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Abstract

The last two decades have seen a sudden surge of renewing interest
in asynchronous (or "clock-less") digital circuit design, along with its
introduction into various consumer products in the industry. One major
bottleneck to the further advancement of asynchronous design is the
inability to integrate it with standard synchronous design. Furthermore,
the ease of integration is primarily dictated by the effort spent on timing
validation and analyses. It is easier to integrate an asynchronous design
into a synchronous tool chain, if no or less timing analyses is required for
the asynchronous part. This thesis 1) investigates several asynchronous
tools to find an asynchronous tool that nullifies or minimises the timing
validation to implement an asynchronous design; 2) uses "Balsa", the
selected tool, to implement an asynchronous flash readout; 3) analyzes the
delay insensitive nature of Balsa; and 4) integrates a simple asynchronous
buffer design in Balsa together with a synchronous RTL design, and runs
the combined design through Nordic Semiconductor’s synchronous tool
chain.

An asynchronous flash readout takes control of the flash and performs
readouts from the flash. For this purpose, a Verilog netlist for both single
rail and dual rail data encoding styles was generated. An analyses of
the delay insensitive (DI) nature of Balsa was performed using a simple
buffer design. It was found that for a Balsa generated netlist to be
Delay Insensitive (DI), all the combinatorial loops must be controlled by
handshaking signals and all components must be Quassi Delay Insensitive
(QDI).

An attempt to integrate the Balsa Verilog netlist with Nordic Semicon-
ductor’s tool chain was made. The correct functionality of the combined
design was verified before and after it was synthesized by Design Compiler
(DC). One important feature is that after the synthesis of the combined
design, no timing analyses is required to ensure the working of the asyn-
chronous part. A manual inspection of the combined netlist revealed no
changes in the functional behaviour for the Balsa part. Therefore, the
integration of an asynchronous design written in the Balsa language is
possible with Nordic Semiconductor’s tool chain.





Preface

In the last decades, the market has been flooded with high performing,
power efficient devices. ’Low power devices’ has been one of the chief
priorities for many progressive companies including Nordic Semiconductor.
Research has shown that asynchronous design practices can achieve
significant power savings, thus making asynchronous design a suitable
choice for low power implementations. Currently, the industry for digital
circuit design is dominated by synchronous design practices which are
bound to stay for many years to come. Hence, for the successful adoption
of asynchronous design practices, it is essential to be able to integrate
asynchronous design with a standard synchronous design. This thesis
aims at doing so. It integrates a simple asynchronous design in Balsa
together with a synchronous RTL design, and runs the combined design
through Nordic Semiconductor’s synchronous tool chain.

This thesis has been submitted for the fulfillment of Masters in Telem-
atics being pursued at the Norwegian University of Science an Technology
(NTNU). It was undertaken over a course of 21 weeks. The assignment was
given by Nordic Semiconductor and was performed under the supervision
of Omer Qadir and Arne Wanvik Venås. As a part of masters degree, I did
a specialization project on ’Asynchronous Design through Synchronous
Tool Flow’ preceding this master thesis in 2014. This research provided
some really interesting results. We ran into some timing issues that could
not be solved by this approach. Hence, it was decided to carry forward
the research into asynchronous design by using another approach i.e. by
using an asynchronous tool to implement an asynchronous design and
then integrate it into a synchronous tool flow.

In the end, I would like to acknowledge the efforts of all those who
have contributed towards the successful completion of this thesis. I would
like to express my gratitude towards my co-supervisor, Arne Wanvik
Venås, who has been a perennial source of guidance and motivation. His
contribution has been significant in the various phases of this thesis, such
as: design implementation, library generation, integration, etc. I would
also like to thank my superviser, Omer Qadir, for all his endeavours
to achieve the final goal. His contribution has been significant during
the initial phase of the research into various asynchronous tools to find
the correct asynchronous tool, and in the delay insensitivity analysis of
Balsa. Moreover, he has played an important role towards ensuring the



academic perspective of this thesis. I would also like to thank Frank
Burns and Danil Sokolov at the University of Newcastle, Luciano Lavango
at Politecnico di Torino, and the Balsa support at the University of
Manchester for their quick and enriching responses during the initial
research phase. My extended thanks to the Department of Telematics
at the Norwegian University of Science and Technology (NTNU) for
providing me the opportunity to pursue this thesis.
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Chapter1Introduction

1.1 Motivation

Advancements in semiconductor technology has continually reduced the size of
transistors and wires which has inturn reduced chip size. As a consequence, a
single IC chip can now support many more transistors and can perform extremely
sophisticated tasks. [2] The market for these IC chips have thereby put more demands
of better performance and lower power on digital circuits. Asynchronous circuits have
some unique characteristics that can fulfil these demands. "While the synchronous
approach to digital circuit design has led to dramatic progress in the advancement of
modern computers" [10], asynchronous circuits offer the advantages of lower power,
improved performance and low Electromagnetic Interference (EMI).

One alternative is to design asynchronous circuits using synchronous Hardware
Description Language (HDL) Computer-aided Design (CAD) tools. [11] This ap-
proach, however, requires strenuous timing validation effort. Research has shown
that by adopting this approach, it is most likely to run into timing problems with
combinatorial loops. Moreover, it is almost impossible to constraint one path with
respect to another. [11] The other alternative is to design asynchronous circuits
using automatic asynchronous design tools. This is the approach that has been
adopted in this thesis. An asynchronous design tool, generating a netlist where no or
the least timing analysis is required, has been selected. A tool generating a Delay
Insensitive (DI) netlist is good for this purpose. The selected asynchronous tool has
been employed to implement an asynchronous flash readout. Currently, the flash
readout at Nordic Semiconductor is performed synchronously. An asynchronous
implementation of the same is driven by time saving and power saving interests.

Even though "synchronous design is likely to dominate for the foreseeable future"
[10], there is no doubt that asynchronous design will play a significant role in the
field of digital design in the coming years. One of the major bottlenecks in the
widespread adoption of asynchronous design is the inability to integrate it with
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standard synchronous design. Synchronous design is bound to dominate the industry
for many years. Hence, it is extremely essential to be able to integrate an asynchronous
design with a synchronous one. Moreover, a synchronous implementation of a major
part of the design, and an asynchronous implementation of some small stand alone
parts where higher performance and lower power is required, saves effort and is
the most optimal solution. The key limitation in the current industry or research
integration practices is that a significant effort has to be spent on timing validation
and analysis. Many researches that have aimed at integrating an asynchronous design
with a synchronous design, land up using an asynchronous tool or method that
leads to the generation of a Speed Independent (SI) netlist, thereby desiring alot
more timing analysis. Hence, this thesis aims at choosing an asynchronous tool that
nullifies or minimises the timing validation to implement an asynchronous design,
and then tries to integrate it with some synchronous design in standard HDL by
passing it through Nordic Semiconductor’s synchronous tool chain.

1.2 Significance of the thesis

The novelty of this thesis lies in integrating a complete asynchronous design using
Balsa together with a synchronous RTL design, and running the combined design
through a normal synchronous tool chain. One important feature is that after
the synthesis of the combined design, no timing analysis is required to ensure
the working of the asynchronous part. Other than Balsa, no special tools are
required for accomplishing this task. Standard synchronous HDL tools, only meant
for synchronous design, have been used to handle a combined (asynchronous and
synchronous) design.

The tool "Balsa" was used to implement an asynchronous flash readout. For this
purpose, several tools have been investigated and analysed to find the most suitable
tool for the task.

1.3 Report structure

The structure of the rest of the report is as follows: Chapter 2 presents the back-
ground and theory which is essential for understanding the following chapters. Chap-
ter 3 describes the work done previously in the various categories of asynchronous
tools/methods, and in the field of integrating an asynchronous design (using an
asynchronous tool) with the existing synchronous tool chain. Chapter 4 lists all the
tools used throughout the thesis and states the methodology followed. Chapter 5
presents the most interesting tools and methods that have been studied in depth for
the purpose of this research, and shortlists the best suited tools based on certain
criteria/parameters. Chapter 6 investigates the integration aspects, possibilities and
issues for each of the short listed tools, with Nordic Semiconductor’s design flow, in



1.3. REPORT STRUCTURE 3

order to select a tool that integrates best with Nordic Semiconductor’s tool chain.
Chapter 7 explains some basic concepts of Balsa. Chapter 8 is entirely dedicated
to the design implementation, synthesis and verification of the asynchronous flash
readout written in Balsa. Chapter 9 describes the generation of a new Balsa tech-
nology for the purpose of this thesis. Chapter 10 presents an analysis of the delay
insensitive (DI) nature of Balsa. Chapter 11 is solely dedicated to the integration
of the Balsa output with Nordic Semiconductor’s tool chain at the earliest possible
stage of the design flow. Chapter 12 summarizes the work done in this thesis and
the important results obtained. Chapter 13 lists all the possible works that could be
done in the future as a continuation to this thesis.





Chapter2Background and Theory

This chapter presents the necessary background, theory and all the other information
which is fundamental to understand the rest of the report. It sets out to explain
concepts that form the basis for understanding asynchronous circuit design. It
is noteworthy that the two initial sections i.e. Section 2.1 and Section 2.2 are
summarized from the project report [11] submitted as a part of fulfillment of the
third semester in M.Sc Telematics at Norwegian University of Science and Technology
(NTNU). This is because the area of research of the thesis is another aspect of
asynchronous design from what was researched while undertaking the project. Hence,
sharing of some common background information between the project and thesis is
natural. [11] should be referred for more details on basic concepts (section 2.1 of
[11]) of synchronous and asynchronous design (Chapter 1 and 2 of [11]), benefits
of asynchronous design over synchronous design (section 2.2 of [11]), challenges in
asynchronous design (section 2.3 of [11]), basics of synthesizing ASIC (section 6.1 of
[11]) and timing analysis and timing constraints (section 6.2 of [11]).

2.1 Synchronous and asynchronous design

Most of the prevalent digital design practices are based on a synchronous design
approach, where the execution of all the functions in a circuit are dictated by the
same periodic global signal, called the clock. For a hazard free operation, "the clock
period is ensured to be large enough for the system to achieve a stable state before
the next active clock edge." [11] Before the arrival of the clock event, all the inputs
to the various latches in the circuit, must be stable. On the arrival of the clock
signal all latches change simultaneously. The "clock is used to synchronize the data
transferring between combinational logic blocks and filter out unexpected transient
events (called glitches) before the circuit becomes stable." [12] Synchronous design
has been the dominant design approach in the industry since the last many decades.

In contrast, there is no globally distributed clock in asynchronous circuits. Instead,
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the subsystems of an asynchronous system "communicate with each other at arbitrary
times when they wish to exchange information." [11] Asynchronous design makes use
of handshaking protocols to exchange data between functional blocks. Asynchronous
design practices have various benefits over synchronous design. This has renewed the
interest of researchers and designers in asynchronous design methodologies.

2.2 Benefits and challenges of asynchronous design

Asynchronous design offers several advantages over its synchronous counterpart, in
terms of low power, improved performance and low EMI. [2] [1]

– Low power

In synchronous systems, power is supplied to every part in a circuit even though
that part of the circuit might not be involved in an ongoing computation, and
might not be involved in any data processing at all. The continuous activity
of a periodic global clock leads to increased power consumption in a system.
From this perspective, asynchronous systems lead to significant power savings
due to the lack of a global clock. Moreover, asynchronous circuits exhibit low
standby power. This is because unlike synchronous design, they do not need to
poll the external signals all the time and can respond simply whenever external
stimulus is available. [11]

– Improved performance

Asynchronous systems use handshaking to sense completion of a computation,
and hence exhibit an average-case performance or delay. This is in contrast to
the worst-case performance or delay of synchronous systems, where the system
has to stabilize before the next clock tick. [11]

Moreover, due to the lack of a global clock, clock skew is not an issue in
asynchronous circuits. "Clock skew is the difference in arrival times of the clock
signal at different parts of the circuit." [1] However, in synchronous circuits
the clock skew is accommodated by making the clock period larger than the
critical path. This produces slower circuits. [11]

– Low Electromagnetic Interference

Synchronous circuits have a very narrow noise spectrum, and thus there is
significant amount of electromagnetic noise in the bandwidth. The electromag-
netic noise interferes with the neighbouring circuit signals. On the other hand,
asynchronous circuits have a more distributed noise spectrum and thus display
low EMI. [11]
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Despite of all the above mentioned advantages, asynchronous design encounters
certain challenges, in terms of design complexity, difficulty in testing and debugging
and lack of CAD tool support. [2] [1]

– Design complexity
Synchronous circuits can be easily designed in an ad-hoc fashion. This is
however not the case for asynchronous circuits, where ordering of operations is
a difficult task that needs to be ensured. "The use of flip-flops in synchronous
design ensures the ordering of operations by making sure that all data is stable
before the next active clock edge." [11] Due to the lack of the clocked operation
of flip-flops, all signals in asynchronous control circuits react to a change in an
input. This can cause glitches in the output signal. "A glitch is a momentary,
undesired signal transition of short duration that occurs at the output of a
logical circuit before a signal settles down to its intended state or value." [11]
Hence, in order to achieve a hazard free operation (caused by glitches) in
an asynchronous electronic circuit, ensuring the ordering of operations is a
necessity.

– Difficulty in testing and debugging
Asynchronous design is more prone to deadlocks, due to the presence of combi-
natorial or timing loops that are not cut by flip-flops or latches. "Many of these
loops must be cut with additional circuitry in order to achieve sufficient observ-
ability and controllability in the circuit for test purposes." [2] The availability of
advanced CAD tools and the presence of latches and flip-flops makes it easier to
test synchronous circuits as compared to asynchronous circuits. Furthermore,
the high speed operation of asynchronous circuits makes debugging difficult.
Often, delays have to be added to reduce the speed of the circuits, and make
debugging possible. [11]

– Lack of CAD tool support
There are very few CAD tools, synthesis techniques and commercially supported
design flows available for asynchronous systems. Moreover, they are far less
capable as compared to the readily available synchronous design tools. [11]

2.3 Fanin and fanout paths

In digital electronics, fanin paths are all the input paths to a logic gate. Figure 2.1a
on the following page shows an AND gate with three fanin paths. Fanout paths on
the contrary are the input paths to logic gates fed from the same logic gate output.
Figure 2.1 on the next page represents a fanout where the output from the AND
gate is connected to 3 other logic gates.
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(a) Fanin of three (b) Fanout of three

Figure 2.1: Fanin and fanout

2.4 Frontend and backend

In a digital design flow, frontend refers to carrying out the RTL design implementation
and verification, while backend refers to carrying out the synthesis, layout, placement,
routing and physical verification.

2.5 Muller C element

Asynchronous design very often comprises of a special library comprising of various
library elements to which it is mapped to. The Muller C gate is a well known
asynchronous library element. A 2 input Muller C gate along with its associated
truth table has been shown in Figure 2.2. A Muller C gate can be defined as an
element that outputs a 1 when all its inputs are 1, outputs a 0 when all its inputs
are 0 and holds the same state as before otherwise. [1] In other words, it can be said
that it is an element which propagates an event only when there has been an event
on all its inputs. [11]
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Figure 2.2: Muller C element and truth table
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2.6 The data path and control path

An asynchronous system is a combination of a number of modules or components
communicating with each other. It can be visualized as a partitioning of two main
parts: the data path and the control path. The data path includes all the logical units
and blocks required for processing data, such as, combinational logic blocks, adders,
data encoders, etc. It also includes all the units required for the communication
and storage of data signals, such as, registers. On the other hand, the control path
usually includes signals that control, monitor and ensure the proper functioning of
the data path. The control path most commonly comprises of handshaking signals,
such as, request and acknowledgement. These handshake signals coordinate the
communication between the different parts of an asynchronous circuit to ensure its
correct operation. [12]

2.7 Handshaking protocols for asynchronous control
communication

Typically, asynchronous control communication is based on handshaking protocols
employed between a sender and a receiver. Such protocols are initiated by a request
from the sender to the receiver indicating an action initialization, as a result of
which corresponding acknowledgements are sent back from the receiver to the sender
indicating the action completion. [10] Two phase handshaking and four phase
handshaking are the most widely used handshaking protocols.

2.7.1 Two-phase handshaking

A two phase handshaking protocol involves two signal transitions: a request and
an acknowledgement. The handshake is initiated by a request and is completed by
an acknowledgement. In two phase handshaking, every toggle on the request wire
corresponds to a new handshake and a new data transfer. Figure 2.3 on the next
page represents two phase handshaking.

As an example, consider a two phase handshaking protocol employed between
two modules. The transition sequence is given by: req+, ack+, signifying the first
handshake and data transfer. The next handshake and data transfer between these
two modules will be given by: req-, ack-. The third handshake and data transfer will
again be given by: req+, ack+, and so on. [10]

2.7.2 Four-phase handshaking

A four phase handshaking protocol involves four signal transitions: two requests and
two acknowledgements.[10] The handshake is initiated by asserting a request, followed
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Sender Receiver

Request

Acknowledge

req

ack

Data

data Data 1 Data 2

1 1

2 2

Figure 2.3: Two-phase handshake protocol

by asserting an acknowledgement, which in turn is followed by deasserting the request
followed by deasserting the acknowledgement. This completes the handshake. This
implies that in four phase handshaking, every alternate assertion on the request wire
corresponds to a new handshake and a new data transfer. Figure 2.4 represents four
phase handshaking.

req

ack

data Data 1

1
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4

Sender Receiver

Request

Acknowledge

Data

Figure 2.4: Four-phase handshake protocol

As an example, consider a four phase handshaking protocol employed between
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two modules. The transition sequence is given by: req+, ack+, req-, ack-, signifying
the first handshake and data transfer. The next handshake and data transfer between
these two modules will also be given by the same sequence of transitions. Four phase
handshaking offers the advantage of simpler logic implementations as compared to
two phase handshaking. This is because all wires are eventually reset to the same
initial state. The only disadvantage is that more number of transitions as compared
to two phase handshaking are required in order to complete a single communication.
[10]

2.8 Data encoding protocols for asynchronous datapath

In order to communicate data between modules, some data encoding techniques are
required in addition to the various control signals. There exist several data encoding
styles. Single rail encoding, dual rail encoding and bundled data encoding techniques
are the most commonly used styles.

2.8.1 Single rail encoding

Sender Receiver

Request

Acknowledge

Data

Request

Data

Acknowledge

Data 2Data 1

Figure 2.5: Single rail encoding

As indicated in Figure 2.5, single rail encoding scheme makes use of a single wire
for each bit. In this encoding style, the validity of data is indicated by issuing a
request signal once all the data bits are valid. However, "the request signal must
reach the receiver only after all data bits are valid. This represents a local one-
sided timing constraint, called a bundling constraint." [10] Besides the request, an
acknowledgement is issued from the receiver to the sender to indicate that the data
was received successfully.
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Sender Receiver
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Bit 0,0
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Figure 2.6: Dual rail encoding

2.8.2 Dual rail encoding

As indicated in Figure 2.6, dual rail encoding scheme makes use of two wires for
each bit. "The code 01 on the two wires represents the data value 1 and the code 10
represents the data value 0. Code 00 is used to separate data values and called a
spacer. Code 11 is not used." [10]

In this scheme, there is no separate request being sent from the sender to the
receiver. However, a separate acknowledgement from the receiver to the sender is
necessary. Initially, when there is no data to be transferred, all the wires display the
spacer code (00) representing invalid data. Then, when the sender has valid data, the
wires switch from the spacer code to display the data bits to be sent. The receiver
detects the receiving of data by verifying the lack of presence of spacer code on any
of the wire pair, and acknowledges this with an ack+ to he sender. On receiving an
acknowledgement, the sender resets all the wire pairs to the spacer code. Once the
receiver detects the resetting, it sends an ack- to the sender. [10]

2.8.3 Bundled data encoding

Bundled data encoding scheme assumes a bounded delay model. It implements single
wires for each data bit and an additional control line for each data word. Figure 2.7
on the next page illustrates a bundled data encoding scheme. This scheme guarantees
that the delay in the additional control wire is longer than the delay experienced
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in each of the data bit wires. [1] Therefore, when data is valid i.e. the "data values
are set on the single wires and a transition is sent on the control wire, the receiver
interprets the received transitions as the arrival of all the data bit values sent on the
other wires." [11]

Sender Receiver

Request

Acknowledge

B1

Bn

...
Figure 2.7: Bundled data

Based on a figure in [1]

2.8.4 1-of-N data encoding

A 1-of-N data encoding scheme sends log2N bits data bits over N data wires. It is
normally designed as a four phase protocol. In this scheme, the assertion of a single
data wire is followed by the assertion of the acknowledgement wire. This indicates
that the receiver has consumed the data and the that sender can reset the asserted
data wire. Once the asserted data wire is reset by the sender, the receiver also
resets the acknowledge wire, thus completing the four phase protocol. [2] Figure 2.8
illustrates a 1-of-4 data encoding scheme to encode 2 data bits over 4 data wires.

data_0

ack

data_3

data_2

data_1

1st topken = 0 2nd topken = 3

Figure 2.8: 1-of-N data encoding
Based on a figure in [2]
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2.9 Delay models

Asynchronous circuits are often classified on the basis of their behaviour with respect
to the delays they experience within a circuit. This is referred to as delay modelling.
The delay model primarily dictates the assumptions made about the gate delays
and wire delays in an asynchronous circuit during the design process. In general,
the lesser restrictions posed by these delay assumptions onto a circuit, the more
robust is the design to several varying environmental factors. There can be various
environmental factors subject to change over a period of time which can cause delay
variations within a circuit. Some of them are: crosstalk noise, variations in the
manufacturing process and unpredictable wire lengths. However, these more robust
circuits (with less restrictive delay assumptions), often pay a price in terms of larger
area, higher power and/or lower performance. [2] Most of the asynchronous tool and
methods discussed in Chapter 5 on page 27 implement one of the first three delay
models described below.

2.9.1 Delay Insensitive circuits (DI)

According to [5], Delay insensitive (DI) circuit models are extremely robust to
variations and are infact the most robust amongst all asynchronous circuit delay
models. They make no assumptions on the gate delays or wire delays i.e. the delays
in both the gates as well as the wires are unbounded and can range anywhere between
zero and infinity.

C

dC

B

dBA

dA

d1

d2

d3

Figure 2.9: Circuit with gate and wire delay
Based on a figure in [3]

In order to understand the concept of delay insensitivity in circuits, consider the
Figure 2.9. In this figure, dA, dB, dC represent the gate delays, while d1, d2, d3
represent the wire delays. Moreover, the output from the logc gate A forks to the
inputs of logic gates B and C. When this circuit follows a delay insensitive model,
dA, dB , dC , d1, d2 and d3 i.e. all the gate delays and wire delays are arbitrary. They
are unknown, unbounded and are not subjected to any delay assumption or timing
restriction. [3] As a result, a much less elaborate timing analysis is required to verify
the correctness of DI circuits after physical design. This reduces effort and time
spent on setting timing constraints and verifying their execution.
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Despite of their robustness, DI circuits are limited in their practical aspects.
Alain J. Martin showed in his paper [13] that no practical implementations of single
output gate-level delay insensitive circuits are possible. Furthermore, [1] showed that
the only practical implementation for these circuits is mainly based on the fact that
all ends of a fork have to be sensed in the correct order so as to avoid any hazards.":
if an autonomous DI circuit is built of single output gates, then all gates must only
be C-elements, inverters, buffers or wires. Moreover, the C-element itself does not
have a DI implementation built of basic gates." [12]

2.9.2 Quasi-Delay Insensitive circuits (QDI)

Alain J. Martin in his paper [14] proposed a delay model with a slight compromise
to the delay insensitivity of a gate level design which was termed as Quasi-Delay
Insensitive design. Quassi Delay Insensitive (QDI) circuits adopt similar assumptions
to the DI circuits, but augment this with isochronic paths or forks. [1]. Like a
DI circuit, all gate delays and wire delays in a QDI circuit can have unbounded
arbitrary delays. However, a designated set of ’wire forks’ and ’reconverging fanout
combinatorial logic’ both of which will lead to hazards in a circuit are excluded
from the arbitrary delay assumption and are labelled as isochronic. Being labelled
as isochronic, they are subjected to an additional constraint of having the same
delay to the different ends of the fork. Signal transitions occur at the same time
at the various end points of such wire forks. Typically, isochronic wire forks or
isochronic reconverging paths are prevalent in "gate level implementations of basic
building blocks where the designer can control all the wire delays." [3] For the circuit
represented in Figure 2.9 on the preceding page, d2 and d3 are the same i.e. d2 = d3,
when the circuit is implemented as a QDI model where d2 and d3 form a wire fork
which is labelled as isochronic to avoid hazards . However, d1 (not being part of the
isochronic wire fork) principally has an unbounded and arbitrary wire delay. The
gate delays i.e. dA, dB and dC also have unbounded and arbitrary delay values.

"This strict and unrealistic definition is often interpreted to mean that the
difference in times at which the signal arrives at the ends of an isochronic fork must
be less than the minimum gate delay." [2] This slight modification in the meaning
makes the definition of QDI circuits less restrictive than what was originally proposed.
The main idea behind this assumption on isochronic forks for QDI circuits is to
ensure the ordering of transitions of all the inputs to a logic gate, so as to guarantee
a hazard free operating circuit. The concept behind QDI circuits can be better
understood by considering a reconvergent circuit illustrated in Figure 2.10 on the
following page. In this figure, ’F’ denotes a wire fork. If this circuit is a QDI circuit
adhering the isochronic fork assumption, a rising transition at ’B’ is guaranteed to
arrive before a falling transition at A. This behaviour ensures the presence of a glitch
free output on C. [2] It can clearly be noticed that the circuit is logically designed
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to maintain a 1 at the output C. Let us say that the isochronic fork assumption is
not adhered to and the transition from 0 to 1 on B happens to be slower than the
transition from 1 to 0 on A. In this case there is a situation where A has already
become 0 (being a faster path) while B is still 0 since the new transition to 1 on B has
not reached it yet (being a slower path). Then, for a short interval both A and B will
be 0 resulting output C to be 0 in between. This is not how the circuit was logically
intended to work. Thus, it can be seen that in the absence of this assumption, an
occurrence of a glich at C is possible which would make the circuit hazardous.

F
C

B

A

Figure 2.10: Isochronic fork assumption
Based on a figure in [2]

An interesting feature of circuits following a QDI model is that the primary inputs
to the design are unordered. "The reason is that even if the specification indicates
they are ordered, because of the unbounded wire delays to the gates that they drive
the ordering is not guaranteed at these gates." [2]

2.9.3 Speed Independent circuits (SI)

A large number of circuits belong to the class of Speed Independent circits. These
circuits assume all the gate delays to be unbounded and arbitrarily large and all the
wire delays are ideally zero. Referring to Figure 2.9 on page 14 it implies that d1 =
d2 = d3 = 0 and dA, dB, dC are arbitrary. However, practically this assumption is
reduced to all gate delays being arbitrarily large and wire delays being negligible i.e.
less than the minimum gate delay.

"The DI circuits are quite limited and most practical specifications do not have DI
implementations. The SI circuits are usually adopted to enlarge specifications that
could be synthesized." [12] However, in the real world wire delays can amount to be a
significantly large fraction of the total delay. Thus, it is very difficult to guarantee the
SI delay model for large circuits. SI circuits pose to be very restrictive and stricter
circuits which require very elaborate timing analysis. Myers in [15] describes in detail
the synthesis methods for SI control asynchronous circuits. These models need to
account for almost zero or negligible wire delays and therefore need to satisfy timing
constraints for many interfaces. From the above discussion it can be concluded that
SI circuits might be a practical model to achieve from a synthesis perspective, but
only "as long as a more detailed analysis of the underlying timing assumptions is used
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to verify the correctness after physical design." [2] [11] shows that the procedure for
timing analysis by setting constraints is quite intensive and can get complicated when
timing constraints have to be set manually to set the delay of one path with respect
to the other. DI circuits or QDI circuits are therefore preferred over SI circuits for
the purpose of this thesis. "The more relaxed these timing constraints are, the more
likely it is that the design will work or can be modified to work." [2]

SI circuits are quite similar to QDI circuits. The zero wire delay assumption made
for SI circuits is equivalent to the isochronic fork assumption made for QDI circuits.
This is because the delay in the isochronic fork can be thought of as an extra delay
present within the gate which is driving the fork as seen from Figure 2.11. [4] The
main difference is that in a SI circuit model, the transitions on the primary inputs to
the circuit may be ordered since all wires are considered to be almost instantaneous.
Ordering of operations, however, does not make much sense for QDI implementations.
[2]

(a) QDI (b) SI

Figure 2.11: QDI and SI assumption equivalence
Based on a figure in [4]

2.9.4 Bounded delay models

Bounded delay models assume that the delay in all circuit elements and wires is
bounded or known. Huffman circuits, both in fundamental and non-fundamental
mode are classified as bounded delay models.

2.10 Petri Net (PN)

Petri Nets derive their name from the person who first formally introduced Petri Nets
and was called Carl Adam Petri. He described Petri Nets as a language that could
be used for modelling discrete distributed concurrent systems. Petri Nets have strict
semantics, a mathematical definition and a visual graphic representation approach.
[12] Petri Nets evolved to be extensively used for modelling asynchronous system
specifications. Several modelling and graphical representation techniques were then
developed from Petri Nets. Some of the most widely used asynchronous modelling
techniques besides Petri Nets such as Signal Transition graphs, Change Diagrams,
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Marked Graphs, Transition Systems and State Graphs, have all been derived from
Petri Nets. All these approaches formulate a subset of Petri Nets.

A Petri Net comprises of a quadruple given by N = (P, T, F,m0), where

– P consists of a finite set of places denoted by pi,

– T consists of a finite set of transitions denoted by ti,

– F is a flow relation given by F ⊆ (P × T ) ∪ (T × P )

– and m0 ∈ N |P | is the initial marking where N is a set of natural numbers.

P1 P2 P3 P4 P6P5

t1 t 2

t 3 t 4

Figure 2.12: Example of a Petri net

Figure 2.12 is a Petri Net example taken from [2] to explain the basic concept and
working of a Petri Net. As seen from the figure, a Petri Net is commonly represented
in the form of a bipartite graph consisting of two types of nodes: places (pi) denoted
by circles (©) and transitions (ti) denoted by bars (−). Places and transitions are
connected using directed arcs denoted by an arrow (→). An arc can run from a
place to a transition or from a transition to a place, but never between two places or
two transitions. A marking (m) represents the current state of the system dictated
by the assignment of tokens to the various places in the system. Therefore, initial
marking (m0) represents the initial state of the system. Formally, a marking is an
increasing array vector of the various places in the system. The value of a place in
the marking can either range anywhere between 0..N , depending on the number of
tokens in the place p at that particular marking. Graphically, the presence of a token
at a particular place is indicated by a filled black dot inside the circle that denotes a
place (�). [2]

"In this example,

– P = {p1, p2, p3, p4, p5, p6},
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– T = {t1, t2, t3, t4},

– F = {(t1, p1), (t1, p2), (p1, t3), (p2, t4), (t2, p3), (t2, p4), (p3, t3), (p4, t4), (t3, p5),
(p5, t1), (t4, p6), (p6, t2)}

– and m0 = {tokens at p1, tokens at p2, tokens at p3, tokens at p4, tokens at p5,
tokens at p6} = [0, 0, 0, 0, 1, 1]" [2]

A transition t is said to be enabled at a marking m, if there is at least one token
at each place p from which an arc enters into t (called the preset of t). [2] On the
other hand, the postset of t includes the places p into which arcs enter on leaving
from t. On a transition being enabled, "it can fire by removing one token from each
place in its preset, and adding one token to each place in its postset." [2] In the
example in Figure 2.12 on the facing page, the transition t1 can fire by removing the
token in its preset i.e. p5 and by adding it to one of the places in its postset i.e. p1
or p2.

2.11 Signal Transition Graph (STG)

Asynchronous control circuits can be specified using an alternative approach called
Signal Transition graphs. They were "first introduced by Chu in 1985" [2] as a high
level description approach for asynchronous control circuits. They inherit all the
semantics of a Petri Net in addition to satisfying some other requirements.

Signal Transition Graph (STG)’s are often known as interpreted Petri Nets. Every
transition in a Petri Net is represented by a "rising or falling transition of an input
or output signal." [2] A STG consists of a triplet given by G = (N,A, λ) where

– N denotes the underlying Petri Net,

– A is a finite set comprising of signals and

– λ is a function which labels the transitions in N into A× {+,−}

Figure 2.13 on the next page is a STG example taken from [12] to explain the
basic concept of a STG. In this figure, a+ denotes a rising transition i.e. from low
to high on a signal a while a− denotes a falling transition i.e. high to low on a
signal a, for all a ∈ A. Besides these notation, a∗ is used to denote either a+ or a−.
Moreover, multiple occurences of the same signal can be denoted using an index i
such as: a+ /i or a ∗ /i. [12]

An STG exhibits high concurrency as it operates on the input output mode where
no waiting is required for the control circuit to stabilize before a new transition
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Figure 2.13: An SI circuit with its STGspec and STGimp

can take place at the input. Instead, an input transition can occur right after the
occurrence of other specified input and/or output transitions. "The basic requirements
for STG specifications to be implementable is that transitions on every signal alternate
between rising and falling and the underlying Petri Net be safe." [2]

2.12 Communicating Sequential Processes (CSP)

Communicating Sequential Processes (CSP) is a formal language for modelling channel
based communication in distributed concurrent systems. CSP was highly influential
in the design of several programming languages used for modelling asynchronous
systems, such as Tangram, Occam, Communicating Hardware Processes (CHP), etc.

The main underlying idea behind Communicating Sequential Process (CSP) is
"the parallel composition of a fixed number of sequential processes communicating
with each other strictly through synchronous message-passing" [16] via point to point
channels. The former part implies that each process is a program comprising of
statements within executing in a sequence. Each statement is separated by a semicolon
(;) used to denote sequential execution. However, the processes execute in parallel
with respect to each other. The parallel operator (||) denotes parallel composition of
the processes. The latter part explains more about how the communication takes
place between processes. In general, each process is given an explicit name, and the
"source or destination of a message to be sent is defined by specifying the name of
the intended sending or receiving process." [16] Furthermore, the sending action on a
port is denoted by an exclamation mark (!) and the receiving action on a port is
denoted by a question mark (?).

As an example, consider two processes P1 and P2 connected to each other through
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a channel C. If the value of a variable x has to be sent from P1 to a variable y in P2
over the channel C, the sending action from P1 on the port C will be denoted by
C!x and the receiving action in P2 on the port C will be denoted by C?y. [3] It is
important to note that in CSP "the channel is memoryless and the transfer of the
value of variable x in P1 into variable y in P2" [3] is an instantaneous action. This
syncronizes P1 and P2. Basically, whichever party initiates the sending or receiving
first has to wait for the other party (by temporary suspension) to complete sending or
receiving on the other end of the channel. The temorary suspension causes blocking
which might not always be desirable. As a work around, "Martin has extended CSP
with a probe construct which allows the process at the passive end of a channel to
probe whether or not a communication is pending on the channel." [3]

2.13 David cells

David Cells, first introduced by Rene David in [17], form a distributed control circuit.
Quite often, they are used to mimic the token flow of an STG or a Petri Net (PN).
[18] Each David Cell has an elementary two state automation. An overall system
made of David Cells is thus a product of such automations. In general, David cell
implementations are basic structures made up of three logic blocks and three NAND
gates, as seen in Figure 2.14. However, it is possible to use other implementations as
well. [19]
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Figure 2.14: Definition of David cells
Based on a figure in [5]





Chapter3Previous Work

This chapter presents some of the most significant work done previously in the various
categories of asynchronous tools/methods. In the world of asynchronous design, the
ease of integration of an asynchronous design with the conventional synchronous
design is primarily dictated by the delay model of the generated circuit or netlist and
the input specification language. This chapter describes the most remarkable efforts
made in the field of integrating an asynchronous design (using an asynchronous tool)
with the existing synchronous tool chain.

[20] provides a vivid evaluation of the various available asynchronous tools and
methods for designing asynchronous digital VLSI systems. Most of the asynchronous
tools are classified into one of the following categories: text based specification
approaches, graph based specification approaches and control-data flow graph based
methods. [10] has described some of the remarkable works done in these categories.
Text based specification approaches are basically syntax directed translation ap-
proaches based on CSP. One of the earliest works in this field was initiated by Martin
in CHP [21]. Another popular translation based method developed by Philips is
Tangram. Tangram has been successfully used to design and fabricarte several IC’s,
such as the asynchronous 80C51 microcontrollers [22], which have been employed in
various consumer electronic products such as cell phones and pagers. [10] However,
the most pioneering work in this field has been done by Balsa [23] which was devel-
oped by the University of Manchester. Balsa generated circuits are DI. [24] Balsa
has been used to implement AMULET3 [25] which is a 32-bit fully asynchronous
processor core compatible with clocked ARM cores. AMULET3 has been used on a
commercially available chip called DRACO. Furthermore, tools such as Teak [26]
and Balsa-CUBE [27] were developed as extensions to Balsa in order to improve
its performance. Lard [28] and Occam [29] were some other tools developed in this
category.

Graph based formalisms specify an asynchronous design graphically in the form of
PNs or STGs. The most significant work in this category was done by the Universitat
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Politècnica de Catalunya by developing Petrify [30]. Since then Petrify has been
used actively for synthesizing several asynchronous circuits for various academic and
research projects. [31] [7] [32] [33] [34] Petrify generates SI circuits. [35] Workcraft
[36] is another tool in this category.

Control-data flow graph based methods split the initial design specification into
a control path and a datapath and synthesize them separately. The control path
is synthesized asynchronously while the datapath is synthesized using standard
synchronous tools. Lavagno and Blunno made use of this technique to synthesize
micro-pipelines from behavioral Verilog HDL. [9] Later, they used this approach to
present a tool called Pipefitter to design asynchronous microcontrollers. [37]. Verisyn
[8] was another tool based on this approach. It was developed at the University of
Newcastle, and just like Pipefitter, it used Verilog as the input specification language.
Both Pipefitter [38] and Verisyn [39] developers have done significant work in trying
to integrate an asynchronous design with synchronous design. This is mainly because
both these tools use Verilog as the input specification language and attempt to
combine the netlist from the synchronous and asynchronous path towards the end.
Since both these tools employ Petrify for synthesizing the asynchronous path, they
lead to the generation of SI circuits. Several other works, such as [40], [41] and [42]
were based on control-data flow graph based methods.

The delay model of the final netlist of an asynchronous circuit plays an important
role in determining the effort spent on timing analysis and validation. The lesser
the timing validation effort, the easier it is to integrate asynchronous logic with
synchronous logic. [1], [2], [3], [15], [43], [12], [4] provides detailed explanations on
the various delay models for asynchronous circuits. SI circuits require more timing
validation as compared to DI circuits where almost no timing validation is required.
[12] proposes a method to ensure the correct working of a circuit by relaxing the
isochronic fork timing assumption. [4] proposes "a new combinational logic synthesis
technique in which QDI/SI boolean functions can be synthesised using a small set of
standard cells" [4] and also makes an analysis of the QDI implementations of circuits
using Balsa.



Chapter4Tools and Methodology

4.1 Tools

Table 4.1 on the next page shows the different tools used in this thesis. The main tool
used for asynchronous design was Balsa, developed at the University of Manchester.
The Balsa tool uses the Balsa language for specifying the design. Besides Balsa,
several other asynchronous tools were tested and are provided in Table 4.1. System
Verilog was the HDL language used for specifying the synchronous RTL parts of
the design. All testbenches were written in System Verilog. Eclipse was used as
the main text editor. All simulations were done using Mentor Graphics QuestaSim.
Synopsys Design Compiler (DC) was used to synthesize the combined (asynchronous
plus synchronous) design and Synopsys Prime Time (PT) was used to generate the
needed timing information i.e. the Standard Delay Format (SDF) file for the netlist
generated by DC.

4.2 Methodology

Initially, the task of selecting the most suitable asynchronous tool was started by
investigating and analysing fifteen different asynchronous design tools. Based on cer-
tain criteria or parameters, five tools were shortlisted for further investigation. Then,
the integration aspects and issues of these shortlisted tools, with Nordic Semicon-
ductor’s tool chain, were examined, and one out of the five shortlisted asynchronous
tools was selected. Next, an asynchronous flash readout was implemented using the
selected asynchronous tool, and a Verilog netlist for both single rail and dual rail
data encoding styles was generated. Then, the delay insensitivity nature of Balsa
was analyzed by using a simple buffer design written in Balsa. In order to perform
this analysis, a new technology matching the library used at Nordic Semiconductor
was developed. Lastly, an attempt to integrate the Balsa Verilog netlist with Nordic
Semiconductor’s tool chain was made. The Balsa Verilog netlist generated from
a buffer design was combined with a normal synchronous Verilog design and run
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Table 4.1: Tool list

Tool Version Area of Application
Eclipse [44] 3.8.1 IDE for writing the RTL code and

the testbench
Mentor QuestaSim [45] 10.2d Simulator for RTL and netlist
Synopsys Design Compiler [46] J-2014.09 Compiling the RTL into netlist
Synopsys PrimeTime [47] J-2014.06-SP2 Timing Signoff tool. Used to gen-

erate timing information for the
netlist

Balsa [23] 4.0 Asynchronous tool
Petrify [30] 4.2 Asynchronous tool
Workcraft [36] 3.0.3 Asynchronous tool
Verisyn [8] September 2004 a Asynchronous tool
Pipefitter [48] 1.0 Asynchronous tool

aNew version compiled for this thesis March 2015

through Synopsys DC.



Chapter5Asynchronous tools and methods

There are various tools and methods available for designing asynchronous digital
VLSI systems. Some of them are freely available open source tools, while a few others
are commercially available CAD tools for implementing asynchronous circuits. Some
of them have been developed continuously, while others have either been abandoned
or their development has halted a while ago. The primary objective of this chapter
is to investigate and present the most interesting tools and methods that have been
studied in depth for the purpose of this research, and shortlist the best suited tools
based on certain criteria/parameters at the end of this investigation. The shortlisted
tools from this analysis are the results obtained from this chapter, which have been
presented as a part of this chapter itself. For the purpose of clarity of the reader,
this was more natural than placing them in a separate results chapter. For each of
the tools and methods, this chapter provides an overview of the tool, followed by
it’s pro’s and con’s, and a discussion to conclude whether the particular tool has
been shortlisted or not, and based on which criteria/parameters. Furthermore, the
chapter briefly skims the integration issues and possibilities of the tools with the
standard commercial synchronous design tools and flow. However, a more detailed
discussion about tool integration is carried out in Chapter 6 on page 59 for the tools
short listed by the end of this chapter.

The criteria/parameters based on which the tools are shortlisted, can be listed
and defined as follows:

– Longevity: Longevity can be defined as a combined measure of how actively
the tool has been developed since it was created, recentness of the last paper
read or found, when was the last version of the tool released and how stable is
the latest version.

– Tool complexity: It can be defined as a combined measure of the number
of new things that need to be learnt and the difficulty in understanding the
background or the basic concepts the tool is based on. Optionally, it can

27
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be measured as the initial estimate of the tool complexity in the application
domain. This is an optional consideration since it might be impossible to
comment on this aspect of the tools before they are used.

– Cost: It is a measure of the cost associated with procuring the tool. Another
cost involved is the cost of the resources involved, such as specific training for
using the tool. However, at this stage the latter is not considered for the cost
evaluation since all of the studied tools are new for the developers at Nordic
Semiconductor and will require training.

– Estimate of performance of corresponding circuits: It is a measure of
the performance estimation of the circuits developed using the tool, as stated
by findings in academic or research based papers. Performance findings can be
in terms of speed, power, overhead and area.

– Commercial or Non-commercial implementations: It is the measure of
how actively, at what scale and to which extent has the tool has been used.
Commercial implementations, i.e. those where chips have been taped out, are
extremely favourable.

– Delay model used by the final netlist: It is the measure of the ease of
timing analysis based on the delay model of the final netlist. The beneficial
order of favour for this thesis is: Delay insensitive → Quasi-Delay Insensitive
→ Speed Independent.

– Support: It is the measure of the quickness and the quality of the support
available for the tool.

– Integration with Nordic Semiconductor’s design flow: It is the measure
of the initial estimate of the ease of integrating the tools design flow with Nordic
Semiconductor’s design flow.

For each tool, most of these parameters have been mentioned as a part of either
the pro’s or the con’s, depending upon whether it works be in the favour of the tool
or not respectively. It is noteworthy that based on the literature study done for
this thesis, an attempt has been made to comment on the various parameters for
every tool. However, there are some tools for which certain parameter specifics are
unknown or difficult to comment on.

"Many ways have been proposed to specify the behaviour of asynchronous
circuits."[43] The specification type depends on the tool or method being used,
the delay assumption and the synthesis approach or algorithm being employed. In
general, most of tools/methods for asynchronous circuits can be classified into one
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of the five categories: text based specification approaches, graph based specifica-
tion approaches, control-data flow graph based methods, HDL based methods and
miscellaneous.

5.1 Tools/Methods based on text based specification
approaches

Text based specification approaches use a particular formal language to encode the
proposed circuit behaviour. They are very often referred to as the syntax-driven
translation based approaches, wherein a circuit’s behavioral description is expressed
by a formal programming language such as Balsa, Tangram or CSP and is "translated
using syntax-driven translation into an intermediate form based on handshake circuits,
which represent abstract asynchronous blocks."[2] Text based specifications tend
to produce stricter delay models such as DI, bundled data or QDI. This section
essentially looks into tools/methods employing text based specification approaches.

5.1.1 Balsa

Amongst the various research tools that have been proposed to automate the process of
asynchronous design, Balsa is a comprehensive tool with an open source environment.
The tool was designed and is maintained by the Advanced Processor Technologies
Group of the School of Computer Science at The University of Manchester. Balsa
has been under continuous development since 2003-2010 with a number of improved
versions over the years. The latest version of the Balsa framework i.e. Balsa 4.0 was
released in June, 2010. [6] [23]

5.1.1.1 Overview

"Balsa is both a language to describe asynchronous circuits and a framework to
simulate and synthesize such circuits." [49] It is used to create purely asynchronous
macro modules from CSP like descriptions which closely mimic the descriptions
written using the Tangram tool from Philips. In fact, Balsa was developed as
a tool replacing the Philips Tangram system. The Balsa language is basically an
extension of the Tangram language. "The approach adopted is that of syntax-directed
compilation into communicating handshaking components and closely follows the
Tangram system." [3] Syntax-directed translation is a technique by which the designers
can control the resulting circuit by altering the high-level specification language. The
Balsa compiler i.e. balsa-c is an integral part of the Balsa framework front end that
compiles Balsa descriptions into the Breeze format.The specific design description is
written in the proprietary Balsa language and is synthesized into a communicating
network of handshake components similarly to the Tangram compiler. This yields a
Breeze netlist. "Breeze is the target format for the Balsa compiler and is simply a
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netlist format for handshake circuits." [50] Once the Balsa descriptions have been
translated into a network of handshaking components or the intermediate Breeze
format netlist, various technologies can be employed for mapping it into a circuit.
The Breeze netlist must then be translated (using the option Breeze-netlist) into a
gate level netlist format supported by the backend technology planned to be used.
Balsa descriptions can be synthesized using different technologies that generate Field
Programmable gate array (FPGA) or silicon gate level netlist implementations which
can thereafter be imported to commercially available backend CAD systems for
physical implementation. Figure 5.1 shows an overview of the Balsa design flow.

Balsa 
Source

Balsa-c

Balsa 
Simulation

Breeze 
Netlist

Balsa 
Synthesis

Standard-Cell 
Libraries

Mapped 
Netlist

Encounter

Physical 
Layout

Nets 
Delay

Front End Back End

Figure 5.1: Overview of the Balsa design flow.
Based on a figure from [6]

The direct mapping of Balsa language constructs into handshake circuits makes
the compilation of circuits transparent. This makes visualization of the design
specified by Balsa descriptions relatively simpler. There is a one to one mapping
between the language constructs and the corresponding resulting circuit. Hence,
modifications in the description language "reflect predictable changes in the resulting
circuit, which means that the designer has a clear control of the generated hardware."
[6]

Since Balsa supports different technologies, it can also generate netlists in different
formats. It can produce a netlist in Verilog or EDIF depending on whichever is
supported by the backend technology being used. Moreover, Balsa supports various
asynchronous implementation design styles such as "a bundled data scheme using
a four-phase-broad/reduced-broad signalling protocol, a dual-rail delay insensitive
scheme and a a one-of-four encodings delay-insensitive scheme." [24] The former
needs a more careful and strict post-layout timing validation checks. On the other
hand the latter two are more robust to variations in the layout and are quite good to
be sent for fabrication.

According to [20] and [49], balsa generated netlists fully integrate with many
backend CAD systems such as ARM cell library and design rules (as used in the
implementation of AMULET3), Cadence design framework and Xilinx FPGA design
tools. The Balsa GUI i.e. balsa-mgr forms the GUI front end of the Balsa framework
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design flow. It allows for the easy compilation and simulation of the design descriptions
in Balsa. The Balsa system also comprises of a package called balsa-verilog-sim
"which makes Verilog simulation of Balsa descriptions easier by providing wrapper
scripts for common simulators and by supporting user written built in functions which
can be called from Balsa. Thus, Balsa provides an interface to several commercial
Verilog simulators for functional simulation" [20]

The Balsa language provides for language operators to describe sequential and
concurrent communication between handshake components. The communication
between handshake components can be exchange of data or control. However, the
circuit behaviour only needs to be modelled using a data-flow approach. The tool au-
tomatically generates the control circuit and the network of handshake components.[6]

Balsa makes VLSI programming more intuitive for the designer since it is very
similar to familiar programming languages. It has thus been a choice for many
research and commercial implementations. "Balsa has been used to generate the
DMA controller used in AMULET3i, an integrated asynchronous microprocessor
design for embedded systems." [51] It was developed at the University of Manchester.
According to [25], AMULET3 is a 32-bit fully asynchronous processor core compatible
with clocked ARM cores which has been used on a commercially available chip
called DRACO. This chip is itself based on synchronous design, however, uses an
asynchronous AMULET processor implemented using BALSA. Moreover, [6] has
used the Balsa framework design flow to implement a pair of power efficient routers.
Furthermore, several researchers have made an attempt at creating an optimized and
more efficient backend for Balsa which results in circuits with greater performance.
Balsa-Columbia University Back-End (Balsa - CUBE) [27] and a burst mode oriented
back-end for the Balsa Synthesis System [52] are good examples demonstrating
this approach. In general, this approach is based on two types of optimizations:
peephole optimizations and resynthesis. Peephole optimization replaces a set of
components by an optimized set of existing components. "In contrast, resynthesis
methods manipulate one or more components and produce new specifications which
do not correspond to existing components; these specifications are then directly
synthesized." [52]

5.1.1.2 Pro’s

The various advantages of Balsa are as follows:

– Longevity: Balsa was developed in 2003 and has been under active develop-
ment until 2010.[23] Balsa version 4.0, released in 2010, is the latest available
version. From the various available research papers based on the Balsa frame-
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work, it appears that Balsa has been actively used. The last research paper [6]
found is quite recent and dates from 2013.

– Cost: Balsa is an free and open source tool available from [23].

– Commercial or Non-commercial implementations: Commercial imple-
mentations of Balsa exist, as with Amulet3 processor used on the commercially
available DRACO chip. Besides this, several non-commercial research based
implementations using the Balsa framework have also been carried out over
the years.

– Delay model used by the final netlist: The netlist produced by Balsa is
Delay Insensitive [24] which is the best suited for our requirement. A DI netlist
will require lesser effort during timing analysis as compared to a QDI and SI
netlist.

– Support: The University of Manchester has a separate webpage [23] for
Balsa, with all the different versions and their corresponding bug fixes, the
latest Balsa version available for download and a contact email address to put
forward queries. As mentioned before, an email was sent to this contact address
regarding setting up a technology for Balsa, and a response was obtained within
a couple of hours.

– Integration with Nordic Semiconductor’s design flow: As discussed
earlier, the support for various implementation design styles and various backend
technologies makes Balsa an extremely favourable option. Moreover, Balsa is
able to generate a Verilog netlist.

– The Balsa language constructs make it possible to express sequential and
parallel execution clearly and explicitly. Moreover, several other language
features such as ’select’, ’case’, ’arrays’, port read/write operations and
powerful parameterization options are supported by Balsa which makes design
description easier for the designer. [53] Also, Balsa somewhat resembles other
VLSI languages which makes it simpler to learn and understand.

– "Another advantage of using Balsa descriptions is that the Balsa synthesis
system can be applied to obtain actual circuits, which makes it easier to check
the specification and estimate the circuit performance." [53] This clearly implies
that physical implementation of Balsa descriptions is actually possible i.e.
approaches from netlist to fabrication exist.

5.1.1.3 Con’s

Despite of all the advantages, Balsa suffers from certain drawbacks which are as
follows:
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– Tool complexity: Using Balsa involves learning the Balsa language, under-
standing the basic handshaking concept Balsa is based on and understanding
the Balsa framework and design flow. However, the Balsa package includes a
comprehensive tutorial.

– Estimate of performance of corresponding circuits: According to [54],
Balsa is good for implementing moderate speed peripheral designs. However,
Balsa might incur some performance overhead. To reduce this a new backend
synthesis system, Balsa-Cube, has been proposed as an extension to Balsa. [27]
[52] However, since Balsa-Cube is an extension to Balsa, it will not be tested
in this thesis in case Balsa is selected.

– "Timing validation of Balsa generated implementations is not yet implemented
as part of the Balsa design flow. This form of validation is currently undertaken
through simulation although the use of existing synchronous static timing
analysis tools is to be investigated as part of further development of Balsa."
[54]

5.1.1.4 Balsa discussion

Based on Balsa’s pro’s and con’s, Balsa is one amongst the selected shortlisted tools
mainly because the possibility of integrating Balsa with Nordic Semiconductor’s
tool flow looks promising. The other factors contributing to Balsa’s selection are
longevity, commercial implementations, delay model of the final netlist and support.

5.1.2 Tangram

Tangram was developed by Handshake Solutions, Philips and was mostly meant
to be used within the organization for application specific asynchronous design.
Tangram is quite similar to Balsa in many of its features and the way it functions.
As mentioned before, Balsa was basically an open source and improved version of
Tangram. Tangram was inspired by CSP. It is based on an intermediate handshaking
circuit representation.

5.1.2.1 Overview

Tangram supports all the imperative program and language constructs such as
assignments, parallelism, sequencing, loops, variables, channels and their commu-
nication, iteration and conditional operators, etc. [20] It provides more flexibility
in dealing with external interfaces which are non-delay insensitive. Moreover, the
Tangram package contains a useful power performance analyser tool to analyze the
power-performance trade off of the implemented design. [3] Philips mostly used
Tangram in applications where performance was of lesser importance than power
consumption, simplicity of integration and EMI. "Current applications include several



34 5. ASYNCHRONOUS TOOLS AND METHODS

products in the wireless communication area, smart cards, and in-vehicle networks
for automotive." [20] The Tangram design flow has been used to obtain several IC’s
that are available on the market. The Tangram design flow integrates well with
many standard commercial tools. Many commercial synchronous tools are used in
the backend of the design flow. Tangram can be used to design either two-phase or
four-phase implementations.

5.1.2.2 Pro’s

The various advantages of Tangram are as follows:

– Commercial or Non-commercial implementations: Tangram has been
used by Philips for successful IC deployment being used for several applications.

– Integration with Nordic Semiconductor’s design flow: The Tangram
design flow integrates well with many standard commercial tools. Tangram
aims at minimizing "the development of new dedicated tools, and to re-use
common synchronous tools where-ever possible." [20]

– Just like Balsa, Tangram is a highly transparent language.

– The Tangram language constructs make it possible to express sequential and
parallel execution clearly and explicitly. Moreover, support for several other
language features is provided by Tangram which makes design description easier
for the designer.

5.1.2.3 Con’s

Tangram suffers from certain drawbacks which are as follows:

– Longevity: Tangram was replaced by Balsa, see Section 5.1.1 on page 29, and
has not been developed or patch fixed in a decade.

– Tool complexity: Since Balsa is an improved version of Tangram, it is
possible to say that the tool complexity of Tangram is more or less similar to
Balsa. Using Tangram involves learning the Tangram language, understanding
the basic handshaking concept Tangram is based on and understanding the
Tangram framework and design flow.

– Cost: Tangram is not freely available but the cost is unknown. It forms a
closed framework mostly developed to be used inside Philips.

– Estimate of performance of corresponding circuits: According to [43],
Tangram can produce inefficient circuits due to its focus on composability and
handshaking.
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– Delay model used by the final netlist: The delay model of the final netlist
is not specified in the papers read. Hence, it is unknown.

– Support: Tangram was developed by Philips. Hence, for further information
on the tool Philips can be contacted. Since Tangram was mostly developed for
use within Philips, it might not offer good support for external environments.
However, since Tangram was not contacted, the quality of support available
for Tangram is unknown.

5.1.2.4 Tangram discussion

Tangram was eliminated and was not looked into any further. This was mainly
because Balsa was a freely available and improved version of Tangram that was
more recently developed and used. Hence, it was chosen over Tangram. Moreover,
Tangram lacked on the longevity front. Also, many parameters such as the used
delay model, cost, support and performance for the tool were unknown and this was
a hindrance to the goal.

5.1.3 Teak

Teak is a second open-source backend tool system developed at the University of
Manchester for synthesizing Balsa descriptions. It is a tool that creates asynchronous
implementations of circuits described using the Balsa language.

5.1.3.1 Overview

Just like Balsa, Teak produces an intermediate representation which is basically
a Teak network composed of Teak components which are connected to each other
using handshaking channels. The Teak components are nothing but a set of new
parameterizable components different from the Balsa components and belong to
the target library used by the Teak synthesizer for synthesis. The Teak system
differs from the traditional Balsa system design flow by employing a synthesis scheme
which leads to improvement in the cost and performance of the circuits described
using Balsa. "The tool optimizes Balsa descriptions synthesis by replacing data-less
activation channels with separate control channels." [55] "This new scheme removes
the reliance on precise handshake interleaving and enclosure by separating out control
‘go’ and ‘done’ signalling into separate channels rather than using different phases
of the asynchronous handshake." [56] This leads to optimized circuits in which the
control and data channels are separated/merged by the insertion of handshake-
decoupling latches and data buffering. Teak has been used to create elastic pipelined
asynchronous systems from Balsa descriptions. "The teak tool currently consists of:

– A synthesiser from Balsa to Teak component networks



36 5. ASYNCHRONOUS TOOLS AND METHODS

– A mechanism to plot those networks

– A language-level simulator for Balsa

– A programmable peephole optimiser for component networks

– A GUI to drive and visualise optimisation choices

– A prototype ‘back end’ to generate Verilog gate-level implementations of Teak
components " [26]

5.1.3.2 Pro’s

The advantages of Teak are as follows:

– Cost: Just like Balsa, Teak is a free and open source tool available from [26].

– Estimate of performance of corresponding circuits: Using the Teak
backend system for Balsa descriptions leads to performance improvement, cost
improvement and mitigation of control overhead.

5.1.3.3 Con’s

The disadvantages of Teak are as follows:

– Longevity: Teak is another tool (besides Balsa) which has been developed at
the University of Manchester. Even though it is a much newer tool compared
to Balsa, the last research paper [56] found dates from 2009. It seems like Teak
is much less actively developed than Balsa. Moreover, no improved versions of
teak has been available since 2009. There is only one available version for Teak
since it was produced i.e. version 0.4.

– Tool complexity: Teak is basically developed on top of Balsa. It uses Balsa
descriptions as a starting point. The only difference is that Teak provides a
better backend synthesis system which was an improvement to the existing
Balsa tool for achieving better performance. Hence, the tool complexity of Teak
is very similar to Balsa. The main factors contributing to the tool complexity
here are learning the Balsa language and understanding the more advanced
backend synthesis system.

– Commercial or Non-commercial implementations: Unlike Balsa, there
are no commercial implementations using Teak. However, there are a few
academic research based implementations available.

– Delay model used by the final netlist: Teak implementations are usually
limited to QDI four-phase dual rail asynchronous circuits.
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– Support: Just like Balsa, the University of Manchester has a separate webpage
[26] for Teak, with version 0.4 available for download and a contact email
address to put forward queries. However, this tool was not further investigated.
Therefore, the support available for Teak is unknown.

– Integration with Nordic Semiconductor’s design flow: Teak limits the
choice of the data encoding styles and the protocols used. Delay insensitive
circuits cannot be obtained using a Teak synthesis system.

5.1.3.4 Teak discussion

Teak was eliminated and was not looked into any further. Even though it theoret-
ically states to provide performance benefits over Balsa, there are not any known
commercial implementations using Teak that have a better performance over Balsa
implementations. Therefore, Balsa seems to be a safer option. The other main
parameters on the basis of which Teak was eliminated from further investigation
were longevity, tool complexity, integration with Nordic Semiconductor’s design flow,
and the used delay model.

5.1.4 Communicating Hardware Processes

Communicating Hardware Processes (CHP) was proposed by the Caltech University
and is based on a subset of CSP.

5.1.4.1 Overview

CHP comprises of a number of parallelly operating processes that are connected to
each other by channels. All the data transfer and synchronization takes place over
these channels. "In particular, it is an almost ideal formalism for the decomposition
of a large sequential code into a collection of fine-grain processes." [57] In comparison
to CSP, CHP has certain restrictions and extensions. The restrictions involve the
inability to create resources dynamically, inability to create physical resources during
program execution and support for finite data ranges and boolean data types only.
The extensions are mostly related to efficient communication and the ability to
describe complex process structures. [43] [57] According to [57], CHP has been used
in several asynchronous VLSI design projects at the Caltech University.

5.1.4.2 Pro’s

The main advantages of CHP are as follows:

– Estimate of performance of corresponding circuits: According to [43],
CHP is good for the production of faster and smaller circuits.



38 5. ASYNCHRONOUS TOOLS AND METHODS

– Commercial or Non-commercial implementations: CHP has been used
for some commercial implementations earlier such as the asynchronous Caltech
MiniMIPS microprocessor in 1998. [57] Moreover, according to [57], CHP
has been used in several asynchronous VLSI design projects at the Caltech
University. It is used in the industry by companies such as France Telecom,
ST and CEA/LETI.

5.1.4.3 Con’s

The disadvantages of CHP are as follows:

– Longevity: CHP was introduced at least 2 decades ago. The exact year is
unknown. Even though the last research paper [57] found, dated 2012, mentions
that CHP has gone through many modifications since it was created, no records
of latest development or fixes on the tool were found. It discusses CHP as a
language, the various CHP constructs and the CHP simulator. However, no
recent academic research papers using CHP for practical implementations were
found. Moreover, the last commercial implementation using CHP is old and
dates back to 1998. Furthermore, several newer languages such as Balsa and
Tangram were developed using the same principle as CHP. Hence, it seems like
CHP has not been employed or developed in a long time.

– Tool complexity: Using CHP involves learning the CHP language and under-
standing the process decomposition in CHP. CHP appears to be a complicated
language with complex formalisms. There are a lot of inadequacies and restric-
tions in the language.

– Many important parameters for CHP, such as, cost, delay model used by the
final netlist, integration with Nordic Semiconductor’s design flow and support
are unknown.

5.1.4.4 CHP discussion

CHP was eliminated and was not looked into any further. It was mainly because of
the tool complexity and so many unknown parameters. Moreover, since CHP had
not been developed or used in a while, newer tools like Balsa were considered as a
better option.

5.1.5 Occam

Occam is a concurrent hardware description language which was developed at Inmos
Limited in Great Britain. It is a parallel programming language based on CSP.
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5.1.5.1 Overview

"Occam is an executable programming language with well defined syntax and seman-
tics." [29] It is commercially supported and is widely used. A large range of hardware
platforms provide support for Occam. It is a practical realization of CSP and allows
explicit description of sequential and parallel processes. Occam can be used for the
purpose of distributed simulation.

One of the attractive features of Occam is its simplicity. The support for parallel
processes avoids the need for complicated shared variables. Moreover, concurrency
can be expressed explicitly at the statement level using Occam. Most programming
languages supporting parallel processes can only be used to express concurrency
implicitly at the procedure level. Occam also provides security by not including a
lot of common language features such as pointers, recursive functions and dynamic
process and member allocation. [58]

5.1.5.2 Pro’s

The main advantages of Occam are as follows:

– Estimate of performance of corresponding circuits: Owing to its parallel
nature, "Occam may be executed multiprocessor systems and thus has the
potential for high performance." [29] The parallel, concurrent and distributed
nature of Occam serves well for asynchronous design where a global state
ceases to exist. Moreover, a parallel approach to design and simulation can
significantly reduce the cost and duration of the design cycle that brings about
performance improvements.

– Commercial or Non-commercial implementations: "From the Occam
model, Inmos developed a hardware chip to support their concurrency model.
This hardware is in the form of a Very Large Scale Integration (VLSI) Integrated
Circuit (IC) called the Transputer." [58]

– The level at which Occam describes asynchronous control circuits is quite
close to their implementation, "consequently it may provide guidance for the
realization of the design (e.g. an IF statement will correspond to a Select block,
a PAR of input commands will be implemented using a Muller-C block etc)."
[29] As a result of this characteristic, Occam specifications can also be use for
the automatic derivation of asynchronous circuits.

5.1.5.3 Con’s

The disadvantages of Occam are as follows:
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– Longevity: Occam was developed by David May in 1983. [58] The last
available version is Occam 2 which dates back to 1986 and the last research
paper [29] found dates from 1997. Hence, it is very clear that Occam has not
been used or developed since a very long time.

– Tool complexity: Being a new language, time has to be spent learning
Occam. It is not a very advanced language to describe hardware. It lacks
many useful data structures, processes and protocols that are extremely useful
for the description and simulation of hardware. Moreover, "rigid and verbose
layout format and the semantic significance of indentation which makes both
the development and debugging of programs time consuming and frustrating
tasks." [29]

– Many important parameters for CHP, such as, cost, delay model used by the
final netlist, integration with Nordic Semiconductor’s design flow and support
are unknown.

5.1.5.4 Occam discussion

Occam was eliminated and was not looked into any further. It was mainly because
of the longevity, tool complexity and so many unknown parameters. Moreover, the
only known commercial implementation using Occam i.e. Transputer is very old and
dates back to the 1980’s.

5.1.6 LARD

Language for Asynchronous Research and Development (LARD) is a hardware
description language used for describing the behaviour of asynchronous VLSI systems.
It was developed at the University of Manchester and uses CSP-like channel based
communication. It is a freely available tool.

5.1.6.1 Overview

"In asynchronous systems, timing information about the validity of data signals is
provided by local timing signals, often in the form of request and acknowledge signals."
[28] LARD provides communication abstraction by using send-receive channel based
communication and hiding some complex details. Moreover, LARD provides fine
grained concurrency by allowing for statements in the description to be composed
concurrently as well as sequentially. LARD has a comprehensive system providing
facilities expected for structured programming. [59]

Furthermore, simulations can be performed using the LARD toolkit. They are
useful for performance analysis, debugging and for the validation of the behavioural
model of a design against its corresponding gate level netlist or schematic. The
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LARD toolkit has been implemented in an extremely flexible fashion. This makes
expansion of functionality and the user interface simple. This flexibility also provides
for easy adaptation and expansion to other tasks and application domains. LARD
has been used for the behavioral modelling of AMULET3 and has shown to have
significant performance improvements. [28]

5.1.6.2 Pro’s

The advantages of LARD are as follows:

– Cost: LARD is available free of cost.

– Estimate of performance of corresponding circuits: According to [28],
LARD has shown significant performance improvements in the behavioural
modelling of AMULET3.

– Commercial or Non-commercial implementations: As stated above,
LARD has been used for the behavioural modelling of AMULET3.

– The other advantages of LARD include flexibility, support for concurrency,
extensive data types and structured language.

5.1.6.3 Con’s

The disadvantages of LARD are as follows:

– Longevity: LARD was basically developed to provide a more advanced mod-
elling language and simulation environment for AMULET3 as compared to
Balsa. The last academic research paper [28] found dates from 1998. It explains
the main features of LARD and the simulation toolkit it provides. However, no
academic papers exhibiting LARD implementations were found. Moreover, the
link to the LARD webpage provided in [59] is no longer active. It seems like
LARD has not been used or developed after it was used for the behavioural
modelling of AMULET 3.

– Tool complexity: Despite of a simple user interface, time has to be spent on
learning the new LARD language, understanding the LARD design flow and
understanding the important features of the LARD toolkit and the simulation
environment it provides.

– Support: Since the link to the LARD webpage provided in [59] is no longer
active, it seems like the University of Manchester does not offer much support
for LARD anymore.
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– It is difficult to comment on the delay model used by the final netlist and the
integration with Nordic Semiconductor’s design flow, since it was hard to find
information pointing towards these parameters.

5.1.6.4 LARD discussion

LARD was eliminated and was not looked into any further. It was mainly because
of the longevity and support. Moreover, the ambiguity in the delay model and
integration aspect of LARD contributed to its rejection. LARD was developed as an
alternative to Balsa. At this stage, Balsa was considered to be a more simple and
stable option.

5.2 Tools/Methods based on graph based specification
approaches

Graph based specification approaches describe the behaviour of an asynchronous
system graphically in the form of partially ordered sequence of events. They are
often used at a low conceptual level and consist of states and transitions. Their
semantics are "defined using additional entities, e.g. tokens or node/arc states, which
in turn form the overall state of the system." [60] Owing to their complexity, they
can be a pain for the designer but they produce faster and more efficient synthesized
circuits. These specifications are often based on formalisms such as Petri Nets (PN),
Signal Transition Graphs (STG), State Graphs (SG) or Transition Systems (TS).
This section essentially looks into tools/methods employing graph based specification
approaches.

5.2.1 Petrify

Petrify is one of the most popular academic research tools for the synthesis of
asynchronous circuits. The tool uses graphical based specifications in the form of PN,
STG, SG or TS as an input for synthesis. It is freely available on the web. Petri Net
Markup Language (PNML) [61] is a standard format for the specification of Petri
Nets.

5.2.1.1 Overview

Petrify is a well known tool for the manipulation of concurrent specifications and for
synthesizing and optimizing asynchronous control circuits. "Given a Petri Net (PN),
a Signal Transition Graph (STG), or a Transition System (TS) it generates another
PN or STG which is simpler than the original description and produces an optimized
net-list of an asynchronous controller in the target gate library while preserving the
specified input-output behavior." [7] In short, from a given specification as input,
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Petrify outputs an optimized netlist of the asynchronous circuit and a simplified PN
showing the events and the various transitions between them. The latter provides
the ability to back-annotate to the original specification.

Petrify transforms a specification by performing a token flow analysis of the
original PN and thereby producing a TS. Initially, all the transitions having the same
label are marked as one event. Then, the transitions are relabelled for fulfilling the
requirements in order to obtain a safe irredundant PN and the TS is transformed.
As a part of synthesis, Petrify solves various logic synthesis problems such as logic
decomposition, state encoding and technology mapping onto a gate library in order
to generate a netlist. The final netlist is a speed independent circuit which means
that the circuit is guaranteed to be hazard free irrespective of the gate delays and
changes in multiple inputs which satisfy the initial specification. Figure 5.2 shows
the Petrify framework. "Petrify can also synthesize circuit under timing assumptions
specified by the designer or automatically generated by the tool" [62] Petrify is a well
equipped tool that can be used for PN composition, PN synthesis and re-synthesis
of asynchronous control circuits and other related areas dealing with concurrent
asynchronous specifications or programs. [7]
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Figure 5.2: Block diagram of the Petrify synthesis framework.
Based on a figure in [7]

Petrify implements a method in which a safe PN with a reachability graph similar
to the original PN or TS is synthesized from an originally given PN or TS. The new
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PN formed is nothing but a minimized version of the original PN. The reachability
graph is said to be isomorphic to either the original PN or the minimized PN. The
synthesized PN exhibits place irredundancy, which means that removing a place from
the net would change its behaviour. [7]

Petrify can also be used to generate netlists in Verilog, EQN or BLIF. The process
from an initial PN to the generation of a circuit netlist is completely automated.
Petrify has been used for the synthesis of asynchronous controllers such as AMULET
microprocessor, circuits from RAPPID by Intel Corporation and controllers based on
theseus logic [20]. [32] describes a reverse engineering methodology of synthesizing
PNs from state-based models such as Finite State Machine (FSM) or TS. [33] presents
a method for the automated synthesis of asynchronous circuits from specifications
based on process algebra. It combines PNs and process algebra for the specification
and synthesis of the given asynchronous circuit.

5.2.1.2 Pro’s

Petrify has the following advantages:

– Longevity: Petrify was developed in the the late 90’s. The latest version of
Petrify available on the Petrify webpage is from 1999. There is no improved or
upgraded version since then. Even though, it seems like Petrify is not actively
developed, the 1999 version of Petrify seems to be extremely stable since it has
been the most used tool for academic research on asynchronous design. The
last academic research paper [63] and book [64] found for Petrify are from 2000.
However, the latest version of PNML available is from 2009 [61].

– Cost: Petrify is freely available from the Petrify webpage [30].

– Commercial or Non-commercial implementations: Even though there
are no commercial implementations of Petrify, it has been the most widely used
tool for academic projects in the field of asynchronous design. Petrify has been
used for the synthesis of asynchronous control circuits in several projects.

– Integration with Nordic Semiconductor’s design flow: Petrify can gen-
erate a netlist in Verilog which makes integration with Nordic Semiconductor’s
tool chain more feasible since Verilog is the HDL being used in the Nordic
Semiconductor’s design flow.

– Petrify exhibits a property of back-annotation which helps the designer to
execute more control over the design process.

5.2.1.3 Con’s

Petrify has the following disadvantages:
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– Tool complexity: Specification of the design in PN format is cumbersome.
An in-depth understanding of PNs and PNML i.e. the language to describe
PNs is required for this purpose. Understanding PNs can be time consuming
and complicated.

– Estimate of performance of corresponding circuits: State space explo-
sion can be a problem with Petrify for STGs involving many variables which
might consume hours of CPU time. Even though Petrify is a powerful tool for
logic synthesis, a more realistic approach to where it can be used efficiently is
required while using it. [18]

– Delay model used by the final netlist: Petrify generates a speed-independent
netlist. A speed independent netlist requires timing analysis for isochronic
forks. This increases the timing validation effort.

– Support: Unknown

– For rapid implementation and synthesis using Petrify, a way has to be figured
out for the conversion from standard HDL (Verilog) to PN or STG which is yet
unknown. [64] has made an attempt to describe a technique doing so. However,
as of now there is no specific known method or standard to convert Verilog to
PN or STG.

5.2.1.4 Petrify discussion

Petrify is one amongst the selected shortlisted tools mainly because of its wide use and
acknowledgement for academic research based projects in the field of asynchronous
design. Moreover, some papers suggest that Petrify can generate a Verilog netlist,
which was ideal for the thesis. Hence, trying out Petrify for further investigation was
thought to be a good idea.

5.2.2 DESI

DESI is an acronym for Decomposer Signal Transition Graph. It is a tool designed for
free use with academic tools such as Petrify, CASCADE and 3D. DESI is mostly used
for the synthesis of asynchronous circuits with complex STG specifications. It mainly
revolves around the principle of STG decomposition. It involves the decomposition
of an initial Signal Transition Graph (N) into many small STG components (Ci).
Each Ci is then synthesized into a separate module. Finally, all the modules are
composed together to reach a modular circuit. [20]

5.2.2.1 Overview

DESI is a tool that aims at decomposing a complex STG into smaller STG components
to ease the synthesis problem at hand by avoiding the state explosion problem. When
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an initial specification STG (N) is provided as an input to a tool like Petrify for
logic synthesis, a reachability graph for the circuit at hand is constructed by the tool.
However, owing to the complexity of circuits mimicked by their corresponding STG,
a problem of state explosion might occur during the construction of the reachability
graph. The number of reachable states (r) might become extremely large to be
handled as a result of very long CPU times or insufficient storage space. In order
to avoid the state explosion problem, decomposing the initial STG (N) into STG
components called Ci is a viable solution. Each circuit component is a separate
module. Hence, a circuit is decomposed into several module components using this
approach. To a great extent, this helps to solve the problem, since "the reachability
graphs of the Ci, taken together, can be much smaller than r since r might be the
product of their sizes." [20] The approach adopted by DESI, significantly reduces
design effort and saves circuit area. [20]

"Decomposition can also be useful aside from size considerations: there are
examples where N cannot be handled by a certain synthesis method, while its Ci

can (e.g. deriving a set of XBM machines from an STG)" [20] The algorithm for
DESI performs decomposition automatically. However, the output partitions and
the output file types need to be specified manually.

5.2.2.2 Pro’s

DESI has the following advantages:

– Cost: DESI is free for academic use. [20]

– Estimate of performance of corresponding circuits: DESI avoids the
problem of state explosion. It helps to save the circuit area.

– It helps in reducing design effort.

– It makes extraction of library elements easier.

5.2.2.3 Con’s

Almost all disadvantages of DESI are associated to the requirements that need to be
fulfilled by the initial STG to be decomposed. They are as follows:

– Tool complexity: DESI is meant to be used with some other tool such as
Petrify. Hence, all the parameters adding to the complexity of Petrify are
applicable for DESI as well. An understanding of STGs and their decomposition
is required. Some things that need to be ensured are as follows:

1. The initial STG should be free from any internal transitions.
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2. There should be no structural conflicts or conflicts between the inputs
and outputs.

3. There should be no automatically generated concurrency.

5.2.2.4 DESI discussion

DESI was eliminated and was not looked into any further. This is because DESI is a
tool to be used in combination with other tools. It is not a self equipped tool that
needs to be investigated separately.

5.2.3 VSTGL

VSTGL is an acronym for Visual STG Lab. It is a public domain tool that was
developed at the Technical University of Denmark (DTU). It is a graphical tool used
to create, capture and simulate Signal Transition Graphs.

5.2.3.1 Overview

STG’s are very often used to describe asynchronous control circuits which are then
synthesized using tools such as Petrify which makes of a textual description of the
STG as an input format. "Visual STG Lab (VSTGL) is a graphics editor and test
environment for creating STGs, and it can be used as a front-end to Petrify." [20]
Using VSTGL over the normal Petrify design flow, results in a design flow which is
less error prone and much faster. [20]

5.2.3.2 Pro’s

VSTGL has the following advantages:

– Cost: It is a public domain tool and hence freely available. [20]

– VSTGL provides a platform for the graphical entry of a STG and checking its
structural properties. [20]

– It allows for the simulation of the STG prior to synthesis.

– "VSTGL outputs the STG for documentation (.eps file) exactly as the designer
entered it. This sounds trivial, but as the designer normally expresses key ideas
about the design in the topological structure of the STG this is important.
Petrify uses the program dot, and normally it produces drawings that bear
little resemblance with what the designer had in mind." [20]

– It can generate an input file for Petrify.
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5.2.3.3 Con’s

VSTGL has the following disadvantages:

– Longevity: VSTGL was developed in the late 90’s. It has not been used much
ever since.

– Tool complexity: The tool complexity is mostly related to understanding
how the tool functions and learning how to make an STG entry.

5.2.3.4 VSTGL discussion

VSTGL was eliminated and was not looked into any further. This is because it
provides a front end to Petrify. Since, it is used in combination with another tool
like Petrify, it does not need to be investigated separately.

5.2.4 Workcraft

Workcraft is a tool kit that provides a common and flexible framework for the
development of graph based specification techniques/models. It provides as an
excellent front-end as well as back-end system for creating, visual editing, simulation,
synthesis and timing analysis of graph based models. It is a platform independent
tool which is freely available for academic purpose or usage. Workcraft can be highly
customized by the designer with the addition of plug-ins.

5.2.4.1 Overview

Workcraft is a tool set for capturing, simulating, verifying and synthesizing interpreted
graph models. Interpreted graph models can be defined as specification that have an
underlying static graph structure, such as PNs, STGs, etc. "Workcraft provides a
cross-platform front-end to established synthesis and verification back-end tools. It
sets a plugin-based framework for new graph formalisms and their analysis tools."
[36] This can either be performed directly or by mapping a model into a different
type of behaviourally equivalent model (generally a PN). "Hence the user can design
a system using the most appropriate formalism (or even different formalisms for the
subsystems), while still utilising the power of PN analysis techniques." [60] Workcraft
is being actively developed as an important project at the Newcastle University.

5.2.4.2 Pro’s

Workcraft has the following advantages:

– Longevity: Workcraft is a recent toolset being actively developed. Several
versions of Workcraft (for both Windows and Linux based systems) have been
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introduced since the first one. It has been under development until recently in
2015. The website [36] was last updated in 2015.

– Cost: Workcraft is available for free download on the Workcraft website [36].

– Support: Workcraft provides an excellent support system. An email was sent
to the Workcraft developers and a quick response was received.

– Workcraft provides a complete system from designing to synthesizing different
graph based models.

– It provides a very user friendly and intuitive front-end interface.

– It allows for the simulation of the graph based models prior to synthesis.

– It can generate an input file for Petrify.

5.2.4.3 Con’s

Workcraft has the following disadvantages:

– Tool complexity: Workcraft provides a front end to well established backend
tools such a Petrify. Hence, all the parameters adding to the complexity of
Petrify are applicable for Workcraft as well. Moreover, the user needs to learn
how to use the toolset and the various functions available in the toolset.

– Delay model used by the final netlist: If Workcraft uses Petrify as the
backend tool, it will generate a speed independent netlist.

5.2.4.4 Workcraft discussion

Since, Workcraft uses Petrify as a backend tool, it has not been investigated separately.
It was looked into with Petrify, as a front end to Petrify for designing STGs.

5.3 Control-data flow graph based methods

These approaches split the initial design specification into a control path and a data-
path and synthesize them separately. The control path is synthesized asynchronously
while the datapath is synthesized using standard synchronous tools.

5.3.1 Verisyn

Verisyn is a tool developed at the University of Newcastle which operates as a front
end to a behavioural synthesis system. It employs a global direct mapping approach
at all levels of the synthesis flow for specifications in commercial input language such
as Verilog. [8]
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5.3.1.1 Overview

Verisyn uses high level behavioural specifications written in Verilog as an input,
compiles it, optimizes and schedules it and then converts it into an intermediate
PN format. The intermediate format is subsequently synthesized by optimization
and mapping tools into control circuits and datapath circuits using direct mapping
techniques like David Cells (DCs). This leads to the generation of Speed Independent
(SI) circuits. [65]

Figure 5.3 shows the synthesis flow adopted by Verisyn. The intermediate PN
format represents a multi-Petri Net format which comprises of two types of nets:
control nets which are based on Labelled Petri Nets (LPNs) and datapath nets which
are based on Coloured Petri Nets (CPNs). For the purpose of mapping, control nets
are further split into local control nets which are used for mapping to simple control
gates and global control nets for direct mapping to DCs. [65] [39]
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Figure 5.3: Block diagram of Verisyn synthesis flow.
Based on a figure in [8]

5.3.1.2 Pro’s

Verisyn has the following advantages:

– Cost: Verisyn is freely available from the Verisyn webpage [8].
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– Estimate of performance of corresponding circuits: Verisyn adopts a
direct mapping approach by employing "handshake specifications which describe
the control and datapath together." [8] This technique helps to avoid state
explosion problems prevalent in tools such as Petrify.

– Support: Verisyn offers excellent support. The developers of Verisyn at the
University of Newcastle were contacted and a quick reply was received.

– Integration with Nordic Semiconductor’s design flow: Verisyn uses a
standard commercial HDL such as Verilog as an input language which makes
it easier to integrate with Nordic Semiconductor’s design flow. Moreover, it
avoids the need to learn new specification languages like PNML as it uses
Verilog to automatically generate an intermediate PN format.

5.3.1.3 Con’s

Verisyn has the following disadvantages:

– Longevity: Verisyn was developed in 2004. The last research paper [65] found
for Verisyn dates from 2004. Verisyn was not developed ever since.

– Tool complexity: The complexity of Verisyn lies in understanding the synthe-
sis flow and net generation process, which can be tricky and time consuming.

– Commercial or Non-commercial implementations: No commercial or
non-commercial implementations were found.

– Delay model used by the final netlist: Verisyn generates SI circuits, which
is an advantage to a great extent since it produces hazard free circuits under
distributed gate delays. However, SI circuits still need to be accounted for
wire delays. Verification of timing assumptions for isochronic forks needs to
be taken care of. In contrast to SI implementations, Delay Insensitive (DI)
implementations serve better since they produce hazard free circuits under
any gate delay and wire delay distribution. Therefore, a more careful timing
analysis is required for SI circuits as compared to DI circuits.

5.3.1.4 Verisyn discussion

Verisyn is one amongst the selected shortlisted tools mainly because of better integra-
tion possibilities with Nordic Semiconductor’s design flow over Petrify. Verisyn was
based on PNs (like Petrify), but offered many advantages over Petrify in terms of
performance benefits, the possibility to use Verilog as input and much better support.
Hence, it was decided to try Verisyn for further investigation.
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5.3.2 Pipefitter

Pipefitter was developed by the Microelectronics Group at Politecnico di Torino
(Italy). [38] It is a "tool chain that implements a fully automated synthesis flow
for asynchronous circuits" [37] and "can be integrated inside any standard design
flow in order to implement a fully asynchronous design flow." [38] It has been used
for the automated synthesis of asynchronous microcontrollers and micro-pipelined
asynchronous circuits. Pipefitter allows description of an asynchronous circuit
specification using a subset of standard HDL Verilog and automatically produces an
asynchronous Control Unit (CU) and a synchronous Data Path (DP) of that circuit.
The CU is converted into a STG and can be synthesized using Petrify while the DP
is "synthesized into standard cells by an appropriate RTL/logic synthesis tool, such
as the Synopsis Design Compiler or Cadence RC or Mentor Leonardo." [20]

5.3.2.1 Overview

Pipefitter uses Verilog for the initial specification as well as the output format for
the intermediate representation of the CU and DP. The complete design flow for the
tool is shown in Figure 5.4 on the next page. To begin with, Pipefitter optimizes the
initial Verilog specification and splits it into a CU and a DP using a splitter. The
splitter outputs a STG describing the behaviour of the CU, "a set of files, described
in synthesizable HDL (synthesizable Verilog in this case), one for each register and
its input combinational logic in the Data Path" [9] and a bunch of scripts, required
to perform the logic synthesis and timing analysis of the DP blocks.

Logic synthesis and state encoding for the CU can be performed using an asyn-
chronous tool such as Petrify. Eventually a Verilog control netlist is produced for
the CU which is used by standard synthesis tool for technology mapping. Standard
logic synthesis tools can also be employed for synthesizing the DP. As a result of
the DP synthesis, Pipefitter automatically generates a DP netlist and a netlist of
matched delays for each unit in the DP. "Timing analysis must then be performed
on the DP, in order to determine the worst case delays. Its result can be used to
modify the automatically generated matched delay block for each register and DP
block, in order to generate the proper acknowledge signals for the control unit." [20]

At last, the automatically generated top-level netlists i.e. the control netlist,
the DP netlist and the netlist of matched delays are combined in the merger to
generate a final standard cell netlist of the complete circuit. [37] It is "the merger
that reads the timing analysis results, and sizes the delay lines that implement the
acknowledgement signals from the DP to the CU." [9] Subsequently, placement and
routing can be performed so as to obtain the final layout.
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Figure 5.4: Block diagram of Pipefitter synthesis flow.
Based on a figure in [9]

5.3.2.2 Pro’s

Pipefitter has the following advantages:

– Cost: Pipefitter is a freely available tool.

– Integration with Nordic Semiconductor’s design flow: The use of Ver-
ilog makes it possible to use the existing EDA commercial tools for almost all
design phases such as simulation, synthesis and layout. Moreover, Pipefitter
uses the standard synchronous HDL tools for synthesizing the DP.

– Support: Pipefitter offers excellent support. The developers of Pipefitter were
contacted and a quick reply was received.

5.3.2.3 Con’s

Pipefitter has the following disadvantages:
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– Longevity: Pipefitter was developed in 2004. The last research paper [37]
found for Pipefitter dates from 2002. Pipefitter was not developed after the
initial version was introduced in 2004.

– Tool complexity: Pipefitter uses an asynchronous tool, such as petrify to
synthesize the CU. Hence, all the parameters adding to the complexity of Petrify
are applicable for Pipefitter as well. Unlike the splitter, the merging unit of
Pipefitter was not implemented by the developers and has to be implemented.
Furthermore, the synthesis process is only partially automated, for example
the constraints for the timing analysis and layout tools cannot be generated
automatically.

– Estimate of performance of corresponding circuits: Unknown.

– Commercial or Non-commercial implementations: There are no known
commercial implementations using Pipefitter. However, it has been used for
the automated synthesis of asynchronous microcontrollers and micro-pipelined
asynchronous circuits in academic research based projects. Furthermore, several
newer tools have been proposed based on Pipefitter, such as the PAid tool in
2012 [42].

5.3.2.4 Pipefitter discussion

Pipefitter is one amongst the selected shortlisted tools because of excellent integration
with Nordic Semiconductor’s design flow.

5.4 HDL based specification approaches

HDL based specification methods use a standard HDL such as Verilog as an input to
the tool.

5.4.1 Chainworks

Chainworks was developed by Silistix Ltd, UK. It is a tool suite comprising of various
software tools that help to design and synthesize a customized on-chip interconnect
fabric between various IP blocks using self-timed (clockless) circuits. [66]

5.4.1.1 Overview

"The CHAINworks tool suite takes a description of the initiator and target ports of
an System on Chip (SoC) design and synthesizes a structural netlist for a CHAIN
interconnect. The suite comprises three tools: CHAINdesigner™ for design explo-
ration, CHAINcompiler™ for CHAIN fabric synthesis, and CHAINlibrary™, which
is an interconnect component library." [67] CHAINdesigner uses a description of the
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initiator and the target ports of the design as an input to perform synthesis and
generate a structural netlist for the interconnect fabric. It is CHAINcompiler which
then uses this structured netlist and components from the CHAINlibrary to perform
logic synthesis and map to standard cells for layout. [68]

Furthermore, the tools used by Chainworks integrate well with the existing
conventional design flow. Design entry as the input to CHAINcompiler can be done
using Schematic Capture or System Verilog, which in turn generates a netlist in
structural Verilog. Existing tool setup can then be employed to perform synthesis
and timing analysis using the scripts generated by Chainworks. [69]

5.4.1.2 Pro’s

Chainworks has the following advantages:

– Estimate of performance of corresponding circuits: Silistix claims that
Chainworks leads to significant power savings compared to a conventional
design flow. However, replacing the clock with handshaking signals might lead
to some area overhead.

– Commercial or Non-commercial implementations: Chainworks has been
used to implement "a smart card test IC built in 180-nanometer CMOS tech-
nology." [70]

– Integration with Nordic Semiconductor’s design flow: According to
[67], Chainworks can easily integrate into the existing synchronous design flow.
It can use Verilog as an input and generate a structural netlist in Verilog.

5.4.1.3 Con’s

Chainworks has the following disadvantages:

– Longevity: Chainworks was introduced by Silistix in 2006. However, since it
is not freely available, no open information or reasearch papers are available
for Chainworks. Hence, it is difficult to comment on the longevity of this tool.

– Tool complexity: It will take sometime for the designers to educate themselves
on how the new tool suite functions.

– Cost: It is not a freely available tool and thus there is a cost associated with
this tool. Chainworks is a commercially available tool which is approximately
priced the same as Synopsis Design Compiler, which is a tool for synthesizing
and performing the timing analysis for synchronous design.
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– Delay model used by the final netlist: This information is not available
openly, and since Silistix was not contacted, it is difficult to comment on the
nature of the netlist obtained from the Chainworks tool suite. However, it seems
like Chainworks is following a desynchronization approach, see Section 5.5.1 on
the facing page.

– Support: No separate webpage for Chainworks was found. Moreover, Chain-
works was not found on the webpage for Silistix [71].

5.4.1.4 Chainworks discussion

Chainworks was eliminated and was not looked into any further. It was mainly
because of the high cost and the desynchronization approach used. Desynchronization
involves replacing clock domains by local handshaking circuitry. This leads to alot of
overhead. It is not a purely asynchronous technique and involves conversion from
a synchronous design to an asynchronous one, which is not the most efficient way
available. Moreover, the aim of this thesis is to find a purely asynchronous tool.

5.4.2 ACC

ACC stands for Asynchronous Circuit Compiler. It is a commercial synthesis tool
by Tiempo, that generates DI asynchronous circuits from input specifications in
standard HDL such as Verilog or VHSIC Hardware Description Language (VHDL).
According to Tiempo’s website [72], the licence for ACC can be purchased.

5.4.2.1 Overview

ACC takes design descriptions in Verilog/System Verilog, and generates a standard
Verilog gate level netlist as the output. "ACC can be inserted in any standard design
flow, allowing designer to verify asynchronous and mixed asynchronous/synchronous
circuits using any industry-standard simulation tools. The generated Verilog netlist
can then be placed-and-routed using any standard back-end tool and verified with
any electrical simulation tool." [72]

5.4.2.2 Pro’s

ACC has the following advantages:

– Delay model used by the final netlist: The website [72] claims to generate
a DI netlist. Owing to less strict timing analysis requirements, a delay DI is
the most suited for the purpose of this thesis.

– Integration with Nordic Semiconductor’s design flow: ACC integrates
well with the standard synchronous design tools and flow. It uses standard HDL
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such as Verilog/System Verilog as the input specification language. Moreover,
it produces a gate level netlist in standard Verilog format as an output.

– ACC is a fully automatic synthesis tool.

5.4.2.3 Con’s

ACC has the following disadvantages:

– Cost: Being a commercial tool, there is a certain cost associated with the
purchase of the ACC license.

– The website [72] seems to provide extremely general information without getting
into any ACC details or specifics. Hence, a lot of parameters such as longevity,
tool complexity, performance, commercial implementations and support are
unknown.

5.4.2.4 ACC discussion

Based on ACC’s pro’s and con’s, ACC is one amongst the selected shortlisted
tools mainly because of the DI nature of the netlist obtained and the possibility
for easy integration into Nordic Semiconductor’s tool flow. Using a Verilog input
and outputting a Verilog netlist is ideal for this thesis. Even though ACC had
an associated cost, it appeared to be exactly something that was required. It was
thought that in the next integration phase, Tiempo could be contacted for ACC, and
hence, the unknown parameters could also be figured out.

5.5 Miscellaneous

This section comprises of tools/methods that cannot be placed in any of the above
categories.

5.5.1 Desynchronization

In its simplest form, desynchronization is the method of converting a synchronous
circuit into an asynchronous circuit by replacing the functions originally handled by
a clock signal with local handshaking circuitry. [73]

5.5.1.1 Overview

Synchronous design has been a long lived practice in the industry in the field of digital
circuit design. The operation cycles of the clock have been known to ease design
practices for decades now. On the other hand, asynchronous design implementations
have proven their usefulness on various fronts such as low power consumption, low
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EMI, ease of integration, etc. Desynchronization is a technique that reconciles both
these conflicting design practices. "Desynchronization is a new paradigm to automate
the design of asynchronous circuits from synchronous specifications, thus, permitting
widespread adoption of asynchronicity without requiring special design skills or tools."
[74] Given a synchronous synthesized circuit, the essential idea is to "replace directly
the global clock network with a set of local handshaking circuits." [74] The circuit
can then be implemented using the standard synchronous design tools and flow. The
only difference is the algorithm responsible for the generation of the clock tree which
is replaced with handshaking signals.

5.5.1.2 Pro’s

Desynchronization has the following advantages:

– Tool complexity: It is a relatively simple approach which can be followed by
experienced designers almost instantaneously and without much risk. It can be
used to achieve asynchronicity without requiring any special tools.

– Commercial or Non-commercial implementations: Several designers
and researchers, for example [75] have used this approach before to achieve
the desired asynchronous implementation starting from a corresponding syn-
chronous implementation. In fact, there exists a valid patent given by [76] for
this approach or method.

5.5.1.3 Con’s

Parameters such as longevity, performance and integration with Nordic Semicon-
ductor’s design flow are unknown. Parameters such as cost and support are not
applicable here, since desynchronization is a method and not a tool.

5.5.1.4 Desynchronization discussion

Desynchronization was eliminated mainly because it is a method and not a tool. A
purely asynchronous tool is preferred for this thesis.



Chapter6Tool integration aspects for the
shortlisted tools

The preceding Chapter 5 carried out a detailed discussion about the most significant
asynchronous tools and methods that have been employed for asynchronous design
and synthesis in the industry and academia. The result from Chapter 5 comprises of
a shortlisted selection of the most desired asynchronous tools/methods for fulfilling
the requirement of this thesis. The list of the selected tools is: Balsa, ACC, Petrify,
Verisyn and Pipefitter.

The goal for this chapter is to find the most suitable tool (out of the five above
mentioned tools) that integrates best with Nordic Semiconductor’s tool chain. An
investigation of the integration aspects, possibilities and issues for each of the above
mentioned tools, with Nordic Semiconductor’s design flow, has been been conducted.
Each of the tools was installed and tried out. The instructions in the manual/tutorial
guide available with the tool, were followed to synthesize a simple design given in the
documentation. The selected tool and the corresponding discussion so as to why the
tool was selected formulates the results from this chapter. The end of the chapter
presents a discussion based on a single tool selection out of the lot of 5 tools. For
the purpose of clarity of the reader, it was more natural to have these results in this
chapter rather than placing them in a separate results chapter.

6.1 Balsa Integration

Balsa version 4.0, June 2010 release was downloaded from [23]. Several plugins
like different backend technologies and simulator support for QuestaSim were also
downloaded and installed. Balsa also offers a comprehensive tutorial [24] that includes
the theory revolving around Balsa, example code samples, tool usage, procedure for
simulation and synthesis, etc. Initially, a simple example of a buffer available with
the Balsa package was tried. This example involved setting up a project, loading the
initial design into Balsa, generating an automatic testbench, simulation and synthesis
of a Verilog netlist.

59
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Figure 6.1: balsa-mbr, the balsa project manager environment

Figure 6.2: Adding a test fixture to the design

Figure 6.1 shows the main window for Balsa with the initial code for the buffer
loaded. The left side shows the files in the given project and the right side shows the
example code. The first step was to compile and generate a technology independent
breeze netlist of handshaking components. The next step was increasing the complex-
ity of the example code by adding several buffers. A new compilation was performed
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and a new breeze netlist was generated. Then, a simulation of the breeze netlist was
conducted. Balsa has a built in simulator which is able to simulate both a technology
independent breeze netlist and a Verilog netlist. In order to perform a simulation, a
testbench needs to be generated. In Balsa this process is called ’adding a text fixture’
as shown in Figure 6.2 on the facing page. When setting up the test fixture, the
handling of the inputs and outputs is defined. For example, the inputs can be set to
a constant or given values from a file. Similarly, the outputs can be written to a file
or shown in the simulator transcript. In the example code for the buffer, the inputs
are given values from a file while the outputs are written directly to the transcript.
Balsa has two options for simulation. One is the text-only simulation as seen in
Figure 6.3 and the other is the Graphical User Interface (GUI) mode simulation as
seen in Figure 6.4 on the following page. Some of the benefits of using the GUI mode
simulation include the possibility to display the signals in the waveform viewer as
seen in Figure 6.4 and displaying the handshake circuit graph as seen in Figure 6.5
on the next page. The handshake circuit graph is giving an graphical representation
of the breeze components used in the design. Both Figure 6.4 and Figure 6.5 are
generated as a result of performing the simulation of the example in the Balsa manual.
To be able to use the GUI mode simulation, GTKWave [77] had to be installed.

Figure 6.3: Text only simulation

The next step was to see if Balsa could generate a netlist that could be used
in Nordic Semiconductor’s design flow. Different technologies and styles can be
selected for performing synthesis and generating a netlist as shown in Figure 6.6
on page 63. The different technologies and styles are not discussed at this point.
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Figure 6.4: GUI simulation

Figure 6.5: GUI simulation with State graph

For the initial testing at this stage a technology named balsa-tech-example was
chosen since it generated a Verilog netlist, which is a requirement for integration
into Nordic Semiconductor’s design flow. Also, a design style named four_b_rb was
chosen since it in theory produces the simplest netlist. This was considered to make
debugging of the netlist easier. Finally, the synthesis was performed and a Verilog
netlist was successfully generated. Moreover, this netlist was loaded and simulated
in QuestaSim. This proves that a valid netlist has been generated and should fit into



6.2. PETRIFY INTEGRATION 63

Nordic Semiconductor’s design flow.

Figure 6.6: Adding an implementation

6.2 Petrify Integration

Petrify version 4.2 was downloaded from the webpage [30]. This is the last available
version of Petrify and dates back to 1999. Therefore, it seems like Petrify has not been
under active development for a long time. A comprehensive tutorial was included in
the installed Petrify package. The aim of the tutorial is to use simple examples to
show the main features of Petrify.

An example code is provided in the Petrify tutorial. This code is shown below. In
comparison to Balsa, Petrify does not incorporate a GUI environment. Instead, the
code must be written in a separate text editor and then different Petrify functions
are run from within the command line on the various code files.

.model pn_synthesis

# Declaration of signals
. inputs a
. outputs b e f
. internal c
.dummy d
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# Petri net
.graph
a/1 b c
b d
c d
d a/2
a/2 e f
e d/1
f d/1
d/1 a/1

# Initial marking
. marking { <d/1,a/1> }
.end

To visualize the Petri Net (PN) described in the code, Petrify is providing
the function ’draw_astg’.This generates a graphical representation of the PN being
described. Running the command:

draw_astg -nofold -bw pn_syn .g -o pn_syn .g.ps

where pn_syn.g is the file containing the example code, produced the PN shown in
Figure 6.7

Figure 6.7: Petri Net for the example code
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The next step was to generate a State Graph (SG) for the PN in Figure 6.7. The
command:

write_sg pn_syn .g | draw_astg -sg -noinfo -o pn_syn .sg.ps

produces the SG shown in Figure 6.8.

Figure 6.8: State graph for the example code

There are several options while synthesizing PNs. The two commonly used options
are: synthesizing into a simpler PN and synthesizing to generate an equation. Both
the mentioned options were tried one by one.

First, the original PN was synthesized to generate another simpler PN. The
command:

petrify pn_syn .g -o pn_syn2 .g

was used to run the synthesis. The newly derived PN is shown in Figure 6.9 on the
next page. In Petrify, synthesis of an PN or SG involves performing a token flow
analysis of the initial PN and generates another simpler PN which is an optimized
version of the initial PN or SG. ’Simpler’ in this context refers to a PN where it is
easier to understand the underlying functionality of the design. It does not necessarily
imply that the derived PN is visually simpler. The newly generated simpler PN
is functionally equivalent (bisimialar) to the initial one with the relabelling of all
transitions. Also, the correctness properties of the derived PN can be verified to
prove equivalence of both the PNs.
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Figure 6.9: Petri net synthesized by petrify

Then, for synthesizing into an equation, a different example code (from the
tutorial) with its corresponding SG was used. The synthesis of PNs using the
complex gate synthesis approach of petrify, produces a file with a DPean equation
expression. Given below is the code, and the SG is shown in Figure 6.10 on the
facing page
. inputs x
. outputs y z
.graph
x+ y+ z+
z+ x-
y+ z-
x- z-
z- y-
y- x+
. marking {<y-,x+>}
.end

The command for synthesizing into an equation is:
petrify xyz.g -cg -eqn xyz.eqn -no

Using this command, the following equation was generated:
# EQN file for model xyz
# Generated by ../ bin/ petrify 4.2 ( compiled 15-Oct -03 at 3:06 PM)
# Outputs between brackets "[out]" indicate a feedback to input "out"
# Estimated area = 5.00
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Figure 6.10: State graph for the given code

INORDER = x y z;
OUTORDER = [y] [z];
[y] = z + x;
[z] = y’ z + x;

# Set/reset pins: reset(z)

The next step would be to transform the obtained Boolean equation or PN into
a Verilog gate level netlist. However, this process was not documented in the Petrify
tutorial or any other research paper read regarding Petrify. [78] showed the manual
mapping of a Boolean equation into a Verilog netlist to verify the circuit. However,
a manual mapping is not feasible for a larger design. Hence, automatic mapping
is a requirement for using Petrify in Nordic Semiconductor’s design flow. It was
then considered to contact the developer of Petrify and clarify the possibilities to
convert the Petrify output into a Verilog gate level netlist. However, Petrify is not
under development anymore. Hence, it was considered to contact the developers of
Workcraft [36] instead. Workcraft (Section 5.2.4 on page 48)is a new toolset being
developed at the University of Newcastle. It employs Petrify as one of the possible
backend tools and therefore its developers should have extensive knowledge about
the practical aspects of Petrify.

Danil Sokolov from the University of Newcastle was contacted. He is one of the
main developers of Workcraft. The query put forward was how to produce a Verilog
netlist from the Boolean equation or PN generated by Petrify. According to Danil
Sokolov, there is no straightforward (well documented) way to proceed from a Petrify
generated netlist to fabrication. After some discussion with Danil Sokolov, it was
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concluded that Petrify can do technology mapping into the gates specified in the
Petrify library i.e. petrify.lib. Basically, if petrify.lib and a PN specification are
present in the same directory, then the following command would generate a Verilog
netlist:

petrify -lib petrify .lib -tm -vl circuit_netlist .v pn_spec .g

This is producing a Speed Independent (SI) netlist. Furthermore, Petrify is
only providing a generic library. However, a specific library targeting the desired
technology to be used for layout in the backend, must be generated. Making a specific
library has not been done at this stage and will only be executed for the final selected
tool.

6.3 Verisyn Integration

Verisyn was downloaded from [8]. The only available version was from September,
2004. Verisyn was precompiled and the source code was not available. A tutorial
was included in the downloaded Verisyn package.

Verisyn was started and a project called ’test’ was created. From the various
available files in the Verisyn package, an example file was loaded into the project.
Then, the project was compiled using the ’compile’ option in the window. When
starting the compilation of the project, the program crashed with a segmentation
fault. The error message was:

[2] 1596 segmentation fault ./ verisyn

Since, the source code of Verisyn was not available, the chief developer of Verisyn,
Frank Burns, was contacted for a solution. According to him, Verisyn was developed
some years back and there will be problems running it on current systems as it is
dependent on old libraries and graphical software. Frank Burns offered to compile a
new version of Verisyn using updated libraries. Meanwhile, he suggested to look more
into Workcraft (Section 5.2.4 on page 48) since it was a newer tool being actively
developed at the University of Newcastle. It took him several weeks to compile and
send a new version. Verisyn is using another program in the background, iverilog
[79], for all Verilog related handling. According to him, due to changes in the IEEE
specification of Verilog, the current iverilog was not compatible with the older Verisyn
version that he was using. Hence, he had to update Verisyn to comply with these
changes. However, by then, the final tool had already been selected due to the strict
time frame and no more testing was carried out with Verisyn.
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6.4 Pipefitter Integration

The webpage for Pipefitter [48] was not up-to-date. Moreover, the links for installing
Pipefitter were broken. The author of Pipefitter, Luciano Lavango, was contacted
with a request for the tool. He sent the Pipefitter version 1.0 from November 2003,
but also mentioned that his research team had abandoned Pipefitter a long time
ago. This is because they found better ways to use Verilog to specify asynchronous
circuits. Moreover, Pipefitter failed to have commercial success. Hence, they stopped
developing Pipefitter.

The Pipefitter version received was not stable in Nordic Semiconductor’s environ-
ment. It gave both compilation and runtime errors. In order to use Pipefitter, the
code was debugged and errors were corrected. Thereby, Pipefitter was successfully
installed.

Pipefitter included a tutorial that was followed. An example for an asynchronous
register written in Verilog was provided in the tutorial, as shown below:

// Your first pipefitter specification !!!
module async_reg (Data_in , Rin , Ain , Data_out , Rout , Aout );

input [7:0] Data_in ;
input Rin;
output Ain;
reg Ain;
output [7:0] Data_out ;
reg [7:0] Data_out ;
output Rout;
reg Rout;
input Aout;

always begin
wait(Rin );
Data_out = Data_in ;
Ain = 1;
wait (! Rin );
Ain = 0;
Rout = 1;
wait(Aout );
Rout = 0;
wait (! Aout );

end

endmodule
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The code was compiled using the command:

pipefitter register .v

which gave the output message:

<register .v> successfully compiled

As mentioned before in section 5.3.2 on page 52, Pipefitter splits the asynchronous
input specification into a Data Path (DP) and a Control Unit (CU). Therefore, the
next step was to generate a DP for this example code. The command:

pipefitter register .v -dp data_path .v

The DP was written in the file data_path.v and was a synthesizable Verilog netlist.

Then, a CU was generated for the example code using the command:

pipefitter register .v -cntl control_unit .v

The CU was written in the file control_unit.v and was a synthesizable Verilog netlist
of David Cells.

Furthermore, Pipefitter generates a file with all the delay elements i.e. propagation
delays and logic delays, for the example circuit using the command:

pipefitter register .v -del del.v

The delay elements was written in the file del.v. This file is only used for behavioural
simulation.

Even though Pipefitter is able to generate synthesizable Verilog netlists for both
the DP and the CU, it is lacking the functionality to perform the merging of the
two netlists into a single netlist that can be used for timing analysis, placement and
layout.

6.5 ACC Integration

ACC is a commercial tool developed by Tiempo [80]. It is not available for free
download. Therefore, Tiempo was contacted with the request for the ACC tool.
However, even after several attempts to contact them, no answer was received. It
seems like the company does not exist anymore. Hence, no further evaluation of
ACC was possible.
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6.6 Discussion for a single tool selection

ACC is eliminated as no response was received from Tiempo, even after trying to
contact them several times. Pipefitter is able to generate a synthesizable Verilog
netlist for both the DP and the CU. However, it lacks the source code for the
functionality performing the merging, which has to be implemented if Pipefitter is to
be used. Pipefitter’s integration with Nordic Semiconductor’s design flow depends on
the merger, which combines the CU Verilog netlist obtained from the asynchronous
tool with the DP Verilog netlist obtained from the conventional synchronous tools.
The timing analysis is then performed on the merged Verilog netlist. Implementing
the merger seems to be a lot of work for a tool to begin with. Hence, Pipefitter
is eliminated and not investigated any further. Verisyn was developed many years
back and there is a problem running it on current systems as it is dependent on old
libraries and graphical software. As a result, the Verisyn program crashed with a
segmentation fault error. The developer of Verisyn offered to solve this problem and
send a version for the tool that could be successfully compiled. However, before an
error free version of the tool could be produced, a tool had to be selected due to
timing limitations. Hence, Verisyn is eliminated as well. There was a close tie between
Petrify and Balsa. Both of them are able to successfully generate Verilog netlists
and show a good integration possibility with Nordic Semiconductor’s design flow.
Moreover, Balsa is even able to load the generated Verilog netlist in QuestaSim. The
major difference, however, is that Petrify generates a SI Verilog netlist while Balsa
generates a DI Verilog netlist. As mentioned earlier, for the purpose of this thesis, a
DI netlist is preferred over a SI netlist due to less restrictive timing assumptions. A
more elaborate timing analysis (by constraining the isochronic forks) is required for
SI circuits as compared to DI circuits. Moreover, there is no straightforward (well
documented) way to proceed from a Petrify generated netlist to fabrication. This
however is not the case for Balsa. Balsa includes a comprehensive manual which
provides a good explanation of taking a Balsa generated netlist to fabrication. It
also explains the procedure to generate a new technology for Balsa. Hence, Balsa
was selected over Petrify.

Therefore, Balsa is the selected tool that will be further investigated and used to
implement a design.





Chapter7An introduction to the Balsa
system

This chapter describes briefly some of the basic concepts of Balsa which are a
prerequisite for understanding the remaining chapters of the report. It sets out to
explain the basic handshaking principle on which Balsa is based, the Balsa tool set
and design flow.

7.1 Basic Concepts

7.1.1 Handshaking principle

Balsa compiles circuits into a network of handshaking components that communicate
by means of channels connecting them over which handshakes take place. Balsa
employs the principle of four phase handshaking over its channels. The channels
can be associated to datapaths or control paths. A channel dedicated to datapath
represents a handshake involving the transfer of data. On the contrary, a control
path represents a handshake signifying synchronization or a rendezvous point. [3]

"Each channel connects exactly one passive port of a handshake component to
one active component of another handshake component." [24] An active port can
be defined as the one initiating the communication while a passive port is the one
that responds by means of an acknowledgement to the request from the active port
whenever it is ready.

Furthermore, data channels can be categorized as push channels and pull channels.
Data transfer in push channels takes place from the active port to the passive port.
A request signals that the data is valid and the data is released on receiving an
acknowledgement. On the other hand, the data transfer in pull channels takes place
from the passive port to the active port. The data transfer is requested by the active
port to which the passive port responds with an acknowledgement signalling that
the data is valid. [24]
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→ @

acknowlederequest

request

requestrequestrequest

acknowledeacknowlede

acknowlede

acknowlede

bundled data

Figure 7.1: Two connected handshake components

The basic principle of handshaking between handshake components in Balsa
is shown in Figure 7.1 which is sourced from [24]. It composes of two handshake
components namely Transferrer (denoted by →) and Case (denoted by @). In this
figure, active ports are denoted by filled circles while the passive ports are denoted
by empty circles. The entire communication process is initiated by a request to the
Transferrer at its passive port. Upon receiving this request, the first round of circuit
action is activated and the Transferrer issues a request demanding data from its
environment on the left. The environment then supplies the data to the Transferrer
by indicating data validity using an acknowledgement signal. The Transferrer then
"presents a handshake request and data to the Case component using its active
port which the Case component receives on its passive port." [24] Depending on
the value of data received, the Case component issues a handshake request towards
the environment on its right on either the top port or the bottom port. Finally,
when the Case component receives an acknowledgement from its environment, the
acknowledgement is returned to the Transferrer along the original channel in the
direction opposite to which the handshake request and data were sent. This terminates
the handshake between the Transferrer and the Case component and the circuit is
ready for another communication round. [3]

7.1.2 Tool set and design flow

Given below is a list of the most useful components included in the Balsa tool set.
These components along with their corresponding functions have been provided to
make the reader more aware about the most important features of the Balsa tool set.
More information about these or any other components can be found in the Balsa
manual [24]. The components are as follows:

– balsa-c: It is the Balsa language compiler which produces an intermediate
breeze netlist.
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– balsa-netlist: It uses a breeze netlist as input to produce a netlist of the
required target technology or appropriate CAD framework.

– balsa-md: It generates make files in Balsa.

– balsa-mgr: It provides a GUI front end to balsa-md with additional project
management facilities

– balsa-make-test: It generates an automatic testbench for descriptions in
Balsa.

– breeze-sim: It simulates the breeze descriptions.

– balsa-verilog-sim: A package that provides support to make the Verilog
simulation of Balsa decriptions easier.

– GTKWave: It is a waveform viewer available as a separate package from
GTK.
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Figure 7.2: Balsa design flow
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Figure 7.2 on the previous page from [24] gives an outline of the Balsa design
flow. To begin with a design specified using the Balsa language is compiled using the
Balsa compiler i.e. ’balsa-c’ to produce an intermediate breeze netlist of handshaking
components. Behavioural simulation can then be performed over the breeze netlist
using ’breeze-sim’ to visualize channel activity at the handshake circuit level and
for source level debugging. Furthermore, waveforms can be produced to monitor
the simulation using GTKWave. At this point, Balsa can also produce a graphical
representation of the breeze netlist, as shown by the example in Figure 7.3. Then, the
breeze netlist is compiled into a gate-level netlist using the command ’balsa-netlist’.
Functional simulation can be performed over the gate level netlist to verify its validity.
To get from the netlist to a layout netlist or to a FPGA, a third party backend
tool or FPGA place and route tool, must be used. A layout simulation can then be
performed on the layout netlist.

Figure 7.3: State graph

"Balsa supports several design styles such as:

– four_b_rb: bundled data four-phase, broad, reduced broad protocol
– dual_b: dual rail delay insensitive encoding with return to zero signalling
– one_of_2_4: one-of-four delay insensitive encoding with return to zero

signalling" [24]

Earlier, Balsa provided support for several backend technologies. However, for
the Balsa version 4.0 used in this thesis, only two technologies are provided i.e. Balsa-
tech-example and balsa-tech-minimum. These technologies are example libraries that
can not be used for practical implementations. They are only used as a reference
to build a new technology. Besides this, Balsa version 4.0 provides support to build
new technologies required for the implementation technology being used. For the
purpose of this thesis, a new technology is built, as seen in Chapter 9 on page 95.



Chapter8Design implementation, synthesis
and verification

This chapter aims at implementing an asynchronous flash readout using Balsa. "As
most other design practices, currently, the flash readout at Nordic Semiconductor is
done synchronously. Hence, before the flash can actually be read, it waits for power
followed by the clock. However, if the memory readout is controlled asynchronously,
the actual readout can start right after the power reception without having to wait
for the clock. This makes it an independent process which has some time saving
potential. Moreover, as mentioned before in Section 2.2 on page 6, asynchronous
design leads to efficient power savings. Thus, the design implementation is driven
towards achieving an asynchronous flash readout in the system design being used at
Nordic Semiconductor." [11]

8.1 Design Implementation

FlashControl Flash
Flash-

Wrapper
InitialSetup CounterstartCounter count

adr

data

start

Balsa code Verilog code

controlFlash

Figure 8.1: Initial block diagram for the asynchronous flash readout

Figure 8.1 gives an overview of the initial partitioning for the asynchronous flash
readout. It consists of two main blocks: one implemented in Balsa and the other
implemented in Verilog. The former controls the asynchronous flash readout and the
latter is a wrapper interfacing the handshake signals from balsa to the actual flash.
The flash model used at Nordic Semiconductor is implemented in Verilog, thereby
posing a need for the wrapper to be written in Verilog, so as to be able to integrate
this asynchronous flash readout with Nordic Semiconductors design. The Balsa block
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is further sub-divided into three blocks: InitialSetup, Counter and FlashControl.
Each of these are described in the following sections.

8.1.1 InitialSetup

During the entire readout cycle, the Balsa block controls all the signals to the flash, for
example: XADDR, YADDR and SE. During the setup phase, the block InitialSetup
sends a request to the FlashWrapper to gain control of the required signals. If this
design is integrated into the existing design at Nordic Semiconductor, all the signals
to the flash are controlled by the normal synchronous logic when the Balsa block is
not reading from the flash.

During the readout cycle some of the signals are static. In this design the
FlashWrapper controls these static signals on receiving a request from the InitialSetup
block. These signals are set with a predefined value before the first readout from
the flash and released after the completion of the last readout. IFREN (Information
Block Enable), REDEN (Enable signals for redundancy pages), PV (Program verify
level enable), EV (Erase verify level enable) and XE/YE (X and Y address enable)
are the static signals that need to be controlled during a readout from the flash, see
Figure 8.2 shows the timing diagram for the read cycle for the flash that is being
used at Nordic Semiconductor. Most of these signals are allowed to change between
every readout from the flash, however they are kept static in this design because
those functions are not needed for doing a simple readout.
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Figure 8.2: Flash read timing diagram
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InitialSetup has an input channel called Start. The active port for this channel
is controlled from the testbench outside the Balsa block. Upon the signal Start.req,
InitialSetup will take control over the various static signals and set them to their
predefined value. The signal Start.ack is given when all the data is readout from the
flash and the control over the static signals is released.

When the static signals are set, InitialSetup communicates with the Counter using
a handshake channel without data called startCounter. The signal startCounter.req
from InitialSetup requests the Counter to start, which in turn acknowledges this
request using the signal startCounter.ack when all the readouts from the flash are
done. The handshake circuit graph for the InitialSetup is provided in Figure 8.3.
The Balsa code for InitialSetup is given in Appendix A.2 on page 139.

Figure 8.3: Handshake circuit for the InitialSetup

8.1.2 Counter

The purpose of the Counter is to control the number of readouts from the flash.
Upon a request from the InitialSetup, the counter will start counting. For every value
counted, the counter is handshaking the FlashControl with the handshake channel
called count. This is a data channel containing both the handshake signals and the
counter value. For every request from the Counter to the FlashControl i.e count.req,
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the FlashControl executes a single readout from the flash. On completion of the
readout the FlashControl acknowledges count.req with count.ack.

When the counter reaches the predefined value given by the parameter NUM_COUNT,
an acknowledgement is sent back to the InitialSetup signalling the completion of all
the flash readouts.

Given below is an excerpt from Balsa code for the Counter.

begin
select start then

loop while count_rg < NUM_COUNT then
tmp := ( count_rg + 1 as COUNTER_WIDTH );
count_rg := tmp;
count <- count_rg

end
end

end

The handshaking with the InitialSetup block is done with the code:

select start then
...

end

’select <channel> then ... begin’ is a handshake enclosure. It is generating a
passive input port waiting for a request on the channel channel. When the code
within the ’then-end’ is complete, an acknowledgement will be given on the channel.

’1 as COUNTER_WIDTH’ is a casting operation to cast the value 1 from a 32 bits
integer to the same width as counter_rg.

’count <- count_rg’ is initializing a handshaking on the channel count. First the
value from the count_rg is copied to the data in the channel count, followed by a
request on count.req. Then the code will be waiting until an acknowledgement on
count.ack is received. All the handshaking is handled by the backend tool for Balsa
without the designer having to think about it while writing the code. This exhibits a
major strength of Balsa.

The handshake circuit graph for the Counter is provided in Figure 8.4 on the
next page. The complete Balsa code for the counter can be found in Appendix A.3
on page 140.
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Figure 8.4: Handshake circuit for the Counter

8.1.3 FlashControl

The FlashControl is responsible for the actual readout from the flash. The selection
of this type of flash is based on what Nordic Semiconductor is using in their design.
This would make power comparisons between the asynchronous flash readout and
the more traditional synchronous flash readout possible. The flash is from Nordic
Semiconductor and the timing waveforms for the read cycle are as previously shown
in Figure 8.2.

The flash being adopted for this design is normally used for a clocked operation
handling all the timing requirements and the order of operations. On the other hand,
Balsa or asynchronous design in general, does not use a clock and must adopt a
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handshaking methodology to ensure the correctness of timing and operations.

As mentioned in Section 8.1.1 on page 78, some of the signals are static and not
a part of the actual readout process. As seen in Figure 8.2, XE and YE are inactive
between consecutive readouts. However, this is not a requirement for the readout
from the flash. These signals can be static all along even when the addresses i.e.
XADDR and YADDR are changing. All the static signals are considered to be stable
for the entire readout period and will not be discussed any further. Also, XADDR
and YADDR are going to be treated as a single address i.e. ADDR and will not be
discussed separately.

The flash readout is initialised by setting the address (ADDR) which must be
followed by a transition from 0 to 1 on SE (Sense Amplifier Enable). ADDR and
SE must be separated by a minimum of Tas which is 0.1 ns. After the maximum
time of Tacc i.e. 30 ns, DATAVALID will be set indicating that DOUT has valid
data. DOUT will remain valid until the address is changing plus the time Tdh. Tdh

is a minimum of 0.5 ns. To get the DOUT associated with the new address, a new
transition from 0 to 1 on SE must be given.

Data 1

Static signals

XE/YE

XADR/YADR

SE

DATAVALID

DOUT

Adr 2

Data 2

Adr 1

SE.ack

Figure 8.5: Simplified flash read timing diagram

Figure 8.5 shows a simplified version of the timing diagram in Figure 8.2, for the
asynchronous flash readout. It excludes the static signals mentioned earlier. As seen
from the figure, SE, SE.ack and DOUT behave like normal four-phase handshaking
channels with data, where SE is the request, SE.ack is the acknowledgement and
DOUT represents the data in the channel. Also, as seen from the figure, the address
given by ADDR.data must stay valid during the entire readout period of the data,
i.e. the address must be unchanged during the entire four-phase handshaking for the
channel SE. Therefore, the lowering of the SE.ack will be used as information that
the address can change. As will be explained later, this is not done by connecting
SE.ack to the acknowledgement for ADDR, but it is handled internally in the Balsa
code block for the ADDR and SE. Instead, the acknowledgement for the ADDR,
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i.e ADDR.ack, is only used as information that the address is received in the flash.
However, for the ADDR there does not exist an acknowledgement from the flash that
indicates that the address is received and set. Instead, the request for the channel
ADDR, i.e. ADDR.req, is simply looped back from the FlashWrapper, through a
delay element, as ADDR.ack. The delay element is used for fulfilling the timing
requirement Tas from when the address is given until the signal SE can go high.

After the acknowledgement signal ADDR.ack is received in the FlashControl, a
request is sent on the data channel SE. The SE.req is connected to the SE (Sense
Amplifier Enable) input of the flash. This turns on the sense amplifier inside the
flash, and after a given period of time, Tacc, the data stored at the address ADDR is
presented on the data output DOUT. DOUT is connected to the data of the channel
SE, i.e. SE.data. At the same time as DOUT becomes valid, DATAVALID goes
high. DATAVALID remains high as long as DOUT is valid. When both SE and
DATAVALID are high, SE.ack is high. Why DATAVALID can not be used as the
acknowledgement is explained later in this section. When the data from the flash is
received in the FlashControl, it is sent back to the FlashWrapper on one of the four
dataRead channels and is stored in the FlashWrapper for later use. The storage of
the data is the end of a read cycle. After this, the FlashControl signals back to the
Counter that the complete data readout has finished.

Designing the FlashControl was a challenging part of the implementation, hence
a significant amount of time was spent on writing it. This design has a strict
requirement of having the address valid for the entire readout period. The lack of a
proper handshaking (acknowledgement) signal to ADDR made it difficult to meet this
criteria. Also, the minimum timing requirement (of 0.1 ns) between ADDR and SE
had to be fulfilled. Several solutions were tried, example, insertion of buffers in the
Balsa code being one of them. This however did not turn out to be a comprehensive
solution, since the delay through a buffer in Balsa code is very hard to predict. A
normal Verilog delay element was chosen to be used in the FlashWrapper instead
in order to fulfil the timing requirement. This has been discussed in more detail in
the remaining part of this section in addition to the main blocks of the code for the
FlashControl.

The first main block of the FlashControl, as seen in the code listing 8.1 on the
next page, is a mapping from the counter value [1, 2, ...] to the actual addresses
in the flash. The flash used is reading out 32 bits at a time, 4 bytes, therefore the
address is increasing by 4 every time. Actually, the addresses could be anything,
and in the future implementation of the asynchronous flash readout these addresses
would be defined by a parameter into the Balsa code, and not hardcoded into the
code.
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Listing 8.1: First main block
loop

select count then
case count of

1 then tmpAdr <- (4 as ADDR_BITS )
| 2 then tmpAdr <- (8 as ADDR_BITS )
| 3 then tmpAdr <- (12 as ADDR_BITS )
| 4 then tmpAdr <- (16 as ADDR_BITS )

else continue
end

end
end

As mentioned earlier, ’select <channel> then ... end’ is a handshake enclosure.
It is waiting for an count.req before continuing executing the ’then ... end’ code
block. In the next line where count is used, it is the data of the count that is used; it
is doing a ’case’ based on the value in the channel count.

The format of the ’case’ statement in Balse is:

case count of
1 then ...

| 2 then ...
| 3 then ...

else ...
end

On the first match, it will do the command after the ’then’, and then exit the
’case’ statement. If there is no match, it will do the command after the ’else’ and
then exit.

The ’tmpAdr <- (4 as ADDR_BITS)’ is using the operator ’<-’ to transfer a result
from an expression to a handshake channel. Balsa will internally do the needed
handshaking with request and acknowledgement. So in this given command, the
value 4, casted to the correct size ADDR_BITS, is transferred to the channel named
tmpAdr before Balsa is doing the handshaking.

Between the two main blocks, there are a ’||’. This is a parallel composition
operator, meaning that the two blocks will run in parallel. The opposite is the
sequence operator ’;’ that means that the clocks will run in sequence.
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Listing 8.2: Second main block
loop

tmpAdr -> then
adr <- tmpAdr ;
SE -> dataRead ;
case writeCounter of

0 then dataRead_0 <- dataRead
| 1 then dataRead_1 <- dataRead
| 2 then dataRead_2 <- dataRead
| 3 then dataRead_3 <- dataRead
end;
writeCounter := ( writeCounter + 1 as 2 bits)

end
end

The second main block, listing 8.2, is starting with an handshake enclosure,
waiting on a request on tmpAdr. Then the data from tmpAdr is copied to the channel
adr, and Balsa is doing the handshaking. After this command there it a ’;’, meaning
that the handshaking of the adr must be finished before the next command is starting.
By delaying the acknowledgement from the FlashWrapper, the delay between setting
the address and setting SE can be controlled. It is easier to control the delay by
inserting a delay element in the Verilog code, than adding buffers in the Balsa code.
The actual delay added by the buffers in the Balsa code is hard to predict.

The command ’->’ is handshaking data transfer to a variable from an input port.
’SE -> dataRead’ is setting SE.req, asking for data on SE.data. When the data is ready,
the SE.ack will be given, indicating the data is ready. The data from SE is then
copied into the variable dataRead before the SE.ack is lowered again. This is followed
by a case statement where dataRead is written to one of the channels dataRead_n,
where n is ranging from 0 to 3. dataRead_n is going to the FlashWrapper, where
the data is stored for later use.

Since the ’tmpAdr -> then ... end’ is a handshake enclosure, the data in tmpAdr
is valid during the entire sequence. This will also make the data in adr valid in the
same period. Hence, the address is valid during the entire readout from the flash,
which is required for a successful readout. At the same time, for the ’SE -> dataRead’
to be complete, the four phase handshaking of SE needs to be completed. From
the timing diagram in Figure 8.2 on page 78, DATAVALID will stay high until
the address is changing. Since, the handshaking of SE must be finished before the
address can change, DATAVALID cannot directly be used as the acknowledgement
for channel SE. As long as the SE.req is high during the entire readout phase, doing
an logical AND of DATAVALID with SE.req, as seen in the code below, will provide
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the required acknowledgement for SE, as seen in Figure 8.5 on page 82.
assign SE_Ack = SE_Req \& dataValid ;}

The handshake circuit graph for the FlashControl is provided in Figure 8.6. The
complete Balsa code for the FlashControl can be found in Appendix A.4 on page 141.

The data channel adr is an output port sending data to the FlashWrapper while
the data channel SE is an input port receiving the DOUT from the flash. Both of
them are active ports seen from the FlashControl.

Figure 8.6: Handshake circuit for the FlashControl

8.1.4 FlashWrapper

The FlashWrapper serves as an interface between Balsa’s asynchronous handshaking
and the normal synchronous interface of the flash. It is also where there data will be
stored for later use after it is read from the flash. The complete Balsa code for the
FlashWrapper can be found in Appendix A.5 on page 143 for the single rail version
and in Appendix A.6 on page 146 for the dual rail version.

As explained earlier in Section 8.1.3 on page 81, the actual flash does not have
any signal which can be used as an acknowledgement to adr.req. Instead the request
is passing through a delay element and is looped back as the acknowledgement. The
length of the delay is used to control the time between setting the address and giving
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a transition from 0 to 1 on SE. The flash comprises of two separate address buses
i.e. XADDR and YADDR. On the other hand, the address in the channel adr is
represented by a single bus. Therefore, the address in the channel adr has to be
split between XADDR and YADDR. The split ratio between XADDR and YADDR
are determined by the parameters ADDR_X_WIDTH and ADDR_Y_WIDTH
respectively.

The request (SE.req) and data (SE.data) in the channel SE are connected directly
to the flash. SE.req is connected to SE in the flash while SE.data is connected to
DOUT. SE.ack is connected to the logical AND between SE.req and DATAVALID.

As mentioned in Section 8.1.1 on page 78, the static signals in to the flash are
controlled in the FlashWrapper. If the signal controlFlash is low, all the signals into
the flash are controlled by the normal synchronous design, e.g. a synchronous logic
reading and writing to the flash. When the controlFlash is high, all the static signals
are locked to a predefined value, and all the other control signals are controlled by
the asynchronous Balsa flash readout.

After the FlashControl has read out the data, it is sending it back to the
FlashWrapper. The FlashWrapper is storing the data in latches for it to be accessible
for later use.

The complete figure for the design implementation can be seen in Figure 8.7
and the handshake circuit graph can be seen in Figure 8.6 on the preceding page.
The handshake circuit is only for the asynchronous flash readout, not including the
FlashWrapper.
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Figure 8.8: Handshake circuit for the asynchronous flash readout

8.2 Synthesis and Netlist generation

This section goes on to explain the synthesis and hence the netlist generation by
Balsa. As mentioned before in Chapter 7 on page 73, in the Balsa design flow,
simulation is not carried out on the code directly, but on the netlist generated by
Balsa. Therefore, the netlist is required for the purpose of simulation and also for the
back-end work i.e. timing analysis, layout, placement and routing. Balsa is directly
generating a Verilog netlist from the Balsa code. Moreover, a Verilog netlist can
be generated using different data encoding styles such as: Bundled data, single-rail,
4-phase broad/reduced-broad (i.e. four_b_rb), Dual-rail with broad sync channels
(i.e. dual_b), 1-of-4 with dual rail ‘odd’ bits (i.e. one_of_2_4) and Synchronous
style (i.e. sync). Each of these have been explained in Chapter 7.

The main goal is to generate a Delay Insensitive (DI) netlist using the dual_b
netlist option in Balsa. Since two signals are used to encode every bit in a dual
rail netlist, much more effort is required to debug a dual_b netlist. Therefore, the
four_b_rb netlist option was used instead while debugging the code to verify its
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correctness. When the code was verified to be working as desired, the netlist was
switched from four_b_rb to dual_b for the final simulation and timing analysis.

Generating the desired netlist in Balsa is a straightforward process using the GUI.
The netlists obtained for four_b_rb and dual_b are shown in Appendix A.9 on
page 156. The netlists generated are using both standard cells as seen in synchronous
logic and non standard cells only used in asynchronous design. Some examples of
standard cells are AND, OR, XOR and INV while some examples of non standard
cells are the Muller C and its different variations.

8.3 Verification

This section describes the verification of the asynchronous flash readout. First, a
testbench automatically generated by Balsa is presented, which only tests the part
written in Balsa. This is followed by an explanation for the manually generated
Verilog testbench, which is testing the entire design i.e. the Balsa code and the
FlashWrapper written in Verilog. As mentioned before, the FlashWrapper consists of
a flash model.

8.3.1 Balsa generated automatic testbench

Figure 8.9: Generating an automatic testbench in Balsa

Balsa incorporates the possibility of a generating a generic testbench as shown
in Figure 8.9. This testbench is able to drive all the inputs and outputs with
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their corresponding requests, acknowledgements or data. The testbench generated
by Balsa is in Verilog. This makes it possible to simulate with this testbench in
other simulators supporting Verilog like Mentor Graphics QuestaSim. The complete
testbench generated by Balsa is presented in Appendix A.10 on page 156. Furthermore,
Balsa has a built in simulator. An example of a simulation session of the Balsa
generated testbench in the Balsa simulator can be seen in Figure 8.10. However, at
Nordic Semiconductor, QuestaSim is the simulator being employed for the purpose
of verification. Moreover, QuestaSim is a much more mature and advanced simulator
as compared to the Balsa simulator. Hence, QuestaSim is the preferred choice to
carry out simulation. Thus, the remaining part of the thesis will only use QuestaSim
for all simulation purposes.

Figure 8.10: Simulation in Balsas simulator

The same testbench was then loaded into QuestaSim without any modification.
The result from this simulation is shown in Figure 8.11 on the next page. In this
figure, the communication with the flash can be easily seen from the channels adr
and SE where ’_0r’ represents the request, ’_0a’ represents the acknowledgement
and ’_0d’ represents the data for the corresponding channels. Seen horizontally, the
four pulses (0 to 1 to 0 transitions) on the channels adr and SE are representing the
four readouts from the flash. Furthermore, the figure consists of signals which are
not present in the code i.e. initialise and activate. These signals are automatically
generated and added by Balsa in the synthesis. initialise is used as a reset and is
not a handshake channel. If though the design lacks flip-flops, a reset is required for
resetting some other cells like the Muller C elements. activate acts like an enable
signal for the design, starting the execution of the asynchronous logic. The simulation
also comprises of a start from the code which is used to start the asynchronous flash
readout. When all the four readouts from the flash are complete, an acknowledgement
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is given on start.

Figure 8.11: Simulation In QuestaSim with Balsas testbench

Figure 8.12 shows a zoomed in part of Figure 8.11. As seen, it is easier to see
the readout sequence here. First, the address is set before the adr.req is asserted.
After some time an adr.ack is given by the balsa generated testbench. After the four-
phase handshaking on channel adr is done, SE.req is asserted. The balsa generated
testbench is not driving SE.data to anything else than zero. Therefore, this signal
will not change during the entire simulation. On the other hand, the SE.ack is given
by the testbench as a response to the SE.req. At the end, the handshaking of the
channel dataRead_0 is seen. As seen in Figure 8.12, the address given to the flash i.e.
adr_0d, is kept stable until the handshaking of the adr and SE channels is complete.
This is a requirement given by the flash for a successful readout.

Figure 8.12: Simulation In QuestaSim with Balsas testbench, zoomed in

8.3.2 Manually generated Verilog testbench

Figure 8.13 on the next page shows the test environment for the asynchronous flash
readout. As mentioned before, the asynchronous flash readout is using a combination
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of Balsa logic and Verilog logic. A hierarchical level called ’Top’ is used to connect
the netlist from the Balsa logic and the FlashWrapper as seen in Figure 8.13. The
automatically generated Balsa testbench is not suitable for simulating this new level
i.e. ’Top’. This is because Balsa is only capable of generating a testbench for the
Balsa part. The FlashWrapper is however not catered for using this testbench. Hence,
a manually written testbench is used for simulating ’Top’. The testbench provides
stimuli to ’Top’, to verify that it behaves as desired. The testbench code for the
asynchronous flash readout has been provided in Appendix A.11 on page 156 for the
single rail netlist and Appendix A.12 on page 159 and for the dual rail netlist. An
Register-Transfer Level (RTL) simulation is conducted and a wave is produced that
verifies the module functionality.

Balsa Verilog 
netlist from 

Asynchronous 
Flash Readout

Top

Testbench

FlashWrapper 
in Verilog RTL Flash

Figure 8.13: Testbench environment for the asynchronous flash readout

8.3.2.1 Single rail encoding

This section presents the simulation results for the asynchronous flash readout using
the four_b_rb i.e. single rail encoding. In this testbench, the only signals that
need to be controlled are: initialise used as a reset, activate starts the asynchronous
logic and start used to start the flash readout. After giving the initial start, the
asynchronous logic is able to do the complete readout without any interaction from
the testbench. This is clearly seen in Figure 8.14 on the facing page. As seen from
this figure, there are four separate readouts from the flash. As compared to the Balsa
generated testbench, there is a real model mimicking the behaviour of the flash in
the manually written testbench. This leads to certain notable differences. Firstly,
the FlashWrapper is using the correct timing parameters due to which the readout
takes much longer in the manually written testbench. Secondly, the data from the
flash i.e. SE.data is only valid as long as DATAVALID from the flash is high. For
the rest of the period where DATAVALID is zero, SE.data is undefined (X). This
is because in the real flash, DOUT (connected to SE.data) will be unknown during
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this period. This is different from the Balsa generated testbench, where the SE.data
is zero for the entire simulation.

Figure 8.14: Simulation In QuestaSim for single rail with testbench written in
Verilog

Figure 8.15 is the zoomed figure to show a single readout. It can be noticed that
SE.data is giving some real data from the flash during the readout period. After
analysing Figure 8.14 and Figure 8.15, it can be concluded that the asynchronous
flash readout is working as expected for the four_b_rb (single rail) encoding. The
next step involves conducting the same simulation for the dual_b (dual rail) encoding.

Figure 8.15: Simulation In QuestaSim for single rail with testbench written in
Verilog, zoomed in

8.3.2.2 Dual rail encoding

This section presents the simulation results for the asynchronous flash readout using
the dual_b i.e. dual rail encoding. The FlashWrapper is rewritten to handle dual
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rail data signals instead of the single rail data signals used so far. Apart from
this, everything else is the same as before. The simulation was re-run with the
new asynchronous flash dual rail netlist. The simulation for this has been shown in
Figure 8.16. The four separate readouts are easily recognized in the figure. Figure 8.17
is the zoomed figure to show a single readout for the dual rail simulation. After
analysing Figure 8.16 and Figure 8.17, it can be concluded that the asynchronous
flash readout is working as expected for the dual_b (dual rail) encoding.

Figure 8.16: Simulation In QuestaSim for dual-rail with testbench written in
Verilog

Figure 8.17: Simulation In QuestaSim for dual rail with testbench written in
Verilog, zoomed in



Chapter9Balsa technology

The main goal in this chapter is to generate a new technology matching the library
used at Nordic Semiconductor. Most of the files in the library called ’BorealisTech’
are not provided in the appendix. It contains confidential information from the
provider of the standard cell library, and it is not necessary for the purpose of
understanding the thesis.

Balsa generates an intermediate technology independent breeze netlist. To gener-
ate a Verilog netlist from the breeze netlist, Balsa is able to use different technologies.
The different technologies map the breeze netlist to different cell libraries. These
libraries could either be for silicon production or FPGA. The technology mapping
can be done using: only standard cells, such as AND, OR, XOR and LATCH; custom
made cells, like the Muller C; or a combination of standard cells and custom cells.
The technology provided by Balsa i.e. balsa-tech-example, is only using standard
cells. Even though this technology can be used for synthesis, the netlist generated
will be of an inferior quality. This technology only serves as a template for the
creation of custom made technologies.

For Balsa to produce a DI netlist, the timing assumptions for all isochronic forks
in the breeze components must be met. The example technology provided by Balsa,
generates functionally correct cells but does not make sure that the isochronic timing
assumptions for the forks are met. Moreover, most of the complex cell structures
are constructed by using local feedback loops. Figure 9.1 on the following page
shows a Muller C element generated using standard cell (the AO222 cell) in the
Balsa example technology. The existence of a feedback loop is clearly visible. Such
feedback loops should by far be avoided as they can lead to timing complications in
the backend flow. Therefore, the user is expected to generate their own technology,
specifically tailored according to their needs and the library used.

Furthermore, all of the technologies presented in the Balsa manual [24], including
the example technology, are available in Balsa version 3.5. However, only the example
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AO222

Y

A

B

Figure 9.1: A Muller C element designed using the AO222 standard cell

technology is working in Balsa version 4.0. It was mentioned on the Balsa webpage
[23] that the developer of Balsa could be contacted to obtain technologies to support
other cell libraries. Therefore, an email was sent to the developers and they replied
by saying that they could not provide other technologies, but the Balsa manual can
be referred to generate the required new technology. Hence, a new technology had to
be generated for this thesis.

9.1 Generating a new technology

The new technology generated was given the name BorealisTech. Given below are
the steps that were followed to generate this technology. However, Chapter 9 of [24]
can be referred for a more detailed and thorough explanation.

– Initially, a file with the name BorealisTech-cells.net was created. For each of
the cells in the target library, an entry in this file had to be created. This entry
can either be in the form of a simple list of the inputs and outputs as shown
below for the AND gate:

( circuit " AN2D0BWP7T "
(ports

("A1" input 1)
("A2" input 1)
("Z" output 1)

)
(nets)
( instances )

)

or in the form of an instruction for Balsa on how to create a more complex
structure by connecting several primitive gates together, as shown below in
the implementation of a 3 input Muller C using an SR-latch and some other
standard primitive gates:



9.1. GENERATING A NEW TECHNOLOGY 97

; 3 input Muller C
( circuit " MC3X1 "

( ports
("Z" output 1)
("A" input 1)
("B" input 1)
("C" input 1)
(" initialise " input 1)

)
(nets

("set" 1)
("clr" 1)
(" nReset " 1)
("QN" 1)

)
( instances

( instance " RSLATX1 " ("Z" ("QN" 0) ("clr" 0) ("set" 0)))
( instance " AN3D0BWP7T " ("A" "B" "C" ("set" 0)))
( instance " AOI31D0BWP7T " ("A" "B" "C" (" nReset " 0) ("clr" 0)))
( instance " INVD0BWP7T " ((" nReset " 0) " initialise "))

)
( attributes (global - ports " initialise ") (cell - type " helper "))

)

To simplify the generation of the file BorealisTech-cells.net, the process was
automated by making a script which can be found in Appendix C.1 on page 181.
In this thesis, three different libraries were used: the standard cell library,
the two-input Muller C library and the SR-latch library. Since, the two-input
Muller C library and the SR-latch library were not a part of the standard library,
they were specially made by the technology group at Nordic Semiconductor for
this thesis. All these libraries were combined into a single library file called
BorealisTech-cells.v. The script automatically extracts the input and output
list for the various cells in this library, restructures them into the correct format
and places them into the file BorealisTech-cells.net. The standard cell library
contains many more cell types than that can be used in Balsa. In order to avoid
the inclusion of these cells in the file BorealisTech-cells.net, another input file
called IncludeOnly was used to filter the cells that should be included in the file
BorealisTech-cells.net. The complex structures in the file BorealisTech-cells.net
were then made manually for the required cells. This was an iterative process
i.e. new complex structures were made for the design whenever they were
needed.

– The next step was to map all cells that were going to be used in the library by
Balsa into something that Balsa understood. This was done in the file called
gate-mapping. The example given below shows the mapping of the AND gates
in the library to those in Balsa.
;;; and{n}: out ,in1 ,in2 ...
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("and2" (" AN2D1BWP7T " 1 2 0) (0 " AN2D0BWP7T ")(1 " AN2D1BWP7T ")(2 " AN2D2BWP7T "))
("and3" (" AN3D1BWP7T " 1 2 3 0) (0 " AN3D0BWP7T ")(1 " AN3D1BWP7T ")(2 " AN3D2BWP7T "))
("and4" (" AN4D1BWP7T " 1 2 3 4 0) (0 " AN4D0BWP7T ")(1 " AN4D1BWP7T ")(2 " AN4D2BWP7T "))

In the first line of this example, the two-input AND gate AN2D1BWP7T of
the library is mapped to Balsa’s and2. ’1 2 0’ represents the order in which
the pins should be connected and ’(0 "AN2D0BWP7T")(1 "AN2D1BWP7T")(2
"AN2D2BWP7T")’ gives the different drive strengths for the AND gate.

– The next step was to generate the component.abs file. This is a file where
it is possible to generate different versions of the breeze components in the
Balsa language, like the loop and sequencer. Refer Chapter 13.9 of [24] for
a complete list of the breeze components available in Balsa. In this thesis,
no special variants of the breeze components were used, therefore only the
implementations provided by Balsa were used. Hence, the components.abs file is
only pointing towards Balsa’s standard implementation for breeze components
as shown below:
;;;
;;; ‘components .abs ’
;;; Breeze primitive components for technology verilog
;;;
;;; 10 Aug 2001 , Andrew Bardsley
;;;
;;; $Id: components .abs ,v 1.6 2002/03/13 15:18:50 bardslea Exp $
;;;

( include tech " common " " components ")

– Then, the configuration file called startup.scm was created and has been
provided in Appendix C.2 on page 183 .

– All the generated files such as BorealisTech-cells.net, gate-mapping and compo-
nent.abs were then placed in the folder balsa/share/tech/BorealisTech . The
parameter ’BALSATECH’ was set to ’BorealisTech’. Then, the following com-
mand was run:

balsa -make - helpers balsa -cells.net gm

Balsa has a long list of cells that it must have in the gate-mappings file. Only
some of the required cells in the files gate-mappings and BorealisTech-cells.net
were given manually. Balsa has built in, standard, not optimal implementation
for all the cells it needs to use if the user is not defining new implementations.
Running the above ’balsa-make-helpers’ command creates two files: balsa-
cells.net and gm. This command generates the remaining contents, i.e. missing
cells and mappings, for these files. balsa-cells.net is a file with the missing
cells for BorealisTech-cells.net while gm is a file with the missing cells for
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gate-mappings. The contents of the gm file must be concatenated to the end of
the gate-mappings file. By doing so a complete library has now been specified.

– At last, the file balsa-mgr.cfg was created. This file was simply copied from the
technology example provided by Balsa without any modification. This file is
providing balsa-mgr with information on the various options available for the
new technology.





Chapter10Exploring Balsa’s Delay
Insensitivity

In order to integrate Balsa with Nordic Semiconductor’s design flow, a new Balsa
technology is required for the libraries used at Nordic Semiconductor. Chapter 9
describes the generation of this new technology for Balsa.

The objective for this chapter is to verify if and how the Balsa generated netlist
is Delay Insensitive (DI). Chapter 8 presents a Balsa design implementation for
the asynchronous flash readout. A Balsa netlist for this design is also generated.
However, this netlist is quite big, and manually verifying the delay insensitivity for
this netlist is too complex and time consuming. Carrying out this experiment on
a smaller design was considered to be more feasible. Therefore, the design for the
buffer example presented in Section 6.1 on page 59 has instead been used for the
delay insensitivity analysis.

10.1 Test Design: Buffer example

Given below is the code from [24] for the buffer used in this test. It has been altered
from being an 8 bit wide buffer to a single bit buffer. This is done to simplify the
netlist so as to make the manual inspection feasible.

import [ balsa . types . basic ]

procedure buffer1 ( input i : 1 bits; output o : 1 bits) is
variable x : 1 bits

begin
loop

i -> x -- Input communication
; -- sequence operator
o <- x -- Output communication

end
end
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This code above will infinitely request for data on the input i, transfer it to the
internal storage x, and request for a handshake to send it out on output o. The
handshake circuit graph for the given code is shown in Figure 10.1.

→ →x

;
*

*

i o

Loop

Sequencer

VariableFetch Fetch

►

Figure 10.1: The buffer handshake circuit graph

In this figure, the big circles are the breeze components. Breeze components can
be defined as the handshake components present in the breeze netlist. The lines
connecting the different breeze components are handshake channels. The ends of a
line are marked by circles indicating a passive or an active port. As mentioned before,
a filled circle indicates an active port while an empty circle indicates a passive port.
Furthermore, a line with an arrow is a handshake channel with data. The direction
of the arrow gives the direction of the data flow. On the hand, a line without an
arrow is just a handshake channel without data.

It is easy to recognize the different parts of the code in the handshake circuit
graph. Initially, the handshake signal activate commences the circuit action. This
signal is not included in the code, but is automatically added by Balsa to handshake
the different control components. The activate signal is connected to the breeze
component loop. Upon activation, this component will start the handshaking on the
active port. When it receives an acknowledgement on the handshake channel, it will
automatically start a new handshake session. This will go on forever and the loop
component by itself will never acknowledge the activate signal on its passive input
port. The next breeze component is the sequencer. Upon receiving a request on its
passive input port, the sequencer will first do a handshake on the left channel with
the star (?), and then do a handshake on the right channel. On successful completion
of the handshaking on the right channel, the sequencer gives an acknowledgement to
the loop on its passive port. Upon a request on its passive port, the fetch component
will request for data from the active data input port on its left, and then send the
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data out to the active data output port on its right. On successfully sending the data
out, an acknowledgement is given on the passive port. The last component is the
variable. This component has only passive data ports. The port on the left requests
to store a value into the variable component, while the port on the right requests the
value stored in the variable component.

To carry this test forward, a normal Balsa synthesis flow, as explained in Sec-
tion 8.2 on page 88, was followed. Since, Balsa claims the ’dual_b’ generated netlist
to be delay insensitive, it was selected for the synthesis and a Verilog netlist was
produced. This was done to be able to analyze the generated netlist and verify
Balsa’s claim of DI.

The generated netlist was then manually drawn into the circuit diagram shown in
Figure 10.2 on the following page. The netlist code is provided in Appendix B.2 on
page 164. The different components in the handshake circuit graph in Figure 10.1 on
the facing page are easily noticeable in the circuit diagram. The handshake circuit
graph represents the balsa netlist and the circuit diagram represents the Verilog
netlist. Balsa makes a one-to-one mapping between the Balsa netlist and the Verilog
netlist.

10.2 Circuit operation and delay insensitivity analysis

This section explains the operation of the circuit shown in Figure 10.2 on the next
page and analyzes how it is DI. Before getting further deep into the circuit operation
or analysis, it is vital to understand the requirements for a circuit to be DI and some
general concepts that will serve as basics for further reading. From the discussion
in Section 2.9.1 on page 14, it can be concluded that in a purely DI design, none
of the delays need to be catered for. However, practically it is almost impossible
to achieve a pure DI in a circuit. In practical realizations there exist some paths
that must be handled in special way. These paths are usually forks or combinatorial
loops. In such cases, all the forks must be made isochronic (refer Section 2.9.2 on
page 15) and the combinatorial loops could be controlled by employing a handshaking
mechanism. Therefore, if handshaking is employed on a combinatorial loop, no timing
assumption needs to be made for that loop. [4] claims that Balsa handles the various
combinatorial loops present in the circuit by using handshaking, and if the breeze
components are ensured to be QDI by fulfilling the isochronic fork timing assumption,
then the design is DI. The breeze components can be made QDI by two methods.
The first method involves doing a local timing analysis for isochronic forks, for each
breeze component on the netlist. Thus, the isochronic fork assumption must be
fulfilled separately in each component by inserting delay elements if necessary to
make one path slower than the other. The second method involves making library
elements for the different breeze components, where the isochronic fork assumptions
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Figure 10.2: Circuit diagram of the Verilog netlist

are fulfilled by design. This implies that correct delays must be ensured in the forks
while designing the elements.

The analysis of the circuit is done by following the flow of control (handshaking)
and data through the circuit, as seen in Figure 10.5 to Figure 10.7. The labels for
the various signal names have been removed in these figures, but can be found in
Figure 10.2. The green line signifies pure handshake signals. The violet line pair is a
dual rail line. It signifies the handshake and data signal coded together in a dual rail
line as seen in Figure 10.3 on the next page. At anytime only one line of the dual
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rail lines can be high. Having both of them high at the same time is an illegal state.
For the simplifying the analysis, the breeze component loop in Figure 10.2 on the
facing page has been changed, as seen in Figure 10.4. Both the left and right circuits
are logically equivalent.

request

data 0 + 
acknowledge

data 1 + 
acknowledge

Data to send 1 0

Acknowledging and 
sending the data value 

1 at the same time

Acknowledging and 
sending the data value 

0 at the same time

request + data 0

request + data 1

acknowledge

Requesting the 
receiver to receive 

data, and sending the 
data value1 at the 

same time

Requesting the 
receiver to receive 

data, and sending the 
data value 0 at the 

same time

Figure 10.3: Dual rail encoding

=

Figure 10.4: Simplification in the Verilog netlist for the loop component

10.2.1 Circuit analysis

All the paths in the circuit are initialised to zero.
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Figure 10.5: Circuit analysis

– After the initialization stage, the activate request activate_0r into the loop com-
ponent goes high. As seen in Figure 10.5a, the acknowledgement activate_0a is
never given. This is because the loop component runs forever. The activate_0r
goes through the loop component into the sequencer and the t-element (telemr).
Since, the input Ba into the Muller C element is 0, the Aa output from the
t-element is also 0, while the Br output is 1. The Br output from the t-element
becomes the request on the first handshake channel out from the sequencer.
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– This handshake channel is connected to the activate connection (the activate_0r
and activate_0a pair) of the input fetch 0 component. The handshake request
from the sequencer is coming into the fetch 0 component and goes directly out
on the i_0r, as seen in Figure 10.5b on the preceding page. This request goes
out to the environment and is asking for the data on the dual rail channel pair
i.e. either i_0a0d or i_0a1d. As mentioned before, this dual rail channel pair
will contain both the data and the acknowledgement.

– Then, the environment acknowledges the request for the data and will drive
either of the lines i_0a0d or i_0a1d high, as sen in Figure 10.5c on the facing
page. The data goes directly out from the fetch 0 component, and as a request
into the variable component for sending data.

– Either the set or reset will go high and cause either Q or Q respectively to go
high. See Figure 10.5d on the preceding page for reference.

– In the component variable, when either both set and Q are high or both reset
and Q are high, the write_0a goes high. This symbolizes that the data is stored
in the latch. The write_0a is the acknowledgement from the variable component
to the fetch 0 component for receiving the data. This acknowledgement is then
further passed on from fetch 0 to the sequencer. This completes the handshake
for requesting data. All this has been shown in Figure 10.6a on the following
page.

– Both the inputs to the Muller C i.e. Ar and Ba are now 1. Therefore, the
output from the Muller C becomes 1 as well. This will now turn off the request
on the first handshake channel in the sequencer and will turn on the request on
the second handshake channel. This request goes into the fetch 1 component.
Then, fetch 1 passes this request on to the variable component requesting for
data. Refer Figure 10.6b on the next page.

– In Figure 10.6c on the following page, the dual rail channel pair input data is
no longer driven, due to the turning off of the request in the first handshake
channel. Also, the acknowledgement write_0a goes down, followed by the
lowering of activateOut_0a in the sequencer. This completes the four phase
handshaking of the first handshake channel.
The request from the fetch 1 to the variable causes the data from variable to
be sent to fetch 1 over the dual rail channel pair into the environment.

– In Figure 10.6d on the next page, the acknowledgement from the environment is
given to the fetch 1 component from where it is further passed on the sequencer.
The sequencer in turn passes the acknowledgement to the loop.

– As seen in Figure 10.7a on page 109, the activateOut_0a into the loop element
is causing the activate request activateOut_0r to go low.
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Figure 10.6: Circuit analysis

– Both the inputs to the Muller C i.e. Ar and Ba are now 0, thus making the
output from the Muller C 0 as well. This turns off the request in the second
handshake channel. The dual rail channel pair output data is no longer driven
from the fetch 1 element, due to the turning off of the request in the second
handshake channel. Refer Figure 10.7b on the next page.

– As a consequence of this, the acknowledgement o_0a is lowered by the envi-
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Figure 10.7: Circuit analysis

ronment. Refer Figure 10.7c. This acknowledgement is further passed on to
the sequencer and the loop, thus completing the four phase handshaking of
the second handshake channel and the four phase handshaking between the
sequencer and the loop respectively. The lowering of activateOut_0a in the
loop turns on activateOut_0r. This starts the sequence all over again.
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10.2.2 Delay insensitivity analysis

As mentioned in Section 10.2, one of the requirements for a Balsa design to be DI is
that all the combinatorial loops in the circuit must be controlled by handshaking
signals. This buffer circuit on its own lacks the presence of any combinatorial loops.
Therefore, to look into this concept further, it is assumed that this buffer circuit
is connected to some other Balsa component attached to the input channel inp of
the fetch 0 component or the output channel out of the fetch 1 component. The
insertion of this additional circuitry marks the presence of a combinatorial loop as
shown in Figure 10.8 with the red color. However, all the combinatorial loops in this
figure are formed by the handshaking signals themselves. Since, this is as per the
requirement, these combinatorial loops are safe by design and are not breaking the
delay insensitivity of this circuit.
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Figure 10.8: Combinatorial loop in the buffer design

The second requirement for Balsa’s DI operation is that all the components must
be ensured to be QDI. This is accomplished by ensuring that the isochronic fork
assumption in the components where forks are present must be met. In the buffer
circuit, only the components t-element (telemr) and variable comprise of a fork.
Thus, only these elements have to be analysed further.

There exist two forks in the t-element (telemr) element: one at the Ar input and
the other at the output from the Muller C element. The way this element has been
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used, it is made sure by design that only one line in each of the forks can change at
a time. Therefore, this element is safe by design. Also, both the forks are a part of
the handshaking and are ensuring the correct order of operation. The working of the
telemr element is shown in Figure 10.9. In these figures, the red lines indicate lines
which are high (i.e. 1) and the blue lines indicate lines which are low (i.e. 0).
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Figure 10.9: Working of the telemr element
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There also exist two forks in the variable component: one at the Q output of the
SR-latch and the other at the Q output of the SR-latch. Figure 10.10 highlights the
former fork. The latter fork is basically the same but just on the other output of
the SR-latch. The two paths in the former fork are given by the colours red and
blue. There exists a possibility for a hazard in the variable component. However,
the probability for this hazard to be triggered is extremely less. For this circuit to
work, it must be ensured that the red path is slower than the blue path. This is
because if the red path is faster than the blue path, the previous old value present
on the blue input line to the AND gate will be propagated when the AND gate is
opened. This will result in a glitch on the output of the AND gate when the new
value finally reaches on the blue input line. This can be accomplished by ensuring
that the path from the Q output of the SR-latch to output write_0a of the variable
is slower than the blue path. If the same is ensured for the Q output of the SR-latch,
then the variable component will be QDI and the circuit will be hazard free.
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10.3 Discussion

In order to generate a DI timing model for this circuit, all components must be
ensured to be QDI i.e. the isochronic fork timing assumption for all forks must be
fulfilled, and all the combinatorial loops must be controlled by handshaking signals.
Since, the fetch 0, fetch 1 and loop components lack forks, they are QDI by design.
If the other two components that comprise of forks i.e. t-element (telemr) and
variable, are treated in the correct way as mentioned above, they will be QDI as well.
Moreover, as explained above, all the combinatorial loops in this circuit are formed
by handshaking signals. Since, the two requirements for delay insensitivity are met,
it can be said that this circuit is DI.

It is noteworthy that a considerable time was spent analysing the timing model
(i.e DI) generated by Balsa and how it works. Balsa does not provide any information
on the two requirements (mentioned above) to ensure the delay insensitivity of the
Balsa generated circuit. Thus, this had to be investigated with some guidance from
[4].





Chapter11Integrating Balsa design into
Nordic Semiconductor’s tool chain

The main objective for this chapter is to try to integrate the Balsa output i.e. the
Balsa Verilog netlist with Nordic Semiconductor’s tool chain at the earliest possible
stage of the design flow. The earliest stage would be to integrate the Balsa Verilog
netlist with the normal synchronous Verilog design and run it through Synopsys
Design Compiler (DC). This test will be carried out by combining the previously
generated Balsa Verilog netlist in Chapter 10 with a normal synchronous Verilog
RTL. This will then be tested through a self checking testbench verifying the correct
functionality of the Balsa code. The same testbench will also be used on the combined
netlist generated by DC. The criteria for successful integration would be that the
testbench is still passing for the combined netlist, and a manual inspection of this
netlist reveals that there have been no functional changes to the Balsa part of the
netlist.

11.1 Integrating Balsa Verilog netlist with synchronous
Verilog RTL

The setup for integrating the Balsa Verilog netlist with the synchronous Verilog RTL
is shown in Figure 11.1 on the following page. It comprises of two main blocks: the
Balsa block and the Verilog block. The Balsa block is the Verilog netlist generated
in Chapter 10 for the buffer example. The Verilog block is a synchronous Verilog
RTL called ToyVerilog, which interfaces to all the inputs and outputs of the Balsa
block and controls and communicates with the Balsa asynchronous logic. These two
blocks are instantiated inside the Device Under Test (DUT) hierarchical level called
DUT. The DUT is going to be used as the top level of the design and is also written
in Verilog RTL. It is instantiated inside the testbench called test_toyVerilog, which
will provide the necessary stimuli and verify the correct behaviour of the circuit.

115
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Balsa Verilog 
netlist

Synchronous 
Verilog RTL
(ToyVerilog)

DUT

Testbench

Figure 11.1: Block diagram for the test setup

11.1.1 Synchronous Verilog RTL block: ToyVerilog

A more detailed figure of the working design with the various signals and interface
connections to and from the ToyVerilog module is shown in Figure 11.2 on the
next page. The complete code for the module ToyVerilog has been provided in
Appendix B.3 on page 168.

The state machine seen in Figure 11.2 is used to drive the signals initialise and
activate_0r. The initialise signal acts as a reset for the entire Balsa block, and the
activate_0r signal starts the execution of the Balsa block. A timing diagram showing
the operation of these signals has been presented in Figure 11.3 on the next page.

The input channel i is connected to the ToyVerilog module. The signal i_0r is an
input to ToyVerilog, going directly through this module and into the testbench. On
the other hand, the signal i_0a0d and i_0a1d are outputs from flip-flops inside the
ToyVerilog module. Both the clock (ckDataIn) and data (a and b) to these flip-flops
are controlled directly from the testbench. The reason for passing signal i_0a0d and
i_0a1d through flip-flips instead of controlling them directly from the testbench is to
have some logic present inside the ToyVerilog module for the i and o data channels.
This was needed to actually test the integration of Balsa with some Verilog code,
which would not otherwise be present on the data channel. It is important to see if
Balsa can take input from the synchronous logic, therefore, these signals are coming
from flip-flops. Even though the ToyVerilog module has a main input clock (ck)
controlling the state machine, a separate clock (ckDataIn) is used for these flip-flops.
This is done so as to have exclusive control of the delay from receiving the request
(i_0r) for data, until the data/acknowledgement (i_0a0d and i_0a1d) is sent back
to the Balsa block. Controlling the delay is important to incorporate a random delay
on this loop, in order to test that the design does not break if there are large delay
variations in the handshake loop.
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Figure 11.2: Detailed block diagram for the toy design

initialise
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activate_a

Figure 11.3: Timing diagram for initialise and activate

The output channel o is also connected to the ToyVerilog module. The signals
o_0r0d and o_0r1d are inputs to ToyVerilog, going directly through this module and
into the testbench. On the other hand the signal o_0a is an output from a flip-flop
inside the ToyVerilog module. This flip-flop also has a separate clock (ckDataOut)
used to control the timing. The reason for this configuration is the same as for the
input channel (i).
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11.1.2 Testbench description and verification cases

The testbench has two main functions. First, providing stimuli to the DUT and
second, verifying the correct behaviour of the Balsa buffer design. The testbench
is self checking and gives a pass or fail along with the error count at the end. The
complete testbench code has been provided in Appendix B.5 on page 174.

Besides providing the clock and reset, the testbench is responsible for providing
stimuli in the form of inputs to the input (i) and output (o) channel of the buffer. On
detecting a posedge on the signal i_0r (req), the testbench drives the data channel i.e.
1 on either a or b randomly, but never on both simultaneously. After a random delay,
the data is clocked via ckDataIn through the flip-flops present inside the ToyVerilog
module, and into the dual rail channel pair i_0a0d and i_0a1d in the Balsa buffer.
On detecting a negedge on the signal i_0r (req), the testbench drives both a and
b to 0. After a random delay, the data is once again clocked via ckDataIn into the
Balsa buffer.

The testbench detects a posedge on either c (o_0r0d) or d (o_0r1d), thus
indicating receiving of data. The testbench will then set the ack high, and after a
random delay the ack is clocked via ckDataOut through the flip-flop present inside
the ToyVerilog module into the o_0a in the Balsa buffer. When the testbench detects
a 0 on both c and d, the ack is set to 0, and after a random delay it is once again
clocked via ckDataOut into the Balsa buffer.

The timing diagram exhibiting the above mentioned operation of the various
signals is shown in Figure 11.4.
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Figure 11.4: Timing diagram for the toy design
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The testbench is also ensuring that the data received on the output channel o is
the same as the data sent on the input channel i, and that there are no hazards i.e.
glitches present on the output channel o. If any of the above stated tests fail, the
testbench fails with an error message.

The various verification test cases run by the testbench are shown in Table 11.1.

Table 11.1: Verification cases

Verification
item Behaviour to be verified

1 Random delay from request of data (i_0r) until data is given
(i_0a0d/i_0a1d)

2 Random delay from receiving data (o_0r0d/o_0r1d) until
acknowledgement (o_0a) is given

3 Random data stimuli
4 Sending arbitrary number of data bits (upto 10000) through the

data bit channel
5 Verifying that received data is the same as sent data
6 Glitch filter verifying that no glitch is present on output

11.1.3 RTL simulation

Figure 11.5: RTL simulatin of the Toy design

The RTL simulation of the combined design (Balsa buffer with the ToyVerilog
module), called Toy design from now on, was performed by using Mentor Graphics
QuestaSim. A short time slot from the simulation has been shown in Figure 11.5. In
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Figure 11.6: Zoomed in at one of the events in the RTL simulation of the Toy
design

the RTL simulation there are no delays through the logic or the wires. As a result,
it is impossible to see the propagation of the handshake signals since many signal
transitions are taking place simultaneously. Figure 11.6 shows a zoomed in delta cycle
mode for the same simulation on one of the edges. A delta cycle mode represents a
minuscule level examination of the simulation wave. It shows the order in which the
simulator evaluates the different signals. A manual inspection was done for some of
the points in the wave using the delta cycle mode to verify the correct behaviour.
Besides this, the testbench is self checking and monitors the correct behaviour of the
design. Since, the manual inspection and the self checking testbench did not reveal
any errors, it can be concluded that the combined design of the Balsa buffer with
the ToyVerilog module is working as intended.

11.2 Synthesis of the Toy design

Synthesizing a design using Design Compiler (DC) is the first step in Nordic Semi-
conductor’s tool chain towards fabrication. This is the first place where the Balsa
Verilog netlist could be combined with the synchronous design and integrated into
Nordic Semiconductors synchronous tool chain. This is what is trying to be achieved
in this section.
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Initially, the scripts for running DC were configured, and an elaboration and
compilation of the design was done. For a more detailed explanation of these initial
steps, [11] can be referred. The elaboration of the design gave no errors but two
warnings. However, these warning were not critical and were due to some setup
issues in the scripts. Hence, they could be ignored. The compilation of the design
also gave no errors but three warnings. These warnings were due to a mismatch
between the operating conditions of the libraries. However, these warnings could be
ignored since the design was not intended for fabrication and the existing libraries
were good enough for the purpose of this test. In case a design needs to be taped
out, this must be dealt with. After a successful compilation, an optimized netlist for
the Toy design was obtained. The logs for the elaboration and compilation can be
found in Appendix B.6 on page 180 and the netlist can be found in Appendix B.7 on
page 180.

The next step was to perform a simulation on the generated netlist. The same
testbench as before was used for this purpose. Initially, the netlist simulation failed.
This was mainly because of an error while setting up the simulation. A wrong library
for the SR-latch that required the power pins (VDD and VSS) to be connected was
selected. At this stage the power nets should not be included. Therefore, a different
library for the SR-latch that did not require the power nets to be connected was used
instead. Once this was fixed, the netlist simulation passed successfully without any
errors. It is noteworthy that this netlist lacked timing information. This implies that
it does not include any logic or wire delays yet. Hence, the next step was to generate
a SDF file giving the timing information for the various propagation delays through
the circuit. Synopsis Prime Time (PT) was used to generate the SDF. A new netlist
simulation with back annotated timing was then performed. This simulation failed
with several errors. Some errors were in the form of glitches detected by the glitch
filter in the testbench while the others accrued to receiving incorrect data on the
output. After some thorough inspection, an error was found in the testbench. The
testbench did not always handle the delay in the design correctly and fell out of
synchronization with the design. The testbench was therefore updated to handle any
delay given by the design. Then, the netlist was resimulated and it passed without
any errors.

The next step was to ensure that the DC did not optimize the asynchronous Balsa
buffer part, so that it was still functionally working as intended. This is because while
an optimization done by DC for a synchronous design is correct, it could break the
working of an asynchronous design. Therefore, the optimized netlist was manually
compared component by component to the original Balsa netlist in order to verify
the same behaviour. This inspection revealed that most of the Balsa design was left
untouched, however there were some minor differences. Firstly, there was a small
difference in the loop component as seen in Figure 11.7a and in the t-element (telemr)
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as seen in Figure 11.7b. The deviations in both the components from their original
ones do not change their functionality at all, thus making them logically equivalent.
Secondly, it was observed that some logical elements were replaced by more optimal
elements, for example NAND gates were used instead of AND gates and buffers were
replaced by inverters, but DC had ensured that the overall functionality remained
the same. This is normal and expected behaviour of DC.

=

(a) loop element

C C

=

(b) telemr element

Figure 11.7: Changes in logic after synthesis

11.2.1 Triggering the error on the isochronic fork

As discussed in Section 10.2.2 on page 110 there exist two forks in the variable com-
ponent which are not safe by design. This is because the isochronic fork assumption
is not fulfilled due to which the variable component is not QDI. As mentioned earlier,
this is a possible hazard in the design, as seen earlier in Figure 10.10 on page 112.
Therefore, at first it was manually verified that this hazard was not present in the
Toy design. This was accomplished by checking that the read signal (read_0r) comes
after the dual rail data signal (store_0n and store_1n). Refer Figure 10.10 on
page 112 for the signal names. As seen in Figure 11.8 on the next page, the signal
read_0r is coming 0.696 ns after the dual rail data signal. This is thereby making
this fork safe, as also seen in the same figure where there are no glitches present on
the signals read_0a0d and read_0a1d (denoted by the red lines).

In order to see the consequences of the signal read_0r coming before the dual rail
data signal, the timing for the signals involved had to be manipulated. The easiest
solution would be to increase the delay through the buffers between the SR-latch
and the two output AND gates. This would simply involve changing the timing for
these buffers in the SDF file. However, these buffers were removed by the synthesis
of the design. Therefore, in order to keep these buffers, an attribute dont_touch was
applied to these buffers as given below:

set_attribute u_Balsabuffer1 /I0/I3 dont_touch true
set_attribute u_Balsabuffer1 /I0/I4 dont_touch true
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Figure 11.8: The hazard when a glitch is not triggered

Then, a new compilation was done and an inspection of the new netlist generated
revealed that the buffers were not removed. A new SDF was generated and a new
simulation was run. However, adding the buffers still did not give a big enough delay
to trigger the hazard. Hence, the delay through the buffer had to be increased in the
SDF file. Given below are the lines from the SDF file that were changed from

( INSTANCE u_Balsabuffer1 /I0/I3)
( DELAY ( ABSOLUTE ( IOPATH I Z (0 .057::0.059 ) (0 .060::0.062 ))))

( INSTANCE u_Balsabuffer1 /I0/I4)
( DELAY ( ABSOLUTE ( IOPATH I Z (0 .057::0.059 ) (0 .060::0.062 ))))

to

( INSTANCE u_Balsabuffer1 /I0/I3)
( DELAY ( ABSOLUTE ( IOPATH I Z (2 .057::2.059 ) (2 .060::2.062 ))))

( INSTANCE u_Balsabuffer1 /I0/I4)
( DELAY ( ABSOLUTE ( IOPATH I Z (2 .057::2.059 ) (2 .060::2.062 ))))

Doing so increases the delay through the buffer by 2 ns. Then, a new simulation
was run and the hazard was triggered at several places giving many errors in the
testbench. Figure 11.9 on the following page is showing the simulation at the same
time as before, but this time with the hazard being present. From this figure, it can
be clearly seen that the signal read_0r is coming much before the dual rail data
signals. Hence, for this period of time, the old value on the dual rail data signals is
passed through the AND gates, thus producing a glitch on the output, as seen from
the red signals in the figure. This proves that there exists the possibility of hazards
in this design, if the delay in these forks is not monitored to be isochronic.
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Figure 11.9: The hazard when a glitch is triggered

11.3 Discussion

This chapter tested the integration of the Balsa Verilog netlist with the normal
synchronous Verilog design. All the criteria set for successful integration were met:
the self checking testbench passed for the combined design (Balsa buffer with the
ToyVerilog module) both before and after synthesis and the manual inspection for
the combined netlist did not show any changes in the functional behaviour for the
Balsa part. Hence, it can be concluded that the integration of an asynchronous
design written in the Balsa language is possible with Nordic Semiconductor’s tool
chain for synchronous design.
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In this thesis, several asynchronous design tools were investigated and the most
suitable tool for integrating an asynchronous design with Nordic Semiconductor’s
tool chain was selected. Balsa, the selected tool, was then employed to design an
asynchronous flash readout. Furthermore, the netlist from a simple buffer designed
in Balsa was investigated to analyze the delay insensitivity nature of Balsa, and
was then combined with a synchronous RTL design to be synthesized using Design
Compiler.

The task of selecting an asynchronous tool was commenced by studying fifteen
asynchronous design tools. Five tools were shortlisted for further investigation based
on the following criteria: longevity, tool complexity, cost, estimate of performance of
corresponding circuits, commercial or non-commercial implementations, delay model
used by the final netlist, support and integration with Nordic Semiconductor’s design
flow. The five shortlisted tools were Balsa, Petrify, Verisyn, Pipefitter and ACC.
The integration aspects, possibilities and issues of these shortlisted tools with Nordic
Semiconductor’s tool chain were then examined. This was done by installing and
running a simple design through each of them. Balsa was the final selected tool. This
was primarily because Balsa can generate a Delay Insensitive (DI) Verilog netlist. A
DI delay model was preferred because no timing checks are required to assure the
correct behaviour of the design.

An asynchronous flash readout was designed using Balsa. The asynchronous flash
readout takes control of the flash and performs readouts from the flash. The entire
design consists of two main blocks. The first block controls the flash readout and was
implemented in Balsa. The second block is a flash wrapper containing the flash, logic
interfacing the Balsa control signals to the flash and the storage elements storing the
data read from the flash. The second block was implemented in Verilog. The first
block containing the Balsa code was synthesized into a Verilog netlist. Balsa can
generate a Verilog netlist using several data encoding styles. A Verilog netlist for both
single rail and dual rail data encoding styles was generated. Verification of the Balsa
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code functionality was done by performing a simulation using the single rail netlist.
This simulation revealed that the Balsa code was functionally working as intended.
However, the single rail data encoding style does not produce a delay insensitive
netlist, whereas a dual rail data encoding style does. Therefore, a dual rail netlist
was generated as the final result for this implementation. A simulation performed
using the dual rail netlist verified that the design was still working correctly.

An analysis of the delay insensitivity nature of Balsa was performed using a simple
buffer design. In order to perform this analysis, a new technology matching the
library used at Nordic Semiconductor was developed. The netlist for the buffer design
was broken down into breeze components and the individual breeze components were
then analysed. For a Balsa generated netlist to be DI all the combinatorial loops
must be controlled by handshaking signals and all components must be Quassi Delay
Insensitive (QDI). For a component to be QDI, all forks must fulfil the isochronic
fork timing assumption. For the buffer netlist, all the combinatorial loops were by
design controlled by handshaking signals, but not all component implementations
used in this thesis met the isochronic fork timing assumption by design. Hence,
not all components were QDI by design. There exists a possibility of a hazard in
the variable component. However, the probability for this hazard to be triggered is
extremely less. The timing for the paths present in the hazardous fork were manually
checked and were found to fulfil the isochronic fork timing assumption. Therefore,
it can be said that for the buffer design the variable component as well as all the
other components were ensured to be QDI. Since, both the requirements for delay
insensitivity were met, it can be concluded that this design is DI.

An attempt to integrate the Balsa Verilog netlist with Nordic Semiconductor’s
tool chain was made. The Balsa Verilog netlist generated from the buffer design
was combined with a normal synchronous Verilog design and run through Synopsys
Design Compiler (DC). A self checking testbench was used to verify the correct
functionality of the combined design both before and after it was synthesized by DC.
Also, a manual inspection of the combined netlist produced by DC was performed.
No changes in the functional behaviour for the Balsa part were found. Hence, it can
be concluded that the integration of an asynchronous design written in the Balsa
language is possible with Nordic Semiconductor’s tool chain for synchronous design.



Chapter13Future work

This chapter provides the work that can be pursued in the future as a continuation
to this thesis.

– A good starting point for future work involves making all the breeze components
QDI by design. For example, the variable component in the buffer design is
not QDI by design. Even though the probability for the hazard to occur is
very low, it is not 100 % QDI. Thus, the variable component can be made QDI
by design.

– This thesis has proven that an asynchronous design written in Balsa can be
integrated into Nordic Semiconductor’s synchronous tool chain by using a
simple buffer design. However, this has to be tested yet for the main design
i.e. the asynchronous flash readout. Due to the limited time frame, this could
not be done. Therefore, an important work in the future involves integrating
the asynchronous flash readout into Nordic Semiconductor’s synchronous tool
chain.

– Conduct a power analysis and measure the power consumption during the
readout for the asynchronous flash readout. Then conduct the same analysis for
the existing synchronous flash readout at Nordic Semiconductor, and compare
the results derived.

– Some other further potential goals could be to run the asynchronous flash
readout design through the complete synchronous tool chain involving layout,
placement and route.

– An investigation of asynchronous design for writing to the flash could be made.

– Lastly, the backend tool Balsa CUBE, which is an extension to Balsa, could be
used in order to achieve performance improvements in the overall design.
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A.1 AsynchronousFlashReadout

-- Design for Asynchronous Flash Readout
import [ balsa . types . basic ]
import [ Flashcontrol ]
import [ Counter ]
import [ InitialSetup ]

procedure AsynchronousFlashReadout (
-- parameter ADDR_BITS : 8 bits ;
-- parameter DATA_BITS : 8 bits ;
sync start ;
output controlFlash : 1 bits;
input SE : 8 bits;
output adr : 8 bits;
output dataRead_0 : 8 bits;
output dataRead_1 : 8 bits;
output dataRead_2 : 8 bits;
output dataRead_3 : 8 bits

) is

-- Inital setup of constants --
constant NUM_COUNT = 4
type COUNTER_WIDTH is 4 bits -- Must be big enough for the NUM_COUNT

value

type ADDR_BITS is 8 bits
type DATA_BITS is 8 bits

-- Local variables --
sync startCounter
channel count : COUNTER_WIDTH
--sync SE
variable dataRead : array 0..3 of DATA_BITS
--array 4 of channel dataRead2 : DATA_BITS
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-- Connecting everything --

begin
InitialSetup (start , startCounter , controlFlash )
||
-- Counter ( NUM_COUNT , COUNTER_WIDTH , startCounter , count )
Counter ( startCounter , count )
||
-- FlashControl ( ADDR_BITS , DATA_BITS , COUNTER_WIDTH , count , adr , SE ,

dataRead_0 , dataRead_1 , dataRead_2 , dataRead_3 )
FlashControl (count , adr , SE , dataRead_0 , dataRead_1 , dataRead_2 ,

dataRead_3 )
end
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A.2 InitialSetup
-- Design for Initial Setup
import [ balsa . types . basic ]

procedure InitialSetup (
sync start ;
sync startCounter ;
output controlFlash : 1 bits

) is

begin
loop

select start then
controlFlash <- 1;
sync startCounter ;
controlFlash <- 0

end
end

end
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A.3 Counter
-- Design for AsynchronousCounter
import [ balsa . types . basic ]

procedure Counter (
-- parameter NUM_COUNT : cardinal ;
-- parameter COUNTER_WIDTH : type ;
sync start ;
output count : 4bits -- COUNTER_WIDTH

) is

--Can ’t send in parameters
constant NUM_COUNT = 4
type COUNTER_WIDTH is 4 bits

variable tmp , count_rg : COUNTER_WIDTH

begin
select start then

loop while count_rg < NUM_COUNT then
tmp := ( count_rg + 1 as COUNTER_WIDTH );
count_rg := tmp;
count <- count_rg
end

end
end
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A.4 Flash Control
-- Design for Flash Control
import [ balsa . types . basic ]
import [ BufferControl ]

procedure FlashControl (
-- parameter ADDR_BITS : type ;
-- parameter DATA_BITS : type ;
-- parameter COUNTER_WIDTH : type ;
input count : 4 bits; -- COUNTER_WIDTH ;
output adr : 8 bits; -- ADDR_BITS ;
input SE : 8 bits; -- DATA_BITS ;
output dataRead_0 : 8 bits; -- DATA_BITS ;
output dataRead_1 : 8 bits; -- DATA_BITS ;
output dataRead_2 : 8 bits; -- DATA_BITS ;
output dataRead_3 : 8 bits -- DATA_BITS

) is

type COUNTER_WIDTH is 4 bits
type ADDR_BITS is 8 bits
type DATA_BITS is 8 bits

procedure SEControl (
sync startSE ;
sync SE

) is

begin
loop

select startSE then
sync SE

end
end

end

sync startSE
sync startSE_d
channel tmpAdr : ADDR_BITS
-- vaiable dataRead : array 0..3 of DATA_BITS
-- variable dataRead : array 0..3 of DATA_BITS
variable dataRead : DATA_BITS
variable writeCounter : 2 bits

begin
-- BufferControl (10 , startSE , startSE_d ) ||
-- SEControl ( startSE_d , SE) ||
-- AddressControl ( tmpAdr , adr) ||
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loop
select count then

case count of
1 then tmpAdr <- (4 as ADDR_BITS ) --|| sync startSE

| 2 then tmpAdr <- (8 as ADDR_BITS ) --|| sync startSE
| 3 then tmpAdr <- (12 as ADDR_BITS ) --|| sync startSE
| 4 then tmpAdr <- (16 as ADDR_BITS ) --|| sync startSE

else continue
end

end
end

||

loop
tmpAdr -> then

adr <- tmpAdr ;
--sync startSE ;
--sync startSE
--SE -> dataRead [ writeCounter ];
SE -> dataRead ;
case writeCounter of

0 then dataRead_0 <- dataRead
| 1 then dataRead_1 <- dataRead
| 2 then dataRead_2 <- dataRead
| 3 then dataRead_3 <- dataRead

--else continue
end;
-- dataRead2 [ writeCounter ] <- dataRead ;
writeCounter := ( writeCounter + 1 as 2 bits)

end
end

end
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A.5 FlashWrapper, single rail
‘timescale 1ps / 1ps

module FlashWrapper #(
parameter ADDR_X_WIDTH = 4,
parameter ADDR_Y_WIDTH = 3,
parameter DOUT_WIDTH = 8

)
(

input logic arst
,

input logic
controlFlash_r ,

output logic
controlFlash_a ,

input logic
controlFlash_d ,

input logic
SE_Req ,

output logic [ DOUT_WIDTH -1:0]
SE_Data ,

output logic
SE_Ack ,

input logic
adr_Req ,

input logic [ ADDR_X_WIDTH + ADDR_Y_WIDTH -1:0]
adr_Data ,

output logic
adr_Ack ,

input logic [3:0]
dataRead_r ,

output logic [3:0]
dataRead_a ,

input logic [3:0][ DOUT_WIDTH -1:0]
dataRead_d

);

logic IFREN ;
logic [1:0] REDEN ;
logic [ ADDR_X_WIDTH -1:0] XADR;
logic XE;
logic [ ADDR_Y_WIDTH -1:0] YADR;
logic YE;
logic PV;
logic EV;
logic SE;
logic controlFlash ;
logic dataValid ;
logic [ DOUT_WIDTH *4 -1:0] dataRead ;
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assign #1 ns controlFlash_a = controlFlash_r ;
always_latch begin

if (arst)
controlFlash = 0;

else if( controlFlash_r )
controlFlash = controlFlash_d ;

end

always_comb begin
if ( controlFlash == 1) begin

IFREN = 0;
REDEN = 0;
XADR = adr_Data [ ADDR_X_WIDTH -1:0];
XE = 1’b1;
YADR = adr_Data [ ADDR_X_WIDTH + ADDR_Y_WIDTH -1: ADDR_X_WIDTH ];
YE = 1’b1;
PV = 0;
EV = 0;
SE = SE_Req ;

end
else begin

IFREN = 0;
REDEN = 0;
XADR = 0;
XE = 1’b0;
YADR = 0;
YE = 1’b0;
PV = 0;
EV = 0;
SE = 0;

end
end

assign #1 ns adr_Ack = adr_Req ;
assign SE_Ack = SE_Req & dataValid ;

Flash #(
. ADDR_X_WIDTH ( ADDR_X_WIDTH ),
. ADDR_Y_WIDTH ( ADDR_Y_WIDTH ),
. DOUT_WIDTH ( DOUT_WIDTH )

)
u_Flash (

. IFREN ( IFREN ),

. REDEN ( REDEN ),
//. XADR ( adr_Data [ ADDR_X_WIDTH -1:0]) ,
.XADR (XADR),
.XE (XE),
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//. YADR ( adr_Data [ ADDR_X_WIDTH + ADDR_Y_WIDTH -1:
ADDR_X_WIDTH ]) ,

.YADR (YADR),

.YE (YE),

.PV (PV),

.EV (EV),

.SE ( SE_Req ),

. DATAVALID ( dataValid ),

.DOUT ( SE_Data )
);

assign #1 ns dataRead_a = dataRead_r ;
always_latch begin

if (arst)
dataRead = 0;

else begin
if( dataRead_r [0])

dataRead [7:0] = dataRead_d ;
if( dataRead_r [1])

dataRead [15:8] = dataRead_d ;
if( dataRead_r [2])

dataRead [23:16] = dataRead_d ;
if( dataRead_r [3])

dataRead [31:23] = dataRead_d ;
end

end

// initial begin
// IFREN = 0;
// REDEN = 0;
// PV = 0;
// EV =0;
// XE = 1’b1;
// YE = 1’b1;
// end

endmodule
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A.6 FlashWrapper, dual rail
‘timescale 1ps / 1ps

module FlashWrapper #(
parameter ADDR_X_WIDTH = 4,
parameter ADDR_Y_WIDTH = 3,
parameter DOUT_WIDTH = 8

)
(

input logic arst
,

input logic
controlFlash_0r0d ,

input logic
controlFlash_0r1d ,

output logic
controlFlash_a ,

input logic
SE_Req ,

output logic [ DOUT_WIDTH -1:0]
SE_0a0d ,

output logic [ DOUT_WIDTH -1:0]
SE_0a1d ,

input logic [ ADDR_X_WIDTH + ADDR_Y_WIDTH -1:0]
adr_0r0d ,

input logic [ ADDR_X_WIDTH + ADDR_Y_WIDTH -1:0]
adr_0r1d ,

output logic
adr_Ack ,

input logic [3:0][ DOUT_WIDTH -1:0]
dataRead_0r0d ,

input logic [3:0][ DOUT_WIDTH -1:0]
dataRead_0r1d ,

output logic [3:0]
dataRead_a

);

logic [ ADDR_X_WIDTH + ADDR_Y_WIDTH -1:0] adr_Data ;
logic IFREN ;
logic [1:0] REDEN ;
logic [ ADDR_X_WIDTH -1:0] XADR;
logic XE;
logic [ ADDR_Y_WIDTH -1:0] YADR;
logic YE;
logic PV;
logic EV;
logic SE;
logic controlFlash ;
logic dataValid ;
logic [ ADDR_X_WIDTH + ADDR_Y_WIDTH -1:0] DOUT;
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logic [ DOUT_WIDTH *4 -1:0] dataRead ;

Flash #(
. ADDR_X_WIDTH ( ADDR_X_WIDTH ),
. ADDR_Y_WIDTH ( ADDR_Y_WIDTH ),
. DOUT_WIDTH ( DOUT_WIDTH )

)
u_Flash (

. IFREN ( IFREN ),

. REDEN ( REDEN ),

.XADR (XADR),

.XE (XE),

.YADR (YADR),

.YE (YE),

.PV (PV),

.EV (EV),

.SE ( SE_Req ),

. DATAVALID ( dataValid ),

.DOUT (DOUT)
);

DualRailLatch latch_controlFlash (. arst(arst), .S( controlFlash_0r1d ),
.R( controlFlash_0r0d ), .Q( controlFlash ), .Qn () , .ack(

controlFlash_a ));

always_comb begin
if ( controlFlash == 1) begin

IFREN = 0;
REDEN = 0;
XADR = adr_Data [ ADDR_X_WIDTH -1:0];
XE = 1’b1;
YADR = adr_Data [ ADDR_X_WIDTH + ADDR_Y_WIDTH -1: ADDR_X_WIDTH ];
YE = 1’b1;
PV = 0;
EV = 0;
SE = SE_Req ;

end
else begin

IFREN = 0;
REDEN = 0;
XADR = 0;
XE = 1’b0;
YADR = 0;
YE = 1’b0;
PV = 0;
EV = 0;
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SE = 0;
end

end

DualRailLatch #(. BITS( ADDR_X_WIDTH + ADDR_Y_WIDTH ))
latch_adr (. arst(arst), .S( adr_0r1d ), .R( adr_0r0d ), .Q( adr_Data ), .

Qn () , .ack( adr_Ack ));

assign SE_Ack = SE_Req & dataValid ;

assign SE_0a1d = { ADDR_X_WIDTH + ADDR_Y_WIDTH { SE_Req & dataValid }} &
DOUT;

assign SE_0a0d = { ADDR_X_WIDTH + ADDR_Y_WIDTH { SE_Req & dataValid }} & ~
DOUT;

DualRailLatch #(. BITS( ADDR_X_WIDTH + ADDR_Y_WIDTH ))
latch_dataRead_0 (. arst(arst), .S( dataRead_0r1d [0]) , .R(

dataRead_0r0d [0]) , .Q( dataRead [7:0]) , .Qn () , .ack( dataRead_a
[0]));

DualRailLatch #(. BITS( ADDR_X_WIDTH + ADDR_Y_WIDTH ))
latch_dataRead_1 (. arst(arst), .S( dataRead_0r1d [1]) , .R(

dataRead_0r0d [1]) , .Q( dataRead [15:8]) , .Qn () , .ack( dataRead_a
[1]));

DualRailLatch #(. BITS( ADDR_X_WIDTH + ADDR_Y_WIDTH ))
latch_dataRead_2 (. arst(arst), .S( dataRead_0r1d [2]) , .R(

dataRead_0r0d [2]) , .Q( dataRead [23:16]) , .Qn () , .ack( dataRead_a
[2]));

DualRailLatch #(. BITS( ADDR_X_WIDTH + ADDR_Y_WIDTH ))
latch_dataRead_3 (. arst(arst), .S( dataRead_0r1d [3]) , .R(

dataRead_0r0d [3]) , .Q( dataRead [31:24]) , .Qn () , .ack( dataRead_a
[3]));

endmodule

module DualRailLatch #( parameter BITS = 1)
(
input logic arst ,
input logic [BITS -1:0] S,
input logic [BITS -1:0] R,
output logic [BITS -1:0] Q,
output logic [BITS -1:0] Qn ,
output logic ack
);
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logic [BITS -1:0] ack_int ;

genvar i;
generate

for (i=0 ; i<BITS ; i++) begin

logic Qint;
logic Qint_n ;

always_comb
if(R[i] | arst) begin

Qint = 1’b0;
Qint_n = 1’b1;

end
else if (S[i]) begin

Qint = 1’b1;
Qint_n = 1’b0;

end

assign #1 ns Q[i] = Qint;
assign #1 ns Qn[i] = Qint_n ;
assign #1 ns ack_int [i] = S[i] & Q[i] | R[i] & Qn[i];

end
endgenerate

assign ack = & ack_int ;

endmodule
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A.7 Flash
‘timescale 1ps / 1ps

module Flash #(
parameter ADDR_X_WIDTH = 4,
parameter ADDR_Y_WIDTH = 3,
parameter DOUT_WIDTH = 8

)
(

input IFREN ,
input [1:0] REDEN ,
input [ ADDR_X_WIDTH -1:0] XADR ,
input XE ,
input [ ADDR_Y_WIDTH -1:0] YADR ,
input YE ,
input PV ,
input EV ,
input SE ,
output DATAVALID ,
output [ DOUT_WIDTH -1:0] DOUT

);

time Tdh = 0.5 ns;
time Tacc = 30 ns;
time Tpws = 5ns;

logic [ ADDR_Y_WIDTH + ADDR_X_WIDTH -1 :0]
addr;

logic [ DOUT_WIDTH -1:0]
dataAtAddr ;

logic [2** ADDR_Y_WIDTH -1:0][2** ADDR_X_WIDTH -1:0][ DOUT_WIDTH -1:0] mem
;

logic
valid ;

logic
dataValid ;

logic [ DOUT_WIDTH -1:0]
dOut;

time
SEset ;

logic
inputValid ;

assign addr = {YADR & { ADDR_Y_WIDTH {YE}}, XADR & { ADDR_X_WIDTH {XE }}
};

assign DATAVALID = dataValid ;
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assign DOUT = dOut;

initial begin
$timeformat (-6,3," us" ,0);

dataValid = 1’b0;
valid = 1’b0;
for (int y = 0 ; y <(2** ADDR_Y_WIDTH ) ; y++) begin

for (int x = 0 ; x <(2** ADDR_X_WIDTH ) ; x++) begin
mem[y][x] = $urandom ;

end
end

end

assign inputValid = IFREN !== 1’bX && IFREN !== 1’bz &&
^ REDEN !== 1’bx &&
PV !== 1’bX && PV !== 1’bZ &&
EV !== 1’bX && EV !== 1’bZ &&
XE !== 1’bX && XE !== 1’bZ &&
YE !== 1’bX && YE !== 1’bZ &&
^XADR !== 1’bx &&
^YADR !== 1’bx &&
SE !== 1’bX && SE !== 1’bZ;

always begin
@(addr , XE , YE)

if (! inputValid ) begin // Give out X if any of the
control signals are X

#Tdh dataAtAddr = { DOUT_WIDTH {1’bX }};
valid = 1’b0;

end
else if (XE === 1’b1 && YE === 1’b1) begin

#Tdh dataAtAddr = mem[YADR ][ XADR ];
valid = 1’b1;

end
else begin // else if (XE === 1’b0 || YE === 1’b0)

// Give X out if addresses not enabled
#Tdh dataAtAddr = { DOUT_WIDTH {1’bX }};
valid = 1’b0;

end
end

always begin
fork

begin
@( posedge SE)

#Tacc dOut = dataAtAddr ;
dataValid = valid ;

end
begin

@dataAtAddr
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dOut = { DOUT_WIDTH {1’bX }};
dataValid = 1’b0;

end
join_any ;
disable fork ;

end

always begin
@( posedge SE)

SEset = $time ;
@( negedge SE)

assert ( $time - SEset >= Tpws)
// $display ("% t: SE long enough : %t", $time , $time - SEset );

else begin
$error ("%t: SE not long enough . Must be minimum %t, but is %t",

$time , Tpws , $time - SEset );
dOut = { DOUT_WIDTH {1’bX }};

end
end

endmodule
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A.8 Muller C
//

######################################################################

// ## Copyright (c) 2010 Nordic Semiconductor ASA , Norway
//

######################################################################

// ## Created : 17.09.2014
// ## Modified : $Author : Sonal Khosla
// ## Description :
//

######################################################################

module C2 (
input logic A,
input logic B,
input logic arst ,
output logic Q

);

‘ifdef FPGA

logic ck;
logic set;
logic reset ;
logic resetWire ;
logic C;

HinstAnd2 u_AndGateSet (
.a(A),
.b(B),
.y(set)

);

HinstAnd2 u_AndGateReset (
.a(~B),
.b(~A),
.y( reset )

);

assign ck = 0;
assign resetWire = reset | arst;

// synopsys async_set_reset " set "
// synopsys async_set_reset " resetWire "

always @(set or resetWire ) begin
if( resetWire ) begin

C = 0;
end
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else if(set) begin
C = 1;

end
end

‘else

logic C;

MC2CNX2_ES34 u_MullerC (
.Z (C),
.A (A),
.B (B),
.RN (~ arst)

);
// assign C = ! arst ? 1’b0 : A & B ;

‘endif

‘ifdef RTL
assign #2 ns Q = C;

‘else
assign Q = C;

‘endif

endmodule

module C3 (
input logic A,
input logic B,
input logic C,
input logic arst ,
output logic Q

);

// ‘ifdef FPGA

logic ck;
logic set;
logic reset ;
logic resetWire ;
logic Y;

HinstAnd3 u_AndGateSet (
.a(A),
.b(B),
.c(C),
.y(set)
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);

HinstAnd3 u_AndGateReset (
.a(~B),
.b(~A),
.c(~C),
.y( reset )

);

assign ck = 0;
assign resetWire = reset | arst;

// synopsys async_set_reset "set "
// synopsys async_set_reset " resetWire "

always @(set or resetWire ) begin
if( resetWire ) begin

Y = 0;
end
else if(set) begin

Y = 1;
end

// else begin
// Y <= 0;
// end

end

// ‘else
//
// logic C;
//
// MC2CNX2_ES34 u_MullerC (
// .Z (C),
// .A (A),
// .B (B),
// .RN (~ arst )
// );
// // assign C = ! arst ? 1’b0 : A & B ;
//
//
// ‘endif

‘ifdef RTL
assign #2 ns Q = Y;

‘else
assign Q = Y;

‘endif

endmodule
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A.9 Netlist for the asynchronous flash readout

The produced netlists for the asynchronous flash readout are too big to be printed,
but they are provided in the attached zip-file. They can be found in the folder
ip\ AsynchronousFlashReadout \ balsa

as
impl - AsynchronousFlashReadout - FlashReadout .v
impl - AsynchronousFlashReadout - DualRail .v

for the single rail netlist and the dual rail netlist respetively.

A.10 Automatically generated testbench for the
asynchronous flash readout

The automatically generated testbench produced for the asynchronous flash readout
is too big to be printed, but it is provided in the attached zip-file. The files can be
found in the folder
ip\ AsynchronousFlashReadout \ balsa

as
test - AsynchronousFlashReadoutTb - AsyncFlashReadout -top.v
impl - AsynchronousFlashReadoutTb - AsyncFlashReadout .v

A.11 Testbench, single rail
‘timescale 1ps / 1ps

module test_FlashWrapper ();

localparam ADDR_X_WIDTH = 4;
localparam ADDR_Y_WIDTH = 4;
localparam DOUT_WIDTH = 8;

logic SE_Req ;
logic [ DOUT_WIDTH -1:0] SE_Data ;
logic SE_Ack ;
logic adr_Req ;
logic adr_Ack ;
logic [ ADDR_X_WIDTH + ADDR_Y_WIDTH -1:0] adr_Data ;
logic activate_Req ;
logic activate_Ack ;
logic start_Req ;
logic start_Ack ;
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logic arst;

logic controlFlash_r ;
logic controlFlash_a ;
logic controlFlash_d ;
logic [3:0] dataRead_r ;
logic [3:0] dataRead_a ;
logic [3:0][ DOUT_WIDTH -1:0] dataRead_d ;

logic count ;

FlashWrapper #(
. ADDR_X_WIDTH ( ADDR_X_WIDTH ),
. ADDR_Y_WIDTH ( ADDR_Y_WIDTH ),
. DOUT_WIDTH ( DOUT_WIDTH )

)
u_FlashWrapper (

.arst (arst),

. controlFlash_r ( controlFlash_r ),

. controlFlash_a ( controlFlash_a ),

. controlFlash_d ( controlFlash_d ),

. SE_Req ( SE_Req ),

. SE_Data ( SE_Data ),

. SE_Ack ( SE_Ack ),

. adr_Req ( adr_Req ),

. adr_Data ( adr_Data ),

. adr_Ack ( adr_Ack ),

. dataRead_r ( dataRead_r ),

. dataRead_a ( dataRead_a ),

. dataRead_d ( dataRead_d )
);

Balsa_AsynchronousFlashReadout u_Balsa_AsynchronousFlashReadout (
. initialise (arst),
. activate_0r ( activate_Req ),
. activate_0a ( activate_Ack ),
. start_0r ( start_Req ),
. start_0a ( start_Ack ),
. controlFlash_0r ( controlFlash_r ),
. controlFlash_0a ( controlFlash_a ),
. controlFlash_0d ( controlFlash_d ),
. SE_0r ( SE_Req ),
. SE_0a ( SE_Ack ),
. SE_0d ( SE_Data ),
. adr_0r ( adr_Req ),
. adr_0a ( adr_Ack ),
. adr_0d ( adr_Data ),
. dataRead__0_0r ( dataRead_r [0]) ,
. dataRead__1_0r ( dataRead_r [1]) ,
. dataRead__2_0r ( dataRead_r [2]) ,
. dataRead__3_0r ( dataRead_r [3]) ,
. dataRead__0_0a ( dataRead_a [0]) ,
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. dataRead__1_0a ( dataRead_a [1]) ,

. dataRead__2_0a ( dataRead_a [2]) ,

. dataRead__3_0a ( dataRead_a [3]) ,

. dataRead__0_0d ( dataRead_d [0]) ,

. dataRead__1_0d ( dataRead_d [1]) ,

. dataRead__2_0d ( dataRead_d [2]) ,

. dataRead__3_0d ( dataRead_d [3])
);

// Balsa_Counter u_Balsa_AsynchronousFlashReadout (
// . initialise ( arst ),
// . activate_0r ( activate_Req ),
// . activate_0a ( activate_Ack ),
// . start_0r ( start_Req ),
// . start_0a ( start_Ack ),
// . count_0r ( count ),
// . count_0a ( count ),
// . count_0d ()
// );

initial begin

$timeformat (-6,3," us" ,0);
arst = 1’b1;
activate_Req = 0;
start_Req = 0;
#100 ns;
arst = 0;
#10 ns;
activate_Req = 1’b1;
#1 ns;
start_Req = 1’b1;
#100 ns;

end

endmodule
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A.12 Testbench, dual rail
‘timescale 1ps / 1ps

module test_FlashWrapper ();

localparam ADDR_X_WIDTH = 4;
localparam ADDR_Y_WIDTH = 4;
localparam DOUT_WIDTH = 8;

logic SE_Req ;
logic [ DOUT_WIDTH -1:0] SE_Data ;
logic SE_Ack ;
logic adr_Req ;
logic adr_Ack ;
logic [ ADDR_X_WIDTH + ADDR_Y_WIDTH -1:0] adr_Data ;
logic activate_Req ;
logic activate_Ack ;
logic start_Req ;
logic start_Ack ;
logic arst;

logic controlFlash_r ;
logic controlFlash_a ;
logic controlFlash_d ;
logic [3:0] dataRead_r ;
logic [3:0] dataRead_a ;
logic [3:0][ DOUT_WIDTH -1:0] dataRead_d ;

logic count ;

FlashWrapper #(
. ADDR_X_WIDTH ( ADDR_X_WIDTH ),
. ADDR_Y_WIDTH ( ADDR_Y_WIDTH ),
. DOUT_WIDTH ( DOUT_WIDTH )

)
u_FlashWrapper (

.arst (arst),

. controlFlash_r ( controlFlash_r ),

. controlFlash_a ( controlFlash_a ),

. controlFlash_d ( controlFlash_d ),

. SE_Req ( SE_Req ),

. SE_Data ( SE_Data ),

. SE_Ack ( SE_Ack ),

. adr_Req ( adr_Req ),

. adr_Data ( adr_Data ),

. adr_Ack ( adr_Ack ),

. dataRead_r ( dataRead_r ),

. dataRead_a ( dataRead_a ),

. dataRead_d ( dataRead_d )
);

Balsa_AsynchronousFlashReadout u_Balsa_AsynchronousFlashReadout (
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. initialise (arst),

. activate_0r ( activate_Req ),

. activate_0a ( activate_Ack ),

. start_0r ( start_Req ),

. start_0a ( start_Ack ),

. controlFlash_0r ( controlFlash_r ),

. controlFlash_0a ( controlFlash_a ),

. controlFlash_0d ( controlFlash_d ),

. SE_0r ( SE_Req ),

. SE_0a ( SE_Ack ),

. SE_0d ( SE_Data ),

. adr_0r ( adr_Req ),

. adr_0a ( adr_Ack ),

. adr_0d ( adr_Data ),

. dataRead__0_0r ( dataRead_r [0]) ,

. dataRead__1_0r ( dataRead_r [1]) ,

. dataRead__2_0r ( dataRead_r [2]) ,

. dataRead__3_0r ( dataRead_r [3]) ,

. dataRead__0_0a ( dataRead_a [0]) ,

. dataRead__1_0a ( dataRead_a [1]) ,

. dataRead__2_0a ( dataRead_a [2]) ,

. dataRead__3_0a ( dataRead_a [3]) ,

. dataRead__0_0d ( dataRead_d [0]) ,

. dataRead__1_0d ( dataRead_d [1]) ,

. dataRead__2_0d ( dataRead_d [2]) ,

. dataRead__3_0d ( dataRead_d [3])
);

// Balsa_Counter u_Balsa_AsynchronousFlashReadout (
// . initialise ( arst ),
// . activate_0r ( activate_Req ),
// . activate_0a ( activate_Ack ),
// . start_0r ( start_Req ),
// . start_0a ( start_Ack ),
// . count_0r ( count ),
// . count_0a ( count ),
// . count_0d ()
// );

initial begin

$timeformat (-6,3," us" ,0);
arst = 1’b1;
activate_Req = 0;
start_Req = 0;
#100 ns;
arst = 0;
#10 ns;
activate_Req = 1’b1;
#1 ns;
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start_Req = 1’b1;
#100 ns;

end

endmodule





AppendixBToy design

B.1 Buffer
-- Design for BufferControl
import [ balsa . types . basic ]

procedure buffer1 ( input i : 1 bits; output o : 1 bits) is
variable x : 1 bits

begin
loop

i -> x -- Input communication
; -- sequence operator
o <- x -- Output communication

--i -> o
end

end

163
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B.2 Buffer netlist
/*

‘impl - buffer - toyNetlist .v’
Balsa Verilog netlist file
Created : Tue Jun 16 22:55:03 CEST 2015
By: sokh@bushmills . nvlsi .no ( Linux )
With net - verilog (balsa - netlist ) version : 4.0
Using technology : BorealisTech / dual_b / sim= modelsim : logic = dims
Command line : (balsa - netlist -- technology BorealisTech / dual_b / sim=

modelsim : logic = dims -I . -l impl - buffer - toyNetlist .lst -L impl -
buffer - toyNetlist . log --simulation - initialise -- basename impl -
buffer - toyNetlist [ buffer ])

Using ‘simulation - initialise ’
You must set the following preprocessor directives to use this file

:
balsa_simulate : set if you wish to initialise signal values

during sim .
balsa_init_time : duration of forced initialisation

Using ‘propagate - globals ’
The design contains the following global nets

global - signal : initialise input 1
*/

‘timescale 1ns /1 ps

module BrzFetch_1_s5_false (
activate_0r , activate_0a ,
inp_0r , inp_0a0d , inp_0a1d ,
out_0r0d , out_0r1d , out_0a

);
input activate_0r ;
output activate_0a ;
output inp_0r ;
input inp_0a0d ;
input inp_0a1d ;
output out_0r0d ;
output out_0r1d ;
input out_0a ;
BUFFD1BWP7T I0 ( activate_0r , inp_0r );
BUFFD1BWP7T I1 (inp_0a0d , out_0r0d );
BUFFD1BWP7T I2 (inp_0a1d , out_0r1d );
BUFFD1BWP7T I3 (out_0a , activate_0a );

endmodule

module BrzLoop (
activate_0r , activate_0a ,
activateOut_0r , activateOut_0a

);
input activate_0r ;
output activate_0a ;



B.2. BUFFER NETLIST 165

output activateOut_0r ;
input activateOut_0a ;
wire nReq_0n ;
supply0 gnd;
INVD1BWP7T I0 ( activate_0r , nReq_0n );
NR2D1BWP7T I1 (nReq_0n , activateOut_0a , activateOut_0r );
BUFFD1BWP7T I2 (gnd , activate_0a );

endmodule

module telemr (
Ar ,
Aa ,
Br ,
Ba ,
initialise

);
input Ar;
output Aa;
output Br;
input Ba;
input initialise ;
wire s_0n;
wire nreset_0n ;
MC2CNX2_ES34 I0 (Aa , Ba , Ar , nreset );
INVD1BWP7T I1 ( initialise , nreset );
INVD1BWP7T I2 (Aa , s_0n);
AN2D1BWP7T I3 (Ar , s_0n , Br);

endmodule

module BrzSequence_2_s1_T (
activate_0r , activate_0a ,
activateOut_0r , activateOut_0a ,
activateOut_1r , activateOut_1a ,
initialise

);
input activate_0r ;
output activate_0a ;
output activateOut_0r ;
input activateOut_0a ;
output activateOut_1r ;
input activateOut_1a ;
input initialise ;
wire [1:0] sreq_0n ;
BUFFD1BWP7T I0 ( activateOut_1a , activate_0a );
BUFFD1BWP7T I1 ( sreq_0n [1] , activateOut_1r );
BUFFD1BWP7T I2 ( activate_0r , sreq_0n [0]);
telemr I3 ( sreq_0n [0] , sreq_0n [1] , activateOut_0r , activateOut_0a ,

initialise );
endmodule

module dualrail_latch (
in_0 ,
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in_1 ,
in_a ,
out_0 ,
out_1 ,
initialise

);
input in_0;
input in_1;
output in_a;
output out_0 ;
output out_1 ;
input initialise ;
wire clr;
RSLATX1 I0 (out_1 , out_0 , clr , in_1);
AO22D0BWP7T I1 (in_0 , out_0 , in_1 , out_1 , in_a);
OR2D1BWP7T I2 (in_0 , initialise , clr);

endmodule

module BrzVariable_1_1_s0_ (
write_0r0d , write_0r1d , write_0a ,
read_0r , read_0a0d , read_0a1d ,
initialise

);
input write_0r0d ;
input write_0r1d ;
output write_0a ;
input read_0r ;
output read_0a0d ;
output read_0a1d ;
input initialise ;
wire store_0n ;
wire store_1n ;
wire ldata_0n ;
wire ldata_1n ;
wire wack_0n ;
wire readReq_0n ;
AN2D1BWP7T I0 (store_1n , readReq_0n , read_0a1d );
AN2D1BWP7T I1 (store_0n , readReq_0n , read_0a0d );
BUFFD1BWP7T I2 (read_0r , readReq_0n );
BUFFD1BWP7T I3 (ldata_0n , store_0n );
BUFFD1BWP7T I4 (ldata_1n , store_1n );
BUFFD1BWP7T I5 (wack_0n , write_0a );
dualrail_latch I6 ( write_0r0d , write_0r1d , wack_0n , ldata_0n ,

ldata_1n , initialise );
endmodule

module Balsa_buffer1 (
activate_0r , activate_0a ,
i_0r , i_0a0d , i_0a1d ,
o_0r0d , o_0r1d , o_0a ,
initialise

);
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input activate_0r ;
output activate_0a ;
output i_0r;
input i_0a0d ;
input i_0a1d ;
output o_0r0d ;
output o_0r1d ;
input o_0a;
input initialise ;
wire c8_r;
wire c8_a;
wire c7_r;
wire c7_a;
wire c6_r0d ;
wire c6_r1d ;
wire c6_a;
wire c5_r;
wire c5_a;
wire c4_r;
wire c4_a0d ;
wire c4_a1d ;
BrzVariable_1_1_s0_ I0 (c6_r0d , c6_r1d , c6_a , c4_r , c4_a0d , c4_a1d ,

initialise );
BrzLoop I1 ( activate_0r , activate_0a , c8_r , c8_a);
BrzSequence_2_s1_T I2 (c8_r , c8_a , c7_r , c7_a , c5_r , c5_a , initialise

);
BrzFetch_1_s5_false I3 (c7_r , c7_a , i_0r , i_0a0d , i_0a1d , c6_r0d ,

c6_r1d , c6_a);
BrzFetch_1_s5_false I4 (c5_r , c5_a , c4_r , c4_a0d , c4_a1d , o_0r0d ,

o_0r1d , o_0a);
endmodule
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B.3 Toy Verilog
// test module ToyVerilog

module ToyVerilog #()

(
input logic ck ,
input logic ckDataIn ,
input logic ckDataOut ,
input logic arst ,
output logic initialise ,
output logic activate_0r ,
input logic activate_0a ,
input logic i_0r ,
output logic i_0a0d ,
output logic i_0a1d ,
input logic o_0r0d ,
input logic o_0r1d ,
output logic o_0a ,
input logic a,
input logic b,
output logic req ,
output logic c,
output logic d,
input logic ack

// output logic dataRead
);

// logic i_0r_ax ;
// logic i_0r_s ;
// // logic i_0r_edgeDetect ;
// logic [2:0] count ;
// static logic [7:0] data = 8’ b10100011 ;
// logic d1_ax ;

typedef enum logic [1:0] { InitialiseOn = 0,
InitialiseOff = 1,
ActivateOn = 2,
ActivateOff = 3
} StateType ;

// typedef enum logic { ReleaseData = 0,
// DriveData = 1
// } StateSendData ;
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StateType state ;
// StateSendData stateSendData ;

always_ff @( posedge ck , posedge arst)
if (arst) begin

initialise <= 0;
activate_0r <= 0;
state <= InitialiseOn ;

end
else begin

case ( state )

InitialiseOn : begin
initialise <= 1’b1;
state <= InitialiseOff ;

end

InitialiseOff : begin
initialise <= 1’b0;
state <= ActivateOn ;

end

ActivateOn : begin
activate_0r <= 1’b1;
if ( activate_0a == 1’b1)

state <= ActivateOff ;
end

ActivateOff : begin
activate_0r <= 1’b0;
state <= ActivateOff ;

end

endcase

end

always_ff @( posedge ckDataIn , posedge arst)
if(arst) begin

i_0a0d <= 0;
i_0a1d <= 0;

end
else begin

i_0a0d <= a;
i_0a1d <= b;

end

assign req = i_0r;
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always_ff @( posedge ckDataOut , posedge arst)
if(arst) begin

o_0a <= 0;
end
else begin

o_0a <= ack;
end

assign c = o_0r0d ;
assign d = o_0r1d ;
//
// always_ff @( posedge ck , posedge arst )
// if ( arst ) begin
// i_0r_ax <= 0;
// i_0r_s <= 0;
// // i_0r_edgeDetect <= 0;
// end
// else begin
// i_0r_ax <= i_0r ;
// i_0r_s <= i_0r_ax ;
// // i_0r_edgeDetect <= i_0r_s ;
// end
//
// // assign ne = (~ i_0r_s ) & i_0r_edgeDetect ;
// // assign pe = (~ i_0r_edgeDetect ) & i_0r_s ;
//
//
// always_ff @( posedge ck , posedge arst )
// if( arst ) begin
// i_0a0d <= 0;
// i_0a1d <= 0;
// stateSendData <= ReleaseData ;
// count <= 0;
//
// end
// else begin
// case ( stateSendData )
// ReleaseData : begin
// i_0a0d <= 0;
// i_0a1d <= 0;
// if( i_0r_s == 1) begin
// stateSendData <= DriveData ;
// end
// end
//
// DriveData : begin
// i_0a0d <= ~ data [ count ];
// i_0a1d <= data [ count ];
// if( i_0r_s == 0) begin
// stateSendData <= ReleaseData ;
// count = count + 1;
// end
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// end
//
//
// endcase
// end
//
//
//
// RSLATX1 u_RSLAT (.Q(d1), .QN(d0), .R( o_0r0d | arst ), .S( o_0r1d ) )

;
// assign o_0a = (d1 & o_0r1d ) | (d0 & o_0r0d );
// always_ff @( posedge ck , posedge arst )
// if ( arst ) begin
// d1_ax <= 0;
// dataRead <= 0;
// end
// else begin
// d1_ax <= d1;
// dataRead <= d1_ax ;
// end
//
//

endmodule
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B.4 Device Under Test
module DUT (

input logic ck ,
input logic arst ,
input logic ckDataIn ,
input logic ckDataOut ,
input logic a,
input logic b,
output logic req ,
output logic c,
output logic d,
input logic ack

);

// output logic dataRead );

logic initialise ;
logic activate_0r ;
logic activate_0a ;
logic i_0r;
logic i_0a0d ;
logic i_0a1d ;
logic o_0r0d ;
logic o_0r1d ;
logic o_0a;

ToyVerilog #()

u_ToyVerilog
(
.ck (ck),
. ckDataIn ( ckDataIn ),
. ckDataOut ( ckDataOut ),
.arst (arst),
. activate_0a ( activate_0a ),
. initialise ( initialise ),
. activate_0r ( activate_0r ),
.i_0r (i_0r),
. i_0a0d ( i_0a0d ),
. i_0a1d ( i_0a1d ),
. o_0r0d ( o_0r0d ),
. o_0r1d ( o_0r1d ),
.o_0a (o_0a),
.a (a),
.b (b),
.c (c),
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.d (d),

.req (req),

.ack (ack)
// . dataRead ( dataRead )

);

Balsa_buffer1 #()

u_Balsabuffer1
(
. activate_0r ( activate_0r ),
. activate_0a ( activate_0a ),
.i_0r (i_0r),
. i_0a0d ( i_0a0d ),
. i_0a1d ( i_0a1d ),
. o_0r0d ( o_0r0d ),
. o_0r1d ( o_0r1d ),
.o_0a (o_0a),
. initialise ( initialise )
);

endmodule
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B.5 Testbench
// tb for ToyVerilog

‘timescale 1ns /1 ps

module test_toyVerilog ();

localparam NUM_DATA = 10000;

logic ck;
logic ckDataIn ;
logic ckDataOut ;
logic arst;
logic a;
logic b;
logic req;
logic c;
logic d;
logic ack;

// ---------------------------------------------
// ---------------------------------------------
// -- Local signals :
// ---------------------------------------------
int errorCnt ;
int count = 0;
int countReceive = 0;
// logic [9:0] data = 10’b( $urandom (1, 0));
// static logic [ NUM_DATA -1:0] data = 10’ b1001010100 ;
logic data;
int count_a ;
int count_b ;
int count_c ;
int count_d ;

// ----------------------------------------------------------
// -- Instantiation of DUT , EventMerger :
// ----------------------------------------------------------

DUT #()

u_DUT
(
.ck (ck),
. ckDataIn ( ckDataIn ),
. ckDataOut ( ckDataOut ),
.arst (arst),
.a (a),
.b (b),
.c (c),
.d (d),



B.5. TESTBENCH 175

.req (req),

.ack (ack)
//. dataRead ( dataRead )
);

// ---------------------------------------------
// -- Clocking :
// ---------------------------------------------
initial begin

// testbench clock
ck = 1’b 0;

while (1) begin
#(20 ns /2) ck = ~ck;

end
end

//
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

//
/////////////////////---------------------------------------------------------------
Testbench
------------------------------------------------------------------------------------------////////////////////////////

//
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

initial begin
$timeformat (-6, 3, "us", 0);
errorCnt = 0;
arst = 0;
a=0;
b=0;
ack =0;
ckDataIn = 1’b 0;
ckDataOut = 1’b 0;
#10 ns;
arst = 1;
#10 ns;
arst = 0;

// ta_sendData ( data [ count ]);
// ta_receiveData ( data [ countReceive ]);
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data = $urandom_range (0 ,1);
fork

begin
fork

begin
repeat ( NUM_DATA ) begin

// ta_sendData ( data [ count ]);
ta_sendData (data);
data = $urandom_range (0 ,1);
// count ++;

end
end

begin
repeat ( NUM_DATA ) begin

// ta_receiveData ( data [ countReceive ]);
ta_receiveData (data);
// countReceive ++;

end
end

join ;
end

begin
count_a = 0;
forever begin

@(a);
count_a ++;

end
end

begin
count_b = 0;
forever begin

@(b);
count_b ++;

end
end

begin
count_c = 0;
forever begin

@(c);
count_c ++;
assert ( count_c == count_a ) else begin

$error ("%t : Glitch detected on line c", $time );
errorCnt ++;

end
end

end
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begin
count_d = 0;
forever begin

@(d);
count_d ++;
assert ( count_d == count_b ) else begin

$error ("%t : Glitch detected on line d", $time );
errorCnt ++;

end
end

end

join_any ;
disable fork ;

$display (" total errors : %0d", errorCnt );

$display (" $$( $$(
$$\ ");

$display (" $$ | (__|
$$ | ");

$display (" $$$$$$$ ( $$$$$$ \ $$$$$$$$ ( $$( $$$$$$$ ( $$$$$$ (
$$$$$$ ( $$ | ");

$display (" $$ __$$( ( ____$$ ( ( ____$$ |$$ |$$ __$$( $$ __$$(
( ____$$ ( $$ | ");

$display (" $$ | $$ | $$$$$$$ | $$$$ _/ $$ |$$ | $$ |$$ / $$ |
$$$$$$$ | (__| ");

$display (" $$ | $$ |$$ __$$ | $$ _/ $$ |$$ | $$ |$$ | $$ |
$$ __$$ | ");

$display (" $$$$$$$ |( $$$$$$$ | $$$$$$$$ ( $$ |$$ | $$ |( $$$$$$$
|( $$$$$$$ | $$( ");

$display (" ( _______ / ( _______ |( ________ |( __ |( __| (__| ( ____$$ |
( _______ | (__| ");

$display (" $$( $$ |
");

$display (" ( $$$$$$ |
");

$display (" ( ______ /
");

$stop ;
end

task ta_sendData (data);
time randomDelay ;

randomDelay = $urandom_range (1 ,50);
//@( posedge req );
wait (req);
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a = ~data;
b = data;

# randomDelay ;
ckDataIn = 1;
#10 ns;
ckDataIn = 0;

randomDelay = $urandom_range (1 ,50);
// $display (" Delay : %d", randomDelay );
//@( negedge req );
wait (! req);
a = 0;
b = 0;
# randomDelay ;
ckDataIn = 1;
#10 ns;
ckDataIn = 0;

endtask

task ta_receiveData ( dataReceive );
time randomDelay ;

randomDelay = $urandom_range (1 ,50);
//@( posedge c or posedge d);
wait (c | d);
assert (c == ~ dataReceive ) else begin

$error ("%t: Received data on 0 not same as data sent. Expecting
data: %0b, Received data: %0b", $time , ~ dataReceive , c);

errorCnt ++;
end
assert (d == dataReceive ) else begin

$error ("%t: Received data on 1 not same as data sent. Expecting
data: %0b, Received data: %0b", $time , dataReceive , d);

errorCnt ++;
end
ack = 1;
# randomDelay ;
ckDataOut = 1;
#10 ns;
ckDataOut = 0;

randomDelay = $urandom_range ( 1 ,50);
//@( negedge c or negedge d);
wait (!c & !d)
assert (c == 0) else begin

$error ("%t: Received data on 0 not same as data sent. Expecting
data: 0, Received data: %0b", $time , c);

errorCnt ++;
end
assert (d == 0) else begin
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$error ("%t: Received data on 1 not same as data sent. Expecting
data: 0, Received data: %0b", $time , d);

errorCnt ++;
end
ack = 0;
# randomDelay ;
ckDataOut = 1;
#10 ns;
ckDataOut = 0;

endtask

endmodule
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B.6 Log files for elaboration and compilation

The log files for the elaboration and the compilation of the combined Toy design are
too big to be printed, but they are provided in the attached zip-file. The files can be
found in the folder
ip\Toy\syn\logs

as
dc_elaborate .log
dc_compile .log

B.7 Combined netlist

The netlist for the combined Toy design is too big to be printed, but it is provided
in the attached zip-file. The file can be found in the folder
ip\Toy\syn\ results

as
DUT. mapped .v



AppendixCLibrary
C.1 make_net

The script used to generate the <library>-cells.net file.

#!/ bin / env bash

if [ -z "$1" ]; then
echo "No library given "

fi

inputFile =$1
maskFile =$2

parsingModule =0

mask =($(cat $maskFile | awk ’! /^#/ { print $1 }’))

# echo ${ mask [@]}

while read line
do

if [ $parsingModule == 0 ]; then
module =$( echo -e " $line " | awk ’/^ module / { print $2}’)

if [ -n " $module " ]; then
for x in ${mask[@]}; do

if [ $x = $module ]; then
parsingModule =1
echo -e "( circuit \" $module \"\n ( ports "
break

fi
done

fi
fi
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if [ $parsingModule == 1 ]; then
if [[ $line == *" endmodule "* ]]; then

parsingModule =0
echo -e " )\n (nets)\n ( instances )\n)\n"

fi

if [[ $line == *" input "* ]]; then
inputList =$( echo $line | sed ’s/ input //’ | sed ’s/^ *// ’ | sed ’s

/ ,//g’ | sed ’s/;//g’ | sed ’s/ /\n/g ’) # Will not work if
multiple space between signals

for ip in $inputList ; do
echo -e " (\"$ip\" input 1)"

done
fi

if [[ $line == *" output "* ]]; then
inputList =$( echo $line | sed ’s/ output //’ | sed ’s/^ *// ’ | sed ’

s/ ,//g’ | sed ’s/;//g’ | sed ’s/ /\n/g ’) # Will not work if
multiple space between signals

for ip in $inputList ; do
echo -e " (\"$ip\" output 1)"

done
fi

fi

done < $inputFile
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C.2 startup.scm

The configuration script for the library.
;;;
;;; ‘BorealisTech -cells ’
;;;

(net -signature -for -netlist - format ’verilog #t)

(set! breeze -gates -net - files ’(" BorealisTech - cells " "balsa - cells "))
(set! breeze - primitives - file (string - append breeze -tech -dir " components

.abs"))
(set! breeze -gates -mapping - file (string - append breeze -tech -dir "gate -

mappings "))

;;; max. no. of inputs for and/or/ nand /nor gates and c- elements
(set! tech -gate -max -fan -in 3)
(set! tech -c-element -max -fan -in 2)

;;; use name mapping to keep names less than ~48 chars
(set! tech -map -cell -name (net -simple -cell -name - mapping #f))
(set! tech -map -cell -name - import net -simple -cell -name - import )
(set! tech -map -cell -name - export net -simple -cell -name - export )
(set! tech -cell -name -max - length 48)

;( set! tech -gnd -net -name "!gnd")
;( set! tech -vcc -net -name "!vdd")

(set! tech -netlist -test - includes ’(" BorealisTech - cells .v"))
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