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ABSTRACT

The goal of this thesis is to describe certain algebraic invariants of links, and try to
modify them to obtain invariants of 3-manifolds. Racks and quandles are algebraic
structures that were invented to give invariants of knots and links. They generalise
the classical colouring invariants, and a rack or quandle can be associated to any link,
known as its fundamental rack or quandle. In this thesis we explain how to modify the
construction of the fundamental rack to obtain an invariant of 3-manifolds, making use
of the fact that every 3-manifold can be obtained by integral Dehn surgery on a link
in the 3-sphere. Finally, we show how to distinguish the 3-sphere from the Poincaré
homology sphere using this invariant.
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SAMMENDRAG

Målet med denne oppgaven er å beskrive visse algebraiske invarianter p̊a lenker,
og prøve å modifisere dem for å f̊a invarianter p̊a 3-mangfoldigheter. Racks og
Quandles er algebraiske strukturer som ble laget for å gi invarianter p̊a knuter og
lenker. De generaliserer den klassiske fargeleggingsinvarianten og en rack eller quandle
kan assosieres med enhver lenke, kjent som fundamentalracken eller -quandlen til
lenka. I denne oppgaven forklarer vi hvordan fundamentalracks kan modifiseres slik at
de blir invarianter p̊a 3-mangfoldigheter, ved å bruke at enhver 3-mangfoldighet kan
dannes ved Dehn-kirurgi p̊a 3-sfæren. Til slutt viser vi hvordan vi kan benytte denne
invarianten til å skille 3-sfæren fra Poincarésfæren.
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INTRODUCTION

The theory of 3-manifolds is rich and complicated, and 3-manifolds can be hard to
distinguish. In this thesis, we construct a simple invariant of 3-manifolds which allows
us to distinguish the 3-sphere from the Poincaré homology sphere, and which can be
used to distinguish many other 3-manifolds.

Our approach relies upon several foundational theorems concerning 3-manifolds. The
first of these, often attributed to Lickorish and Wallace [5] [9], states that every closed,
connected, orientable 3-manifold can be obtained by Dehn surgery on links with integral
framing in the 3-sphere, and it is therefore possible to study the links presenting 3-
manifolds instead of the 3-manifolds themselves. The second foundational theorem, due
to Kirby [4] states that, given a pair of 3-manifolds M and N , and links LM and LN

with respect to which we obtain M and N via integral Dehn surgery in the 3-sphere,
we have that M and N are homeomorphic if and only if LM can be obtained from LN

by a finite sequence of a pair of moves, now known as Kirby moves.

One of the Kirby moves is global, and in order to study the link diagrams presenting
the links, local moves are more convenient. Fenn and Rourke [1] demonstrated that
the Kirby moves can be replaced by local moves known as blow ups and blow downs,
with an arbitrary number of strands. Building upon this, Martelli [6] was recently able
to prove that a finite collection of local moves suffice. This last result is the point of
departure for the construction of the invariant we shall describe.

The algebraic structures racks were invented to obtain an invariant of knots. They
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generalise the classical n-colourability invariant. Joyce [3] was the first to explore racks
in the setting of knot theory, introducing the construction of the fundamental quandle
of a link. Quandles are racks which satisfy an additional axiom, which ensures that the
fundamental quandle of a link is invariant under the Reidemeister moves. Fenn and
Rourke [2] layed the foundations for the theory of racks in the setting of knot theory,
associating to a framed link a rack known as its fundamental rack, which is invariant
under the framed Reidemeister moves. In constructing our invariant of 3-manifolds,
we modify the definition of the fundamental rack of a framed link in such a way as
to ensure that it is invariant under a finite collection of local Kirby moves to which
Martelli’s theorem applies.

In this thesis we begin by recalling the theory of knots, and that of racks as an invariant
on knots. We first describe knot diagrams, their framing and the colouring invariant in
Chapter 1. Thereafter we describe the algebraic structure of racks and quandles in
Chapter 2, before we discuss the construction of the fundamental rack of a framed link
in Chapter 3. We use the fundamental racks for the unknot and trefoil to show that
they are not isotopic.

Next, we begin working towards a modification of the construction of the fundamental
rack to obtain an invariant of 3-manifolds. In Chapter 4, we recall the notion of Dehn
surgery on a link in S3, before describing the Kirby moves. Following this, we define
the local moves known as blow ups and blow downs, and recall the theorem of Fenn
and Rourke concerning these. We then state Martelli’s theorem and several corollaries,
and prove them.

In Chapter 5, we construct our invariant of 3-manifolds, associating to a framed link a
rack which we refer to as its Fenn-Rourke-local fundamental rack. We prove that the
Fenn-Rourke-local fundamental rack of a framed link is invariant under the Martelli
moves of one of the collaries of Chapter 4. Finally, we use our invariant to distinguish
the 3-sphere from the Poincaré homology sphere.
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CHAPTER 1

LINKS

In this chapter we will describe link diagrams and framed link diagrams, and recall the
classical n-colourability link invariant.

1.1 Link diagrams

Links are geometric objects in three dimensional space, often the 3-sphere S3 or the
real 3-dimensional space R3. To present links we use link diagrams. A link diagram
is the projection p of a link down on R2, such that for every point x in R2 with the
property that p−1(x) is not unique, there is a crossing in the link diagram. We know
from Reidemeister’s theorem [7] that a pair of links are isotopic if and only if we can
obtain the diagram of one from the diagram of the other by a finite sequence of the
moves R1, R2 and R3 depicted Figure 1.1. The Reidemeister moves are local, which
means that one can one “draw a fence” around the arcs and crossings of a link diagram
affected by the move in such a way that no other arcs or crossings are inside the fence.
The knot diagram inside the fence can be replaced by another knot diagram, but the
endpoints of the knots have to be the same before and after the move.
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Chapter 1

Figure 1.1: The Reidemeister moves.

1.2 Colourability

Colourability of a link is defined in the following way. We prove in Propostion 1.2.3
that whether or not a link is n-colourable is invariant under the Reidemeister moves.

Definition 1.2.1. A link L is n-colourable if to every arc one can assign an integer
such that

1. at each crossing

we have that a + b ≡ 2c (mod n),

2. not every arc is assigned the same number, i.e. no link is 1-colourable.

Example 1.2.2. The trefoil is 3-colourable. If we assign the integers 0, 1 and 2 to the
three arcs in the trefoil as in the following figure, the crossings satisfy the condition
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for 3-colourability, since the equations

0 + 2 = 2 · 1(mod3)

1 + 0 = 2 · 2(mod3)

2 + 1 = 2 · 0(mod3)

are all satisfied.

Proposition 1.2.3. Let n be an integer. Whether or not a link is n-colourable is
invariant under the Reidemeister moves.

Proof. For each of the Reidemeister moves, we assign a letter to the arcs involved in
the move, and check that, after applying the move, we can still find a valid labelling.

For the first Reidemeister move, R1, we assign the letter x to one of the arcs, as shown
in Figure 1.2. The other arc has to be assigned 2x− x = x according to the definition
of n-colourability. Thus The R1 does not affect our ability to find a valid labelling.

For the R2 move, we label the arcs on the left side of the move x and y, as in Figure
1.3. On the right hand side, the arc y is unchanged. The arc x goes beneath the
arc labelled y, and the crossing gives that the part between the two crossings is
labelled 2y − x. This arc goes underneath y once again, and this crossing yields that
the arc to the top right of Figure 1.3 is labelled 2y− (2y− x) = x. Hence the R2 move
does not affect our ability to find a valid labelling.

The labelling of the arcs before and after the R3 move is shown in Figure 1.4. We see
that that R3 move does not affect our ability to find a valid labelling.

Analogous proofs can be given for all other combinations of over and under crossings
for the Reidemester moves.
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Figure 1.2: The labelling of the endpoints are unchanged under the R1 move.

Figure 1.3: The labelling of the endpoints are unchanged under the R2 move.

Figure 1.4: The R3 move does not affect the labelling of the endpoints.

1.3 Linking number and framing

The linking number of a link L can be defined in various ways. We will use the following
from Saveliev [8].
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Definition 1.3.1. Let L1 and L2 be disjoint oriented knots in S3, and consider the
projection of L1 ∪ L2, i.e. its link diagram. Each time L1 crosses under L2, assign the
crossing the integer +1 or −1, according to which of the configuration of orientations in
the following figure holds at the crossing. The linking number, lk(L1,L2), of L1 and L2

is the sum over all crossings of L1 under L2.

The linking number is a tool in determining the canonical meridian-longitude pair for
a knot k. When lk(k,l)=0, the choice of longitude, l, gives the canonical meridian-
longitude pair.

Example 1.3.2. The longitude l which runs alongside the trefoil k as in left hand
side of Figure 1.5 has the property of lk(k,l)=3. Thus this choice of longitude does
not determine the canonical meridian-longitude pair. If the longitude is twisted three
times around the trefoil, as in the right hand picture of Figure 1.5, then lk(k,l)=0, and
this choice of longitude gives the canonical meridian-longitude pair.

Figure 1.5: The choice of longitude as in the right hand diagram gives the canonical
meridian-longitude pair. The longitude is drawn in red.

We say that the longitude frames the knot, and the linking number of the knot and
the longitude defines the framing. If lk(k,l)=n, we say that the knot has framing n.
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CHAPTER 2

ALGEBRAIC DESCRIPTION OF
RACKS AND QUANDLES

In this chapter we introduce the algebraic structure of a rack. We will use this in the
next chapter to show that racks can be used to distinguish framed links.

2.1 The algebra of racks and quandles

The following definition of a rack is adapted from Fenn and Rourke [2]. The notation
is due to Joyce [3], whose work concerns quandles, which are racks which satisfy an
additional axiom, and which we will also describe in this section.

Definition 2.1.1. A rack is a set X together with a binary operation . : X×X −→ X,
satisfying the following axioms.

1. For every y, z ∈ X, there is a unique element x ∈ X such that x . y = z.

2. For all x, y, z ∈ X, (x . y) . z = (x . z) . (y . z).
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As a consequence of the first axiom, the map x 7→ x.y is a bijection for any given y ∈ X.
The inverse map .−1 has the property that (x. y) .−1 y = x. Here .−1 is a right inverse.
To prove that it is also a left inverse, i.e. that (x .−1 y) . y = x, we use the first axiom
and set x = x′ . y. We then have that

(x .−1 y) . y = ((x′ . y) .−1 y) . y.

Since .−1 is a right inverse, (x′ . y) .−1 y = x′, and we obtain that

((x′ . y) .−1 y) . y = x′ . y = x.

The binary operations x . y and x .−1 y can be read “y acts on x”.

Example 2.1.2. The group Z/3Z can be equipped with the structure of a rack in the
following way. Let . and .−1 be given by x . y = 2y − x and x .−1 y = 2y − x. We
check that the axioms for a rack are satisfied.

The left side of the first axiom, (x . y) .−1 y, gives

2y − (2y − x) = 2y − 2y + x = x

in Z/3Z. Thus the first axiom, (x . y) .−1 y = x, is satisfied in Z/3Z.

The left side of the second axiom, (x . y) . z, gives

(x . y) . z = 2z − (2y − x) = 2z − 2y + x

in Z/3Z. The right side of this axiom, (x . z) . (y . z), gives

(x . z) . (y . z) = 2(2z − y)− (2z − x) = 4z − 2y − 2z + x = 2z − 2y + x

in Z/3Z. Thus the third axiom, (x . y) . z = (x . z) . (y . z), is satisfied in Z/3Z. This
rack is referred to as the core rack in Example 3 of Fenn and Rourke [2], and we will
denote it by Core(Z/3Z).

Definition 2.1.3. A quandle is a set X together with a binary operation . : X ×X −→ X,
satisfying the following axioms.

1. For all x ∈ X, x . x = x.

2. For every y, z ∈ X, there is a unique element x ∈ X such that x . y = z.
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3. For all x, y, z ∈ X, (x . y) . z = (x . z) . (y . z).

Example 2.1.4. The core rack Core(Z/3Z) from Example 2.1.2 is in fact a quandle,
since the choice of . as in Example 2.1.2, in addition to the second and third axiom,
satisfies the first axiom,

x . x = 2x− x = x,

and hence equips Z/3Z with the structure of a quandle.

Every abelian group can be equipped with the structure of a quandle by the same
choice of binary operation . as in Example 2.1.2.

2.2 Morphisms of racks

Fundamental racks, which will be described in Chapter 3, are large and complicated
structures, and in order to make them easier to investigate we typically look for mor-
phisms from them to racks of simpler structure.

Definition 2.2.1. Let (X, .) and (Y, .) be racks. A morphism from (X, .) to (Y, .) is
a map ϕ from X to Y such that ϕ(x . y) = ϕ(x) . ϕ(y) for all x and y which belong
to X.

A rack can be constructed from generators and relations between the generators.
Let 〈G | J〉 denote a rack, where G is the set of generators and J is the set of relations
on the generators. The rack 〈G | ∅〉 is the free rack generated by G. Let R be another
rack, then there is a set of morphisms ϕ̃ from 〈G | ∅〉 to R, Mor(〈G | ∅〉, R). This set
is in natural bijection to the set of maps ϕ from G to R, Mor(G,R). The bijection
is given by restricting ϕ̃ to the set of generators. The two maps f, g : J −→ 〈G | ∅〉
send both sides of the relations in J to 〈G | ∅〉. For instance if j is an element of J ,
then f(j) = x . y and g(j) = z. Then the set of morphisms ϕ from 〈G | J〉 to R is

Mor(〈G | J〉, R) = {ϕ : G R | J 〈G | ∅〉
f

g
R},ϕ̃

where ϕ̃ ◦ f = ϕ̃ ◦ g.
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CHAPTER 3

FUNDAMENTAL RACKS

In this chapter we will describe the construction of a fundamental rack, and show
that fundamental racks are an invariant of oriented framed links. As mentioned in
the introduction, quandles define invariants of links. However, it do not keep track
of framings since the R1 move (corresponding to the first axiom in Definition 2.1.3)
changes framings. We therefore only allow the moves R2 and R3 in order to keep track
of framings, and show that racks are invariant under these moves.

3.1 The fundamental rack for a framed link

To any link diagram we can associate the algebraic structure of a rack which is gen-
erated by the arcs of the link diagram where the binary operation is the relation
between the arcs in a crossing. In order to equip a link diagram with the structure
of a rack, we need a relationship between racks and links. This relationship was
established by Joyce [3] in 1982. We assign a letter to each arc in a link diagram,
and each crossing of the link diagram is a relation between the arcs, as seen in Figure 3.1.
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Chapter 3

Figure 3.1: Relationship between the link diagrams and the binary operation . and its
inverse.

Definition 3.1.1. The fundamental rack of a link diagram is the quotient of the free
rack on the arcs of this diagram in which we impose the relations indicated in Figure
3.1 for each crossing.

Example 3.1.2. Since the link diagram of the unknot contains only one arc, and the
fundamental rack for the unknot is generated by only one generator, x. Since there are
no crossings in the link diagram for the unknot, there are no relations between the arcs.
The fundamental rack for the link diagram of the unknot is presented by RU = 〈x | ∅〉.
In other words the fundamental rack for the unknot is the free rack generated by x.

Example 3.1.3. The following link diagram for the trefoil has three arcs. We denote
the three generators of the fundamental rack for the trefoil corresponding to these
arcs by, x, y and z. For the orientation chosen in Figure 3.2, the relations from the
crossings are x . y = z, y . z = x and z . x = y. The fundamental rack RT for this
diagram of the trefoil is thus

RT = 〈x, y, z | x . y = z, y . z = x, z . x = y〉.

Figure 3.2:
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Proposition 3.1.4. If two diagrams L and L′ for oriented framed links can be obtained
from one another by a finite sequence of Reidemeister moves of type R2 and R3, then
the fundamental racks for L and L′ are isomorphic.

Proof. By definition of the fundamental rack of an oriented framed link, the R2 and R3
Reidemeister moves have the effect on its generators and relations depicted in Figure 3.3.
In order for the fundamental rack to be invariant under these moves, we require that

x = (x . y) .−1 y,

and

(x . y) . z = (x . z) . (y . z).

Figure 3.3: The arcs and their respective labels before and after an R2 and R3 move.

This is precisely ensured by the axioms for a rack. Hence, the fundamental racks for
two link diagrams presenting the same oriented framed links, are isomorphic.

Proposition 3.1.5. For every n-colourable link L there is a morphism f of racks from
the fundamental rack RL for a diagram of L to the core rack Core(Z/nZ).
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Proof. Generalising Example 2.1.2, we have that defining . by x.y = 2y−x equips Z/nZ
with the structure of a rack. Let f be the map from the set of generators of RL to Z/nZ
which assigns to an arc of L the integer with which it is labelled in a given n-colouring
of L. The first condition in the definition of n-colourability of L exactly ensures that
this map defines a morphism of racks from RL to Core(Z/nZ).

3.2 The unknot and the trefoil are not isotopic

In this section we will give an example of how racks can be used to distinguish framed
links. In particular, we will show that the unknot and the trefoil are not isotopic for
any choice of framing.

Recall that in Example 3.1.2 and 3.1.3 we showed that the fundamental racks for the
link diagrams of the trefoil and unknot are

RU = 〈x | ∅〉

and

RT = 〈x, y, z | x . y = z, y . z = x, z . x = y〉.

Lemma 3.2.1. There is a surjective morphism of racks from the fundamental rack
for the trefoil RT to the core rack Core(Z/3Z).

Proof. From Example 9 by Fenn and Rourke [2], we know that every free rack has the
property that any function S −→ R, where S is a set and R is any rack, extends uniquely
to a morphism of racks 〈S | ∅〉 −→ R. Hence every map ϕ : {x, y, z} −→ Core(Z/3Z)
extends uniquely to a morphism ϕ̃ : 〈{x, y, z} | ∅〉 −→ Core(Z/3Z) of racks be-
cause 〈{x, y, z} | ∅〉 is free. If ϕ is bijective, then ϕ̃ is surjective.

In Core(Z/3Z) the set of relations on RT is satisfied since the three relations

x . y = z, y . z = x and z . x = y

all translate to x + y + z = 0, which is satisfied in Core(Z/3Z) if x, y and z are all
different or equal.

This implies that for every bijective ϕ, the morphism ϕ̃ factors through RT .
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〈{x, y, z} | ∅〉 ϕ̃ Core(Z/3Z)

RT

˜̃ϕ
Hence ˜̃ϕ is surjective.

Lemma 3.2.2. There is no surjective morphism of racks from the fundamental rack
for the unknot RU into the core rack Core(Z/3Z).

Proof. Let ϕ̃ be a morphism of racks RU = 〈{x} | ∅〉 −→ Core(Z/3Z) and ϕ be the
corresponding map {x} −→ Core(Z/3Z). The fundamental rack for the unknot is
generated by {x} with no relations, i.e. the fundamental rack for the unknot is the free
rack generated by {x}. From Example 9 by Fenn and Rourke [2], ϕ extends uniquely
to ϕ̃ in the following diagram.

〈{x} | ∅〉 Core(Z/3Z)ϕ̃

ϕ
{x}

Since RU is generated by one generator, the image of ϕ̃ is generated by one generator.
In the rack Core(Z/3Z) a subrack generated by one element a is {a}, and the map ϕ̃
is constant, and therefore not surjective.

Corollary 3.2.3. The fundamental racks for the trefoil and unknot are not isomorphic.

Proof. If i were an isomorphism from RU to RT and ˜̃ϕ were the surjective mor-

phism from RT to Core(Z/3Z) of Lemma 3.2.1, then ˜̃ϕ ◦ i : RU −→ Core(Z/3Z)
would be surjective. This is a contradiction since there is no surjective morphism
RU −→ Core(Z/3Z) by Lemma 3.2.2.

Corollary 3.2.4. The framed trefoil and unknot are not isotopic.

Proof. If U were isotopic to T , then Reidemeister’s theorem [7] would imply that U
and T can be obtained from one another by a finite sequence of Reidemeister moves.
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Proposition 3.1.4 then gives that RU
∼= RT , in contradiction to Corollary 3.2.3. Hence U

and T are not isotopic.
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CHAPTER 4

COMBINATORIAL DESCRIPTION OF
3-MANIFOLDS

In order to study 3-manifolds, several tools have been developed to simplify their
presentations, and the goal of this chapter is to describe a simple diagrammatic
presentation of 3-manifolds. Lickorish and Wallace’s theorem [5][9] states that every
closed orientable 3-manifold can be obtained by surgery on a link with integral framing
in S3. This theorem allows us to study the links presenting the 3-manifolds, instead of
the 3-manifolds themselves. Kirby [4] stated a theorem where he described two different
moves, one local and one global, on a framed link which do not change the 3-manifold.
The theorem states that if and only if one can obtain one framed link from another by
a finite sequence of Kirby moves, then the two links represent the same 3-manifold.
The Kirby moves are described in Section 4.2. Fenn and Rourke [1] further developed
Kirby’s theorem to only involve local moves, but they were infinitely many. Martelli
[6] was able to define five local moves, which are sufficient to cover all of the infinite
number of blow ups and blow downs. In this chapter we will briefly describe the surgery
on links from which we can obtain any 3-manifold. Thereafter we will give a short
description of Kirby’s theorem as well as and Fenn and Rourke’s theorem. Martelli’s
theorem will be stated and proved in the last section of this chapter.
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Chapter 4

4.1 Surgery on links

Let k be a knot in a closed orientable 3-manifold M . The knot can be thickened to
obtain its tubular neighbourhood N(k). The boundary of N(k) is homeomorphic to
the 2-torus, T 2, and the closure of N(k) is the solid torus D2 × S1. The boundary
of M \D2 × S1 is also the 2-torus, T 2. The tubular neighbourhood of the link, N(k),
can be cut out of the 3-manifold M , and then be glued back in again to obtain a
new 3-manifold. We say that the new 3-manifold is obtained by surgery on L. The
homomorphism along which the tubular neighbourhood is glued determines the 3-
manifold obtained by this operation. The tubular neighbourhood is glued in along
the longitude of T 2, and therefore we say that the framing of the knot determines the
3-manifold obtained by surgery. We refer the reader to Chapter 2 of Saveliev [8] for a
detailed description of Dehn surgery.

Theorem 4.1.1. Every 3-manifold can be obtained by an surgery on links with integral
framing in the 3-sphere [5][9].

4.2 Kirby moves

Since any closed orientable 3-manifold can be obtained from surgery on framed links
in S3, it is of interest to determine whether two links give the same 3-manifold. In
order to do this Kirby [4] defined two operations that do not change the 3-manifold.
These two operations are called the Kirby moves.

Definition 4.2.1 (Kirby moves). The following two moves do not change the 3-
manifold.

O1 Add or delete a circle with framing ±1 which belongs to a 3-ball that does not
intersect with any of the components of the framed link L.

O2 Let L1 and L2 be two link components of the link L = L1 ∪ L2 with framing n1

and n2 respectively. Add L1 to the framing of L2 by gluing in a band between L1 and
the framing of L2. The new link is L = L#∪L2 with framing n1 +n2 + 2lk(L1, L2),
where L# is L1 together with the framing of L2 and the band glued in between L1

and the framing of L2.

The first Kirby move is called a blow up when adding a circle with framing ±1 and
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Figure 4.1: Kirby move O2 for a link L with two components L1 and L2, where L1

has framing 3 and L2 has framing 1. By choosing the orientation on L1

clockwise, the two possible orientations for L2 are shown for the two possible
ways to glue in the band. The new component L# is coloured in red and
the framing is calculated with the red numbers.

blow down when deleting a circle with framing ±1. The second Kirby move is a handle
slide, sliding L1 around L2. It is necessary to know the orientation on L1 and L2 to
compute the linking number of L1 and L2. Choose orientation on L1, the orientation
on L2 then depends on how the band between L1 and the framing of L2 is glued in.
The link component L2 is oriented in such a way that together with L1 it defines an
orientation on L#. See figure 4.1 for an example of a handle slide. The handle slide
move is an example of a move which is not local.

Theorem 4.2.2. Two 3-manifolds are homeomorphic if and only if the links presenting
the 3-manifolds by surgery are connected by a finite sequence of Kirby moves [4].
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4.3 Fenn and Rourke’s theorem

The Kirby moves are global moves which affect the entire manifold. In order to find
local moves, Fenn and Rourke [1] showed that blow ups and blow downs with an
arbitrary number of strands are sufficient to deform one link to another link, both
presenting the same 3-manifold.

Theorem 4.3.1. Two 3-manifolds are homoemorphic if and only if the links presenting
the 3-manifolds by surgery are connected by a finite sequence of blow ups and blow
downs with an arbitrary number of strands [1].

A blow down with three strands is presented in Figure 4.2, while a picture of a full
clockwise twist is presented in Figure 4.3.

Figure 4.2: A topological blow down for three strands. The framing of the strands
change by ±1 when a circle with framing ∓1 is deleted. The box with the
sign ±1 means that the strands have been twisted one full counterclockwise
twist or clockwise twist, respectively.

Figure 4.3: One full clockwise twist with three strands.
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4.4 Martelli’s theorem

While Kirby’s moves are not local, the local moves suggested by Fenn and Rourke
are infinitely many. Martelli [6] defined five local moves which, together with their
inverses, are sufficient to cover all blow downs and blow ups with an arbitrary number
of strands. These five Martelli moves are presented in Figure 4.4.

Figure 4.4: The five local moves defined by Martelli.

Theorem 4.4.1. Let L and L′ be two framed links in S3 such that the 3-manifolds
obtained by surgery on L and L′ are homeomorphic. Then the link L′ can be obtained
from the link L through a finite sequence of the moves from Figure 4.4 and their
inverses.

Proof. It is possible to create a zero framed Hopf link with these moves, starting
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Figure 4.5: Creating a zero framed Hopf link.

Figure 4.6: The local details of the blow ups B1−1 and B2−1 and the blow down B1.

with a circle with framing +1. Then add a circle with framing −1 to the circle with
framing +1, obtaining the new framing 0. Then twist the two circles apart and add a
circle of framing +1 connecting them. The two circles change framing by +1. Delete
the circle with framing +1 from the circle of framing +1 that was added in the previous
blow up. The two remaining circles have framing 0 and is connected in a Hopf link.
How to create a zero framed Hopf link is shown in Figure 4.5. The details of each step
is shown in Figure 4.6.

We prove Theorem 4.4.1 for a blow down with three strands. Blow downs for an
arbitrary number of strands are done equivalently, while blow ups for an arbitrary
number of strands are the inverses of the blow downs.
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Figure 4.7: Adding a tail of four zero framed circles. The details are the same as for
creating a zero framed Hopf link.
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We start by assigning the circle around the three strands with the framing +1. We
then add a tail of two zero framed Hopf links, see Figure 4.7.

By two C2 moves, we slide the three strands into different circles. Details are shown in
Figure 4.8. The moves are described in Figure 4.9.

Figure 4.8: C2-move for one strand.

Figure 4.9: Sliding the strands to different circles.

By applying a B2 move, we can remove the circle with framing +1. The strand and
the circle are twisted together and their framing changes by −1. Details are shown in
Figure 4.10. Subsequently a C2 move slides the strand to the right around the circle to
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the left. Figure 4.11 shows the move, and Figure 4.8 is a detailed image. The circle to
the right has framing −1, and through a B1 move, we delete it from the circle it is
attached to, which changes the framing by +1, see Figure 4.12.

Figure 4.10: Removing the circle of framing +1 via a B2 move.

Figure 4.11: Sliding the red strand around the circle to the left via a C2 move.

By repeating the sequence of moves, B2, C2 and B1, the link we are left with is the
one presented in the second row second from the left in Figure 4.13. By performing
another B1 move, the blow down with three strands is complete.
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Figure 4.12: A B1 move deletes the circle to the right. Then a B2 move deletes the circle
with framing +1, and twists the remaining circle and strand together.

Figure 4.13:

Corollary 4.4.2. Let L and L′ be two framed links in S3 such that the 3-manifolds
obtained from surgery on L and L′ are homeomorphic. Then the link L′ can be obtained
from the link L through a finite sequence of Fenn and Rourke’s blow ups and blow
downs with up to five strands. [6].
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Proof. We prove that a handle slide with three strands, a C3 Martelli move can be
obtained by a finite sequence of blow ups and blow downs with up to five strands. An
analogous proof follows to prove that the C2 Martelli move can be obtained by blow
ups and blow downs with up to five strands.

We start with the left hand side of the C3 Martelli move. We can apply a move of the
type in Corollary 4.4.3 to obtain the diagram on right hand side of Figure 4.14.

Figure 4.14:

By applying a blow down with three strands we obtain the diagram in Figure 4.15.
This diagram is described in detail in Figure 4.16.

Figure 4.15:

The right hand side of Figure 4.16 is equal to the left hand side of Figure 4.17. By
applying a blow up with four strands, we obtain the diagram in the center of Figure 4.17,
to which we can apply a blow down with one strand to complete the proof.
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Figure 4.16:

Figure 4.17:

Lemma 4.4.3. There is a finite sequence of Reidemeister moves R2 and R3 and
Martelli moves between the two link diagrams in Figure 4.18.

Figure 4.18:

Proof. Take two strands to begin with and perform two Reidemeister moves of type
R2 to obtain the diagram in the middle of Figure 4.19. The twist at the top of the
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diagram is a clockwise twist, i.e. a −1 twist. The lower twist is a counterclockwise
twist. By applying the inverse B2 Martelli move on both those twists we obtain the
diagram to the right of Figure 4.19.

Figure 4.19:

By applying four Reidemeister moves of type R3, we obtain the diagram to the left of
Figure 4.20, to which we can apply a B2 Martelli move to obtain the diagram to the
right of Figure 4.20.

Figure 4.20:

Analogous proofs follow for an arbitrary number of strands.

Remark 4.4.4. The move from left to right in Figure 4.18 is hereafter referred to as
special blow ups.

Corollary 4.4.5. Let L and L′ be two framed links in S3 such that the 3-manifolds
obtained from surgery on L and L′ are homeomorphic. Then the link L′ can be obtained
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Figure 4.21:

from the link L through a finite sequence of Fenn and Rourke’s blow downs with up to
five strands and special blow ups with up to five strands.

Proof. From Corollary 4.4.2 we have that the 3-manifolds obtained by surgery on the
links L and L′, are homeomorphic if L and L′ can be obtained from one another by a
finite sequence of blow ups and blow downs with up to five strands. It remains for us
to show that the blow ups with up to five strands can be obtained from the special
blow ups.

Take two strands with a counterclockwise twist, and apply the special blow up above
the twist to obtain the right hand side of Figure 4.21. By applying two Reidemeister
moves of type R3, we obtain the left hand side of Figure 4.22, to which we can apply
two R2 moves in order to twist the opposite strands apart and obtain the right hand
side of Figure 4.22.

Analogous proofs can be given for special blow ups with three, four and five strands.
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Figure 4.22:
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CHAPTER 5

AN INVARIANT OF 3-MANIFOLDS

In this chapter we will define an invariant of 3-manifolds, which we refer to as the
Fenn-Rourke-local rack. Let M and N be 3-manifolds, and let LM and LN be links
which determine M and N by integral Dehn surgery in the 3-sphere. By Corollary 4.4.5,
M and N are homeomorphic if and only if LM can be obtained from LN by a finite
sequence of blow down with up to five strands and special blow downs with up to five
strands. In order to demonstrate that the Fenn-Rourke-local rack is an invariant, it
therefore suffices to demonstrate that it is invariant under these moves and under the
R2 and R3 Reidemeister moves.

When defining the Fenn-Rourke-local fundamental rack of a framed link, we ignore its
framing. Thus it can distinguish 3-manifolds obtained by integral Dehn surgery on
different links, but not those obtained by integral Dehn surgery on the same link (up
to isotopy). It is straightforward to adapt the construction of the Fenn-Rourke-local
fundamental rack as we define it to take into account framings, and thus to obtain an
invariant of 3-manifolds per se.
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5.1 The Fenn-Rourke-local fundamental rack of a link
diagram

We will associate to any link diagram a rack which we will refer to as its Fenn-Rourke-
local fundamental rack.

Definition 5.1.1. The Fenn-Rourke-local fundamental rack of a link L is the rack
obtained by the following procedure. We begin by taking the free rack on the arcs of L,
except those arcs which are disjoint circles. We then take a quotient of this free rack
which imposes the following relations.

1. Given any crossing of L as in Figure 3.1 in which all arcs belong to the same
component of L, impose the relation from the crossing.

2. Let y and z be arcs of L for which L looks locally as on the left hand side of
Figure 5.1; for which y and z belong to the same component of L; for which
the two pieces of the broken circle belong to the same component of L, and this
component is not the same component as that to which y and z belong; and for
which, if we remove all components of L except the component to which y and z
belong, Figure 5.1 can be manipulated using R2 and R3 moves to a single arc
joining y and z. We then require that y = z, and that y . y = y.

3. Let y, z, y′, and z′ be arcs of L for which L looks locally as on the right hand side
of Figure 5.1; for which the two pieces of the broken circle belong to the same
component of L, and this component is not the same component as that to which
any of the arcs y, z, y′, and z′ belong; and for which, if we remove all components
of L except those to which y, z, y′, and z′ belong, we can manipulate the right
hand side of Figure 5.1 using R2 and R3 moves to obtain a pair of disjoint arcs
joining y to z and joining y′ to z′. We then require that y = z = y′ = z′, and
that y . y = y.

4. If L looks locally as any of the diagrams Figure 5.2, and we have the same
conditions as in 3 for up to five strands, we then require that
y = z = y′ = z′ = u = v = u′ = v′ = u′′ = v′′ and that y . y = y.

The breaks in Figure 5.1 and 5.2 indicates that we place no requirements on how L
looks locally between the broken arcs. Other crossings may for instance occur.
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Figure 5.1:

Figure 5.2:

Theorem 5.1.2. If a pair of link diagrams L and L′ can be obtained from one another
by a finite sequence of the moves from Corollary 4.4.5, then the Fenn-Rourke-local
fundamental racks of L and L′ are isomorphic.

Proof. We first observe that the whether or not the conditions of 2 in Definition 5.1.1
are satisfied for a given pair of arcs is invariant under the moves of Corollary 4.4.5 and,
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Figure 5.3:

and the same holds for 3 and 4. Figure 5.3 indicates this for 2 in the case of a couple
of the possible R2 moves. As a consequence of this, the same proof as in Proposition
3.1.4 demonstrates that the Fenn-Rourke-local fundamental rack is invariant under the
R2 and R3 moves.

It then suffices to show that the Fenn-Rourke-local fundamental racks for link diagrams,
connected by a finite sequence of blow downs with up to five strands and special blow
ups with up to five strands, are isomorphic. Since a disjoint circle component of the link
is excluded from the Fenn-Rourke-local fundamental rack, two link diagrams connected
by blow ups and blow downs with zero strands have isomorphic Fenn-Rourke-local
fundamental racks.

For a blow up with one strand the condition from 2 of Definition 5.1.1 ensures that
the labelling of the strands is unaffected by this move, and 1 together with the fact
that disjoint circles are ignored ensures that the circle on the left hand side of Figure
5.4 does not give any generators in the Fenn-Rourke-local fundamental rack, and that
crossings involving the circle do not impose any relations. Hence the Fenn-Rourke-local
fundamental rack is unaffected by the blow up with one strand. By the same argument
the it is also unaffected by the blow down with one strand, and the Fenn-Rourke-local
fundamental rack is invariant under blow ups and blow downs with one strand.

For a blow down with two strands, condition 3 ensures that that the arcs must be as in
the left hand side of Figure 5.5, and in addition that y . y = y. Condition 1 together
with the fact that disjoint circles are ignored, ensures that the circle does not give a
generator in the Fenn-Rourke-local fundamental rack, and the crossings involving the
circle do not impose any relations. Hence the Fenn-Rourke-local fundamental rack is

38



Chapter 5

Figure 5.4:

invariant under blow downs with two strands.

Figure 5.5:

For a special blow up with two strands, 1 of Definition 5.1.1, together with the fact
that disjoint circle components are ignored when forming the set of generators of a
Fenn-Rourke-local fundamental rack, ensures that the circle is not a generator, and
that crossings involving the circle do not contribute any relations, in the right hand
side of Figure 5.6. Thus we can replace the left hand side of Figure 5.6 by the right
hand side without altering the Fenn-Rourke-local fundamental rack: the unlabelled
arcs on the right hand side of Figure 5.6 must be y . x and x . (y . x), and thus can be
removed from the generators without altering the rack, since no relations involving
these two elements are forced.
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Figure 5.6:

A similar argument can be carried out for blow downs and special blow ups with three,
four, and five strands.

Example 5.1.3. The unknot consists of a single arc, which is a circle. This circle is
excluded from the set of generators of the Fenn-Rourke-local fundamental rack. Hence
the Fenn-Rourke-local rack of the unknot, which we will denote by FRU , is 〈∅ | ∅〉.
This is an empty rack.

Example 5.1.4. The trefoil consists of three arcs, and since none of them are the
disjoint circle we get three generators for the Fenn-Rourke-local fundamental rack. All
the crossings in the trefoil consist of arcs from the same component, hence we get a
relation from every crossing. The Fenn-Rourke-local fundamental rack of the trefoil is
presented by

FRT = 〈{x, y, z} | x . y = z, y . z = x, z . x = y〉.

The Fenn-Rourke-local fundamental rack of the trefoil is the exact same rack as the
fundamental rack for the trefoil.
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5.2 The 3-sphere and the Poincaré homology sphere
are not homeomorphic

In this section we will use the Fenn-Rourke-local fundamental rack to distinguish
between different 3-manifolds.

Lemma 5.2.1. There is a surjective morphism ϕ̃ of racks from the Fenn-Rourke-local
fundamental rack of the trefoil, CT , into Core(Z/3Z).

Proof. By the argument from the proof for Lemma 3.2.1, we know that the morphism
from RT to Core(Z/3Z) is surjective, hence the morphism˜̃ϕ : UT −→ Core(Z/3Z)

is also surjective.

Corollary 5.2.2. There is no isomorphism between the Fenn-Rourke-local rack of the
trefoil and the Fenn-Rourke-local of the unknot.

Proof. Since the Fenn-Rourke-local of the unknot, FRU , is the empty set, we know
that there is only one morphism from FRU , that is the morphism with an empty set
as an image. The Fenn-Rourke-local rack of the trefoil, FRT , is not empty since it is
generated by three generators. Hence there is no morphism from FRU into FRT , and
in particular no isomorphism between FRU and FRT .

Corollary 5.2.3. The 3-sphere and the Poincaré sphere are not homeomorphic.

Proof. The Poincaré sphere can be obtained by surgery on the trefoil [1] and the
3-sphere can be obtained by surgery on the unknot [4]. By Corollary 4.4.5, links
presenting homeomorphic 3-manifolds can be obtained from one another by a finite
sequence of blow downs and special blow ups with up to five strands. From Theorem
5.1.2 we know that if two links can be connected by a finite sequence of Reidemeister
moves R2 and R3 and blow downs and special blow ups with up to five strands, then
the Fenn-Rourke-local racks for the links are isomorphic. Since the Fenn-Rourke-local
racks for the trefoil and unknot are not isomorphic, their respective link diagrams
cannot be obtained from one another by a finite sequence of R2 and R3 moves and
blow ups and blow downs with up to five strands. Hence no 3-manifold obtained by
surgery on the unknot can be homeomorphic to a 3-manifold obtained by surgery on
the trefoil.
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