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Problem Description

The increasing electricity demand coupled with decreasing fossil fuel reserves has created a

paradigm shift in the electricity generation mix moving it away from fossil fuels towards wind

and solar sources. Wind energy is forecasted to be a major energy source of the future power sys-

tem due to its cost competitiveness. Integration of this emerging technology to the future smart

grid is a challenge for the power system operators since the features of this emerging technol-

ogy is markedly different from the classical generator technology which has remained relatively

unchanged for more than a century.

In the future smart grid, the system is expected to operate in islanded mode and still provide

a reasonable power quality. This requirement coupled with the expected rise of wind energy

creates the need to investigate the dynamic response of a wind farm with high wind penetra-

tion ratio operating in a small power system. Further this scenario motivates investigating the

possibility of enhancing system frequency control and small signal stability.

With this intention the first part of this work is to find the different modelling possibilities for

a suitable wind turbine technology for power system dynamic studies. An ideal model should

have minimum modelling complexity yet provide accurate representation of a real system. The

second part of this work is to find the possibility for increasing the frequency quality of the sys-

tem. The response of the wind turbine generator models with frequency support is to be com-

pared and a more suitable model for wind farm representation is to be identified.

The future grid requires to be highly reliable and robust. Therefore it is important to under-

stand the effect on system stability with high wind penetration in a small power system. The last

part of this work is to investigate the effect of wind energy integration on system stability.
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Abstract

This dissertation presents an analytical study on modelling wind farm with frequency response

for power system dynamic studies. Recent trends indicate that wind energy penetration in the

power system will keep on increasing. This study models a permanent magnet synchronous

generator fully rated converter based wind farm, since this is one of the state of art technologies

that services this growing demand. Due to the variability in the wind resource, a high demand

will be placed on the frequency stability of the power system. This necessitates the requirement

of providing both inertial and governor support by the wind farm to the power system. High

wind penetration will have a significant impact on the power system stability. These impacts

needs to be investigated by conducting power system dynamic studies.

The main challenge is in identifying an appropriate level of complexity of the models to

represent power system electro-mechanical dynamics, while keeping the models as simple as

possible, to reduce the computational requirements. Taking this into consideration, the main

contribution of the modelling work, is identifying a full order model and a reduced order model

of a wind farm with frequency response. The dissertation presents the dynamic models of the

main components of a wind turbine and shows how the component models are combined to

generate a full order and reduced order model.

The wind farm is interfaced to the utility grid by a back to back voltage source converter.

Therefore selection of robust control structures and identification of control parameters consti-

tutes an important study element. Both, generator converter controller and grid converter con-

troller is given special attention. Auxiliary control loop for implementing frequency response is

identified and integrated to the models.

The power system under study is the Kundur’s two area network. One synchronous genera-

tor is substituted by the wind farm and contributes to 25% of the system capacity. The dynamic

system study investigates aspects of both frequency and small signal response.

The full order and reduced order model dynamic response, for a variable wind speed se-

quence, shows a high degree of correspondence, both with and without frequency control. There-

fore the results of this work indicate that a reduced order model is sufficient to model power

system electro-mechanical dynamics without significant loss in accuracy.
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The full order and reduced order model small signal response, for constant wind speed and

without frequency control shows a high degree of correspondence. However the full order and

reduced order model response shows deviation, when the wind farm is supported with fre-

quency control. Therefore the full order model provides a more accurate small signal response

for wind farms with frequency control. The studied network reveals a poorly damped inter area

mode. Substitution of a synchronous generator by the wind farm, increases the damping of this

mode, decreasing inter area oscillations and enhancing system small signal stability.

The simulations of an over frequency event, in a system with a wind farm supporting fre-

quency control, clearly shows superior frequency response, in comparison to a wind farm with-

out frequency control. The salient performance is reflected in rate of change of frequency, tem-

porary maximum frequency, steady state frequency and settling time of the frequency response.
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Chapter 1

Introduction

1.1 Background and Motivation

Providing an affordable and reliable electricity supply has become a key need for the modern

society. The world electricity demand is increasing year by year but the conventional energy

sources are not increasing (hydro power) or are declining (fossil fuels). The conversion from the

current energy mix to an energy mix dominated by renewable energy is inevitable. At present

this conversion is supported by government policy such as the 20% target for renewable sources

in the energy mix by 2020 set by the European Union in 2008 [1].

Wind energy is the fastest growing energy source in Europe[2]. Offshore wind is expected

to have the largest growth gradient in the coming decades [3]. In 2012 the total offshore wind

installations amounted to 3.5 GW and is expected to reach 60-80 GW by 2030 [4]. Due to these

reasons offshore wind technology is gaining increasing attention from both industrial and aca-

demic circles.

With increasing penetration in the energy mix, it is inevitable that the wind power technol-

ogy be cost competitive and financially feasible. It is not feasible to provide a mass scale solution

of wind power when it requires subsidies for financial sustainability. Typical wind turbines do

not have the operational flexibility of classical synchronous generators. This is a further deter-

rent to integration of more wind power. Much research has been conducted to find methods to

use a wind turbine as virtual synchronous generator [5].

Wind is a variable energy source and integrating wind power in large amount to the system

1
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needs careful planning. The power system operators need to understand how integrating wind

power affects the power system. Thus the need to have accurate models for wind farms. The

characteristic response of a wind farm is markedly different from the conventional generators.

The modern power system is slowly but surely being converted from the passive classical

system to an active system popularly known as the smart grid. The smart grid concept calls for

the possibility of system being able to operate in islanded mode disconnected from the main

grid. If a system operating with a high wind penetration is forced to operate in islanded mode,

it should still be able to operate and provide electric power with sufficient power quality and

robustness. Maintaining stable operation under these conditions has become more challenging

than ever.

Power system stability was considered a key problem for system operation starting from

1920’s [6]. This thesis focuses on frequency control and small signal stability of a power system

with high amount of wind penetration. It is challenging to control frequency in a small power

system with high wind penetration due to variability in wind speed [7]. It is important to model

wind farms with appropriate models and conduct relevant simulation studies to understand the

dynamic interaction between the power system and the wind farms.

At present, frequency control is offered by all major wind turbine manufacturers [8][9]. Fur-

ther, some transmission system operators have made frequency control a mandatory grid code

requirement [10]. This strongly suggest that frequency control will be a mandatory ancillary ser-

vice required from wind turbines in the near future. The requirement for providing frequency

control becomes critical when the wind penetration is high. Therefore it is natural to include

this feature in the wind turbine. It is important to understand the power system dynamics in

a power system, with wind farms offering frequency control. This is a main motivation for this

study.

The main contribution of the modelling work is, identifying a full order model and a reduced

order model of a wind farm with frequency response. The dissertation presents the dynamic

models of the main components of a wind turbine and shows how the component models are

combined to generate a full order and a reduced order model.
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G4G3
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TX Line
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PMSG Wind Farm
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Kundur’s Two Area Network

Figure 1.1: Power system under study - Kundur’s two area network [11]

1.2 System Overview

The Kundur’s two area network as presented in figure 1.1 is the system under study. The sys-

tem consists of four synchronous generators of equal capacity and type, with two generators

connected to each area. The system was originally used to represent the existence of electro

mechanical modes in a power system [12]. The system total capacity is 3 GW. The wind farm

consists of 240 numbers of 1.5 MW wind turbines. An aggregate model is used to represent the

wind farm. High wind power penetration creates noticeable frequency variations in the system.

This system is used since it will illustrate the extreme effects, and have observable phenomenon

which are analysed in this study.

1.3 Scope of Work

The scope of work for the thesis is as follows;

• Modelling of permanent magnet synchronous generator (PMSG) based fully rated con-

verter (FRC) wind turbine generator with different level of complexity (reduced order model

and full order model)

• Modelling of power system network and classical synchronous generators

• Simulation for model validation in normal operation with variable wind speed and com-

parison of model response
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• The implementation of frequency control in the wind turbine model

• Simulation for both over frequency and under frequency events, for different models, and

comparison of response

• Modal analysis of the different models and comparison of response for small perturba-

tions

• Analysis of effect on frequency quality by implementing frequency support

1.4 Limitations

The limitations of this work is as follows;

• The modelling is only valid for stability studies involving slow power system dynamics in

the range of 0.2 Hz to 10 Hz

• The focus of this work is power system frequency. Voltage stability is not considered.

• The model uses, only one of the many possible control strategies for wind turbine control.

The results are only valid for this particular control scheme and should not be generalized

without analysis.

• The system under study is a hypothetical system and the results are derived with an aca-

demic inclination. It is not intended for the parameters (eg: frequency) to be compared

with a grid code. The system controllers are chosen with inclination to project a worse

case scenario for frequency control.

• The wind turbine governor action is only valid for over frequency events. In all other con-

ditions the output power follows the maximum point tracking scheme. This is the only

economic limitation that has been considered. Economics for wind power plant is not

included nor considered in this study.



CHAPTER 1. INTRODUCTION 5

1.5 Sequence of work

The sequence of work is as follows;

1. Conduct literature survey covering state of art for PMSG modelling and controls, frequency

control and related research

2. Choose control strategy and topology for full model

3. Choose possible approximations to the full model and generate reduced model

4. Choose strategy to implement primary response

5. Model system in the power system simulation tool

6. Validate models with variable wind speed sequence and compare response for different

models

7. Model primary response and integrate it into wind turbine models

8. Simulate system with and without inertial model and illustrate the effect on system fre-

quency

9. Simulate system with frequency control and compare system response for over frequency

and under frequency events

10. Conduct modal analysis, compare results for different models

11. Propose suitable model for stability studies from the different models considered in the

study

1.6 Literature Review

The work done in this simulation study builds up and uses the research done in the related work

summarized in this section.

The benefits of using a PMSG for variable speed wind turbines is presented and experimen-

tally validated in [13]. A structure for modelling any generic converter interfaced wind turbine
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system is presented in [14]. Specific implementations of PMSG based FRC WTGs are presented

in [15, 16, 17, 18, 19, 20, 21]. Reference [22] includes both WTG modelling as well as a method

for aggregating and representing wind farms. Reference [23] presents models for all the main

types of WTG technologies while [24] also includes a comparison between simulated response

and real response. Reference [25] presents a method for model reduction and aggregation of

wind farms for dynamic studies.

A wealth of options and control strategies for PMSG FRC WTGs are presented in [26, 27,

28, 29, 30]. Highly efficient vector control strategy for PMSG FRC WTGS is presented in [31].

A vector control strategy applied to PMSG based FRC WTG’s with the simulations experimen-

tally validated, is presented in [32]. Reference [33] covers many of the key topologies and con-

trol strategies and provides a comparison of the generator controller response. Modelling and

controls for PMSG WTG systems with the generator side PWM rectifier is analysed in detail in

[34, 35, 36, 37, 38, 39].

A complete study of frequency response by wind farms in small power systems, with high

wind power penetration, is presented in [40]. This study analyses both inertial as well as gov-

ernor response in detail. However the wind farm model used is a highly reduced model which

represent any VSWT technology. The possibility of emulating and supporting primary frequency

response by wind turbines is illustrated in [41]. The effects of emulated inertia on frequency

disturbance with different values for inertia emulation constant is compared and presented in

[42]. A method to implement not just primary frequency control but also secondary frequency

control is presented in [43]. Design considerations for selecting a inertia emulation scheme is

described in [44]. Reference [44] also proposes a novel inertia emulation scheme.

A recent survey of grid codes required for wind power integration is presented in [10, 45, 46].

A review of the power converter topology used with PMSG based WTGs is presented in [47]. A

complete small signal stability analysis for a PMSG FRC is presented in [48].

1.7 Outline of the Thesis

Chapter 1 gives an overall introduction to the thesis. The research motivation, scope of work

and methodology is presented in this chapter.
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Chapter 2 consists of two parts. The first part presents an introduction to the power system

theory required for reading the thesis. The second part presents the state of art for the wind

turbine technology that is used in this work and gives the basis for selection the wind turbine

that has been modelled in this work.

Chapter 3 presents in detail, the models and approach used for power system modelling.

This includes all power system components except components of the wind turbine generator

system.

Chapter 4 presents detail modelling wind turbines including mechanical, electrical compo-

nents as well as the control system. The problem of selection as well tuning of the controllers

are addressed in this chapter.

Chapter 5 presents the simulations study. It includes the validation of the models, case study

presenting the benefit of applying primary frequency control in a over frequency event, compar-

ison of model response for both over frequency and under frequency events as well as a modal

analysis to to model response to a small signal disturbance. This chapter includes the discussion

of the results.

Chapter 6 summarises the work done, provides suggestions for further work and presents

outcomes of the thesis.



Chapter 2

Theoretical Background and State of the Art

The first section of this chapter presents an introduction to the topic of power system stability.

The second section provides an introduction to the state of art for wind turbines. The third

section introduces some basic theory required to understand some of the analysis conducted in

latter chapters.

2.1 Power system stability classification

According to [49], ”power system stability is the ability of an electric power system, for a given ini-

tial operating condition, to regain a state of operating equilibrium after being subjected to a phys-

ical disturbance, with most system variables bounded so that practically the entire system remains

intact”. The instability can occur in different ways. A single machine can become instable and

lose synchronism while the rest of the system is stable. A cluster of generators in a single area

can lose stability without cascaded failure of the whole power system. Similar to the generators,

loads can become unstable where the instability occurs without cascaded system failure. On

the other hand the instability starting at one point can cascade and cause the complete power

system to fail. The physical disturbance that effects stability can be large or small. Ideally, the

power system should be robust enough, to be stable after being subjected to disturbances, that

have a high probability of occurrence. Instability of the power system, can be viewed as one or

more system variables having unbounded response after a disturbance. Power system variables

are interlinked and therefore system stability is one single interconnected problem. In order to

8
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Figure 2.1: Power system stability classification [49]

simplify the analysis of power system stability a classification is presented in [49] based on fac-

tors that leads to instability and supported by partial stability concept presented in [50]. In this

work classification as presented in [49] is used. Power system stability is categorized on three

main criteria,

• The system variable in which the instability is observed - e.g. rotor angle, voltage

• The size of the disturbance that is considered in the stability studies. e.g. Large distur-

bance such as disconnection of generator or small disturbance which occur continuously

such as small load variations

• The time interval required to assess stability. e.g. short term, long term

The complete stability classification from [49] is given in figure 2.1. Rotor angle stability

refers to the ability of the generators to maintain synchronism after being subject to a distur-

bance. After a disturbance the generator electromagnetic torque and the mechanical torque

will be unbalanced. This in turn will lead to the generator rotor to oscillate. If the rotor angle
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Figure 2.2: Typical frequency response for under frequency event [51]; Frequency (Hz) vs time
response for an under frequency event

oscillations are increasing in magnitude it will lead to the machine going out of synchronism

and getting disconnected from the system. Frequency stability refers to the ability of the power

system to maintain a bounded system frequency when subject to severe disturbances. Insta-

bility occurs when frequency swings are sustained causing tripping of generators or loads. This

is mainly associated with inadequate generation equipment response, insufficient spinning re-

serves or weak coordination between the control and protection equipment. The time frame

for analysis starts from a few seconds to several minutes. In this study the governors of the

synchronous generator and the power controller of the wind turbines are the main factors that

determine frequency stability. Voltage stability refers to the ability to maintain a steady voltage

in the system nodes after a system disturbance.

The work in this thesis is focused on small signal stability and frequency stability. Voltage

stability is not discussed.

2.2 Frequency stability

The frequency response of the power system, due to an under frequency event, caused either by

connection of a large loads or the disconnection of generators is given in figure 2.2. As per [27]

frequency response can be classified into four main stages depending on the time duration of

the associated dynamics. Three of these stages are of interest to this thesis.
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2.2.1 Stage I

For the first few seconds after the under frequency event, rotor swings will occur in larger degree

with local generators and in lesser degree in other generators of the system. The initial contribu-

tion of electrical power is dominated by the local generator. In stage I, contribution to meet load

demand is dependent on the electrical distance from the generator to the event node [27]. The

speed of the machines will be different in this stage, meaning that the instantaneous frequency

at each generator bus will be different.

2.2.2 Stage II

Stage I ends in few seconds when the power deficit starts to slow down all the machines, and

the speed of the machines become equal. Starting from the first few seconds to several seconds,

stage II will be dominant. All the machines will slow down at approximately the same rate. The

system frequency will decrease, with its rate of change of frequency (ROCOF) being determined

by the system inertia. The power imbalance is met by converting the stored kinetic energy to

electrical energy. In this thesis, this response is presented as inertial response or fast primary

response. The drop in system frequency is determined by equation 2.1 [42]. Where H is the in-

ertia time constant in seconds, pm,i is the turbine mechanical power in pu, pe,i is the generator

electrical power in pu and fi is the frequency in Hz. d fi
d t is defined as the Rate Of Change Of

Frequency. Power system inertia determines the system response in stage II.

2Hi
d fi

d t
= pm,i −pe,i (2.1)

Unlike classical synchronous generators whose frequency is tied to the grid, the new renew-

able technologies with fully rated converter interface do not contribute to system inertia. In-

creasing wind penetration has created a requirement for these resources to contribute to system

inertia in an artificial manner. The artificially introduced inertia is called synthetic or emulated

inertia [42]. Emulating inertia from wind farms is an important feature for the future power sys-

tem, if they are to support a high wind penetration. The method to emulate inertia is by adding

a supplementary control loop to inject power to the grid depending on the value of d fi
d t . The

supplementary control loop will slow the machine and transfer the stored kinetic energy to the
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grid.

Grid code requirements for inertial support

According to European Network of Transmission System Operators for Electricity (ENTSO-E)

[52], the requirement of synthetic inertia is handed down to regional TSOs. For example the

spanish TSO recommends 5% of the capacity of the plant to be available as contribution for

inertia [10].

Industry offerings

Currently many of the top wind turbine manufacturers offer a commercial solution for both

inertial and governor response in wind farms. Some examples are Siemens - Netconverter [53]

and GE Windinertia [9].

2.2.3 Stage III

Starting from a several seconds, the turbine governor systems will start to respond to the fre-

quency deviation and generation will start to increase. This will halt the frequency drop. Fre-

quency will reach its minimum value and then start to increase due to the effect of primary

governor control. Due to this the system frequency will rise from its minimum value and attain

a steady state value determined by the system droop. This stage is referred to as as governor

response or governor action in this thesis. It is shown in figure 2.2.

In stage III when turbine-governor operates to increase the generator active power, the active

power injection follows the frequency - power curve given in figure ??. Where ωN L ,ωF L and ω0

are the generator steady state frequency at no load, full load and rated load respectively. The

governor droop R is defined as per equation 2.2.

R = ωN L −ωF L

ω0
= ∆ f

∆P
(2.2)

Currently most of the TSOs require high frequency reserve response. Fo example in Ireland,

beyond a system frequency of 50.25 Hz, a droop of 4.4% is required from wind farms [54].
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Figure 2.3: Ideal steady state Frequency - power characteristics of governor with speed droop[11]

2.3 Small Signal stability

The intention of this section is to give an introduction to small signal stability theory. It is rec-

ommended to refer [27] or [11], for a more rigorous approach to small signal stability theory.

2.3.1 System model

Any dynamic system can be represented in the differential matrix form, given by equation 2.3

[27].

ẋ = F (x) (2.3)

Here column vector x is the state vector. Each individual element of the state vector, xi is a

state variable. The steady state of the system is given by equation 2.4. When the the steady state

operating point of the system is o, the corresponding values of the state variables are given by

the state vector xo satisfying equation 2.4.

ẋ = F (xo) = 0 (2.4)

Using the Taylor’s series and expanding F around the equilibrium operation point o, while

neglecting the non-linear terms of expansion, we get the linear state space equation 2.5.
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∆ẋ = A∆x (2.5)

Here ∆x = x − xo and A = ∂F (x)
∂x . The square matrix A is the state matrix. The eigen values

of state matrix A is defined as the values of scalar parameter λ that satisfy the equation 2.6. For

each scalar λi there is column vector φi which satisfies equation 2.6.

Aφ=λφ (2.6)

Simplifying equation 2.6 by using matrix algebra, equation 2.6 is converted to equation 2.7.

(A−λI )φ= 0 (2.7)

The characteristics equation with n solutions, λ1 to λn is found by solving equation 2.8. The

values λ1 to λn are the eigen values of the system.

det ((A−λI ) = 0 (2.8)

The small system stability of the system is determined by the eigen values. For a system to

be stable the real part of the eigen value should be negativeσ< 0. The general form for complex

eigen value λi is given by equation 2.9. Each eigen value represents a mode of the system with

certain oscillation frequency and damping.

λ=σ± jω (2.9)

The oscillation frequency of the mode in Hz is given by equation 2.10. The damping ratio of

this mode is given by equation 2.11.

f = ω

2π
(2.10)

ζ= −σ
2π

(2.11)

The rate of decay of the oscillation is determined by the damping ratio. A decay of 1/e = 37%
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in the oscillation amplitude will occur in 1/2πζ cycles.

2.4 State of the Art

The most commonly used wind turbine technologies can be categorized according to the pitch

control system used, generator technology used or the grid interface technology used.

2.4.1 Speed Control

The pitch control system determines how the turbine speed is controlled. The two main type of

pitch control are stall control and pitch control.

1. Stall control is passive where the blade pitch can not be changed. The rotor aerodynamics

are designed to stall the wind turbines at adversely high wind speeds. This is the simplest

method for rotor speed control. The efficiency of energy extraction is optimum only at

rated wind speed.

2. Pitch control is active control of turbine speed, where the pitch angle of the blade is possi-

ble to be changed. By changing the pitch angle the output power and the speed of turbine

can be controlled. The disadvantage of this method is the requirement for an extra pitch

mechanism. However due to high controllability in wind turbine power, granted by the

pitch controller, it has become a state of art feature of modern wind turbines.

2.4.2 Generator Technology

Synchronous and asynchronous generators are used in modern wind turbines. Synchronous

technology employed include classical electrically excited generators as well as permanent mag-

net excited generators. Asynchronous technology used include squirrel cage generators and

wound rotor generators.
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Figure 2.4: Type-4 WTG [55]

2.4.3 Grid Interface

Older wind turbine technology used to be directly connected to the electrical grid. In recent

times partial power electronics interface and full power electronics interface has become a pop-

ular choice due to the possibilities in providing ancillary services.

2.4.4 Wind Turbine Generator Technologies

The IEEE classification of the wind turbine generators [55] is used in this dissertation. Accord-

ingly, there are four main types of wind turbine generator configurations that are grouped ac-

cording to the flexibility of speed control and the type of electrical interface to the grid. They

are,

1. Type 1 - Fixed speed - Direct connected

2. Type 2 - Limited Variable speed - Direct connected

3. Type 3 - Limited Variable speed - Partial power electronic interface

4. Type 4 - Full Variable speed - Full power electronic interface

Only type 4 includes a full power converter interface. Since this thesis models a FRC based

WTG, the state of art is limited to a discussion on type 4 WTG technology.

Type 4 - Variable speed - Full power electronic interface

The Type 4 turbine shown in figure 2.4 completely de-couples the grid side from the genera-

tor side. The turbine can ensure maximum energy extraction throughout its operational speed

range. Usually it is operated at its optimal aerodynamic speed. Both asynchronous and syn-

chronous generator technologies are used with a full converter interface.
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Figure 2.5: DC/DC Boost interfaced PMSG wind turbine

This study models a Type-4 PMSG based variable speed, fully power electronic interfaced

WTG. Due to having a large number of permanent magnet pole pairs the generator can be di-

rect driven. Further the generator does not require any external excitation. Due to these advan-

tages one of the most popular choices for offshore wind farms is the direct driven PMSG FRC

technology. According to leading manufacturer siemens [8], PMSG FRC design has lower weight

, lower number of components, higher reliability, lower infrastructure, installation, operation

and maintenance cost when considered as an offshore wind farm solution.

2.4.5 Wind Turbine Power Electronic topology

In a FRC WTG, the grid side power electronic converter is usually Voltage Source Converter. For

the generator side, there are two main power electronic topologies that can be used [56]. They

are,

1. DC/DC Boost interfaced PMSG wind turbine

2. Back to back VSC interfaced PMSG wind turbine

2.4.6 DC/DC Boost interfaced PMSG wind turbine

This interface consists of an uncontrolled diode rectifier connected at the generator side as

shown in 2.7. The grid side is a fully rated voltage source converter. However the DC link voltage

needs to be controlled. Therefore a DC/DC Boost converter is needed as an intermediary sys-

tem to control and provide stable DC link voltage for proper operation of the grid side VSC. The

Control signal to control the DC link voltage by boost converter is shown as D in the figure 2.7.

The system is simple in design, low in cost and high in reliability. However the it gener-

ates harmonic currents resulting in torque ripples. These might result in both torsional reso-
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Figure 2.6: DC/DC Boost interfaced PMSG wind turbine [57]

PMSG

Converter Inverter

External Grid

Figure 2.7: Back to back VSC interfaced wind turbine

nances as well as mechanical vibrations [56]. This is the main drawback of this topology. Fur-

ther output DC voltage needs to be regulated by using the DC-DC converter. The design, mod-

elling , controlling and inertia support implementation for this topology has been conducted in

[34][35][36][37][38][39].

2.4.7 Back to Back VSC interfaced wind farm

In this type, the generator side power interface is also a VSC. Therefore both generator as well

as the grid side, active power and reactive power transfer is controllable and operation is highly

flexible. The PMSG can be operated at its maximum efficiency. Therefore this topology is the

most popular choice in the industry [58]. It is the most used turbine and constitutes of the

state of art for Type 4 wind turbine generators [59]. In this dissertation, it is the chosen system

topology for modelling.
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2.4.8 Wind Plant control structure

A wind farm [60] consists of many wind turbine generators interconnected together. In real

system operation the TSO requires the wind farm to adhere to its requirements. Therefore there

is a requirement to control the wind farm from system level while providing a simple system

level interface to the TSO as shown in figure 2.8. Depending on the TSO requirements and taking

into account the operating condition of the individual wind turbines, the wind farm controller

will control the individual wind turbines to collectively adhere to the TSO requirements. This

study does not take into account the plant level controller but uses an aggregate model which

represents all the wind turbines in the wind farm by one single lumped wind turbine model.



Chapter 3

Power system modelling

This chapter presents the models used for simulation of classical power system components in

for the simulation study. Rigorous derivation of these models can be referred in classical power

system analysis texts such as [61].

3.1 Synchronous Generator

The sixth order model given in [27] is used for modelling the classical electrically excited syn-

chronous generators. There are three synchronous generators, G2 in area 1 and G3 and G4 in

area 2. All generators have identical parameters except for the inertia constant which is slightly

different for area 1 and area 2. The system parameters are given in appendix A. A detail deriva-

tion of the mathematical model is addressed in [27]. The model is presented, with the objective

of highlighting the aspects, that will be having an impact on the work carried out.

The model is given in dq rotor reference frame. By applying space vector theory [62], the

3-phase system in stationary coordinates is transformed into a two-phase system in rotating

coordinates. This transformation is commonly known as the modified park transformation [63].

It is extensively used in this dissertation. The transformation is described in section 3.7.1.

The assumptions made to develop the mathematical model of the synchronous generator

are that,

• The flux distribution is sinusoidal

20
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Figure 3.1: Synchronous generator cross section

• The winding capacitance is negligible

• Hysteresis losses are negligible

• The rotor speed in the transient and sub-transient state is approximately equal to the syn-

chronous speed

• Linear magnetic circuits and independence of the inductance values are independent

from the current (saturation is negligible)

The cross section of the synchronous generator model from [27],given in figure 3.7, includes

rotor field winding f1f2, stator armature winding ABC, d-axis damper winding D and q-axis

damper winding Q. The mathematical model in dq0 rotor reference frame is given below.

T ′′
doĖ ′′

q = E ′
q −E ′′

q + Id (X ′
d −X ′′

d ) (3.1)

T ′′
qoĖ ′′

d = E ′
d −E ′′

d − Iq (X ′
q −X ′′

q ) (3.2)

T ′
doĖ ′

q = E f −E ′
q + Id (Xd −X ′

d ) (3.3)

T ′
qoĖ ′

d =−E ′
d − Iq (Xq −X ′

q ) (3.4)

T ′
qoĖ ′

d =−E ′
d − Iq (Xq −X ′

q ) (3.5)

2H∆̇ω= Pm −Pe (3.6)
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δ̇=∆ω (3.7)

The variables and parameters are,

T ′′
do = d-axis subtransient open-circuit time constant

T ′
do = d-axis transient open-circuit time constant

T ′′
qo = q-axis subtransient open-circuit time constant

T ′
qo = q-axis transient open-circuit time constant

E ′′
q = q-axis subtransient emf

E ′
q = q-axis transient emf

E ′′
d = d-axis subtransient emf

E ′
d = d-axis transient emf

E ′
f = field emf

X ′′
q = q-axis subtransient reactance

X ′
q = q-axis transient reactance

X ′′
d = d-axis subtransient reactance

X ′
d = d-axis transient reactance

Xd = d-axis reactance

Xq = q-axis reactance

H= generator inertia time constant

∆ω = rotor speed deviation

δ = rotor angle

All quantities are in per unit except for H which is in seconds. Equations 3.1 to 3.6 model the

electrical dynamics of the synchronous generator. Equations 3.6 and 3.7 model the mechani-

cal dynamics of the generator. The state variables for the sixth order model consists of the six

variables E ′′
q , E ′

q , E ′′
d , E ′

d ,∆ω and δ.

3.2 Power frequency Converter

This chapter addresses the system design concepts for power converters including concepts

required for the system controls presented in later chapters.



CHAPTER 3. POWER SYSTEM MODELLING 23

Figure 3.2: Physical scheme for voltage source converter

3.2.1 Introduction

A power converter is the component that converts AC to DC or vice-versa. The two kinds of con-

verter technologies that are currently used are Line Commutated Converters which use thyris-

ters for switching and Voltage Source Converters which use Insulated Gate Bipolar Transisters

for switching. In the wind farms with fully rated converter systems, voltage source converters

can provide the required flexibility in control and operation. Therefore they are the state of art in

the wind industry. The IGBT voltage source converter consists of six IGBTs and six anti-parallel

diodes connected in a bride structure as presented in figure 3.2 .

In a variable speed, fully rated converter wind turbine electrical system, the generator side

converter converts the low frequency AC to DC while the grid side converter converts the DC

voltage to grid AC voltage. Therefore, in this thesis, the generator side power converter is referred

to as the rectifier and the grid side converter is referred to as the inverter.

3.2.2 Mathematical model

The IGBTs are switched using Pulse width modulation. The switching frequency is in the Khz

range. Since this frequency is much higher than the frequency of the studied phenomena, which

is usually in the range from 0.2 Hz to 20 Hz [11], a fundamental frequency model of the power

converters can be used for power system stability studies. This choice also maintains the con-

sistency in accuracy across all the models.

Given an ideal DC voltage with magnitudeVdc , when sinusoidal PWM is being employed,



CHAPTER 3. POWER SYSTEM MODELLING 24

md

Udc

√
3

2
√
2

Ud

×

mq
√
3

2
√
2

Uq×

dq

abc

PLL
cos(θ) sin(θ)

Ureal + jUimaginary

Figure 3.3: block diagram for voltage source converter [30]

rms AC voltage is given by equation 3.8, [64] where converter is assumed to be ideal.

|Vac | =
p

3

2
p

2
mVdc (3.8)

The phase of the AC voltage can be controlled by the converter to any value required.

The converter voltage Vac in grid voltage oriented reference frame is given by,

Vacr =
p

3

2
p

2
mr Vdc (3.9)

Vaci =
p

3

2
p

2
mi Vdc (3.10)

Vac 6 φ=Vacr + jVaci (3.11)

Where, Vacr , Vaci , φ, mr and mi represent the real component of the ac voltage, the imaginary

component of the ac voltage, voltage angle, real component of the pulse width modulation index

and the imaginary part of the pulse width modulation index.
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Figure 3.5: Equivalent circuit of a transmission line

3.3 Power Transformers

The equivalent model of the transformer (referred to the primary side) applied [61] in this thesis,

is given in figure 3.4. Where,

R1, R2 = Primary and secondary winding resistance

X1, X2 = Primary and secondary winding leakage reactance

Rc = core loss resistance

Xm = Magnetising reactance

In the studied Kundr’s two area network both both core loss resistance and magnetizing re-

actance are neglected to simplyfy the system model. Therefore the transformer is modelled by

an impedance ZT .

3.4 Transmission lines

This study uses the π - model of a transmission line given in figure 3.5.

ZL = Total series impedance per phase
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Figure 3.6: Control Block Diagram for the Hydro Governor

Y = Total shunt admittance per phase

In the simulation model the short line assumptions is applied. Therefore Y is assumed to be

negligible and the model reduces to a simple series impedance given by ZL .

3.5 Power System Loads

The power system complex loads as well as capacitor backs are modelled as constant impedance

loads. The load voltage is assumed to be stiff since voltage variations in the simulation study is

negligible.

3.6 Hydro Governor

In the modelled power system, 75% of the penetration is still from classical generation. In or-

der to highlight the frequency variations, slow hydro governors are used for the generators. The

hydro governor presented in [65], is used for this study. The parameters of the hydro governor

model are given below. All time constants are in seconds.

R = Permanent Droop in pu

r = Temporary Droop in pu

Tr = Governor Time Constant
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Figure 3.7: Control Block Diagram for the AVR

T f = Filter Time Constant

Tg = Servo Time Constant

Tw = Water Starting Time

At = Turbine Gain in pu

D tur b = frictional losses factor in pu

qnl = No Load Flow in pu

3.7 Automatic Voltage regulator

The simplified excitation system (AVR SEXS) given in [66], is used in this study. The control block

diagram of the AVR is given in figure 3.7. The model parameters are,

Ta = Filter derivative time constant in seconds

Tb = Filter delay time in seconds

K = Controller gain in pu

Te = Exciter time constant in seconds

3.7.1 Reference frame conversion

The rotor reference frame relates to system reference frame by a rotation of axis equal to the

rotor angle. The conversion matrix to the system reference frame from the local rotor reference

frame is given by equation 3.12. The synchronous machine model when presented in a rotor

oriented reference frame is known as the park model. Figure 3.8 presents the relative position

of the two coordinate systems. Any system with similar rotational displacement of axis can be

transformed using this transformation.
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Figure 3.8: Coordinate transformation from local rotor reference frame to system reference
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Er

Ei

=
cosδ −si nδ

si nδ cosδ

Eq

Ed

 (3.12)

Eq and Ed are the d-axis and q-axis components of emf in the local rotor reference frame and Er

and Ei are the d-axis and q-axis components of emf in the system reference frame. δ is the rotor

angle. Figure 3.8 presents the relative position of the two coordinate systems.



Chapter 4

Wind Turbine Modelling

This chapter establishes the mathematical model of a wind turbine generator applicable for

power system dynamic studies. The first section describes the generic structural representation

of the system. The second section presents how the component models are combined to give

a full order and reduced order model. The rest of the chapter will describe the detail models of

the individual components.

4.1 Introduction

A main objective of this thesis is to model a wind turbine generator with least effort and com-

putational requirements while providing a sufficiently accurate response. There are three com-

plexity levels of modelling [67] that can be applied in a power system simulation study. The first

is the low resolution approach, which only considers the mechanical dynamics (the electrical

dynamics are neglected). The reduced order model used in this work belongs to this category.

The second is the medium resolution approach, where the electrical dynamics are simplified

by modelling the electrical machines, using a fundamental frequency (phasor) approximation.

The models provide sufficient accuracy to analyse system electro-mechanical transients. The

full order model used in this work belongs to this category. The third category is a high reso-

lution approach, which models all dynamics, including high frequency switching and DC tran-

sients. The scope of interest in a power system stability study, is limited to electro-mechanical

dynamics. Therefore modelling complexity of this study is limited at most to the second level.

29
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Figure 4.1: Wind farm single line diagram
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4.1.1 Generic Structure

The single line diagram of the modelled wind turbine generator is given in figure 4.1. The wind

farm electrical system consists of PMSG, generator side converter, DC link, grid side converter

and step up power transformer. The generator side converter controls the PMSG. The DC link

provides the interface between the two converters. The grid side converter provides the grid

interface. The lower generator voltage, is stepped up to the higher utility grid voltage by the

power transformer.

This system can be represented by the generic functional diagram shown in figure 4.2. The

mechanical subsystem consist of the aerodynamic model, pitch control model, drive train model
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and the maximum point tracking model. The drive shaft of the generator is directly connected

to the wind turbine. The pitch control mechanism controls the wind turbine power output.

4.1.2 Full Order Model

The full order model, represents both mechanical and electrical dynamics. The structure of

this model can be presented using two subsystems. The first given in figure 4.3, shows how

the mechanical component models are combined, to create the mechanical subsystem. The

second given in figure 4.4, shows how the electrical component models are combined to create

the electrical subsystem.
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4.1.3 Reduced Order Model

The structure of the reduced order model is given in figure 4.5. This is an approximate model

which neglects the generator, generator side controls and DC link dynamics. The wind turbine

mechanical dynamics are however represented.

4.2 Wind Turbine Mechanical System

The mechanical subsystem is common for both full order and reduced order model. This can be

observed by comparing figure 4.3 and figure 4.5. The wind speed, pitch angle and rotor speed

determines the wind power extracted by the wind turbine. This phenomenon is modelled in

the aerodynamic model. The extracted mechanical power generates torque on the wind turbine

shaft, driving the electrical generator. The generator converts the mechanical energy to electri-

cal energy. The resulting rotor speed determines the power reference to the power electronic

interface, using the maximum point tracking scheme.

4.2.1 Wind Aerodynamics

The source of energy that drives a wind turbine, is the kinetic energy in the wind. When the wind

mass strikes the blades of the turbine, the speed of the air mass decreases, causing a change of

momentum resulting a loss in energy. This loss in energy of the wind mass, is converted by the

turbine and reflected as rotational kinetic energy. In itself modelling wind turbine aerodynamics
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is a highly researched [68], advanced field of study. Sophisticated models for wind aerodynamics

are available in literature. However this work will use a simple empirical method presented in

[69], for modelling this energy conversion process.

Either a real wind speed sequence or a modelled wind speed sequence can be used to sim-

ulate wind dynamics. Reference [70] uses a simple wind turbulence model. Reference [22]

presents a wind speed model which also includes tower shadow effect. In general, a theoret-

ical wind speed model will include a combination of mean, ramp, gust and noise components

[71]. Instead of using a theoretical model, this work follows the approach of [24], where a real

wind speed sequence is applied. A measured wind speed sequence, from a wind farm in Gansu

province, China which is given in [72], is used in this work.

The total wind power Pw , available for extraction by the turbine, is given by equation 4.1.

Here A is the turbine cross section area, V is the mean wind speed over the turbine surface and

ρ is the air density.

Pw = 1

2
ρAV 3 (4.1)

The fraction of power extracted from the available power in the wind formula by practical

turbines is expressed by the performance coefficient [69], Cp . The power extracted is given by

equation 4.2. A turbine cannot extract more than 59% [73][58] of the total available power. This

maximum theoretical limit of the performance coefficient, is known as the betz limit [74]. The

extracted mechanical power Pm , from wind, is given by equation 4.3.

Pm =Cp Pw (4.2)

Pm = 1

2
ρAV 3

wCp (4.3)

Cp is a function of pitch angle, β and the tip speed ratio, λ. The tip speed ratio is defined by

equation 4.4, where ωm is the rotational speed of the turbine, R is the radius of the turbine and

Vw is the wind speed.

λ= ωmR

Vw
(4.4)

According to [24], Cp characteristics for different wind turbines types are alike. This gives
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Figure 4.7: Cp as function of λ for different pitch angles

rise to the possibility of using a generic equation to represent Cp . This work uses an empirical

formulae from [69], in the form presented in equation 4.5. The values for constants C1 to C9 as

applicabable to variable speed wind turbines are extracted from [24]. The equations 4.3 and 4.5

gives the wind aerodynamic model presented in figure 4.6. λi is given by equation 4.6.

Cp (λ,β) = c1

(
c2

λi
− c3β− c4β

c5 − c6

)
e
− c7
λi (4.5)

λi = 1
1

λ+c8β
− c9

β3+1

(4.6)

The variation of Cp as a function of λ for different values of β, derived using equation 4.5 is

given in figure 4.7. It shows that the highest Cp values are obtained, when operating with β at 0

degrees. This highlights the fact that by increasing β, the wind turbine power can be decreased.
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Figure 4.8: Wind turbine output power variation as a function of turbine rotational speed

4.2.2 Maximum point tracking scheme

The variable speed operation of a wind turbine is motivated by the requirement to operate at

maximum efficiency, in order to extract the maximum possible power available in the wind.

When the wind speed is high, causing the turbine speed to increase, the power needs to be

limited to the maximum safe limit for the turbine. The wind turbine output power, as a func-

tion of turbine speed, is derived using equations 4.3, 4.4 and 4.6, is given figure 4.8. This figure

shows that for each wind speed, output power can be maximised by operating at a specific ro-

tational speed. The operating points for maximum power output, for each wind speed point,

combines to create the MPT characteristics for this turbine. Therefore by operating the wind

turbine, power - speed characteristics, following the red MPT curve in figure 4.8, maximum effi-

ciency at lower wind speed and safe operation at higher wind speeds is realised. In this model,

maximum point tracking scheme is implemented, by generating the output power reference,

using the turbine rotational speed as input to the MPT scheme given in figure 4.9.
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4.2.3 Pitch Controller

The turbine power output is controlled by the pitch mechanism shown in 4.11. The general con-

trol objective of the pitch angle controller is to control the turbine speed to the reference value.

Different models for pitch system are available in literature [69][24]. The simple pitch controller

model given in [15] is used for this study. Control block diagram for the implemented pitch

controller is given in figure 4.10. The turbine speed error generates the reference pitch angle by

using a PI controller. The actuating mechanism is a servo motor. The pitch controller operates

to limit the turbine output power to its rated value in high wind speed conditions. This func-

tionality is implemented by fixing the reference wind turbine speed to a constant value (rated

value), while setting the pitch angle reference minimum limit to 0 degrees. The variables used

in the model are,

Ka = blade angle controller gain

Tr = lead time constant (s)

Ta = blade angle controller time constant (s)

T = servo time constant (s)

ωr e f = maximum speed (pu)

β̇ = blade positioning speed (degrees/second)
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4.2.4 Wind turbine drive train

The wind power extracted by the turbine rotor, drives the wind turbine drive train. The turbine

in turn, drives the PMSG and converts the mechanical power into electrical power. The mechan-

ical drive train is direct driven. Therefore, assuming a perfectly stiff shaft, turbine speed is equal

to the generator speed. In order to generate the rated output power, for a low speed machine,

(larger number of pole pairs) a high torque will be required, as per the mechanical relationship

given in equation 4.7. Therefore, the relative shaft stiffness values will decrease. For a system

with low rotational speed, a significant shaft twist will occur, resulting in a significant dynamic

change of the generator electric angle [28]. In order to model this effect, at least a two mass

system will be required. However this work considers a system with 13 pole pairs. According to

[28], the drive train for this WTG can modelled using a the single mass model, given in equation

4.8. The control block diagram for the drive train model is given in figure 4.12. Where P, T, J and

ω is given by mechanical power in W, shaft torque in Nm, rotor inertia in Kgm and rotor speed

in rad/s, respectively.

P = T ×ω (4.7)

∆P

ω
=∆T = Jeq · dω

d t
(4.8)



CHAPTER 4. WIND TURBINE MODELLING 38

1
2Hs

b

b
b

∆P ∆T ω
-

Pmech

Pelec

Figure 4.12: Mechanical drive train block diagram

qRRF

dRRF

E = jωeψPM

ψPM

Is

Us

jωeLIs

qSV RF

dSV RF

δ

Figure 4.13: Rectifier controller reference frame

4.3 Wind Turbine Energy Conversion System

At the start of this chapter the general structure of the models were introduced. Next the me-

chanical system structure and models were described in detail. This section focuses on the

detail modelling of the wind turbine energy conversion system. The control of the energy con-

version process, is based on controlling the two back to back power converters.

4.3.1 Converter reference frame

The control strategy for rectifier controller, is implemented in stator voltage oriented reference

frame, where the d-axis is aligned to the stator voltage vector (usd = ust ator ), as illustrated in fig-

ure 4.13. The control strategy for the inverter controller, is implemented in grid voltage oriented
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reference frame, where the d-axis is aligned to the grid voltage vector usd = ug r i d , as illustrated

in figure 4.14. The stator q-axis voltage is zero. Therefore the generator active and reactive power

can be given [32] by,

P = 3

2
usd isd (4.9)

Q =−3

2
usd isq (4.10)

Where usd is the direct axis voltage and isd and isq are direct and quadrature axis current

components in the stator voltage reference frame. All quantities are in per unit. It is evident

from these two expressions that generator active power can be controlled, by independently

controlling the d-axis current while the generator reactive power can be controlled, by indepen-

dently controlling the q-axis current. The conversion between the reference frames is carried

out by using the modified park transformation given in section 3.7.1. A phase locked loop (PLL)

is used to calculate the phase angle of the voltage phasor.
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4.3.2 Full Order Model Electrical System

The functional structure of the wind turbine energy conversion system is given in figure 4.4. Re-

ferring this diagram, the two main controllers are given as rectifier controller (generator/machine

side controller - MSC) and the inverter controller (grid side controller - GSC).

PMSG Controller
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|V |AC,measured

Pmeasured

Imeasured

abc

dq
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idmeasured
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DC Link

PWM

abc

dq mdg

mqg
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Figure 4.15: Rectifier controller configuration diagram

The PMSG is controlled by the rectifier controller. There are different vector control schemes

that can be used for controlling a PMSG. Widely used vector control schemes include zero d axis

current control (ZDC), maximum torque control (MTPA), unity power factor control and con-

stant voltage control [56][75][26]. In this thesis, constant voltage control described in [26] is

used. The control objective is, control of the generator stator voltage to its rated value. The

advantage of this scheme is that the generator and rectifier can operate at rated voltage. How-

ever the generator will have a reactive power demand, when operating in low wind speeds. The

control objective is two fold.

• Extraction of the generator power as per active power set point generated by the maximum

point tracking scheme

• Control of generator stator voltage magnitude to its rated rated value
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As per equations 4.9, it can be observed that generator active power can be controlled, by

controlling the d-axis current. As per equation 4.10, it can be observed, that the generator re-

active power can be controlled by using the q-axis current. The generator side converter active

power set point is a function of the rotor speed and follows the maximum power point. The

generator side stator voltage controller , controls the stator voltage magnitude to its rated value.

MPTωrotor Pref

Pmeasured

KP,g(1 +
1

sTP,g
) Kd,g(1 +

1
sTd,g

)
−

idref,g

idmeasured,g

−
md,g

Figure 4.16: Rectifier controller active power control loop
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Figure 4.17: Rectifier Controller reactive power control loop

The control structure in figure 4.16, is implemented in this work to achieve the first control

objective. It consists of an outer active power control loop and an inner d-axis current control

loop. The control structure presented in figure 4.17 is used to achieve the second control objec-

tive. It consists of an outer stator voltage magnitude control loop and an inner q-axis current

control loop. According to the controller physical implementation given in figure 4.15, the gen-

erator stator voltage magnitude, voltage angle and the generator current are the input signals to

the controller. The controller output is the PWM index of the rectifier.

Rectifier Controller Inner Current Loop Tuning

Inner current loop tuning

In a rotor oriented dq reference frame, with direct axis aligned with rotor flux vector, the equa-

tions for the PMSG is given by [26],
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λsd = Lsisd +λP M (4.11)

λsq = Lsisq (4.12)

vsd = Rsisd + d

d t
λsd −ωmλsq (4.13)

Where λsd , λsq , vsd , vsq , Ls , isd , isq , Rs , ωm , λP M is given by d and q axis flux linkage, d and

q axis stator voltage, stator inductance, d and q axis current, stator resistance, generator speed

and field flux linkage respectively. The field flux linkage (permanent magnet excitation) is time

invariant. Substituting to equation 4.13 from equations 4.11 and 4.12, gives vsd .

vsd = Rsisd + d

d t
(Lsisd +λ f d )−ωm(Lsisq ) (4.14)

vsq = Rsisq + d

d t
λsq +ωmλsd (4.15)

Substituting to equation 4.15 from equations 4.11 and 4.12, gives vsq .

vsq = Rsisq + d

d t
(Lsisq )+ωm(Lsisd +λ f d ) (4.16)

Since this PMSG is a non salient pole machine, stator d-axis inductance and q-axis induc-

tance is considered equal [76] (Ls = Ld = Lq ). Therefore the electro magnetic torque (Te ) of the

generator is given by [26],

Te = 3

2
λP M isq (4.17)

The modelling assumption for the PMSG are,

• Stator transients are neglected since the study is focused on fundamental frequency sim-

ulations [11]

• A single mass model is assumed for the mechanical drive
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• Magnetic saturation in the machine is neglected and flux distribution is assumed to be

sinusoidal

• The only active power losses are stator copper losses

• The synchronous generator doesn’t have damper windings [26]

Converting the voltages to laplace domain for controller design with the cross coupling terms

viewed as a disturbance from control point of view, the system transfer function Hp is given by,

Hp = isd

vsd
= 1

Rs + sLs
(4.18)

Hp = 1

Rs(1+τs)
(4.19)

Here τ is given by Ls/Rs . The same transfer function is valid for the q-axis current loop, since

the parameters are identical. The control block diagram for generator side control inner current

loop is given in figure 4.18.

Controller

A proportional integral (PI) controller, in the form given in equation 4.20 is used throughout

this dissertation. Here Kp is the proportional gain, and Ti is the integral gain.

Hc = Kp
(1+Ti s)

Ti s
(4.20)

Converter
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Figure 4.19: Transfer function for inner current control loop

Parameter Value

Stator resistance RS 0.0001 pu
Synchronous reactance Xs 1.5 pu
Switching frequency 1 kHz
Measurement delay 2 ms

Table 4.1: Generator Parameters for controller tuning

Converter is modelled as a delay of Ta , where the delay time is approximated by half the

switching time period.

HPW M = 1

1+Ta s
(4.21)

System

The control system needs to modulate the current value to its reference value dictated by the

outer control loop. The open loop transfer function (HOL) for this system would be, Hc HPW M Hp

and is given by equation 4.22.

HOL = Kp (1+Ti s)

Ti s(1+Ta s)Rs(1+τ)
(4.22)

Using the modulus optimum tuning criteria given in [77], controller parameters are chosen

as,

Ti = τ and Kp = τR

2Ta
(4.23)

The calculated parameters for the inner current controller is given in table 4.2. The bode plot

for the open loop transfer function given in figure 4.20 confirms stable operation with a cross
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Parameter value (pu)

Kp 0.96
Ti (τ) 47.8 s
Ta 2.5 ms

Table 4.2: Rectifier inner current controller parameters

Figure 4.20: Generator current controller open loop bode plot

Figure 4.21: Generator current controller step response plot
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Figure 4.22: Rectifier controller outer active power loop

Parameter value (pu)

Kp 0.1
Ti (τ) 47.8 s
Teq 5 ms

Table 4.3: Rectifier active power loop controller parameters

over frequency of 180 rad/s and phase margin of 65 degrees. The time response of the controller,

to a step in current input, given in figure 4.21 shows a settling time of 15 ms.

Rectifier Controller active power loop tuning

In the converter control reference frame, active power is given by [32],

P = 3

2
usd isd (4.24)

As per [77], the inner current loop transfer function is replaced by a simple first order func-

tion with Teq = 2Ta , resulting in control block diagram given in figure 4.22. The control require-

ment for outer loop is for its response to be approximately 10 times slower than the inner control

loop. Kp is chosen such that the open loop cross over frequency is (180/10) 10 rad/s, while Ti

is chosen to cancel the pole of the transfer function. The bode plot for the open loop transfer

function given in figure 4.23, confirms stable operation with an inherently stable system and

cross over frequency of 20 rad/s. The time response of the controller to a step in current input

given in figure 4.24 shows a settling time of 250 ms.

Cross over frequency of 20 rad/s and an inherently stable system is observed for calculated

parameters given in table 4.3. The settling time for power controller being 250 ms and settling

time for inner current being 20 ms, the design objectives are realized.
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Figure 4.23: Generator current controller open loop bode plot

Figure 4.24: Generator current controller step response plot
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Figure 4.25: Stator voltage control loop block diagram

Outer loop stator voltage controller

In the converter control reference frame phasor diagram, given in figure 4.13, the stator voltage

magnitude is given by;

|u| = E cosδ+X iq (4.25)

Since the P and Q control is decoupled, δ is dictated by the active power transfer while in-

ternal emf, E is dictated by the rotor speed. Therefore both E and δ are constants. The only

possibility of controlling the stator voltage is by controlling iq . Linearising equation 4.25, re-

sults in equation 4.26, which defines the system transfer function. Here X is the synchronous

reactance of the PMSG.

∆|u| = x∆iq (4.26)

As per [77], the inner current transfer function is replaced by a simple time delay of Teq = 2Ta .

The resulting control block diagram for the stator voltage control loop is given in figure 4.25. The

control requirement for outer loop, is for its response to be approximately 10 times slower than

the inner control loop. Kp is chosen such that the open loop cross over frequency is (180/10 )

10 rad/s . Ti is chosen to cancel the pole of the transfer function. The bode plot for the open

loop transfer function given in figure 4.26, confirms inherently stable system with cross over

frequency of 15 rad/s. The time response of the system to a step in current input, illustrated in

figure 4.27, shows a settling time of 400 ms. The settling time for power controller being 250 ms

and settling time for inner current being 20 ms, the design objectives are realized. The calculated

controller parameters are given in table 4.4.
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Figure 4.26: Generator stator voltage controller open loop bode plot

Figure 4.27: Generator stator voltage controller step response plot

Parameter value (pu)

Kp 0.05
Ti (τ) 47.8 s
Teq 5 ms

Table 4.4: Calculated parameters of the outer loop controller
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Figure 4.28: Inverter controller configuration diagram
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Figure 4.29: Inverter DC voltage control loop

Inverter Controller

As shown in figure 4.4 the inverter controller controls the grid side power frequency converter.

The control objective of this controller is two fold.

• Control of DC bus voltage to its reference (rated) value

• Control of reactive power exchange with grid to its reference value (initial value)

The figure 4.28 shows a detailed configuration diagram, illustrating the structure of the in-

verter control system. As per equations 4.9 and 4.10 the inverter active power can be controlled

by controlling the d-axis current while the inverter reactive power can be controlled by control-

ling the q-axis current.

The block diagram in figure 4.29 is implemented to achieve the first control objective. It

consists of an outer DC voltage control loop and an inner d-axis current control loop. The block

diagram in figure 4.30, is used to achieve the second control objective. It consists of an outer re-

active power control loop and an inner q-axis current control loop. As illustrated by the inverter
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Figure 4.30: Inverter reactive power control loop
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Figure 4.31: Control block diagram for inner current control loop

controller configuration diagram, the required inputs to the controller are, grid reactive power,

DC bus voltage, inverter current and the voltage angle.

Inner current loop tuning

The control block diagram for grid side control inner current loop is given in figure 4.31. The

single line diagram given in figure 4.32, explains the notations used for derivation of the trans-

fer functions. For the above grid side converter scheme in dq grid voltage oriented reference

frame, the converter voltages are derived by writing the voltage balance equations across the

filter impedance. Converter d-axis and q-axis voltage is given by equations 4.27 and 4.28 [32].

vd1 = (Rid +L
d

d t
id )−ωsLiq + vd (4.27)

Grid Side converter

AC

DC
R L Stiff Grid

vd1, vq1 vd, vq = 0
id, iq

Figure 4.32: SLD for grid side converter interface
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Figure 4.33: Transfer function for inner current control loop

vq1 = (Riq +L
d

d t
iq )+ωsLid (4.28)

Hp = id

vd
= 1

r (1+τs)
(4.29)

Converting the voltages from time domain to laplace domain, with the cross coupling terms

viewed as a disturbance from control point of view, the system transfer function is given by

equation 4.29. Here τ= L/R. The same transfer function applies for the q-axis controller, since

the parameters are identical.

Controller

Conventional design techniques are used to calculate the controller parameters. The form of

the PI controller given in equation 4.30 is applied.

Hc = Kp
(1+Ti s)

Ti s
(4.30)

Converter

Converter is modelled as a delay of Ta , with its transfer functions given by equation 4.31.

HPW M = 1

1+Ta s
(4.31)

System

The system open loop transfer function HOL = Hc HPW M Hp is given by equation 4.32.
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Parameter Value

Filter resistance r 0.01 pu
Filter reactance Xs 0.1 pu
Switching frequency 1 kHz
Measurement delay 2 ms

Table 4.5: Grid Parameters for controller tuning

Parameter value (pu)

Kp 0.2
Ti (τ) 0.1 s
Ta 2.5 ms

Table 4.6: Parameters for inverter current controller

HOL = Kp (1+Ti s)

Ti s(1+Ta s)Rs(1+τ)
(4.32)

The controller is tuned using the modulus optimum criteria [77] given in equation 4.33. The

grid parameters and switching delay of the converter is given in table 4.5. The controller param-

eters are calculated and presented in table 4.6.

Ti = τ and Kp = τR

2Ta
(4.33)

The bode plot for the open loop transfer function given in figure 4.34 confirms stable opera-

tion with a cross over frequency of 180 rad/s and phase margin of 65 degrees. The time response

of the controller, to a step in current input illustrated in figure 4.35, shows a settling time of 20

ms.

DC voltage controller

For stable operation of converter, the DC link voltage is required to be held constant. Further this

ensures the power balance. The power balance assuming negligible power losses is presented

in equation 4.34. According to this equation, grid side converter d-axis current component, is

directly proportional to the active power transfer, when DC link voltage is held constant. Balance
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Figure 4.34: Inverter current controller open loop bode plot

Figure 4.35: Inverter current controller step response plot
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Figure 4.36: DC voltage control loop block diagram

of power transfer from DC link to AC grid is given by equation 4.34.

P = vdc idc =
3

2
ud id (4.34)

Applying Kirchoffs current law to the capacitor node gives equation 4.35. Where vdc , idc and C

denotes DC link voltage, DC current and the DC link capacitance.

idc − iL =C
d

d t
vdc (4.35)

Substituting for the value of idc from equation 4.34 to equation 4.35, gives equation 4.36.

3

2

ud id

vdc
− iL =C

d

d t
vdc (4.36)

Equation 4.37, derived by linearising equation 4.36 around the rated point of operation, results

in equation 4.37. Here ∆iL is a disturbance in the control point of interest.

C
d

d t
∆vdc =

3

2

vd ,0∆id

vdc,r e f
(4.37)

The value of vd and vdc at point of linearising is vd ,0 and vdc,r e f . The transfer function from vdc

to id is given by equation 4.38.
∆vdc

∆id
= 3

2

vd ,0

vdc,r e f C s
(4.38)

The DC voltage control outer loop is given in figure 4.36. The inner current loop is replaced by

a first order transfer function [77] (Teq = 2Ta). Using symmetric optimum tuning criteria [77],

(a = 3 and Tc =Xc ) results in equations 4.39, 4.40 and 4.41.
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Parameter value (pu)

Kp 6.67
Ti (τ) 0.045 s
Teq 5 ms

Table 4.7: DC voltage control loop parameters

Figure 4.37: DC voltage outer control open loop bode plot

Ti = a2Teq (4.39)

Kp = Tc

aK Teq
(4.40)

HOL = Kp K (1+Ti s)

Ti s(1+Teq )

3

2C s
(4.41)

The open loop transfer function for this system is given by equation 4.41. The calculated

controller parameters are given in table 4.7. The bode plot for the open loop transfer function,

given in figure 4.37, confirms stable operation with a cross over frequency of 67 rad/s and phase

margin of 53 degrees. The time response of the system to a step in current input ,presented in

figure 4.38 shows a settling time of 200 ms. The outer loop is approximately 10 times slower
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Figure 4.38: DC voltage outer control loop step response plot

compared to the inner current loop.



CHAPTER 4. WIND TURBINE MODELLING 58

Parameter value (pu)

Kp 0.1
Ti 5 ms

Table 4.8: Grid reactive power controller parameters

Reactive power controller

In the converter control reference frame reactive power is given by [32] equation 4.42.

Q = 3

2
usd isq (4.42)

Q Controller

Kp
(1+Tis)

Tis

current control

1
1+Teqs

System

3
2
vd

Qref -

Qipiqref

Figure 4.39: Reactive power control block diagram

As per [77], the inner current transfer function is replaced by a simple time delay of 2Ta . The

resulting control block diagram for the reactive power control loop is given in figure 4.39.

The control objective for the reactive power controller is to be 10 times slower than the inner

control loop. Kp is chosen such that the open loop cross over frequency of the power loop is 10

rad/s. Ti is chosen to cancel the pole of the transfer function. The calculated controller param-

eters using this method are given in table 4.8. The bode plot for the open loop transfer function

given in figure 4.40, confirms stable operation with a cross over frequency of 67 rad/s and phase

margin of 53 degrees. The time response of the system to a step current input presented in figure

4.41, shows a settling time of 500 ms, giving a satisfactory 10 times slower response compared

to the inner current loop.
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Figure 4.40: Grid reactive power open loop bode plot

Figure 4.41: Grid reactive power step response
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Figure 4.42: Reduced Model Electrical control structure
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Figure 4.43: Reduced order model active power control loop

4.3.3 Reduced Order Model Electrical System

The reduced order model structure is given in figure 4.5. This figure illustrates the interface and

the interaction between the mechanical system and the electrical system. A more detailed struc-

ture of the electrical system including input output signals is given in figure 4.42. The PMSG,

generator side converter and DC link, is replaced by a thevenin equivalent voltage source. Since

the DC-link fully decouples the PMSG from the grid, this is a valid assumption. As shown in

figure 4.42, the controlled parameter is the thevenin equivalent voltage (Ur + jUi ).

The inner current loop controller and its parameters are identical to the full order model

inverter current controller, which was addressed in detail in the section 4.3.2. Therefore it will

not be repeated in this section. The reactive power outer loop is similarly identical to the full

model inverter reactive power loop which was addressed in the section 4.3.2. The only control

loop yet to be analysed and controller parameters calculated, is the active power control outer
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Figure 4.44: Reduced order model active power loop block diagram
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Figure 4.45: Auxiliary control loop for frequency control

loop. However, the structure of this control loop is similar to the full model inverter reactive

power outer loop analysed in the section 4.3.2, when the reactive power is replaced by active

power and q-axis current by the d-axis current. The reduced model active power outer loop is

presented in 4.43. The control block diagram for the outer active power loop is given in figure

4.44. The controller parameters are identical to the parameters of the inverter reactive power

controller.

4.4 Wind Turbine Frequency Control

Unlike classical synchronous generators, fully rated converter interfaced wind turbines do not

naturally provide inertial or governor support. The simplest way to provide frequency control

[41] is to add an auxiliary control loop to the active power controller. Since governor action

follows a droop characteristic it can be modelled as a deduction of active power, proportional
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to the frequency deviation. Since the wind farm is already assumed to be operating at maxi-

mum power, it only responds to over frequency events and supports the grid by decreasing its

production. System inertia is emulated by injecting active power proportional to the rate of

change of frequency. The auxiliary control loop for frequency control used in this work is given

in figure 4.45. The existing parts of the active power control loop is given in dash lines while

the added auxiliary control loop is given in solid line. The governor action constant R, is re-

ferred to as the wind farm governor droop while the inertial action constant Kd , is referred to

as the wind fam (synthetic) inertia (emulation) constant. The frequency control auxiliary loop

∆P f r equenc ycontr ol , is augmented to the active power control loop to provide the wind farm with

frequency support. In the reduced order model, it is inserted to the grid active power control

loop, while in the full order model, it is inserted to the generator side converter active power

control loop.



Chapter 5

Simulation Study

5.1 Power System under study

The Kundur’s two area network [12] given in figure 1.1 is the power system used for this study.

The single line diagram of this system is given in figure 5.1. The numbers in the power system

component name describes the nodes they are connected to or connected between. The base

system is symmetric across bus 8 and consists of two areas connected with a weak tie line. Syn-

chronous generators G1 and G2 consists of the area 1 and G3 and G4 consists of the area 2. G1

and G2 have identical parameters to G3 and G4. The generator voltage is converted to trans-

mission voltage by the generator transformers given as T1-5, T2-6. A 25 km length transmission

lines given by L5-6, connects the generators in the same area. Bus 6 is connected to bus 7 via a

10 km transmission line. At bus 7, load L7 and capacitor bank C7 is connected. The capacitor

bank is connected to the bus 7 to ensure appropriate system voltage profile. Bus 7 is connected

G1/WTG
25 km 10 km 110 km 110 km

1

2 4

5 6 7 8 9 10

L7C7 C9
L9

25 km10 km
3

11

G2 G4

G3

Figure 5.1: Single line diagram of power system under study - Kundur’s two area network [12]

63
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Table 5.1: Initial state of the power system
Component Active Power(MW) Reactive Power (MVAr)
G1/WTG 360 -19
G2 360 -42
G3 378 -16
G4 360 -160
L7 -720 100
L9 -720 100

to bus 9 via double transmission lines. All transmission lines in this study are of similar type.

Area 2 is of similar structure to area 1. The parameters of these power system components are

given in the appendix A.

If a large system is used, it would be difficult to understand and examine the factors that

influence system dynamics. Though this power system is small it uses realistic parameters. Fur-

ther the base system has one inter area mode and two local area modes. The local area modes

are not investigated in this study. The inter area oscillations will however be investigated. The

3 GW system with a low value of machine inertia and slow turbine governors creates significant

frequency variations in the system. This supports the system frequency control studies that are

executed. Being less complex and realistic while providing a similar dynamic behaviour as a

complex system motivated the use of Kundur’s two area network for this study.

The variations to the study case consists of replacing Generator 1 with a full order model of

a wind farm and replacing Generator 1 with a reduced order model of a wind farm. The system

is operated at approximately 50% of capacity, in order to be able to change system loads by wide

margins. The same parameters for the hydro-governor (HYGOV) and AVR (SEXS) is applied on

the synchronous generator and kept unchanged throughout the simulation study. A summary

of the steady state condition, from which the dynamic simulation is initialised, is given in table

5.1.

5.2 Power System Simulations

The Digsilent powerfactory power system simulation program [78] is used for carrying out the

simulations. The first step in a dynamic simulation is to find the initial condition for the system.
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A power flow calculation is conducted to find the initial values of most of the system variables.

G3 is modelled as the slack bus while the other synchronous generators are modelled as PV

busses. The wind farm operates as a PQ bus. The initial values for the mechanical models are

manually entered, while ensuring that the mechanical steady state values match with the elec-

trical steady state values obtained from the load flow calculations. The small signal stability

study is carried out using the modal analysis package of Digsilent powerfactory. The calculation

algorithm used is the QR method [79]. The dynamic studies are conducted with a time step of

10 ms.

Initial simulations are conducted for a system consisting only of synchronous generators,

to set up the base case for comparison. Next, simulations are done with wind farm full order

model and reduced order model with out frequency control. It is followed by simulations, where

wind farm is supported by frequency control. The final set of simulations, are focused on modal

analysis, to gauge the system small signal stability for these different scenarios.

5.3 Model Validation

According to the control objectives, the expected operation of the wind farm with increasing

wind speed and decreasing wind speed is as follows. As wind speed increases, the turbine speed

increases, following the maximum point tracking algorithm. Once the turbine speed has in-

creased to its maximum, the pitch controller activates to curtail the turbine speed to its maxi-

mum limit. When the wind speed decreases from this high value, the pitch angle is reduced till

zero and the wind farm power output starts following the maximum point tracking curve.

The model is validated by testing the simulation response for a measured wind speed se-

quence for 300 seconds time duration from [72]. The term validation, in this context refers to

observing if the model’s actual response matches with the expected response. In this simulation

case, frequency control is disabled (Kd = 0, R=0).

5.3.1 Full Order Model

The figure 5.2 validates, successful operation of the pitch controller to limit the wind farm maxi-

mum power output and speed by controlling the pitch angle. The figure 5.3 shows that the active
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Figure 5.2: Validation of the full model mechanical system response, subplot A - wind
speed(ms−1) variation, subplot B - wind turbine speed (rads−1) variation, subplot C - pitch angle
(β - degrees) variation, subplot D - wind farm electrical output (MW) variation

A B

C D

Figure 5.3: Validation of the reduced model electrical system response, subplot A - reference
power set point (MW) generated by the maximum power point tracking scheme, subplot B -
system frequency measured at bus 7 in Hz, subplot C - wind farm electrical output (MW), sub-
plot D - all generator active power output (MW) variation



CHAPTER 5. SIMULATION STUDY 67

A

C D

B

Figure 5.4: Validation of the reduced model mechanical system response, subplot A - wind
speed(ms−1) variation, subplot B - wind turbine speed (rads−1) variation, subplot C - pitch angle
(β - degrees) variation, subplot D - wind farm electrical output (MW) variation

power reference follows the MPT scheme while the actual active power output strongly follows

its reference value. Therefore, the full order model is validated.

5.3.2 Reduced Model

The figure 5.4, validates successful operation of the pitch controller to limit the wind farm maxi-

mum power output and speed by controlling the pitch angle. The figure 5.5, validates successful

operation of the maximum point tracking scheme. Since the system response matches the ex-

pected response and the full order model response, the reduced order model for is validated.

Observations

The operation of the synchronous generator’s turbine governor system to control system fre-

quency is evident from figure 5.5. The reason for the significant variations in frequency is the

variable power output from the wind farm. The system requires much faster turbine governor

systems than the very slow hydro governor systems that are installed, to reduce the effect of
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Figure 5.5: Validation of the reduced model electrical system response, subplot A - reference
power set point (pu) generated by the maximum power point tracking scheme, subplot B - sys-
tem frequency measured at bus 7 in Hz, subplot C - wind farm electrical output (MW), subplot
D - all generator active power output (MW) variation

connecting this wind farm.

5.3.3 Comparison of Model Dynamic Response

A comparison of the active power response with same wind sequence between the full model

and reduced model is given in figure 5.6. The turbine speed response, pitch controller response

and power response compare and match against each other as observed in figure 5.7. The plots

show that the response from the two models are similar.

The effect of each of the models on the other generators is compared in figure 5.8. The sys-

tem generators power response and system frequency response, compare and overlap against

each other as observed in figures 5.8 and 5.9.
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Figure 5.6: Reduced Model and full model output power comparison

A B

C D

Figure 5.7: Comparison of Mechanical response between full model and the reduced model,
subplot A - wind speed(ms−1) variation, subplot B - wind turbine speed (rads−1) variation, sub-
plot C - pitch angle (β - degrees) variation, subplot D - wind farm electrical output (MW) varia-
tion
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Figure 5.8: Reduced Model and full model generator active power (MW) comparison

Figure 5.9: Reduced Model and full model system frequency (Hz) response comparison
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Table 5.2: Comparison of poorly damped eigen values (without frequency control)
Name Real Part (1/s) Im. Part (rad/s) Damped Frequency (Hz) Damping Ratio
Sync. Gen Model : λ17 -0.054 3.69 0.59 0.015
Red. Model : λ20 -0.10 3.97 0.63 0.026
Full Model : λ34 -0.11 4.23 0.67 0.025

5.3.4 Comparison of Small Signal Response (without frequency control)

The poorly damped eigen values, extracted from the modal analysis conducted separately, with

the results for synchronous generator, wind farm full order model and wind farm reduced model,

is given in table 5.2. All eigen values have negative real values. Therefore the system is small sig-

nal stable. In this simulation the wind farm is without frequency control. Only one eigen value

is poorly damped. It represents an inter area mode as observed from the time domain response.

The first important observation is that, the eigen modes are identical for both wind farm mod-

els. The second important observation is that substituting the wind farm for the synchronous

generator G1, has almost doubled the of the damping ratio of the inter-area mode. The system

small signal stability is enhanced with the wind farm.

The time domain response to a small perturbation applied to the system with reduced model

and full model is given in figure 5.10. Inspection shows a clear inter area mode with G2 oscillat-

ing against G3 and G4. The slight difference in the time domain response can be explained by

observing the difference in the poorly damped eigen values. The full model response is slightly

less damped and has a slightly higher oscillation frequency. In this system by using the reduced

model, more optimistic results are obtained.

However the deviations are minor and can be considered negligible. Since transient re-

sponse and small signal response for both models are identical, it is safe to use a reduced or-

der model without sacrificing a significant level of model accuracy in a power system transient

study. However, the analysed wind farms in this case, do not have frequency control.
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Figure 5.10: Comparison of Small Signal Response

5.4 Case Study : Governor action and inertia emulation

5.4.1 Introduction

This section provides an insight in to how a wind turbine generator can provide frequency sup-

port to a small network. This simulation is not a general case and is meant to highlight and

explain the benefits of providing frequency control (inertial and primary support services) from

the interconnected wind farm to the small grid. The reduced model is used for the simulations.

In this case study, wind farm inertia constant, Kd is set at 100 and wind farm governor droop

constant, R is set at 50. An over frequency event is simulated by decreasing the active power of

the load L7 by a step of 360 MW. According to the mechanical system response for this event

given in figure 5.11, a transient oscillation in the wind turbine speed is observed. This is a stress

on the turbine mechanical system. Further, since the drive train is a single mass model this

effect will be larger in a real system. The stress impulse on the drive shaft due to providing

inertial response is needed to be studied in more detail before implementing inertial response
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Figure 5.11: Wind farm mechanical system response for over frequency event : Case Study; sub-
plot A - wind speed(ms−1) variation, subplot B - wind turbine speed (rads−1) variation, subplot
C - pitch angle (β - degrees) variation, subplot D - wind farm electrical output (MW) variation

in an actual WTG. The wind farm output drops down by 115 MW from 360 MW to 245 MW, 35

seconds after the load event and settles down at that value. The wind farm is now operating in

droop mode and contributing to frequency support of the system. All machines have dropped

production to 245 MW except the reference machine.

The response from the frequency control control loop is given in figure 5.12. The sub plot

A is the Bus 7 frequency variation in Hz, sub plot B is the output of the inertial control loop in

pu, sub plot C is the output from the governor response control loop in pu and sub plot D is the

summation of sub plot C and B. Sub plot D gives the total contribution from the supplementary

controller. Maximum contribution of the inertia controller is -0.517 pu and it decays to 0 in

10 seconds. The governor response has a maximum value of -0.532 pu and decays to 0 at -

0.321 pu. The maximum power de-rated, due to primary response is -0.617 pu. The system

regains steady state approximately 35 seconds after occurrence of the event. The power of the

generators (except reference machine), and wind farm settles at 245 MW dropping down to 115

MW from the initial 360 MW.

In order to highlight the benefit of integrating primary support services to the wind farm, the
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Figure 5.12: Primary response emulation control loop for over frequency event : Case Study

Figure 5.13: System frequency comparison
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Figure 5.14: Comparison of Mechanical response between reduced model with primary support
and without primary support, subplot A - wind speed(ms−1) variation, subplot B - wind turbine
speed (rads−1) variation, subplot C - pitch angle (β - degrees) variation, subplot D - wind farm
electrical output (MW) variation

frequency response for the case with frequency control and without frequency control is com-

pared in figure 5.13. The red graph presents the instance without primary support and the blue

graph with primary support. Tangents to the two curves are drawn at t=10s in black and green,

to present the difference in the rate of change of frequency (ROCOF). Without frequency control,

ROCOF is 0.5 Hz/s. It decreases to 0.2 Hz/s when frequency control is provided. The maximum

transient frequency for the case without primary support is 51.17 Hz. It decreases to 50.53 Hz

when the primary support is provided. The frequency response without primary support is os-

cillatory and decays to a high 50.48 Hz in approximately 70 seconds after the fault. With primary

support the response is smooth and damped. The system frequency settles to 50.32 Hz in ap-

proximately 40 seconds after the fault. Therefore, the system with frequency control provides

much higher quality frequency response.

Figure 5.14 is a comparison of the response of the mechanical system. From sub plot C it

is evident that the stress on the pitching mechanism is much higher when frequency control

is implemented. Therefore, it is important to consider the possibility of the pitching system to
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Figure 5.15: Comparison of generator active power response with and without frequency control

withstand this extra stress. According to the sub plot D the wind farm operator will be operating

in a de-rated mode. The area between the blue and red curves represents the total energy loss

of energy due to providing frequency control. This will have financial implications which will

need to be analysed in more detail.

Figure 5.15 is a comparison of the active power response of all the generators in the system.

The power swings without inertia is much higher than the power swings with inertia, for all

the synchronous generators. When frequency control is applied, the generators’s rotor angle

stability is greater and contributes to a system with better stability and well as frequency quality.

This is due to the df/dt term in the primary response control loop, which acts to damp the power

system oscillations. Implementing primary support in this wind farms helps to damp the power

system oscillations.

It should be noted that the wind speed, in this scenario is on the high side and also that

the system is chosen to magnify the benefit of integrating primary support to a wind farm. The

primary response power rejection, is a significantly large 200 MW. This is however not a general

case. It is a demonstration of how primary control in a wind farm operates to compensate for

wind speed and load variations in a small system with wind contribution (WPR) of 25%.
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Figure 5.16: Over frequency event - Comparison of Mechanical response between reduced order
model and full order model, subplot A - wind speed(ms−1) variation, subplot B - wind turbine
speed (rads−1) variation, subplot C - pitch angle (β - degrees) variation, subplot D - wind farm
electrical output (MW) variation

5.4.2 Over frequency event

The previous section focused on showing the benefit of having primary support using the re-

duced model and an over frequency event. This section compares the response of the full order

model and reduced order model when primary support is applied and the system subjected to

an over frequency event. The over frequency event is simulated by decreasing the load 7 active

power by a step of 360 MW at t=10. Parameter values used for the frequency control loop are

Kd =10 and R=5. The response for the two different models are examined and compared against

each other.

The turbine speed response, pitch controller response and power response, compare and

match with each other for both models as observed in figure 5.16. The system generator power

response compare and match against each other as observed in figure 5.17. The system fre-

quency response compare and match against each other as observed in figure 5.18. The re-

sponse of both models are identical. Therefore, the reduced order model is sufficient to model

the system transient response.
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Figure 5.17: Over frequency event - Comparison of reduced order model and full order model
generator active power

Figure 5.18: Over frequency event - Comparison of reduced order model and full order model
system frequency response
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Figure 5.19: Under frequency event - Comparison of Mechanical response between reduced
model and full, subplot A - wind speed(ms−1) variation, subplot B - wind turbine speed (rads−1)
variation, subplot C - pitch angle (β - degrees) variation, subplot D - wind farm electrical output
(MW) variation

5.4.3 Under frequency event

The previous section compares the response of the full model and primary model when primary

support is applied and the system subjected to an over frequency event. This section compares

the system response for an under frequency event. The under frequency event is simulated by

increasing the load 7 active power by a step of 100 MW at t=10. Parameter values used for the

primary support control loop are Kd =10 and R=5. Note that primary support strategy for under

frequency event does not include governor support and R is in effect 0. The response for the two

different models are examined and compared against each other.

The turbine speed response, pitch controller response and power response compare and

match with each other for both models as observed in figure 5.19. The system generator power

response compare and match against each other as observed in figure 5.20. The system fre-

quency response compare and match against each other as observed in figure 5.21. The re-

sponse of both models are identical. Therefore the reduced order model is sufficient to model

the system dynamics.
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Figure 5.20: Under frequency event - Comparison of reduced model and full model generator
active power

Figure 5.21: Under frequency event - Comparison of reduced model and full model system fre-
quency response
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Table 5.3: Comparison of poorly damped eigen values : changing kd from 1 to 15
Name Real Part (1/s) Im. Part (rad/s) Damped Frequency (Hz) Damping Ratio
Red. Model : λ20 -0.1029 3.973 0.632 0.0259
Full Model : λ34 -0.1078 4.228 0.672 0.0254

5.5 Small signal stability with frequency control

The response to a small disturbance, for the models without frequency control was examined

and simulated in the section 5.3.4. In this section, the effect of emulating inertia, on small signal

stability is investigated. In the first subsection the effect of Kd on the poorly damped inter area

mode is investigated. In the next subsections small signal response with reduced model and full

model for different values of Kd is investigated.

5.5.1 Effect of synthetic inertia constant on the poorly damped mode

In order to investigate the influence of emulated inertia, Kd is changed from 1 to 15, modal

analysis is conducted and the resulting poorly damped eigen values are extracted. The calcu-

lated eigen values given in table 5.3, remain unchanged. This shows that, either the reduced

model nor the full model, has any influence on the dominant inter-area mode.

5.5.2 Comparison of small signal response for reduced model

The power oscillations observed due to a small load disturbance is given in figure 5.22.The re-

sponse for Kd = 1 is slightly different from the response for Kd = 15, even if the poorly damped

mode is still unchanged. This points to the fact that the other eigen values are being influenced

by the change in Kd , which in turn influences the overall time domain response.

5.5.3 Comparison of small signal response for full model

The power oscillations observed due to a small load disturbance is given in figure 5.23. The

response for Kd = 1 is identical to the response for Kd = 15. This points to the fact that Kd is not

influencing the overall time domain response. Since, in this model, active power reference for

frequency control loop is applied to the generator side converter, with the generator side being
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Figure 5.22: Comparison of reduced model small signal response with Kd = 15 and Kd = 1

Figure 5.23: Comparison of full model small signal response with Kd = 15 and Kd = 1
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full decoupled from the grid via the DC link, this result is justified.

5.5.4 Modelling of small signal response

The above results indicate that the small signal response is slightly influenced by the type of

model used. The response from the reduced model is changing for different values of Kd whereas

ideally it should stay constant. Therefore when modelling the small signal stability response of

a system, which includes a PMSG based FRC wind farm with with frequency control, better ac-

curacy can be gained by using a full order model.

5.6 Discussion

The two wind farm models achieve the control objectives and follow the expected operational

characteristics. Both models demonstrate identical response with respect to each and every

parameter when applied with the same wind sequence. This suggests that the reduced order

model represents the system response as well as the full order model. However, the PMSG char-

acteristics, the DC link characteristics and the generator side converter characteristics are lost.

Therefore if the WTG internal characteristics are needed to be analysed within the system dy-

namic studies, then a full model will needed. This is specially important if the objective of the

analysis is to find the effect of the system disturbance on the wind farm. A real wind farm, will

need to protect its generator side power converter, DC capacitor, as well as the Generator. These

protection measures will limit the possible operation region of the wind farm.

The results show the salient features of applying frequency control. In the case study, ROCOF

is decreased from 0.5 Hz/s to 0.2 Hz/s. The importance of ROCOF is because it is an input to the

load shedding scheme [80], to shed loads more intelligently and is widely used in modern power

systems. Thus if the ROCOF is high, then the system loads will be shed causing brownouts.

By implementing frequency control in wind farms this can be avoided. In a system similar to

[80], 0.2 Hz/s will not operate to shed any loads, but 0.5 Hz/s will lead to load shedding. The

primary support functionality, will however lead to a loss of production in the wind farm in

both over frequency and under frequency events. This loss of energy is significant in an over

frequency event, as close to 50% of the available energy is lost. However after the frequency is
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stabilised, if the hydro governor set points are increased at a gradual gradient then this problem

can be solved. This indicates that automatic generation controller will have a major role to play

when wind farms have integrated frequency control. System stability is increased with inertial

response since it acts as a damper to the oscillations. The response of both both models overlap

for over frequency and under frequency events. Therefore the reduced model order model is

sufficient to model the transient response of the wind farm.

Without frequency control, the small signal response of the two models do not have any

significant difference. However when frequency control is integrated, wind farm small signal

response presents slightly different characteristics. The full order model small signal response

is unaffected by variations in Kd , whereas the reduced order model is affected. This can be

explained by the decoupling effect due to the DC link in the full model. Further the frequency

control auxiliary loop is augmented at the generator side de-alienating the frequency control

auxiliary control loop from the grid. Though the deviation is small, this leads to the conclusion

that the accuracy of the small signal study will be improve when a full order model is used. The

results of this study closely matches with similar research conducted in [14][44][42][41] and [45].



Chapter 6

Conclusions

This chapter summarises the work done, presents the main contributions and describes the

possibilities for future work.

6.1 Summary and Conclusions

This dissertation presents an analytical study on modelling wind farm with frequency response

for power system dynamic studies. Recent trends indicate that wind energy penetration in the

power system will keep on increasing. This study models a permanent magnet synchronous

generator, fully rated converter based wind farm, since this is one of the state of art technologies

that services this growing demand. Due to the variability in the wind resource, a high demand

will be placed on the frequency stability of the power system. This necessitates the requirement

of providing both inertial and governor support by the wind farm to the power system. High

wind penetration will have a significant impact on the power system stability. These impacts

needs to be investigated by conducting power system dynamic studies.

6.1.1 System Modelling

The main challenge is in identifying an appropriate level of complexity of the models to repre-

sent power system electro-mechanical dynamics, while keeping the models as simple as possi-

ble, to reduce the computational requirements. Taking this into consideration, the main contri-

bution of the modelling work, is identifying a full order model and a reduced order model of a
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wind farm with frequency response.

The dissertation, presents the dynamic models of the main components of a wind turbine

and shows how the component models are combined to generate a full order and reduced or-

der model. Comprehensive theoretical study is conducted for modelling permanent magnet

synchronous generator based, back to back voltage source converter interfaced, wind turbine

generators with frequency support. All main subsystems of a PMSG wind turbine system are

presented. The mechanical subsystems include wind turbine, drive train and pitch system. The

electrical subsystem include generator, power converter and DC link. The network model in-

cludes synchronous generators with turbine governor and AVR, transformers, transmission lines

and capacitor banks.

6.1.2 Controller Design

The wind farm is interfaced to the utility grid by a back to back voltage source converter system.

Therefore, selection of robust control structures and identification of control parameters consti-

tutes an important study element. Both generator converter controller and grid converter con-

troller is given special attention. From the possible multitude of control structures, appropriate

control structures are chosen and applied in the two models. A theoretical approach is used to

determine the controller parameters. Further a common auxiliary control loop for implement-

ing frequency response is identified and integrated to the models. Identification of these control

structures and methods for determination of controller parameters is another contribution of

this work.

6.1.3 Simulation Results

The power system under study is the Kundur’s two area network. One synchronous generator

is substituted by the wind farm and contributes to 25% of the system capacity. The dynamic

system study investigates aspects of both frequency and small signal response. The main focus

of this work is on frequency and small signal response.

The full order and reduced order model dynamic response for a variable wind speed se-

quence shows a high degree of correspondence both with and without frequency control. There-
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fore the results of this work indicate that a reduced order model is sufficient to model power

system electro-mechanical dynamics without significant loss in accuracy.

The full order and reduced order model small signal response, for constant wind speed and

without frequency control shows a high degree of correspondence. However the full order and

reduced order model response shows deviation when wind farm is supported with frequency

control. Therefore the full order model provides a more accurate small signal response for wind

farms with frequency control. The studied network reveals a poorly damped inter area mode.

Substitution of a synchronous generator by the wind farm, increases the damping of this mode,

decreasing inter area oscillations and enhancing system small signal stability.

The simulations of an over frequency event in a system with a wind farm supporting fre-

quency control, clearly shows superior frequency response, in comparison to a wind farm with-

out frequency control. The salient performance is reflected in rate of change of frequency, tem-

porary maximum frequency, steady state frequency and settling time of the frequency response.

6.2 Recommendations for Further Work

This work is focused on presenting simple models of wind turbines with integrated frequency

response. All subsystem models and controllers were implemented to the extent of getting a

realistic response. This opens up many possibilities of extending this study for future work.

6.2.1 Modelling

In order to accurately model the rotor angle response of the PMSG, it is important to model the

drive train as a two mass model instead of the single mass model, that has been used in this

study. Similarly the simple model used for pitch system can be improved to a more realistic

model. Power system modelling can be extended to include full models for transmission lines,

transformers and capacitor banks. The applied wind speed sequence has a resolution of 10 s.

The extension of the wind model to include a wind speed sequence with higher resolution, and

comparison of the resulting dynamics is another interesting extension of this work.

The wind turbine model is only valid for normal operation. It would be interesting to extend the

model to analyse wind turbine low voltage ride through response. The controllers were imple-
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mented to the extent of getting realistic response. This work can be extended by replacing the

simple control structures by more advanced control structures.

Another possible aspect that can be investigated is to compare the simulated response with the

response of a real wind turbine. This would provide a thorough and comprehensive validation

of the models and methods used.

6.2.2 Controllers

All the controllers used in this study are PI controllers. Another possibility of further work is

to analyse and compare output response for different types of controllers such as P controller

and fuzzy controllers. The performance analysis of the wind farm when applied with alternative

generator control schemes such as maximum torque control or zero d-axis control is another

idea that is worth pursuing.

6.2.3 Frequency Response

In this study a simple and basic frequency response scheme is applied to the wind farm. It

would be interesting to analyse the response of this hydro dominated system, when the ap-

plied frequency response scheme is made more sophisticated to include different delays, dead

bands and memory. Integration of frequency control in a wind farm does not affect the inter-

area mode. Therefore another interesting extension of work is to propose a method to extend

the frequency response to include a power system stabiliser, which damps the inter area mode.

Dynamic system studies for difference wind speed scenarios and different wind penetration ra-

tios are another possible extension to this work. The work can be extended to include voltage

stability studies. Implementing control strategy to support low voltage ride through is another

possibility for further work.



Acronyms

AGC Automatic Generation Control

ENTSO-E European Network of Transmission System Operators for Electricity

FRC Fully Rated Converter

id Direct axis current

iq Quadrature axis current

Kd Wind Farm synthetic inertia constant

MPT Maximum Point Tracking

PLL Phase Locked Loop

PMSG Permanent Magnet Synchronous Generator

PU Per Unit

PWM Pulse Width Modulation

R Wind farm droop constant

rms root mean square

ROCOF Rate Of Change Of Frequency

RRF Rotor Reference Frame

SRF Stator Reference Frame
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VSC Voltage Source Converter

VSWT Variable Speed Wind Turbine

WTG Wind Turbine Generator

WF Wind Farm

WPR Wind Penetration Ratio
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Appendix A

Power System Model - Parameters

A.1 Synchronous generators

Table A.1: Synchronous generator parameters

Parameter Value
T ′′

do 0.03 s
T ′

do 8.0 s
T ′′

qo 0.05 s
T ′

qo 0.4 s
X ′′

q 0.25
X ′

q 0.55
X ′′

d 0.25
X ′

d 0.3
Xd 1.8
Xq 1.7
H (for G1 and G2) 6.5 s
H (for G3 and G4) 6.75 s

A.2 Transformer

A.3 Transmission line

Same set of parameters apply to all the transmission lines.
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Table A.2: Main transformer parameters

Parameter Value
Voltage ratio 20/230 kV
Capacity 900 MVA
Type YNyn0
Impedance 0.15 pu

Table A.3: Wind turbine generator transformer parameters

Parameter Value
Voltage ratio 0.4/20 kV
Capacity 400 MVA
Type Dyn5
Impedance 0.06 pu

Table A.4: Transmission line parameters

Parameter Value
Resistance 0.0529Ω/km
Reactance 0.529Ω/km

A.4 Capacitor

Same set of parameters apply to all the transmission lines.

Table A.5: Capacitor parameters

Capacitor Reactive Power
Bus 7 200 MVAr
Bus 9 350 MVAr

A.5 Turbine Governor

Same set of parameters apply to all the hydro governors of the synchrnous generators.

A.6 Automatic voltage regulator

Same parameters apply to all the AVR of the synchrnous generators.
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Table A.6: Hydro governor parameters

Parameter value
r 0.1
Tr 5
T f 0.1
Tg 0.5
Tw 1
At 1
R 0.04
D tur b 0.01
qnl 0.01

Table A.7: Simple Excitation System (SEXS) parameters

Parameter value
Ta 2
Tb 10
Te 0.5
K 100



Appendix B

WTG parameters

B.1 Generator Model

Table B.1: Generator parameters

Parameter value
X 1.5
R 0.0001
H 2
Number of pole 26
Rated Power 1.5 MW
Number of wind turbines 240
Wind farm rated power 360 MW
Rated LV Voltage 0.4 kV
Rated frequency 50 Hz
Rated speed 38 rpm(50 Hz)
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B.2 Wind turbine Model

Table B.2: Wind turbine parameters

Parameter value
R 25.375 m
ρ 1.225 kg /m3

H (including generator) 6.5 s
H (excluding generator) 4.5 s
rated speed 38 rpm
Rated wind speed 14 ms−1

T 0.5

B.3 Pitch Model

Table B.3: Pitch Control system parameters

Parameter value
Ka 100
Tr 5
Ta 1
ωr e f 1
T 0.5
β̇ 5
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B.4 Per Unit System

Table B.4: Per unit system

Parameter value
Base voltage Ub Ur ated

Base apparent power Sb Pr ated

Base current Ib Sb/
p

3Ub

Base impedance Zb U 2
b /Sb

Base inductance Lb Zb/ωb

Base capacitance Cb 1/Rbωb

Base mechanical speed ωb ωr ated
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