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I 

 

Problem description 

 

A model to simulate predictive control applied to a matrix converter has been developed in 

the specialization project. This model is going to be used as a base to develop a model 

predictive control for a two level inverter that will eventually be tested in a prototype.  

 

In the specialization project the algorithm for the predictive control was executed on a real-

time simulator OP5600 HILBOX produced by OPAL-RT Technologies. This method resulted 

in overruns when running the simulation in real-time for a sampling period of 10 us. As a high 

sampling frequency is crucial to ensure that the control method delivers a good reference 

tracking, the algorithm will be executed on a FPGA. Xilinx Design Tools software, combined 

with RT-Lab, will be used to adapt the model to be running on the FPGA. When the model is 

working, the control method will be tested in the lab.  
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Abstract 

 

Model predictive control has been a topic of research for approximately three decades, and is 

considered one of the most important advances in process control. In this project, a model to 

simulate predictive control applied to a two level inverter has been developed. The first step 

was to develop a Simulink model for testing of predictive current control. Sampling periods of 

25 µs and 1 µs for the predictive control algorithm was tested, to investigate the effect the 

frequency of predictions has on the performance. The conclusion was that a higher sampling 

frequency results in a significantly better performance.  

 

For experimental purposes, the predictive control algorithm will be executed on a FPGA. 

Xilinx System Generator (XSG) was used to adapt this part of the Simulink model to consist 

of blocks from the XSG, and the predictive control algorithm was altered to be suitable for 

execution on a FPGA. Switching frequency reduction was added to the predictive control. 

Simulation with only current control resulted in a switching frequency of 43.8 kHz, which is 

not feasible for use in a physical circuit. The weight assigned to the current reference tracking 

versus the weight of the switching frequency reduction, can be specified by the use of a 

weighing factor, A.  Simulations with different values of A were performed, and this showed 

that the switching frequency can easily be reduced by increasing A, but the cost is a less 

accurate current reference tracking.  

 

The control method was tested in an experimental setup with a 20 kW IGBT inverter and a 

resistive inductive load. For this purpose the model was implemented in the RT-Lab 

environment, and custom RT-XSG communication blocks were inserted in the model to 

handle data transferring between the CPU, FPGA and inverter. The testing of the predictive 

control model on the experimental setup was not successful. There was no response from the 

system, and no switching occurred. It is believed that this is a result of an error in the data 

transfer from the CPU to the FPGA model. Troubleshooting to locate the error will be 

included in further work.  
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Samandrag 

 

Modell prediktiv kontroll har vore eit tema for forsking i nærmare tre tiår, og er ansett som eit  

av dei viktigaste framstega innan prosesstyring.  Ein modell for simulering av prediktiv 

kontroll av ein vekselrettar er utforma i dette prosjektet. Første steg var å utvikla ein Simulink 

modell for testing av prediktiv straumregulering. Sampling periodar på 25 µs og 1 µs for den 

prediktive kontroll algoritmen vart testa, for å undersøka effekten frekvensen på 

prediksjonane har på ytinga til kontroll metoden.  Konklusjonen vart at ein høgare sampling 

frekvens resulterar i ei betydeleg betre yting. 

 

For eksperimentelle formål vert den prediktive kontroll algoritmen utført på ein FPGA. Xilinx 

System Generator (XSG) vart brukt til å tilpassa denne delen av Simulink modellen til å bestå 

av XSG-blokker, og den prediktive kontroll algoritmen vart modifisert for å kunne utførast på 

ein FPGA. Reduksjon av svitsjefrekvens vart inkludert i den prediktive kontrollen. 

Simuleringar med berre straumregulering resulterte i ein svitsjefrekvens på 43.8 kHz, noko 

som ikkje er anvendbart på ein fysisk krets. Vekta tillagt straumregulerings kriteriet 

samanlikna med vektlegginga av svitsjefrekvens reduksjon, kan spesifiserast ved bruk av ein 

vektleggingsfaktor, A. Simuleringar med ulike verdiar for A vart utført, og dette viste at 

svitsjefrekvensen enkelt kan reduserast ved å auka verdien av A, men prisen for dette er at 

referansefølginga på straumen vert mindre presis.  

 

Kontrollmetoden vart testa i eit eksperimentelt oppsett med ein 20 kW IGBT vekselrettar og 

ei resistiv induktiv last. For dette formålet vart modellen implementert i RT-LAB, og spesielle 

RT-XSG kommunikasjonsblokker vart innført i modellen for å handtera dataoverføringa 

mellom CPU, FPGA og vekselrettaren. Forsøka med den prediktive kontrollen i det 

eksperimentelle oppsettet var ikkje vellukka. Det var ingen respons frå systemet, og ingen 

svitsjing vart utført. Ein teori er at dette er eit resultat av ein feil i kommunikasjonen mellom 

CPU og FPGA modellen. Feilsøking for å lokalisera feilen må inkluderast i vidare arbeid. 

 

  



 

VIII 

 

  



 

IX 

 

Contents 

Problem description ..................................................................................................................... I 

Preface ...................................................................................................................................... III 

Abstract ..................................................................................................................................... V 

Samandrag ............................................................................................................................... VII 

List of Figures ....................................................................................................................... XIII 

List of Tables ......................................................................................................................... XVI 

1 Introduction ......................................................................................................................... 1 

2 The inverter ......................................................................................................................... 3 

2.1 Power circuit of the inverter ........................................................................................ 3 

2.2 Switching losses .......................................................................................................... 6 

3 Predictive control .............................................................................................................. 11 

3.1 Introduction to predictive control  ............................................................................. 11 

3.2 Model of the system .................................................................................................. 13 

3.2.1 Model of the inverter .......................................................................................... 13 

3.2.2 Load model ......................................................................................................... 13 

3.2.3 The cost function ................................................................................................ 14 

3.2.4 Performance variables ........................................................................................ 17 

4 Simulink ............................................................................................................................ 19 

4.1 Simulink model .......................................................................................................... 19 

4.1.1 Load .................................................................................................................... 20 

4.1.2 Inverter ............................................................................................................... 21 

4.1.3 Coordinate transformation .................................................................................. 22 

4.1.4 Parameter-file ..................................................................................................... 23 

4.1.5 Predictive control algorithm ............................................................................... 24 

4.2 Simulation results from Simulink .............................................................................. 27 



 

X 

 

4.2.1 Simulation with algorithm time step 25µs ......................................................... 27 

4.2.2 Simulation with algorithm time step 1 µs .......................................................... 28 

5 RT-Lab and Xilinx System Generator .............................................................................. 31 

5.1 Introduction to RT-Lab and XSG .............................................................................. 31 

5.2 Mandatory blocks for the RT-XSG model ................................................................ 32 

6 Simulation with XSG & simulated hardware ................................................................... 35 

6.1 From Simulink to Xilinx ............................................................................................ 35 

6.2 Data formatting with Xilinx blocks ........................................................................... 35 

6.2.1 Gateway In/Out .................................................................................................. 35 

6.2.2 Reinterpret .......................................................................................................... 36 

6.2.3 Slice .................................................................................................................... 36 

6.2.4 Assert .................................................................................................................. 36 

6.2.5 Convert ............................................................................................................... 36 

6.3 The component_values block .................................................................................... 37 

6.4 Coordinate transformation ......................................................................................... 37 

6.5 The Mcode block and predictive control algorithm .................................................. 38 

6.6 Inputs and outputs to the Mcode  ............................................................................... 43 

6.7 Back-emf calculation ................................................................................................. 45 

6.8 The states_selection block ......................................................................................... 46 

6.9 Voltage vector generation .......................................................................................... 48 

6.10 Timing constraints ..................................................................................................... 50 

6.11 Simulation results with XSG & simulated hardware ................................................. 52 

6.11.1 Model parameters ............................................................................................... 52 

6.11.2 Simulation with no switching frequency control ............................................... 53 

6.11.3 Simulation including switching frequency control ............................................ 55 

7 RT-Lab and experimental implementation ....................................................................... 61 

7.1 Adapting the model to RT-Lab .................................................................................. 61 



 

XI 

 

7.2 The console ................................................................................................................ 62 

7.3 The Master ................................................................................................................. 63 

7.4 Communication blocks in the FPGA model .............................................................. 66 

7.4.1 The DataIn block ................................................................................................ 66 

7.4.2 The analog input block ....................................................................................... 67 

7.4.3 The digital output block ..................................................................................... 68 

7.4.4 The DataIn block ................................................................................................ 69 

7.5 Experimental setup .................................................................................................... 70 

7.6 Digital output test ...................................................................................................... 70 

7.7 Analog input test and adjustment .............................................................................. 72 

7.8 Testing the predictive control algorithm ................................................................... 75 

8 Conclusion and further work............................................................................................. 77 

8.1 Conclusion ................................................................................................................. 77 

8.2 Further work .............................................................................................................. 79 

9 References ......................................................................................................................... 80 

Appendix A Parameters file ................................................................................................ 81 

Appendix B Cost function plot ........................................................................................... 82 

Appendix C Hardware Configuration block ....................................................................... 83 

Appendix D Predictive control algorithm ........................................................................... 84 

Appendix E Back-emf calculation ...................................................................................... 90 

Appendix F States_selection block ..................................................................................... 91 

Appendix G Timing error .................................................................................................... 92 

Appendix H Simulation results XSG model ....................................................................... 93 

Appendix I Simulation results XSG model:  Plots of current and cost function ................... 94 

I.1 A= 0 ........................................................................................................................... 94 

I.2 A= 0.01 ...................................................................................................................... 95 

I.3 A= 0.02 ...................................................................................................................... 96 



 

XII 

 

I.4 A= 0.04 ...................................................................................................................... 97 

Appendix J Console in RT-Lab ......................................................................................... 98 

Appendix K The master in RT-Lab ................................................................................... 100 

Appendix L Communication blocks in the FPGA model ................................................. 102 

 

 

  



 

XIII 

 

List of Figures 

Figure 2-1: Voltage source inverter power circuit [3]. ............................................................... 3 

Figure 2-2: Voltage vectors generated by the inverter [1]. ........................................................ 6 

Figure 2-3: Generic-switch switching characteristics (linearized): (A) switch waveforms, (B) 

instantaneous switch power loss. ............................................................................................... 8 

Figure 2-4: Typ. Turn-on/-off energy = f(Ic). ............................................................................ 9 

Figure 3-1: Classification of predictive control methods [2]. .................................................. 11 

Figure 3-2: General MPC scheme for power converters [1] .................................................... 11 

Figure 3-3:General MPC scheme for power converters [1]. .................................................... 12 

Figure 3-4: Working principle of model predictive control [1]. .............................................. 12 

Figure 4-1: System model in Simulink. ................................................................................... 19 

Figure 4-2: Load model. ........................................................................................................... 21 

Figure 4-3: Inverter model. ...................................................................................................... 22 

Figure 4-4: abc to alpha-beta coordinate transformation. ........................................................ 22 

Figure 4-5: Data Store Memory blocks .................................................................................... 24 

Figure 4-6: Output current, ia. .................................................................................................. 27 

Figure 4-7: Output current ia (blue) and reference current (red). ............................................ 27 

Figure 4-8: Cost function, g. .................................................................................................... 28 

Figure 4-9: Output current. ....................................................................................................... 28 

Figure 4-10 : Output current (blue) and reference current (red). ............................................. 29 

Figure 4-11: Cost function, g ................................................................................................... 29 

Figure 4-12: The cost function, g. ............................................................................................ 29 

Figure 5-1: Mandatory RT-XSG blocks. .................................................................................. 33 

Figure 6-1: Component_values block. ..................................................................................... 37 

Figure 6-2: abc- to αβ-coordinates. .......................................................................................... 38 

Figure 6-3: Extract from the generated error log ..................................................................... 42 

Figure 6-4: Timing blocks before Mcode input ports. ............................................................. 44 

Figure 6-5: Switcing counter output. ........................................................................................ 44 

Figure 6-6: Back-emf real part calculation. ............................................................................. 45 

Figure 6-7: The states_selection block feeding the inverter..................................................... 47 

Figure 6-8: Switching signal generation for phase a. ............................................................... 47 

Figure 6-9: The voltage vector calculations. ............................................................................ 50 

file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406665
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406666
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406667
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406667
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406668
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406669
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406670
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406671
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406672
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406674
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406676
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406677
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406678
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406679
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406680
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406681
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406682
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406683
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406684
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406685
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406686
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406687
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406689
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406690
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406692
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406693
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406694


 

XIV 

 

Figure 6-10 : Output current (blue) and reference current (red), phase a. ............................... 53 

Figure 6-11: Output current (blue) and reference current (red), phase a. ................................ 53 

Figure 6-12: The cost function, g. ............................................................................................ 54 

Figure 6-13: A = 0.03. Output current (blue) and reference current (red), phase a. ................ 57 

Figure 6-14:A = 0.03. Output current (blue) and reference current (red), phase a. ................. 57 

Figure 6-15: The cost function, g for A = 0.03. ....................................................................... 58 

Figure 6-16: A = 0.08. Output current (blue) and reference current (red), phase a. ................ 59 

Figure 6-17: A = 0.08. Output current (blue) and reference current (red), phase a. ................ 59 

Figure 6-18: The cost function, g for A = 0.08. ....................................................................... 60 

Figure 7-1: Generation of enable and watchdog signal. ........................................................... 63 

Figure 7-2: The OpCtrlML605EX1 block. .............................................................................. 64 

Figure 7-3: Calculations in the master subsystem. ................................................................... 65 

Figure 7-4 : DataOut Recv block with rescaling. ..................................................................... 65 

Figure 7-5: Analog Input and DataIn blocks. ........................................................................... 66 

Figure 7-6: DataIn block and output signal . ............................................................................ 69 

Figure 7-7: Communication blocks in the CPU model. ........................................................... 71 

Figure 7-8 : FPGA model for one output channel. ................................................................... 71 

Figure 7-9 : Analog input and DataOut in the FPGA model. .................................................. 73 

Figure 7-10: Console for one phase. ........................................................................................ 74 

Figure B-1: Cost function, g. .................................................................................................... 82 

Figure E-1: Back-emf calculation. ........................................................................................... 90 

Figure F-1: Contents of the states_selection block in the XSG model. ................................... 91 

Figure I-1: A = 0.. Output current (blue) and reference current (red), phase a. ....................... 94 

Figure I-2: A = 0. Output current (blue) and reference current (red), phase a. ........................ 94 

Figure I-3: The cost function, g for A = 0. ............................................................................... 94 

Figure I-4: A = 0.01. Output current (blue) and reference current (red), phase a .................... 95 

Figure I-5: A = 0.01. Output current (blue) and reference current (red), phase a .................... 95 

Figure I-6: The cost function, g for A = 0.01. .......................................................................... 95 

Figure I-7: A = 0.02. Output current (blue) and reference current (red), phase a .................... 96 

Figure I-8: A = 0.02. Output current (blue) and reference current (red), phase a .................... 96 

Figure I-9: The cost function, g for A = 0.02. .......................................................................... 96 

Figure I-10: A = 0.04. Output current (blue) and reference current (red), phase a .................. 97 

Figure I-11: A = 0.04. Output current (blue) and reference current (red), phase a .................. 97 

Figure I-12: The cost function, g for A = 0.04. ........................................................................ 97 

file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406695
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406696
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406697
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406698
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406699
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406700
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406701
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406702
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406703
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406705
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406706
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406707
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406708
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406709
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406710
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406711
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406712
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406713
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406714
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406715
file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406717


 

XV 

 

Figure J-1: OpComm block and input signals in the console. ................................................. 98 

Figure J-2: Outputs from the console. ...................................................................................... 99 

Figure K-1: Input from the console and output to the FPGA. ................................................ 100 

Figure K-2: DataOut Recv blocks. ......................................................................................... 101 

Figure L-1 The DataOut block with inputs. ........................................................................... 102 

Figure L-2 The DataIn block with outputs. ............................................................................ 103 

 

  

file://sambaad.stud.ntnu.no/katrinkv/Documents/Master%20haust%202014/Master%20report/Master%20report%20ver.final.docx%23_Toc412406729


 

XVI 

 

List of Tables 

Table 2-1: Switching states and voltage vectors ........................................................................ 5 

Table 4-1: Parameters set in the parameters.m file .................................................................. 23 

Table 4-2: Simulation configuration parameters ...................................................................... 24 

Table 5-1: Parameters for the System Generator block. .......................................................... 33 

Table 6-1: Voltage values and numbering ............................................................................... 49 

Table 6-2:Model parameters. ................................................................................................... 52 

Table 6-3: Simulation results for different weighing factors. .................................................. 55 

Table 7-1: Input ports of the Digital Out block ........................................................................ 68 

Table 7-2: Output channels for the digital output block. ......................................................... 72 

Table C-1: Settings Hardware Configuration block. ................................................................ 83 

Table G-1: Extract from the error log opened in Timing Analyzer. ........................................ 92 

Table H-1 Count signals and average switching frequency. .................................................... 93 

Table H-2: Mean refrence tracking error. ................................................................................ 93 

 

 



 

1 

 

 

1 Introduction 

 

The control of power converters is a significant topic for research. Model predictive control 

(MPC) have been developed for approximately three decades, and is considered one of the 

most important advances in process control [4]. The control method requires a high amount of 

computations, and this has previously been a challenge holding the development back. Today 

this is no longer a problem, as there are control platforms that have a lot of computational 

power, and this makes this type of control very interesting. Predictive control has several 

advantages that makes it very suitable for the control of power converters: Concepts are 

intuitive and easy to understand, it can be applied to a variety of systems, constraints and 

nonlinearities can be easily included, multivariable cases can be considered and the resulting 

controller is easy to implement.  

 

The MPC have been used in practical applications, which has been very successful [2]. Some 

of the main practical applications where MPC has been employed recently are distributed 

generation systems, active filtering and power conditioning, drives, non-conventional 

renewable energy and uninterruptable power supplies [4]. 

 

Three-phase current-controlled voltage source inverters (VSIs), have been considered as the 

most popular structure for supplying three-phase loads [4]. The fact that the two-level voltage 

source inverter is one of the most popular converter topologies in industry, combined with the 

fact that it has a generic structure that can be easily extended to other converter topologies, 

makes it very suitable for studying the basic principles of the model predictive control.  

 

In this work, current control will be applied to a two-level VSI. However, if the only criterion 

for the predictive control is current reference tracking, and the algorithm is running with a 

high sampling frequency, it is expected that the switching frequency of the inverter will be 

very high. The switching frequency might be too high for a physical circuit to follow. Another 
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issue is the switching losses caused by a high switching frequency, as efficiency is an 

important factor in energy conversion. One of the advantages with the MPC is the simplicity 

of adding several control objectives. The switching losses will be added to the evaluation 

criterions of the control method, in order to limit the switching losses in the inverter.  

 

In chapter 3 the predictive control is introduced, and a mathematical model of the power 

circuit containing the inverter, load and predictive control algorithm is presented. Chapter 4 

presents a Simulink model derived from the mathematical model, and the results from the 

simulation in Simulink. The software RT-Lab and Xilinx System Generator, which will be 

used to adapt the model for use in an experimental setup, are presented in chapter 5. The first 

step in preparing the predictive control algorithm for execution on an FPGA, is to exchange 

the Simulink blocks with Xilinx blocks, and this new model is presented in chapter 6. Results 

from simulation with this Xilinx model, combined with simulated hardware, are also 

presented in this chapter. Finally the model is adapted to RT-Lab, and tested on an 

experimental setup. This process is described in chapter 7. Chapter 8 contains the conclusion 

and further work.  



 

3 

 

2 The inverter 

 

2.1 Power circuit of the inverter 

The power circuit of the inverter is shown in Figure 2-1. The electrical power is supplied by a 

DC-source, with a voltage Vdc, and is transformed to AC by controlling the current flow 

through the switches S1-S6. 

 

 

The inverter consists of three legs, where each leg is coupled to one of the three phases in the 

load. In order to avoid short circuiting the DC-source, the two switches of each leg operates in 

complementary mode. The switching states can then be represented by the three switching 

signals defined in equation (1) – (3). 

 
 𝑆𝑎 = {

1,   𝑆1 𝑖𝑠 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑆4 𝑖𝑠 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
0,   𝑆1 𝑖𝑠 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑆4 𝑖𝑠 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑛𝑔

 (1) 

 
 𝑆𝑏 = {

1,   𝑆2 𝑖𝑠 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑆5 𝑖𝑠 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
0,   𝑆2 𝑖𝑠 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑆5 𝑖𝑠 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑛𝑔

 (2) 

 
 𝑆𝑐 = {

1,   𝑆3 𝑖𝑠 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑛𝑔 𝑎𝑛𝑑 𝑆6 𝑖𝑠 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔
0,   𝑆3 𝑖𝑠 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑆6 𝑖𝑠 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑛𝑔

 (3) 

 

This can be expressed in vectorial form as  

 
𝑺 =  

2

3
(𝑆𝑎 + 𝒂𝑆𝑏 + 𝒂2𝑆𝑐) (4) 

Figure 2-1: Voltage source inverter power circuit [3].  
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where    

 
𝒂 =  𝑒𝑗2𝜋/3 =  −

1

2
+ 𝑗

√3

2
 (5) 

 

The unity voltage vector a represents the phase displacement of 120° between the phases.  

Given the DC source voltage, Vdc, the output voltages can be found from the switching states. 

 𝑣𝑎𝑁 =  𝑆𝑎𝑉𝑑𝑐 (6) 

 𝑣𝑏𝑁 =  𝑆𝑏𝑉𝑑𝑐 (7) 

 𝑣𝑐𝑁 =  𝑆𝑐𝑉𝑑𝑐 

 
(8) 

This is the phase-to-neutral voltages, where N is the neutral point, as indicated in figure 1. 

Different switching states will create different configurations of the three-phase load. The 

output load voltage vector created by the inverter can be described as 

 𝐯 =  
2

3
(𝑣𝑎𝑁 + 𝒂𝑣𝑏𝑁 + 𝒂2𝑣𝑐𝑁). (9) 

 

As the switches in each leg works in complementary mode, considering all the possible 

combinations of switching states results in eight valid combinations. The voltage vectors 

generated by these states are presented in Table 2-1 
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Table 2-1: Switching states and voltage vectors 

Voltage vector V Sa Sb Sc Value 

V0 0 0 0 

 

0 

 

V1 1 0 0 

 

2

3
 𝑉𝑑𝑐 

 

V2 1 1 0 
1

3
 𝑉𝑑𝑐 + 

√3

3
 𝑉𝑑𝑐  

V3 0 1 0 −
1

3
 𝑉𝑑𝑐 +  

√3

3
 𝑉𝑑𝑐 

V4 0 1 1 

 

−
2

3
 𝑉𝑑𝑐 

 

V5 0 0 1 −
1

3
 𝑉𝑑𝑐  −

√3

3
 𝑉𝑑𝑐 

V6 1 0 1 
1

3
 𝑉𝑑𝑐  −

√3

3
 𝑉𝑑𝑐 

V7 1 1 1 

 

0 
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The switching states resulting in each voltage vector are indicated in the figure. It can be 

observed that the vectors V0 and V7 results in the same voltage vector. This gives a finite set 

of seven different voltage vectors. It should be noted that a more accurate model of the 

converter could be used for higher switching frequencies. Subjects of interest could be 

modeling dead time, diode forward voltage drop and IGBT saturation voltage. However, in 

order to keep the model simple and focus on the control strategy, such topics have not been 

included in this work.  

 

2.2 Switching losses 

Power dissipation in semiconductor power devices is fairly generic in nature, which means 

the same basic factors governing power dissipation apply to all devices in the same manner 

[5]. Figure 2-3 shows the generic-switch switching characteristics, where the current that is 

flowing through the switch also flows through some series inductance. This case is a very 

common occurrence in many power electronic applications. Part A in the figure shows the 

switch waveforms, with upper graph showing the switch control signal. A linearized version 

of the current flowing through the switch, iT, and the voltage over the switch, vT, is presented 

in the second part of the figure. It takes some time for both the current and voltage to change 

value during switching, and this is called the rise and fall time. When the switch turns on, 

there is a short delay time, td, before the rise time of the current, tri. After the current flows 

entirely through the switch, the voltage can fall to a low on-state value, Von, which takes a 

Figure 2-2: Voltage vectors generated by the inverter [1]. 
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given time, tfv. Together these time intervals make up the time it takes for the switch to turn 

on. The same behavior can be found when turning the switch off, though the rise and fall time 

for voltage and current are different in this case, as illustrated in Figure 2-3. The turn-on 

crossover interval is defined as: 

 𝑡𝑐(𝑜𝑛) =  𝑡𝑟𝑖 +  𝑡𝑓𝑣 

 
(10) 

and the turn-off interval as 

 𝑡𝑐(𝑜𝑓𝑓) =  𝑡𝑟𝑣 + 𝑡𝑓𝑖. (11) 

 

At the turn-on and turn-off intervals, both a high current and voltage is present, and this 

results in losses in the switch. Part B of the figure illustrates the instantaneous power loss that 

occurs in the switch during the commutation. The losses can then be estimated by the 

following equations.  

 
𝑊𝑐(𝑜𝑛) =  

1

2
𝑉𝑑 𝐼𝑜𝑡𝑐(𝑜𝑛) (12) 

 
𝑊𝑐(𝑜𝑓𝑓) =  

1

2
𝑉𝑑 𝐼𝑜𝑡𝑐(𝑜𝑓𝑓) (13) 

 

This shows that the switching power loss in a semiconductor switch varies linearly with the 

switching frequency and the switching times.  
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However, it should be noted that this is a theoretical approximation, and in reality the losses 

will deviate from the linear approximation. Figure 2-4 presents a graph from a datasheet for 

an IGBT module with  resembling characteristics as the one that will be used in the 

experimental setup. The losses vary with the current flowing through the transistor, and the 

additional energy loss due to the reverse-recovery current flowing through the diode in 

parallel with the transistor, Err, is also included.   

 

 

 

Figure 2-3: Generic-switch switching characteristics (linearized): (A) switch waveforms, (B) 

instantaneous switch power loss. 
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Figure 2-4: Typ. Turn-on/-off energy = f(Ic). 
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3 Predictive control 

 

3.1 Introduction to predictive control 1 

The main characteristics of predictive control are the use of a model to predict the future 

behavior of the system. An optimization criterion is defined, and the optimal actuation is then 

decided based on this criterion and the predictions made. Predictive control covers a wide 

class of controllers, and a classification for different predictive control methods proposed in 

[2] is presented Figure 3-1. 

 

The different types of predictive control have different optimization criterions. In hysteresis 

based control, the criterion is to keep the controlled variable within the boundary of the 

hysteresis area, while in deadbeat control it is to find the actuation that gives zero error in the 

next sampling instant.  For trajectory-based control the variables follows a predefined 

trajectory. For model predictive control the optimization criterion is a cost function that 

should be minimized, which is the most flexible [1].   

 

This report will focus on the model predictive control (MPC) with a finite control set and 

finite prediction horizon. The finite control set makes it easy to implement, needs no 

modulator and therefore operates with a variable switching frequency.  The name of the 

                                                 

 

1 Section 3.1 is a modified extract from the report written on the specialization project «Real-time Simulation of 

Predictive Control with a Matrix Converter» leading up to this Master thesis.  

Figure 3-1: Classification of predictive control methods [2]. 



 

12 

 

method is based on the finite number of switching states and following actuations, and 

includes the discrete nature of the power converters. The MPC have been extremely 

successful in practical applications, and has had a great influence on research in the recent 

decades [2]. Figure 3-3 shows the general scheme for MPC, where x*(k) is the reference value 

and S is the switching function. 

 

Based on the measured value x(k), a prediction of the next value x(k+1) is made. The time 

from k to (k+1) is the prediction horizon. This value is then compared to the reference value, 

and by minimizing the cost function the optimal switching state, S, is found. This is repeated 

for every new sampling instant. Figure 3-4  illustrates this basic working principle. The future 

values are predicted until a given horizon in time (k + N), using the system model and the 

measured values at time k. The optimal switching state is found, and this is applied until the 

next sampling instant (k+1) where the calculations are performed again.  

Figure 3-3:General MPC scheme for power converters [1]. 

Figure 3-4: Working principle of model predictive control [1]. 
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3.2 Model of the system 

A model of the system is needed to calculate the predicted values of the variables. The system 

that will be modelled corresponds to the power circuit of the inverter presented in Figure 2-1. 

This section will present a mathematical model used for predictive current control including 

switching frequency reduction. 

 

3.2.1  Model of the inverter 

The working principles of the inverter were introduced in Chapter 2. Equation (9) presented 

the definition of the output load voltage vector. This can also be expressed as 

 

[

𝑣𝑎𝑁(𝑡)
𝑣𝑏𝑁(𝑡)
𝑣𝑐𝑁(𝑡)

] =  𝑉𝑑𝑐 ∙  [

𝑆𝑎(𝑡)
𝑆𝑏(𝑡)
𝑆𝑐(𝑡)

] 

 

(14) 

where the switching states are as defined in equations (1) - (3). 

 

3.2.2  Load model 

To predict the load current, a model of the load is established. The resistive-inductive load can 

be described by the following equation 

 
𝐿

𝑑𝒊𝒐(𝑡)

𝑑𝑡
= 𝒗𝒐(𝑡) − 𝑅𝒊𝒐(𝑡) − 𝒆(𝑡) (15) 

 

where L and R are the inductance and resistance of the load and e is the electromotive force, 

emf. With a sampling period equal to Ts, the following approximation can be made. 

 𝑑𝒊𝒐

𝑑𝑡
≈  

𝒊𝒐(𝑘 + 1) −  𝒊𝒐(𝑘)

𝑇𝑠
 (16) 

 

Substituting (15) into (16) gives the equation needed to calculate the predicted value of the 

load current at time (k + 1). 

 
𝒊𝒐(𝑘 + 1) = (1 −  

𝑅𝑻𝒔

𝐿
)  𝒊𝒐(𝒌) +  

𝑇𝑠

𝐿
 (𝒗𝒐(𝑘) − ê(𝑘)) (17) 
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The corresponding load voltage vector is calculated for every valid switching state, using 

(14). Extrapolation from present and past values can be used to estimate the present value of 

the emf, e(t). For sufficiently small sampling time, the approximation e(k-1) ≈ e(k) is used, 

and no extrapolation is needed.  

 

3.2.3  The cost function 

The cost function will represent the desired behavior of the system. One approach is to make a 

cost function that when minimized gives the optimal switching state. Several objectives can 

be implemented in the cost function. In this case the objectives are to control the output 

current and keep it close to the reference value, as well as confining the switching frequency 

in order to limit the switching losses.  

 

3.2.3.1  Current control 

The idea is to assign cost to the cost function, g, whenever a predicted value deviates from the 

reference value. The current control can then be described by 

 𝑔𝑐𝑢𝑟𝑟𝑒𝑛𝑡 =  |𝑖𝑜𝛼
∗  (𝑘 + 1) −  𝑖𝑜𝛼

𝑝  (𝑘 + 1)| +  |𝑖𝑜𝛽
∗  (𝑘 + 1) −  𝑖𝑜𝛽

𝑝  (𝑘 + 1)| (18) 

 

where the subscript * indicates the reference values and p the predicted values. 

 

3.2.3.2  Reduction of switching cost 

 The second objective is to control the switching frequency in order to limit the switching 

losses. A simplified model for estimating the switching losses, based on a practical 

approximation, was presented in [6]. After analyzing experimental data and studying previous 

work regarding models to estimate switching losses [7], [8], [9], [10], [11], the conclusion 

was that a simple model based on the switched current and voltage involved in the 

commutation, can be used to approximate the switching losses. By assuming that the losses 

vary linearly with the voltage and current at the switching instant, and considering a 

proportional constant, the loss for one commutation can be considered as 
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 𝐸𝑙𝑜𝑠𝑠 ∝  ∆𝑖𝑐 ∗  ∆𝑣𝑐𝑒 

 
(19) 

 

where ic is the collector current and vce is the collector-emitter voltage. If Δic represents the 

current change for the commutation, and Δvce is the change in voltage over the transistor, then 

the loss can be estimated as 

 

𝐸𝑙𝑜𝑠𝑠 =  ∫ 𝑝(𝑡)𝑑𝑡 = =  ∫ 𝑖𝑐(𝑡)𝑣𝑐𝑒(𝑡)𝑑𝑡 =  
𝑡𝑐

6
  

𝑡𝑐

∗  ∆𝑖𝑐(𝑡) ∗  ∆𝑣𝑐𝑒(𝑡)

𝑡𝑐

 

 

(20) 

where p(t) is the electric power, and tc represents the turn-on or turn-off interval described in 

equations (10) and (11). This is a very simplified calculation, which does not take into 

account all the aspects of a switching process, and neither considers the losses due to soft 

commutation. However, it is a valid approximation that will be very useful for the purpose in 

this application, which is to reduce the switching frequency based on a cost function that 

represents that the losses will rise with increasing frequency. 

 

To penalize the power consumption, an extra term is added to the cost function (18), as 

described in equation (21). 

 

𝑔𝑠𝑤 =  𝐴 ∗ ∑ ∆𝑖𝑐
(𝑖)

 ∆𝑣𝑐𝑒
(𝑖)

3

𝑖=1

+ 𝑒0 

 

(21) 

i represents the three phases, and as the two switches in each phase leg of the inverter works 

complementary, the change in switching state of the leg will be represented as one term. Here 

vce correspond to the voltage from the DC-source, Vdc, and ic will be equal to the phase current 

for the leg i. e0 represents the loss that will occur when the current has a low value or is close 

to zero. Figure 2-4 presented a graph showing the relation between the collector current and 

switching loss in an IGBT with similar characteristics as the one used in the experimental 

setup. The value of e0 should be scaled according to this relation between current and energy 

loss. In this work, the term e0 has been included mainly to illustrate the fact that a loss can still 

occur even when the current is measured to zero, and that it is not cost-free to switch at a low 
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current. For this reason, a simple approximation of the value for e0 has been done, and the 

priority have been to select a value in a representable range, not on selecting an exact value.  

 

 The loss approximation found by the current and voltage change should be multiplied by a 

proportional constant. However, it is not necessary to add an extra constant, as this will be 

compensated for by using a weighing factor, A. 

 

3.2.3.3  The weighing factor 

The two control objectives are combined by simply adding the two cost functions, resulting in 

one cost function for the system.  

 

 𝑔 =  𝑔𝑐𝑢𝑟𝑟𝑒𝑛𝑡 + 𝑔𝑠𝑤 (22) 

 

In order to be able to control the significance of the different control objectives, weighing 

factors are introduced. The weighing factor A is inserted in the equation to control the 

relevance of the switching loss reduction control. 

 𝑔 =  |𝑖𝑜𝛼
∗  (𝑘 + 1) − 𝑖𝑜𝛼

𝑝  (𝑘 + 1)| +  |𝑖𝑜𝛽
∗  (𝑘 + 1) −  𝑖𝑜𝛽

𝑝  (𝑘 + 1)| 

+ 𝐴 ∗  ∑ ∆𝑖𝑐
(𝑖)

 ∆𝑣𝑐𝑒
(𝑖)

3

𝑖=1

+  𝑒0 

(23) 

 

Selection of the value of weighing factor A is still an open topic for research, and at the 

present state of the art, these values are determined empirically. The reason why deciding the 

weighing factors is challenging is the changing value of the reference. There are different 

optimal values for the cost function with different values of the parameters controlled [12]. 

Work has been done to develop an approach based on an empirical procedure to obtain 

suitable weighing factors. The method suggested when a cost function includes a primary 

control objective and secondary terms, is to set A = 0 as a starting point, then test increments 

of A until the desired behavior is achieved [13]. 

 



 

17 

 

3.2.4  Performance variables 

The proposed control method has two objectives. Current reference tracking and switching 

frequency reduction. In order to evaluate the performance of the control method, some 

evaluation criterions needs to be established. For that purpose, two performance variables are 

defined. The average switching frequency will be defined as 

 
𝑓𝑠 =  

𝑓𝑠𝑎 +  𝑓𝑠𝑏 +  𝑓𝑠𝑐

3
 (24) 

 

where fsa, fsb and fsc are the switching frequency of the three phases. It should be noted that 

since the two switches in in each converter leg works in complementary mode, for every 

switching there will be two switches changing state, and two commutations causing power 

loss.  

 

To evaluate the current reference tracking, the mean reference tracking error will be defined 

by the following equation.  

 
𝑒̅ =  

1

𝑚
∑  ( |𝑖𝛼

∗ − 𝑖𝛼
𝑝| + |𝑖𝛽

∗ − 𝑖𝛽
𝑝| )

𝑚

𝑘=0

  

 

(25) 
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4 Simulink 

 

4.1 Simulink model 

Simulink was used for simulation of the power circuit for the inverter presented in Figure 2-1 

together with the predictive control algorithm, with the aim to later adapt it in the OPAL-RT 

environment. For simplicity, the same model as presented in [1] Appendix A was used, 

although some changes were made. The Simulink model is derived from the theory and 

mathematical model presented in chapter 3. However, only the current control was tested in 

the Simulink model. An extra criterion in the cost function, concerning the switching 

frequency, was added to the algorithm when the model was adapted to the RT-Lab/Xilinx 

environment, with experimental implementation in mind. The following chapter will explain 

the model and changes made from the example in [1]. 

 

Figure 4-1: System model in Simulink. 

 

Matlab 2011b (32-bit) was used, due to compatibility with RT-LAB. Figure 4-1 shows the 

system model. The system consists of a Matlab Function block containing the predictive 

control algorithm, an inverter, a resistive-inductive load, reference currents and two blocks for 

coordinate transformation of the currents. A constant representing the DC-source feeding the 

inverter is placed inside the inverter block. In addition to this model, a parameter-file was 

made to have a good overview of the different parameters, and to make them easily 

accessible.  
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4.1.1  Load 

The model for the resistive-inductive load is shown in Figure 4-2.  As presented in Figure 1, 

the load is star-connected. Kirchhoff’s current law can then be used to describe the load phase 

voltages as 

 𝑣𝑎𝑛 =  𝑣𝑎𝑁 −  𝑣𝑛𝑁 (26) 

 𝑣𝑏𝑛 =  𝑣𝑏𝑁 −  𝑣𝑛𝑁 (27) 

 𝑣𝑐𝑛 =  𝑣𝑐𝑁 −  𝑣𝑛𝑁 (28) 

 

The common-mode voltage can then be found by adding the phase voltages. 

 
𝑣𝑎𝑁 + 𝑣𝑏𝑁 + 𝑣𝑐𝑁 = 𝐿

𝑑

𝑑𝑡
(𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐) + 𝑅(𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐) + (𝑒𝑎 + 𝑒𝑏 + 𝑒𝑐) + 3𝑣𝑛𝑁 (29) 

 

For a star-connected load, ia + ib + ic = 0. Assuming that the back-emf is balanced ea + eb + ec 

will also be zero. This gives a simpler expression for the common-mode voltage.  

 
𝑣𝑛𝑁 =

1

3
(𝑣𝑎𝑁 + 𝑣𝑏𝑁 + 𝑣𝑐𝑁) (30) 

 

This can easily be implemented in the Simulink model. The back-emf is represented with Sine 

Wave blocks and the dynamics of the load by use of linear continuous-time transfer functions. 

The transfer function is found by taking the basic equation for a resistive-inductive circuit, 

here presented for phase a 

 
𝑣𝑎𝑛 = 𝐿

𝑑𝑖𝑎

𝑑𝑡
+ 𝑅𝑖𝑎 + 𝑒𝑎 (31) 

 

and taking the Laplace transform of this. 

 𝐼𝑎

𝑉𝑎𝑛 − 𝐸𝑎
=  

1

𝐿𝑠 − 𝑅
 (32) 
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Upper case letters represent the Laplace transforms of the respective lower case variables in 

the time domain.  

 

 

4.1.2  Inverter 

The inverter is shown in Figure 4-3 and takes the optimal switching signals as inputs. A 

constant is used to represent the DC-source voltage. For most practical cases, the DC link 

voltage will not be constant, and needs to be controlled. The Vdc block in this model would 

then be replaced with a model describing the variable DC-voltage. By multiplying the gating 

signals with the DC link voltage, the output voltage of each inverter leg with respect to the 

negative busbar, N, is calculated.  

Figure 4-2: Load model. 
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Figure 4-3: Inverter model. 

 

4.1.3  Coordinate transformation  

The reference current and the measured load currents are given in abc coordinates 

representing the three phases. By transforming the currents to αβ coordinates, the number of 

predictions required in the predictive control algorithm can be reduced. Equation (33) and 

(34) shows the relation between the two coordinate systems.  

 
𝑖𝛼 =  

2

3
 (𝑖𝑎 −  

1

2
 𝑖𝑏 −  

1

2
 𝑖𝑐) (33) 

 
𝑖𝛽 =  

2

3
 (

√3

2
 𝑖𝑏 −  

√3

2
 𝑖𝑐) 

 

(34) 

Figure 4-4 shows the practical implementation of these equations in Simulink.  

Figure 4-4: abc to alpha-beta coordinate transformation. 
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4.1.4  Parameter-file 

The necessary parameters for the simulation are given in the file parameters.m, which can be 

found in appendix 1.  Table 4-1 shows the parameter names and values that are defined in the 

m-file. Simulations were made with Ts for the algorithm set to both 1µs and 25µs, to examine 

the effect of the sampling frequency on the performance of the control method.  The sampling 

of the Matlab function block needs to be set under Subsystem Parameters.  

 

Table 4-1: Parameters set in the parameters.m file 

Parameter Parameter name Value 

DC-link voltage V 520 V 

Load resistance R 10 Ω 

Load inductance L 10 mH 

Load back-emf amplitude e 100 V 

Load back-emf frequency f_e 50 Hz 

Reference current amplitude i_ref 10 A 

Reference current frequency w_ref 50 Hz 

Sampling time predictive 

control algorithm 

Ts Tested for 1 µs  and 

25 µs 

 

In addition to setting the parameters presented in Table 4-1, the different voltage vectors are 

calculated. In the last line of the m-file all the valid switching states for the converter are 

defined.  

 

Simulink requires some simulation configuration parameters to be set, in addition to the 

parameters set by running the file parameters.m. Table 4-2 contains the parameters selected. 

The rest of the simulation parameters are set by default.  
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Table 4-2: Simulation configuration parameters 

Parameter Value 

Start time 0 s 

Stop time 0,3 s 

Solver type Fixed step 

Solver Ode 5 (Dormand-Prince) 

Fixed-step size 1e-6 s 

 

 

4.1.5  Predictive control algorithm 

The predictive control algorithm is implemented using a Matlab Function block. This is an 

edited version of the Embedded Matlab Function block which was used in the example in [1]. 

This block has been changed and renamed with different versions of Matlab. It still has the 

same basic functions, but one of the differences is the use of global variables. In [1] the 

variables needed for the algorithm were set as global variables, and could be changed from 

the parameters.m file. The Matlab Function block for Matlab 2011b needs an allocated 

memory to store these global variables, and this can be done by using Data Store Memory 

blocks. This block defines and initializes a named shared data store, which can be used to read 

and write from. In this case it is only used for memory allocation, and setting the initial value. 

The initial value has to be set for every block, and the values are as given in the parameters 

file. All the Data Store Memory blocks are placed at the top level and then linked to the 

Matlab Function block. The linking is done within the Matlab Function block by declaring the 

parameters as global, and adding it in the Ports and Data Manager.  

 

  

The Matlab Function block uses the voltage vector that was calculated in the parameters-file 

based on the DC-link voltage. Using a Data Store Memory block to make the voltage vector 

Figure 4-5: Data Store Memory blocks 



 

25 

 

accessible to the algorithm in the Matlab Function block presented a new problem, as the Data 

Store Memory block does not accept complex numbers. To solve this problem the voltage 

vector was initialized inside the Matlab Function block, with the values calculated by running 

the parameter file. Another solution could be to separate the complex numbers into their real 

and imaginary parts. A new vector can then be made, containing eight elements for the real 

values and eight for the imaginary values. Some changes would be needed in the Mcode to 

apply the new vector.  This solution would result in an easier way to adjust the DC value, and 

might be a better option if different DC values will be tested. 

 

Code 1, presented in the next page, shows the code for the predictive control algorithm. The 

inputs are the reference current ant the measured load current . At line 19 and 22 the current 

reference and measurements are read into the variables ik_ref and ik. The prefix k indicates 

the sampling instant k. At line 11 x_old and i_old are initialized as persistent variables. If the 

variable does not exist the first time you issue the persistent statement, it will be initialized as 

an empty matrix. Persistent variables are similar to global variables, with the exception that 

they are local to the function. This results in the value being retained between function calls, 

as Matlab creates permanent storage for the variable. 

 

In the for-loop covering line 33 to 45, the cost function for each of the 8 valid switching states 

is calculated, and the optimal switching state is decided. Prediction of the next value for the 

load current is carried out at line 37, according to equation (17). The cost function is then 

estimated at line 39, corresponding to equation (18). The switching combination with the 

lowest cost is selected and set as the output from the function.  

 

One of the changes from the code in [1] is the addition of the initial value of x_opt, set in line 

31. The original lack of an initial value caused problems when the requirement for the if-loop, 

g < gopt, were never met. In this case, x_opt would never be assigned a value, and the optimal 

switching state could not be found. Another change made in the code from the example code, 

is line 7 and 8, where the voltage vector is initialized. This change is due to the problems with 

Data store memory and complex numbers, as previously described.  
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 Code 1: Predictive control algorithm 

1   function [g_opt, Sa, Sb, Sc] = MC_control(I_ref,I_meas) 
2 

3   %Variables defined in the parameters file 

4   Global Ts R L states 
5  

6   %Initialize voltage vector 

7   v = (1.0e+002)* [0 3.4667 (1.7333 + 3.0022i) (-1.7333 + 3.0022i) 

-3.4667  

8   (-1.7333 - 3.0022i) (1.7333 - 3.0022i) 0];   
9                  

10  % Optimum vector and measured current at instant k-1 

11  persistent x_old i_old 
12 

13  % Initialize values  

14  if isempty(x_old), x_old = 1; end 

15  if isempty(i_old), i_old = 0 + 1j*0; end 

16  g_opt = 1e10; 
17 

18  % Read current reference inputs at sampling instant k 

19  ik_ref = I_ref(1) + 1j*I_ref(2); 
20 

21  % Read current measurements at sampling instant k 

22  ik = I_meas(1)+ 1j*I_meas(2); 
23 

24  % Back-emf estimate 

25  e = v(x_old) - L/Ts*ik - (R - L/Ts)*i_old; 
26 

27  % Store the measured current for the next iteration 

28  i_old = ik; 
29 

30  %Initialize x_opt 

31  x_opt = 0;%Denne linja er lagt til koden. x_opt vart berre 

initialisert dersom kravet i if-løkka blei oppfylt. 
32 

33  for i = 1:8 

34      % i-th voltage vector for current prediction 

35      v_o1 = v(i); 

36      % Current prediction at instant k+1 

37      ik1 = (1 - R*Ts/L)*ik + Ts/L*(v_o1 - e); 

38      % Cost function 

39      g = abs(real(ik_ref - ik1)) + abs(imag(ik_ref - ik1)); 

40      % Selection of the optimal value 

41      if (g<g_opt) 

42          g_opt = g; 

43          x_opt = i; 

44      end 

45  end 

47  % Store the present value of x_opt 

48  x_old = x_opt; 
49   

50  % Output switching states 

51  Sa = states(x_opt, 1); 

52  Sb = states(x_opt, 2); 

53  Sc = states(x_opt, 3);    
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4.2 Simulation results from Simulink 

 

4.2.1  Simulation with algorithm time step 25µs 

Figure 4-6 to Figure 4-8 presents some results from the simulation performed in Simulink 

where the sampling period for the whole system was set to 1µs, and the Mcode block 

containing the predictive control algorithm had a sampling of 25µs.  

 

 

 

 

 

  

Figure 4-7: Output current ia (blue) and reference current (red). 

Figure 4-6: Output current, ia. 
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Figure 4-6 shows the output current delivered to the load, which has a sinusoidal shape with 

some ripple. As can be observed from Figure 4-7, a good reference tracking is accomplished. 

The cost function is presented in Figure 4-8. This shows the deviation between the output 

current and the reference in more detail. As expected, the system needs some time to stabilize, 

but after approximately 0.6 ms the value of g will be centered around 0.4. Appendix B 

contains a figure of g for a longer simulation period, to illustrate that this value stays stable. 

 

4.2.2  Simulation with algorithm time step 1 µs 

To study the effect the sampling frequency has on the performance of the controller, a 

simulation was executed with the sampling time for the Mcode block containing the 

predictive control algorithm increased to 1 µs. The results from this simulation is presented in 

Figure 4-9 to Figure 4-11. 

Figure 4-8: Cost function, g. 

Figure 4-9: Output current. 



 

29 

 

  

 

 

 

Figure 4-9 shows that the ripple in the output current is reduced. The reference tracking is 

improved significantly, as can be observed from figure 4-10. An average value at 

approximately 0.015 for the cost function can be found from the plot in figure 4-11. This 

corresponds to the output currents deviation from the reference, which clearly demonstrates a 

very good performance of the control method. These results are as expected, as the 

calculations performed in the predictive control algorithm will work with an increased 

precision as the sampling frequency is raised.  

 

 

 

Figure 4-11: Cost function, g 

Figure 4-10 : Output current (blue) and reference current (red). 
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This suffices as motivation for running the algorithm on an FPGA, which has a very high 

computing power, as the calculation of the switching states can be performed at a very high 

speed. However, in a physical circuit there are some factors that should be taken into 

consideration before deciding on a switching frequency. Increased frequency gives a better 

reference tracking, but will also result in higher switching losses. The next chapter will 

explain how the predictive control method tested in Simulink, will be adapted for the use in an 

experimental setup. For this purpose, switching frequency and losses will be of high 

importance, and an extra control objective concerning the switching frequency reduction will 

be included in the predictive control algorithm.  
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5 RT-Lab and Xilinx System Generator 

 

5.1 Introduction to RT-Lab and XSG 

The results from the simulation with Simulink show a good performance, and indicate that the 

predictive control can be considered a promising control method for the inverter. However, in 

order to draw this conclusion the method should be verified experimentally, and this will need 

a control system that can operate with a short calculation time to be able to follow the 

physical system in real-time. To solve this challenge, the software RT-Lab is used, combined 

with the Xilinx System Generator, with the objective to adapt the control method to be used in 

an experimental setup. RT-Lab is a distributed real-time platform that makes it possible to 

conduct real-time simulation of Simulink models with hardware in the loop. The Xilinx 

System Generator (RT-XSG) is a Simulink toolbox that enables engineers to generate custom, 

application specific models that can be implemented onto a field-programmable gate array 

(FPGA).  

 

RT-Lab version 10.5.7.344 was used to build the model. Configuration of the RT-Lab 

software is performed on a Windows XP/Vista/7 or Red Hat linux computer called the 

command station. The command station is the computer that serves as the user interface. 

When the model is adapted to use in RT-Lab, the model is automatically coded in C, and sent 

to the target nodes for execution. In this case, the target nodes are parallel cores located in a 

real-time simulator OP5600 HILBOX produced by OPAL-RT Technologies. The simulator 

has six cores available, and it runs on the real-time operating system QNX 6.5. One core is 

reserved for the operating system. The physical connection to the inverter and FPGA will be 

added by introducing custom blocks to the model, which handles the interface for I/O devices. 

 

As the predictive control algorithm requires a very short calculation time, this will be 

executed on the FPGA. An FPGA is a general-purpose integrated circuit that is 

“programmed” by the user using flash memory. This makes it possible to easily  reprogram 

the FPGA. The FPGA is programmed by downloading a configuration file called a bitstream 

into static on-chip random-access memory. Using the Xilinx System Generator, a high-level 
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Simulink model can easily be translated to a low-level executable FPGA program. The FPGA 

configuration is generally described with a Hardware Description Language (HDL), and the 

Xilinx System Generator will compile this code, in the same way that a RTW is used to 

compile the C code for a Simulink model. This is a very useful tool for users who are familiar 

with high-level programming and Matlab/Simulink, but not with the low-level programming 

required to control a FPGA. However, one should have a certain knowledge about the 

working principle and limitations of the FPGA in order to make a program that will be 

functional.  

 

An FPGA can be described as a two-dimensional array of configurable resources that can 

implement a wide range of arithmetic and logical operations. A great number of 

semiconductor devices are based around a matrix of configurable logic blocks (CLBs) 

connected via programmable interconnects. There are some contstraints that needs to be taken 

into consideration when designing a FPGA program. The FPGA does not have an infinite 

number of resources, and the capacity depends on the FPGA used. This means that some 

optimization of the logic might be necessary, in order to save some resources.  Another factor 

that needs to be taken into consideration is the timing restrictions of the FPGA. The FPGA 

works with synchronous logic where a clock signal synchronizes the different part of  the 

model. This clock frequency depends on the FPGA, and will set some constraints on the time 

available for logic operations. Functions that can be used in Matlab will also need to be 

adapted to be applicable for execution on a FPGA.  

 

5.2  Mandatory blocks for the RT-XSG model 

To use RT-XSG with I/O-blocks, there are four blocks that are mandatory in the design. That 

is the System Generator block, the Opal-RT FPGA Synthesis Manager block, the Version 

block and the Hardware configuration block.  
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The System Generator block is mandatory for all Xilinx Simulink designs. In this block, 

several parameters can be set, including the type of FPGA chip that will be programmed, the 

FPGA language that should be used as well as the clock frequency of the design. The System 

Generator token is a member of the Xilinx Blocksets Basic Elements and Tools libraries. 

Table 5-1 presents the parameters set for this block. 

 

Table 5-1: Parameters for the System Generator block. 

Compilation HDL Netlist 

Part Kintex7 xc7k325t-3fbg676 

Synthesis tool XST 

Hardware description language VHDL 

FPGA clock period (ns) 10 

Simulink system period (sec) 1e-8 

 

HDL Netlist is the compilation type most commonly used. In this mode, the results of the 

generation is a collection of HDL and EDIF files, and a few auxiliary files that simplify 

downstream processing. Part describes the physical FPGA type that will be used. Synthesis 

tool is the tool used to synthesize the design. VHDL is selected as the hardware description 

language. The FPGA clock period is given by the FPGA used, and is set to 10 ns. The 

Simulink system period needs to be the gcd, greatest common divisor, for any sampling 

period set to any block in the model. In this model it was set to 1e-8 sec.  

 

Figure 5-1: Mandatory RT-XSG blocks. 
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The Synthesis Manager block allows to generate a programming file for the FPGA, and it is 

from this block that the generation process is launched. Clock frequency is set to 100 MHz, 

which results in a sample period of 10 ns for the FPGA. The FPGA development board used 

is the Xilinx ML605 PCIe-XSG development (Virtex 6 XC6VLX249T device). To generate 

the programming file, the “Enable partition” box should be checked, before clicking the 

“Generate programming file” button starts the process.  

 

Version is the block where the name of the bitstream file that will be generated is set. When a 

new bitstream is generated, the name of the version should be changed in order to avoid 

problems with the files. This can easily be done by giving each version a number, and 

increasing this every time a new file is generated.  

 

The Hardware Configuration block describes the hardware configuration of the target 

computer I/O module. Configuration and location of eah module should be specified in this 

block. A table presenting the configuration for the setup used in this work can be found in 

appendix C.  
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6 Simulation with XSG & simulated hardware 

 

6.1 From Simulink to Xilinx 

The Simulink model needs to be adapted so that it can be executed on a FPGA. That means 

that all Simulink blocks must be replaced with blocks from the Xilinx blockset. For 

experimental purposes the model of the load and the inverter will be replaced by hardware. 

However, in order to test the new model, the Simulink model of the load and inverter was 

used in the first stage of the model adaption, in order to provide calculations for the measured 

load current. All the other calculations should be executed on the FPGA, and is therefore 

rebuilt with Xilinx blocks.  

 

6.2 Data formatting with Xilinx blocks 

6.2.1  Gateway In/Out 

The Xilinx Simulink blockset works with its own signal format, which is a fixed-point format. 

Standard Simulink signals are formatted as doubles, and so the signals needs to be converted 

before they can be applied to the Xilinx blocks. Xilinx provides blocks that can handle this 

conversion.  The Gateway In block is used to change a signal from the Simulink double 

format, to the Xilinx fixed-point format. A Gateway Out block is used to convert the signal 

from fixed-point to double again. That means that every part of the model that will be 

executed on the FPGA should be between the Gateway In and Gateway Out blocks. In the 

settings for the Gateway In block, the format of the fixed-point number can be selected. By 

setting the format to fixed-point, the arithmetic type can be set to either Signed (Fix) or 

Unsigned (UFix). If the signal can be both negative and positive, the Signed format should be 

selected. For a signed signal, the most significant bit (MSB) will be used to indicate the sign 

of the signal. The number of bits, as well as the placement of the binary point is also selected 

in the settings. When deciding on the format there is two things that should be taken into 

consideration; the magnitude and the precision of the signal. To ensure that the full magnitude 

of the signal can be represented, there must be enough bits dedicated before the binary point. 

The precision that can be used for the signal is decided by the number of bits after the binary 
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point. For this simulation, the format is set to Fix_16_10, which means that the number is 

signed, contains 16 bits and has at binary point before the 10th least significant bit.  

 

6.2.2  Reinterpret 

The Reinterpret block reinterprets a word from its actual format to another format specified 

by the user. By selecting force arithmetic type, the type can be changed to either Signed, 

Unsigned or floating-point. The location of the binary point can be changed, but the total 

number of bits stay the same. 

 

6.2.3  Slice 

If it is desirable to change the number of bits in a signal, the slice block can be used. This 

block extract specific bits or a range of bits from a signal. The number of bits to extract can be 

selected, as well as the offset from the least significant bit or most significant bit.  

 

6.2.4  Assert 

The Assert block is used to assert a rate and/or a type of signal. It can be useful in situations 

where designer intervention is required to resolve rates and/or types of a signal. The type can 

be set to either signed or unsigned, and the precision can be specified. Asserting the sample 

rate can also be done, either explicitly or from an input port.  If the rates or type at the blocks 

input is not the same as the one specified, an error message will occur.  

 

6.2.5  Convert 

The Convert block converts a signal from its actual format to another format that can be 

specified by the user. Data types that can be selected for the output is Boolean, Fixed-point or 

Floating-point. If the fixed-point format is selected, the number of bits and binary point can be 

specified by the user. The signal can also be specified as Signed or Unsigned.    
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6.3  The component_values block 

As previously mentioned, the model of the load and inverter will be replaced with hardware in 

the experimental setup. For this purpose, the model will later be adapted into the RT-Lab 

environment. In RT-Lab there is a console that, when the system is running, will be able to 

communicate with the rest of the model. This means that measured values can be monitored 

here, and variables can also be changed during simulation. To be able to test the effect of 

changing the values of Vdc, A and Ts during simulation, these variables will be placed in the 

console. In the Simulink/XSG model, the console is represented by a block named 

Component_values. Figure 6-1 shows the block with its outputs. Inside the system there is 

simply four Constant blocks, where the value can be adjusted, and the format of the signal 

specified.  

 

 

6.4  Coordinate transformation 

Both the reference and measured current should be transformed from abc- to αβ-coordinates 

before being applied to the predictive control function.  The coordinate transformation 

subsystem is very similar to the one in the Simulink model. All Simulink blocks have been 

replaced with Xilinx blocks, as can be seen in Figure 6-2. The precision of the output from the 

blocks can be user specified, but for this model the precision was set to full, which lets the 

blocks use as many bits as needed to reach full precision. The latency on each gain block at 

the outputs, was set to one. As the input signals will be merged in the AddSub blocks, the 

delay on each input was adjusted to ensure that the signals for an AddSub block will reach the 

Figure 6-1: Component_values block. 
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input at the same time. The upper Gain block on the iref_b input has a delay of one, while the 

other input Gain blocks and the Delay block has the delay set to two.  

 

 

 

6.5  The Mcode block and predictive control algorithm 

As previously mentioned, the aim is to execute the calculation of the predictive control 

algorithm on the FPGA. In order to do this, the algorithm needs to be adapted to a model 

consisting of Xilinx blocks. A Xilinx Mcode block is used for this purpose. The Mcode block 

executes a user-supplied Matlab function, and the link to the m.-file should be set as a 

parameter in the block. When performing a simulation with Simulink, the function is 

executed, and the outputs from the function is provide for the block. When hardware is 

generated, the code is translated in a straightforward way to give the same behaviour in 

Hardware Description language (HDL).  

 

Only a limited subset of the Matlab language that is useful for implementing arithmetic 

functions, finite state machines and control logic is supported by the Mcode block. This 

causes that the algorithm used in Simulink will have to be adapted to be compatible as well. 

Figure 6-2: abc- to αβ-coordinates. 
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All variables in the block should be of the Xilinx fixed-point type. Appendix D contains the 

m-function used to describe the predictive control algorithm. This m.-file should be kept in 

the same Matlab path as the block calling it.  

 

The function takes several inputs. Measured currents both in αβ and abc coordinates, as well 

as the reference currents in αβ coordinates. The back-emf of the inductive load, is calculated 

in a separate block, divided into real and imaginary parts, and then set as inputs to the Mcode 

block. Variables controlling the DC-source, weighing factor A, Ts  and component values for 

the load are fed to the function. The last inputs are the values of the voltage vector. Output 

variables used to evaluate the performance is sent from the output of the block, to the console. 

The optimal switching state, x, is also given as an output.  

 

The first part of the code is mainly dedicated to initializing and defining different variables 

used in the predictions. As previously mentioned, the Xilinx block operates with fixed-point 

numbers. The precision for every variable needs to be defined, as well selecting between the 

Fix and Ufix format, depending on if the variable needs to be signed. Line 8 gives an example 

of this, by defining a variable, prec, that sets the precision for a selected number to 30 bits 

with a binary point equal to 20. The format xlSigned is selected, which corresponds to a 

fixed-point signed number. The Mcode block also support data of the type unsigned  fixed-

point, xlUnsigned and Boolean, xlBoolean.  

 

Persistent variables works the same way in the Xilinx block, as previously explained for the 

Simulink model. The results in the value is being retained between function calls, as Matlab 

creates permanent storage for the variable. This can be used to create registers in the Mcode 

block. All the variables named with an ending _reg are set up as registers. To create a register 

the variable first needs to be initialized as persistent. This should be followed by reading from 

the variable memory, before finally writing a new value to the variable memory. The 

variables defined as registers in this code are the reference and measured current, initialized at 

line 17 to 25, as well as the voltage vector and  back-emf, initialized at line 81 to 86. All the 

register values are used in calculations in the for-loop, before they are updated at the end of 

the code, line 278 to 303.  
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The majority of the calculations are placed in the for-loop stretching from line 127 to 181. An 

extract from the control algorithm containing the these lines is presented in Code 2. This is 

where the cost function for all the possible switching states are calculated. All calculations are 

divided into a real and an imaginary part. In line 142 to 145 the prediction for the real part of 

the current at instant (k+1) is calculated, as described in equation (17). Only one mathematical 

operation is performed at the time, as the Mcode block can not handle several operations in 

the same line. This is the motivation for establishing the variables n, o and p, as the values are 

temporarily stored before the next operation is performed. The same procedure is followed to 

calculate the imaginary part of the current.  

 

g1 and g2 are the terms in the cost function representing the real and imaginary part error in 

current reference following. As Matlab functions such as abs() are not supported by the 

Mcode block, the same function is obtained by using if statements, as can be seen in line 153 

to 164.  The last term in the cost function, g3, represents the cost caused by switching losses, 

and is calculated in line 153 to 164. As the variables Sa, Sb and Sc is declared as persistent, the 

current state for the switches on each leg will be stored in these variables. An if statement is 

used to check if the switching state for the current iteration of the for loop, found from the 

states vector, deviates from the current state stored in Sx. If the two values are not equal, cost 

is added to g3. This is performed for all three inverter legs.  

 

Code 2: For loop containing cost function calculation 

127 %For-loop estimating the cost function for all possible 

switching  

128 %states 

129 for i = 0:2:14                           

130     

131    if i > 0                 

132    a = a + 1;               

133    b = b + 3; 

134    end 

135     

136    %i-th voltage vector for current prediction 

137    v_o1_re_reg(a) = v(i); 

138    v_o1_im_reg(a) = v(i+1);                                

139     

140   %Current prediction at instant k+1, real part 
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141    %Calculating ik1_re = (1 - R*Ts/L)*ik_re + Ts/L*(v_o1_re – 

e_re);           

142    n(a) = (m * ik_re_reg); 

143    o(a) = v_o1_re_reg(a) - e_re_reg;      

144    p(a) = l * o_(a); 

145    ik1_re(a) = n(a) + p(a); 

146 

147    %Current prediction at instant k+1, imaginary part 

148    q(a) = (m * ik_im_reg); 

149    r(a) = v_o1_im_reg(a) - e_im_reg;       

150    s(a) = l * r(a); 

151    ik1_im(a) = q(a) + s(a);             

152 

153    %Cost function 

154    if ik_ref_re_reg >= ik1_re(a) 

155        g1(a) = ik_ref_re_reg - ik1_re(a);    

156    else 

157        g1(a) = ik1_re(a) - ik_ref_re_reg;     

158    end  

159     

160    if ik_ref_im_reg >= ik1_im(a) 

161        g2(a) = ik_ref_im_reg - ik1_im(a); 

162    else 

163        g2(a) = ik1_im(a) - ik_ref_im_reg; 

164    end  

165     

166    %Calculate cost switching losses 

167    if Sa ~= states(b)  

168        g3(a) = g3(a) + tap_a + tap_init; 

169    end 

170     

171    if Sb ~= states(b+1) 

172        g3(a) = g3(a) + tap_b + tap_init;             

173    end 

174     

175    if Sc ~= states(b+2) 

176        g3(a) = g3(a) + tap_c + tap_init;        

177    end 

178    

179    g(a) = g1(a) + g2(a) + A* g3(a); 

180      

181 end 

 

When the cost functions for every possible switching state is calculated, the next step is to 

select the optimal switching state. The section reaching from line 183 to 254 covers this, and 

can be found in Code 3. Initially the cost function, g_opt is set to a very high value. For every 

possible switching state the value of g_opt is compared to the previous value, starting with the 

initial value, which results in the cost function with the lowest cost being set as g_opt.  The 

variables, Sa, Sb and Sc are set, and are used for estimating the switching cost. e_cur is 
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updated to contain the deviation between the reference and measured current for the given 

switching state.  

Code 3: Extraction showing the selection of optimal values 

183 %Selection of the optimal value 

184     if (g(0)<g_opt) 

185        g_opt = g(0); 

186        x_opt = 0;           

187        Sa = 0; 

188        Sb = 0; 

189        Sc = 0; 

190        e_cur = g1(0) + g2(0); 

191     end 

 

As can be observed from the code, Sa, Sb and Sc are given constant values. For the first 

attempts at this section of this code, the values given to Sa, Sb and Sc were called from the 

states vector. An example of such a call could be:  

𝑆𝑎 =  𝑠𝑡𝑎𝑡𝑒𝑠(𝑖𝑛𝑑𝑒𝑥); 

This resulted in problems when compiling to binary. The following error message occurred 

when generating the bitstream file.   

Summary of Errors: 

Error 0001: caught standard exception 

     Block: Unspecified 

 

Details: 

standard exception: XNetlistEngine: 

An exception was raised: 

com.xilinx.sysgen.netlist.NetlistException: The following 

error 

was encountered while running xtclsh. 

Figure 6-3: Extract from the generated error log 

 

This problem was solved by the use of constants to set the values of the vector elements.  

There are some rules that needs to be followed when using vectors in a Mcode block. The 

order different vector operations can be performed in is not random. All query methods of a 
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vector must be invoked before any update method is invocation during any simulation cycle. 

If this is done differently, it will result in an error message during model compilation. A 

method of a vector that queries a state variable is called a query method. It has a return value. 

Example of query methods are: v(idx), v.front, v.back, v.full, v.empty, v.length, v.maxlen. A 

method of a vector that changes a state variable is called an update method. An update method 

does not return any value. Some examples of update methods are: v(idx) = val, 

v.push_front(val),v.pop_front,v.push_back(val),v.pop_back, and v.push_front_pop_back(val).  

 

As described in chapter 3.2.4, some variables are needed to evaluate the performance of the 

system. In line 256 to 267, the old switching states are compared to the updated ones. If there 

is a change in state and a switching occurs, the variable count_x is set to 1. The number of 

commutations can then be counted outside the the Mcode block, as the count_x variables are 

set as outputs. This provides the information needed to find the mean switching frequency.  

 

The variable m is simply used to count the number of samples during the simulation time. 

Finding the mean current is a process of several steps. The error for the optimal switching 

state estimated for the current sample, is stored in the variable e_cur. Variable e_sum is 

defined as persistent, and can store the sum of errors for all predictions performed during the 

simulation time. This value is set as an output, with the aim to easily get an overview and read 

the value of the error during the simulation. Setting the variable e-sum directly as an output 

resulted in an error, due to the variable being defined as persistent. To avoid this problem a 

new variable, e_out was established, with the purpose to transfer the value of e_sum to the 

output of the Mcode block. The sum of the errors can then be divided by the number of 

samples to calculate the mean error for the current reference tracking.  

 

6.6  Inputs and outputs to the Mcode  

The input and output ports of the Mcode block was described in the previous chapter. This 

chapter will present the blocks used to adjust the timing of the signals before being fed to the 

Mcode, as well as the blocks on the outputs for the count_a, count_b and count_c signals. 

Outputs e_out and m_out are sent through a Gateway Out block to a Scope for easy access to 

the values. The handling of the x_opt output signal will be presented in the next chapter.  
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Figure 6-4 shows the two blocks placed before every input port at the Mcode block. Every 

input port has a delay, but in order to adjust the different signals to each others, the delay is 

set to different values for the input signals. The reference and measured currents spend 

approximately the same time before arriving to the Mcode block. One of the input values to 

the Mcode is the back-emf, and this is calculated in a separate subsystem placed outside the 

Mcode containing the algorithm. A latency of four is introduced due to the time it takes for 

the signal to pass through this block, and this latyency is added to the signal on every Mcode 

input port on all the other variables except e_re and e_im. A delay block is used for this 

purpose, as illustrated in Figure 6-4. The value indicating the optimal switching state, x_opt, 

is sent through a feedback loop from the output on the Mcode, and back as an input to be used 

in the next prediction. A Register block on the output port of the Mcode gives x_opt the initial 

value. For this reason, the value of the delay on all input port is increased with one.  

Between every delay block and Mcode input port, there is a Down Sample block, as 

illustrated in Figure 6-4.  This is a block that explicitly changes the rate of a signal by a fixed 

multiple that can be user specified. In this model the rate is down sampled with a factor of ten.  

 

 

At the output of the Mcode block, there is an Up Sample block, which increase the rate with a 

factor of ten, to adjust the sampling to the original value for the rest of the model. The 

motivation for this down sampling is to provide the Mcode block with more time to execute 

the calculations in the function. Models that will be executed on a FPGA have to meet certain 

Figure 6-4: Timing blocks before Mcode input ports. 

Figure 6-5: Switcing counter output. 
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timing requirements, and as the execution time for the calculations for the predictive control 

exceeded the time limits, down sampling was used as a simple solution to solve this problem. 

Chapter 6.10 will explain the timing requirements and the problems faced for this algorithm in 

more detail.  

 

Figure 6-5 shows an output of the Mcode block which is used for the variables count_a, 

count_b and count_c. The output signal from the Mcode is either 0 or 1, and indicates if there 

has been a change in the switching state for the given phase. A convert block is used to 

change the signal from fixed-point to boolean, as this is the required data format on the input 

of the Counter block. The Counter block is used to count how many time a switching will 

occur during the simulation time. By checking ‘Provide enable port’ for the block, the enable 

input port can be used to let the input signal decide when the block should count. Every time 

the count signal from the Mcode takes the value 1, the value on the output port of the counter 

increases. The user should specify the initial value, step size  and number of bits available for 

the output, in the blocks parameters box. Here the initial value is set to 0, and the step size is 

1. This signal will then be transferred through a Gateway Out block to a scope, where the 

switching course can be studied.  

6.7 Back-emf calculation 

 

Figure 6-6: Back-emf real part calculation. 
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The calculations for the back-emf of the load, used in the predictive control algorithm, is 

placed in a separate block. Appendix E presents an overview of the contents of this block. 

Figure 6-6 shows the diagram for the real-part calculations of the emf. The calculations for 

the imaginary part is implemented the same way, with the difference being the voltage vectors 

at the input of the Mux. Inputs include the component values from the component_block, 

voltage values, the switch state signal, x_opt, as well as the currents i(k) and i(k+1).   

 

Equation (17) giving the predicted load current, can be rearranged to give an expression for 

the back-emf.  

 
ê(𝑘) = 𝒗𝒐(𝑘) −  

𝐿

𝑇𝑠
  𝒊𝒐(𝑘 + 1) − (𝑅 −  

𝐿

𝑇𝑠
)  𝒊𝒐(𝑘) (35) 

 

Considering the assumption e(k-1) ≈ e(k), the currents in the equation can be shifted one 

sampling back in time. io(k+1) will then correspond to the measured current at sampling k, 

and io(k) will correspond to the measured current at sampling (k-1). This means that the input 

port marked i_meas_alpha in Figure 6-6 will take the α-component of the measured current as 

an input. The signal feeding the input port marked i(k-1) in the figure, is the same measured 

current, but a Register block is used to delay it with one sampling time step before it is passed 

to the input port.  

 

6.8  The states_selection block 

The Mcode block gives the optimal switching state as an output, with the name x_opt. Figure 

6-7 shows the model from the point where the x_opt signal has passed the Up Sample block 

on the Mcode output, and until it reaches the Simulink model for the inverter. A slice block is  

used to change the x_opt signal to a Ufix_3_0 format, which is required from the input on the  

states_selction block. The switching signal emerges the states_selection block as Fix_16_2 

signals. In order to be able to use the communication blocks that handle the digital output 

communication with the FPGA when hardware is included, the signal should be of a 

UFix_1_0 format. A Reinterpret block is used to change the signal to unsigned, before a Slice 
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block extracts the one relevant bit. The signal can then be passed on to the Simulink inverter 

model, through a Gateway Out block. 

 

 

Figure 6-8 presents an extract from the contents of the states_selection block. A diagram of 

the whole subsystem can be found in Appendix F. The figure contains the part of the 

subsystem generating the switching signal for phase a. Depending on x_opt, the right input of 

the Mux is selected and passed on to the output.  

  

 

 

  

Figure 6-7: The states_selection block feeding the inverter. 

Figure 6-8: Switching signal generation for phase a. 
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6.9  Voltage vector generation 

The Mcode-block in the Xilinx model takes the voltage values, where every voltage vector is 

divided into separate signals for the real and imaginary part, as inputs. By giving these values 

as inputs to the function, it is ensured that every part of the script in the function has access to 

the values. Testing reviled that if the values are set in the function itself, calling the values 

inside the for-loop resulted in problems. These problems appeared when the bitstream-file 

was generated. By looking at the VHDL-code, it was observed that when the function was 

calling for the voltage value, no initialization of the variable was found. This problem was 

solved by giving the variables as inputs to the Mcode block. 

 

Merging all the voltage values into a vector before sending them to the output would reduce 

the number of output ports, and make the model more surveyable. However, the Mcode block 

did not accept an array as an input. The error message “An internal error occurred in the 

Xilinx Blockset Library” appeared when trying to run the model with an array input, hence 

the voltage values was set as separate outputs.  

 

In chapter 2, Table 2-1, the eight valid switching states as well as the corresponding generated 

output voltage vectors for the inverter was presented. Due to the fact that the Mcode block 

does not handle complex numbers, the voltage vectors are divided into two variables, one for 

the real part, and one for the imaginary part. Table 6-1 presents the new values and numbering 

for the voltage vectors, where a is the variable used in the for-loop in the Mcode to indicate 

the eight predictions made.  
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Table 6-1: Voltage values and numbering 

  

Figure 6-9 shows how this is implemented in the model. A subsystem is created where every 

possible output voltage vector is calculated given the value of Vdc. Vdc  is given as a constant, 

but in the case of a variable Vdc, this block should be replaced with an input connected to the 

rectifier system output.  

 

a Sa Sb Sc v_re v_im v_re 

value 

v_im 

value 

0 0 0 0 Vo V1 0 0 

1 1 0 0 V2 V3 

 

2

3
 𝑉𝑑𝑐 

0 

2 1 1 0 V4  

 

V5  

 

1

3
 𝑉𝑑𝑐 √3

3
 𝑉𝑑𝑐 

3 0 1 0 V6 V7 
−

1

3
 𝑉𝑑𝑐 √3

3
 𝑉𝑑𝑐 

4 0 1 1 V8 V9 
−

2

3
 𝑉𝑑𝑐 

0 

5 0 0 1 V10 V11 
−

1

3
 𝑉𝑑𝑐 −

√3

3
 𝑉𝑑𝑐 

6 1 0 1 V12 V13 1

3
 𝑉𝑑𝑐 −

√3

3
 𝑉𝑑𝑐 

7 1 1 1 V14 V15 0 0 
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6.10  Timing constraints 

A problem that occurred while developing the model was the timing error. This error message 

reviles itself when the bitstream file is generated. Timing errors is a very common challenge 

faced when working with digital circuits. This model works with synchronous logic, which 

means that the logic is encapsulated between registers. The input signals on all registers needs 

to have enough time to reach a stable value before the next rising edge of the system clock.  In 

the Xilinx model all memory elements, e.g. registers, shift registers and delays should be seen 

as registers. All blocks or calculations in between is defined as logic with no memory, and 

introduces a logic delay. This delay is due to the time it takes for the signal to perform the 

logical operations, and is called propagation delay. Another name used for this delay is data 

path delay, and it is the sum of the logic and routing delay.  

 

In addition to the time it takes for the signal to pass all logical operations, there is some 

additional delay caused by the system clock. Clock path skew is caused when the clock signal 

Figure 6-9: The voltage vector calculations. 
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will follow different paths between the registers, and therefore can arrive to the next register 

at different times. It is common to have a dedicated path for distributing the clock on the 

FPGA, which will minimize this skew. Another delay could be caused by jitter, and will 

introduce a clock uncertainty due to the clock signals slightly differing. If the total delay 

exceeds the system clock period, a timing error will occur, and the FPGA will not be able to 

execute the model. 

 

When a timing error is discovered by the system generator during compilation, an error log is 

presented. This error log can then be opened in the program Timing Analyzer. Timing 

Analyzer is a graphical user interface tool that perform static timing analysis of the FPGA 

design. The Timing Analyzer will be used after a model is implemented going through the 

faces of mapping, placing and routing the logic to adapt it to the specified FPGA board. By 

opening the error log in Timing Analyzer you will get an overview of the time consumption 

of different paths in the design. The log will specify the different delay times, as well as the 

source and destination of the path. An extract from an error log generated while compiling the 

Xilinx model can be found in Appendix G. This is meant as an example to illustrate the 

information found from the Timing Analyzer.  

 

One way to handle the problem with timing errors is to insert register or delays in the data 

paths that has too much delay. Register and Delay blocks was placed in the Xilinx model to 

shorten the path, and this solved some of the timing errors. However, the algorithm in the 

Mcode did not meet the requirements. Registers can also be established in the code by using 

persistent variables, as explained in chapter 6.5. Looking in the error log in Appendix G, it 

can be observed that e_re_reg is established as a register, so this method seems to work. 

However, introducing the registers presented in the Mcode block, did not reduce the delay of 

the critical path sufficiently.  

 

Analysis were made where the variables n, o, p, q, r and s were defined as registers, following 

the same procedure as for the emf, reference and measured currents. This did not have a 

noticeable effect on the measured delay. The cause for this could be that the variables never is 

defined as registers in the code, due to an user fault in the code structure, or it could be a 
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result of the variables being defined inside the Mcode block and not defined as inputs. 

However, the error log shows the number of logical levels in the critical path, and some small 

changes was observed when testing with different combinations of the previously mentioned 

variables set as registers. This indicates that it could be a possible solution to the problem, if 

the structure of the algorithm is studied in more detail. In this work, it was decided to use 

another solution. By using Down and Up Sample blocks, the whole Mcode block is 

downsampled by a factor of ten. This gives more time for the calculations in the code, and 

solves the problem with the algorithm not meeting the timing constraints. Arguments for 

choosing this solution was that the algorithm will still be running with a satisfyingly high 

sampling, and it saved time to proceed to work with other parts of the model.  

 

6.11  Simulation results with XSG & simulated hardware 

 

6.11.1 Model parameters 

The simulation were executed with a time step of 1 µs for the Mcode block. Table 6-2  

presents the values set for the model. The parameters.m-file should be run to provide the load 

model with values.  

Table 6-2:Model parameters. 

Parameter Parameter name Value 

DC-link voltage V 520 V 

Load resistance R 10 Ω 

Load inductance L 10 mH 

Load back-emf amplitude e 100 V 

Load back-emf frequency f_e 50 Hz 

Reference current amplitude i_ref 10 A 

Reference current frequency w_ref 50 Hz 

Sampling time step model  Tsys 10-8 s 

Sampling time step  

Mcode block 

Tmcode 10-6 s 

(Down sampled 100) 

Variable Ts applied to the 

predictive control algorithm 

Ts 10-6 s 
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6.11.2  Simulation with no switching frequency control 

The first test was performed with the weighing factor, A, set to 0. This means that no 

consideration will be taken to the switching losses in the selection of the optimal switching 

state. Figure 6-10 to Figure 6-12 presents the results for the output current and the cost 

function.  

 

 

Figure 6-11: Output current (blue) and reference current (red), phase a. 

Figure 6-10 : Output current (blue) and reference current (red), phase a. 
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From the figures, it is observed that a very accurate reference tracking is accomplished. By 

comparing the cost function to the results from the current control simulation with the 

Simulink model, it is observed that the cost function will have a higher value. The cost 

function from the Simulink model, given the same sampling frequency, had a peak value of 

approximately 0.025. Studying Figure 6-12, the peak value is found to be around 0.3. The 

variations in the value of the function is also more significant in the Xilinx model. Both 

models works with the same parameters and sampling frequency, performing only 

currentcontrol of the inverter. 

 

A reason for the deprecated performance in the Xilinx model, compared to the model in 

Simulink, could be that some delay is introduced due to the working principles of the FPGA. 

The blocks are synchronized by the clock signal, and the predictive control algorithm 

implemented in the Mcode block, will be translated into VHDL language, which will decide 

how to execute the function on a physical board. This might cause a small displacement of the 

signals, which can be observed when studying the cost function in detail.  

 

Another reason for the difference between the Simulink and Xilinx model, is that the Xilinx 

blocks work with data of fixed point format. This restricts the precision of the data, and might 

affect the performance to some extent. The precision used for different data needs to be 

assessed, as a higher number of bits and better precision comes at the cost of more data to 

process, which again will require a longer calculation time. 

Figure 6-12: The cost function, g. 
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Regardless of the deprecated performance compared to the Simulink model, the reference 

tracking of the Xilinx model is still very good. The performance variables for average 

switching frequency, fs, and the mean reference current tracking error, 𝑒̅, were defined in 

equation (24) and (25) in chapter 3.2.4. The value for 𝑒̅ was measured to 0.1280, which 

indicates a small deviation between the reference and output current. However, the average 

switching frequency has a value of 43.8 kHz. This is not a feasible option for control of a 

physical circuit, as the switching time will be too short, and the switching losses will be high.  

 

6.11.3  Simulation including switching frequency control 

By simulating a system with no switching frequency control, it became clear that this needs to 

be included in the control system to be able to use the predictive control method on a physical 

circuit. Table 6-3 presents some of the results from simulation with different values of the 

weighing factor, A.  

 

Table 6-3: Simulation results for different weighing factors. 

A  t [s] fs [kHz]    𝑒̅ 

0 0.06 43.8 0.1280 

0.01 0.06 25.6 0.6800 

0.02 0.06 18.1 1.0775 

0.03 0.06 13.2 1.4313 

0.04 0.06 10.8 1.7475 

0.08 0.06 6.4 2.9160 

 

Outputs from the model includes the counter signals for each phase, where the count signal 

registers the change in switching state of the given inverter leg. This number should be 

divided by two in order to find the switching frequency, as one switching period will consist 

of two changes; switching on and off. The average switching frequency for phase x can then 

be calculated from the following equation.  

 𝑓𝑠𝑥 =
𝑚

2𝑡
 (36) 



 

56 

 

 

Here m is the number of samples during the simulation, and t is the simulation time. By 

calculating the average switching frequency for each phase, and using the definition given in 

equation (24), the average switching frequency for the whole inverter can be found. A 

detailed overview of the output signals and phase switching frequency can be found in 

appendix H. 

 

The simulation time, t, is 0.06 s, which correspond to three periods for the 50 Hz current. It 

should be taken into consideration that the simulation time will affect the results for the 

evaluation parameters, as the control method takes a certain time to reach a stable value for 

the cost function. This means that the value for the current error, which is used to find 𝑒̅, will 

increase rapidly at the beginning of the simulation, and the first period of the current will 

deviate from the following performance to some extent. This means that by using a longer 

simulation time the mean reference tracking error would decrease, as would the switching 

frequency. As the exact value of the switching losses and the deviation from the reference will 

not be given too much weight in this evaluation, it was decided that a simulation time of  

0.06 s was sufficient for demonstrating the influence of the adjustment of the weighing factor. 

What is interesting here, is the correlation between the reduction in switching frequency and 

the performance of the current control.  

 

The inverter used in the experimental setup is design for a switching frequency in the range 

between 0 and 25 kHz. Current capacity will also depend on the switching frequency used. A 

higher switching frequency results in lower current capacity. This means that a weighing 

factor needs to be selected that keeps the switching frequency in the proper range, depending 

on the load current that will be expected. The value of 𝑒̅ gives an impression of the 

performance of the current control, but to better illustrate the results from the control system, 

some plots of the current and cost function for two different values of A are presented in this 

chapter. Plots for simulations with the residual weighing factors from Table 6-3 can be found 

in appendix I. The first plots that is present is from simulation with the weighing factor set to 

0.03.  
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Figure 6-13: A = 0.03. Output current (blue) and reference current (red), phase a. 

Figure 6-14:A = 0.03. Output current (blue) and reference current (red), phase a. 
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It can be observed from Figure 6-13 and Figure 6-14 that the reference tracking is still good, 

but there is a significant reduction in the precision compare to the results with no switching 

frequency control. This is as expected, as the reduced switching losses comes at the cost of a 

reduced accuracy in the current control. Studying Figure 6-15, the cost function values is 

increased, which corresponds well to the increased value of e̅. As can be observed from the 

figure, the average value of g will be higher than e̅, which has a value of 1.4313 in this 

simulation. The difference will be equal to the term in the cost function representing the 

switching losses. Next, plots from the simulation with A = 0.08 will be presented, to study the 

effect of increasing the priority of the switching frequency reduction in the control algorithm.  

 

Figure 6-16 and Figure 6-17 clearly shows that the current control is significantly affected by 

the increased weighing factor. The plot of the cost function in Figure 6-18, has taken on a 

much higher average value, compare to the case with A = 0.03, and the variations is much 

higher. The value of e̅ has increased from 1.4313 to 2.9160, which is a 49.1 % rise of the 

value. However, the reduction in the switching frequency is also consequential. A switching 

frequency of 6.4 kHz corresponds to a 48.5 % reduction from the simulation with A = 0.03. It 

is clear that by including the switching frequency reduction in the predictive control 

algorithm, the designer can easily control the prioritizing of the current control versus the 

switching frequency reduction.  

 

Figure 6-15: The cost function, g for A = 0.03. 
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Figure 6-17: A = 0.08. Output current (blue) and reference current (red), phase a. 

Figure 6-16: A = 0.08. Output current (blue) and reference current (red), phase a. 
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In chapter 7, the adaption of the model to the RT-Lab environment, which is suitable for 

working with hardware connected, will be presented. In the RT-Lab model, the  

Component_values block will be replaced with a model that allows all the parameters set in 

this block to be adjusted while control system is running. This gives the possibility to adjust 

the weighing factor, and study the effect for many values in a short time. When testing the 

predictive control in an experimental setup, the designer will need to observe the performance 

of the system, and adjust the weighing factor to a value that gives both a satisfying current 

reference tracking and switching frequency. It is also expected that the performance of the 

predictive control will deviate from the results in these simulations, as delay will be 

introduced to the system.  

  

Figure 6-18: The cost function, g for A = 0.08. 
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7  RT-Lab and experimental implementation 

 

7.1 Adapting the model to RT-Lab 

In the previous chapter a model was developed using Xilinx blocks, which makes it possible 

to generate the necessary files for running the model on an inverter. Simulink models for the 

load and inverter were used to find the output current, and a block named Component_values 

was used as a user interface to adjust key variables. In order to replace the simulated load and 

inverter with hardware, the model needs to be adapted to contain some means of 

communication with the hardware. The physical connection to the inverter and FPGA will be 

added by introducing custom blocks to the model, which handles the interface for I/O devices. 

In the previous model, the Component_values block was used to specify variables. This 

should be adapted to a system that can communicate with the FPGA while the simulation is 

running, in order to easily adjust variables. It is also desirable to have access to the 

measurements of output current and the performance variables, in order to study the 

behaviour of the system. The software RT-Lab, which was introduced in chapter 5 makes this 

setup possible.  

 

When adapting a Simulink model to a RT-Lab model, there are two main tasks that must be 

carried out. Dividing the model into subsystems and inserting OpComm communication 

blocks. When the model is divided into subsystems, there are some procedures that need to be 

followed. A console must be made, and this subsystem’s name must start with the prefix SC_. 

The console works as the user interface for a simulation. It is used to display the acquired 

signals, and gives the possibility to set control signals during the simulation. The console can 

be operated from the command station. This subsystem will replace the Component_values 

block, as well as the Scopes used for monitoring the signals in the Simulink/Xilinx model.  

 

Every model also needs a subsystem called the master, with a name starting with the prefix 

SM_. The master is responsible for the overall synchronization of the network, and there can 

be only one master per model. In addition to the master, several slave subsystems can be 

added to the model to distribute the calculations over several cores in the simulator. In this 



 

62 

 

model most calculations is performed on the FPGA, and only one core is used in the 

simulator. The main task of the master subsystem in the RT-Lab model, will be the 

communication between the hardware and FPGA, to the control station and console.  

 

7.2  The console 

The first block that should be included in a RT-Lab model is he OpComm block. No signal 

can enter a subsystem without going through an OpComm block first. The block serves a 

number of purposes: 

- Provides RT-Lab with information about the size and type of the data received. 

- Defines acquisition groups and parameters.  

- The block waits until all of its inputs are updated before updating its outputs. 

- Specifies the sample time for the subsystem where it is placed. 

- Specifies the communication sample time of a calculation subsystem with another 

calculation subsystem.  

It should be noted that the communication between the console and the target nodes is not in 

real-time. If several subsystems were to be executed on the simulator, each subsystem would 

need one OpComm block for the real-time communication between the cores, and one 

OpComm block for the communication with the console.   

 

The OpComm block in the console for this model takes the three measured phase currents, the 

counter signal for phase a, b, and c, the cost function, g, the evaluation parameter, e_cur and 

the sample counter, m, as inputs. These input signals are passed through the OpComm block, 

and sent to Scopes where the values can be monitored and saved to the workspace for 

plotting. Outputs from the console includes the three phase reference currents, the DC-source 

voltage, Vdc, the component values given as (Ts/L) and R, as well as the weighing factor, A. 

While the control method is running these variables can be adjusted. This will be very time 

saving compared to running simulations in Simulink, as many values and combinations can be 

tested for key variables in real time, and the effect can be studied directly. An overview of the 

blocks used for sending and receiving signals in the console can be found in appendix J. 
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In addition to the variables used in the control method, two more signals should be generated 

from the console. The inverter needs an enable signal, and the I/O interface card between the 

simulator/FPGA and the inverter needs a watchdog signal. Generating these two signals in the 

console provides an easy way to control the inverter operation for the user. Figure 7-1 

presents the system that creates the two signals.  

 

 

Figure 7-1: Generation of enable and watchdog signal. 

 

7.3  The Master 

Communication between the FPGA and the console is done through the master subsystem in 

RT-Lab. Appendix K presents figures of the contents of this model. Globally, RT-Lab and 

RT-XSG are using DataOut Recv, DataIn Send, DataIn and DataOut blocks to allow 

communication between the CPU and the FPGA model. The first block that is needed is the 

OpCtrlML605EX1, presented in Figure 7-2. This block controls the programming of one 

ML605 card, its initialization and the selection of the hardware synchronization mode of the 

card. It also enables binding of Send and Receive and I/O blocks to that specific card. In the 

parameters for this block, the bitstream filename that will be applied to the FPGA needs to be 

specified. This is the .bin-file that was generated with the Xilinx Synthesis Manager block. 

The file needs to be put in the same directory as the RT-Lab model of the console.  
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Send and receive blocks placed in the master, is of the type “ML605EX1 DataIn Send” and 

“ML606EX1 DataOut Recv”. Input values from the console passes through an OpComm 

block, before it is sent to a DataIn Send block. The DataIn Send block communicates with a 

DataIn block in the FPGA model.  Both doubles and uint32 data format is accepted as input, 

and can be selected in the parameter settings for the block. All the input signals has the double 

format initially, but only the enable and watchdog signal are sent to the DataIn Send blocks in 

this format. The rest of the signals are converted to the uint32 format by using a Rescale 

Double to Integer block. In this block the total number of bits, binary point and type of 

numerical format can be specified. This is done in order to get control over the signal, in order 

to transfer it back to the right value after it is transferred to the DataIn block in the FPGA 

model.  The DataIn block performs data conversion from uint32 to the System Generator 

UFix33_0 data format. From this format the desired data needs to be extracted from the 32 

least significant bits, binary point needs to be defined if necessary, and the sign of the signal 

needs to be defined. 

 

A simple calculation is added in the master subsystem, to calculate the output signal (1-

R*Ts/L). The implementation of the calculations can be seen in Figure 7-3 where the input 

signals are received from the OpComm block, and the output signal is sent through a Rescale 

block before the DataIn Send block.  

 

 

 

 

 

Figure 7-2: The OpCtrlML605EX1 block. 
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The measured current, counter signals for the switches, the cost function and the error 

evaluation parameters are set as inputs to the master subsystem, in order to transfer these 

signals to the console for monitoring and saving. This is done by the use of DataOut Recv 

blocks. The DataOut Recv blocks gets their data input from the DataOut block placed in the 

FPGA model. Output data from the block can be selected to be either double or uint32. Figure 

7-4 shows an example of one of the DataOut Recv blocks in the model, and the data handling 

before it is sent to the console. For an overview of all the DataOut Recv blocks in the model, 

see appendix K. 

 

 

The handling of the data after it is collected by the DataOut Recv block, depends on the 

format of the signal at the input of the DataOut block sending the values. Figure 7-4  

presented an example, in this case the measured current of phase a. Here the signal originally 

Figure 7-3: Calculations in the master subsystem. 

Figure 7-4 : DataOut Recv block with rescaling. 
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has the format Fix_16_10 before being sent to the DataOut block, and therefor this 

bitcombination is used in the parameters for the Rescale block, converting it back to the right 

range. The current measurements are done with LEM sensors, and for this reason needs to be 

scaled to achieve the exact value. Using a test circuit to find the right scaling factor for the 

equipment used in the experimental setup, as will be explained in chapter 7.7, the gain factor 

is set to 5.1. 

 

7.4 Communication blocks in the FPGA model 

 

7.4.1  The DataIn block 

The FPGA model contains two blocks for communication with the console and two blocks for 

communication with the inverter through I/O ports for analog in and digital out signals. The 

DataOut block send data to the DataOut Recv block in the master subsystem, before they are 

transferred to the console. Inputs to the DataOut block consists of the three measured phase 

currents, count signals for the three phases, the cost function value, g, the evaluation 

parameter e_cur and the variable m, which gives the number of samples for the Mcode block. 

An overview of all the input signals and the data formatting performed before the input port to 

the DataIn block can be found in appendix L.  Figure 7-5 presents a DataIn block with only 

the three measured phase currents as inputs.  

 

  

 

Figure 7-5: Analog Input and DataIn blocks. 
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The input ports of the DataOut ports, marked Data_OUT, is in the UFix_33_0 format. One bit 

is needed to set the most significant bit, indicating that the data is ready to be transferred, and 

can be seen as a write signal to the buffer. The buffer is emptied and transferred to the CPU 

model at the beginning of each calculation step. A Constant block is used to set the first bit to 

1, and the Concat block merges this bit with the rest of the signal sent to the input. The binary 

point needs to be removed from every signal before the DataOut block. For the measured 

currents, the data arrives from the Analog Input block in the format Fix_16_10. A Reinterpret 

block is used to change the arithmetic type to Unsigned and set the binary point to position 0. 

The data is then sent to the input in the format UFix_16_0.  

 

The rest of the input signals goes through a similar data reformatting in order to ensure the 

right format at the input ports. All three count signals pass through an Assert block that 

specifies that the output signal should be of the type UFix_16_0. g and e_cur pass through a 

Slice block, where 16 bits are extracted. The offset of the slicing needs to be adjusted so that 

ten bits after the binary point and six bits before the binary point are extracted. This gives the 

format UFix_16_0 at the outputs on the Slice blocks. The samples signal, m, pass through an 

Assert block, and is sent to the input port with the type UFix_32_0. The DataOUT port of the 

DataOut block is used for offline simulation only, and does not need to be connected.  

 

7.4.2  The analog input block 

In addition to the DataIn block, Figure 7-5 also presented the Analog Input block used to 

receive the measured currents from the interface card between the FPGA and the inverter. 

This is a Xilinx block of the type OP5142/ML605/OP716x I/O. This block gives access to all 

I/O modules controlled by the OP5142 board, ML605 development board and the OP716x 

board. The Hardware Synchronization block, introduced in chapter 5.2 determines all the 

interface modules available , given the requested signal type and direction. The signal type 

can be set to analog or digital, and the direction is either input or output. Input ports marked 

with Chx_External, can be used for offline simulation. It should be noted that the blocks input 

and output ports depend on the interface board selected.  
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Parameters set in the block properties includes the type of I/O, which in this case is set to 

Analog Input. The hardware interface selection is specific for the interface board, and is set to 

“Slot #2, section B”. Three channels are selected.  

 

On the input marked convert, a Synch Generator block is connected. This block generates a 

synchronization pulse train with the specified period. The width of the pulse equals the FPGA 

board clock period, and gives an output signal of the type unsigned integer with the value 1. A 

period of 2.5 µs is selected. The analog outputs deliver signals received from the analog-to-

digital conversion module. Data at the output ports are in the format Fix_16_10, which 

provides a dynamic range of [-16, 15.9995] and a resolution of 0.0005V.   

 

7.4.3  The digital output block 

The block used for the digital output communication is of the same type as the one used for 

analog input, but for this purpose with the I/O type selection set to Digital Output. Hardware 

interface selection is set to “Front Panel Slot #4, Section B”. This block handles the 

communication between the FPGA and the interface board that delivers the switching signals 

to the inverter. Input data to this block must be of the type UFix_1_0. For the switching 

signals arriving form the States_selection block in the model, this is achieved by first passing 

the data through a Reinterpret block to change the format to unsigned. A Slice block is then 

used to extract the one relevant bit. Table 7-1 gives an overview of which input port channel 

the different signals should be connected to. This was decided through running a test model in 

the lab. The rest of the input ports are not in use, and are given a constant input of 0.  

 

Table 7-1: Input ports of the Digital Out block 

Channel Signal 

0 Sa 

1 Sb 

2 Sc 

3 Sa inverted 

4 Sb inverted 
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5 Sc inverted 

12 Enable 

15 Watchdog 

 

7.4.4  The DataIn block 

The DataIn block receives data input from the DataIn Send block in the CPU model. This 

block performs data conversion from the type uint32 to the System Generator format 

UFix_33_0. The data needs to be reformatted to the desired format for use in the FPGA 

model. Chapter 7.3 described how the data format was specified before being sent to the 

DataIn Send block.  

 

With the exception of the enable and watchdog signal, every input signal passes through the 

same blocks for data reformatting. The specific number of bits and binary point position 

depends on what was specified in the CPU model. Figure 7-6 shows an example of how the 

reference current for phase a is implemented.  

  

 

The output signal from the DataIn block is in the UFix_33_0 format. A Slice block is used to 

extract the sixteen relevante bits, and delivers a UFix_16_0 signal. By using a Reinterpret 

block, the number of fractional bits is set to ten, and the format is changed to signed. This 

results in a Fix_16_10 signal. The Register block is applied to every input for the model, to 

provide a delay. Sample rate is set by the Assert block, to make sure that this is specified 

before the signal is sent to the Mcode block. The same procedure is implemented for the other 

input signals, and a figure giving an overview of this is presented in appendix L. 

 

Figure 7-6: DataIn block and output signal . 
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7.5  Experimental setup 

The aim of the project was to test the predictive control in an experimental setup. As 

previously mentioned, a real-time simulator of the type OP5600 HILBOX produced by 

OPAL-RT Technologies, combined with a FPGA development board of the type Xilinx 

ML605 PCIe-XSG development (Virtex 6 XC6VLX249T device), is used for the control 

system. A 20 kW IGBT inverter will be the control objective. The load is a three phase 

symmetrical, star connected, resistive inductive load, as described in Figure 2-1. For the tests 

performed, three resistors of 10 Ω in combination with inductances of 1.4 mH were used. An 

adjustable DC-source delivered the power. Between the digital output from the FPGA and the 

inverter, a test card was inserted. This test card has light emitting diodes mounted on it, which 

will indicate when the enable and gating signals for the switches is high. There is also a diode 

dedicated to indication of the status received from the inverter. If this signal is high, the 

inverter is in operating mode. If an error occurs, the status signal will be low, and a display on 

the inverter will give an error message.  

 

Before the predictive control was tested on the circuit, some test models were made with the 

aim to establish working communication links between the equipment. Chapter 7.6 will 

present a model used for testing the digital output from the FPGA. The analog input was 

tested with the model presented in chapter 7.7. This model was also used to adjust the gain on 

the input signal, to be in accordance with the transformation ratio of the LEM sensors and 

wiring used for output current measurements. 

 

7.6 Digital output test 

The digital output block used in the FPGA model has 32 possible output channels to select 

from when the output signals are routed. A simple model was made, where the console 

contained a constant for every output channel to every output. This way the output to every 

channel for the digital output block could be changed while the same program was loaded 

onto the FPGA. The values were sent to the master subsystem, running on the simulator, 

where the communication with the FPGA is established. Figure 7-7 is used to illustrate the 

structure of the model in the master subsystem. In this figure, only one of the channels are 

included, but the same procedure is used for all of the 32 channels. The input signal is passed 
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through an OpComm block, before it is sent to the FPGA model through a DataIn Send block. 

Linking the CPU model to the FPGA model is done with the use of a OpCtrlML605EX1 

block. The DataOut Recv block receive data from the FPGA model containing the signals sent 

to the digital outputs. These blocks are not necessary for the model to work, but were included 

to test that the link between the FPGA model and console were working properly.  

 

Figure 7-8 presents an illustration of how the FPGA model would look for one output 

channel. The same procedure was followed in the test, but with the number of output channels 

increased to 32. Data is received from the CPU model through the DataIn block. A Slice 

block is used to extract the one relevant bit, and to adjust the data format to UFix_1_0, which 

Figure 7-8 : FPGA model for one output channel. 

Figure 7-7: Communication blocks in the CPU model. 
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is required for the input of the digital output block. After concatenation with a constant, the 

signal is sent back to the console via the master, through a DataOut block. In the console this 

signal is passed through an OpComm block, before being displayed on a Scope. The digital 

output block sends the signal from the FPGA to the inverter, via the test card.  

 

A simple method for finding the right channels to connect the gating and enabling signals, is 

to set one output channel at the time high in the console, while monitoring the test card to see 

when an indication light turn on. Table 7-2 presents the results for this test. The output current 

can then be studied to ensure that the IGBTs are actually receiving the signal and switching. A 

model to measure the output current is presented in the next chapter.  

 

Table 7-2: Output channels for the digital output block. 

Signal Channel 

Sa+ 0 

Sa- 1 

Sb+ 2 

Sb- 3 

Sc+ 4 

Sc- 5 

Enable 12 

Watchdog 15 

 

 

7.7 Analog input test and adjustment 

 

The analog input block receives the measured output load current of the inverter. The wiring 

from the inverter to the load, passes through a LEM current transducer, which is used for 

electronic measurement of currents. This sensor measures the current with a high accuracy, 

but the output value is scaled, depending on the conversion ratio for the LEM sensor, and also 

on the wiring. The cable from the inverter to the load was arranged to make three loops 
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through the sensors measuring area, in order to increase the value of the measured signal. 

When the current is measured, the data are sent to the analog input block at the FPGA. 

 

Figure 7-9 presents the transmission of the signal for phase a, from the analog input block in 

the FPGA model, to the CPU model. The Reinterpret block changes the data format to 

Ufix_16_0. Digital output in the FPGA model was explained in the previous chapter, and the 

FPGA model also contains a DataIn and a digital output block, where the data is reinterpreted 

to the UFix_1_0 format before being sent to the inverter.  

 

The model for the master system in the CPU model works the same way as explained in the 

previous chapter, with the three measured phase currents as inputs, and the switching signals, 

enable and watchdog as outputs. In chapter 7.2, the generation of the enable and watchdog 

signal was demonstrated, and the same system is applied in the console for this model. Figure 

7-10 shows the other blocks included in the console, presented for one phase. 

 

Figure 7-9 : Analog input and DataOut in the FPGA model. 
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The manual switch controls the switching signal to one of the phases, in this case phase a. By 

setting the switch for phase a high, and the switches for phase b and c low, a positive direct 

current will flow from phase leg a in the inverter, to the load. The value of the current can be 

found from the display on the variable DC-source. For accuracy, the current was also 

measured by using a current clamp combined with an oscilloscope. When the real value of 

what the output current in the physical circuit is known, the gain block placed after the 

OpComm block in the console can be adjusted. When the value of the real current, and the 

current displayed in the Scope in the console show the same value, the right scaling factor is 

found. For this setup, a factor of 5.1 gave the right scaling. This scaling factor should also be 

added in the FPGA model after the analog input block, to attain the right current value for the 

predictive control algorithm.   

 

A current clamp combined with an oscilloscope was used to measure the load current. The 

simulator also provides the possibility to connect an oscilloscope to the analog inputs, which 

was used for observing the measured load currents from the LEM sensors. As previously 

mentioned, the communication between the master subsystem running on the simulator, and 

the console does not happen in real-time. This becomes very clear when the measured 

currents are observed by the use of Scopes in the console. A great amount of data is lost, and 

the scopes will start to interpolate to fill in for the data loss. This problem can be appeased by 

adjusting some settings in the Scopes used, as well as the Probe Control Panel that can be 

opened from RT-Lab.  

For the Scopes used in the model, the decimation factor can be adjusted. The Probe Control 

Panel can be launch using the Tools > Probe Control menu or using the toolbar in RT-Lab.  

Figure 7-10: Console for one phase. 
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It enables you to specify the acquisition parameters for a given acquisition group. The 

acquisition group is defined in the OpComm blocks used in the model. For the model used in 

this project, consisting of a console and only one subsystem, the master, there will only be one 

acquisition group. Some of the acquisition and transmission parameters that can be adjusted 

are: 

- Decimation factor 

- Number of samples per signal 

- Max number of samples per signal 

- Duration 

When the model is running, these parameters needs to be tuned to give a combination that will 

give the best possible data display in the console.  

 

The lack of real-time monitoring is a clear disadvantage of using the console for data 

collection. This means that if the performance of the control method will be studied in detail, 

the use of other measuring equipment, such as an oscilloscope, is necessary to get reliable 

results. However, the monitoring in the console can be useful to get a quick overview of what 

is happening in the system.  

 

7.8 Testing the predictive control algorithm 

After the digital output and analog input communication was tested as described in the 

previous chapters, the RT-Lab model containing the predictive control algorithm was applied 

to the system. This did not give the desired results. The programming of the FPGA worked 

with no error messages, and the model can be executed from RT-Lab. However, there seems 

to be no response from the circuit. Studying the output variables and the test card, it is clear 

that no switching occurs. In order to try to locate the error, a selection of signals were sent to 

the monitor to study the behaviour in different parts of the system. The following signals were 

sent to the console:  

- The counter signals, count_a, count_b, count_c 

- Cost function, g 

- Sum error in current control, e_cur 

- Number of samples, m 

- Alpha reference current, iref_alpha 

- Alpha measured current, imeas_alpha 
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- Phase a measured current, imeas_a 

- Back-emf real part, e_re 

- Voltage value input to the Mcode, v2 

- Component values at the input of the Mcode, (Ts/L) 

None of these signals gave any feedback to the console, and all values were constantly 

measured to 0.  

 

Signals were monitored from different locations in the model, and both signals that depends 

on the results from the predictive control algorithm as well as signals that should be 

unaffected by the Mcode block were sent to the console. This indicates that the error might lie 

within the communication between the CPU part of the model and the FPGA. One possibility 

is that the error occurs in the transmission of the data from the DataOut block in the FPGA 

model to the DataOut Recv block in the master. The data is both reformatted before the 

transition and after, and a design fault from the user might be present in the system.  

 

Another critical part of the model is the communication between the DataIn Send block in the 

master, and the DataIn block in the FPGA model. It is interesting that the refrence currents 

that were sent to the console gave a constant value of zero. If this is the cause of the error, 

then this will affect the whole model, and might cause every other variable to be zero, as no 

currents will flow, resulting in no switching. A comment to this is that the reference current 

signals that were tested, were extracted from the model after the data formatting through 

several blocks editing type and rate of the signal, including Slice, Reinterpret and Assert 

blocks. The signal has also been changed from abc- to ∝β-coordinates. The next logical test 

would be to test the signal at the output of the DataIn block, to see if there is any data received 

in this block. If so, there is a problem with the reinterpreting of the signal before it is used in 

the model. One more factor that should be taken into consideration, is that no scaling is 

implemented for the measured current in the FPGA model. A gain of 5.1 should be introduced 

at the output from the analog in block, and no gain block should be applied in the console.  

 

Unfortunately, when the work reached this point, the deadline for the master thesis was 

approaching, and there was not enough time to make the tests required to find the error 

source. Troubleshooting in the model will be included in further work.  
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8 Conclusion and further work 

 

8.1 Conclusion 

Predictive current control was tested in a Simulink model with a sampling period of 1 µs. 

Different sampling periods for the predictive control algorithm were tested to study the effect 

the frequency of the prediction has on the performance of the control method. Simulations 

with a sampling period of 25 µs for the Matlab Function block, containing the predictive 

control algorithm, resulted in good reference tracking of the current, with some ripple in the 

output current.  The cost function stabilized around a value of approximately 0.4, which 

confirms a low reference tracking error. Simulations were performed with a sample period for 

the predictive control algorithm adjusted to 1 µs. This improved the current reference tracking 

significantly, and a mean value of approximately 0.015 for the cost function was achieved. 

From these results, it is clear that the sampling frequency of the predictive control algorithm 

will affect the performance of the control. This contributed to the motivation for executing the 

control algorithm on a FPGA, which can perform a great amount of calculations at a very high 

speed.  

 

The predictive control method tested in Simulink, was adapted into the RT-Lab/XSG 

environment, with the aim to implement the predictive control in an experimental setup. For a 

physical circuit, switching frequency and losses will be of high importance, and an extra 

control objective concerning the switching frequency reduction was included in the predictive 

control algorithm. Some performance variables, used to calculate the average switching 

frequency and mean current error from the cost function, were introduced in the model. The 

first simulations with XSG were performed with no switching frequency reduction, and 

resulted in a very good reference tracking with the value of the cost function centering around 

approximately 0.1. Compared to the results in Simulink, the XSG current control presented a 

deprecated performance. This might be due to the working principles of the FPGA, which 

introduces some delay in the model. Another reason might be that XSG works with the fixed 

point data format, and this puts some limitation on the precision of the data, which might 

propagate through the model. The average switching frequency was measured to 43.8 kHz, 

and this is not feasible for use with a physical circuit.  
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Switching frequency cost was included in the cost function, by adjusting the weighing factor, 

A. A decides the weight put on the switching frequency compared to the current reference 

tracking. Several simulations with an increasing value of A, showed that the switching 

frequency easily could be reduced, though at the cost of decreased precision in the current 

reference tracking. These results demonstrates the benefit of adding several control objectives 

to the control system of the inverter, and emphasize the advantage of how easily this can be 

done for the predictive control method. By implementing the control method in an 

experimental setup, the weighing factor can be adjusted during execution, and a value should 

be found that provides both a satisfactory switching frequency and current control. It should 

be taken into consideration that despite the good results achieved with simulation, it is 

expected that the performance of the predictive control in an experimental setup will deviate 

from these results, as delay is introduced in the system.  

 

The model was adapted to the RT-Lab environment, and I/O blocks were introduced in the 

model for communication with external hardware. This model was tested in an experimental 

setup with a 20 kW IGBT inverter and a star connected resistive inductive load. Tests were 

performed to establish working communication links between the console in RT-Lab and the 

digital output and analog input communication from the model to the inverter. Switching 

signals were controlled successfully from the console, and a DC-current test was performed to 

adjust the scaling of the analog input current from the LEM current sensors. However, when 

the model containing the predictive control algorithm was tested, there was no response from 

the circuit, and no switching occurred. Troubleshooting in the model indicated that an error is 

introduced in the data transmission between the CPU model and the FPGA model. 

Unfortunately, the problem could not be solved within the given time limits, and this will 

have to be included in further work for the model.  
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8.2 Further work 

Further work will include troubleshooting in the model, to find the error that causes the model 

to fail. The next logical test would be to monitor  the signal at the output of the DataIn block, 

to see if there is any data received in this block. If so, there is a problem with the 

reinterpreting of the signal before it is used in the model, and the formatting needs to be 

revaluated. A gain of 5.1 at the output from the analog in block, should also be implemented 

in the FPGA model, due to the conversion ratio in the LEM sensors measuring the output 

current for the inverter.  

 

When the model is working, the next step would be to introduce some form of delay 

compensation to compensate for the time required for execution in an experimental setup. The 

method presented in [14] is a relevant option, and might contribute to a better performance 

especially during transients. Another factor that should be taken into consideration is that a 

prediction horizon length of one was used in this work. Previous work have indicated that a 

longer prediction horizon can contribute to a better steady-state performance [4]. The 

influence of the prediction horizon on the performance would be an interesting topic of 

investigation, and should be included in the predictive control algorithm for further studies.  

 

Adjustment of the weighing factor to find an acceptable combination of reference tracking 

performance and switching frequency should be done for the modified model. The focus of 

this work has been to illustrate the correlation between the current control and the switching 

frequency, and study how the reference tracking performance will be affected by a reduced 

switching frequency. For a given system, more weight could be put on investigating variables 

such as energy efficiency, THD and voltage spectra in the output voltage, to get a better 

evaluation of the performance of the predictive control method for the inverter.  
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Appendix A Parameters file 

 

Code A.1 

1  %Variables required in the control algorithm 
2  global Ts R L v states       
3    
4  %Sampling time for the predictive control algorithm [s] 
5  Ts = 1e-6; 
6  
7  % Load parameters 
8  R = 10;     %Resistance [ohm] 
9  L = 10e-3;      %Inductance [H] 
10 e = 100;        %Back-emf amplitude [V] 
11 f_e = 50 * (2*pi) ;     %Back-emf frequency [rad/s] 
12 Vdc = 520;      %DC-link voltage [V] 
13  
14 % %Current reference 
15 i_ref = 10; 
16 w_ref = 2*pi*50; 
17   
18 %Voltage vectors 
19 v0 = 0; 
20 v1 = 2/3 *Vdc; 
21 v2 = (1/3) * Vdc + 1j*(sqrt(3)/3)* Vdc; 
22 v3 = -(1/3) * Vdc + 1j*(sqrt(3)/3) * Vdc; 
23 v4 = -(2/3) * Vdc; 
24 v5 = -(1/3) * Vdc - 1j*(sqrt(3)/3) *Vdc; 
25 v6 = (1/3) * Vdc - 1j*(sqrt(3)/3) *Vdc; 
26 v7 = 0; 
27 v = [v0 v1 v2 v3 v4 v5 v6 v7]; 
28   
29 %Switching states 
30 states =[0 0 0; 1 0 0; 1 1 0; 0 1 0; 0 1 1; 0 0 1; 1 0 1; 1 1 1]; 
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Appendix B Cost function plot 

 

Results from simulation in Simulink with a sampling period of 25 µs for the predictive control 

algorithm. The value for g stabilizes after a short time.  

 

 

 

  

Figure B-1: Cost function, g. 
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Appendix C  Hardware Configuration block 

Settings for the Hardware Configuration block.  

 

Table C-1: Settings Hardware Configuration block. 

Active control card Xilinx ML605 Development Platform 

Chassis form factor FlatIO 

Carrier type Opal-RT OP56008-Slot Flat I/O Carrier 

Section 1A I/O module Opal-RT OP5330-3 SCMB, D/A 14 

Ch@15ma Digital to Analog Module 

Section 1B I/O module Opal-RT OP5340 SCMB, 16 ch, 16 bit, 1us, 

A/D, +5 V to +- 100V 

Section 2A I/O module <empty> 

Section 2B I/O module OPAL-RT OP5340 SCMB, 16 ch, 16 bit, 

1us, A/D, +5 V to +- 100V 

Section 3A I/O module <unavailable> 

Section 3B I/O module <unavailable> 

Section 4A I/O module Opal_RT OP5353 Opto-Isolated Digital 

Mezzanine – 32 Din 

Section 4B I/O module Opal_RT OP5354 Opto-Isolated Digital 

Mezzanine – 32 Dout 
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Appendix D Predictive control algorithm 

The predictive control algorithm implemented in the Xilinx Mcode block. 

 

Code D.1 

1  function [x, count_a, count_b, count_c, g_opt_output, e_out,     

2  m_out]  = system_test_with_emf_compblock_and_switch( I_ref_alpha,  

3  I_ref_beta,I_meas_alpha,I_meas_beta, ioa, iob, ioc, e_re, e_im,  

4  v0, v1, 4  v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13,  

5  v14, v15, compA, compB, Vdc, A) 

6   

7  %Initialize voltage vector 

8  prec = {xlSigned, 30, 20};                   

9  persistent v, v = xl_state(zeros(1,16), prec);  

10  

11 %Initial values 

12 g_opt = xfix({xlUnsigned, 60, 30}, 1e10);   

13 x_opt = xfix({xlUnsigned, 3, 0}, 0);    

14 a = 0; 

15 b = 0;                                        

16  

17 %Initialize reference current variables 

18 persistent ik_ref_re_reg, ik_ref_re_reg  = xl_state(0,  

19 {xlSigned, 16, 10}); 

20 persistent ik_ref_im_reg, ik_ref_im_reg  = xl_state(0,  

21 {xlSigned, 16, 10}); 

22 

23 % Initialize measured current variables  

24 persistent ik_re_reg, ik_re_reg  = xl_state(0, {xlSigned,16,10}); 

25 persistent ik_im_reg, ik_im_reg  = xl_state(0, {xlSigned,16,10}); 

26 

27 %Establish switching states variables and vector 

28 persistent Sa, Sa  = xl_state(0, {xlUnsigned, 1, 0}); 

29 persistent Sb, Sb  = xl_state(0, {xlUnsigned, 1, 0}); 

30 persistent Sc, Sc  = xl_state(0, {xlUnsigned, 1, 0}); 

31  

32 Sa_old = Sa; 

33 Sb_old = Sb; 

34 Sc_old = Sc; 

35  

36 persistent states, states=xl_state(zeros(1,24),{xlUnsigned,1,0}); 

37  

38 states(0) = 0;      

39 states(1) = 0;       

40 states(2) = 0;  

41   

42 states(3) = 1;  

43 states(4) = 0;       

44 states(5) = 0;  

45   

46 states(6) = 1;  



 

85 

 

47 states(7) = 1;       

48 states(8) = 0;  

49  

50 states(9) = 0;  

51 states(10) = 1;        

52 states(11) = 0;  

53  

54 states(12) = 0;  

55 states(13) = 1;          

56 states(14) = 1;  

57  

58 states(15) = 0;  

59 states(16) = 0;          

60 states(17) = 1;  

61 

62 states(18) = 1;  

63 states(19) = 0;          

64 states(20) = 1;  

65   

66 states(21) = 1;  

67 states(22) = 1;          

68 states(23) = 1;  

69  

70 %Read values from console  

71 l = xfix({xlSigned, 22, 20}, compA);  

72 m = xfix({xlSigned, 16, 10}, compB);  

73  

74 %Initialize variables as arrays 

75 persistent n, n = xl_state(zeros(1,8), prec);  

76 persistent o, o = xl_state(zeros(1,8), prec);                     

77 persistent p, p = xl_state(zeros(1,8), prec);  

78 persistent q, q = xl_state(zeros(1,8), prec);  

79 persistent r, r = xl_state(zeros(1,8), prec);                     

80 persistent s, s = xl_state(zeros(1,8), prec);  

81  

82 persistent v_o1_re_reg, v_o1_re_reg = xl_state(zeros(1,8), prec);          

83 persistent v_o1_im_reg, v_o1_im_reg = xl_state(zeros(1,8), prec);          

84  

85 persistent e_re_reg, e_re_reg = xl_state(0, prec);  

86 persistent e_im_reg, e_im_reg = xl_state(0, prec);  

87  

88 persistent ik1_re, ik1_re = xl_state(zeros(1,8), prec); 

89 persistent ik1_im, ik1_im = xl_state(zeros(1,8), prec); 

90  

91 persistent g, g = xl_state(zeros(1,8), {xlUnsigned, 20, 16}); 

92 persistent g1, g1 = xl_state(zeros(1,8), {xlUnsigned, 20, 16});  

93 persistent g2, g2 = xl_state(zeros(1,8), {xlUnsigned, 20, 16}); 

94 persistent g3, g3 = xl_state(zeros(1,8), {xlUnsigned, 20, 16}); 

95   

96 %Calculate switching losses for sampling instant k 

97  if ioa >= 0 

98        tap_a = (ioa * Vdc); 

99  else 

100       tap_a = (-ioa * Vdc); 

101 end  

102  
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103 if iob >= 0 

104        tap_b = (iob * Vdc); 

105 else 

106        tap_b = (-iob * Vdc); 

107 end  

108  

109 if ioc >= 0 

110        tap_c = (ioc * Vdc); 

111 else 

112        tap_c = (-ioc * Vdc); 

113 end  

114  

115 %Switching loss, independent of the current 

116 tap_init = xfix({xlUnsigned, 6, 5}, 0.3);       

117 

118 %Initialize values for evaluation parameters 

119 count_a = xfix({xlUnsigned, 1, 0}, 0);  

120 count_b = xfix({xlUnsigned, 1, 0}, 0);  

121 Count_c = xfix({xlUnsigned, 1, 0}, 0);  

122 

123 persistent e_sum, e_sum  = xl_state(0, {xlUnsigned, 25, 10}); 

124 e_out = xfix({xlUnsigned, 25, 10}, 0);  

125 e_cur = xfix({xlUnsigned, 16, 10}, 0);  

126  

127 %For-loop estimating the cost function for all possible  

128 %switching states 

129 for i = 0:2:14                           

130     

131    if i > 0                 

132    a = a + 1;               

133    b = b + 3; 

134    end 

135     

136    %i-th voltage vector for current prediction 

137    v_o1_re_reg(a) = v(i); 

138    v_o1_im_reg(a) = v(i+1);                                

139     

140  %Current prediction at instant k+1, real part 

141  %Calculating ik1_re = (1 - R*Ts/L)*ik_re + Ts/L*(v_o1_re–e_re);           

142    n(a) = (m * ik_re_reg); 

143    o(a) = v_o1_re_reg(a) - e_re_reg;      

144    p(a) = l * o(a); 

145    ik1_re(a) = n(a) + p(a); 

146 

147    %Current prediction at instant k+1, imaginary part 

148    q(a) = (m * ik_im_reg); 

149    r(a) = v_o1_im_reg(a) - e_im_reg;       

150    s(a) = l * r(a); 

151    ik1_im(a) = q(a) + s(a);             

152 

153    %Cost function 

154    if ik_ref_re_reg >= ik1_re(a) 

155        g1(a) = ik_ref_re_reg - ik1_re(a);    

156    else 

157        g1(a) = ik1_re(a) - ik_ref_re_reg;     

158    end  
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159     

160    if ik_ref_im_reg >= ik1_im(a) 

161        g2(a) = ik_ref_im_reg - ik1_im(a); 

162    else 

163        g2(a) = ik1_im(a) - ik_ref_im_reg; 

164    end  

165     

166    %Calculate cost switching losses 

167    if Sa ~= states(b)  

168        g3(a) = g3(a) + tap_a + tap_init; 

169    end 

170     

171    if Sb ~= states(b+1) 

172        g3(a) = g3(a) + tap_b + tap_init;             

173    end 

174     

175    if Sc ~= states(b+2) 

176        g3(a) = g3(a) + tap_c + tap_init;        

177    end 

178    

179      g(a) = g1(a) + g2(a) + A* g3(a); 

180      

181 end 

182 

183 %Selection of the optimal value 

184     if (g(0)<g_opt) 

185        g_opt = g(0); 

186        x_opt = 0;           

187        Sa = 0; 

188        Sb = 0; 

189        Sc = 0; 

190        e_cur = g1(0) + g2(0); 

191     end 

192 

193     if (g(1)<g_opt) 

194        g_opt = g(1); 

195        x_opt = 1; 

196        Sa = 1; 

197        Sb = 0; 

198        Sc = 0; 

199        e_cur = g1(1) + g2(1); 

200     end 

201 

202     if (g(2)<g_opt) 

203        g_opt = g(2); 

204        x_opt = 2; 

205        Sa = 1; 

206        Sb = 1; 

207        Sc = 0; 

208        e_cur = g1(2) + g2(2); 

209     end 

210 

211     if (g(3)<g_opt) 

212        g_opt = g(3); 

213        x_opt = 3; 

214        Sa = 0; 
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215        Sb = 1; 

216        Sc = 0; 

217        e_cur = g1(3) + g2(3); 

218     end 

219 

220     if (g(4)<g_opt) 

221        g_opt = g(4); 

222        x_opt = 4; 

223        Sa = 0; 

224        Sb = 1; 

225        Sc = 1; 

226        e_cur = g1(4) + g2(4); 

227     end 

228 

229     if (g(5)<g_opt) 

230        g_opt = g(5); 

231        x_opt = 5; 

232        Sa = 0; 

233        Sb = 0; 

234        Sc = 1; 

235        e_cur = g1(5) + g2(5); 

236     end 

237 

238     if (g(6)<g_opt) 

239        g_opt = g(6); 

240        x_opt = 6; 

241        Sa = 1; 

242        Sb = 0; 

243      Sc = 1; 

244        e_cur = g1(6) + g2(6); 

245     end 

246 

247     if (g(7)<g_opt) 

248        g_opt = g(7); 

249        x_opt = 7; 

250        Sa = 1; 

251        Sb = 1; 

252        Sc = 1;   

253        e_cur = g1(7) + g2(7); 

254     end 

255      

256 %Register alteration in switching states 

257      if Sa ~= Sa_old 

258       count_a = 1; 

259      end 

260       

261      if Sb ~= Sb_old 

262       count_b = 1; 

263      end 

264       

265      if Sc ~= Sc_old 

266       count_c = 1; 

267      end 

268       

269 %variables for calculating the mean current-cost function value 

270 persistent m, m  = xl_state(0, {xlUnsigned, 16, 0}); 
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271 m_out = xfix({xlUnsigned, 16, 0}, 0);  

272 m = m + 1; 

273 m_out = m; 

274 

275 e_sum = e_sum + e_cur; 

276 e_out = e_sum;                    

277     

278 %Update registers 

279 ik_re_reg = I_meas_alpha; 

280 ik_im_reg = I_meas_beta; 

281 

282 ik_ref_re_reg = I_ref_alpha;  

283 ik_ref_im_reg = I_ref_beta;  

284  

285 v(0) = v0;                                           

286 v(1) = v1;                                           

287 v(2) = v2;                                           

288 v(3) = v3;                                           

289 v(4) = v4; 

290 v(5) = v5; 

291 v(6) = v6;   

292 v(7) = v7; 

293 v(8) = v8; 

294 v(9) = v9; 

295 v(10) = v10; 

296 v(11) = v11; 

297 v(12) = v12; 

298 v(13) = v13; 

299 v(14) = v14; 

300 v(15) = v15; 

301  

302 e_re_reg = e_re; 

303 e_im_reg = e_im; 

304 

305 end 
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Appendix E Back-emf calculation 

The back-emf calculation model with Xilinx blocks. 

 

  

Figure E-1: Back-emf calculation. 
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Appendix F States_selection block 

 

 

Figure F-1: Contents of the states_selection block in the XSG model. 
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Appendix G Timing error 

 

Table G-1 Shows an extract from the error log opened in Timing Analyzer. The path exceeds 

the timing requirement of 10 ns with 28.333 ns. It can also be observed that the clock path 

skew and clock uncertainty is negligible compared to the data path delay, so this is not the 

cause for the problem. The source of the critical path is identified as the register containing 

the variable e_re_reg, and the destination is the block Register4, which is located at the output 

of the Mcode block.  

 

Table G-1: Extract from the error log opened in Timing Analyzer. 

 

  

Slack (setup path): -28.333ns (requirement - (data path - clock path 

skew + uncertainty)) 

   Source:               

ml605_pcie_xsg_core_u0/fpga_model_u0/fpga_model_x0/mcode/e_re_reg_50

_22_3 (FF)  

   Destination:          

ml605_pcie_xsg_core_u0/fpga_model_u0/fpga_model_x0/register4/synth_r

eg_inst/latency_gt_0.fd_array[1].reg_comp/fd_prim_array[0].bit_is_0.

fdre_comp (FF)  

   Requirement:          10.000ns  

   Data Path Delay:      38.180ns (Levels of Logic = 67)(Component 

delays alone exceeds constraint)  

   Clock Path Skew:      -0.089ns (0.960 - 1.049)  

   Source Clock:         user_clk_c rising at 0.000ns  

   Destination Clock:    user_clk_c rising at 10.000ns  

   Clock Uncertainty:    0.064ns  

   

   Clock Uncertainty:          0.064ns  ((TSJ^2 + DJ^2)^1/2) / 2 + 

PE  

     Total System Jitter (TSJ):  0.070ns  

     Discrete Jitter (DJ):       0.105ns  

     Phase Error (PE):           0.000ns  
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Appendix H Simulation results XSG model  

 
Simulation results from the Xilinx model.  
 
 
 

Table H-1 Count signals and average switching frequency. 

A t [s] Count_a Count_b Count_c fsa[kHz] fsb [kHz] fsc [kHz] fs 

[kHz] 

0 0.06 4399 5714 5662 36.7 47.6 47.2 43.8 

0.01 0.06 3140 3075 3015 26.2 25.6 25.1 25.6 

0.02 0.06 2160 2164 2181 18.0 18.0 18.2 18.1 

0.03 0.06 1589 1598 1583 13.2 13.3 13.2 13.2 

0.04 0.06 1293 1296 1295 10.8 10.8 10.8 10.8 

0.08 0.06 777 740 764 6.5 6.2 6.4 6.4 

 

 

Table H-2: Mean refrence tracking error. 

A t [s] e_out m_out 𝑒̅ 

0 0.06 7677 6*10^4 0.1280 

0.01 0.06 4.08*10^4 6*10^4 0.6800 

0.02 0.06 6.465*10^4 6*10^4 1.0775 

0.03 0.06 8.588*10^4 6*10^4 1.4313 

0.04 0.06 1.0485*10^5 6*10^4 1.7475 

0.08 0.06 1.7496*10^5 6*10^4 2.9160 
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Appendix I Simulation results XSG model:  

Plots of current and cost function 

I.1  A= 0 

 

Figure I-2: A = 0. Output current (blue) and reference current (red), phase a. 

 

Figure I-3: The cost function, g for A = 0. 

 

Figure I-1: A = 0.. Output current (blue) and reference current (red), phase a. 
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I.2  A= 0.01 

 

 

Figure I-4: A = 0.01. Output current (blue) and reference current (red), phase a 

 

 

Figure I-5: A = 0.01. Output current (blue) and reference current (red), phase a 

 

Figure I-6: The cost function, g for A = 0.01. 

 



 

96 

 

I.3  A= 0.02 

 

Figure I-7: A = 0.02. Output current (blue) and reference current (red), phase a 

 

Figure I-8: A = 0.02. Output current (blue) and reference current (red), phase a 

 

Figure I-9: The cost function, g for A = 0.02. 
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I.4  A= 0.04 

 

Figure I-10: A = 0.04. Output current (blue) and reference current (red), phase a 

 

 

Figure I-11: A = 0.04. Output current (blue) and reference current (red), phase a 

 

 

Figure I-12: The cost function, g for A = 0.04. 

 



 

98 

 

Appendix J Console in RT-Lab 

 

Blocks for sending and receiving signals in the console. 

 

 

 

Figure J-1: OpComm block and input signals in the console. 
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Figure J-2: Outputs from the console. 
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Appendix K The master in RT-Lab 

 

 

Figure K-1: Input from the console and output to the FPGA. 
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Figure K-2: DataOut Recv blocks. 
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Appendix L Communication blocks in the 

FPGA model 

The DataOut and DataIn blocks with all input signals from the FPGA model.  

 

 

Figure L-1 The DataOut block with inputs. 
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Figure L-2 The DataIn block with outputs. 

 

 


