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1 NOTATION

1 Notation

ny, ng,ny  number of buses, generators, branches, respectively

lvi, 0; bus voltage magnitude and angle at bus ¢

v; complex bus voltage at bus i, that is |v;|e?%

V,0 ny X 1 vectors of bus voltage magnitudes and angles

V ny X 1 vector of complex bus voltages v;

Tyus ny X 1 vector of complex bus current injections

1 n; X 1 vectors of complex branch current injections, from and to ends
Shus ny X 1 vector of complex bus power injections

St st n; X 1 vectors of complex branch power flows, from and to ends
Sy ng X 1 vector of generator complex power injections

P Q real and reactive power flows/injections, S = P + j@Q

M, N real and imaginary parts of current flows/injections, I = M + jN
Yius ny X Ny system bus admittance matrix

Y n; X ny system branch admittance matrix, from end

Y, n; X ny system branch admittance matrix, to end

Cy ny X ng generator connection matrix

(i, 7)™ element is 1 if generator j is located at bus 7, 0 otherwise

Cy, Cy n; X ny, branch connection matrices, from and to ends,
(i,7)™ element is 1 if from end, or to end, respectively, of branch i is
connected to bus j, 0 otherwise

[A] diagonal matrix with vector A on the diagonal
AT (non-conjugate) transpose of matrix A

A* complex conjugate of A

1, n x 1 vector of all ones



2 INTRODUCTION

2 Introduction

The purpose of this document is to show how the AC power balance and flow equa-
tions used in power flow and optimal power flow computations can be expressed in
terms of complex matrices, and how their first and second derivatives can be com-
puted efficiently using complex sparse matrix manipulations. Similarly, the deriva-
tives of the generalized AC OPF cost function used by MATPOWER and the corre-
sponding OPF Lagrangian function are developed.

We will be looking at complex functions of the real valued vector

©
V
x=|p (1)
Qy
For a complex scalar function f:R"™ — C of a real vector X = [ T1 Ty - Xp }T,

we use the following notation for the first derivatives (transpose of the gradient)

of of  of af
fx=or=|8 & - ] @)
The matrix of second partial derivatives, the Hessian of f, is
2f .. _f
an 9 8f T 0x? Ox10Ty,
fXXZ—ZZ—(—) = S (3)
0X 0X \0X s A7)
Oxn0x1 Ox2

For a complex vector function F:R"™ — C™ of a vector X, where

F(X)=[ (X)) fo(X) - fu(x)]T (4)

the first derivatives form the Jacobian matrix, where row ¢ is the transpose of the
gradient of f;

of ... OfL
aF 611 an
Fx = X ST (5)
Ofm ... Ofm
ox1 0zn

In these derivations, the full 3-dimensional set of second partial derivatives of F' will
not be computed. Instead a matrix of partial derivatives will be formed by computing



3 VOLTAGES

the Jacobian of the vector function obtained by multiplying the transpose of the
Jacobian of F' by a vector A, using the following notation

0

Fxx(A) = X (FXT)\) (6)
Just to clarify the notation, if Y and Z are subvectors of X, then
0
Fyz(\) = 77 (FyTA) (7)

One common operation encountered in these derivations is the element-wise mul-
tiplication of a vector A by a vector B to form a new vector C' of the same dimension,
which can be expressed in either of the following forms

C=[A]B=[B]A (8)
It is useful to note that the derivative of such a vector can be calculated by the chain
rule as oc OB . 0A
Cx = o5 = Al 55 +[Bl 55 = [A]| Bx + [B] Ax (9)
3 Voltages

3.1 Bus Voltages

V is the ny, x 1 vector of complex bus voltages. The element for bus i is v; = |v;|e?%.
VY and O are the vectors of bus voltage magnitudes and angles. Let

E=NV"V (10)
3.1.1 First Derivatives
Vo= 08 = jIV] (11)
V=20 = VIV = (B (12
Bo=o2 = j[B] (13)
EV:Z—€ = 0 (14)



3.2 Branch Voltages

3.1.2 Second Derivatives

It may be useful in later derivations to note that

Wy () 0

3.2 Branch Voltages

e

a_VT
oV

4 BUS INJECTIONS

A) =[N Ey=0

(15)

The n; x 1 vectors of complex voltages at the from and to ends of all branches are,

respectively
Vi
Vi
3.2.1 First Derivatives
oVy oV
00~ “oe
oVy ov
v - Yoy T

4 Bus Injections

= O,V
- CtV

4.1 Complex Current Injections

Tpus = YousV

4.1.1 First Derivatives
b= [y % 0 0]
o~ Voo = YoV

= Ybus {V] [V]_l = Yi)us [E]

(20)

(21)

(22)

(23)



4.2  Complex Power Injections 4 BUS INJECTIONS

4.2 Complex Power Injections

Consider the complex power balance equation, G*(X) = 0, where

G*(X) = Spus + 5S4 — C,S, (24)
and
Sbus - [V] Ibus* (25)
4.2.1 First Derivatives
S aGs S S S S
. 0Smu )% Olus
= Ibus*]j [V] + [V] (jYims [VD* (28)
= ] [V] ([Ibus*] - Ybus* [V*]) (29)
S aSbUS _ * 8_‘/ a[bus*
= [Tous"] [E] + [V] Yous™ [E7] (31)
= [V} (ous"] + Yous™ [V*]) V] (32)
G?ﬂg = —C (33)
Gng = —JjC (34)

4.2.2 Second Derivatives

Gixh) = % (G (3)
Gro() Gin()
Go) G\

0 0

0 0

o O OO
o O OO



4.2  Complex Power Injections

Goo(A) =

~ VYo' TG VD)= [You' T VIA] (=5 7))

E+F

0 T

%(Gv A)

% ([E] Tou'] A+ [E] Vi ™ [V] A

B1 ) (= Yons” V1) + o) A [E)

B Yo T NG V] [Your T VI (3 [E7)

= X [E) (s [V] = [Fons']))
iV () (YT VI - |

— V] (Vo™ [V = ™))
JG(E - F)

Yiu T [VIA))

4 BUS INJECTIONS



4.2  Complex Power Injections 4 BUS INJECTIONS

0

Giy(\) = @(GgTA) (49)
= (V¥ = [T VIA]) V)
— (V1% = 1) VI ) ) (50)
= Ghe' (V) (51)
O (et
Gin(N) = 55 (G5TY) (52)
= (1) ] A+ () Yo T V) (53)
A

= [E][A] Yous" [E*] 4 [Thus”] [)\]\0,_,

Olpys™
oV

9B
%

FIE T [+ [YouT V] £ (54)
= V(N VT + V] TIVI VT (55)
= g(C+C"g (56)

Computational savings can be achieved by storing and reusing certain interme-
diate terms during the computation of these second derivatives, as follows:

A = [A[V] (57)
B = Ybus [V] (58)
C = AB* (59)
D = Y [V] (60)
& = [VI(D[A - [DA) (61)
F = C—-AlLw' =37 [NG§ (62)
G = (63)
Gio(\) = E4F (64)
GYe(N) = jG(€—F) (65)
Goy(N) = Gye' (V) (66)
Goy(N) = G(C+C)g (67)

10



5 BRANCH FLOWS

5 Branch Flows

Consider the line flow constraints of the form H(X) < 0. This section examines 3
variations based on the square of the magnitude of the current, apparent power and
real power, respectively. The relationships are derived first for the complex flows at
the from ends of the branches. Derivations for the to end are identical (i.e. just
replace all f sub/super-scripts with ¢).

5.1 Complex Currents

I =YW (68)
I' = Y,V (69)
5.1.1 First Derivatives
orf
H=5=1 1 1, 1, (70)
)% .
Iy = Y (%) = V] (71)
% _
1= v () =vmIvt =y e ™)
I, =0 (73)
I, =0 (74)
5.1.2 Second Derivatives
/ O (47T
) = 55 (1'n) (75)
Lo () Tay(n) 0 0
Ive(,u) Ivv(ﬂ) 0 0
0 0 00 (76)
0 0 00
0 T
oln) = 25 (14'n) (77)



5.2 Complex Power Flows

I\é@(#)

Iév(ﬂ) =

H/cv(ﬂ)

% V1Y T

— [Y¢ ] [V]

0 T
g6 (k)
d T
70 ([E)Y} 1)

i [Yy u] [E)

—jle () VI

o (17n)

VYR

= j Y ] [E]

I {j@ (1)

3 (17n)

(E] Y} )

OQ3|QJ

5.2 Complex Power Flows

5.2.1 First Derivatives

S

o8

Sf
St

1
=
~
3

12

5 BRANCH FLOWS



5.2 Complex Power Flows

5 BRANCH FLOWS

0)% or'”
;o [ Y
sbo= 1" 56 + 11158
=[] ics I+ (6] Yy VY)Y
= ([ v = evive v))
1 0V, or'”
fo_ | 2
b= [ e Vg
= || cr B+ vy )
S, =0
S, =0
5.2.2 Second Derivatives
0 T
! _ f
Sxx(p) = 0X (SX ﬂ)
Sé@(ﬂ) Sg}gv(ﬂ) 0 0
— Sve(n) Syp(p) 0 0
0 0 00
0 0 00

Sée(#) =

(s

|
<.
Gl

Il
(.
—
=

BBl
/N
o2
—
N

(Viey™ [177] = v 1 ¥ T (eev]) u)

(Ve |17 w= vy T (Csvin)

O [ (aYy V) + (6T (7] ] 411

13
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(101)

(102)

(103)

(104)
(105)

(106)



5.2 Complex Power Flows

S{;e (n) =

Sév(ﬂ)

Sty (1)

[WMJMQHWM”@WA(NWJ

av*

00

VIV Tl G V] + V]G ] Yy V7]
— [V eV | v = 16T Yy v V]
Fr=Dr =&

= (E1Cf |17 p+ B YT IOV g

(E)CfT [ (=Yg V) + (€57 [ ] 1)

+ BT W Cr VI Ve T ICVIn) (< [E)

i (EY Tl ¢ v

~ [T V] 1B + (O 1 Yy v (B))

{

@

— [E1CfT [ Y5 [V

—

i (VYT G V] = VI T ] Y (V]

— ¥ T [ul CfV: V) + [Cr T W) Yy V7] [V]>

JG(By — BT — Dy + &)

o (s57)

j ([V] Crl Yy V] = VY5 T ] O [V]

—

- [ Tmev| v o v v v
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(107)

(108)
(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)



5.3 Squared Current Magnitudes 5 BRANCH FLOWS

= (T[] a1 YT OV (120)
= BTy B[O [ e o

YT Cr (B + [V ICVIn] 0 (121)
= M (VYT G VI + VICT WY V) DI (122)
= GF;G (123)

Computational savings can be achieved by storing and reusing certain interme-
diate terms during the computation of these second derivatives, as follows:

Ap = Y (W O (124)
By = [V]A[V] (125)
Dy = [AV][V7] (126)
g = [A7TV] V] (127)
Fr = By +B" (128)
G = (129)
Sbeln) = Fr—Ds—¢& (130)
She(n) = jG(By =BT =Dy + &) (131)
Shu(w) = Sl (1) (132)
Shy(n) = GFG (133)

5.3 Squared Current Magnitudes

Let 2, denote the vector of the squares of the current magnitude limits. Then the
flow constraint function H(X) can be defined in terms of the square of the current
magnitudes as follows:

HI(X) = [[f*] O (134)

max

= [M/]M! + NN - 12, (135)

where I/ = M/ + jN/.

15



5.3 Squared Current Magnitudes

5.3.1 First Derivatives

HI =

[[f*] I+ [

] (] )

2 w{[17] 1)

(M7 — GNT] (M + GN%) + [MT + jNT] (M — jNY)
= 2([M] mf + [N VK

= 2(m{[F]yR{} {5 {1{})

5.3.2 Second Derivatives

H §(X (1)

9

H;((X(H) = 5%

Ho(n) = 2R { o
o) = 2-R{ o
() = 2R {1
() = 2 R{I

.
Hi M)

0
H@@
]

5 BRANCH FLOWS

<

—

=

~—
o O O O
o O O O

X*T [If} Iu)

* * *T
W T+ T ([ )+ I6 [l Tk



5.4 Squared Apparent Power Magnitudes 5 BRANCH FLOWS

5.4 Squared Apparent Power Magnitudes

Let S2 . denote the vector of the squares of the apparent power flow limits. Then the
flow constraint function H(X) can be defined in terms of the square of the apparent

power flows as follows:

HA(X) = [Sf*] Sf g2 (152)
=[PP +[Q7]Q7 - Sha (153)
where S/ = P/ + Q7.
5.4.1 First Derivatives
HL = 7] sk +[s7] 8¢ (154

)
= [s7] sk +([s7] s4) (155)
= 2.9 {[s"] s{} (156)
= [PT Q") (P{ +jQ%) + [P+ Q"] (P{ — jQ%) (157)
= 2([P] P{+ [@'] Q%) (158)
= 2(R{[s}n{sL} + 3 {[s} s {sL}) (159)

5.4.2 Second Derivatives

) = o (4 7) (160)
Hée(u) Hév(ﬂ) 00
_ va(u) Hmé(u) 8 8 (161)
0 0 00
) = e () (162)
= (s[5 T 7)) (163)
= S{([87 w0+ SET 1 KT+ ST ) + 8L () S (164)
= 2 R{s{u([87) )+ LT 1 sL7) (165)

17



5.5 Squared Real Power Magnitudes

5 BRANCH FLOWS

Hho() = 2-R{Sbo(|S"| w)+ 85" 1n 54"} (166)
Hio(n) = 2-R{So([$"| )+ 8L 11 547 (167)
i) = 2 R{SE([87| )+ 55" () 5§} (168)
Hiy(w) = 2-R{ P[] )+ 84" () s17 (169)

5.5 Squared Real Power Magnitudes

Let P?

max

denote the vector of the squares of the real power flow limits. Then the flow

constraint function H(X) can be defined in terms of the square of the real power
flows as follows:

5.5.1

5.5.2

HI(X) = [R{ST}R{S"} - P2,
[PT] P — Py,
First Derivatives
i — 2[P| P
- 2(r{s"pn{54})
Second Derivatives
0 T
Hix(n) = 55 (5 n)
ng(ﬂ) H@v(#) 00
Hio(n) Hip(p) 0 0
0 0 00
0 0 00
0 T
Hix(n) = 5% (8L 1)
0 T
= a—X<2P)J2 [Pf]ﬂ)

(170)
(171)

(172)
(173)

(174)

(175)

(176)

(177)



6 GENERALIZED AC OPF COSTS

= 2 (PLy([P) ) + Pl P

= 2 (n{ska(R{s"Hm}+w{sL }un{st})

Hoo() = 2(R{sbo([R{5"}]
Ho(n) = 2 (R{sfa([R{s'}]
G, (w) = 2 (R{sL([R{s'}]
() = 2 (R{Sh(R{s'} w}

6 Generalized AC OPF Costs

The generalized cost function for the AC OPF consists of three parts,

FIX) = f9X) + f2(X) + f(X)

expressed as functions of the full set of optimization variables.

C]
1%
Pg
Qg
Y
Z

n
<035 O

N~ Y~ —
N——" AN v

A

\W_/

(184)

(185)

where Y is the n, x 1 vector of cost variables associated with piecewise linear generator
costs and Z is an n, x 1 vector of additional linearly constrained user variables.

6.1 Polynomial Generator Costs

Let f};(p;) and fé(q;) be polynomial cost functions for real and reactive power for
generator i and F'¥ and F'? be the n, x 1 vectors of these costs.

19

fr(py)

I’ ()

(186)



6.2 Piecewise Linear Generator Costs 6 GENERALIZED AC OPF COSTS

fo(q)

FO(Q,) = : (187)
£’ (a5%)

fH(X) = 1; (FP(Pg) + FQ(Qy)) (188)

6.1.1 First Derivatives

We will use FP" and FP" to represent the vectors of first and second derivatives of
each of these real power cost functions with respect to the corresponding generator
output. Likewise for the reactive power costs.

afe
g 1
o= oo (159)
= [ f& F fe, 16, Iy 1% ] (190)
= [o 0o (FFY (F)T 0 o] (191)
6.1.2 Second Derivatives
a ofs’
fXX = 8—;(( (192)
0 0 0 0 0 017
0 0 0 0 0 0
00 fo, 0 00
= oo (193)
00 0 fao 00
0 0 0 0 0 0
(00 0 0 0 0|
where
T, = [F7"] (194)
foy0, = |FY] (195)
6.2 Piecewise Linear Generator Costs
Xy =1Ly (196)

20



6.3 General Cost Term 6 GENERALIZED AC OPF COSTS

6.2.1 First Derivatives

a b
Ix aix (197)
= [ 16 fh fh R 1% (198)
:[00001;! 0} (199)
6.2.2 Second Derivatives
fxx =0 (200)

6.3 General Cost Term

Let the general cost be defined in terms of the n, x n, matrix H* and n, x 1
vector C" of coefficients and the parameters specified in the n,, X n, matrix N and
the n,, x 1 vectors D, R, K, and M. The parameters N and R provide a linear
transformation and shift to the full set of optimization variables X, resulting in a
new set of variables R. R

R=NX-R (201)

Each element of K specifies the size of a “dead zone” in which the cost is zero for

the corresponding element of R. The elements k; are used to define n,, x 1 vectors
U, K and R, where

0, —ki<mr <k

vi = { 1,  otherwise (202)
ki; T, < _kz

ki = 0, —ki<r<k (203)
—]fi, T, > kl

The “dead zone” costs are zeroed by multiplying by [U]. The remaining elements
are shifted toward zero by the size of the “dead zone” by adding K, before applying
a cost.

R=R+K (204)

Each element of D specifies whether to apply a linear or quadratic function to
the corresponding element of R. This can be done via two more n,, X 1 vectors, DF

21



6.3 General Cost Term 6 GENERALIZED AC OPF COSTS

and D@, defined as follows

I o 1, dl — ]_
i = { 0, otherwise (205)
o (1, d=2
di = { 0, otherwise (206)

The result is scaled by the corresponding element of M to form a new n, x 1
vector

W = [M][U]([D*] + [D?] [R]) R (207)
= (Dc+Dg [R]) R (208)
where
De = [M][U][D] (209)
Do = [M][U][DY] (210)

The full general cost term is then expressed as a quadratic function of W as
follows

fi(x) = ;WTH“’W +CvTwW (211)

6.3.1 First Derivatives

For simplicity of derivation and computation, we defined A and B as follows

A:W—:%—VJZ = D.+2Dg [R] (212)
B=fs = 25/ = WTHY 4 0vT (213)
_ OR
X= 5% = N (214)
oW _

WX - 8_X - WR . RX (215)
= AN (216)

C afc C
fx= i fwv - Wx (217)
= BAN (218)



6.4 Full Cost Function 6 GENERALIZED AC OPF COSTS

6.3.2 Second Derivatives
. 0
Jxx = X

o T w w T a_R
= N (AO_X(H W+ C )+2DQ[B}8X)
T (AH"Wx +2Dg [B'] Rx)

T

AHYA+2Dg [BT]) N

|
Z =

6.4 Full Cost Function

fX) = f9X)+ (X)) + F(X)
= 1) (FP(P)+ F?(Qy)) +1, Y + %WTH“’W +CovTW

6.4.1 First Derivatives

0
=a—)f( = fxt s

= Jo o () FN Al o] +BAN

Ty

fx

6.4.2 Second Derivatives

82f a b c
fXX:@ = fxx +fxx+ fxx

[0 0 0 0 0 0]

00 0 0 00

0 0 [FP”} 0O 00

" loo o [FQ”} 0 0

00 0 0 0 0

(00 0 0 00

+NT (AHYA+2Dg [BT]) N

23

(219)
(220)

(221)

(222)
(223)

(224)
(225)

(226)

(227)

(228)

(229)



7 LAGRANGIAN OF THE AC OPF

7 Lagrangian of the AC OPF

Consider the following AC OPF problem formulation, where X is defined as in (185),
f is the generalized cost function described above, and X represents the reduced form
of X, consisting of only ©, V, P, and )y, without ¥ and Z.

m}}n f(X) (230)
subject to
GX) = 0 (231)
H(X) <0 (232)
where
R{G*(x)}
G(X) = | 3H{G(X)} (233)
ApX — Bg
and
HI(x)
H(X)= H'(X) (234)
A X — By
Partitioning the corresponding multipliers A and yp similarly,
Ap fif
A=1Ag |, pm=| m (235)
AE f1
the Lagrangian for this problem can be written as
L(X 1) = F(X) + ATG(X) + T H(X) (236)
7.1 First Derivatives
Lx(X,\p) = fx+ANGx+pu Hy (237)
LAXAp) = GT(X) (238)
LuX A p) = HT(X) (239)
where
®{G5} 0 0 R{GE} R{Gyy -C, 0 00
Gx=| {G%} 0 0| =[Gy} Gy 0 —-C, 00 (240)
AE AE

24



7.2 Second Derivatives 7 LAGRANGIAN OF THE AC OPF

and
H, 0 0 HS H, 0 00 0
Hy=|HY, 0 0|=|H5 H, 0 00 0 (241)
Ar Ar
7.2 Second Derivatives
Lxx(X, A\ p) = fxx +Gxx(A) + Hxx () (242)
where
R{GHx(Ap)} +3{Grx(X@)} 0 0
Gxx(\) = 0 00 (243)
0 0 0
( bo(Ap) G&y(Ap) 00 0 0 7))
ve(Ap) Gyp(Ap) 0 0 0 0
- 0 0O 0000
o 0 0 0O 000
0 0 0O 000
| o 0 000 0]]
([ Goolde) Givlde) 00 0 07)
ve(A@) Gin(Ag) 0 0 0 0
0 0 0O 000
+ S 0 0 0000 (244)
0 0 0O 000
Ll o 0 000 0]
and
Hix(ﬂf) + Hr(1e) 0 0
Hxx(p) = 0 0 0 (245)
I 0 00
[ Hie (i) + Hoe () Hév(ﬂf)JrHév(Mt) 000 0]
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