Improving the Performance of Pipelined Query
Processing with Skipping

Simon Jonassen and Svein Erik Bratsberg

Norwegian University of Science and Technology, Trondheim, Norway,
(simonj,sveinbra)@idi.ntnu.no

Abstract. Web search engines need to provide high throughput and
short query latency. Recent results show that pipelined query processing
over a term-wise partitioned inverted index may have superior through-
put. However, the query processing latency and scalability with respect to
the collections size are the main challenges associated with this method.
In this paper, we evaluate the effect of inverted index skipping on the
performance of pipelined query processing. Further, we introduce a novel
idea of using Max-Score pruning within pipelined query processing and
a new term assignment heuristic, partitioning by Max-Score. Our cur-
rent results indicate a significant improvement over the state-of-the-art
approach and lead to several further optimizations, which include dy-
namic load balancing, intra-query concurrent processing and a hybrid
combination between pipelined and non-pipelined execution.

1 Introduction

Two fundamental index partitioning methods, term-wise and document-wise,
have been extensively compared during the last 20 years. The decision about
which method gives the best performance relies on a number of system aspects
such as query processing model, collection size, pruning techniques, query load,
network and disk-access characteristics [3]. Rather than asking whether term-
wise partitioning is generally more efficient than document-wise or not, we look
at pipelined query processing [10] over a term-wise partitioned index and try to
resolve the greatest challenges of the method. The advantage of term-wise parti-
tioning is that a query containing [query terms involves only [processing nodes
in the worst case. At the same time, it has to process only ! posting lists in total.
Whether [is the number of lexicon lookups or the total number of disk-accesses
depends on the implementation. Pipelined query processing consists of routing
a query bundle through the nodes responsible for any of the terms appearing
in a particular query, modifying the accumulator set at each of these nodes and
finally extracting the results at the last node. Compared to a traditional query
processing approach, where each of the nodes retrieves the posting lists and the
query processing itself is done solely by a ranker node, this method improves the
workload distribution across the nodes and the overall performance [10].

In a recent book, Biittcher et al. [I] enlist three problems of pipelined query
processing: poor scalability with increasing collections size, poor load balancing

and limited intra-query concurrency due to term-at-a-time/node-at-a-time pro-
cessing. In this work, we mainly address the first problem, but also show how
our solution can be used to solve the other two.

Our contributions in this work are as follows. First, we explore the idea of
combining inverted index skipping and pipelined query processing for a term-wise
partitioned inverted index. Herein, we present an efficient framework and a skip-
ping optimization to the state-of-the-art approach. Second, we present a novel
combination of pipelined query processing, Max-Score pruning and document-
at-a-time sub-query processing. Third, we present an alternative posting-list
assignment strategy, which improves the efficiency of the Max-Score method.
Fourth, we evaluate our methods with a real implementation using the TREC
GOV2 document collection, two large query sets and 9 processing nodes and
suggest a number of further optimizations.

The remainder of this paper is organized as follows. We briefly review the
related work in Section [2| and describe our framework in Section [3] We present
our query processing optimizations in Sections [] and [5] and our posting list as-
signment optimization in Section [f] We summarize our experiments in Section 7}
In Section [8] we finally conclude the paper and suggest further improvements.

2 Related work

Pipelined query processing was originally presented by Moffat et al. [10] as a
method that retains the advantage of term-wise partitioning and additionally
reduces the overhead at the ranker node. However, due to a high load imbalance,
the method was shown to be less efficient and less scalable than document-wise
partitioning. In the following work by Moffat et al. [9] and Webber [13], the
load balancing was improved by assigning posting lists in a fill-smallest fashion
according to the workload (posting list size x past query frequency) associated
with each term. The authors suggested also to multi-replicate the posting lists
with the highest workloads and allow the broker to chose the replica dependent
on the load. Additionally, Webber [13] has presented a strategy where each node
may ask other nodes to report their current load in order to choose the next
node in the route. The results reported by Moffat et al. [9] showed a significant
improvement over the original (term-wise) approach, but not the document-
wise approach. Under extended evaluation with a reduced main memory size
performed by Webber [13] pipelined query processing outperformed document-
wise partitioning in terms of maximum throughput. However, document-wise
partitioning demonstrated shorter latency at low multiprogramming levels.

In a recent publication [4], we have addressed the problem of the increased
query latency due to a strict node-at-a-time execution and presented a semi-
pipelined approach, which combines parallel disk access and decompression and
pipelined evaluation. Additionally, we suggested to switch between semi- and
non-pipelined processing dependent on the estimated network cost and an alter-
native query routing strategy. While the results of this work indicate an ultimate
trade-off between the two methods, it has several important limitations. First,
similar to the original description [I3], it requires to fetch and decompress post-

ing lists completely. This minimizes the number of disk-accesses, but leaves a
large memory footprint and endangers scalability of the method. Second, while
the original approach fetches only one of a query’s posting lists at a time, the
semi-pipelined approach fetches all of them and keeps them in main memory
until the query has been processed up-to and including this node. This improves
the query latency, but increases the memory usage even further. Third, the com-
pression methods used by the index may be considered outdated.

In the current work, we follow an alternative direction and try to improve
pipelined query processing by means of skipping optimizations. In a recent work
[5], we have investigated these techniques for a non-distributed index. In partic-
ular, we have presented a self-skipping inverted index designed specifically for
NewPFoR [I4]. Further, we have presented a complete description of document-
at-a-time Max-Score. The Max-Score heuristic was originally presented by Turtle
and Flood [12] without specifying enough details for skipping itself and later a
very different description was given by Strohman et al. [T1]. Our algorithm com-
bines the advantage of both previous descriptions. Finally, we have presented a
skipping version of the space-limited pruning algorithm by Lester et al. [7], which
is the method used in the original description of pipelined query processing.

As a part of the current work, in Section [8] we outline several further ex-
tensions. One of these, intra-query concurrent pipelined processing, has already
been evaluated in our recent work [6]. The preliminary baseline of [6] is an early
version of the Max-Score optimization we are about to present, MSD;, and the
results of [6] are therefore directly applicable to this method.

In contrast to the previous work, we use skipping to resolve the limitations
of distributed, pipelined query processing. Herein, we present several skipping
optimizations and a new term assignment strategy. In contrast to the previously
presented assignment optimizations [2I8I5], our strategy does not try to assign
co-occurring terms to the same node or to do load balancing, but rather to
maximize the pruning efficiency. Additionally, it opens a possibility for dynamic
load balancing with low repartitioning overhead and hybrid query processing.
Finally, different from [456], our experiments use two query logs with very
different characteristics, and a varied collection size.

3 Preliminaries

For a given textual query ¢, we look at the problem of finding the k£ best doc-
uments according to a similarity score sim(d,q) = ZtEq s(t,d), where s is a
function, such as Okapi BM25, estimating the relevancy of a document d to a
term t. For this reason, we look at document-ordered inverted lists. Each list I;
stores an ordered sequence of document IDs where the term ¢ appears and an
associated number of occurrences of the term in the document f; 4.

Our search engine runs on n+1 processing nodes, one of which works as a
query broker and the remaining n work as query processing nodes. For each of
the indexed collection terms we build an inverted list and assign it to one of
the processing nodes. By default, we use a hash-based term assignment strat-
egy. Additionally to the inverted index, each query processing node maintains a

small lexicon (storing term IDs, inverted file pointers, document and collection
frequencies), a small replica of the document dictionary (storing the number of
tokens contained in each document) and both partition and collections statistics.
The query broker node stores a full document dictionary (document IDs, names
and lengths), lexicon (tokens, term IDs, collection and document frequencies,
IDs of the nodes a term is assigned to) and collection statistics. At runtime, the
inverted index resides on disk and the remaining structures are in main memory.

The broker is responsible for receiving queries, doing all necessary prepro-
cessing and issuing query bundles. The broker uses its lexicon to look-up query
terms and to partition the query into several sub-queries consisting of the terms
assigned to the same node. Further, it calculates a query route (i.e., a particular
order to visit the query nodes) and creates a query bundle. The bundle contains
term IDs, query frequencies and an initially empty document-ordered accumu-
lator set. Accumulators represent document IDs and partial scores. Finally, the
broker sends the query bundle to the first node in the route.

When a node receives a bundle, it decompresses its content and starts a new
query processing task. First, it uses its own lexicon to find the placement of
the posting list. In the next step, the node processes its own posting data with
respect to the received accumulators and creates a new accumulator set. Then,
it updates the query bundle with the new accumulator set and transfers it to the
next node. Alternatively, the last node in the route extracts the top-k results,
sorts them by descending score and returns them to the broker.

4 Improving pipelined query processing with skipping

In this section, we describe the optimization to the state-of-the-art query pro-
cessing approach. With this approach, the terms within each query are ordered
by increasing collection frequency F; and the query itself is routed by increasing
minimum F;. Once a bundle is received by a node, the node extracts the accu-
mulators and initiates posting list iterators. We use Algorithm [I] to describe the
following processing step performed by the query processor. The space-limited
pruning method itself has been originally presented by Lester et al. [7] and the
skipping optimization for a non-distributed index has already been presented in
our previous work [5]. Therefore, the goal of this section is to describe the im-
provements to pipelined query processing. However, for the sake of intelligibility
we also explain the most important details derived from the prior work [57].

In the following, i; denotes the iterator of the posting list I}, which provides
methods to get the document ID, frequency, score and position of the current
posting, advance to the next posting or to the first posting having d>d’' (both
next() and skipTo(d') return false if the end has been reached), or reset to the
beginning. Further, f; denotes the document frequency of t (i.e., number of
documents) and F; - its collection frequency (i.e., number of occurrences), and
|A] - the current size of the accumulator set A.

The idea behind the pruning method (lines 1-7, 9, 11) is to restrict the ac-
cumulator set to a target size L. As the algorithm shows, the posting lists of

Algorithm 1: processBundle(b,) with skip-optimized space-limited pruning

Data: iterators {i;} and lexicon entries {i;} for t € q; sorted by ascending F}, accumulator
set A, bundle attribute v, system parameters avg-dl, use_opt, L, hmax
foreach tc q; do
A+ A, A+ 0, skipmode< false, p< [fi/L];
if fi <L then
| pfi+1, h0;
else if v=0 then
set h to the maximum of the first p frequencies retrieved from i,
v<4—8(lg, h, avg-dl), it.reset();

DTk W~

else
if use_opt=true and s(l¢, hmax, avg-dl) <v then skipmode < true;
else find h€[1, hmax] s.t. s(lt, h, avg-dl) > v;

if skipmode= false then

s<+max(1, | (h+1)/2]), sizeg+ |A’|; merge A’ and candidates from i; into A:
calculate i;.s() only when i;.d() € A’ or i¢.f() > h, prune candidates having s <wv;
Each time i;.pos() =p: pred<|A|+|A"|+(ft —p) x (JA|+|A’| —sizeo)/p, if
pred>1.2x L then h<h+s else if pred<L/1.2 then h<max(0, h—s) endif,
v<4—5s(lg, h, avg-dl), s« |(s+1)/2], p+2Xp;

= O © 0

—

12 else

13 foreach accumulator (d’,s) € A’ do

14 if i;.d()<d’' then if i;.skipTo(d') = false then add remaining accumulators
s.t. s>v to A, proceed to the next term (line 1);

15 if i;.d()=d’ then s+« s+i;.5();

16 if s>v then add (d/,s) to A4;

17 if it is the last node in the route then use a min-heap to find the k-best candidates from A,
sort and return them to the broker else update b, with A and v and send it to the next node;

a particular sub-query ¢; C ¢ are evaluated term-at-a-time. As long the docu-
ment frequency f; of the current term is below L, each posting is scored and
merged with the existing accumulator set. Otherwise, the algorithm estimates a
frequency threshold h and a score threshold v, just as suggested by Lester et al.
For this reason, h is set to the maximum frequency among the first p=[f;/L]
postings. The rationale here is that, if one out of p postings will pass the fre-
quency filter f; 4> h, the total number of such postings will be L. Further, in
order to prune existing accumulators, v is calculated from h. Differently from
Lester et al., our score computation uses also the length of a document. For this
reason we calculate the threshold score using l;, h and the average document
length avg_dl. Now, the algorithm is able to prune the existing accumulators
having score s < v and avoid scoring postings having f: 4 < h and not match-
ing in among the existing accumulators. Each time p postings of I; has been
processed, it predicts the size of the resulting accumulator set. Then, it either
increases or decreases the frequency threshold, updates the score threshold and
finally cools-down the threshold variation. Finally, if the thresholds have already
been defined, it uses the previously computed v to find the corresponding value
h. Similar to the implementation in Zettairﬂ we try only the values between 1
and a system-specific maximum value hy, ... Additionally, we apply binary search
to reduce the number of score computations.

! http://www.seg.rmit.edu.au/zettair/

http://www.seg.rmit.edu.au/zettair/

Our optimization (lines 8, 10, 12-16) suggests to switch the query processing
into a conjunctive skip-mode when s(It, hmax, avg_dl) is below the previously
computed v. In this mode, a posting is scored only when there is already an
existing accumulator with the same document ID. For the first sub-query, b, is
initiated with v = 0. After processing a sub-query g;, b, is updated with the
current A and v and forwarded to the next node. This means that each query
starts in the normal, disjunctive mode. When the optimization constraint holds,
it switches into the conjunctive mode. However, if the next posting list is shorter
than L, the processing will switch back to the normal mode, but it will proceed
to prune the accumulators having s <wv.

The benefit of our optimization depends also on the inverted index imple-
mentation. We apply the layout described in our previous work [5]. With the
basic index, each posting list is divided into groups of 128 entries, which are
stored as two chunks containing 128 document ID deltas and 128 frequencies,
both compressed with NewPFoR. To support skipping, we build a hierarchy of
skip-pointers, which consist of an end-document ID and an end-offset pointer to
a chunk level below. Further, we calculate deltas and compress these in chunks of
128 entries using NewPFoR. Next, we prefix-traverse the logical tree while writ-
ing to disk in order to minimize the size of skip-pointers and optimize reading.
At the processing time, each posting list iterator maintains one chunk from each
skip-level decompressed in main memory and applies buffering while reading
from disk. Different from the previous work, we decompress frequency chunks
only when at least one of the corresponding frequencies has been requested.

With the basic index, the cost of a skip is proportional to the number of
blocks (I/0) and chunks (decompression) between the two positions. With the
self-skipping index, the operation is done climbing the logical hierarchy up (using
already decompressed data) and down (reading and decompressing new data
when necessary). Therefore, the upper bound cost of the operation in the number
of decompressed chunks and read blocks is O(log(D)).

5 Max-Score optimization of pipelined query processing

The main drawback of the query processing methods discussed in the previous
section lies in the unsafe pruning strategy. Additionally, these techniques are
limited to term-at-a-time and node-at-a-time query processing. For this reason,
we suggest an alternative query processing approach employing document-at-a-
time processing of sub-queries, and later we show how this new method can be
extended to provide intra-query parallelism. In order to guarantee safe pruning,
we look at the Max-Score heuristic [BITTIT2]. To give a better explanation, first
we describe the idea for a non-distributed scenario, ¢; = ¢, then how it can be
applied to pipelined query processing, and finally, present the algorithm.

At indexing time, we pre-compute an upper-bound score §; for each posting
list I; (i.e., the maximum score that can be achieved by any posting). At query
processing time, we order ¢; = {t1,...,t;} by decreasing §; and use a; to de-
note the maximum score of terms {¢;,...,4}, i.e.,, a; => 8§ st ¢t € {t;,..., 4}
Further, ¢; is processed document-at-a-time and each iteration of the algorithm

selects a new candidate, accumulates its score and eventually inserts it into a
k-entry min-heap. The idea behind Max-Score is to prune the candidates that
cannot enter the heap. As terms are always processed in order ¢ to ¢;, they can
be viewed as two subsets {t1,...,¢.} (required) and {¢;41,...,%} (optional),
where r is the smallest integer such that a, > s and § is the current k-th best
score. It is easy to see that candidates that do not match any of the required
terms cannot enter the heap. Therefore, the candidate selection can be based
only on the required terms, which also have shorter posting lists. Once a candi-
date is selected, the terms are evaluated in order and the optional term iterators
are advanced with a skip. Finally, at any point, a partially scored candidate can
be pruned if its partial score plus the maximum remaining contribution is below
the score of the current k-th best candidate, i.e., s+a; <S. The description is so
far similar to [5].

Now we explain how to apply these ideas to pipelined query processing. At
query processing time, the broker fetches maximum scores along with term ID
and location information and includes them in the query bundle. Therefore, when
by arrives at a particular node, the information about the maximum scores of
the terms in the current sub-query, 5; s.t. t€¢;, and the maximum contribution
of the remaining sub-queries, a=>_ §; s.t. t €¢;, ¢; C ¢ and i > j, are available
to the query processor. b, itself is routed by decreasing maximum 3; among the
sub-queries. Each query processor treats the received accumulator set just as a
posting list iterator with 3; set to highest score within the set, and processes
the sub-query document-at-a-time. Therefore, the required subset is defined by
ar> 8§ — a, any candidate can be pruned whenever s+a; < 5—a holds, and finally,
the candidates with partial scores s > s—a have to be transferred to the next
node as a modified accumulator set.

We use Algorithm [2| to describe the final query processing approach. First,
the algorithm prepares for query processing, calculates a values and defines the
required set (lines 1-4). As long as the required set is non-empty, the iterators are
processed document-at-a-time (lines 5-13). Each iteration advances the recently
used iterators of the required set, selects a new candidate (lines 6-7) and accu-
mulates its score (lines 8-11). If an iterator reaches the end of the posting list,
it is removed from the iterator set and the a values of remaining iterators and
r are updated (lines 6 and 10). If a candidate succeeds to reach a score higher
than the pruning threshold (s>§—a), it is inserted in the accumulator set (line
12). Potentially, it may also be inserted into the candidate heap (line 13). In this
case, § may also be updated. When a sub-query is fully processed, if this is the
last node in the route, the candidate heap has to be sorted and returned to the
broker as the final result set (lines 14-15). Otherwise, non-pruned accumulators
have to be transferred to the next node. In this case, prior to the final transfer,
an extra pass through the accumulator set removes candidates having s <s5—a,
which are false positives due to a monotonically increasing pruning threshold.
In order to facilitate pruning, § is initiated with the value received from the
previous node, or 0 for the first node. In practice, the last node in the route does
not have to store non-pruned accumulators, but only the candidate heap.

Algorithm 2: processBundle(b,) with DAAT Max-Score optimization

Data: iterators {i1,...,4 } and maximum scores {31, ..., §;} sorted by descending 3,
accumulator set A, bundle attributes § and a

if A#(then [« 1+1, for x< 1 to 1 do iy < is_1,58, < 5,_1 endfor, set i1 to be A’s

iterator and §; to be A’s maximum score;

—

2 a; <3, for z<1—1 to 1 do a; < az+1+s, endfor, A’ + 0, minHeap < 0;

3 r<1I, while r>0 and ar, <5—a do r<r—1;

4 d' -1

5 while r>0 do

6 advance iterators having i,<,..d()=d’, if i,,.next() = false: close i, update i, s and a

sets, decrement [, recompute r (similar to line 3, break if r=0);

7 d' +min(iz<,.d()), s+ 0;

8 for z<1 to | do

9 if s+a, <§—a then break and proceed to selection of the next candidate (line 5);
10 if > and i,.d() <d' then advance i, to d’, if i,.skipTo(d') = false: close i,

update %, s, a, I and r (break if r=0) and proceed to the next iterator (line 8);

11 if i,.d()=d’ then s« s+i;.s();

12 if s>5—a then add (d’,s) to A’;

13 if s> minHeap.minScore then add (d’, s) to minHeap, §+ max(5, s);

14 if it is the last node in the route then
15 ‘ retrieve candidates from minHeap, sort and return them to the broker;
16 else A< {(d s)€ A’ s.t. s>5—a}, update by with A and § and send it to the next node;

6 Max-Score optimization of term assignment

The pruning performance of the Max-Score optimization can be limited when
long posting lists appear early in the pipeline. Therefore, we suggest to assign
posting lists by decreasing §;, such that the first node gets posting lists with
highest §; and the last node gets posting lists with lowest §;. For simplicity, we
use equally sized partitions. Since §; increases as f; decreases (because most of
the similarity functions, including BM25, use the inverse document frequency),
this strategy implies that the first node now stores only short posting lists and
the last node stores a mix of long and short posting lists, and the nodes in
between store posting lists with short-to-moderate lengths.

As we show in the next section, this technique significantly improves the
performance, but struggles with a high load imbalance. Beyond the experiments
presented in the next section, we have tried several load balancing approaches
similar to Moffat et al. [9], such as estimating the workload associated with each
term ¢ in a past query log Q’, Ly =|I;|x f; g/, where f; ¢ is the frequency of ¢ in
Q' and |I3| is the size of I;, and splitting the index so the accumulated past load
would be balanced across the nodes. However, since the load estimator does not
take skipping into account, it overestimates the load of long posting lists and
assigns nearly half of the index to the first node. As a result, the load imbalance
gets only worse. Therefore, we leave load balancing as an important direction
for further work and outline a possible solution in Section

7 Experimental results

For our experiments, we index the 426GB TREC GOV2 corpus. With stemming
and stop-word removal applied, it contains 15.4 mil. unique terms, 25.2 mil.

Table 1: Impact of the query processing Table 2: Maximum and average doc-
method on the precision and recall of the ument frequency and sample covariance

Adhoc Retrieaval Topics 701-850. between the document and query fre-
quency distributions in the evaluated

Method |[MAP |P@10 |Recall query sets.

Full/MSD|.153903 |.530872 |.274597

LT1M 153746 |.530872 |.274262 Query set| max(f:)|avg(fi)|cov(fe, fr.Q)

LT100K |.152376 |.528859 |.270955" A04-06 |11256870|997968 149393

LT50K .152378 [.530872 |.271049 E05 11256870(223091 2266801

LT25K .1506027].528188 |.2673611 E06 11256870| 290747 5999742

LT10K [.145877*(.516107"|.256386™

AND 155073 [.531544 |.268126

documents, 4.7 bil. pointers and 16.3 bil. tokens. With 8 index partitions, the
resulting distributed index is 9.3GB in total, while a corresponding monolithic
index is 7.6GB. Most of the overhead (1.54GB) comes from a short replicated
version of the document dictionary. Skipping pointers increase the size by addi-
tional 87.1MB and the resulting index contains 279 647 posting lists with one
skip level, 15 201 with two and 377 with three levels.

We run our experiments on a 9 node cluster. Each node has two 2.0GHz
Quad-Core CPUs, 8GB memory and a SATA disk. The nodes are interconnected
with a Gigabit network. Our frameworkﬂ is implemented in Java. It uses Java
NIO and Netty for efficient disk access and network transfer. For disk access, we
use 16KB buffers and the default GNU /Linux OS caching policy (hence, we reset
the disk caches before each run). Further, queries are preprocessed in the same
way as the document collection and evaluated using the Okapi BM25 model.

We evaluate the following query processing methods. Full/non-pruned evalu-
ation (Full), space-limited pruning described in Section 4] (LT denotes the state-
of-the-art method, and SLT denotes the skip-optimized version), Max-Score op-
timized evaluation described in Section [5| (MSD), and finally an evaluation with
intersection semantics and document-at-a-time sub-query processing (AND). We
use a subscript N (e.g., SLTx) to denote an execution on a non-optimized index
and S on a self-skipping index. To limit the number of experiments, the maxi-
mum number of top-results k is fixed at 100. For LT we vary the accumulator
set target size L, hence LT1M corresponds to L =1 000 000 and LT10K to
L =10 000. Finally, we fix the hax used by LT/SLT (see Sec. |4]) at 2000, which
we find to be suitable for our index.

In order to evaluate the impact of the query processing optimizations on the
retrieval performance, we use the TREC Terabyte Track Adhoc Retrieval Topics
and Relevance Judgments 701-850 from 2004, 2005 and 2006. We use documents
with relevance judgments 1 and 2 as a ground truth and consider MAP, precision
at 10 results (P@10) and recall at k results as retrieval performance indicators.
Table [1| shows the averages over the whole query set. We focus on result degra-
dation with the space-limited pruning (LT) compared to a full evaluation (Full),

2 https://github.com/s-j/laika

https://github.com/s-j/laika

which is the retrieval performance baseline. Beyond the average results, we apply
a paired t-test at the query level to check the degree of significance. We use | to
mark the significance at 0.05 level, { at 0.01 and i at 0.001.

Table [1| shows how the retrieval performance of LT degrades with decreasing
L. Degradation becomes significant at lower values of L. The evaluation measures
of LT50K and LT100K are different, but without statistical significance when
compared to each other. Beyond the presented data, the results obtained with
Full and LT10M are identical, and the results obtained with SLT are identical
to LT for L > 10 000. From these results, we consider L > 50 000 as a suitable
choice with respect to the precision and recall with £ =100 (while L <25 000 is
not) and keep LT100K, LT50K and LT25K for further experiments.

Our observations confirm that the results obtained by Full and MSD are
identical. Furthermore, we observe a higher precision (MAP and P@10) with
AND compared to Full, although the difference is statistically insignificant. A
closer look has shown that AND performs better for topics 701-751 and 751-800
and worse for topics 801-850 (no significance). However, with k=1000, Full has
both a higher MAP (0.271470 versus 0.255441, no significance) and a higher
recall (0.662522 versus 0.596165, significance at 0.01).

In order to evaluate the algorithmic performance, we use two subsets of
TREC Terabyte Track Efficiency Topics from 2005 (E05) and 2006 (E06). Both
subsets contain 20 000 queries that match at least one indexed term, where the
first 5 000 queries are used for warm-up and the next 15 000 to measure the
actual performance. To simulate the effect of a result cache, neither of the sets
contains duplicated queries.

We observe that K06, which contains government-specific queries, implies
higher query processing load than E05, which contains Web-specific queries.
Therefore, we consider these two sets as a better (E05) and a worse case (E06)
scenarios. We use Table [2] to illustrate the difference between the query sets,
including the Adhoc topics marked as A04-06. As the table shows, the term
with highest document frequency (i.e., posting list length) is the same in all
three of the sets (which is the term ’state’), but the average document frequency
and the sample covariance between the document frequency and the query set
frequency are significantly different. A04-06 is a very short query set, with a
flat query frequency distribution and missing a long-tail distribution among the
document frequencies. This explains a high average document frequency and a
low covariance. Finally, the results for E05 and EO06 illustrate the load difference
between these two sets. EO6 contains terms with both longer posting lists and a
higher correlation between the query and document frequencies.

Figure [1] illustrates the average latency per query (milliseconds) and overall
throughput (queries per second) with varied multiprogramming levels. Points on
each plot correspond to 1, 8, 16, 24, 32, 48, 56 and 64 concurrent queries (cq).
Each run was repeated twice (with the disk cache being reset each time) and
the average value was reported. We report results for all methods except Full,
which was too slow — even when the multiprogramming level set to 1, a query
took on average 474ms for E05, and 1121ms for E06. Therefore, we consider LTy

L =100 000, E05 L =50 000, EO5 L =25 000, E05

300 [T] T T T 400 [T T I
300 - -
300 - -
200 -
200 [~ 200 |- |
100 |- | 100 - 100 |~ .
—o— LTy —o— LTy
—F—SLTN —F—SLTN —F—SLTN
0 —A—SLTg | o L SLTg | oL ‘ — SIFTS ,
! ! !
150 200 250 100 150 200 100 150 200
L =100 000, E06 L =50 000, E06 L =25 000, E06
T T T T T T T T T T
2 | —
150 |- — 0o
200 [~ 1
100
100 - 1
100 |~ -
50 |-
—o— LTy —o— LTN
—F—SLTN —F—SLTN
o S eSS o & s
200 200 300 400 100 200 300 400
MSD, E06 AND, E05/E06
T F T . T T T
300 [] 150 00 -]
200 |- 4 1001 h
200 -
100 |~ - 90 n
ANDy EO05
—6—MSDy —6—MSDy ANDg EO05
—B&— MSDhg —B&— MSDg ANDy E06
ol —A— MSDY | 0L —A— MSDY | ol ANDg E06 |
! ! ! ! ! ! ! ! |
100 200 300 200 400 600 100 200 300

Fig.1: Throughput (y-axis, gps) and latency (ms) with varied multiprogramming.

as the time performance baseline. Our results show that for both E05 and E06,
the skipping optimization to LT (SLTy) significantly improves the performance
and the improvement increases with smaller L. Skipping support in the inverted
index (SLTg) provides a further improvement. While the index optimization is
not as significant as the algorithmic optimization, we observe that (for E06) the
improvement increases as L decreases. We explain these results using Figure
which illustrates the number of blocks read, chunks decompressed, unique docu-
ment IDs evaluated, scores computed and accumulators sent and received by each
node, normalized by the evaluation set query count. The figure shows both the
average (across the nodes) and the maximum (one node) counts. As the results
show, the improvement from Fully to LTy lies in reduced score computation
and network transfer, which improve as L decreases. SLTy further improves the
number of candidates been considered (Doc.IDs) and SLTg improves the amount
of data been decompressed (Chunks). However, even with L =25 000 there is no

E05 Blocks Chunks Doc.IDs Scores Accs.recv. Accs.sent
! E—— ! ! ! ! — T — T

Sz
aSSSEEIssEt
T T T T T T T T T 117

L 1 ! ! ! ! [[

0 2 4 6 0 2 4 0 2 4 005115 005115

-1,000 -10° -10° -10° -10°

E06 Blocks Chunks Doc.IDs Scores Accs.recv. Accs.sent
—T

I | I | I I I I
| | | | | | | |

= w0 90 0051150 05 10 05 10 2 4 0 2 4
Max T Avg. -10% -10% -10° -10° -10°

(=)
[\v)
ot

Fig. 2: Maximum and average number of processed entities per node.

additional savings in data read from disk (Blocks), which can be explained by a
relatively large block size (16KB).

As we show in Figure the Max-Score optimization (MSDy) gains a modest
improvement from the self-skipping index (MSDg) and a significant improve-
ment from the further term-assignment optimization (MSDY). For E05, MSDY,
performs as good as SLTg100K, but for E06 it struggles with increasing query
latency when compared to SLTg100K. However, having in mind that MSD is
equivalent to a full (non-pruned) evaluation, it shows a very good performance.
As Figure [2| shows, the Max-Score optimizations significantly improve the total
amount of read, decompressed and evaluated data. While these methods increase
the number of score computations and the number of transferred accumulators
compared to the LT optimizations, they show a significant improvement com-
pared to Full. Finally, our results show that the main challenge of MSDy; is
an increased load imbalance, which is the ratio between the maximum and the
average counts. This issue should be investigated in the future.

As illustrated in Figures [1| and [2] skipping support in the index improves
the performance of AND by reducing the amount of read, decompressed and
evaluated data. For E06 it improves the latency at lcq by 22% and the through-
put at 64cq by 18%, for E05 it improves the latency at lcq by 29% and the
throughput at 64cq by 11%. Overall, AND performs better than SLTg25K on
E05 and slightly worse on E06. As having a better result quality than LT25K on
A701-850, we consider AND as a good alternative to the space-limited pruning
with a low accumulator set target size (L).

Thr.put(E05) Latency (E05) Thr.put(E06) Latency(E06)

1,500 — ~ 1,000
—6— LT
300 600 5 sLTy
800 —A— SLTg
1,000 e Meny
200 600 400 - @ -MSD}
- @ -ANDy
400 |¢ ~® - ANDs

500
100 200

200

Fig. 3: Throughput (qps) and latency (ms) with varied collection size (x-axis).

Finally, we address performance linearity in Figure[3] In these results, we keep
the multiprogramming level at 64cq and vary the collection size to 1/2 and 1/4.
For LT /SLT we use L=100 000 scaled with the collection size. The results show
that with increasing index size, the methods converge in the absolute throughput
and diverge in the latency. In our opinion, the best behavior is given by SLT,
MSD and AND. However, our results do not guarantee the performance for a
collection larger than the GOV2. This should be addressed in future.

8 Conclusions and further work

We have presented and evaluated several skipping optimizations to pipelined
query processing. For SLTy and SLTg our results indicate a significant improve-
ment over the baseline approach. We also came up with a pruning approach
(MSD3) that provides a result quality equivalent to a non-pruned evaluation,
while having a considerably good performance. Further, we have observed that
processing queries with conjunctive semantics (AND) provides good retrieval
performance and efficient query processing. Although the state-of-the-art ap-
proach considers disjunctive (OR) queries, in future, we would like to take a
closer look at AND queries. Finally, based on our current results, we outline
three techniques that can further improve the performance of MSD{:

Dynamic load balancing. The load balancing of MSD& can be improved
by gradually moving the posting lists with the highest or the lowest § values to
one of the neighbouring nodes. Compared to the previously presented fill-smallest
and graph-partitioning techniques, this approach will reduce the network volume
at repartitioning and can be done dynamically. In order to avoid moving data
back-and-forth, we can further replicate the bordering posting lists and fine-tune
partitions at the lexicon level, without actual repartitioning.

Hybrid query processing. MSD{ tends to place the shortest posting lists
(corresponding to rare terms) on the first nodes. Therefore, by transferring these
(complete) posting lists to a node corresponding to a later sub-query we can
remove decompression, processing and accumulator transfer from the first few
nodes (with an additional opportunity for parallelism). The node receiving the
posting lists will in this case substitute an accumulator set with a few short

posting list. In order to minimize the load on the sending node and the overall
network load, the nodes can further cache the received lists.

Intra-query concurrent processing. Document-at-a-time processing of
sub-queries allows to transfer accumulators to the next node as soon as possible.
This feature can be utilized to provide intra-query concurrency and improve the
performance at low multiprogramming levels. In [6], we have already evaluated
an extension to an earlier version of MSDg. The optimization splits the document
ID range into several sub-ranges, called fragments, and does intra-query paral-
lelization at the fragment level, both across the nodes and on the same node.
The experiments [6] with a smaller subset of the TREC 2005 Efficiency Top-
ics indicated that this optimization allows to reach a similar peak-throughput
at nearly half of the latency. We assume this to be applicable to our current
method, however a further evaluation for the 2006 topics is needed.
Acknowledgments. This work was supported by the iAd Centre and funded by the
Norwegian University of Science and Technology and the Research Council of Norway.

References

1. S. Biittcher, C. L. A. Clarke, and G. V. Cormack. Information Retrieval: Imple-
menting and Evaluating Search Engines. 2010.
2. B. B. Cambazoglu and C. Aykanat. A term-based inverted index organization for
communication-efficient parallel query processing. In IFIP NPC, 2006.
3. S. Jonassen and S. E. Bratsberg. Impact of the Query Model and System Settings
on Performance of Distributed Inverted Indexes. In NIK, 2009.
4. S. Jonassen and S. E. Bratsberg. A combined semi-pipelined query processing
architecture for distributed full-text retrieval. In WISE, 2010.
5. S. Jonassen and S. E. Bratsberg. Efficient compressed inverted index skipping for
disjunctive text-queries. In ECIR, 2011.
6. S. Jonassen and S. E. Bratsberg. Intra-query concurrent pipelined processing for
distributed full-text retrieval. In ECIR, 2012.
7. N. Lester, A. Moffat, W. Webber, and J. Zobel. Space-limited ranked query eval-
uation using adaptive pruning. In WISE, 2005.
8. C. Lucchese, S. Orlando, R. Perego, and F. Silvestri. Mining query logs to optimize
index partitioning in parallel web search engines. In InfoScale, 2007.
9. A. Moffat, W. Webber, and J. Zobel. Load balancing for term-distributed parallel
retrieval. In SIGIR, 2006.
10. A. Moffat, W. Webber, J. Zobel, and R. Baeza-Yates. A pipelined architecture for
distributed text query evaluation. Inf. Retr., 2007.
11. T. Strohman, H. Turtle, and W. B. Croft. Optimization strategies for complex
queries. In SIGIR, 2005.
12. H. Turtle and J. Flood. Query evaluation: strategies and optimizations. Inf. Proc.
and Manag., 1995.
13. W. Webber. Design and evaluation of a pipelined distributed information retrieval
architecture. Master’s thesis, 2007.
14. H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing
with optimized document ordering. In WWW, 2009.
15. J. Zhang and T. Suel. Optimized inverted list assignment in distributed search
engine architectures. In IPDPS, 2007.

	Improving the Performance of Pipelined Query Processing with Skipping

