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Summary

The virtual synchronous machine (VSM) concept has emerged as an approach to provide
flexible distributed control of power electronic converters interfacing distributed energy
resources with the grid. It supports power system operation by providing ancillary ser-
vices, and facilitates a seamless transition between grid-connected and islanded operation.
In this work, previous small-signal modelling and analysis carried out for a VSM imple-
mentation has been adapted and expanded to include a synchronous machine (SM) with
a control scheme similar to those of traditional generation units and to the one used in
the VSM implementation.

A nonlinear state-space analytical model has been developed for a traditional power gen-
eration unit in grid-connected mode (SM system). The model allows the study of the SM
system in similar conditions/context as the grid-connected VSM implementation (VSM
system), and facilitates their comparison. Moreover, it can represent the most relevant
dynamic characteristics of a round or salient-pole rotor SM, including the amortisseur
circuits or the representation of the corresponding damping torque in the swing equa-
tion of a reduced-order version of the model. The developed model has been linearised
analytically, to obtain the respective small-signal model.

The eigenvalue analysis of the modelled systems has indicated that most of the SM system
eigenvalues (modes) are slower or not as well damped as the VSM system ones. Moreover,
most SM system modes have shown to be relatively fixed and determined mainly by non-
tunable parameters. The modelled exciter has presented little capability of increasing the
damping of oscillations, and its integral gain, ki,ex, has demonstrated to be the tunable
parameter that can most easily cause instability in the SM system. The location of the 4
slowest and least damped SM system eigenvalues has shown to be limited by non-tunable
parameters, indicating that the performance or robustness of such system cannot be sig-
nificantly improved. A trade-off has been observed in the placement of the VSM system
critical modes: increasing the virtual inductance, lv, improves the damping of oscillations,
while making the system response slower. However, parametric sweep analysis has indi-
cated that a good compromise between performance and robustness could be achieved by
decreasing lv and increasing the phase lock loop proportional gain, kp,PLL.
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Chapter 1

Introduction

1.1 Motivation

Planning, development and operation of electric power systems is expected to face consid-
erable challenges with the proliferation of distributed generation (DG) from intermittent
renewable energy sources (RES), such as photovoltaics and wind [7]. As some traditional
synchronous generators will be replaced by such generation, power electronic converters,
commonly used in these applications to interface the grid, can be expected to have a
more significant impact on large-scale power systems. Under such conditions, the de-
crease of the systems’ physical inertia and its stabilising effects can become a problem [9].
However, the advantage of generation interfaced by power electronics is its controllability
[38].

Traditional power generation units support power system operation in different ways.
They provide damping of power oscillations through their large rotating inertias, primary
frequency regulation through their governor’s droop characteristic, and local control of
voltage or reactive power flow through their excitation control. These are not intrin-
sic to conventional control of RES power electronics interfaces, which depend on the
synchronisation to a stable grid frequency [7, 13]. However, an emerging approach to
the control of power electronic converters has been the emulation of essential proper-
ties of traditional power generation units, in order to gain the equivalent functionality
[1, 2, 5, 6, 9, 11, 14, 15, 16, 19, 26, 29, 31, 35, 37, 40, 41, 42]. In this approach, some
of the proposed control structures have been explicitly conceived to replicate the dy-
namic response of a synchronous machine (SM) . Such schemes can be classified as virtual
synchronous machines (VSMs) [13].

Most VSM control studies have introduced specific implementations. These have mainly
been tested independently, from the control system point of view, by time-domain sim-
ulations and/or laboratory experiments. Detailed modelling and small-signal stability
analysis of a particular VSM implementation were first included in the study presented
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2 Introduction

in [11], mainly for the purpose of tuning the power electronic converter control loops. De-
tailed models and small-signal stability analyses of VSM implementations also considering
the primary active power-frequency control and the dynamics of the grid frequency detec-
tion have been presented in [12, 13]. However, the small-signal stability characteristics of
a VSM implementation still need to be compared with those of a traditional generation
unit.

1.2 Scope and Limitations

This work has focused on the comparison of the small-signal stability properties of
a particular VSM implementation with those of a traditional generation unit with a
SM.Component-level considerations e.g., design, sizing, manufacturing, detailed mod-
elling and tuning, have been excluded, and only grid-connected operation has been con-
sidered at first. Fast changes in the grid frequency have been excluded from the modelling
under the assumption that protections prevent them from happening. For simplicity, load
dynamics have not been considered and balanced three-phase conditions have been as-
sumed.

The SM stator windings have been assumed to be distributed sinusoidally along the air-
gap. Magnetic hysteresis and variations of the rotor inductances with rotor position
caused by the stator slots have been neglected. Magnetic saturation effects have also
been neglected, so that all circuits have been assumed to be linearly coupled (linear flux-
current relationships) [24]. Damping of the rotor motion by mechanical losses has been
neglected [30]. The estimation of the damping factor (coefficient) for the swing equation
of the reduced-order SM model and its dependence on the machine loading have been
excluded. For simplicity, the dynamics of the governor, turbine and exciter have been
represented with simple models. The modelling of the exciter has included a simple
model for the automatic voltage regulator (AVR), and the power system stabiliser (PSS)
has been excluded.

In modelling the power electronic conversion, the switching frequency has been assumed
to be high enough for the switching action not to affect the progression of the states
[23]. Thus, the switching effects and any delay due to the implementation of the pulse-
width modulation (PWM) have been neglected, and an ideal average model has been
assumed [13]. Moreover, the PWM has been assumed to be done in the linear range.
Limitations, controlled output saturations and anti-windup functions, required for the
safe operation of the power electronic converter, have been excluded from the modelling
under the assumption that they don’t influence the control scheme dynamics in the normal
operating range [13].

No application-specific constraints have been considered for the direct current (DC) side of
the power electronic converter and, thus, modelling and control of the energy resource(s)
on the DC side has been excluded. Furthermore, the power requested from the AC side
has been assumed to be available at the DC side [13].



1.3 Research goals 3

1.3 Research goals

1.3.1 Main goal

To study the small-signal stability characteristics of a traditional power generation unit
with a SM and compare them with those of the reference VSM implementation.

1.3.2 Specific goals

• To create and implement routines and (nonlinear) dynamic models in MATLAB/
Simulink to simulate and analyse the behaviour of the reference VSM implementa-
tion in grid-connected mode (VSM system).

• To develop, following the conventions used in the modelling of the reference VSM
implementation, a nonlinear state-space analytical model of a traditional power
generation unit directly connected to the grid, with a general model of a SM and
currents (instead of fluxes) as state variables, to be used as the reference SM imple-
mentation in grid-connected mode (SM system).

• To create routines and dynamic models in MATLAB/Simulink to simulate and
analyse the behaviour of the SM system.

• To develop, for any set of inputs and parameter values and any operating (lin-
earisation) point, a general small-signal model of the SM system by analytically/
symbolically linearising the corresponding nonlinear state-space model.

• To validate the small-signal models by comparing their dynamic responses to those
of the corresponding (nonlinear) dynamic models.

• To derive, for any set of inputs and parameter values and any operating point,
expressions for the solution of the SM system nonlinear model equations in steady-
state conditions.

• To create and implement functions for calculating the steady-state conditions of the
modelled systems.

• To derive expressions for the partial derivatives of the SM system small-signal model
state matrix with respect to each of the system parameters.

• To develop and implement functions for analysing the small-signal stability charac-
teristics of the modelled systems.

• To analyse and compare the small-signal stability characteristics of the modelled
systems.

1.4 Problem description

Using linear techniques, small-signal analysis gives information about the power system
dynamic characteristics, and helps in its design [24]. The system equations can be linear-
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ised, making the right assumptions, enabling sensitivity information to be calculated and
factors influencing the small-signal stability to be identified [25].

The nonlinear and linearised small-signal models of the reference VSM implementa-
tion have been studied and implemented, and the presented results have been repro-
duced.

A nonlinear state-space model has been developed for a grid-connected, traditional power
generation unit with a SM and currents (instead of fluxes) as state variables, following
the conventions used in the modelling of the reference VSM implementation e.g., the
choice of per unit base values, nomenclature and Park transformation. A general SM
model has been used, which can represent the most relevant dynamic characteristics of a
round or salient-pole rotor SM, including the amortisseur circuits or the representation
of the corresponding damping torque in the swing equation of a reduced-order version of
the model. The developed analytical model has been linearised for any set of parameter
values and any operating (linearisation) point, to obtain the corresponding small-signal
model.

The linearised small-signal models have been validated by comparing their dynamic re-
sponses to those of the nonlinear models and verifying they accurately represent the
investigated systems for small deviations around the linearisation points.

Expressions for the solution of the SM system nonlinear model equations in steady-state
conditions have been derived for any set of inputs, parameter values and operating point.
Functions have been created and implemented to calculate the steady-state conditions of
the modelled systems by numerically solving and evaluating the corresponding expressions
for the solution of the nonlinear equations in steady-state conditions.

To study the small-signal characteristics of the systems, the eigenvalues (modes) of the
linearised small-signal models have been calculated, along with the corresponding eigen-
vectors. Using that information, participation (factors) analysis has been performed to
investigate interactions between system states and modes. To determine which param-
eters strongly influence certain eigenvalues, the sensitivity of the modes to changes in
system parameters has been studied, which has required calculating the partial deriva-
tives of the state matrices with respect to each of the system parameters. The analyses
have focused on the the slowest and least damped eigenvalues.

1.5 Methodology

To reach the set goals, functions and programs have been developed in the MATLAB pro-
gramming language, and models have been created in the Simulink graphical block dia-
gramming tool, within the MATLAB numerical computing integrated environment.

Programs have been developed to simulate and analyse the behaviour of the studied sys-
tems. The time-domain simulations have been carried out in Simulink, while the execution
control, algebraic matrix manipulation and small-signal analysis (by linear techniques)
have been performed in MATLAB.

In order to obtain general expressions for the SM system, the Maple computer algebra
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system has been extensively used to carry out the necessary analytical/symbolic manip-
ulation of the equations. This includes:

• developing the nonlinear state-space model,

• deriving expressions for the nonlinear equation system steady-state solution,

• linearising the model,

• differentiating the resulting small-signal model state matrix with respect to the
system parameters,

• evaluating the generated expressions for verification and debugging purposes, and

• formating them for their implementation in MATLAB functions and for their pre-
sentation in this report.

Using the produced analytical expressions for the SM system, functions have been cre-
ated in MATLAB to calculate, for a given set of system parameters and steady-state
inputs:

• the steady-state conditions,

• the (linearised) small-signal model at the steady-state operating (linearisation) point,

• the eigenvalues and eigenvectors,

• their participation factors and

• their sensitivity to changes in the system parameters.

The implemented and developed models and functions have been used to analyse and
compare the small-signal stability characteristics of the studied systems.

1.6 Report outline

In Chapter 1, Introduction, the thesis work has been introduced. The motivation, scope
and limitations, research goals, problem description and methodology have been pre-
sented.

In Chapter 2, Background, concepts that are relevant to this work are presented, the cur-
rent state of knowledge is reviewed, and the contribution of this work is highlighted.

In Chapter 3, Modelling, the investigated systems are described, and corresponding (non-
linear) mathematical models are presented for each of their elements, as a basis for de-
veloping the (linearised) state-space small-signal models.

In Chapter 4, Simulation results, a base case is defined, and simulation results are pre-
sented and discussed. These include: dynamic responses of the base case systems to
changes in their inputs (from time-step simulations); base case eigenvalues, participation
factors and parametric sensitivities; and eigenvalue traces for system inputs and param-
eters varying around the base case values.



6 Introduction

In Chapter 5, Conclusions and recommendations, concluding remarks and recommenda-
tions for further work are made.



Chapter 2

Background

After decades of experience, traditional power system analysis is well established, with
standard models for each of the relevant components and frequency ranges (time horizons).
Such a well established analysis does not exist yet for systems with a significant influence
from generation interfaced with power electronic converters [32], which are pertinent to
this work. Because of the nature of such systems, the scope of this work lies in between
traditional power system analysis and control of power electronic converters. In this
chapter, concepts relevant to this work are presented, the current state of knowledge is
reviewed and the contribution of this work is highlighted.

An electrical power system is a highly nonlinear high-order multivariable process. It op-
erates in constantly changing conditions, and its dynamic response is affected by a broad
range of devices with different characteristics and response rates. Due to its complexity
and high dimensionality, it is necessary to make simplifying assumptions and to anal-
yse specific problems using suitable degrees of detail in its representation and the right
analytical techniques [25].

2.1 Traditional power systems

In traditional power systems, generation is provided by a rather small number of large
power plants, which are connected to the transmission system. In a traditional power
generation unit, a prime mover (usually a turbine or a combustion engine) converts the
primary source of energy into mechanical energy. The prime mover drives a synchronous
machine (SM), which transforms the mechanical energy into electrical energy. A governor
(speed controller/governor) controls the power output or the speed, based on a given active
power-frequency droop characteristic. An exciter provides the field (excitation) current,
necessary to create the magnetic field inside the SM. An automatic voltage regulator
(AVR) controls the field current and, in consequence, the SM terminal voltage [30].

7
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The stability of a traditional power system is strongly affected by its controls, which are
highly distributed in a hierarchical configuration. Controllers operate directly on individ-
ual elements like boilers, prime movers, excitation systems, power (electronic) converters
and transformer tap changers. The controllers of closely linked elements are coordinated
by plant controllers. System controllers supervise the plant controllers at system control
centres, and pool-level controllers coordinate the system controllers at pool control centres
[24].

Within the distributed control structure, traditional power generation units support tradi-
tional power system operation in different ways. They participate in the system damping
via their inertia, contribute in the primary frequency regulation by means of their gover-
nor droop characteristics, and take part in the local control of voltage or reactive power
flow through their excitation controls. Such features are not intrinsic to the conventional
control of the renewable energy sources (RES) power electronics interfaces, which depend
on the synchronisation to a stable grid frequency [13].

2.2 Power system stability

Power system stability refers to the capacity of an electric power system to recover op-
erating equilibrium after undergoing a disturbance, with most of the system remaining
intact. The initial operating conditions and the nature of the disturbance influence this
ability [25].

Power systems undergo a great diversity of disturbances. Load variations take place con-
stantly, acting as small disturbances, and power systems have to operate satisfactorily
while adapting to such changing conditions. They must also come through large distur-
bances, such as the loss of a large generator or a short circuit in a transmission line. Such
disturbances can result in structural changes caused by the isolation of faulted elements
or deliberate disconnections to maintain the major part of the system in operation. In-
terconnected power systems can also be deliberately divided into independent systems
called islands [25].

Simplifying assumptions are made to concentrate on the aspects determining the specific
kinds of stability problems. Stability in traditional power systems has been consequently
classified into various categories. This facilitates the identification of essential aspects
that contribute to instability and the development of methods for enhancing stability
[24, 25].

2.2.1 Swing equation

The rotational inertia equations are central to power system stability analysis. The equa-
tion of motion of a SM in per unit (pu), given by (2.1), describes the effect of an unbalance
between the pu electromagnetic (air-gap) torque, τe,SM (t), and the pu mechanical input
torque, τm,SM (t), in a SM, with t being the time in seconds, δθSM (t) the (phase) angle
difference (displacement) in electrical radians between the rotor angular position and the
reference (phase) angle in a rotating reference frame (RRF), kd,SM the damping factor
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(coefficient) and TSM the inertia time constant (mechanical starting time) in seconds [24].

TSM
d2

dt2
δθSM (t) = τm,SM (t)− τe,SM (t)− kd,SM

d

dt
δθSM (t) , (2.1)

TSM corresponds to the time it takes rated torque to accelerate the rotor from standstill
to rated speed, directly related to the combined moment of inertia of the SM and the
prime mover. (2.1) is known as the swing equation, as it describes the the rotor angle
swings during disturbances. The term kd,SM

d
dtδθSM (t) is usually included to represent

a component of damping torque, proportional the to the rotor angular speed deviation
(difference), d

dtδθSM (t), not included in the calculation of τe,SM (t) [24].

2.2.2 Rotor angle stability

For SMs to be interconnected, the frequency of their stator voltages and currents has to be
the same, and, since their rotors mechanical angular speed is synchronised to that angular
frequency, the rotors of all interconnected SMs need to be in synchronism. The stability
category concerned with the capacity of the interconnected SMs of a power system to
stay in synchronism after undergoing a disturbance is called rotor angle stability. Such
ability is determined by the capacity of each SM to sustain or regain equilibrium between
τm,SM (t) and τe,SM (t) + kd,SM

d
dtδθSM (t) [24, 25].

That operating equilibrium is disrupted when the power system undergoes a disturbance,
which causes the acceleration or deceleration of the rotors. When a SM spins more quickly
than another one, its rotor δθSM (t) increases with respect to that of the slower SM. The
increased relative δθSM (t) transfers part of the output power (load) from the slower SM
to the faster one, as a result of the highly nonlinear active power-angle relationship. The
consequently higher term τe,SM (t) + kd,SM

d
dtδθSM (t) reduces the faster rotor d

dtδθSM (t)
with respect to the slow one and thus their relative δθSM (t). However, due to the active
power-angle relationship, an increase in the relative δθSM (t) past a critical point results
in a decrease in the power transfer, so that the relative δθSM (t) increases further. If
the kinetic energy from the corresponding d

dtδθSM (t) is subsequently not absorbed by the
power system, instability arises [25].

The change in a SM electromagnetic torque, τe,SM (t) + kd,SM
d
dtδθSM (t), resulting from

a disturbance can be separated into a synchronising torque component, in phase with
δθSM (t), and a damping torque component, in phase with d

dtδθSM (t). The magnitudes
of both components in each SM determine system stability. Oscillatory instability is a
consequence of insufficient damping torque, while non-oscillatory (aperiodic) instability
is caused by a shortage of synchronising torque [25].

2.2.3 Voltage stability

The stability category concerned with the capacity of a power system to keep voltage levels
within their limits at all buses after undergoing a disturbance is called voltage stability.
Such ability is determined by the capacity to sustain or regain equilibrium between power
(load) supply and demand. Corresponding instability arises as a gradual voltage drop or
increase in some buses [25].



10 Background

Voltage instability occurs often together with rotor angle stability. One can result in
the other, and it can be difficult to differentiate them. The distinction has been made
nevertheless in the traditional classification of power system stability with the purpose of
comprehending the factors causing the problems, so that suitable design and operating
methods can be elaborated [24].

2.2.4 Small-signal stability

This work has focused on the particular capacity of power systems to sustain synchronism
and keep voltage levels within their limits at all buses under small perturbations, which
is called small-signal (small-disturbance) stability. In the analysis of such problems, the
system equations can be linearised making the right assumptions e.g., the small magnitude
of all signal deviations from the steady-state operating point. This enables the use of linear
techniques to calculate relevant sensitivity information, which can be used to determine
factors affecting stability [25].

Rotor angle small-signal stability problems can be local or global. Local problems entail
a small section of the power system. These are normally related to rotor angle oscillations
of one power plant against the rest of the power system, which are called local plant mode
oscillations. Global problems entail a group of SMs in one area swinging against another
group in another area, and have widespread effects. The corresponding oscillations, called
inter-area mode oscillations, have complex characteristics, very different from those of
local plant mode oscillations [24, 25].

After a full small-signal (linear) state-space model of the power system is established,
its eigenvalues (modes) can be calculated. These give the damping and frequency of
the oscillatory terms, and the speed of the non-oscillatory ones, in the system (model)
dynamic response. This analytical study enables further examination such as establishing
the relationship between system parameters and stability. Participation (factors) analysis
can then be performed to study interactions between system states and modes [4, 24, 32].
This analysis facilitates the investigation of the sensitivity of the eigenvalues to changes in
system states. Moreover, the study of mode sensitivity to changes in system parameters
contributes to determine which parameters strongly influence certain modes. In such
studies, the influences on slow or poorly damped eigenvalues are of main interest [4, 30,
32].

2.3 Distributed energy resources

Environmental, technological and economic incentives are shifting paradigms in power
systems. Traditional generation units exploiting centralised energy resources are giving
way to smaller, more distributed energy resources (DER). DER include distributed storage
(DS), demand response (DR) loads and distributed generation (DG), and encompass a
wide range of emerging technologies, most of which have power electronics interfaces to
the electrical power system. As opposed to traditional generation units, most DER are
connected to distribution networks [22, 28, 39].
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One of the major differences from traditional generation is that DG interfaced with power
electronics cannot inherently supply the instantaneous power needs because of the absence
of large rotors. Since most DG are inertia-less and respond slowly to control signals, load-
tracking problems occur when operating without the presence of traditional generation.
Thus, a system with groups of such DG designed to operate in that condition needs some
sort of (distributed) energy storage to guarantee initial energy balance [28].

The technical challenges associated with the centralised control of a significant number of
units is a fundamental problem for DER. In such a complex control system, the malfunc-
tion of a control, communication or software component could potentially cause a system
collapse [28].

2.4 Microgrids

To avoid the need of redesign or re-engineering of the power system while enabling co-
ordinated integration and high penetration of DER, system approaches have been taken
to aggregate loads and DER in groups viewed as single controllable subsystems: virtual
power plants (VPPs) [33, 36] or microgrids [28]. As opposed to that in microgrids, ag-
gregation in VPPs can be virtual (software-based). Thus, while a microgrid can operate
both in grid-connected and islanded mode, geographical limits often make the islanding
of a whole VPP impossible [28, 39].

In ensuring the reliability of a microgrid, small-signal stability is of main interest. Small-
signal stability analysis is well established for traditional power systems, but not so for
microgrids based on power converters. For such microgrids, the influence of system pa-
rameters on certain oscillatory modes needs to be determined, specially for the poorly
damped modes. Since the control and inertia time constants of traditional generation
units are much greater than the network ones, the dynamics of the latter are usually
excluded in the traditional power systems small-signal models. Most DER in microgrids
are, however, interfaced with the main network by power converters with smaller time
constants. Network dynamics can therefore influence the stability of such systems, and
need to be included [32]. As a consequence of the relatively small size of the DER in a
microgrid, most of the system dynamics in grid-connected operation are determined by
the grid itself. However, such dynamics in islanded operation are dictated by the DER,
their controls, the loads and the micronetwork itself [4, 32].

Microgrids can provide an electric service with higher power quality and reliability to
the end customers, and dispatchable power and relief or deferral of grid upgrades to the
power system operators [22, 27, 28]. By making use of local measurements only, they
can respond independently to events. This may require, for example, a quick change in
the control of the DG output power as it switches from a dispatched power mode to one
in which it must control the island frequency and follow the load [28]. Although such
operation is inherently feasible with traditional power generation units, it can be more
complicated to realise with power converters designed to operate in large-scale power
systems [13].
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2.5 Virtual synchronous machines

However, an emerging approach to the control of DER power converters has been the
emulation of fundamental characteristics of traditional power generation units in order to
obtain the equivalent functionality. In this approach, different control schemes have been
suggested for providing ancillary services such as emulation of rotating inertia, damping
of oscillations and reactive power (voltage) control [1, 2, 5, 6, 9, 11, 14, 15, 16, 19, 26,
29, 31, 35, 37, 40, 41, 42]. Some of the proposed control structures have been explicitly
conceived to replicate the dynamic response of a SM, and can be consequently classified
as virtual synchronous machines (VSMs). VSMs based on the swing equation have been
shown to be equivalent, under certain conditions, to the active power-frequency droop
control schemes devised originally for uninterruptible power supply (UPS) systems and
microgrids [9, 10], but VSM parameters can be more intuitive [13].

VSMs can help implementing flexible distributed (power) converter control structures,
capable of both grid-connected and islanded operation, and capable of smoothly changing
from one to the other. As opposed to conventional converter control schemes, VSMs can
independently provide transient power sharing and frequency support as primary control
actions, using only local information. These schemes can also track set-points given by
a central controller in a hierarchical structure for optimising grid operation. Another
advantage of VSMs is their conceptual simplicity, thanks to the intuitive interpretation of
their responses by analogy with those of SMs. However, to represent the energy storage
of the emulated rotating inertia, an adequate energy buffer is needed. Hence, the power
converter current ratings and their direct current (DC) side configurations restrict the
amount of virtual inertia that such schemes can provide [13].

Studies reviewing VSM implementations have been presented in [2, 9], including a classifi-
cation framework proposed in [9]. These studies have stressed that some implementations
do not fully capitalise on the VSM concept potential, as they depend on a phase lock
(phase-locked) loop (PLL) for sensing the grid frequency, its derivative and the grid volt-
age phase angle, hence relying on grids with large rotating inertia. Other implementations
use an internal (mathematical) SM model in the control system to directly generate the
voltage references for the pulse-width modulation (PWM) of the signals driving the power
electronic conversion [41]. Such direct open-loop control schemes do not allow, however,
the explicit inclusion of the necessary functions to protect the converters. Such functions
can be easily embedded in cascaded (closed-loop) control structures, in which the inertia
emulation algorithm generates the set-point for a voltage control loop in cascade with a
current control loop [8, 9, 13, 32, 34].

Most VSM control studies have introduced specific implementations. These have mainly
been tested independently, from the control system point of view, by time-domain sim-
ulations and/or laboratory experiments. Detailed modelling and small-signal stability
analysis of a specific implementation were first included in [11], mainly for the purpose
of tuning the power electronic converter control loops. Detailed models and small-signal
stability analyses of VSM implementations also considering the primary active power-
frequency control and the dynamics of the grid frequency sensing have been presented in
[12, 13]. The reference VSM implementation studied in this work has been proposed in
[13], and is explained in Chapter 3.
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In developing the necessary experience to establish reduced-order models for determined
problems, the small-signal stability characteristics of systems with significant influence
from generation interfaced with power electronic converters need to be further studied
[32]. This work has aimed to contribute in that regard by adapting and expanding pre-
vious VSM small-signal modelling and analysis to include a SM with a control scheme
similar to those of traditional generation units and to the one used in the reference VSM
implementation. The comparison of their small-signal stability characteristics can help
to asses the relevance and convenience of the developed and implemented models e.g.,
whether they provide the right degree of detail. Furthermore, applying linear analysis
techniques can help tuning the corresponding controllers to obtain better performance
and higher robustness of the studied systems.





Chapter 3

Modelling

In this chapter, the investigated systems are described, and corresponding (nonlinear)
mathematical models are presented for each of their elements, as a basis for developing
the (linearised) state-space small-signal models.

In a dual modelling approach, the reference virtual synchronous machine (VSM) im-
plementation and a traditional generating unit with a synchronous machine (SM) have
been modelled separately, and are thus introduced in a similar manner. The VSM sys-
tem models are based on the ones presented in [13], while the SM system models have
been developed following the same conventions e.g., the choice of per unit base values,
nomenclature and Park transformation. To facilitate comparison, the SM control outer
loops have been represented by models that are similar to those proposed in [13] for the
VSM.

3.1 Modelling conventions

The modelling of the systems and the implementations of the control systems are based
on per unit (pu) quantities, denoted by lower case letters, with the exception of time, t,
expressed in seconds, angles, expressed in electrical radians, cut-off angular frequencies
of the low-pass filters, expressed in electrical radians per second, and some base values,
expressed in their corresponding physical values. The base values are defined from the
apparent power ratings and the rated peak phase-to-neutral voltages. Physical values in
the electrical circuits are represented by upper case letters [13, 24].

The modelling, analysis and control of the systems is implemented in rotating reference
frames (RRFs). The transformations from the stationary reference frame into the RRFs
are based on the amplitude-invariant Park transformation, with the quadrature (q) axis
leading the direct (d) axis by 90◦. Balanced three-phase conditions have been assumed, so
no zero sequence components are included. The subindexes d and q denote the d-axis and
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Figure 3.1: Overview of the investigated system configuration and control structure for the
synchronous machine

q-axis components of a transformed variable, respectively. The magnitude of the current
and voltage vectors is 1 pu at rated conditions [13, 24].

RRF equations are given, where possible, in complex space vector (CSV) notation as in

vSM (t)
.
= vSM,d(t) + jvSM,q(t) . (3.1)

Active and reactive powers can therefore be expressed on complex or scalar form as in
(3.2), where iSM (t) denotes the complex conjugate of iSM (t) [13].

pSM (t) = Re
[
vSM (t)iSM (t)

]
= vSM,d(t)iSM,d(t) + vSM,q(t)iSM,q(t)

qSM (t) = Im
[
vSM (t)iSM (t)

]
= −vSM,d(t)iSM,q(t) + vSM,q(t)iSM,d(t)

(3.2)

3.2 Synchronous machine system

An overview of the investigated system configuration and control structure for the SM is
shown in Figure 3.1.

In developing the mathematical model of the SM, further assumptions have been made.
The stator windings have been assumed to be distributed sinusoidally along the air-
gap. Magnetic hysteresis and variations of the rotor inductances with rotor position
caused by the stator slots have been neglected. Magnetic saturation effects have also
been neglected, so that all circuits have been assumed to be linearly coupled (linear flux-
current relationships) [24]. Damping of the rotor motion by mechanical losses has been
neglected [30].

The circuits used in the modelling of the SM are shown in Figure 3.2. The stator circuits
comprise three-phase armature windings, a, b, c, carrying alternating currents (AC), while
the rotor circuits consist of field winding and amortisseur circuits, fd, 1d, 1q, 2q. A direct
current (DC) voltage source, vfd(t) is connected to the field winding [24], fd.

The currents in the amortisseur (solid rotor or damper windings) have, for modelling
purposes, been assumed to flow in two sets of closed circuits: one whose flux is in line
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Figure 3.2: Circuits used in the modelling of the synchronous machine

with that of the field winding along the d-axis, 1d, and the other whose flux is at a right
angle, along the q-axis [24], 1q, 2q.

The rotor (phase) angle, θSM (t) , is the angle by which the d-axis leads the magnetic axis
of phase a winding in the direction of rotation. As the rotor rotates with respect to the
stator, θSM (t) increases continuously, and its relationship with the rotor angular speed,
ωSM (t), is given by (3.3), where ωb is the angular speed/frequency base value in electrical
radians per second and t is the time in seconds.

θSM (t) = ωbθSM (0) + ωb

∫ t

0
ωSM (t)dt (3.3)

The generator convention has been used for polarities: the direction of a stator winding
current has been assumed to be positive when flowing out of the machine. The direction
of the field and amortisseur currents has been assumed to be positive when flowing into
the machine. By applying the (amplitude-invariant) Park transformation, with θSM (t) as
the transformation angle, the equations associated with the stator circuits are expressed
in the SM RRF: its rotor dq RRF. The equivalent circuits shown in Figure 3.3 can be used
as a visual description of the machine model in the rotor dq RRF, featuring the currents
as loop currents. The lad-base reciprocal pu system is used, so that the base current in
any rotor circuit is defined as that which induces in each phase a pu voltage equal to the
value of lad [24].

3.2.1 SM voltage equations

The stator voltage equations are given by (3.4) and (3.5), where ra is the pu armature
resistance, vSM (t), iSM (t) are the pu armature voltages and currents, and ψd(t), ψq(t)
are the pu armature flux linkages d- and q-axis components, respectively.

vSM,d(t) =
1

ωb

d

dt
ψd(t)− ψq(t)ωSM (t)− raiSM,d(t) (3.4)

vSM,q(t) =
1

ωb

d

dt
ψq(t) + ψd(t)ωSM (t)− raiSM,q(t) (3.5)
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Figure 3.3: SM pu d-axis (top) and q-axis (bottom) equivalent circuits
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The rotor voltage equations are given by (3.6)-(3.9), where ψfd(t), ψ1d(t), ψ1q(t), ψ2q(t) are
the pu flux linkages, rfd, r1d, r1q, r2q are the pu resistances and ifd(t), i1d(t), i1q(t), i2q(t)
are the pu currents of the field and amortisseur circuits, respectively.

vfd (t) =
1

ωb

d

dt
ψfd (t) + rfd ifd (t) (3.6)

0 =
1

ωb

d

dt
ψ1d(t) + r1di1d(t) (3.7)

0 =
1

ωb

d

dt
ψ1q(t) + r1qi1q(t) (3.8)

0 =
1

ωb

d

dt
ψ2q(t) + r2qi2q(t) (3.9)

3.2.2 SM flux linkage equations

The stator flux linkage equations are given by (3.10) and (3.11), where ll is the pu ar-
mature (unsaturated) leakage inductance, and lad, laq are the pu armature d- and q-axis
(unsaturated) mutual inductances, respectively.

ψd(t) = − (lad + ll) iSM,d(t) + lad ifd (t) + lad i1d(t) (3.10)

ψq(t) = − (laq + ll) iSM,q(t) + laq i1q(t) + laq i2q(t) (3.11)

The rotor flux linkage equations are given by (3.12)-(3.15), where lf1d is the pu (unsatu-
rated) mutual inductance between the field and d-axis amortisseur circuits, lffd,l11d,l11q,
l22q are the pu (unsaturated) self-inductances of the field and the d- and q-axis amortis-
seur circuits (3.16)-(3.19), respectively, and lfd,l1d,l1q,l2q are the corresponding pu (un-
saturated) leakage inductances.

ψfd (t) = lffd ifd (t) + lf1d i1d(t)− lad iSM,d(t) (3.12)

ψ1d(t) = lf1d ifd (t) + l11di1d(t)− lad iSM,d(t) (3.13)

ψ1q(t) = l11qi1q(t) + laq i2q(t)− laq iSM,q(t) (3.14)

ψ2q(t) = laq i1q(t) + l22qi2q(t)− laq iSM,q(t) (3.15)

lffd = lf1d + lfd (3.16)

l11d = lf1d + l1d (3.17)

l11q = laq + l1q (3.18)

l22q = laq + l2q (3.19)
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Figure 3.4: Synchronous machine active power control, governor and turbine

3.2.3 SM air-gap torque

The pu electromagnetic (air-gap) torque, τe,SM (t), is given by

τe,SM (t) = ψd(t)iSM,q(t)− ψq(t)iSM,d(t) (3.20)

3.2.4 SM equations of motion

The SM pu swing equation is given by (3.21), where δωSM (t) is the pu rotor angular speed
deviation from the pu grid angular frequency (3.22), ωg(t), τm,SM (t) is the pu mechanical
input torque (3.23), pm,SM (t) is the pu mechanical input power, TSM is the inertia time
constant (mechanical starting time) and kd,SM is the damping factor (coefficient). As
mentioned in Section 2.2.1, the term kd,SMδωSM (t) includes a component of damping
torque not accounted for in the calculation of τe,SM (t) [24]. This allows the modelling of
the damping provided by the amortisseur circuits without explicitly considering them in
the (reduced-order) model. Thus, when the amortisseur circuits are explicitly considered
in the (general) model, the term is excluded e.g., by setting kd,SM = 0.

d

dt
δωSM (t) =

τm,SM (t)

TSM
−
τe,SM (t)

TSM
−
kd,SMδωSM (t)

TSM
≈ d

dt
ωSM (t) (3.21)

δωSM (t) = ωSM (t)− ωg(t) (3.22)

τm,SM (t) =
pm,SM (t)

ωSM (t)
(3.23)

Expressions for the rotor (phase) angle difference (displacement), δθSM (t), and θSM (t)
are given by (3.24) and (3.25), respectively.

d

dt
δθSM (t) = ωbδωSM (t) = ωbωSM (t)− ωbωg(t) (3.24)

d

dt
θSM (t) = ωbωSM (t) = ωbδωSM (t) + ωbωg(t) (3.25)

3.2.5 Active power control, governor and turbine

A block diagram portraying the models of the active power control (APC), (speed) gov-
ernor and turbine is shown in Figure 3.4.

APC is provided by an active power-frequency droop (3.26) that models the steady-state
characteristics of the governor [13], with p∗m,SM (t) being the APC output signal: the
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Figure 3.5: Synchronous machine reactive power control

pu mechanical input power reference, p∗SM (t) the pu (external) active power set-point
(reference), kω,SM the active power-frequency droop gain (constant) and ω∗

SM (t) the pu
(external) angular frequency/speed reference (set-point).

p∗m,SM (t) = p∗SM (t)− kω,SM [ωSM (t)− ω∗
SM (t)] (3.26)

The dynamic characteristics of the governor and the turbine are modelled together as a
first-order system (3.27), with time constant Tgt .

d

dt
pm,SM (t) =

p∗m,SM (t)

Tgt
−
pm,SM (t)

Tgt
(3.27)

3.2.6 Reactive power control

The applied droop-based reactive power control (RPC) is similar to those commonly
used in microgrid systems [13, 32, 34]. The corresponding block diagram is shown in
Figure 3.5.

The RPC output signal: the pu armature voltage amplitude reference, v̂r
∗
SM(t), is calcu-

lated by (3.28), where v̂∗SM (t) is the pu (external) voltage amplitude set-point (reference),
kq,SM is the reactive power-voltage droop gain (constant), q∗SM (t) is the pu (external)
reactive power set-point (reference) and qm,SM (t) is the pu filtered reactive power mea-
surement. The state-space equation representing the applied first-order low-pass filter is
given by (3.29), where qSM (t) is the pu reactive power measurement (3.30) and ωf,SM is
the filter cut-off angular frequency.

v̂r∗SM (t) = v̂∗SM (t) + kq,SM [q∗SM (t)− qm,SM (t)] (3.28)

d

dt
qm,SM (t) = −ωf,SMqm,SM (t) + ωf,SMqSM (t) (3.29)

qSM (t) = −vSM,d(t)iSM,q(t) + vSM,q(t)iSM,d(t) (3.30)

3.2.7 Exciter with automatic voltage regulator

A block diagram showing the model of the exciter with an automatic voltage regulator
(AVR) is shown in Figure 3.6.

The AVR is modelled as a proportional-integral (PI) controller. Its reference, v̂r∗SM (t), is
compared with the pu armature voltage amplitude, v̂SM (t), to produce the AVR output
signal: the pu field circuit voltage reference, v∗fd(t), given by (3.31), where kp,ex and



22 Modelling
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Figure 3.6: Synchronous machine exciter with automatic voltage regulator

ki,ex are the PI controller proportional and integral gains, respectively, and the state
ζ(t) represents the integrator of the PI controller (3.32). Required controller anti-windup
protection, output saturation, limiters or protective circuits are not included in the model,
as they don’t influence the dynamics of the control scheme within the normal operating
range.

v∗fd(t) = kp,ex [v̂r∗SM (t)− v̂SM (t)] + ki,exζ(t) (3.31)

d

dt
ζ(t) = v̂r∗SM (t)− v̂SM (t) (3.32)

The dynamic characteristics of the exciter are modelled as a first-order system (3.33),
with time constant Tex .

d

dt
vfd(t) =

v∗fd(t)

Tex
−
vfd(t)

Tex
(3.33)

3.2.8 Reference frame orientation

In steady state, the SM RRF rotates with the same angular speed as the grid voltage.
Thus, the rotor (phase) angle, θSM (t), continuously increases, as shown in the vector
diagram in Figure 3.7. The rotor (phase) angle difference (displacement), δθSM (t), rep-
resents the phase difference between the SM RRF and the rotating grid voltage vector,
as shown also in Figure 3.7. Assuming the pu grid voltage amplitude, v̂g(t), to be known,
the pu grid voltage CSV in the SM RRF, vSMg (t), is then given by

vSMg (t) = v̂g(t)e
−jδθSM (t) (3.34)

3.2.9 Nonlinear model

Neglecting the term d
dtωg(t), equations (3.4)-(3.34) have been reduced in Maple to a

state-space model with 12 state variables and 6 input signals, with the state vector,
xSM (t), defined by (3.35), and the input vector, uSM (t), defined by (3.36). Terms such
as ψd(t)iSM,q(t) and ψq(t)iSM,d(t) in (3.23), pm,SM (t)/ωSM (t) in (3.23), vSM,d(t)iSM,q(t)
and vSM,q(t)iSM,d(t) in (3.30) and v̂g(t)e

−jδθSM (t) in (3.34) make the model nonlinear.
The resulting model equations are given in Appendix A.

xSM (t)
.
= [iSM,d(t) iSM,q(t) ifd(t) i1d(t) i1q(t) i2q(t) · · ·

· · · ωSM (t) δθSM (t) pm,SM (t) qm,SM (t) ζ(t) vfd(t)]
T (3.35)

uSM (t)
.
= [v̂g(t) p

∗
SM (t) v̂∗SM (t) q∗SM (t) ω∗

SM (t) ωg(t)]
T (3.36)



3.3 SM system plus grid equivalent impedance 23

α-axis

β-axis

d-axis
ωbωSM (t)q-axis

vg(t)

ωbωg(t)

vg,d(t)

vg,q(t)

δθSM (t)

θSM (t)

Figure 3.7: Vector diagram defining the SM RRF and voltage CSV orientations

3.2.10 Small-signal model

Classical stability assessment techniques based on eigenvalues are not directly applicable
to the nonlinear state-space model. A linearised small-signal state-space model has there-
fore been derived in Maple, with the form given by (3.37), where the prefix ∆ indicates
small-signal deviations around the steady-state operating point [13, 24], ASM is the
state (system, dynamic) matrix and BSM (t) is the input matrix. The resulting analytical
expressions for the matrices are given in Appendix A.

∆ẋSM (t)
.
=

d

dt
∆xSM (t) = ASM∆xSM (t) + BSM∆uSM (t) (3.37)

3.3 SM system plus grid equivalent impedance

The SM system model has been modified, at a later stage, to include an equivalent of the
grid impedance, as depicted in Figure 3.8. A capacitance has been added at the PCC
to provide an independent state that allows to couple both state-space subsystems. The
corresponding state-space equations in the SM RRF are given by (3.38) and (3.39), where
cmg is the pu coupling capacitance, io,SM (t) is the pu CSV of the currents flowing from
the SM PCC into the grid equivalent, lmg is the pu grid equivalent inductance and rmg is
the pu grid equivalent resistance.

d

dt
vSM (t) =

ωb
cmg

iSM (t)− ωb
cmg

io,SM (t)− jωbωg(t)vSM (t) (3.38)

d

dt
io,SM (t) =

ωb
lmg

vSM (t)− ωb
lmg

vg(t)−
[
rmgωb
lmg

+ jωbωg(t)

]
io,SM (t) (3.39)

Equations (3.4)-(3.34),(3.38),(3.39) have been consequently reduced in Maple to a state-
space model with 16 state variables and 6 input signals, with the state vector, xSMg(t),
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Figure 3.8: Overview of the investigated system configuration and control structure for the
synchronous machine plus grid equivalent impedance

defined by (3.40), and the input vector, uSMg(t), defined by (3.41). The resulting model
equations are given in Appendix B.

xSMg(t)
.
= [vSM,d(t) vSM,q(t) io,SM,d(t) io,SM,q(t) · · ·

· · · iSM,d(t) iSM,q(t) ifd(t) i1d(t) i1q(t) i2q(t) · · · (3.40)

· · · ωSM (t) δθSM (t) pm,SM (t) qm,SM (t) ζ(t) vfd(t)]
T

uSMg(t)
.
= [v̂g(t) ωg(t) p

∗
SM (t) q∗SM (t) ω∗

SM (t) v̂∗SM (t)]T (3.41)

A linearised small-signal state-space model has also been derived in Maple, with the
form given by (3.42), where the prefix ∆ indicates small-signal deviations around the
steady-state operating point, ASMg is the state (system, dynamic) matrix and BSMg(t)
is the input matrix. The resulting analytical expressions for the matrices are given in
Appendix B.

∆ẋSMg(t)
.
=

d

dt
∆xSMg(t) = ASMg∆xSMg(t) + BSMg∆uSMg(t) (3.42)

3.4 Virtual synchronous machine system

An overview of the investigated system configuration and control structure for the VSM
is depicted in Figure 3.9, in which a voltage source converter (VSC) is connected to a grid
through a LC filter. Positive values for active and reactive power flowing from the VSC
into the grid result from the current directions indicated in Figure 3.9 [13].
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Figure 3.9: Overview of the investigated system configuration and control structure for the
virtual synchronous machine

In modelling the VSC, the switching frequency has been assumed to be high enough
for the switching action not to affect the progression of the states. Thus, the switching
effects and any delay due to the implementation of the pulse-width modulation (PWM)
have been neglected, and an ideal average model has been assumed [13, 23]. The PWM
has been assumed to be done in the linear range. No application-specific constraints have
been considered for the VSC DC side and, thus, modelling and control of the energy
resource(s) on the DC side has been excluded. The AC side has been assumed to be
effectively decoupled from any dynamics in the DC voltage, so that the dynamics on the
AC side can be accurately represented without modelling the DC side. Furthermore,
the power requested from the AC side has been assumed to be available at the DC side
[13].

By applying the (amplitude-invariant) Park transformation, with the VSM virtual internal
voltage phase angle, θV SM (t), as the transformation angle, the equations are expressed
in the VSM RRF. As opposed to that of the SM RRF, the VSM RRF d-axis is thus
aligned not to the axis of the virtual rotor field winding but to its corresponding virtual
internal voltage, which leads the former by 90◦. The VSM RRF is used for both control
and modelling of the system. Thus, the electrical system model is also represented in this
RRF.

As in Section 3.2.7, limitations, PI controller anti-windup protections or output satura-
tions, required for the safe operation of the VSC, have been excluded from the modelling
under the assumption that they don’t influence the control scheme dynamics in the normal
operating range [13].
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Figure 3.10: Virtual synchronous machine swing equation and active power control

3.4.1 Electrical system equations

According to Figure 3.9, the electrical system in the model comprises a set of filter induc-
tors connected to the VSC and a shunt capacitor bank modelling the LC filter capacitance,
at the point of common coupling (PCC) with (a Thévenin equivalent of) the grid. This
incorporates the dynamic interaction between the VSC control system and the equivalent
grid voltage in the model. Assuming an instantaneous average model of the VSC and
neglecting the term d

dtωg(t), the electrical system state-space equations in the VSM RRF
are given by (3.43)-(3.45) [3, 13, 32], where icv(t) is the pu filter inductors current CSV,
lf is the pu filter inductors inductance, vcv(t) is the pu VSC output voltage CSV, vo(t)
is the pu PCC (filter capacitors) voltage CSV, rf is the pu filter inductors equivalent
resistance, cf is the pu filter capacitance, io(t) is the pu CSV of the currents flowing from
the VSM PCC into the grid equivalent, lg is the pu grid equivalent inductance, rg is the
pu grid equivalent resistance and vg(t) is the pu grid voltage CSV.

d

dt
icv(t) =

ωb
lf

vcv(t)−
ωb
lf

vo(t)−
[
rfωb
lf

+ jωbωg(t)

]
icv(t) (3.43)

d

dt
vo(t) =

ωb
cf

icv(t)−
ωb
cf

io(t)− jωbωg(t)vo(t) (3.44)

d

dt
io(t) =

ωb
lg

vo(t)−
ωb
lg

vg(t)−
[
rgωb
lg

+ jωbωg(t)

]
io(t) (3.45)

3.4.2 Inertia emulation and active power control

The studied VSM implementation is based on the SM swing equation (3.21) representing
its inertia and damping [9, 11, 13]. Block diagrams showing the implementation of the
active power control (APC) and the VSM swing equation are shown in Figure 3.10, on
the left and right, respectively.

The SM pu swing equation (3.21) is linearised with respect to the speed so that the inertia
acceleration is determined by the power balance according to (3.46), where δωV SM (t) is
the pu virtual rotor angular speed deviation from the pu grid angular frequency (3.47),
ωg(t), ωV SM (t) is the pu virtual rotor angular speed, pr

∗
(t) is the APC output signal: the

pu virtual mechanical input power, Ta is the virtual inertia time constant (mechanical
starting time), p(t) is the pu active power (measurement) (3.48) and kd is the damping
factor (coefficient) and ωPLL(t) is the phase lock (phase-locked) loop (PLL) output signal:
the pu estimated grid angular frequency. The corresponding block diagram is shown
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Figure 3.11: Virtual synchronous machine reactive power control

in the right side of Figure 3.10. As mentioned in Sections 2.2.1 and 3.2.4, the term
kd [ωV SM (t)− ωPLL(t)] includes a component of (virtual) damping power not accounted
for in p(t). This allows the emulation of the damping provided by the SM amortisseur
circuits without explicitly considering them in the (reduced-order) model.

d

dt
δωVSM (t) =

pr
∗
(t)

Ta
− p(t)

Ta
− kd [ωV SM (t)− ωPLL(t)]

Ta
≈ d

dt
ωV SM (t) (3.46)

δωV SM (t) = ωV SM (t)− ωg(t) (3.47)

p(t) = vo,d(t)io,d(t) + vo,q(t)io,q(t) (3.48)

Expressions for the virtual internal voltage phase (angle) difference, δθV SM (t), and the
virtual internal voltage phase angle, θV SM (t), are given by (3.49) and (3.50), respectively.

d

dt
δθV SM (t) = ωbδωV SM (t) = ωbωV SM (t)− ωbωg(t) (3.49)

d

dt
θV SM (t) = ωbωV SM (t) = ωbδωV SM (t) + ωbωg(t) (3.50)

As in Section 3.2.5, APC is provided by an active power-frequency droop (3.51) that
models the the SM speed governor steady-state characteristics [13], with p∗(t) being the
pu (external) active power set-point (reference), kω the active power-frequency droop gain
(constant) and ω∗(t) the pu (external) angular frequency/speed reference (set-point). The
corresponding block diagram is shown in the left side of Figure 3.10.

pr
∗
(t) = p∗(t)− kω [ωV SM (t)− ω∗(t)] (3.51)

3.4.3 Reactive power control

As in Section 3.2.6, the applied droop-based RPC is similar to those commonly used
in microgrid systems [13, 32, 34]. The corresponding block diagram is shown in Fig-
ure 3.11.

The RPC output signal: the pu virtual internal voltage amplitude reference, v̂r
∗
(t), is cal-

culated by (3.52), where v̂∗(t) is the pu (external) voltage amplitude set-point (reference),
kq is the reactive power-voltage droop gain (constant), q∗(t) is the pu (external) reactive
power set-point (reference) and qm(t) is the pu filtered reactive power measurement. The
state-space equation representing the applied first-order low-pass filter is given by (3.53),
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where q(t) is the pu reactive power measurement (3.54) and ωf is the filter cut-off angular
frequency.

v̂r
∗
(t) = v̂∗(t) + kq [q∗(t)− qm(t)] (3.52)

d

dt
qm(t) = −ωfqm(t) + ωfq(t) (3.53)

q(t) = −vo,d(t)io,q(t) + vo,q(t)io,d(t) (3.54)

3.4.4 Refence frame orientations

In steady state, the VSM RRF rotates with the same angular speed as the grid voltage.
Thus, the virtual internal voltage phase angle, θV SM (t), continuously increases, as shown
in the vector diagram in Figure 3.12. The virtual internal voltage phase (angle) difference
(displacement), δθV SM (t), represents the phase difference between the VSM RRF d-axis
and the rotating grid voltage vector, as shown also in Figure 3.12. Assuming v̂g(t) to
be known, the pu grid voltage CSV in the VSM RRF, vV SMg (t), is then given by (3.55)

vV SMg (t) = v̂g(t)e
−jδθV SM (t) (3.55)

While estimating the value of ωg(t), necessary to implement the virtual damping effect
in the VSM swing equation, the PLL establishes its own RRF aligned with vo(t), whose
angles are defined in Figure 3.12 analogously to the ones of the VSM RRF. In order to
model the PLL in its own RRF, vo(t) can be transformed from the VSM RRF, vV SMo (t),
to the PLL RRF, vPLLo (t), by (3.56), where δθPLL(t) is the PLL phase (angle) difference
(displacement).

vPLLo (t) = vV SMo (t)e−j[δθPLL(t)−δθV SM (t)] (3.56)
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Figure 3.13: Virtual synchronous machine phase lock loop

3.4.5 Phase lock loop

The structure of the PLL, used for tracking the value of ωg(t) [13, 20, 21] is shown in
Figure 3.13. The PI controller output: the pu PLL angular speed deviation, δωPLL(t), is
given by (3.57), where kp,PLL and ki,PLL are the PI controller proportional and integral
gains, respectively, vPLL,d(t) and vPLL,q(t) are the pu low-pass filtered PCC (filter capaci-
tors) voltage CSV d- and q-axis components in the PLL RRF (3.58), vPLL(t), respectively,
ωLP,PLL is the filters cut-off angular frequency and the state εPLL(t) represents the PI
controller integrator (3.59). In calculating ωPLL(t) from the controller output signal,
δωPLL(t), the expression defining their relationship (3.60), analogous to the one given for
the swing equation, has been linearised with respect to ωg(t).

δωPLL(t) = kp,PLL arctan

[
vPLL,q(t)

vPLL,d(t)

]
+ ki,PLLεPLL(t) (3.57)

d

dt
vPLL(t) = −ωLP,PLLvPLL(t) + ωLP,PLLvPLLo (t) (3.58)

d

dt
εPLL(t) = arctan

[
vPLL,q(t)

vPLL,d(t)

]
(3.59)

ωPLL(t) = δωPLL(t) + ωg(t) ≈ δωPLL(t) + 1 (3.60)

Also in accordance with the definitions introduced for the swing equation, expressions
for δθPLL(t) and the phase angle, θPLL(t), are given by (3.61) and (3.62), respectively.
As shown in Figure 3.13, θPLL(t) is used as the transformation angle for the (amplitude-
invariant) Park transformation of the measured vo(t) into the PLL RRF.

d

dt
δθPLL(t) = ωbδωPLL(t) ≈ ωbωPLL(t)− ωb (3.61)

d

dt
θPLL(t) = ωbωPLL(t) ≈ ωbδωPLL(t) + ωb (3.62)

3.4.6 Virtual impedance and voltage control

The RPC output signal: the pu virtual internal voltage amplitude reference, v̂r
∗
(t), is

passed through a virtual impedance (VI) before being used as a reference for controlling
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Figure 3.14: Virtual synchronous machine virtual impedance, voltage control and current
control

vo(t), as shown in Figure 3.9. The VI can be seen as an emulation of a SM synchronous
impedance quasi-stationary characteristics. It affects the dynamic and steady-state char-
acteristics of the VSM, and can be used to modify the system dynamic characteristics.
The VI also reduces the VSM sensitivity to small disturbances in the grid, as the virtual
power flowing through it causes a phase angle displacement between the PCC voltage and
the VSM virtual internal voltage, and makes the VSM control the virtual internal voltage
instead of the the actual PCC voltage. The effect of the pu virtual resistance, rv, and
inductance, lv, on the pu PCC (filter capacitors) voltage CSV reference, v∗

o(t), is shown
in the left side of Figure 3.14, and is given by (3.63) [13, 17, 18].

v∗
o(t) = v̂r

∗
(t)− [rv + jlvωV SM (t)] io(t) (3.63)

The voltage control (VC) consists of RRF PI controllers with decoupling terms [13, 32],
as shown in the middle of Figure 3.14. The VC output signals: the pu VSC current CSV
reference for the VSC, i∗cv(t), is given by (3.64), where kpv and kiv are the PI controllers
proportional and integral gains, respectively, the states ξ(t) represent the PI controllers
integrators (3.65) and kffc is the current feed-forward gain, used for disabling or enabling
the forward feeding of the measured io(t) in the controllers output.

i∗cv(t) = kpv [v∗
o(t)− vo(t)] + kivξ(t) + jcfωV SM (t)vo(t) + kffcio(t) (3.64)

d

dt
ξ(t) = v∗

o(t)− vo(t) (3.65)

3.4.7 Current control and active damping

The inner loop current control (CC) consists also of RRF PI controllers with decoupling
terms [3, 13, 32], as shown in the right side of Figure 3.14. The CC output signals: the pu
VSC voltage CSV reference for the VSC, v∗

cv(t), is given by (3.66), where kpc and kic are
the PI controller proportional and integral gains, respectively, the states γ(t) represent the
PI controllers integrators (3.67), kffv is the voltage feed-forward gain, used for disabling
or enabling the forward feeding of the measured vo(t) in the controllers output and v∗

AD(t)
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Figure 3.15: Virtual synchronous machine active damping

is a pu active damping term included and designed for suppressing LC oscillations in the
filter [3, 13].

v∗
cv(t) = kpc [i∗cv(t)− icv(t)] + kicγ(t)

+jlfωV SM (t)icv(t) + kffvvo(t)− v∗
AD(t) (3.66)

d

dt
γ(t) = i∗cv(t)− icv(t) (3.67)

The active damping algorithm, shown in Figure 3.15, is based on high-pass filtering of the
pu measured vo(t), implemented as the difference between vo(t) and its low-pass filtered
value, ϕ(t). The state-space equation representing the applied first-order low-pass filters
is given by (3.68), where ωAD is the filters cut-off angular frequency. The obtained high-
pass filtered signal is then scaled by the active damping gain (3.69), kAD.

d

dt
ϕ(t) = ωADvo(t)− ωADϕ(t) (3.68)

v∗
AD(t) = kAD [vo(t)−ϕ(t)] (3.69)

To implement the VSC control system, the reference v∗
cv(t) is divided by the pu measured

DC link voltage, vDC(t), to produce the modulation index (ratio) CSV, m(t), as displayed
in the right of Figure 3.14. Neglecting the VSC switching operation and any delay related
to the implementation of the PWM, the instantaneous average value of vcv(t) is given by
(3.70) [13, 23].

m(t) =
v∗
cv(t)

vDC(t)
, vcv(t) = m(t)vDC(t) ⇒ vcv(t) ≈ v∗

cv(t) (3.70)

3.4.8 Nonlinear model

Assuming vDC(t) = 1 pu, equations (3.43)-(3.70) can be reduced to a model on state-
space form with 19 distinct state variables and 6 input signals [13], with the state vector,
xV SM (t), defined by (3.71), and the input vector, uV SM (t), defined by (3.72). Terms such
as ωg(t)icv(t) in (3.43), ωg(t)vo(t) in (3.44), ωg(t)io(t) in (3.45), arctan [vPLL,q(t)/vPLL,d(t)]
in (3.57) and (3.59), vo,d(t)io,d(t) and vo,q(t)io,q(t) in (3.48), vo,d(t)io,q(t) and vo,q(t)io,d(t)
in (3.54), v̂g(t)e

−jδθV SM (t) in (3.55), vV SMo (t)e−jδθPLL(t) and vV SMo (t)e jδθV SM (t) in (3.56),
ωV SM (t)io(t) in (3.63), ωV SM (t)vo(t) in (3.64) and ωV SM (t)icv(t) in (3.66) make the
model nonlinear.
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xV SM (t)
.
= [vo,d(t) vo,q(t) icv,d(t) icv,q(t) γd(t) γq(t) io,d(t) · · ·

· · · io,q(t) ϕd(t) ϕq(t) vPLL,d(t) vPLL,q(t) εPLL(t) · · · (3.71)

· · · δθV SM (t) ξd(t) ξq(t) qm(t) δωV SM (t) δθPLL(t)]T

uV SM (t)
.
= [p∗(t) q∗(t) v̂g(t) v̂

∗(t) ω∗(t) ωg(t)]
T (3.72)

3.4.9 Small-signal model

Classical stability assessment techniques based on eigenvalues are not directly applicable
to the nonlinear state-space model. As in Section 3.2.10, a linearised small-signal state-
space model can be consequently derived [13], with the form given by (3.73), where the
prefix ∆ denotes small-signal deviations around the steady-state operating point [24],
AV SM is the state (system, dynamic) matrix and BV SM (t) is the input matrix.

∆ẋV SM (t)
.
=

d

dt
∆xV SM (t) = AV SM∆xV SM (t) + BV SM∆uV SM (t) (3.73)



Chapter 4

Simulation results

In this chapter, a base case is defined and simulation results are presented and discussed.
These include: dynamic responses of the base case systems to changes in their inputs
(from time-step simulations); base case eigenvalues, participation factors and parametric
sensitivities; and eigenvalue traces for system inputs and parameters varying around the
base case values.

The dynamic (nonlinear) models of the investigated systems and their corresponding
small-signal (linearised) state-space models have been implemented in MATLAB Simu-
link. For the synchronous machine (SM) and virtual synchronous machine systems, the
corresponding initial conditions have been calculated by numerically solving and evaluat-
ing the expressions derived in Maple for the solution of the nonlinear equations in steady-
state conditions. For the SM system plus grid impedance (SMg system), developed at a
later stage, the corresponding initial conditions have been calculated by time-step simu-
lations. The SimPowerSystems blockset has been used to model the electrical systems,
with controllable voltage source blocks representing the ideal average model of the voltage
source converter (VSC), in the case of the VSM system.

The base case has been defined by taking the parameters and initial inputs from [13]. The
rated (apparent) power, Srated, is 2.749 MVA, and the rated voltage, Vrated, is 690 Vrms,L-L.
The SM(g) system base case parameters and initial inputs are given in Table 4.1. A salient-
pole SM is represented by the general model (amortisseur circuits are considered, damping
factor, kd,SM , is set to 0) excluding the 2nd q-axis amortisseur circuit (e.g., by setting
its pu resistance, r2q, to a high value). The virtual synchronous machine (VSM) system
base case parameters and initial inputs are specified in Table 4.2. Where possible, the SM
base case parameters are equal the corresponding ones of the VSM base case, to facilitate
comparison. Only 5 parameters in the VSM system correspond to the electrical system,
and are thus taken as fixed. As opposed to the VSM system, most of the SM system
parameters are assumed to be fixed, and only 5 parameters are considered tunable.

33
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Table 4.1: SM(g) system base case parameters (top) and initial inputs (bottom)

Par. Value Par. Value Par. Value

Srated 2.749 MVA l11d 1.405 pu kp,ex 0.023 53
Vrated 690 Vrms,L-L lf1d 1.117 pu ki,ex 5.028× 10−3

ωb 100π rad/s ra 4.044× 10−3 pu kω,SM 20
TSM 2 s lad 1.117 pu ωf,SM 1000 rad/s
kd,SM 0 ll 0.054 50 pu kq,SM 0.2
r2q — laq 0.4772 pu cmg 1× 10−5 pu
l22q — rfd 8.476× 10−4 pu lmg 0.2 pu
r1q 0.028 59 pu lffd 1.363 pu rmg 0.01 pu
l11q 1.672 pu Tgt 0.5 s
r1d 0.041 00 pu Tex 0.1 s

Var. Value Var. Value Var. Value

p∗SM (0) 0.5010 pu ω∗
SM (0) 1 pu ωg(0) 1 pu

q∗SM (0) 0 pu v̂∗SM (0) 1 pu v̂g(0) 1 pu

Table 4.2: VSM system base case parameters (top) and initial inputs (bottom)

Par. Value Par. Value Par. Value

Srated 2.749 MVA rg 0.01 pu kic 14.25
Vrated 690 Vrms,L-L rv 0 pu kffv 1
ωb 100π rad/s lv 0.2 pu ωLP,PLL 500 rad/s
Ta 2 s kpv 0.5889 kp,PLL 0.084 43
kd 400 kiv 736.1 ki,PLL 4.691
cf 0.074 pu kffc 0 kω 20
lf 0.08 pu ωAD 50 rad/s ωf 1000 rad/s
rf 2.85× 10−3 pu kAD 0.5 kq 0.2
lg 0.2 pu kpc 1.273

Var. Value Var. Value Var. Value

p∗(0) 0.5 pu ω∗(0) 1 pu ωg(0) 1 pu
q∗(0) 0 pu v̂∗(0) 1.02 pu v̂g(0) 1 pu
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Figure 4.1: SM (left) and VSM (right) pu active and low-pass-filtered reactive power response
to a step change in the active power set-point
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Figure 4.2: SM (left) and VSM (right) (virtual) rotor angular speed and (phase) angle
differences (displacements) response to a step change in the active power set-point

4.1 Dynamic response

In order to validate the small-signal models, their dynamic responses have been verified to
match those of the dynamic (nonlinear) models around the linearisation points. Multiple
numerical time-step numerical simulations have been performed on different steady-state
operating (linearisation) points. Some of the results of a couple simulation cases are shown
in this section. These cases and the presented dynamic responses have been chosen to
reproduce those shown in [13] for the VSM system small-signal model and facilitate their
comparison with those corresponding to the SM(g) system small-signal model.

4.1.1 Change in the loading

Figures 4.1 and 4.2 show some of the dynamic responses of the SM and VSM systems to a
step change in the pu (external) active power set-point (reference), p∗SM (t), p∗(t). The pu
active power set-point and the pu active and low-pass filtered reactive powers are plotted
in Figure 4.1, while the (virtual) rotor angular speed and the corresponding (phase) angle
differences (displacements) are shown in Figure 4.2. To facilitate comparison, the SM
rotor (phase) angle difference (displacement), δθSM (t), is shifted by 90◦.
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Figure 4.3: SM (left) and VSM (right) pu active power response to a ramp change in the grid
frequency

Time, t [s]

C
u
rr
en
ts

[p
u
]

Dynamic

Small-signal

ifd(t)

iSM,q(t)

iSM,d(t)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

Time, t [s]

C
u
rr
en
ts

[p
u
]

Dynamic

Small-signal
icv,d(t)

icv,q(t)

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1.1

Figure 4.4: SM (left) and VSM (right) pu currents response to a ramp change in the grid
frequency

As discussed in [13], the excess power input accumulates in the (virtual) inertia, which
leads to an increase of the speed during the first part of the transient, resulting in an
increase in the phase angle differences. Once the electrical power output reaches the
input power, the system steady-state power balance is restored, and the value of the
(virtual) rotor angular speed returns to that of the grid angular frequency. The VSM
system dynamic responses present the same general characteristics as those of the SM
system. However, since the VSM damping factor, kd, can be chosen without considering
any of the physical constraints in a SM, its high value makes the VSM responses more
damped.

4.1.2 Change in the grid frequency

Figures 4.3 and 4.4 show some of the dynamic responses of the SM and VSM systems to
a ramp change in the pu grid angular frequency, ωg(t).ωg(t) and the pu active powers are
plotted in Figure 4.3, while some of the pu currents are plotted in Figure 4.4.

In response to the change in ωg(t), the active power control (APC) increases the active
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Figure 4.5: SMg (left) and VSM (right) dynamic response to a ramp change in the pu grid
voltage amplitude

power output to contribute to the system frequency control. The (virtual) rotor angular
speed follows ωg(t), releasing energy from its (virtual) inertia. Again, the high kd makes
the VSM response more damped. As discussed in [13], the VSM system (linearised) small-
signal model cannot represent correctly the dynamic transition to a new operating point
with a ωg(t) different from that of the linearisation point. This can be attributed to
the choice of the virtual rotor angular speed deviation, δωV SM (t), instead of its angular
speed, ωV SM (t), as a state variable in the VSM system model. For that reason, there is a
small deviation between the VSM system nonlinear and linearised models while ωg(t) is
changing and shortly after it settles to its new value. The VSM system linearised model is
nevertheless able to represent the corresponding change in the steady-state active power,
thanks to a contribution from the change in ωg(t) through the input matrix (3.73), BV SM .
Since the SM rotor angular speed, ωSM (t), has been chosen as state variable in the SM
system model, all SM system dynamic (nonlinear) and small-signal (linearised) model
responses present an excellent match.

4.1.3 Change in the grid voltage amplitude

Figure 4.5 shows some of the dynamic responses of the SMg and VSM systems to a ramp
change in the pu grid voltage amplitude, v̂g(t). v̂g(t) and the pu voltage amplitude at the
points of common coupling (PCC), v̂SM (t), v̂o(t), are plotted at the top, while the active
and low-pass-filtered reactive powers are plotted at the bottom.

In response to the change in v̂g(t), the reactive power control (RPC) increases the reactive
power output to contribute to voltage control. In comparison with the SMg system,
the VSM system presents a greater difference between the PCC voltage and the voltage
amplitude set-point (1.02 pu), but also a smaller change (less sensitive response) and a
smaller steady-state error (the set-point values being 0 pu) in the reactive power output.
This effect, comparable to that of increasing the VSM reactive power-voltage droop gain,
can be attributed to the influence of the virtual impedance in the corresponding control
loop.

The good match between the responses of the dynamic (nonlinear) models and the cor-
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responding small-signal (linearised) state-space models indicates that the small-signal
models accurately represent the investigated systems. This confirms the validity of the
small-signal models around the steady-state operating points, and supports their use in
the small-signal stability analysis of the systems by traditional linear techniques.

4.2 Eigenvalue analysis

Having verified the validity of the (linearised) small-signal models around the steady-state
operating points, the stability of the systems has been confirmed for their whole operating
ranges. This has been done by calculating the eigenvalues (modes), λi = σi + jωi,
of their small-signal model state matrices, ASM ,ASMg,AV SM , for the given base case
parameters, with their initial inputs varying within the corresponding intervals. The
unit of an eigenvalue imaginary part, ωi, is rad/s, while Np/s is commonly used for the
real part [24], σi. Usually, the mentioned units are used but not indicated explicitly, for
convenience of notation.

Traces of SM and VSM (system) modes for varying active power set-points (the rest
of their inputs as in the base cases) are plotted at the top and bottom of Figure 4.6,
respectively. Enlarged views of the lower-frequency SM and VSM mode traces are shown
at the top and bottom of Figure 4.7, respectively. The traces demonstrate that the
systems are stable for the entire range of active power set-points. Moreover, the modes
show little movement, which suggests that the systems have dynamic responses similar to
those of the base case, for the different operating conditions within the operating ranges.
Traces of SM(g) and VSM low-frequency modes for varying tunable parameters (the rest
as in the base cases) are shown in Figures 4.12, 4.13, 4.17 and 4.18.

By combining the corresponding left and right eigenvectors, the respective participation
factors have been calculated to determine the relationship between the eigenvalues and
the states [24]. The eigenvalues parametric sensitivity : their sensitivity to a change in
each of the system parameters, has been computed using the expressions obtained in
Maple for the partial derivatives of the state matrices with respect to each of the system
parameters, together with the corresponding left and right eigenvectors [30].

Using the magnitude of the participation factors, the main participating states have been
identified for each mode. The eigenvalues and their main participating states are listed
in Tables 4.3 and 4.4 for the SM and VSM systems, respectively. For each mode, the
state with the highest participation factor magnitude is listed first. The states with a
participation factor magnitude of at least 10 % of the highest are listed next in descending
order of participation factor magnitude, with a superindex indicating the percentage of
the highest. The critical modes: the slowest and least damped (closest to the origin), are
of main interest for assessing the stability of the systems. The real part of the critical
modes parametric sensitivity is depicted in Figures 4.8 to 4.11 for the SM system, and
Figures 4.14 to 4.16 for the VSM system.
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Figure 4.6: Traces of SM (top) and VSM (bottom) modes for varying active power set-points
(enlarged views of the lower-frequency mode traces in Figure 4.7)

Table 4.3: SM system base case eigenvalues (modes) and their main participating states

Mode Value State Mode(s) Value(s) State(s)

λ1 −6.686× 109 i2q λ3,4 −5.269± j314.0 iSM,d , i
[46 %]

fd , i
[39 %]

1d , i
[20 %]

SM,q

λ2 −1000 qm,SM λ5 −38.86 i1d , i
[56 %]

SM,d , i
[16 %]

fd

λ11 −1.866 pm,SM λ8,9 −5.245± j5.042 ifd , i
[78 %]

SM,d , v
[24 %]

fd

λ12 −5.613 i1q λ10 −0.1889 ζ , i[15 %]

fd , i
[11 %]

SM,d

Mode(s) Value(s) State(s)

λ6,7 −1.154± j20.70 ωSM , δθ[96 %]

SM , i[50 %]

SM,d , i
[41 %]

fd , i
[29 %]

SM,q , i
[28 %]

1q , i
[14 %]

1d
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Figure 4.7: Enlarged views of the lower-frequency SM (top) and VSM (bottom) mode traces for
varying active power set-points (full view in Figure 4.6)
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Figure 4.8: Parametric sensitivity (real part) of SM modes λ6,7 ≈ −1.154± j20.70
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Figure 4.9: Parametric sensitivity (real part) of SM modes λ8,9 ≈ −5.245± j5.042
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Figure 4.10: Parametric sensitivity (real part) of SM mode λ10 ≈ −0.1889
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Figure 4.11: Parametric sensitivity (real part) of SM mode λ11 ≈ −1.866
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4.2.1 Synchronous machine system

Table 4.3 indicates that λ1 corresponds to the SM 2nd q-axis amortisseur circuit. Further-
more, its distant location from the imaginary axis is a result of the high value given to the
corresponding pu resistance, r2q, to exclude the circuit from the model, and is therefore
not shown in Figure 4.6. Just as the VSM system, the SM system has an eigenvalue
corresponding to the reactive power measurement low-pass filter at λ ≈ −1000, which
relates to the filter cut-off angular frequency.

Significant coupling between the SM current states can be appreciated by looking at the
main participating states of modes 3 to 10 in Table 4.3. Moreover, most of the SM
system eigenvalues are slower or not as well damped as the VSM system ones. From
those, λ11 relates to the first-order system used to model the dynamic characteristics
of the governor and the turbine, whose time constant, Tgt = 0.5 s, is similar to that
of the mode, −1/σ11 ≈ 0.5359 s. Figure 4.11 suggests that λ11 is mainly influenced by
Tgt, and parametric sweep analysis has confirmed that, for a fixed Tgt, λ11 is relatively
fixed as well, as can be seen in Figure 4.12. λ5 and λ12 correspond to the 1st d- and q-
axis amortisseur circuits, respectively, and are determined mainly by the SM parameters
(taken as fixed).

Similarly to λ5 and λ12, the (complex conjugated) pair λ3,4 is determined mainly by the
SM parameters, and has shown to be relatively fixed. This pair represents the direct
current (DC) offset of the armature phase currents, reflected in the SM rotating refer-
ence frame (RRF) as fundamental frequency components of the armature d- and q-axis
currents, iSM,d, iSM,q. As opposed to them, the pair λ8,9, corresponding to the field cir-
cuit, has also shown significant influence from the reactive power-voltage control loop
through the field voltage, vfd, making it more prone to move. Furthermore, λ8,9 are the
critical modes with the highest (most positive) sensitivity to changes in ki,ex, which has
demonstrated to be the tunning parameter that can most easily cause instability, as can be
observed at the right of Figures 4.8 to 4.11, and in Figure 4.12. Table 4.3 suggests that λ10
corresponds to the exciter/AVR. Moreover, as depicted in Figure 4.10, the exciter/AVR
tuning parameters, kp,ex, ki,ex, are the main tunable parameters influencing λ10. As can
be seen in Figure 4.12, its position has shown to be limited by the corresponding integral
time, kp,ex/ki,ex, which has, for the base case, a value of 4.68 s.

The pair λ6,7 relates to the rotor motion (swings), is mainly influenced by the SM param-
eters, as can be observed in Figure 4.8, and, as depicted in Figure 4.12, has shown limited
movement. Furthermore, it is the least damped pair (closest to the origin) and thus dom-
inates the oscillating component of the system dynamic response. This can be observed
at the left of Figures 4.1 and 4.2, more evidently in the response of the rotor angular
speed, ωSM (t), in which the oscillation has a period of about 2π/|ω6,7| ≈ 0.3035 s and
an amplitude that decays initially with a time constant of about −1/σ6,7 ≈ 0.8666 s. Its
damping ratio, −σ6,7/

√
σ2
6,7+ω

2
6,7 ≈ 0.056 > 0.05, indicates a damping that, in practise, is

considered satisfactory for traditional power systems [30]. The unidirectional (aperiodic)
component of the system dynamic response is dominated by the slowest (real) modes:
λ10 and λ11, and has, in the case of the mentioned responses, a time constant of about
−1/σ11 ≈ 0.5359 s.

The modelled exciter has shown little capability of increasing the damping of oscillations.
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Figure 4.13: Trace of SMg low-frequency modes for varying reactive power-voltage droop gain,
kq,SM

Table 4.4: VSM system base case eigenvalues (modes) and their main participating states

Mode Value State Mode(s) Value(s) State(s)

λ1 −500.0 vPLL,d λ19 −11.19 γd
λ8 −1002 qm λ2,3 −1460± j4498 vo , i[59 %]

cv , i[31 %]
o , ξ[12 %]

λ9 −469.6 vPLL,q λ4,5 −1272± j4329 vo , i[65 %]
cv , i[32 %]

o , ξ[14 %]

λ12 −223.5 δωV SM λ6,7 −2262± j225.2 icv , i[68 %]
o , ξ[58 %], v[52 %]

o , q[20 %]
m

λ15 −50.82 ϕq λ10,11 −19.50± j245.0 ξ , i[48 %]
o , q[12 %]

m

λ16 −50.60 ϕd λ13,14 −6.759± j26.38 δθPLL , δθ
[51 %]

V SM , ε[50 %]

PLL

λ18 −11.20 γq λ17 −3.691 δθV SM , δθ[48 %]

PLL

Moreover, since the SM is directly connected to a stiff grid, it can control its reactive
power output to some extent, but has no control over the armature voltage, which is set
by the grid. These restrictions suggest that, in order to make a more relevant comparison
between this system and the VSM system, at least two changes should be considered in
the modelling. A more detailed model of the exciter should be used, including a power
system stabiliser (PSS), which uses auxiliary stabilising signals to provide more damping
of oscillations by controlling the excitation [24]. Furthermore, the network equivalent
impedance should be included in the modelling of the connection between the SM and
the stiff grid. The latter has been implemented in the SMg system, developed at a later
stage.

As opposed to that of the VSM system [13], the SM reactive power-voltage droop gain,
kq,SM , can be increased up to at least 20 without causing instability, as depicted in
Figure 4.13 for the SMg system. This means that, by increasing this gain, the SM(g)
system can attain a steady-state reactive power (sharing) error much smaller than that
of the VSM system.

4.2.2 Virtual Synchronous machine system

As opposed to the SM system, most of the VSM system eigenvalues are fast or well
damped, as can be seen in Figure 4.6, Figure 4.7 and Table 4.4. Moreover, the d-axis
participating states have the same influence on the system response as the corresponding
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Figure 4.14: Parametric sensitivity (real part) of VSM modes λ10,11 ≈ −19.50± j245.0
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Figure 4.15: Parametric sensitivity (real part) of VSM modes λ13,14 ≈ −6.759± j26.38
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Figure 4.16: Parametric sensitivity (real part) of VSM mode λ17 ≈ −3.691
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Figure 4.18: Trace of VSM low-frequency modes for varying virtual inductance, lv

q-axis ones. This can be easily observed for modes 1, 9, 15, 16, 18 and 19, and their
corresponding main participating state. For this reason and to facilitate reading, each
d-axis state has been represented together with its corresponding q-axis state for the com-
plex conjugated eigenvalues, by making use of the complex space vector (CSV) notation
(3.1).

Modes 2 to 7, corresponding to the three pairs located at the left end of Figure 4.6,
are mainly related to the LCL circuit in the electrical system, as indicated in Table 4.4.
Just as the SM system, the VSM system has an eigenvalue corresponding to the reactive
power measurement low-pass filter at λ ≈ −1000, which relates to the filter cut-off angular
frequency. Similarly, the two modes related to the phase lock (phase-locked) loop (PLL)
low-pass filters are located at λ ≈ −500, and the two modes related to the active damping
low-pass filters are located at λ ≈ −50, which correspond to the filters cut-off angular
frequencies.

Apparent decoupling stands out between the swing equation states in λ12, λ17, as op-
posed to those of the SM system. Moreover, significant coupling can be observed be-
tween the PLL and the virtual internal voltage phase (angle) differences (displacements),
δθPLL, δθV SM , in λ13,14 and λ17. These differences can be attributed to the particular im-
plementation of the swing equation and the alignment of the RRF. Coupling can also be
observed between the electrical system states and those related to the control outer loops
in the other 4 pairs of complex conjugated eigenvalues, on which the electrical system
parameters exert considerable influence.

Among the VSM slowest and least damped modes, λ18 and λ19 correspond to the current
control and their position has shown to be limited by the corresponding integral time,
kpc/kic, which is, for the base case, equal to the filter inductors time constant, lf/(ωbrf ) ≈
0.0894 s. The pair λ10,11 relates mainly to the reactive power-voltage control outer loops,
and, as can be observed by comparing Figures 4.14 to 4.16, is the most sensitive to
changes in the reactive power-voltage droop gain, kq. As shown in [13], increasing kq
moves the pair to the right, towards the imaginary axis, with kq > 0.892 moving it over
the axis and causing instability. It can be seen from Figure 4.14 that, besides kq, the
main tunable parameters influencing λ10,11 are the voltage control proportional gain, kpv,
and the virtual inductance, lv.

λ13,14, mainly related to the PLL, is the least damped pair (closest to the origin) and
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thus dominates the oscillating component of the system dynamic response. This can
be observed in the response of the virtual rotor angular speed, ωV SM (t), at the right
of Figure 4.2, in which the (significantly damped) oscillation has a period of about
2π/|ω13,14| ≈ 0.2382 s. It can be seen in Figure 4.15 that lv and the PLL proportional
gain, kp,PLL, are the main tunable parameters influencing λ13,14, and that increasing these
parameters moves the pair to the left, increasing its damping. Figure 4.17 shows that in-
creasing kp,PLL also moves λ10,11 to the left, and reduces the magnitude of the imaginary
part of λ13,14 until the pair enters the real axis, splitting into two purely real modes, at
around kp,PLL ≈ 0.3763. Furthermore, its negligible influence on modes 17 to 19 indicates
that such variation can increase the damping of oscillations and the system robustness
against parameter variations, without reducing the speed of its response.

The unidirectional component of the system dynamic response is dominated by the slowest
(real) mode: λ17, and has a time constant of −1/σ17 ≈ 0.2709 s, which can be seen in the
responses at the right of Figures 4.1 and 4.2. It can be seen in Figure 4.16 that λ7 is most
sensitive to changes in lv, in the opposite direction of λ10,11 and λ13,14. As depicted in
Figure 4.18, this implies a trade-off in the placement of the dominant modes: increasing
lv improves the damping of oscillations and the robustness to changes in kq, as it moves
λ13,14 (and λ10,11) to the left, while making the system response slower, as it moves λ17
to the right. As mentioned in [12] and shown in Figure 4.16, the other parameters have a
much smaller influence on λ17, which makes it unlikely to cause instability in the system,
and thus not as critical as λ10,11 or λ13,14, for instance. Nevertheless, it can be concluded,
from Figures 4.17 and 4.18, that a good compromise between speed/performance and
robustness/damping of oscillations could be achieved by decreasing lv and increasing
kp,PLL, for the base case at least.



Chapter 5

Conclusions and recommendations

5.1 Conclusions

Simulation and analysis of the reference virtual synchronous machine (VSM) implemen-
tation in grid-connected mode (VSM system) has been enabled by the corresponding
routines and dynamic models created and implemented in the MATLAB programming
language and the Simulink graphical block diagramming tool, respectively, within the
MATLAB numerical computing integrated environment.

The respective script created in Maple has considerably facilitated the development of
the nonlinear state-space analytical model of a traditional power generation unit with a
synchronous machine (SM) in grid-connected mode (SM system). The model allows the
study of the SM system in similar conditions/context as the VSM system, and facilitates
their comparison. Moreover, it can represent the most relevant dynamic characteristics of
a round or salient-pole rotor SM, including the amortisseur circuits or the representation
of the corresponding damping torque in the swing equation of a reduced-order version
of the model. Furthermore, it has been the basis for developing the respective small-
signal model. The corresponding routines and dynamic models created in MATLAB and
Simulink, respectively, have enabled the simulation and analysis of the SM system.

The SM system small-signal model, developed for any set of inputs and parameter values
and any operating (linearisation) point, has enabled the use of linear techniques in the
study of the system small-signal stability characteristics. The created Maple script has
simplified the development process by allowing the linearisation of the respective nonlinear
state-space model analytically/symbolically in an automated manner.

The defined base case and presented dynamic response cases have enabled the reproduc-
tion of the the results shown in [13] for the VSM system small-signal model, and have
facilitated the comparison of the studied systems. Multiple numerical time-step numeri-
cal simulations, performed on different steady-state operating (linearisation) points, have
allowed the comparison of the small-signal model dynamic responses with those of the
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dynamic (nonlinear) models around the linearisation points. The good match between the
responses of the dynamic (nonlinear) models and the corresponding small-signal (linear-
ised) state-space models indicates that the small-signal models accurately represent the
investigated systems. This confirms the validity of the small-signal models around the
steady-state operating points, and supports their use in the small-signal stability analysis
of the systems by traditional linear techniques.

The VSM system dynamic responses to changes in angular frequency or active power
present the same general characteristics as those of the SM system. However, since the
VSM damping factor, kd, can be chosen without considering any of the physical constraints
in a SM, its high value makes the VSM responses more damped. Despite of all the
SM system dynamic (nonlinear) and small-signal (linearised) model dynamic responses
presenting an excellent match, the VSM system (linearised) small-signal model cannot
represent correctly the dynamic transition to a new operating point with a grid frequency,
ωg(t), different from that of the linearisation point. This can be attributed to the choice
of the virtual rotor angular speed deviation, δωV SM (t), instead of its angular speed,
ωV SM (t), as a state variable in the VSM system model. The VSM system linearised model
is nevertheless able to represent the respective change in the steady-state active power,
thanks a contribution from the change in ωg(t) through the input matrix, BV SM .

The corresponding script created in Maple has enabled the derivation of expressions for
the solution of the SM system nonlinear model equations in steady state. The respective
functions developed and implemented in MATLAB for numerically solving and evaluating
the expressions have allowed a quick calculation of the linearisation point (initial/steady-
state conditions) for any given set of inputs and parameter values. Having an efficient,
automated way of computing the steady-state solution has proved important for exploiting
the full potential of the small-signal stability analysis by means of linear techniques.
However, the need to derive analytical expressions for the steady-state solution of each
particular system makes this approach inefficient for the small-signal stability analysis of
increasingly bigger, more complex, interconnected systems, as opposed to the numerical
methods established for load-flow analysis in traditional power systems.

Obtaining the analytical expressions for the partial derivatives of the SM system small-
signal model state matrix with respect to each of the system parameters has enabled the
calculation of its parametric sensitivity for any set of parameter values and any operating
(linearisation) point. The created Maple script has simplified the process by allowing the
analytical/symbolical partial differentiation to be done in an automated manner.

A good command of a computer algebra system like Maple has been essential not only
for carrying out the necessary analytical/symbolic manipulation of the equations, but
also for evaluating the generated expressions for verification and debugging purposes, and
formating them for their implementation in MATLAB functions and for their presentation
in this report.

The calculation, for any set of parameter values and any operating (linearisation) point, of
the eigenvectors and eigenvalues, and their participation factors and sensitivity to changes
in the system parameters has been enabled by the corresponding functions created and
implemented in MATLAB. These have constituted the main tool for analysing and com-
paring the small-signal characteristics of the modelled systems. By iteratively computing
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the modes of the respective (small-signal model) state matrices, the stability of the sys-
tems has been confirmed for the given base case parameters, with their initial inputs
varying within the corresponding intervals. In doing so, the eigenvalues have shown little
movement, which suggests that the systems have dynamic responses similar to the base
case ones, for the different operating conditions within the operating ranges.

Most of the SM system eigenvalues are slower or not as well damped as the VSM system
ones. Moreover, most SM system modes have shown to be relatively fixed and determined
mainly by non-tunable system parameters. Among them, the least damped pair, related
to the rotor motion (swings), has a damping that, in practise, is considered satisfactory
for traditional power systems. As opposed to them, the (complex conjugated eigenvalue)
pair corresponding to the SM field circuit has shown significant influence from the reactive
power-voltage control loop through the field voltage, vfd, making it more prone to move.
Furthermore, the pair constitutes the two critical modes with the highest (most positive)
sensitivity to changes in the exciter integral gain, ki,ex, which has demonstrated to be
the tunning parameter that can most easily cause instability in the SM system. The
modelled exciter has shown little capability of increasing the damping of oscillations, and
the location of the 4 slowest and least damped eigenvalues has shown to be limited by the
non-tunable system parameters, indicating that the SM system performance (dynamic
response) or robustness cannot be significantly improved.

Apparent decoupling stands out between the VSM system swing equation states, as op-
posed to those of the SM system. Moreover, significant coupling has been observed be-
tween the VSM phase lock (phase-locked) loop (PLL) and virtual internal voltage phase
(angle) differences (displacement), δθPLL, δθV SM . These differences can be attributed to
the particular implementation of the swing equation and the alignment of the correspond-
ing rotating reference frame (RRF). A trade-off has been observed in the placement of
the VSM system critical modes: increasing the VSM virtual inductance, lv, improves the
damping of oscillations and the robustness to changes in the parameters, while making the
system response slower. However, parametric sweep analysis has indicated that a good
compromise between speed/performance and robustness/damping of oscillations could be
achieved by decreasing lv and increasing the VSM PLL proportional gain, kp,PLL, for the
base case at least.

The inclusion of the grid equivalent impedance in the SM system modelling (SMg system),
carried out at a later stage, has enabled a more relevant comparison of the studied systems,
particularly with regards to the reactive power-voltage control. In comparison with the
SMg system, the VSM system presents a greater difference between the voltage at the
point of common coupling (PCC) and the voltage amplitude set-point. Furthermore, it
also exhibits a less sensitive response of the reactive power output to a change in the grid
voltage amplitude and a smaller steady-state reactive power error. This effect, comparable
to that of increasing the VSM reactive power-voltage droop gain, can be attributed to
the influence of the virtual impedance in the corresponding control loop. However, as
opposed to that of the VSM system, the SM reactive power-voltage droop gain, kq,SM ,
can be increased up to a much greater value without causing instability. This means
that, by increasing this gain, the SM(g) system can attain a steady-state reactive power
(sharing) error much smaller than that of the VSM system.

In developing the necessary experience to establish reduced-order models for systems with
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significant influence from generation interfaced with power electronic converters, this work
has contributed by adapting and expanding previous VSM small-signal modelling and
analysis to include a SM with a control scheme similar to those of traditional generation
units and to the one used in the reference VSM implementation.

5.2 Recommendations for further work

Using a more detailed model of the exciter in the SM system, that includes a power system
stabiliser (PSS) would contribute to make a more relevant comparison of the studied
systems. Moreover, changing the orientation/alignment of the SM RRF or the VSM RRF
to coincide with the other would facilitate the analysis, comparison and manipulation of
the corresponding angle differences. This would imply shifting the SM RRF 90◦ forward,
or shifting the VSM RRF 90◦ backward.

Iterative methods, similar to those established for load-flow analysis in traditional power
systems, could be devised or implemented to numerically determine the steady-state so-
lution of the nonlinear equations derived for systems like the studied ones. This would
avoid the need to solve the nonlinear equations analytically/symbolically or run time-
step simulations iteratively, in analysing the small-signal stability of each new system
configuration for varying parameters, inputs and operating points.

Further expansion and interconnection of the developed and implemented models, and
further comparison of their small-signal characteristics needs to be done in different con-
ditions, in order to assess their relevance and convenience e.g., whether they provide the
right degree of detail. In doing so, the functions provided in MATLAB and Maple for de-
termining the equivalent system representation of interconnected linear models/systems
can facilitate the manipulation of the small-signal models already developed for the stud-
ied systems. Load dynamics should be included in the eventual modelling and analysis of
the systems in islanded operation.
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Appendix A

Synchronous machine system
mathematical models

A.1 Nonlinear model

Neglecting the term d
dtωg(t), equations (3.4)-(3.34) have been reduced in Maple to the

nonlinear state-space model given by (A.1)-(A.12).

d

dt
iSM,d(t) =

ωbra
(
l11dlffd − lf1d2

)
lSM,d

iSM,d(t)−
ωb(laq + ll)

(
l11dlffd − lf1d2

)
lSM,d

ωSM (t)iSM,q(t)

+
ωbladrfd(l11d − lf1d)

lSM,d
ifd(t)−

ωbladr1d(lf1d − lffd)
lSM,d

i1d(t)

+
ωblaq

(
l11dlffd − lf1d2

)
lSM,d

ωSM (t)i1q(t) +
ωblaq

(
l11dlffd − lf1d2

)
lSM,d

ωSM (t)i2q(t)

−
ωblad(l11d − lf1d)

lSM,d
vfd(t) +

ωb
(
l11dlffd − lf1d2

)
lSM,d

v̂g(t) cos [δθSM (t)] ,

(A.1)

lSM,d = l11dlad
2 − l11dladlffd − l11dlffdll − 2 lad

2lf1d + lad
2lffd + ladlf1d

2 + lf1d
2ll
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(A.2)

d

dt
iSM,q(t) = −

(lad + ll)
(
l11ql22q − laq2

)
ωb

lSM,q
ωSM (t)iSM,d(t)

−
ra
(
l11ql22q − laq2

)
ωb

lSM,q
iSM,q(t) +

lad
(
l11ql22q − laq2

)
ωb

lSM,q
ωSM (t)ifd(t)

+
lad
(
l11ql22q − laq2

)
ωb

lSM,q
ωSM (t)i1d(t)−

laqr1q(l22q − laq)ωb
lSM,q

i1q(t)

− laqr2q(l11q − laq)ωb
lSM,q

i2q(t) +

(
l11ql22q − laq2

)
ωb

lSM,q
v̂g(t) sin [δθSM (t)] ,

lSM,q = l11ql22qlaq + l11ql22qll − l11qlaq2 − l22qlaq2 + laq
3 − laq2ll

d

dt
ifd(t) =

ladra(l11d − lf1d)ωb
lSM,d

iSM,d(t)−
lad(laq + ll)(l11d − lf1d)ωb

lSM,d
ωSM (t)iSM,q(t)

+
rfd
(
l11dlad + l11dll − lad2

)
ωb

lSM,d
ifd(t) +

r1d
(
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2 − ladlf1d − lf1dll
)
ωb

lSM,d
i1d(t)

+
ladlaq(l11d − lf1d)ωb

lSM,d
ωSM (t)i1q(t) +

ladlaq(l11d − lf1d)ωb
lSM,d

ωSM (t)i2q(t)

−
(
l11dlad + l11dll − lad2
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ωb

lSM,d
vfd(t) +

ωblad(l11d − lf1d)
lSM,d

v̂g(t) cos [δθSM (t)]

(A.3)

d

dt
i1d(t) = −

ωbladra(lf1d − lffd)
lSM,d

iSM,d(t) +
ωblad(lf1d − lffd)(laq + ll)

lSM,d
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ωbrfd
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)
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(
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2 − lffdlad − lffdll
)

lSM,d
i1d(t)
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ωbladlaq(lf1d − lffd)

lSM,d
ωSM (t)i1q(t)−

ωbladlaq(lf1d − lffd)
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ωSM (t)i2q(t)

−
ωb
(
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2 − ladlf1d − lf1dll
)

lSM,d
vfd(t)−

(lf1d − lffd)ladωb
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(A.4)

(A.5)

d

dt
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d

dt
i2q(t) = −ωblaq(lad + ll)(l11q − laq)

lSM,q
ωSM (t)iSM,d(t)

− ωblaqra(l11q − laq)
lSM,q
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(A.7)

d

dt
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TSM
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TSM

i1q(t)iSM,d(t)
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TSM
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TSM

ωg(t) +
1

TSM

pm,SM (t)

ωSM (t)

(A.8)
d

dt
δθSM (t) = ωbωSM (t)− ωbωg(t)

(A.9)
d

dt
pm,SM (t) = −

kω,SM
Tgt

ωSM (t)− 1
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pm,SM (t) +
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qm,SM (t) = −ωf,SM iSM,d(t)v̂g(t) sin [δθSM (t)]

− ωf,SM iSM,q(t)v̂g(t) cos [δθSM (t)]− ωf,SMqm,SM (t)

(A.11)
d

dt
ζ(t) = −kq,SMqm,SM (t)− v̂g(t) + v̂∗SM (t) + kq,SMq
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(A.12)
d

dt
vfd(t) = −

kp,exkq,SM
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Tex
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Tex
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Tex
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A.2 Small-signal model

By linearisation of the nonlinear model (A.1)-(A.12), the small-signal state-space model
has been derived in Maple, with the form given by (A.13), where xSM (t) is state vector
(A.14), uSM (t) is the input vector (A.15), ASM is the state (system, dynamic) matrix,
BSM (t) is the input matrix (A.21) and the prefix ∆ indicates small-signal deviations
around the steady-state operating point [13, 24], t = 0. For convenience of notation,
ASM is expressed through 4 sub-matrices (A.17)-(A.20), according to (A.16).

∆ẋSM (t)
.
=

d

dt
∆xSM (t) = ASM∆xSM (t) + BSM∆uSM (t) (A.13)

xSM (t)
.
= [iSM,d(t) iSM,q(t) ifd(t) i1d(t) i1q(t) i2q(t) · · ·

· · · ωSM (t) δθSM (t) pm,SM (t) qm,SM (t) ζ(t) vfd(t)]
T (A.14)

uSM (t)
.
= [v̂g(t) p

∗
SM (t) v̂∗SM (t) q∗SM (t) ω∗

SM (t) ωg(t)]
T (A.15)


∆ẋSM,1(t)

∆ẋSM,2(t)

∆ẋSM,3(t)

∆ẋSM,4(t)


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[
ASM,1 ASM,2 ASM,3 ASM,4

]
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∆xSM,2(t)
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+ BSM∆uSM (t) (A.16)
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Appendix B

SM system plus grid equivalent
impedance mathematical models

B.1 Nonlinear model

Neglecting the term d
dtωg(t), equations (3.4)-(3.34),(3.38),(3.39), have been reduced in

Maple to the nonlinear state-space model given by (B.1)-(B.16).

(B.1)
d

dt
vSM,d(t) = ωbωg(t)vSM,q(t)−

ωb
cmg

io,SM,d(t) +
ωb
cmg

iSM,d(t)

(B.2)
d

dt
vSM,q(t) = −ωbωg(t)vSM,d(t)−

ωb
cmg

io,SM,q(t) +
ωb
cmg

iSM,q(t)

d

dt
io,SM,d(t) =

ωb
lmg

vSM,d(t) +ωbωg(t)io,SM,q(t)−
rmgωb
lmg

io,SM,d(t)−
ωb
lmg

v̂g(t) cos [δθSM (t)]

(B.3)

d

dt
io,SM,q(t) =

ωb
lmg

vSM,q(t)− ωbωg(t)io,SM,d(t)−
rmgωb
lmg

io,SM,q(t) +
ωb
lmg

v̂g(t) sin [δθSM (t)]

(B.4)

65
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d

dt
iSM,d(t) =
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d

dt
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(B.9)
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(B.12)
d

dt
δθSM (t) = ωbωSM (t)− ωbωg(t)
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(B.13)
d

dt
pm,SM (t) = −

kω,SM
Tgt

ωSM (t)− 1

Tgt
pm,SM (t) +

1

Tgt
p∗SM (t) +

kω,SM
Tgt

ω∗
SM (t)

(B.14)
d

dt
qm,SM (t) = −ωf,SMvSM,d(t)iSM,q(t) + ωf,SMvSM,q(t)iSM,d(t)− ωf,SMqm,SM (t)

(B.15)
d

dt
ζ(t) = −

√
v2SM,d(t) + v2SM,q(t)− kq,SMqm,SM (t) + kq,SMq

∗
SM (t) + v̂∗SM (t)

(B.16)
d

dt
vfd(t) = −kp,ex

Tex

√
v2SM,d(t) + v2SM,q(t)−

kp,exkq,SM
Tex

qm,SM (t)

+
ki,ex
Tex

ζ(t)− 1

Tex
vfd(t) +

kp,exkq,SM
Tex

q∗SM (t) +
kp,ex
Tex

v̂∗SM (t)

B.2 Small-signal model

By linearisation of the nonlinear model (B.1)-(B.16), the small-signal state-space model
has been derived in Maple, with the form given by (B.17), where xSMg(t) is state vector
(B.18), uSMg(t) is the input vector (B.19), ASMg is the state (system, dynamic) matrix,
BSMg(t) is the input matrix (B.21) and the prefix ∆ indicates small-signal deviations
around the steady-state operating point, t = 0. For convenience of notation, ASMg is
expressed through 4 sub-matrices (B.22)-(B.25), according to (B.20).

∆ẋSMg(t)
.
=

d

dt
∆xSMg(t) = ASMg∆xSMg(t) + BSMg∆uSMg(t) (B.17)

xSM (t)
.
= [vSM,d(t) vSM,q(t) io,SM,d(t) io,SM,q(t) · · ·

· · · iSM,d(t) iSM,q(t) ifd(t) i1d(t) i1q(t) i2q(t) · · · (B.18)

· · · ωSM (t) δθSM (t) pm,SM (t) qm,SM (t) ζ(t) vfd(t)]
T

uSMg(t)
.
= [v̂g(t) ωg(t) p

∗
SM (t) q∗SM (t) ω∗

SM (t) v̂∗SM (t)]T (B.19)
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
∆ẋSMg,1(t)
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∆ẋSMg,3(t)
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
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[
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