*id1(masternode−1)−1) = 1−alpha;
58 G(2*(i+c),2*id1(masternode)) = alpha;
59 G(2*(i+c),2*id1(masternode−1)) = 1−alpha;
60 end
61

62 Gs=G(:,slavedofs); %Gs−matrix
63 Gm=G(:,masterdofs); %Gm−matrix
64

65 T=zeros(2*nnodes,2*nmnodes);
66 T(masterdofs,:) = diag(ones(2*nmnodes,1));
67 T(slavedofs,:) = −inv(Gs)*Gm;
68

69 T=T(BCcorner,:); %Taking away corner dofs
70 end

mpc alpha.m

1 function [alpha masternode] = mpc alpha(XYZ,gamma,i)
2

3 if gamma==1
4 id1=find(abs(XYZ(:,1)−max(XYZ(:,1)))<10ˆ−10);%Boundary 1 node nr
5 id2=find(abs(XYZ(:,1)−min(XYZ(:,1)))<10ˆ−10);%Boundary 2 node nr
6 xy1=XYZ(id1,2); xy2=XYZ(id2,2); %Boundary node y−coord
7 else
8 id1=find(abs(XYZ(:,2)−max(XYZ(:,2)))<10ˆ−10);%Boundary 3 node nr
9 id2=find(abs(XYZ(:,2)−min(XYZ(:,2)))<10ˆ−10);%Boundary 4 node nr

10 xy1=XYZ(id1,1); xy2=XYZ(id2,1); %Boundary node x−coord
11 end
12

13 nb1nodes=length(id1); %Number of boundary 1 nodes
14 Lb=xy1(nb1nodes)−xy1(1); %Length of boundary
15 lambdaNatcoord1=2*(xy1−min(xy1))./Lb − 1;%Boundary 1 nat node coord
16 lambdaNatcoord2=2*(xy2−min(xy2))./Lb − 1;%Boundary 2 nat node coord
17

18 b1=lambdaNatcoord1; b2=lambdaNatcoord2; %Shortening of name only
19

20 xi=b2(i+1);
21 for j=2:nb1nodes
22 if xi<=b1(j) %If slave node lower than master node
23 alpha = (xi−b1(j−1))/(b1(j)−b1(j−1));
24 masternode=j; %Upper master node
25 return
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26 end
27 end

B.5 Backus2D.m

1 %% Calculates Backus average
2 clear all
3 clc
4

5 %5.1.2 Layered Materials with Matching Grids
6 E=[100 1000 10 1 0.01 1000 0.1 10 100 1];
7 nu=[0.45 0.405 0.36 0.315 0.27 0.225 0.18 0.135 0.09 0.045];
8

9 [D] = plane strain(E,nu);
10 %[D] = plane stress(E,nu);
11

12 a1=0;a2=0;f1=0;c1=0;l1=0;
13 for i=1:size(D,1)/3
14

15 a=D(i*3−2,1);
16 f=D(i*3−1,1);
17 c=D(i*3−1,2);
18 l=D(i*3,3);
19

20 a1=a1+a−fˆ2/c;
21 a2=a2+(f/c);
22 c1=c1+(1/c);
23 f1=f1+(f/c);
24 l1=l1+(1/l);
25 end
26

27 A=a1/i+(c1/i)ˆ−1*(a2/i)ˆ2;
28 F=(c1/i)ˆ−1*(f1/i);
29 C=(c1/i)ˆ−1;
30 L=(l1/i)ˆ−1;
31

32 display('The Backus average matrix becomes')
33 HomoLbackus=[A F 0;F C 0;0 0 L]


